source: palm/trunk/SOURCE/time_integration.f90 @ 3774

Last change on this file since 3774 was 3774, checked in by moh.hefny, 5 years ago

bugfix: avoid unallocated array in case ofinitialize simulated_time before calculating solar position

  • Property svn:keywords set to Id
File size: 72.6 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3774 2019-03-04 10:52:49Z moh.hefny $
27! rephrase if statement to avoid unallocated array in case of
28! nesting_offline is false (crashing during debug mode)
29!
30! 3761 2019-02-25 15:31:42Z raasch $
31! module section re-formatted and openacc required variables moved to separate section,
32! re-formatting to 100 char line width
33!
34! 3745 2019-02-15 18:57:56Z suehring
35! Call indoor model after first timestep
36!
37! 3744 2019-02-15 18:38:58Z suehring
38! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
39! time_integration to make sure averaged input is updated before calculating.
40!
41! 3739 2019-02-13 08:05:17Z dom_dwd_user
42! Removed everything related to "time_bio_results" as this is never used.
43!
44! 3724 2019-02-06 16:28:23Z kanani
45! Correct double-used log_point_s unit
46!
47! 3719 2019-02-06 13:10:18Z kanani
48! - removed wind_turbine cpu measurement, since same time is measured inside
49!   wtm_forces subroutine as special measures
50! - moved the numerous vnest cpulog to special measures
51! - extended radiation cpulog over entire radiation part,
52!   moved radiation_interactions cpulog to special measures
53! - moved some cpu_log calls to this routine for better overview
54!
55! 3705 2019-01-29 19:56:39Z suehring
56! Data output for virtual measurements added
57!
58! 3704 2019-01-29 19:51:41Z suehring
59! Rename subroutines for surface-data output
60!
61! 3647 2019-01-02 14:10:44Z kanani
62! Bugfix: add time_since_reference_point to IF clause for data_output calls
63! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
64! Clean up indoor_model and biometeorology model call.
65!
66! 3646 2018-12-28 17:58:49Z kanani
67! Bugfix: use time_since_reference_point instead of simulated_time where
68! required (relevant when using wall/soil spinup)
69!
70! 3634 2018-12-18 12:31:28Z knoop
71! OpenACC port for SPEC
72!
73! 3597 2018-12-04 08:40:18Z maronga
74! Removed call to calculation of near air (10 cm) potential temperature (now in
75! surface layer fluxes)
76!
77! 3589 2018-11-30 15:09:51Z suehring
78! Move the control parameter "salsa" from salsa_mod to control_parameters
79! (M. Kurppa)
80!
81! 3582 2018-11-29 19:16:36Z suehring
82! dom_dwd_user, Schrempf:
83! Changes due to merge of uv exposure model into biometeorology_mod.
84!
85! 3525 2018-11-14 16:06:14Z kanani
86! Changes related to clean-up of biometeorology (dom_dwd_user)
87!
88! 3524 2018-11-14 13:36:44Z raasch
89! unused variables removed
90!
91! 3484 2018-11-02 14:41:25Z hellstea
92! pmci_ensure_nest_mass_conservation is premanently removed
93!
94! 3473 2018-10-30 20:50:15Z suehring
95! new module for virtual measurements introduced
96!
97! 3472 2018-10-30 20:43:50Z suehring
98! Add indoor model (kanani, srissman, tlang)
99!
100! 3467 2018-10-30 19:05:21Z suehring
101! Implementation of a new aerosol module salsa.
102!
103! 3448 2018-10-29 18:14:31Z kanani
104! Add biometeorology
105!
106! 3421 2018-10-24 18:39:32Z gronemeier
107! Surface data output
108!
109! 3418 2018-10-24 16:07:39Z kanani
110! call to material_heat_model now with check if spinup runs (rvtils)
111!
112! 3378 2018-10-19 12:34:59Z kanani
113! merge from radiation branch (r3362) into trunk
114! (moh.hefny):
115! Bugfix in the if statement to call radiation_interaction
116!
117! 3347 2018-10-15 14:21:08Z suehring
118! - offline nesting separated from large-scale forcing module
119! - changes for synthetic turbulence generator
120!
121! 3343 2018-10-15 10:38:52Z suehring
122! - Formatting, clean-up, comments (kanani)
123! - Added CALL to chem_emissions_setup (Russo)
124! - Code added for decycling chemistry (basit)
125!
126! 3294 2018-10-01 02:37:10Z raasch
127! changes concerning modularization of ocean option
128!
129! 3274 2018-09-24 15:42:55Z knoop
130! Modularization of all bulk cloud physics code components
131!
132! 3241 2018-09-12 15:02:00Z raasch
133! unused variables removed
134!
135! 3198 2018-08-15 09:23:10Z sward
136! Added multi_agent_system_end; defined start time for MAS relative to
137! time_since_reference_point
138!
139! 3183 2018-07-27 14:25:55Z suehring
140! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
141! Rename subroutines and variables in COSMO nesting mode
142!
143! 3182 2018-07-27 13:36:03Z suehring
144! Added multi agent system
145!
146! 3042 2018-05-25 10:44:37Z schwenkel
147! Changed the name specific humidity to mixing ratio
148!
149! 3040 2018-05-25 10:22:08Z schwenkel
150! Fixed bug in IF statement
151! Ensure that the time when calling the radiation to be the time step of the
152! pre-calculated time when first calculate the positions of the sun
153!
154! 3004 2018-04-27 12:33:25Z Giersch
155! First call of flow_statistics has been removed. It is already called in
156! run_control itself
157!
158! 2984 2018-04-18 11:51:30Z hellstea
159! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
160! as seemingly unnecessary.
161!
162! 2941 2018-04-03 11:54:58Z kanani
163! Deduct spinup_time from RUN_CONTROL output of main 3d run
164! (use time_since_reference_point instead of simulated_time)
165!
166! 2938 2018-03-27 15:52:42Z suehring
167! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
168!
169! 2936 2018-03-27 14:49:27Z suehring
170! Little formatting adjustment.
171!
172! 2817 2018-02-19 16:32:21Z knoop
173! Preliminary gust module interface implemented
174!
175! 2801 2018-02-14 16:01:55Z thiele
176! Changed lpm from subroutine to module.
177! Introduce particle transfer in nested models.
178!
179! 2776 2018-01-31 10:44:42Z Giersch
180! Variable use_synthetic_turbulence_generator has been abbreviated
181!
182! 2773 2018-01-30 14:12:54Z suehring
183! - Nesting for chemical species
184!
185! 2766 2018-01-22 17:17:47Z kanani
186! Removed preprocessor directive __chem
187!
188! 2718 2018-01-02 08:49:38Z maronga
189! Corrected "Former revisions" section
190!
