source: palm/trunk/SOURCE/time_integration.f90 @ 3826

Last change on this file since 3826 was 3820, checked in by forkel, 5 years ago

renaming of get_mechanismname, do_emiss and do_depo, sorting in chem_modules

  • Property svn:keywords set to Id
File size: 72.7 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3820 2019-03-27 11:53:41Z raasch $
27! renamed do_emiss to emissions_anthropogenic (ecc)
28!
29!
30! 3774 2019-03-04 10:52:49Z moh.hefny
31! rephrase if statement to avoid unallocated array in case of
32! nesting_offline is false (crashing during debug mode)
33!
34! 3761 2019-02-25 15:31:42Z raasch $
35! module section re-formatted and openacc required variables moved to separate section,
36! re-formatting to 100 char line width
37!
38! 3745 2019-02-15 18:57:56Z suehring
39! Call indoor model after first timestep
40!
41! 3744 2019-02-15 18:38:58Z suehring
42! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
43! time_integration to make sure averaged input is updated before calculating.
44!
45! 3739 2019-02-13 08:05:17Z dom_dwd_user
46! Removed everything related to "time_bio_results" as this is never used.
47!
48! 3724 2019-02-06 16:28:23Z kanani
49! Correct double-used log_point_s unit
50!
51! 3719 2019-02-06 13:10:18Z kanani
52! - removed wind_turbine cpu measurement, since same time is measured inside
53!   wtm_forces subroutine as special measures
54! - moved the numerous vnest cpulog to special measures
55! - extended radiation cpulog over entire radiation part,
56!   moved radiation_interactions cpulog to special measures
57! - moved some cpu_log calls to this routine for better overview
58!
59! 3705 2019-01-29 19:56:39Z suehring
60! Data output for virtual measurements added
61!
62! 3704 2019-01-29 19:51:41Z suehring
63! Rename subroutines for surface-data output
64!
65! 3647 2019-01-02 14:10:44Z kanani
66! Bugfix: add time_since_reference_point to IF clause for data_output calls
67! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
68! Clean up indoor_model and biometeorology model call.
69!
70! 3646 2018-12-28 17:58:49Z kanani
71! Bugfix: use time_since_reference_point instead of simulated_time where
72! required (relevant when using wall/soil spinup)
73!
74! 3634 2018-12-18 12:31:28Z knoop
75! OpenACC port for SPEC
76!
77! 3597 2018-12-04 08:40:18Z maronga
78! Removed call to calculation of near air (10 cm) potential temperature (now in
79! surface layer fluxes)
80!
81! 3589 2018-11-30 15:09:51Z suehring
82! Move the control parameter "salsa" from salsa_mod to control_parameters
83! (M. Kurppa)
84!
85! 3582 2018-11-29 19:16:36Z suehring
86! dom_dwd_user, Schrempf:
87! Changes due to merge of uv exposure model into biometeorology_mod.
88!
89! 3525 2018-11-14 16:06:14Z kanani
90! Changes related to clean-up of biometeorology (dom_dwd_user)
91!
92! 3524 2018-11-14 13:36:44Z raasch
93! unused variables removed
94!
95! 3484 2018-11-02 14:41:25Z hellstea
96! pmci_ensure_nest_mass_conservation is premanently removed
97!
98! 3473 2018-10-30 20:50:15Z suehring
99! new module for virtual measurements introduced
100!
101! 3472 2018-10-30 20:43:50Z suehring
102! Add indoor model (kanani, srissman, tlang)
103!
104! 3467 2018-10-30 19:05:21Z suehring
105! Implementation of a new aerosol module salsa.
106!
107! 3448 2018-10-29 18:14:31Z kanani
108! Add biometeorology
109!
110! 3421 2018-10-24 18:39:32Z gronemeier
111! Surface data output
112!
113! 3418 2018-10-24 16:07:39Z kanani
114! call to material_heat_model now with check if spinup runs (rvtils)
115!
116! 3378 2018-10-19 12:34:59Z kanani
117! merge from radiation branch (r3362) into trunk
118! (moh.hefny):
119! Bugfix in the if statement to call radiation_interaction
120!
121! 3347 2018-10-15 14:21:08Z suehring
122! - offline nesting separated from large-scale forcing module
123! - changes for synthetic turbulence generator
124!
125! 3343 2018-10-15 10:38:52Z suehring
126! - Formatting, clean-up, comments (kanani)
127! - Added CALL to chem_emissions_setup (Russo)
128! - Code added for decycling chemistry (basit)
129!
130! 3294 2018-10-01 02:37:10Z raasch
131! changes concerning modularization of ocean option
132!
133! 3274 2018-09-24 15:42:55Z knoop
134! Modularization of all bulk cloud physics code components
135!
136! 3241 2018-09-12 15:02:00Z raasch
137! unused variables removed
138!
139! 3198 2018-08-15 09:23:10Z sward
140! Added multi_agent_system_end; defined start time for MAS relative to
141! time_since_reference_point
142!
143! 3183 2018-07-27 14:25:55Z suehring
144! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
145! Rename subroutines and variables in COSMO nesting mode
146!
147! 3182 2018-07-27 13:36:03Z suehring
148! Added multi agent system
149!
150! 3042 2018-05-25 10:44:37Z schwenkel
151! Changed the name specific humidity to mixing ratio
152!
153! 3040 2018-05-25 10:22:08Z schwenkel
154! Fixed bug in IF statement
155! Ensure that the time when calling the radiation to be the time step of the
156! pre-calculated time when first calculate the positions of the sun
157!
158! 3004 2018-04-27 12:33:25Z Giersch
159! First call of flow_statistics has been removed. It is already called in
160! run_control itself
161!
162! 2984 2018-04-18 11:51:30Z hellstea
163! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
164! as seemingly unnecessary.
165!
166! 2941 2018-04-03 11:54:58Z kanani
167! Deduct spinup_time from RUN_CONTROL output of main 3d run
168! (use time_since_reference_point instead of simulated_time)
169!
170! 2938 2018-03-27 15:52:42Z suehring
171! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
172!
173! 2936 2018-03-27 14:49:27Z suehring
174! Little formatting adjustment.
175!
176! 2817 2018-02-19 16:32:21Z knoop
177! Preliminary gust module interface implemented
178!
179! 2801 2018-02-14 16:01:55Z thiele
180! Changed lpm from subroutine to module.
181! Introduce particle transfer in nested models.
182!
183! 2776 2018-01-31 10:44:42Z Giersch
184! Variable use_synthetic_turbulence_generator has been abbreviated
185!
186! 2773 2018-01-30 14:12:54Z suehring
187! - Nesting for chemical species
188!
189! 2766 2018-01-22 17:17:47Z kanani
190! Removed preprocessor directive __chem
191!
192! 2718 2018-01-02 08:49:38Z maronga
193! Corrected "Former revisions" section
194!
