source: palm/trunk/SOURCE/time_integration.f90 @ 3719

Last change on this file since 3719 was 3719, checked in by kanani, 5 years ago

Correct and clean-up cpu_logs, some overlapping counts (chemistry_model_mod, disturb_heatflux, large_scale_forcing_nudging_mod, ocean_mod, palm, prognostic_equations, synthetic_turbulence_generator_mod, time_integration, time_integration_spinup, turbulence_closure_mod)

  • Property svn:keywords set to Id
File size: 72.2 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3719 2019-02-06 13:10:18Z kanani $
27! - removed wind_turbine cpu measurement, since same time is measured inside
28!   wtm_forces subroutine as special measures
29! - moved the numerous vnest cpulog to special measures
30! - extended radiation cpulog over entire radiation part,
31!   moved radiation_interactions cpulog to special measures
32! - moved some cpu_log calls to this routine for better overview
33!
34! 3705 2019-01-29 19:56:39Z suehring
35! Data output for virtual measurements added
36!
37! 3704 2019-01-29 19:51:41Z suehring
38! Rename subroutines for surface-data output
39!
40! 3647 2019-01-02 14:10:44Z kanani
41! Bugfix: add time_since_reference_point to IF clause for data_output calls
42! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
43! Clean up indoor_model and biometeorology model call.
44!
45! 3646 2018-12-28 17:58:49Z kanani
46! Bugfix: use time_since_reference_point instead of simulated_time where
47! required (relevant when using wall/soil spinup)
48!
49! 3634 2018-12-18 12:31:28Z knoop
50! OpenACC port for SPEC
51!
52! 3597 2018-12-04 08:40:18Z maronga
53! Removed call to calculation of near air (10 cm) potential temperature (now in
54! surface layer fluxes)
55!
56! 3589 2018-11-30 15:09:51Z suehring
57! Move the control parameter "salsa" from salsa_mod to control_parameters
58! (M. Kurppa)
59!
60! 3582 2018-11-29 19:16:36Z suehring
61! dom_dwd_user, Schrempf:
62! Changes due to merge of uv exposure model into biometeorology_mod.
63!
64! 3525 2018-11-14 16:06:14Z kanani
65! Changes related to clean-up of biometeorology (dom_dwd_user)
66!
67! 3524 2018-11-14 13:36:44Z raasch
68! unused variables removed
69!
70! 3484 2018-11-02 14:41:25Z hellstea
71! pmci_ensure_nest_mass_conservation is premanently removed
72!
73! 3473 2018-10-30 20:50:15Z suehring
74! new module for virtual measurements introduced
75!
76! 3472 2018-10-30 20:43:50Z suehring
77! Add indoor model (kanani, srissman, tlang)
78!
79! 3467 2018-10-30 19:05:21Z suehring
80! Implementation of a new aerosol module salsa.
81!
82! 3448 2018-10-29 18:14:31Z kanani
83! Add biometeorology
84!
85! 3421 2018-10-24 18:39:32Z gronemeier
86! Surface data output
87!
88! 3418 2018-10-24 16:07:39Z kanani
89! call to material_heat_model now with check if spinup runs (rvtils)
90!
91! 3378 2018-10-19 12:34:59Z kanani
92! merge from radiation branch (r3362) into trunk
93! (moh.hefny):
94! Bugfix in the if statement to call radiation_interaction
95!
96! 3347 2018-10-15 14:21:08Z suehring
97! - offline nesting separated from large-scale forcing module
98! - changes for synthetic turbulence generator
99!
100! 3343 2018-10-15 10:38:52Z suehring
101! - Formatting, clean-up, comments (kanani)
102! - Added CALL to chem_emissions_setup (Russo)
103! - Code added for decycling chemistry (basit)
104!
105! 3294 2018-10-01 02:37:10Z raasch
106! changes concerning modularization of ocean option
107!