191! 2696 2017-12-14 17:12:51Z kanani
192! - Change in file header (GPL part)
193! - Implementation of uv exposure model (FK)
194! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
195! - renamed diffusivities to tcm_diffusivities (TG)
196! - implement prognostic equation for diss (TG)
197! - Moved/commented CALL to chem_emissions (FK)
198! - Added CALL to chem_emissions (FK)
199! - Implementation of chemistry module (FK)
200! - Calls for setting boundary conditions in USM and LSM (MS)
201! - Large-scale forcing with larger-scale models implemented (MS)
202! - Rename usm_radiation into radiation_interactions; merge with branch
203!   radiation (MS)
204! - added call for usm_green_heat_model for green building surfaces (RvT)
205! - added call for usm_temperature_near_surface for use in indoor model (RvT)
206!
207! 2617 2017-11-16 12:47:24Z suehring
208! Bugfix, assure that the reference state does not become zero.
209!
210! 2563 2017-10-19 15:36:10Z Giersch
211! Variable wind_turbine moved to module control_parameters
212!
213! 2365 2017-08-21 14:59:59Z kanani
214! Vertical grid nesting implemented (SadiqHuq)
215!
216! 2320 2017-07-21 12:47:43Z suehring
217! Set bottom boundary conditions after nesting interpolation and anterpolation
218!
219! 2299 2017-06-29 10:14:38Z maronga
220! Call of soil model adjusted
221!
222! 2292 2017-06-20 09:51:42Z schwenkel
223! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
224! includes two more prognostic equations for cloud drop concentration (nc) 
225! and cloud water content (qc).
226!
227! 2271 2017-06-09 12:34:55Z sward
228! Start timestep message changed
229!
230! 2259 2017-06-08 09:09:11Z gronemeier
231! Implemented synthetic turbulence generator
232!
233! 2233 2017-05-30 18:08:54Z suehring
234!
235! 2232 2017-05-30 17:47:52Z suehring
236! Adjustments to new topography and surface concept
237! Modify passed parameters for disturb_field
238!
239! 2178 2017-03-17 11:07:39Z hellstea
240! Setting perturbations at all times near inflow boundary is removed
241! in case of nested boundaries
242!
243! 2174 2017-03-13 08:18:57Z maronga
244! Added support for nesting with cloud microphysics
245!
246! 2118 2017-01-17 16:38:49Z raasch
247! OpenACC directives and related code removed
248!
249! 2050 2016-11-08 15:00:55Z gronemeier
250! Implement turbulent outflow condition
251!
252! 2031 2016-10-21 15:11:58Z knoop
253! renamed variable rho to rho_ocean
254!
255! 2011 2016-09-19 17:29:57Z kanani
256! Flag urban_surface is now defined in module control_parameters,
257! removed commented CALLs of global_min_max.
258!
259! 2007 2016-08-24 15:47:17Z kanani
260! Added CALLs for new urban surface model
261!
262! 2000 2016-08-20 18:09:15Z knoop
263! Forced header and separation lines into 80 columns
264!
265! 1976 2016-07-27 13:28:04Z maronga
266! Simplified calls to radiation model
267!
268! 1960 2016-07-12 16:34:24Z suehring
269! Separate humidity and passive scalar
270!
271! 1957 2016-07-07 10:43:48Z suehring
272! flight module added
273!
274! 1919 2016-05-27 14:51:23Z raasch
275! Initial version of purely vertical nesting introduced.
276!
277! 1918 2016-05-27 14:35:57Z raasch
278! determination of time step moved to the end of the time step loop,
279! the first time step is now always calculated before the time step loop (i.e.
280! also in case of restart runs)
281!
282! 1914 2016-05-26 14:44:07Z witha
283! Added call for wind turbine model
284!
285! 1878 2016-04-19 12:30:36Z hellstea
286! Synchronization for nested runs rewritten
287!
288! 1853 2016-04-11 09:00:35Z maronga
289! Adjusted for use with radiation_scheme = constant
290!
291! 1849 2016-04-08 11:33:18Z hoffmann
292! Adapted for modularization of microphysics
293!
294! 1833 2016-04-07 14:23:03Z raasch
295! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
296!
297! 1831 2016-04-07 13:15:51Z hoffmann
298! turbulence renamed collision_turbulence
299!
300! 1822 2016-04-07 07:49:42Z hoffmann
301! icloud_scheme replaced by microphysics_*
302!
303! 1808 2016-04-05 19:44:00Z raasch
304! output message in case unscheduled radiation calls removed
305!
306! 1797 2016-03-21 16:50:28Z raasch
307! introduction of different datatransfer modes
308!
309! 1791 2016-03-11 10:41:25Z raasch
310! call of pmci_update_new removed
311!
312! 1786 2016-03-08 05:49:27Z raasch
313! +module spectrum
314!
315! 1783 2016-03-06 18:36:17Z raasch
316! switch back of netcdf data format for mask output moved to the mask output
317! routine
318!
319! 1781 2016-03-03 15:12:23Z raasch
320! some pmc calls removed at the beginning (before timeloop),
321! pmc initialization moved to the main program
322!
323! 1764 2016-02-28 12:45:19Z raasch
324! PMC_ACTIVE flags removed,
325! bugfix: nest synchronization after first call of timestep
326!
327! 1762 2016-02-25 12:31:13Z hellstea
328! Introduction of nested domain feature
329!
330! 1736 2015-12-04 08:56:33Z raasch
331! no perturbations added to total domain if energy limit has been set zero
332!
333! 1691 2015-10-26 16:17:44Z maronga
334! Added option for spin-ups without land surface and radiation models. Moved calls
335! for radiation and lan surface schemes.
336!
337! 1682 2015-10-07 23:56:08Z knoop
338! Code annotations made doxygen readable
339!
340! 1671 2015-09-25 03:29:37Z raasch
341! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
342! for particles
343!
344! 1585 2015-04-30 07:05:52Z maronga
345! Moved call of radiation scheme. Added support for RRTM
346!
347! 1551 2015-03-03 14:18:16Z maronga
348! Added interface for different radiation schemes.
349!
350! 1496 2014-12-02 17:25:50Z maronga
351! Added calls for the land surface model and radiation scheme
352!
353! 1402 2014-05-09 14:25:13Z raasch
354! location messages modified
355!
356! 1384 2014-05-02 14:31:06Z raasch
357! location messages added
358!
359! 1380 2014-04-28 12:40:45Z heinze
360! CALL of nudge_ref added
361! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
362!
363! 1365 2014-04-22 15:03:56Z boeske
364! Reset sums_ls_l to zero at each timestep
365! +sums_ls_l
366! Calculation of reference state (previously in subroutine calc_mean_profile)
367
368! 1342 2014-03-26 17:04:47Z kanani
369! REAL constants defined as wp-kind
370!
371! 1320 2014-03-20 08:40:49Z raasch
372! ONLY-attribute added to USE-statements,
373! kind-parameters added to all INTEGER and REAL declaration statements,
374! kinds are defined in new module kinds,
375! old module precision_kind is removed,
376! revision history before 2012 removed,
377! comment fields (!:) to be used for variable explanations added to
378! all variable declaration statements
379! 1318 2014-03-17 13:35:16Z raasch
380! module interfaces removed
381!