195! 2696 2017-12-14 17:12:51Z kanani
196! - Change in file header (GPL part)
197! - Implementation of uv exposure model (FK)
198! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
199! - renamed diffusivities to tcm_diffusivities (TG)
200! - implement prognostic equation for diss (TG)
201! - Moved/commented CALL to chem_emissions (FK)
202! - Added CALL to chem_emissions (FK)
203! - Implementation of chemistry module (FK)
204! - Calls for setting boundary conditions in USM and LSM (MS)
205! - Large-scale forcing with larger-scale models implemented (MS)
206! - Rename usm_radiation into radiation_interactions; merge with branch
207!   radiation (MS)
208! - added call for usm_green_heat_model for green building surfaces (RvT)
209! - added call for usm_temperature_near_surface for use in indoor model (RvT)
210!
211! 2617 2017-11-16 12:47:24Z suehring
212! Bugfix, assure that the reference state does not become zero.
213!
214! 2563 2017-10-19 15:36:10Z Giersch
215! Variable wind_turbine moved to module control_parameters
216!
217! 2365 2017-08-21 14:59:59Z kanani
218! Vertical grid nesting implemented (SadiqHuq)
219!
220! 2320 2017-07-21 12:47:43Z suehring
221! Set bottom boundary conditions after nesting interpolation and anterpolation
222!
223! 2299 2017-06-29 10:14:38Z maronga
224! Call of soil model adjusted
225!
226! 2292 2017-06-20 09:51:42Z schwenkel
227! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
228! includes two more prognostic equations for cloud drop concentration (nc) 
229! and cloud water content (qc).
230!
231! 2271 2017-06-09 12:34:55Z sward
232! Start timestep message changed
233!
234! 2259 2017-06-08 09:09:11Z gronemeier
235! Implemented synthetic turbulence generator
236!
237! 2233 2017-05-30 18:08:54Z suehring
238!
239! 2232 2017-05-30 17:47:52Z suehring
240! Adjustments to new topography and surface concept
241! Modify passed parameters for disturb_field
242!
243! 2178 2017-03-17 11:07:39Z hellstea
244! Setting perturbations at all times near inflow boundary is removed
245! in case of nested boundaries
246!
247! 2174 2017-03-13 08:18:57Z maronga
248! Added support for nesting with cloud microphysics
249!
250! 2118 2017-01-17 16:38:49Z raasch
251! OpenACC directives and related code removed
252!
253! 2050 2016-11-08 15:00:55Z gronemeier
254! Implement turbulent outflow condition
255!
256! 2031 2016-10-21 15:11:58Z knoop
257! renamed variable rho to rho_ocean
258!
259! 2011 2016-09-19 17:29:57Z kanani
260! Flag urban_surface is now defined in module control_parameters,
261! removed commented CALLs of global_min_max.
262!
263! 2007 2016-08-24 15:47:17Z kanani
264! Added CALLs for new urban surface model
265!
266! 2000 2016-08-20 18:09:15Z knoop
267! Forced header and separation lines into 80 columns
268!
269! 1976 2016-07-27 13:28:04Z maronga
270! Simplified calls to radiation model
271!
272! 1960 2016-07-12 16:34:24Z suehring
273! Separate humidity and passive scalar
274!
275! 1957 2016-07-07 10:43:48Z suehring
276! flight module added
277!
278! 1919 2016-05-27 14:51:23Z raasch
279! Initial version of purely vertical nesting introduced.
280!
281! 1918 2016-05-27 14:35:57Z raasch
282! determination of time step moved to the end of the time step loop,
283! the first time step is now always calculated before the time step loop (i.e.
284! also in case of restart runs)
285!
286! 1914 2016-05-26 14:44:07Z witha
287! Added call for wind turbine model
288!
289! 1878 2016-04-19 12:30:36Z hellstea
290! Synchronization for nested runs rewritten
291!
292! 1853 2016-04-11 09:00:35Z maronga
293! Adjusted for use with radiation_scheme = constant
294!
295! 1849 2016-04-08 11:33:18Z hoffmann
296! Adapted for modularization of microphysics
297!
298! 1833 2016-04-07 14:23:03Z raasch
299! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
300!
301! 1831 2016-04-07 13:15:51Z hoffmann
302! turbulence renamed collision_turbulence
303!
304! 1822 2016-04-07 07:49:42Z hoffmann
305! icloud_scheme replaced by microphysics_*
306!
307! 1808 2016-04-05 19:44:00Z raasch
308! output message in case unscheduled radiation calls removed
309!
310! 1797 2016-03-21 16:50:28Z raasch
311! introduction of different datatransfer modes
312!
313! 1791 2016-03-11 10:41:25Z raasch
314! call of pmci_update_new removed
315!
316! 1786 2016-03-08 05:49:27Z raasch
317! +module spectrum
318!
319! 1783 2016-03-06 18:36:17Z raasch
320! switch back of netcdf data format for mask output moved to the mask output
321! routine
322!
323! 1781 2016-03-03 15:12:23Z raasch
324! some pmc calls removed at the beginning (before timeloop),
325! pmc initialization moved to the main program
326!
327! 1764 2016-02-28 12:45:19Z raasch
328! PMC_ACTIVE flags removed,
329! bugfix: nest synchronization after first call of timestep
330!
331! 1762 2016-02-25 12:31:13Z hellstea
332! Introduction of nested domain feature
333!
334! 1736 2015-12-04 08:56:33Z raasch
335! no perturbations added to total domain if energy limit has been set zero
336!
337! 1691 2015-10-26 16:17:44Z maronga
338! Added option for spin-ups without land surface and radiation models. Moved calls
339! for radiation and lan surface schemes.
340!
341! 1682 2015-10-07 23:56:08Z knoop
342! Code annotations made doxygen readable
343!
344! 1671 2015-09-25 03:29:37Z raasch
345! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
346! for particles
347!
348! 1585 2015-04-30 07:05:52Z maronga
349! Moved call of radiation scheme. Added support for RRTM
350!
351! 1551 2015-03-03 14:18:16Z maronga
352! Added interface for different radiation schemes.
353!
354! 1496 2014-12-02 17:25:50Z maronga
355! Added calls for the land surface model and radiation scheme
356!
357! 1402 2014-05-09 14:25:13Z raasch
358! location messages modified
359!
360! 1384 2014-05-02 14:31:06Z raasch
361! location messages added
362!
363! 1380 2014-04-28 12:40:45Z heinze
364! CALL of nudge_ref added
365! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
366!
367! 1365 2014-04-22 15:03:56Z boeske
368! Reset sums_ls_l to zero at each timestep
369! +sums_ls_l
370! Calculation of reference state (previously in subroutine calc_mean_profile)
371
372! 1342 2014-03-26 17:04:47Z kanani
373! REAL constants defined as wp-kind
374!
375! 1320 2014-03-20 08:40:49Z raasch
376! ONLY-attribute added to USE-statements,
377! kind-parameters added to all INTEGER and REAL declaration statements,
378! kinds are defined in new module kinds,
379! old module precision_kind is removed,
380! revision history before 2012 removed,
381! comment fields (!:) to be used for variable explanations added to
382! all variable declaration statements
383! 1318 2014-03-17 13:35:16Z raasch
384! module interfaces removed
385!