108! 3274 2018-09-24 15:42:55Z knoop
109! Modularization of all bulk cloud physics code components
110!
111! 3241 2018-09-12 15:02:00Z raasch
112! unused variables removed
113!
114! 3198 2018-08-15 09:23:10Z sward
115! Added multi_agent_system_end; defined start time for MAS relative to
116! time_since_reference_point
117!
118! 3183 2018-07-27 14:25:55Z suehring
119! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
120! Rename subroutines and variables in COSMO nesting mode
121!
122! 3182 2018-07-27 13:36:03Z suehring
123! Added multi agent system
124!
125! 3042 2018-05-25 10:44:37Z schwenkel
126! Changed the name specific humidity to mixing ratio
127!
128! 3040 2018-05-25 10:22:08Z schwenkel
129! Fixed bug in IF statement
130! Ensure that the time when calling the radiation to be the time step of the
131! pre-calculated time when first calculate the positions of the sun
132!
133! 3004 2018-04-27 12:33:25Z Giersch
134! First call of flow_statistics has been removed. It is already called in
135! run_control itself
136!
137! 2984 2018-04-18 11:51:30Z hellstea
138! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
139! as seemingly unnecessary.
140!
141! 2941 2018-04-03 11:54:58Z kanani
142! Deduct spinup_time from RUN_CONTROL output of main 3d run
143! (use time_since_reference_point instead of simulated_time)
144!
145! 2938 2018-03-27 15:52:42Z suehring
146! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
147!
148! 2936 2018-03-27 14:49:27Z suehring
149! Little formatting adjustment.
150!
151! 2817 2018-02-19 16:32:21Z knoop
152! Preliminary gust module interface implemented
153!
154! 2801 2018-02-14 16:01:55Z thiele
155! Changed lpm from subroutine to module.
156! Introduce particle transfer in nested models.
157!
158! 2776 2018-01-31 10:44:42Z Giersch
159! Variable use_synthetic_turbulence_generator has been abbreviated
160!
161! 2773 2018-01-30 14:12:54Z suehring
162! - Nesting for chemical species
163!
164! 2766 2018-01-22 17:17:47Z kanani
165! Removed preprocessor directive __chem
166!
167! 2718 2018-01-02 08:49:38Z maronga
168! Corrected "Former revisions" section
169!
170! 2696 2017-12-14 17:12:51Z kanani
171! - Change in file header (GPL part)
172! - Implementation of uv exposure model (FK)
173! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
174! - renamed diffusivities to tcm_diffusivities (TG)
175! - implement prognostic equation for diss (TG)
176! - Moved/commented CALL to chem_emissions (FK)
177! - Added CALL to chem_emissions (FK)
178! - Implementation of chemistry module (FK)
179! - Calls for setting boundary conditions in USM and LSM (MS)
180! - Large-scale forcing with larger-scale models implemented (MS)
181! - Rename usm_radiation into radiation_interactions; merge with branch
182!   radiation (MS)
183! - added call for usm_green_heat_model for green building surfaces (RvT)
184! - added call for usm_temperature_near_surface for use in indoor model (RvT)
185!
186! 2617 2017-11-16 12:47:24Z suehring
187! Bugfix, assure that the reference state does not become zero.
188!
189! 2563 2017-10-19 15:36:10Z Giersch
190! Variable wind_turbine moved to module control_parameters
191!
192! 2365 2017-08-21 14:59:59Z kanani
193! Vertical grid nesting implemented (SadiqHuq)
194!
195! 2320 2017-07-21 12:47:43Z suehring
196! Set bottom boundary conditions after nesting interpolation and anterpolation
197!
198! 2299 2017-06-29 10:14:38Z maronga
199! Call of soil model adjusted
200!
201! 2292 2017-06-20 09:51:42Z schwenkel
202! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
203! includes two more prognostic equations for cloud drop concentration (nc) 
204! and cloud water content (qc).
205!