382! 1308 2014-03-13 14:58:42Z fricke
383! +netcdf_data_format_save
384! For masked data, parallel netcdf output is not tested so far, hence
385! netcdf_data_format is switched back to non-paralell output.
386!
387! 1276 2014-01-15 13:40:41Z heinze
388! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
389!
390! 1257 2013-11-08 15:18:40Z raasch
391! acc-update-host directive for timestep removed
392!
393! 1241 2013-10-30 11:36:58Z heinze
394! Generalize calc_mean_profile for wider use
395! Determine shf and qsws in dependence on data from LSF_DATA
396! Determine ug and vg in dependence on data from LSF_DATA
397! 1221 2013-09-10 08:59:13Z raasch
398! host update of arrays before timestep is called
399!
400! 1179 2013-06-14 05:57:58Z raasch
401! mean profiles for reference state are only calculated if required,
402! small bugfix for background communication
403!
404! 1171 2013-05-30 11:27:45Z raasch
405! split of prognostic_equations deactivated (comment lines), for the time being
406!
407! 1128 2013-04-12 06:19:32Z raasch
408! asynchronous transfer of ghost point data realized for acc-optimized version:
409! prognostic_equations are first called two times for those points required for
410! the left-right and north-south exchange, respectively, and then for the
411! remaining points,
412! those parts requiring global communication moved from prognostic_equations to
413! here
414!
415! 1115 2013-03-26 18:16:16Z hoffmann
416! calculation of qr and nr is restricted to precipitation
417!
418! 1113 2013-03-10 02:48:14Z raasch
419! GPU-porting of boundary conditions,
420! openACC directives updated
421! formal parameter removed from routine boundary_conds
422!
423! 1111 2013-03-08 23:54:10Z raasch
424! +internal timestep counter for cpu statistics added,
425! openACC directives updated
426!
427! 1092 2013-02-02 11:24:22Z raasch
428! unused variables removed
429!
430! 1065 2012-11-22 17:42:36Z hoffmann
431! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
432!
433! 1053 2012-11-13 17:11:03Z hoffmann
434! exchange of ghost points for nr, qr added
435!
436! 1036 2012-10-22 13:43:42Z raasch
437! code put under GPL (PALM 3.9)
438!
439! 1019 2012-09-28 06:46:45Z raasch
440! non-optimized version of prognostic_equations removed
441!
442! 1015 2012-09-27 09:23:24Z raasch
443! +call of prognostic_equations_acc
444!
445! 1001 2012-09-13 14:08:46Z raasch
446! all actions concerning leapfrog- and upstream-spline-scheme removed
447!
448! 849 2012-03-15 10:35:09Z raasch
449! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
450!
451! 825 2012-02-19 03:03:44Z raasch
452! wang_collision_kernel renamed wang_kernel
453!
454! Revision 1.1  1997/08/11 06:19:04  raasch
455! Initial revision
456!
457!
458! Description:
459! ------------
460!> Integration in time of the model equations, statistical analysis and graphic
461!> output
462!------------------------------------------------------------------------------!
463 SUBROUTINE time_integration
464 
465
466    USE advec_ws,                                                                                  &
467        ONLY:  ws_statistics
468
469    USE arrays_3d,                                                                                 &
470        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
471               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
472               tend, u, u_p, v, vpt, v_p, w, w_p
473
474    USE biometeorology_mod,                                                                        &
475        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
476
477    USE bulk_cloud_model_mod,                                                                      &
478        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
479              microphysics_morrison, microphysics_seifert
480
481    USE calc_mean_profile_mod,                                                                     &
482        ONLY:  calc_mean_profile
483
484    USE chem_emissions_mod,                                                                        &
485        ONLY:  chem_emissions_setup
486
487    USE chem_modules,                                                                              &
488        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
489
490    USE chemistry_model_mod,                                                                       &
491        ONLY:  chem_boundary_conds, chem_species
492
493    USE control_parameters,                                                                        &
494        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
495               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
496               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
497               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
498               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
499               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
500               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
501               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
502               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,     &
503               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
504               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
505               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
506               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
507               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
508               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
509               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
510               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
511               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
512               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
513               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
514               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
515               time_do_sla, time_disturb, time_dvrp, time_run_control, time_since_reference_point, &
516               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
517               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
518               virtual_flight, virtual_measurement, wind_turbine, ws_scheme_mom, ws_scheme_sca
519
520    USE cpulog,                                                                                    &
521        ONLY:  cpu_log, log_point, log_point_s
522
523    USE date_and_time_mod,                                                                         &
524        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
525
526    USE flight_mod,                                                                                &
527        ONLY:  flight_measurement
528
529    USE indices,                                                                                   &
530        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
531
532    USE indoor_model_mod,                                                                          &
533        ONLY:  dt_indoor, im_main_heatcool, time_indoor
534
535    USE interaction_droplets_ptq_mod,                                                              &
536        ONLY:  interaction_droplets_ptq
537
538    USE interfaces
539
540    USE kinds
541
542    USE land_surface_model_mod,                                                                    &
543        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
544
545    USE lpm_mod,                                                                                   &
546        ONLY:  lpm
547
548    USE lsf_nudging_mod,                                                                           &
549        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
550
551    USE module_interface,                                                                          &
552        ONLY:  module_interface_actions
553
554    USE multi_agent_system_mod,                                                                    &
555        ONLY:  agents_active, multi_agent_system
556
557    USE nesting_offl_mod,                                                                          &
558        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
559       
560    USE netcdf_data_input_mod,                                                                     &
561        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
562
563    USE ocean_mod,                                                                                 &
564        ONLY:  prho_reference
565
566    USE particle_attributes,                                                                       &
567        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
568
569    USE pegrid
570
571    USE pmc_interface,                                                                             &
572        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize
573
574    USE progress_bar,                                                                              &
575        ONLY:  finish_progress_bar, output_progress_bar
576
577    USE prognostic_equations_mod,                                                                  &
578        ONLY:  prognostic_equations_cache, prognostic_equations_vector
579
580    USE radiation_model_mod,                                                                       &
581        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
582              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
583         
584    USE salsa_mod,                                                                                 &
585        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast, salsa_boundary_conds,           &
586              salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
587
588    USE spectra_mod,                                                                               &
589        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
590
591    USE statistics,                                                                                &
592        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
593
594
595    USE surface_layer_fluxes_mod,                                                                  &
596        ONLY:  surface_layer_fluxes
597
598    USE surface_data_output_mod,                                                                   &
599        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
600               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
601               skip_time_dosurf_av, time_dosurf, time_dosurf_av
602
603    USE surface_mod,                                                                               &
604        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
605
606    USE synthetic_turbulence_generator_mod,                                                        &
607        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
608               time_stg_adjust, time_stg_call, use_syn_turb_gen
609
610    USE turbulence_closure_mod,                                                                    &
611        ONLY:  tcm_diffusivities, production_e_init
612
613    USE urban_surface_mod,                                                                         &
614        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
615               usm_surface_energy_balance, usm_green_heat_model
616
617    USE vertical_nesting_mod,                                                                      &
618        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
619               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
620               vnest_start_time
621               
622    USE virtual_measurement_mod,                                                                   &
623        ONLY:  vm_data_output, vm_sampling, vm_time_start
624
625    USE wind_turbine_model_mod,                                                                    &
626        ONLY:  wtm_forces
627
628
629#if defined( _OPENACC )
630    USE arrays_3d,                                                             &
631        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
632               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
633               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
634               v_stokes_zu, zu
635
636    USE control_parameters,                                                                        &
637        ONLY:  tsc
638
639    USE indices,                                                                                   &
640        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
641
642    USE statistics,                                                                                &
643        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
644               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
645               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
646               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep
647
648    USE salsa_util_mod,                                                                            &
649           ONLY:  sums_salsa_ws_l
650
651    USE surface_mod,                                                                               &
652        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
653#endif
654
655
656    IMPLICIT NONE
657
658    CHARACTER (LEN=9) ::  time_to_string   !<
659   
660    INTEGER(iwp)      ::  b !< index for aerosol size bins   
661    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
662    INTEGER(iwp)      ::  g !< index for gaseous compounds
663    INTEGER(iwp)      ::  lsp
664    INTEGER(iwp)      ::  lsp_usr   !<
665    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
666
667    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
668                            !< steering of run control output interval
669    REAL(wp) ::  time_since_reference_point_save  !< original value of
670                                                  !< time_since_reference_point
671
672
673!