386! 1308 2014-03-13 14:58:42Z fricke
387! +netcdf_data_format_save
388! For masked data, parallel netcdf output is not tested so far, hence
389! netcdf_data_format is switched back to non-paralell output.
390!
391! 1276 2014-01-15 13:40:41Z heinze
392! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
393!
394! 1257 2013-11-08 15:18:40Z raasch
395! acc-update-host directive for timestep removed
396!
397! 1241 2013-10-30 11:36:58Z heinze
398! Generalize calc_mean_profile for wider use
399! Determine shf and qsws in dependence on data from LSF_DATA
400! Determine ug and vg in dependence on data from LSF_DATA
401! 1221 2013-09-10 08:59:13Z raasch
402! host update of arrays before timestep is called
403!
404! 1179 2013-06-14 05:57:58Z raasch
405! mean profiles for reference state are only calculated if required,
406! small bugfix for background communication
407!
408! 1171 2013-05-30 11:27:45Z raasch
409! split of prognostic_equations deactivated (comment lines), for the time being
410!
411! 1128 2013-04-12 06:19:32Z raasch
412! asynchronous transfer of ghost point data realized for acc-optimized version:
413! prognostic_equations are first called two times for those points required for
414! the left-right and north-south exchange, respectively, and then for the
415! remaining points,
416! those parts requiring global communication moved from prognostic_equations to
417! here
418!
419! 1115 2013-03-26 18:16:16Z hoffmann
420! calculation of qr and nr is restricted to precipitation
421!
422! 1113 2013-03-10 02:48:14Z raasch
423! GPU-porting of boundary conditions,
424! openACC directives updated
425! formal parameter removed from routine boundary_conds
426!
427! 1111 2013-03-08 23:54:10Z raasch
428! +internal timestep counter for cpu statistics added,
429! openACC directives updated
430!
431! 1092 2013-02-02 11:24:22Z raasch
432! unused variables removed
433!
434! 1065 2012-11-22 17:42:36Z hoffmann
435! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
436!
437! 1053 2012-11-13 17:11:03Z hoffmann
438! exchange of ghost points for nr, qr added
439!
440! 1036 2012-10-22 13:43:42Z raasch
441! code put under GPL (PALM 3.9)
442!
443! 1019 2012-09-28 06:46:45Z raasch
444! non-optimized version of prognostic_equations removed
445!
446! 1015 2012-09-27 09:23:24Z raasch
447! +call of prognostic_equations_acc
448!
449! 1001 2012-09-13 14:08:46Z raasch
450! all actions concerning leapfrog- and upstream-spline-scheme removed
451!
452! 849 2012-03-15 10:35:09Z raasch
453! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
454!
455! 825 2012-02-19 03:03:44Z raasch
456! wang_collision_kernel renamed wang_kernel
457!
458! Revision 1.1  1997/08/11 06:19:04  raasch
459! Initial revision
460!
461!
462! Description:
463! ------------
464!> Integration in time of the model equations, statistical analysis and graphic
465!> output
466!------------------------------------------------------------------------------!
467 SUBROUTINE time_integration
468 
469
470    USE advec_ws,                                                                                  &
471        ONLY:  ws_statistics
472
473    USE arrays_3d,                                                                                 &
474        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
475               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
476               tend, u, u_p, v, vpt, v_p, w, w_p
477
478    USE biometeorology_mod,                                                                        &
479        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
480
481    USE bulk_cloud_model_mod,                                                                      &
482        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
483              microphysics_morrison, microphysics_seifert
484
485    USE calc_mean_profile_mod,                                                                     &
486        ONLY:  calc_mean_profile
487
488    USE chem_emissions_mod,                                                                        &
489        ONLY:  chem_emissions_setup
490
491    USE chem_modules,                                                                              &
492        ONLY:  bc_cs_t_val, cs_name, emissions_anthropogenic, nspec, nspec_out
493
494    USE chemistry_model_mod,                                                                       &
495        ONLY:  chem_boundary_conds, chem_species
496
497    USE control_parameters,                                                                        &
498        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
499               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
500               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
501               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
502               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
503               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
504               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
505               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
506               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,     &
507               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
508               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
509               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
510               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
511               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
512               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
513               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
514               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
515               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
516               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
517               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
518               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
519               time_do_sla, time_disturb, time_dvrp, time_run_control, time_since_reference_point, &
520               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
521               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
522               virtual_flight, virtual_measurement, wind_turbine, ws_scheme_mom, ws_scheme_sca
523
524    USE cpulog,                                                                                    &
525        ONLY:  cpu_log, log_point, log_point_s
526
527    USE date_and_time_mod,                                                                         &
528        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
529
530    USE flight_mod,                                                                                &
531        ONLY:  flight_measurement
532
533    USE indices,                                                                                   &
534        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
535
536    USE indoor_model_mod,                                                                          &
537        ONLY:  dt_indoor, im_main_heatcool, time_indoor
538
539    USE interaction_droplets_ptq_mod,                                                              &
540        ONLY:  interaction_droplets_ptq
541
542    USE interfaces
543
544    USE kinds
545
546    USE land_surface_model_mod,                                                                    &
547        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
548
549    USE lpm_mod,                                                                                   &
550        ONLY:  lpm
551
552    USE lsf_nudging_mod,                                                                           &
553        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
554
555    USE module_interface,                                                                          &
556        ONLY:  module_interface_actions
557
558    USE multi_agent_system_mod,                                                                    &
559        ONLY:  agents_active, multi_agent_system
560
561    USE nesting_offl_mod,                                                                          &
562        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
563       
564    USE netcdf_data_input_mod,                                                                     &
565        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
566
567    USE ocean_mod,                                                                                 &
568        ONLY:  prho_reference
569
570    USE particle_attributes,                                                                       &
571        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
572
573    USE pegrid
574
575    USE pmc_interface,                                                                             &
576        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize
577
578    USE progress_bar,                                                                              &
579        ONLY:  finish_progress_bar, output_progress_bar
580
581    USE prognostic_equations_mod,                                                                  &
582        ONLY:  prognostic_equations_cache, prognostic_equations_vector
583
584    USE radiation_model_mod,                                                                       &
585        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
586              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
587         
588    USE salsa_mod,                                                                                 &
589        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast, salsa_boundary_conds,           &
590              salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
591
592    USE spectra_mod,                                                                               &
593        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
594
595    USE statistics,                                                                                &
596        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
597
598
599    USE surface_layer_fluxes_mod,                                                                  &
600        ONLY:  surface_layer_fluxes
601
602    USE surface_data_output_mod,                                                                   &
603        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
604               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
605               skip_time_dosurf_av, time_dosurf, time_dosurf_av
606
607    USE surface_mod,                                                                               &
608        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
609
610    USE synthetic_turbulence_generator_mod,                                                        &
611        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
612               time_stg_adjust, time_stg_call, use_syn_turb_gen
613
614    USE turbulence_closure_mod,                                                                    &
615        ONLY:  tcm_diffusivities, production_e_init
616
617    USE urban_surface_mod,                                                                         &
618        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
619               usm_surface_energy_balance, usm_green_heat_model
620
621    USE vertical_nesting_mod,                                                                      &
622        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
623               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
624               vnest_start_time
625               
626    USE virtual_measurement_mod,                                                                   &
627        ONLY:  vm_data_output, vm_sampling, vm_time_start
628
629    USE wind_turbine_model_mod,                                                                    &
630        ONLY:  wtm_forces
631
632
633#if defined( _OPENACC )
634    USE arrays_3d,                                                             &
635        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
636               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
637               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
638               v_stokes_zu, zu
639
640    USE control_parameters,                                                                        &
641        ONLY:  tsc
642
643    USE indices,                                                                                   &
644        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
645
646    USE statistics,                                                                                &
647        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
648               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
649               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
650               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep
651
652    USE salsa_util_mod,                                                                            &
653           ONLY:  sums_salsa_ws_l
654
655    USE surface_mod,                                                                               &
656        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
657#endif
658
659
660    IMPLICIT NONE
661
662    CHARACTER (LEN=9) ::  time_to_string   !<
663   
664    INTEGER(iwp)      ::  b !< index for aerosol size bins   
665    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
666    INTEGER(iwp)      ::  g !< index for gaseous compounds
667    INTEGER(iwp)      ::  lsp
668    INTEGER(iwp)      ::  lsp_usr   !<
669    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
670
671    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
672                            !< steering of run control output interval
673    REAL(wp) ::  time_since_reference_point_save  !< original value of
674                                                  !< time_since_reference_point
675
676
677!