206! 2271 2017-06-09 12:34:55Z sward
207! Start timestep message changed
208!
209! 2259 2017-06-08 09:09:11Z gronemeier
210! Implemented synthetic turbulence generator
211!
212! 2233 2017-05-30 18:08:54Z suehring
213!
214! 2232 2017-05-30 17:47:52Z suehring
215! Adjustments to new topography and surface concept
216! Modify passed parameters for disturb_field
217!
218! 2178 2017-03-17 11:07:39Z hellstea
219! Setting perturbations at all times near inflow boundary is removed
220! in case of nested boundaries
221!
222! 2174 2017-03-13 08:18:57Z maronga
223! Added support for nesting with cloud microphysics
224!
225! 2118 2017-01-17 16:38:49Z raasch
226! OpenACC directives and related code removed
227!
228! 2050 2016-11-08 15:00:55Z gronemeier
229! Implement turbulent outflow condition
230!
231! 2031 2016-10-21 15:11:58Z knoop
232! renamed variable rho to rho_ocean
233!
234! 2011 2016-09-19 17:29:57Z kanani
235! Flag urban_surface is now defined in module control_parameters,
236! removed commented CALLs of global_min_max.
237!
238! 2007 2016-08-24 15:47:17Z kanani
239! Added CALLs for new urban surface model
240!
241! 2000 2016-08-20 18:09:15Z knoop
242! Forced header and separation lines into 80 columns
243!
244! 1976 2016-07-27 13:28:04Z maronga
245! Simplified calls to radiation model
246!
247! 1960 2016-07-12 16:34:24Z suehring
248! Separate humidity and passive scalar
249!
250! 1957 2016-07-07 10:43:48Z suehring
251! flight module added
252!
253! 1919 2016-05-27 14:51:23Z raasch
254! Initial version of purely vertical nesting introduced.
255!
256! 1918 2016-05-27 14:35:57Z raasch
257! determination of time step moved to the end of the time step loop,
258! the first time step is now always calculated before the time step loop (i.e.
259! also in case of restart runs)
260!
261! 1914 2016-05-26 14:44:07Z witha
262! Added call for wind turbine model
263!
264! 1878 2016-04-19 12:30:36Z hellstea
265! Synchronization for nested runs rewritten
266!
267! 1853 2016-04-11 09:00:35Z maronga
268! Adjusted for use with radiation_scheme = constant
269!
270! 1849 2016-04-08 11:33:18Z hoffmann
271! Adapted for modularization of microphysics
272!
273! 1833 2016-04-07 14:23:03Z raasch
274! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
275!
276! 1831 2016-04-07 13:15:51Z hoffmann
277! turbulence renamed collision_turbulence
278!
279! 1822 2016-04-07 07:49:42Z hoffmann
280! icloud_scheme replaced by microphysics_*
281!
282! 1808 2016-04-05 19:44:00Z raasch
283! output message in case unscheduled radiation calls removed
284!
285! 1797 2016-03-21 16:50:28Z raasch
286! introduction of different datatransfer modes
287!
288! 1791 2016-03-11 10:41:25Z raasch
289! call of pmci_update_new removed
290!
291! 1786 2016-03-08 05:49:27Z raasch
292! +module spectrum
293!
294! 1783 2016-03-06 18:36:17Z raasch
295! switch back of netcdf data format for mask output moved to the mask output
296! routine
297!
298! 1781 2016-03-03 15:12:23Z raasch
299! some pmc calls removed at the beginning (before timeloop),
300! pmc initialization moved to the main program
301!
302! 1764 2016-02-28 12:45:19Z raasch
303! PMC_ACTIVE flags removed,
304! bugfix: nest synchronization after first call of timestep
305!
306! 1762 2016-02-25 12:31:13Z hellstea
307! Introduction of nested domain feature
308!
309! 1736 2015-12-04 08:56:33Z raasch
310! no perturbations added to total domain if energy limit has been set zero
311!