674!-- Copy data from arrays_3d
675!$ACC DATA &
676!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
677!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
678!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
679!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
680!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
681!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
682!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
683!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
684!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
685
686!$ACC DATA &
687!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
688!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
689!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
690!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
691!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
692!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
693!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
694!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
695!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
696!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
697!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
698
699!$ACC DATA &
700!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
701!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
702!$ACC COPYIN(zu(nzb:nzt+1)) &
703!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
704!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
705!$ACC COPYIN(ddzw(1:nzt+1)) &
706!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
707!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
708!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
709!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
710!$ACC COPYIN(ref_state(0:nz+1)) &
711!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
712!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
713!$ACC COPYIN(pt_init(0:nz+1)) &
714!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
715
716!
717!-- Copy data from control_parameters
718!$ACC DATA &
719!$ACC COPYIN(tsc(1:5))
720
721!
722!-- Copy data from indices
723!$ACC DATA &
724!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
725!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
726!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
727
728!
729!-- Copy data from surface_mod
730!$ACC DATA &
731!$ACC COPYIN(bc_h(0:1)) &
732!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
733!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
734!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
735!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
736!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
737!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
738
739!
740!-- Copy data from statistics
741!$ACC DATA &
742!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
743!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
744!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
745!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
746!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
747!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
748!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
749!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
750!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
751!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
752!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
753!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
754!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
755!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
756!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
757!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
758!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
759!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
760!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
761
762#if defined( _OPENACC )
763    CALL enter_surface_arrays
764#endif
765
766!
767!-- At beginning determine the first time step
768    CALL timestep
769!
770!-- Synchronize the timestep in case of nested run.
771    IF ( nested_run )  THEN
772!
773!--    Synchronization by unifying the time step.
774!--    Global minimum of all time-steps is used for all.
775       CALL pmci_synchronize
776    ENDIF
777
778!
779!-- Determine and print out the run control quantities before the first time
780!-- step of this run. For the initial run, some statistics (e.g. divergence)
781!-- need to be determined first --> CALL flow_statistics at the beginning of
782!-- run_control
783    CALL run_control
784!
785!-- Data exchange between coupled models in case that a call has been omitted
786!-- at the end of the previous run of a job chain.
787    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
788!
789!--    In case of model termination initiated by the local model the coupler
790!--    must not be called because this would again cause an MPI hang.
791       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
792          CALL surface_coupler
793          time_coupling = time_coupling - dt_coupling
794       ENDDO
795       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
796          time_coupling = time_since_reference_point
797       ENDIF
798    ENDIF
799
800#if defined( __dvrp_graphics )
801!
802!-- Time measurement with dvrp software 
803    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
804#endif
805
806    CALL location_message( 'starting timestep-sequence', .TRUE. )
807
808!
809!-- Start of the time loop
810    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
811
812       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
813!
814!--    Vertical nesting: initialize fine grid
815       IF ( vnested ) THEN
816          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
817             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
818             CALL vnest_init_fine
819             vnest_init = .TRUE.
820             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
821          ENDIF
822       ENDIF
823!
824!--    Determine ug, vg and w_subs in dependence on data from external file
825!--    LSF_DATA
826       IF ( large_scale_forcing .AND. lsf_vert )  THEN
827           CALL ls_forcing_vert ( simulated_time )
828           sums_ls_l = 0.0_wp
829       ENDIF
830
831!
832!--    Set pt_init and q_init to the current profiles taken from
833!--    NUDGING_DATA
834       IF ( nudging )  THEN
835           CALL nudge_ref ( simulated_time )
836!
837!--        Store temperature gradient at the top boundary for possible Neumann
838!--        boundary condition
839           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
840           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
841           IF ( air_chemistry )  THEN
842              DO  lsp = 1, nspec
843                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
844                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
845                               / dzu(nzt+1)
846              ENDDO
847           ENDIF
848       ENDIF
849!
850!--    If forcing by larger-scale models is applied, check if new data
851!--    at domain boundaries need to be read.
852       IF ( nesting_offline ) THEN
853          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
854               CALL netcdf_data_input_offline_nesting
855       ENDIF
856
857!
858!--    Execute alle other module actions routunes
859       CALL module_interface_actions( 'before_timestep' )
860
861!
862!--    Calculate forces by wind turbines
863       IF ( wind_turbine )  CALL wtm_forces 
864       
865!
866!--    Start of intermediate step loop
867       intermediate_timestep_count = 0
868       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
869
870          intermediate_timestep_count = intermediate_timestep_count + 1
871
872!
873!--       Set the steering factors for the prognostic equations which depend
874!--       on the timestep scheme
875          CALL timestep_scheme_steering
876
877!
878!--       Calculate those variables needed in the tendency terms which need
879!--       global communication
880          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
881          THEN
882!
883!--          Horizontally averaged profiles to be used as reference state in
884!--          buoyancy terms (WARNING: only the respective last call of
885!--          calc_mean_profile defines the reference state!)
886             IF ( .NOT. neutral )  THEN
887                CALL calc_mean_profile( pt, 4 )
888                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
889             ENDIF
890             IF ( ocean_mode )  THEN
891                CALL calc_mean_profile( rho_ocean, 64 )
892                ref_state(:)  = hom(:,1,64,0)
893             ENDIF
894             IF ( humidity )  THEN
895                CALL calc_mean_profile( vpt, 44 )
896                ref_state(:)  = hom(:,1,44,0)
897             ENDIF
898!