678!-- Copy data from arrays_3d
679!$ACC DATA &
680!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
681!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
682!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
683!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
684!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
685!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
686!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
687!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
688!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
689
690!$ACC DATA &
691!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
692!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
693!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
694!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
695!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
696!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
697!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
698!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
699!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
700!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
701!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
702
703!$ACC DATA &
704!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
705!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
706!$ACC COPYIN(zu(nzb:nzt+1)) &
707!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
708!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
709!$ACC COPYIN(ddzw(1:nzt+1)) &
710!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
711!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
712!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
713!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
714!$ACC COPYIN(ref_state(0:nz+1)) &
715!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
716!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
717!$ACC COPYIN(pt_init(0:nz+1)) &
718!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
719
720!
721!-- Copy data from control_parameters
722!$ACC DATA &
723!$ACC COPYIN(tsc(1:5))
724
725!
726!-- Copy data from indices
727!$ACC DATA &
728!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
729!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
730!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
731
732!
733!-- Copy data from surface_mod
734!$ACC DATA &
735!$ACC COPYIN(bc_h(0:1)) &
736!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
737!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
738!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
739!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
740!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
741!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
742
743!
744!-- Copy data from statistics
745!$ACC DATA &
746!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
747!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
748!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
749!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
750!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
751!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
752!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
753!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
754!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
755!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
756!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
757!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
758!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
759!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
760!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
761!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
762!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
763!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
764!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
765
766#if defined( _OPENACC )
767    CALL enter_surface_arrays
768#endif
769
770!
771!-- At beginning determine the first time step
772    CALL timestep
773!
774!-- Synchronize the timestep in case of nested run.
775    IF ( nested_run )  THEN
776!
777!--    Synchronization by unifying the time step.
778!--    Global minimum of all time-steps is used for all.
779       CALL pmci_synchronize
780    ENDIF
781
782!
783!-- Determine and print out the run control quantities before the first time
784!-- step of this run. For the initial run, some statistics (e.g. divergence)
785!-- need to be determined first --> CALL flow_statistics at the beginning of
786!-- run_control
787    CALL run_control
788!
789!-- Data exchange between coupled models in case that a call has been omitted
790!-- at the end of the previous run of a job chain.
791    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
792!
793!--    In case of model termination initiated by the local model the coupler
794!--    must not be called because this would again cause an MPI hang.
795       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
796          CALL surface_coupler
797          time_coupling = time_coupling - dt_coupling
798       ENDDO
799       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
800          time_coupling = time_since_reference_point
801       ENDIF
802    ENDIF
803
804#if defined( __dvrp_graphics )
805!
806!-- Time measurement with dvrp software 
807    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
808#endif
809
810    CALL location_message( 'starting timestep-sequence', .TRUE. )
811
812!
813!-- Start of the time loop
814    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
815
816       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
817!
818!--    Vertical nesting: initialize fine grid
819       IF ( vnested ) THEN
820          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
821             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
822             CALL vnest_init_fine
823             vnest_init = .TRUE.
824             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
825          ENDIF
826       ENDIF
827!
828!--    Determine ug, vg and w_subs in dependence on data from external file
829!--    LSF_DATA
830       IF ( large_scale_forcing .AND. lsf_vert )  THEN
831           CALL ls_forcing_vert ( simulated_time )
832           sums_ls_l = 0.0_wp
833       ENDIF
834
835!
836!--    Set pt_init and q_init to the current profiles taken from
837!--    NUDGING_DATA
838       IF ( nudging )  THEN
839           CALL nudge_ref ( simulated_time )
840!
841!--        Store temperature gradient at the top boundary for possible Neumann
842!--        boundary condition
843           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
844           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
845           IF ( air_chemistry )  THEN
846              DO  lsp = 1, nspec
847                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
848                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
849                               / dzu(nzt+1)
850              ENDDO
851           ENDIF
852       ENDIF
853!
854!--    If forcing by larger-scale models is applied, check if new data
855!--    at domain boundaries need to be read.
856       IF ( nesting_offline ) THEN
857          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
858               CALL netcdf_data_input_offline_nesting
859       ENDIF
860
861!
862!--    Execute alle other module actions routunes
863       CALL module_interface_actions( 'before_timestep' )
864
865!
866!--    Calculate forces by wind turbines
867       IF ( wind_turbine )  CALL wtm_forces 
868       
869!
870!--    Start of intermediate step loop
871       intermediate_timestep_count = 0
872       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
873
874          intermediate_timestep_count = intermediate_timestep_count + 1
875
876!
877!--       Set the steering factors for the prognostic equations which depend
878!--       on the timestep scheme
879          CALL timestep_scheme_steering
880
881!
882!--       Calculate those variables needed in the tendency terms which need
883!--       global communication
884          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
885          THEN
886!
887!--          Horizontally averaged profiles to be used as reference state in
888!--          buoyancy terms (WARNING: only the respective last call of
889!--          calc_mean_profile defines the reference state!)