312! 1691 2015-10-26 16:17:44Z maronga
313! Added option for spin-ups without land surface and radiation models. Moved calls
314! for radiation and lan surface schemes.
315!
316! 1682 2015-10-07 23:56:08Z knoop
317! Code annotations made doxygen readable
318!
319! 1671 2015-09-25 03:29:37Z raasch
320! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
321! for particles
322!
323! 1585 2015-04-30 07:05:52Z maronga
324! Moved call of radiation scheme. Added support for RRTM
325!
326! 1551 2015-03-03 14:18:16Z maronga
327! Added interface for different radiation schemes.
328!
329! 1496 2014-12-02 17:25:50Z maronga
330! Added calls for the land surface model and radiation scheme
331!
332! 1402 2014-05-09 14:25:13Z raasch
333! location messages modified
334!
335! 1384 2014-05-02 14:31:06Z raasch
336! location messages added
337!
338! 1380 2014-04-28 12:40:45Z heinze
339! CALL of nudge_ref added
340! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
341!
342! 1365 2014-04-22 15:03:56Z boeske
343! Reset sums_ls_l to zero at each timestep
344! +sums_ls_l
345! Calculation of reference state (previously in subroutine calc_mean_profile)
346
347! 1342 2014-03-26 17:04:47Z kanani
348! REAL constants defined as wp-kind
349!
350! 1320 2014-03-20 08:40:49Z raasch
351! ONLY-attribute added to USE-statements,
352! kind-parameters added to all INTEGER and REAL declaration statements,
353! kinds are defined in new module kinds,
354! old module precision_kind is removed,
355! revision history before 2012 removed,
356! comment fields (!:) to be used for variable explanations added to
357! all variable declaration statements
358! 1318 2014-03-17 13:35:16Z raasch
359! module interfaces removed
360!
361! 1308 2014-03-13 14:58:42Z fricke
362! +netcdf_data_format_save
363! For masked data, parallel netcdf output is not tested so far, hence
364! netcdf_data_format is switched back to non-paralell output.
365!
366! 1276 2014-01-15 13:40:41Z heinze
367! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
368!
369! 1257 2013-11-08 15:18:40Z raasch
370! acc-update-host directive for timestep removed
371!
372! 1241 2013-10-30 11:36:58Z heinze
373! Generalize calc_mean_profile for wider use
374! Determine shf and qsws in dependence on data from LSF_DATA
375! Determine ug and vg in dependence on data from LSF_DATA
376! 1221 2013-09-10 08:59:13Z raasch
377! host update of arrays before timestep is called
378!
379! 1179 2013-06-14 05:57:58Z raasch
380! mean profiles for reference state are only calculated if required,
381! small bugfix for background communication
382!
383! 1171 2013-05-30 11:27:45Z raasch
384! split of prognostic_equations deactivated (comment lines), for the time being
385!
386! 1128 2013-04-12 06:19:32Z raasch
387! asynchronous transfer of ghost point data realized for acc-optimized version:
388! prognostic_equations are first called two times for those points required for
389! the left-right and north-south exchange, respectively, and then for the
390! remaining points,
391! those parts requiring global communication moved from prognostic_equations to
392! here
393!
394! 1115 2013-03-26 18:16:16Z hoffmann
395! calculation of qr and nr is restricted to precipitation
396!
397! 1113 2013-03-10 02:48:14Z raasch
398! GPU-porting of boundary conditions,
399! openACC directives updated
400! formal parameter removed from routine boundary_conds
401!
402! 1111 2013-03-08 23:54:10Z raasch
403! +internal timestep counter for cpu statistics added,
404! openACC directives updated
405!
406! 1092 2013-02-02 11:24:22Z raasch
407! unused variables removed
408!
409! 1065 2012-11-22 17:42:36Z hoffmann
410! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
411!
412! 1053 2012-11-13 17:11:03Z hoffmann
413! exchange of ghost points for nr, qr added
414!