899!--          Assure that ref_state does not become zero at any level
900!--          ( might be the case if a vertical level is completely occupied
901!--            with topography ).
902             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
903          ENDIF
904
905          IF ( .NOT. constant_diffusion )  CALL production_e_init
906          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
907          THEN
908             CALL ws_statistics
909          ENDIF
910!
911!--       In case of nudging calculate current nudging time scale and horizontal
912!--       means of u, v, pt and q
913          IF ( nudging )  THEN
914             CALL calc_tnudge( simulated_time )
915             CALL calc_mean_profile( u, 1 )
916             CALL calc_mean_profile( v, 2 )
917             CALL calc_mean_profile( pt, 4 )
918             CALL calc_mean_profile( q, 41 )
919          ENDIF
920
921!
922!--       Solve the prognostic equations. A fast cache optimized version with
923!--       only one single loop is used in case of Piascek-Williams advection
924!--       scheme. NEC vector machines use a different version, because
925!--       in the other versions a good vectorization is prohibited due to
926!--       inlining problems.
927          IF ( loop_optimization == 'cache' )  THEN
928             CALL prognostic_equations_cache
929          ELSEIF ( loop_optimization == 'vector' )  THEN
930             CALL prognostic_equations_vector
931          ENDIF
932
933!
934!--       Particle transport/physics with the Lagrangian particle model
935!--       (only once during intermediate steps, because it uses an Euler-step)
936!--       ### particle model should be moved before prognostic_equations, in order
937!--       to regard droplet interactions directly
938          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
939               .AND.  intermediate_timestep_count == 1 )                                           &
940          THEN
941             CALL lpm
942             first_call_lpm = .FALSE.
943          ENDIF
944
945!
946!--       Interaction of droplets with temperature and mixing ratio.
947!--       Droplet condensation and evaporation is calculated within
948!--       advec_particles.
949          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
950          THEN
951             CALL interaction_droplets_ptq
952          ENDIF
953
954!
955!--       Movement of agents in multi agent system
956          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
957               time_since_reference_point <= multi_agent_system_end  .AND.                         &
958               intermediate_timestep_count == 1 )                                                  &
959          THEN
960             CALL multi_agent_system
961             first_call_mas = .FALSE.
962          ENDIF
963
964!
965!--       Exchange of ghost points (lateral boundary conditions)
966          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
967
968          CALL exchange_horiz( u_p, nbgp )
969          CALL exchange_horiz( v_p, nbgp )
970          CALL exchange_horiz( w_p, nbgp )
971          CALL exchange_horiz( pt_p, nbgp )
972          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
973          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
974               .OR.  use_sgs_for_particles )  THEN
975             IF ( rans_tke_e )  THEN
976                CALL exchange_horiz( diss_p, nbgp )
977             ELSE
978                CALL exchange_horiz( diss, nbgp )
979             ENDIF
980          ENDIF
981          IF ( ocean_mode )  THEN
982             CALL exchange_horiz( sa_p, nbgp )
983             CALL exchange_horiz( rho_ocean, nbgp )
984             CALL exchange_horiz( prho, nbgp )
985          ENDIF
986          IF ( humidity )  THEN
987             CALL exchange_horiz( q_p, nbgp )
988             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
989                CALL exchange_horiz( qc_p, nbgp )
990                CALL exchange_horiz( nc_p, nbgp )
991             ENDIF
992             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
993                CALL exchange_horiz( qr_p, nbgp )
994                CALL exchange_horiz( nr_p, nbgp )
995             ENDIF
996          ENDIF
997          IF ( cloud_droplets )  THEN
998             CALL exchange_horiz( ql, nbgp )
999             CALL exchange_horiz( ql_c, nbgp )
1000             CALL exchange_horiz( ql_v, nbgp )
1001             CALL exchange_horiz( ql_vp, nbgp )
1002          ENDIF
1003          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1004          IF ( air_chemistry )  THEN
1005             DO  lsp = 1, nspec
1006                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1007!
1008!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1009                lsp_usr = 1
1010                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1011                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1012                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1013                                                chem_species(lsp)%conc_pr_init )
1014                   ENDIF
1015                   lsp_usr = lsp_usr + 1
1016                ENDDO
1017             ENDDO
1018          ENDIF
1019
1020          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1021          THEN
1022             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1023             DO  b = 1, nbins
1024                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1025                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1026                CALL salsa_boundary_conds( aerosol_number(b)%conc_p, aerosol_number(b)%init )
1027                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1028                DO  c = 1, ncc_tot
1029                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p, nbgp )
1030                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1031                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,                  &
1032                                              aerosol_mass((c-1)*nbins+b)%init )
1033                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1034                ENDDO
1035             ENDDO
1036             IF ( .NOT. salsa_gases_from_chem )  THEN
1037                DO  g = 1, ngast
1038                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1039                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1040                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p, salsa_gas(g)%init )
1041                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1042             ENDDO
1043             ENDIF
1044             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1045          ENDIF         
1046          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1047
1048!
1049!--       Boundary conditions for the prognostic quantities (except of the
1050!--       velocities at the outflow in case of a non-cyclic lateral wall)
1051          CALL boundary_conds
1052!
1053!--       Swap the time levels in preparation for the next time step.
1054          CALL swap_timelevel
1055
1056!
1057!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1058          IF ( vnest_init ) THEN
1059             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1060             CALL vnest_anterpolate
1061             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1062          ENDIF
1063
1064          IF ( nested_run )  THEN
1065
1066             CALL cpu_log( log_point(60), 'nesting', 'start' )
1067!
1068!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1069!--          and pmci_child_datatrans are called inside the wrapper
1070!--          subroutine pmci_datatrans according to the control parameters
1071!--          nesting_mode and nesting_datatransfer_mode.
1072!--          TO_DO: why is nesting_mode given as a parameter here?
1073             CALL pmci_datatrans( nesting_mode )
1074
1075             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1076!
1077!--             Exchange_horiz is needed for all parent-domains after the
1078!--             anterpolation
1079                CALL exchange_horiz( u, nbgp )
1080                CALL exchange_horiz( v, nbgp )
1081                CALL exchange_horiz( w, nbgp )
1082                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1083
1084                IF ( humidity )  THEN
1085
1086                   CALL exchange_horiz( q, nbgp )
1087
1088                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1089                       CALL exchange_horiz( qc, nbgp )
1090                       CALL exchange_horiz( nc, nbgp )
1091                   ENDIF
1092                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1093                       CALL exchange_horiz( qr, nbgp )
1094                       CALL exchange_horiz( nr, nbgp )
1095                   ENDIF
1096
1097                ENDIF
1098
1099                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1100               
1101                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1102
1103                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1104                   CALL exchange_horiz( diss, nbgp )
1105                ENDIF
1106
1107                IF ( air_chemistry )  THEN
1108                   DO  n = 1, nspec     
1109                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1110                   ENDDO
1111                ENDIF
1112
1113             ENDIF
1114!