890             IF ( .NOT. neutral )  THEN
891                CALL calc_mean_profile( pt, 4 )
892                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
893             ENDIF
894             IF ( ocean_mode )  THEN
895                CALL calc_mean_profile( rho_ocean, 64 )
896                ref_state(:)  = hom(:,1,64,0)
897             ENDIF
898             IF ( humidity )  THEN
899                CALL calc_mean_profile( vpt, 44 )
900                ref_state(:)  = hom(:,1,44,0)
901             ENDIF
902!
903!--          Assure that ref_state does not become zero at any level
904!--          ( might be the case if a vertical level is completely occupied
905!--            with topography ).
906             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
907          ENDIF
908
909          IF ( .NOT. constant_diffusion )  CALL production_e_init
910          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
911          THEN
912             CALL ws_statistics
913          ENDIF
914!
915!--       In case of nudging calculate current nudging time scale and horizontal
916!--       means of u, v, pt and q
917          IF ( nudging )  THEN
918             CALL calc_tnudge( simulated_time )
919             CALL calc_mean_profile( u, 1 )
920             CALL calc_mean_profile( v, 2 )
921             CALL calc_mean_profile( pt, 4 )
922             CALL calc_mean_profile( q, 41 )
923          ENDIF
924
925!
926!--       Solve the prognostic equations. A fast cache optimized version with
927!--       only one single loop is used in case of Piascek-Williams advection
928!--       scheme. NEC vector machines use a different version, because
929!--       in the other versions a good vectorization is prohibited due to
930!--       inlining problems.
931          IF ( loop_optimization == 'cache' )  THEN
932             CALL prognostic_equations_cache
933          ELSEIF ( loop_optimization == 'vector' )  THEN
934             CALL prognostic_equations_vector
935          ENDIF
936
937!
938!--       Particle transport/physics with the Lagrangian particle model
939!--       (only once during intermediate steps, because it uses an Euler-step)
940!--       ### particle model should be moved before prognostic_equations, in order
941!--       to regard droplet interactions directly
942          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
943               .AND.  intermediate_timestep_count == 1 )                                           &
944          THEN
945             CALL lpm
946             first_call_lpm = .FALSE.
947          ENDIF
948
949!
950!--       Interaction of droplets with temperature and mixing ratio.
951!--       Droplet condensation and evaporation is calculated within
952!--       advec_particles.
953          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
954          THEN
955             CALL interaction_droplets_ptq
956          ENDIF
957
958!
959!--       Movement of agents in multi agent system
960          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
961               time_since_reference_point <= multi_agent_system_end  .AND.                         &
962               intermediate_timestep_count == 1 )                                                  &
963          THEN
964             CALL multi_agent_system
965             first_call_mas = .FALSE.
966          ENDIF
967
968!
969!--       Exchange of ghost points (lateral boundary conditions)
970          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
971
972          CALL exchange_horiz( u_p, nbgp )
973          CALL exchange_horiz( v_p, nbgp )
974          CALL exchange_horiz( w_p, nbgp )
975          CALL exchange_horiz( pt_p, nbgp )
976          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
977          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
978               .OR.  use_sgs_for_particles )  THEN
979             IF ( rans_tke_e )  THEN
980                CALL exchange_horiz( diss_p, nbgp )
981             ELSE
982                CALL exchange_horiz( diss, nbgp )
983             ENDIF
984          ENDIF
985          IF ( ocean_mode )  THEN
986             CALL exchange_horiz( sa_p, nbgp )
987             CALL exchange_horiz( rho_ocean, nbgp )
988             CALL exchange_horiz( prho, nbgp )
989          ENDIF
990          IF ( humidity )  THEN
991             CALL exchange_horiz( q_p, nbgp )
992             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
993                CALL exchange_horiz( qc_p, nbgp )
994                CALL exchange_horiz( nc_p, nbgp )
995             ENDIF
996             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
997                CALL exchange_horiz( qr_p, nbgp )
998                CALL exchange_horiz( nr_p, nbgp )
999             ENDIF
1000          ENDIF
1001          IF ( cloud_droplets )  THEN
1002             CALL exchange_horiz( ql, nbgp )
1003             CALL exchange_horiz( ql_c, nbgp )
1004             CALL exchange_horiz( ql_v, nbgp )
1005             CALL exchange_horiz( ql_vp, nbgp )
1006          ENDIF
1007          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1008          IF ( air_chemistry )  THEN
1009             DO  lsp = 1, nspec
1010                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1011!
1012!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1013                lsp_usr = 1
1014                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1015                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1016                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1017                                                chem_species(lsp)%conc_pr_init )
1018                   ENDIF
1019                   lsp_usr = lsp_usr + 1
1020                ENDDO
1021             ENDDO
1022          ENDIF
1023
1024          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1025          THEN
1026             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1027             DO  b = 1, nbins
1028                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1029                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1030                CALL salsa_boundary_conds( aerosol_number(b)%conc_p, aerosol_number(b)%init )
1031                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1032                DO  c = 1, ncc_tot
1033                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p, nbgp )
1034                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1035                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,                  &
1036                                              aerosol_mass((c-1)*nbins+b)%init )
1037                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1038                ENDDO
1039             ENDDO
1040             IF ( .NOT. salsa_gases_from_chem )  THEN
1041                DO  g = 1, ngast
1042                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1043                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1044                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p, salsa_gas(g)%init )
1045                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1046             ENDDO
1047             ENDIF
1048             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1049          ENDIF         
1050          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1051
1052!
1053!--       Boundary conditions for the prognostic quantities (except of the
1054!--       velocities at the outflow in case of a non-cyclic lateral wall)
1055          CALL boundary_conds
1056!
1057!--       Swap the time levels in preparation for the next time step.
1058          CALL swap_timelevel
1059
1060!
1061!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1062          IF ( vnest_init ) THEN
1063             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1064             CALL vnest_anterpolate
1065             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1066          ENDIF
1067
1068          IF ( nested_run )  THEN
1069
1070             CALL cpu_log( log_point(60), 'nesting', 'start' )
1071!
1072!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1073!--          and pmci_child_datatrans are called inside the wrapper
1074!--          subroutine pmci_datatrans according to the control parameters
1075!--          nesting_mode and nesting_datatransfer_mode.
1076!--          TO_DO: why is nesting_mode given as a parameter here?
1077             CALL pmci_datatrans( nesting_mode )
1078
1079             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1080!
1081!--             Exchange_horiz is needed for all parent-domains after the
1082!--             anterpolation
1083                CALL exchange_horiz( u, nbgp )
1084                CALL exchange_horiz( v, nbgp )
1085                CALL exchange_horiz( w, nbgp )
1086                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1087
1088                IF ( humidity )  THEN
1089
1090                   CALL exchange_horiz( q, nbgp )
1091
1092                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1093                       CALL exchange_horiz( qc, nbgp )
1094                       CALL exchange_horiz( nc, nbgp )
1095                   ENDIF
1096                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1097                       CALL exchange_horiz( qr, nbgp )
1098                       CALL exchange_horiz( nr, nbgp )
1099                   ENDIF
1100
1101                ENDIF
1102
1103                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1104               
1105                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1106
1107                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1108                   CALL exchange_horiz( diss, nbgp )
1109                ENDIF
1110
1111                IF ( air_chemistry )  THEN
1112                   DO  n = 1, nspec     
1113                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1114                   ENDDO
1115                ENDIF
1116
1117             ENDIF
1118!