415! 1036 2012-10-22 13:43:42Z raasch
416! code put under GPL (PALM 3.9)
417!
418! 1019 2012-09-28 06:46:45Z raasch
419! non-optimized version of prognostic_equations removed
420!
421! 1015 2012-09-27 09:23:24Z raasch
422! +call of prognostic_equations_acc
423!
424! 1001 2012-09-13 14:08:46Z raasch
425! all actions concerning leapfrog- and upstream-spline-scheme removed
426!
427! 849 2012-03-15 10:35:09Z raasch
428! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
429!
430! 825 2012-02-19 03:03:44Z raasch
431! wang_collision_kernel renamed wang_kernel
432!
433! Revision 1.1  1997/08/11 06:19:04  raasch
434! Initial revision
435!
436!
437! Description:
438! ------------
439!> Integration in time of the model equations, statistical analysis and graphic
440!> output
441!------------------------------------------------------------------------------!
442 SUBROUTINE time_integration
443 
444
445    USE advec_ws,                                                              &
446        ONLY:  ws_statistics
447
448    USE arrays_3d,                                                             &
449        ONLY:  d, diss, diss_p, ddzu, dd2zu, ddzw, drho_air, drho_air_zw, dzu, &
450               dzw, e, e_p, kh, km, nc, nc_p, nr, nr_p, p, prho, pt, pt_p,     &
451               pt_init, ptdf_x, ptdf_y, q_init, q, qc, qc_p, ql, ql_c, ql_v,   &
452               ql_vp, qr, qr_p, q_p, rdf, rdf_sc, ref_state, rho_air,          &
453               rho_air_zw, rho_ocean, s, s_p, sa_p, te_m, tend, tpt_m, tu_m,   &
454               tv_m, tw_m, u, ug, u_init, u_p, u_stokes_zu, v, vg, v_init, vpt,&
455               v_p, v_stokes_zu, w, w_p, zu, heatflux_output_conversion,       &
456               momentumflux_output_conversion
457
458    USE biometeorology_mod,                                                    &
459        ONLY:  bio_calculate_thermal_index_maps, time_bio_results,             &
460               thermal_comfort, uvem_calc_exposure, uv_exposure
461
462    USE bulk_cloud_model_mod,                                                  &
463        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
464              collision_turbulence, microphysics_morrison, microphysics_seifert
465
466    USE calc_mean_profile_mod,                                                 &
467        ONLY:  calc_mean_profile
468
469    USE chem_emissions_mod,                                                    &
470        ONLY:  chem_emissions_setup
471
472    USE chem_modules,                                                          &
473        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
474
475    USE chemistry_model_mod,                                                   &
476        ONLY:  chem_boundary_conds, chem_species
477
478    USE control_parameters,                                                    &
479        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
480               average_count_3d, averaging_interval, averaging_interval_pr,    &
481               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
482               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
483               constant_flux_layer, constant_heatflux,                         &
484               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
485               coupling_start_time, current_timestep_number,                   &
486               disturbance_created, disturbance_energy_limit, dist_range,      &
487               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
488               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
489               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
490               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
491               first_call_lpm, first_call_mas, galilei_transformation,         &
492               humidity, indoor_model, intermediate_timestep_count,            &
493               intermediate_timestep_count_max,                                &
494               land_surface, large_scale_forcing,                              &
495               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
496               multi_agent_system_end, multi_agent_system_start,               &
497               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
498               ocean_mode, passive_scalar, pt_reference,                       &
499               pt_slope_offset, random_heatflux, rans_mode,                    &
500               rans_tke_e, run_coupled, salsa,                                 &
501               simulated_time, simulated_time_chr,                             &
502               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
503               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
504               skip_time_data_output_av, sloping_surface, stop_dt,             &
505               surface_output, terminate_coupled, terminate_run,               &
506               timestep_scheme,                                                &
507               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
508               time_do3d, time_domask, time_dopr, time_dopr_av,                &
509               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
510               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
511               time_run_control, time_since_reference_point, tsc,              &
512               turbulent_inflow, turbulent_outflow, urban_surface,             &