1115!--          Set boundary conditions again after interpolation and anterpolation.
1116             CALL pmci_boundary_conds
1117
1118             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1119
1120          ENDIF
1121
1122!
1123!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1124!--       when a sloping surface is used
1125          IF ( sloping_surface )  THEN
1126             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1127             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1128          ENDIF
1129
1130!
1131!--       Impose a turbulent inflow using the recycling method
1132          IF ( turbulent_inflow )  CALL inflow_turbulence
1133
1134!
1135!--       Set values at outflow boundary using the special outflow condition
1136          IF ( turbulent_outflow )  CALL outflow_turbulence
1137
1138!
1139!--       Impose a random perturbation on the horizontal velocity field
1140          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1141               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1142               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1143          THEN
1144             time_disturb = time_disturb + dt_3d
1145             IF ( time_disturb >= dt_disturb )  THEN
1146                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1147                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1148                   CALL disturb_field( 'u', tend, u )
1149                   CALL disturb_field( 'v', tend, v )
1150                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1151                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1152                THEN
1153!
1154!--                Runs with a non-cyclic lateral wall need perturbations
1155!--                near the inflow throughout the whole simulation
1156                   dist_range = 1
1157                   CALL disturb_field( 'u', tend, u )
1158                   CALL disturb_field( 'v', tend, v )
1159                   dist_range = 0
1160                ENDIF
1161                time_disturb = time_disturb - dt_disturb
1162             ENDIF
1163          ENDIF
1164
1165!
1166!--       Map forcing data derived from larger scale model onto domain
1167!--       boundaries.
1168          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1169                                       intermediate_timestep_count_max  )                          &
1170             CALL nesting_offl_bc
1171!
1172!--       Impose a turbulent inflow using synthetic generated turbulence,
1173!--       only once per time step.
1174          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
1175             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1176             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1177             CALL stg_main
1178             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1179          ENDIF
1180!
1181!--       Ensure mass conservation. This need to be done after imposing
1182!--       synthetic turbulence and top boundary condition for pressure is set to
1183!--       Neumann conditions.
1184!--       Is this also required in case of Dirichlet?
1185          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1186!
1187!--       Reduce the velocity divergence via the equation for perturbation
1188!--       pressure.
1189          IF ( intermediate_timestep_count == 1  .OR. &
1190                call_psolver_at_all_substeps )  THEN
1191
1192             IF (  vnest_init ) THEN
1193!
1194!--             Compute pressure in the CG, interpolate top boundary conditions
1195!--             to the FG and then compute pressure in the FG
1196                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1197
1198                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1199                CALL vnest_boundary_conds
1200                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1201 
1202                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1203
1204!--             Anterpolate TKE, satisfy Germano Identity
1205                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1206                CALL vnest_anterpolate_e
1207                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1208
1209             ELSE
1210
1211                CALL pres
1212
1213             ENDIF
1214
1215          ENDIF
1216
1217!
1218!--       If required, compute liquid water content
1219          IF ( bulk_cloud_model )  THEN
1220             CALL calc_liquid_water_content
1221          ENDIF
1222!
1223!--       If required, compute virtual potential temperature
1224          IF ( humidity )  THEN
1225             CALL compute_vpt 
1226          ENDIF 
1227
1228!
1229!--       Compute the diffusion quantities
1230          IF ( .NOT. constant_diffusion )  THEN
1231
1232!
1233!--          Determine surface fluxes shf and qsws and surface values
1234!--          pt_surface and q_surface in dependence on data from external
1235!--          file LSF_DATA respectively
1236             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1237                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1238             THEN
1239                CALL ls_forcing_surf( simulated_time )
1240             ENDIF
1241
1242!
1243!--          First the vertical (and horizontal) fluxes in the surface
1244!--          (constant flux) layer are computed
1245             IF ( constant_flux_layer )  THEN
1246                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1247                CALL surface_layer_fluxes
1248                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1249             ENDIF
1250!
1251!--          If required, solve the energy balance for the surface and run soil
1252!--          model. Call for horizontal as well as vertical surfaces
1253             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1254
1255                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1256!
1257!--             Call for horizontal upward-facing surfaces
1258                CALL lsm_energy_balance( .TRUE., -1 )
1259                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1260!
1261!--             Call for northward-facing surfaces
1262                CALL lsm_energy_balance( .FALSE., 0 )
1263                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1264!
1265!--             Call for southward-facing surfaces
1266                CALL lsm_energy_balance( .FALSE., 1 )
1267                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1268!
1269!--             Call for eastward-facing surfaces
1270                CALL lsm_energy_balance( .FALSE., 2 )
1271                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1272!
1273!--             Call for westward-facing surfaces
1274                CALL lsm_energy_balance( .FALSE., 3 )
1275                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1276               
1277!
1278!--             At the end, set boundary conditons for potential temperature
1279!--             and humidity after running the land-surface model. This
1280!--             might be important for the nesting, where arrays are transfered.
1281                CALL lsm_boundary_condition
1282
1283               
1284                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1285             ENDIF
1286!
1287!--          If required, solve the energy balance for urban surfaces and run
1288!--          the material heat model
1289             IF (urban_surface) THEN
1290                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1291               
1292                CALL usm_surface_energy_balance( .FALSE. )
1293                IF ( usm_material_model )  THEN
1294                   CALL usm_green_heat_model
1295                   CALL usm_material_heat_model ( .FALSE. )
1296                ENDIF
1297
1298!
1299!--             At the end, set boundary conditons for potential temperature
1300!--             and humidity after running the urban-surface model. This
1301!--             might be important for the nesting, where arrays are transfered.
1302                CALL usm_boundary_condition
1303
1304                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1305             ENDIF
1306!
1307!--          Compute the diffusion coefficients
1308             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1309             IF ( .NOT. humidity ) THEN
1310                IF ( ocean_mode )  THEN
1311                   CALL tcm_diffusivities( prho, prho_reference )
1312                ELSE
1313                   CALL tcm_diffusivities( pt, pt_reference )
1314                ENDIF
1315             ELSE
1316                CALL tcm_diffusivities( vpt, pt_reference )
1317             ENDIF
1318             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1319!
1320!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1321             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1322
1323          ENDIF
1324
1325!
1326!--       If required, calculate radiative fluxes and heating rates
1327          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1328               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
1329
1330               time_radiation = time_radiation + dt_3d
1331
1332             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1333
1334                CALL cpu_log( log_point(50), 'radiation', 'start' )
1335
1336                IF ( .NOT. force_radiation_call )  THEN
1337                   time_radiation = time_radiation - dt_radiation
1338                ENDIF
1339
1340!
1341!--             Adjust the current time to the time step of the radiation model.