1119!--          Set boundary conditions again after interpolation and anterpolation.
1120             CALL pmci_boundary_conds
1121
1122             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1123
1124          ENDIF
1125
1126!
1127!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1128!--       when a sloping surface is used
1129          IF ( sloping_surface )  THEN
1130             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1131             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1132          ENDIF
1133
1134!
1135!--       Impose a turbulent inflow using the recycling method
1136          IF ( turbulent_inflow )  CALL inflow_turbulence
1137
1138!
1139!--       Set values at outflow boundary using the special outflow condition
1140          IF ( turbulent_outflow )  CALL outflow_turbulence
1141
1142!
1143!--       Impose a random perturbation on the horizontal velocity field
1144          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1145               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1146               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1147          THEN
1148             time_disturb = time_disturb + dt_3d
1149             IF ( time_disturb >= dt_disturb )  THEN
1150                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1151                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1152                   CALL disturb_field( 'u', tend, u )
1153                   CALL disturb_field( 'v', tend, v )
1154                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1155                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1156                THEN
1157!
1158!--                Runs with a non-cyclic lateral wall need perturbations
1159!--                near the inflow throughout the whole simulation
1160                   dist_range = 1
1161                   CALL disturb_field( 'u', tend, u )
1162                   CALL disturb_field( 'v', tend, v )
1163                   dist_range = 0
1164                ENDIF
1165                time_disturb = time_disturb - dt_disturb
1166             ENDIF
1167          ENDIF
1168
1169!
1170!--       Map forcing data derived from larger scale model onto domain
1171!--       boundaries.
1172          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1173                                       intermediate_timestep_count_max  )                          &
1174             CALL nesting_offl_bc
1175!
1176!--       Impose a turbulent inflow using synthetic generated turbulence,
1177!--       only once per time step.
1178          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
1179             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1180             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1181             CALL stg_main
1182             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1183          ENDIF
1184!
1185!--       Ensure mass conservation. This need to be done after imposing
1186!--       synthetic turbulence and top boundary condition for pressure is set to
1187!--       Neumann conditions.
1188!--       Is this also required in case of Dirichlet?
1189          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1190!
1191!--       Reduce the velocity divergence via the equation for perturbation
1192!--       pressure.
1193          IF ( intermediate_timestep_count == 1  .OR. &
1194                call_psolver_at_all_substeps )  THEN
1195
1196             IF (  vnest_init ) THEN
1197!
1198!--             Compute pressure in the CG, interpolate top boundary conditions
1199!--             to the FG and then compute pressure in the FG
1200                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1201
1202                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1203                CALL vnest_boundary_conds
1204                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1205 
1206                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1207
1208!--             Anterpolate TKE, satisfy Germano Identity
1209                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1210                CALL vnest_anterpolate_e
1211                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1212
1213             ELSE
1214
1215                CALL pres
1216
1217             ENDIF
1218
1219          ENDIF
1220
1221!
1222!--       If required, compute liquid water content
1223          IF ( bulk_cloud_model )  THEN
1224             CALL calc_liquid_water_content
1225          ENDIF
1226!
1227!--       If required, compute virtual potential temperature
1228          IF ( humidity )  THEN
1229             CALL compute_vpt 
1230          ENDIF 
1231
1232!
1233!--       Compute the diffusion quantities
1234          IF ( .NOT. constant_diffusion )  THEN
1235
1236!
1237!--          Determine surface fluxes shf and qsws and surface values
1238!--          pt_surface and q_surface in dependence on data from external
1239!--          file LSF_DATA respectively
1240             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1241                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1242             THEN
1243                CALL ls_forcing_surf( simulated_time )
1244             ENDIF
1245
1246!
1247!--          First the vertical (and horizontal) fluxes in the surface
1248!--          (constant flux) layer are computed
1249             IF ( constant_flux_layer )  THEN
1250                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1251                CALL surface_layer_fluxes
1252                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1253             ENDIF
1254!
1255!--          If required, solve the energy balance for the surface and run soil
1256!--          model. Call for horizontal as well as vertical surfaces
1257             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1258
1259                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1260!
1261!--             Call for horizontal upward-facing surfaces
1262                CALL lsm_energy_balance( .TRUE., -1 )
1263                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1264!
1265!--             Call for northward-facing surfaces
1266                CALL lsm_energy_balance( .FALSE., 0 )
1267                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1268!
1269!--             Call for southward-facing surfaces
1270                CALL lsm_energy_balance( .FALSE., 1 )
1271                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1272!
1273!--             Call for eastward-facing surfaces
1274                CALL lsm_energy_balance( .FALSE., 2 )
1275                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1276!
1277!--             Call for westward-facing surfaces
1278                CALL lsm_energy_balance( .FALSE., 3 )
1279                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1280               
1281!
1282!--             At the end, set boundary conditons for potential temperature
1283!--             and humidity after running the land-surface model. This
1284!--             might be important for the nesting, where arrays are transfered.
1285                CALL lsm_boundary_condition
1286
1287               
1288                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1289             ENDIF
1290!
1291!--          If required, solve the energy balance for urban surfaces and run
1292!--          the material heat model
1293             IF (urban_surface) THEN
1294                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1295               
1296                CALL usm_surface_energy_balance( .FALSE. )
1297                IF ( usm_material_model )  THEN
1298                   CALL usm_green_heat_model
1299                   CALL usm_material_heat_model ( .FALSE. )
1300                ENDIF
1301
1302!
1303!--             At the end, set boundary conditons for potential temperature
1304!--             and humidity after running the urban-surface model. This
1305!--             might be important for the nesting, where arrays are transfered.
1306                CALL usm_boundary_condition
1307
1308                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1309             ENDIF
1310!
1311!--          Compute the diffusion coefficients
1312             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1313             IF ( .NOT. humidity ) THEN
1314                IF ( ocean_mode )  THEN
1315                   CALL tcm_diffusivities( prho, prho_reference )
1316                ELSE
1317                   CALL tcm_diffusivities( pt, pt_reference )
1318                ENDIF
1319             ELSE
1320                CALL tcm_diffusivities( vpt, pt_reference )
1321             ENDIF
1322             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1323!
1324!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1325             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1326
1327          ENDIF
1328
1329!
1330!--       If required, calculate radiative fluxes and heating rates
1331          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1332               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
1333
1334               time_radiation = time_radiation + dt_3d
1335
1336             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1337
1338                CALL cpu_log( log_point(50), 'radiation', 'start' )
1339
1340                IF ( .NOT. force_radiation_call )  THEN
1341                   time_radiation = time_radiation - dt_radiation
1342                ENDIF
1343
1344!