1342!--             Needed since radiation is pre-calculated and stored only on apparent
1343!--             solar positions
1344                time_since_reference_point_save = time_since_reference_point
1345                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1346                                                          dt_radiation), wp ) * dt_radiation
1347
1348                CALL radiation_control
1349
1350                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1351                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1352                   CALL radiation_interaction
1353                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1354                ENDIF
1355   
1356!
1357!--             Return the current time to its original value
1358                time_since_reference_point = time_since_reference_point_save
1359
1360                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1361
1362             ENDIF
1363          ENDIF
1364
1365       ENDDO   ! Intermediate step loop
1366
1367!
1368!--    Will be used at some point by flow_statistics.
1369       !$ACC UPDATE &
1370       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1371       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1372       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1373       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1374       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1375       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1376       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1377       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1378       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1379       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1380       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1381       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1382       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1383       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1384       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1385
1386!
1387!--    If required, consider chemical emissions
1388       IF ( air_chemistry  .AND.  do_emis )  THEN
1389!
1390!--       Update the time --> kanani: revise location of this CALL
1391          CALL calc_date_and_time
1392!
1393!--       Call emission routine only once an hour
1394          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1395             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1396             hour_call_emis = hour_of_year
1397          ENDIF
1398       ENDIF
1399
1400!
1401!--    If required, calculate indoor temperature, waste heat, heat flux
1402!--    through wall, etc.
1403!--    dt_indoor steers the frequency of the indoor model calculations.
1404!--    Note, at first timestep indoor model is called, in order to provide
1405!--    a waste heat flux.
1406       IF ( indoor_model )  THEN
1407
1408          time_indoor = time_indoor + dt_3d
1409
1410          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1411
1412             time_indoor = time_indoor - dt_indoor
1413
1414             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1415             CALL im_main_heatcool
1416             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1417
1418          ENDIF
1419       ENDIF
1420!
1421!--    Increase simulation time and output times
1422       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1423       current_timestep_number    = current_timestep_number + 1
1424       simulated_time             = simulated_time   + dt_3d
1425       time_since_reference_point = simulated_time - coupling_start_time
1426       simulated_time_chr         = time_to_string( time_since_reference_point )
1427
1428
1429
1430
1431       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1432          time_do_av         = time_do_av       + dt_3d
1433       ENDIF
1434       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1435          time_do2d_xy       = time_do2d_xy     + dt_3d
1436       ENDIF
1437       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1438          time_do2d_xz       = time_do2d_xz     + dt_3d
1439       ENDIF
1440       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1441          time_do2d_yz       = time_do2d_yz     + dt_3d
1442       ENDIF
1443       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1444          time_do3d          = time_do3d        + dt_3d
1445       ENDIF
1446       DO  mid = 1, masks
1447          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1448             time_domask(mid)= time_domask(mid) + dt_3d
1449          ENDIF
1450       ENDDO
1451       time_dvrp          = time_dvrp        + dt_3d
1452       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1453          time_dosp       = time_dosp        + dt_3d
1454       ENDIF
1455       time_dots          = time_dots        + dt_3d
1456       IF ( .NOT. first_call_lpm )  THEN
1457          time_dopts      = time_dopts       + dt_3d
1458       ENDIF
1459       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1460          time_dopr       = time_dopr        + dt_3d
1461       ENDIF
1462       time_dopr_listing  = time_dopr_listing + dt_3d
1463       time_run_control   = time_run_control + dt_3d
1464!
1465!--    Increment time-counter for surface output
1466       IF ( surface_output )  THEN
1467          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1468             time_dosurf    = time_dosurf + dt_3d
1469          ENDIF
1470          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1471             time_dosurf_av = time_dosurf_av + dt_3d
1472          ENDIF
1473       ENDIF
1474!
1475!--    In case of synthetic turbulence generation and parametrized turbulence
1476!--    information, update the time counter and if required, adjust the
1477!--    STG to new atmospheric conditions.
1478       IF ( use_syn_turb_gen  )  THEN
1479          IF ( parametrize_inflow_turbulence )  THEN
1480             time_stg_adjust = time_stg_adjust + dt_3d
1481             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1482                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1483                CALL stg_adjust
1484                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1485             ENDIF
1486          ENDIF
1487          time_stg_call = time_stg_call + dt_3d
1488       ENDIF
1489
1490!
1491!--    Data exchange between coupled models
1492       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1493          time_coupling = time_coupling + dt_3d
1494
1495!
1496!--       In case of model termination initiated by the local model
1497!--       (terminate_coupled > 0), the coupler must be skipped because it would
1498!--       cause an MPI intercomminucation hang.
1499!--       If necessary, the coupler will be called at the beginning of the
1500!--       next restart run.
1501          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1502             CALL surface_coupler
1503             time_coupling = time_coupling - dt_coupling
1504          ENDDO
1505       ENDIF
1506
1507!
1508!--    Biometeorology calculation of stationary thermal indices
1509!--    Todo (kanani): biometeorology needs own time_... treatment.
1510!--                   It might be that time_do2d_xy differs from time_do3d,
1511!--                   and then we might get trouble with the biomet output,
1512!--                   because we can have 2d and/or 3d biomet output!!
1513       IF ( biometeorology                                                                         &
1514            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1515                  .OR.                                                                             &
1516            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1517                    ) )  THEN
1518!
1519!--       If required, do thermal comfort calculations
1520          IF ( thermal_comfort )  THEN
1521             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1522          ENDIF
1523!
1524!--       If required, do UV exposure calculations
1525          IF ( uv_exposure )  THEN
1526             CALL uvem_calc_exposure
1527          ENDIF
1528       ENDIF
1529
1530!
1531!--    Execute alle other module actions routunes
1532       CALL module_interface_actions( 'after_integration' )
1533
1534!
1535!--    If Galilei transformation is used, determine the distance that the
1536!--    model has moved so far
1537       IF ( galilei_transformation )  THEN
1538          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1539          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1540       ENDIF
1541
1542!
1543!--    Check, if restart is necessary (because cpu-time is expiring or
1544!--    because it is forced by user) and set stop flag
1545!--    This call is skipped if the remote model has already initiated a restart.
1546       IF ( .NOT. terminate_run )  CALL check_for_restart
1547
1548!
1549!--    Carry out statistical analysis and output at the requested output times.
1550!--    The MOD function is used for calculating the output time counters (like
1551!--    time_dopr) in order to regard a possible decrease of the output time
1552!--    interval in case of restart runs
1553
1554!
1555!--    Set a flag indicating that so far no statistics have been created
1556!--    for this time step
1557       flow_statistics_called = .FALSE.
1558
1559!
1560!--    If required, call flow_statistics for averaging in time
1561       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1562            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1563            time_since_reference_point >= skip_time_dopr )  THEN
1564          time_dopr_av = time_dopr_av + dt_3d
1565          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1566             do_sum = .TRUE.
1567             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1568          ENDIF
1569       ENDIF
1570       IF ( do_sum )  CALL flow_statistics
1571
1572!