1345!--             Adjust the current time to the time step of the radiation model.
1346!--             Needed since radiation is pre-calculated and stored only on apparent
1347!--             solar positions
1348                time_since_reference_point_save = time_since_reference_point
1349                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1350                                                          dt_radiation), wp ) * dt_radiation
1351
1352                CALL radiation_control
1353
1354                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1355                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1356                   CALL radiation_interaction
1357                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1358                ENDIF
1359   
1360!
1361!--             Return the current time to its original value
1362                time_since_reference_point = time_since_reference_point_save
1363
1364                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1365
1366             ENDIF
1367          ENDIF
1368
1369       ENDDO   ! Intermediate step loop
1370
1371!
1372!--    Will be used at some point by flow_statistics.
1373       !$ACC UPDATE &
1374       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1375       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1376       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1377       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1378       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1379       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1380       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1381       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1382       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1383       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1384       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1385       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1386       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1387       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1388       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1389
1390!
1391!--    If required, consider chemical emissions
1392       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1393!
1394!--       Update the time --> kanani: revise location of this CALL
1395          CALL calc_date_and_time
1396!
1397!--       Call emission routine only once an hour
1398          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1399             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1400             hour_call_emis = hour_of_year
1401          ENDIF
1402       ENDIF
1403
1404!
1405!--    If required, calculate indoor temperature, waste heat, heat flux
1406!--    through wall, etc.
1407!--    dt_indoor steers the frequency of the indoor model calculations.
1408!--    Note, at first timestep indoor model is called, in order to provide
1409!--    a waste heat flux.
1410       IF ( indoor_model )  THEN
1411
1412          time_indoor = time_indoor + dt_3d
1413
1414          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1415
1416             time_indoor = time_indoor - dt_indoor
1417
1418             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1419             CALL im_main_heatcool
1420             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1421
1422          ENDIF
1423       ENDIF
1424!
1425!--    Increase simulation time and output times
1426       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1427       current_timestep_number    = current_timestep_number + 1
1428       simulated_time             = simulated_time   + dt_3d
1429       time_since_reference_point = simulated_time - coupling_start_time
1430       simulated_time_chr         = time_to_string( time_since_reference_point )
1431
1432
1433
1434
1435       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1436          time_do_av         = time_do_av       + dt_3d
1437       ENDIF
1438       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1439          time_do2d_xy       = time_do2d_xy     + dt_3d
1440       ENDIF
1441       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1442          time_do2d_xz       = time_do2d_xz     + dt_3d
1443       ENDIF
1444       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1445          time_do2d_yz       = time_do2d_yz     + dt_3d
1446       ENDIF
1447       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1448          time_do3d          = time_do3d        + dt_3d
1449       ENDIF
1450       DO  mid = 1, masks
1451          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1452             time_domask(mid)= time_domask(mid) + dt_3d
1453          ENDIF
1454       ENDDO
1455       time_dvrp          = time_dvrp        + dt_3d
1456       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1457          time_dosp       = time_dosp        + dt_3d
1458       ENDIF
1459       time_dots          = time_dots        + dt_3d
1460       IF ( .NOT. first_call_lpm )  THEN
1461          time_dopts      = time_dopts       + dt_3d
1462       ENDIF
1463       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1464          time_dopr       = time_dopr        + dt_3d
1465       ENDIF
1466       time_dopr_listing  = time_dopr_listing + dt_3d
1467       time_run_control   = time_run_control + dt_3d
1468!
1469!--    Increment time-counter for surface output
1470       IF ( surface_output )  THEN
1471          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1472             time_dosurf    = time_dosurf + dt_3d
1473          ENDIF
1474          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1475             time_dosurf_av = time_dosurf_av + dt_3d
1476          ENDIF
1477       ENDIF
1478!
1479!--    In case of synthetic turbulence generation and parametrized turbulence
1480!--    information, update the time counter and if required, adjust the
1481!--    STG to new atmospheric conditions.
1482       IF ( use_syn_turb_gen  )  THEN
1483          IF ( parametrize_inflow_turbulence )  THEN
1484             time_stg_adjust = time_stg_adjust + dt_3d
1485             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1486                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1487                CALL stg_adjust
1488                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1489             ENDIF
1490          ENDIF
1491          time_stg_call = time_stg_call + dt_3d
1492       ENDIF
1493
1494!
1495!--    Data exchange between coupled models
1496       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1497          time_coupling = time_coupling + dt_3d
1498
1499!
1500!--       In case of model termination initiated by the local model
1501!--       (terminate_coupled > 0), the coupler must be skipped because it would
1502!--       cause an MPI intercomminucation hang.
1503!--       If necessary, the coupler will be called at the beginning of the
1504!--       next restart run.
1505          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1506             CALL surface_coupler
1507             time_coupling = time_coupling - dt_coupling
1508          ENDDO
1509       ENDIF
1510
1511!
1512!--    Biometeorology calculation of stationary thermal indices
1513!--    Todo (kanani): biometeorology needs own time_... treatment.
1514!--                   It might be that time_do2d_xy differs from time_do3d,
1515!--                   and then we might get trouble with the biomet output,
1516!--                   because we can have 2d and/or 3d biomet output!!
1517       IF ( biometeorology                                                                         &
1518            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1519                  .OR.                                                                             &
1520            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1521                    ) )  THEN
1522!
1523!--       If required, do thermal comfort calculations
1524          IF ( thermal_comfort )  THEN
1525             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1526          ENDIF
1527!
1528!--       If required, do UV exposure calculations
1529          IF ( uv_exposure )  THEN
1530             CALL uvem_calc_exposure
1531          ENDIF
1532       ENDIF
1533
1534!
1535!--    Execute alle other module actions routunes
1536       CALL module_interface_actions( 'after_integration' )
1537
1538!
1539!--    If Galilei transformation is used, determine the distance that the
1540!--    model has moved so far
1541       IF ( galilei_transformation )  THEN
1542          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1543          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1544       ENDIF
1545
1546!
1547!--    Check, if restart is necessary (because cpu-time is expiring or
1548!--    because it is forced by user) and set stop flag
1549!--    This call is skipped if the remote model has already initiated a restart.
1550       IF ( .NOT. terminate_run )  CALL check_for_restart
1551
1552!
1553!--    Carry out statistical analysis and output at the requested output times.
1554!--    The MOD function is used for calculating the output time counters (like
1555!--    time_dopr) in order to regard a possible decrease of the output time
1556!--    interval in case of restart runs
1557
1558!
1559!--    Set a flag indicating that so far no statistics have been created
1560!--    for this time step
1561       flow_statistics_called = .FALSE.
1562
1563!
1564!--    If required, call flow_statistics for averaging in time
1565       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1566            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1567            time_since_reference_point >= skip_time_dopr )  THEN
1568          time_dopr_av = time_dopr_av + dt_3d
1569          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1570             do_sum = .TRUE.
1571             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1572          ENDIF
1573       ENDIF
1574       IF ( do_sum )  CALL flow_statistics
1575
1576!
1577!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1578       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1579            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1580            time_since_reference_point >= skip_time_data_output_av )                               &
1581       THEN
1582          time_do_sla = time_do_sla + dt_3d
1583          IF ( time_do_sla >= dt_averaging_input )  THEN
1584             CALL sum_up_3d_data
1585             average_count_3d = average_count_3d + 1
1586             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1587          ENDIF
1588       ENDIF
1589!
1590!--    Average surface data
1591       IF ( surface_output )  THEN
1592          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1593                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1594                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1595             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1596                CALL surface_data_output_averaging
1597                average_count_surf = average_count_surf + 1
1598             ENDIF
1599          ENDIF
1600       ENDIF
1601
1602!
1603!--    Calculate spectra for time averaging
1604       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1605            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1606          time_dosp_av = time_dosp_av + dt_3d
1607          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1608             CALL calc_spectra
1609             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1610          ENDIF
1611       ENDIF
1612
1613!
1614!--    Call flight module and output data
1615       IF ( virtual_flight )  THEN
1616          CALL flight_measurement
1617          CALL data_output_flight
1618       ENDIF
1619!
1620!--    Take virtual measurements
1621       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1622          CALL vm_sampling
1623          CALL vm_data_output
1624       ENDIF
1625
1626!
1627!--    Profile output (ASCII) on file
1628       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1629          CALL print_1d
1630          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1631       ENDIF
1632
1633!
1634!--    Graphic output for PROFIL
1635       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1636          IF ( dopr_n /= 0 )  CALL data_output_profiles
1637          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1638          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1639       ENDIF
1640
1641!
1642!--    Graphic output for time series
1643       IF ( time_dots >= dt_dots )  THEN
1644          CALL data_output_tseries
1645          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1646       ENDIF
1647
1648!
1649!--    Output of spectra (formatted for use with PROFIL), in case of no
1650!--    time averaging, spectra has to be calculated before
1651       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1652          IF ( average_count_sp == 0 )  CALL calc_spectra
1653          CALL data_output_spectra
1654          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1655       ENDIF
1656
1657!
1658!--    2d-data output (cross-sections)
1659       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1660          CALL data_output_2d( 'xy', 0 )
1661          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1662       ENDIF
1663       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1664          CALL data_output_2d( 'xz', 0 )
1665          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1666       ENDIF
1667       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1668          CALL data_output_2d( 'yz', 0 )
1669          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1670       ENDIF
1671
1672!
1673!--    3d-data output (volume data)
1674       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1675          CALL data_output_3d( 0 )
1676          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1677       ENDIF
1678
1679!
1680!--    Masked data output
1681       DO  mid = 1, masks
1682          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1683               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1684             CALL data_output_mask( 0 )
1685             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1686          ENDIF
1687       ENDDO
1688
1689!
1690!--    Output of time-averaged 2d/3d/masked data
1691       IF ( time_do_av >= dt_data_output_av                                                        &
1692            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1693          CALL average_3d_data
1694!
1695!--       Udate thermal comfort indices based on updated averaged input
1696          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1697             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1698          ENDIF
1699          CALL data_output_2d( 'xy', 1 )
1700          CALL data_output_2d( 'xz', 1 )
1701          CALL data_output_2d( 'yz', 1 )
1702          CALL data_output_3d( 1 )
1703          DO  mid = 1, masks
1704             CALL data_output_mask( 1 )
1705          ENDDO
1706          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1707       ENDIF
1708!
1709!--    Output of surface data, instantaneous and averaged data
1710       IF ( surface_output )  THEN
1711          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1712             CALL surface_data_output( 0 )
1713             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1714          ENDIF
1715          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1716             CALL surface_data_output( 1 )
1717             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1718          ENDIF
1719       ENDIF
1720
1721!
1722!--    Output of particle time series
1723       IF ( particle_advection )  THEN
1724          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1725               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1726                 first_call_lpm ) )  THEN
1727             CALL data_output_ptseries
1728             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1729          ENDIF
1730       ENDIF
1731
1732!
1733!--    Output of dvrp-graphics (isosurface, particles, slicer)
1734#if defined( __dvrp_graphics )
1735       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1736#endif
1737       IF ( time_dvrp >= dt_dvrp )  THEN
1738          CALL data_output_dvrp
1739          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1740       ENDIF
1741#if defined( __dvrp_graphics )
1742       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1743#endif
1744
1745!
1746!--    If required, set the heat flux for the next time step to a random value
1747       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1748          IF ( surf_def_h(0)%ns >= 1 )  THEN
1749             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1750             CALL disturb_heatflux( surf_def_h(0) )
1751             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1752          ENDIF
1753          IF ( surf_lsm_h%ns    >= 1 )  THEN
1754             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1755             CALL disturb_heatflux( surf_lsm_h    )
1756             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1757          ENDIF
1758          IF ( surf_usm_h%ns    >= 1 )  THEN
1759             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1760             CALL disturb_heatflux( surf_usm_h    )
1761             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1762          ENDIF
1763       ENDIF
1764
1765!
1766!--    Execute alle other module actions routunes
1767       CALL module_interface_actions( 'after_timestep' )
1768
1769!
1770!--    Determine size of next time step. Save timestep dt_3d because it is
1771!--    newly calculated in routine timestep, but required further below for
1772!--    steering the run control output interval
1773       dt_3d_old = dt_3d
1774       CALL timestep
1775
1776!
1777!--    Synchronize the timestep in case of nested run.
1778       IF ( nested_run )  THEN
1779!
1780!--       Synchronize by unifying the time step.
1781!--       Global minimum of all time-steps is used for all.
1782          CALL pmci_synchronize
1783       ENDIF
1784
1785!
1786!--    Computation and output of run control parameters.
1787!--    This is also done whenever perturbations have been imposed
1788       IF ( time_run_control >= dt_run_control  .OR.                                               &
1789            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1790       THEN
1791          CALL run_control
1792          IF ( time_run_control >= dt_run_control )  THEN
1793             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1794          ENDIF
1795       ENDIF
1796
1797!
1798!--    Output elapsed simulated time in form of a progress bar on stdout
1799       IF ( myid == 0 )  CALL output_progress_bar
1800
1801       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1802
1803
1804    ENDDO   ! time loop
1805
1806#if defined( _OPENACC )
1807    CALL exit_surface_arrays
1808#endif
1809!$ACC END DATA
1810!$ACC END DATA
1811!$ACC END DATA
1812!$ACC END DATA
1813!$ACC END DATA
1814!$ACC END DATA
1815!$ACC END DATA
1816
1817!
1818!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1819    IF ( vnest_init )  CALL vnest_deallocate
1820
1821    IF ( myid == 0 )  CALL finish_progress_bar
1822
1823#if defined( __dvrp_graphics )
1824    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1825#endif
1826
1827    CALL location_message( 'finished time-stepping', .TRUE. )
1828
1829 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.