1573!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1574       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1575            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1576            time_since_reference_point >= skip_time_data_output_av )                               &
1577       THEN
1578          time_do_sla = time_do_sla + dt_3d
1579          IF ( time_do_sla >= dt_averaging_input )  THEN
1580             CALL sum_up_3d_data
1581             average_count_3d = average_count_3d + 1
1582             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1583          ENDIF
1584       ENDIF
1585!
1586!--    Average surface data
1587       IF ( surface_output )  THEN
1588          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1589                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1590                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1591             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1592                CALL surface_data_output_averaging
1593                average_count_surf = average_count_surf + 1
1594             ENDIF
1595          ENDIF
1596       ENDIF
1597
1598!
1599!--    Calculate spectra for time averaging
1600       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1601            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1602          time_dosp_av = time_dosp_av + dt_3d
1603          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1604             CALL calc_spectra
1605             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1606          ENDIF
1607       ENDIF
1608
1609!
1610!--    Call flight module and output data
1611       IF ( virtual_flight )  THEN
1612          CALL flight_measurement
1613          CALL data_output_flight
1614       ENDIF
1615!
1616!--    Take virtual measurements
1617       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1618          CALL vm_sampling
1619          CALL vm_data_output
1620       ENDIF
1621
1622!
1623!--    Profile output (ASCII) on file
1624       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1625          CALL print_1d
1626          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1627       ENDIF
1628
1629!
1630!--    Graphic output for PROFIL
1631       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1632          IF ( dopr_n /= 0 )  CALL data_output_profiles
1633          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1634          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1635       ENDIF
1636
1637!
1638!--    Graphic output for time series
1639       IF ( time_dots >= dt_dots )  THEN
1640          CALL data_output_tseries
1641          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1642       ENDIF
1643
1644!
1645!--    Output of spectra (formatted for use with PROFIL), in case of no
1646!--    time averaging, spectra has to be calculated before
1647       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1648          IF ( average_count_sp == 0 )  CALL calc_spectra
1649          CALL data_output_spectra
1650          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1651       ENDIF
1652
1653!
1654!--    2d-data output (cross-sections)
1655       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1656          CALL data_output_2d( 'xy', 0 )
1657          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1658       ENDIF
1659       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1660          CALL data_output_2d( 'xz', 0 )
1661          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1662       ENDIF
1663       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1664          CALL data_output_2d( 'yz', 0 )
1665          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1666       ENDIF
1667
1668!
1669!--    3d-data output (volume data)
1670       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1671          CALL data_output_3d( 0 )
1672          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1673       ENDIF
1674
1675!
1676!--    Masked data output
1677       DO  mid = 1, masks
1678          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1679               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1680             CALL data_output_mask( 0 )
1681             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1682          ENDIF
1683       ENDDO
1684
1685!
1686!--    Output of time-averaged 2d/3d/masked data
1687       IF ( time_do_av >= dt_data_output_av                                                        &
1688            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1689          CALL average_3d_data
1690!
1691!--       Udate thermal comfort indices based on updated averaged input
1692          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1693             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1694          ENDIF
1695          CALL data_output_2d( 'xy', 1 )
1696          CALL data_output_2d( 'xz', 1 )
1697          CALL data_output_2d( 'yz', 1 )
1698          CALL data_output_3d( 1 )
1699          DO  mid = 1, masks
1700             CALL data_output_mask( 1 )
1701          ENDDO
1702          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1703       ENDIF
1704!
1705!--    Output of surface data, instantaneous and averaged data
1706       IF ( surface_output )  THEN
1707          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1708             CALL surface_data_output( 0 )
1709             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1710          ENDIF
1711          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1712             CALL surface_data_output( 1 )
1713             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1714          ENDIF
1715       ENDIF
1716
1717!
1718!--    Output of particle time series
1719       IF ( particle_advection )  THEN
1720          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1721               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1722                 first_call_lpm ) )  THEN
1723             CALL data_output_ptseries
1724             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1725          ENDIF
1726       ENDIF
1727
1728!
1729!--    Output of dvrp-graphics (isosurface, particles, slicer)
1730#if defined( __dvrp_graphics )
1731       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1732#endif
1733       IF ( time_dvrp >= dt_dvrp )  THEN
1734          CALL data_output_dvrp
1735          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1736       ENDIF
1737#if defined( __dvrp_graphics )
1738       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1739#endif
1740
1741!
1742!--    If required, set the heat flux for the next time step to a random value
1743       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1744          IF ( surf_def_h(0)%ns >= 1 )  THEN
1745             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1746             CALL disturb_heatflux( surf_def_h(0) )
1747             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1748          ENDIF
1749          IF ( surf_lsm_h%ns    >= 1 )  THEN
1750             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1751             CALL disturb_heatflux( surf_lsm_h    )
1752             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1753          ENDIF
1754          IF ( surf_usm_h%ns    >= 1 )  THEN
1755             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1756             CALL disturb_heatflux( surf_usm_h    )
1757             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1758          ENDIF
1759       ENDIF
1760
1761!
1762!--    Execute alle other module actions routunes
1763       CALL module_interface_actions( 'after_timestep' )
1764
1765!
1766!--    Determine size of next time step. Save timestep dt_3d because it is
1767!--    newly calculated in routine timestep, but required further below for
1768!--    steering the run control output interval
1769       dt_3d_old = dt_3d
1770       CALL timestep
1771
1772!
1773!--    Synchronize the timestep in case of nested run.
1774       IF ( nested_run )  THEN
1775!
1776!--       Synchronize by unifying the time step.
1777!--       Global minimum of all time-steps is used for all.
1778          CALL pmci_synchronize
1779       ENDIF
1780
1781!
1782!--    Computation and output of run control parameters.
1783!--    This is also done whenever perturbations have been imposed
1784       IF ( time_run_control >= dt_run_control  .OR.                                               &
1785            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1786       THEN
1787          CALL run_control
1788          IF ( time_run_control >= dt_run_control )  THEN
1789             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1790          ENDIF
1791       ENDIF
1792
1793!
1794!--    Output elapsed simulated time in form of a progress bar on stdout
1795       IF ( myid == 0 )  CALL output_progress_bar
1796
1797       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1798
1799
1800    ENDDO   ! time loop
1801
1802#if defined( _OPENACC )
1803    CALL exit_surface_arrays
1804#endif
1805!$ACC END DATA
1806!$ACC END DATA
1807!$ACC END DATA
1808!$ACC END DATA
1809!$ACC END DATA
1810!$ACC END DATA
1811!$ACC END DATA
1812
1813!
1814!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1815    IF ( vnest_init )  CALL vnest_deallocate
1816
1817    IF ( myid == 0 )  CALL finish_progress_bar
1818
1819#if defined( __dvrp_graphics )
1820    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1821#endif
1822
1823    CALL location_message( 'finished time-stepping', .TRUE. )
1824
1825 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.