513               use_initial_profile_as_reference,                               &
514               use_single_reference_value, u_gtrans, v_gtrans,                 &
515               virtual_flight, virtual_measurement, wind_turbine,              &
516               ws_scheme_mom, ws_scheme_sca 
517
518    USE cpulog,                                                                &
519        ONLY:  cpu_log, log_point, log_point_s
520
521    USE date_and_time_mod,                                                     &
522        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
523
524    USE flight_mod,                                                            &
525        ONLY:  flight_measurement
526
527    USE indices,                                                               &
528        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, &
529               nz, nzb_max, advc_flags_1, advc_flags_2, wall_flags_0
530
531    USE indoor_model_mod,                                                      &
532        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
533
534    USE interaction_droplets_ptq_mod,                                          &
535        ONLY:  interaction_droplets_ptq
536
537    USE interfaces
538
539    USE kinds
540
541    USE land_surface_model_mod,                                                &
542        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
543               skip_time_do_lsm
544
545    USE lsf_nudging_mod,                                                       &
546        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
547
548    USE module_interface,                                                      &
549        ONLY:  module_interface_actions
550
551    USE multi_agent_system_mod,                                                &
552        ONLY:  agents_active, multi_agent_system
553
554    USE nesting_offl_mod,                                                      &
555        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
556       
557    USE netcdf_data_input_mod,                                                 &
558        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
559               netcdf_data_input_offline_nesting
560
561    USE ocean_mod,                                                             &
562        ONLY:  prho_reference
563
564    USE particle_attributes,                                                   &
565        ONLY:  particle_advection, particle_advection_start,                   &
566               use_sgs_for_particles, wang_kernel
567
568    USE pegrid
569
570    USE pmc_interface,                                                         &
571        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
572               pmci_synchronize
573
574    USE progress_bar,                                                          &
575        ONLY:  finish_progress_bar, output_progress_bar
576
577    USE prognostic_equations_mod,                                              &
578        ONLY:  prognostic_equations_cache, prognostic_equations_vector
579
580    USE radiation_model_mod,                                                   &
581        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
582              radiation_interaction, radiation_interactions,                   &
583              skip_time_do_radiation, time_radiation
584         
585    USE salsa_mod,                                                             &
586        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast,             &
587              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
588              skip_time_do_salsa                     
589   
590    USE salsa_util_mod,                                                        &
591           ONLY:  sums_salsa_ws_l     
592
593    USE spectra_mod,                                                           &
594        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
595              skip_time_dosp
596
597    USE statistics,                                                            &
598        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l,                &
599               rmask, statistic_regions, weight_substep, sums_l, sums_l_l,     &
600               sums_us2_ws_l, sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l,   &
601               sums_ws2_ws_l, sums_wspts_ws_l, sums_wsqs_ws_l, sums_wssas_ws_l,&
602               sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l,              &
603               sums_wsnrs_ws_l, sums_wsss_ws_l
604
605    USE surface_layer_fluxes_mod,                                              &
606        ONLY:  surface_layer_fluxes
607
608    USE surface_mod,                                                           &
609        ONLY:  bc_h, surf_def_h, surf_lsm_h, surf_usm_h,                       &
610               enter_surface_arrays, exit_surface_arrays
611
612    USE surface_data_output_mod,                                               &
613        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
614               dt_dosurf_av, surface_data_output,                              &
615               surface_data_output_averaging, skip_time_dosurf,                &
616               skip_time_dosurf_av, time_dosurf, time_dosurf_av
617
618    USE turbulence_closure_mod,                                                &
619        ONLY:  tcm_diffusivities, production_e_init
620
621    USE urban_surface_mod,                                                     &
622        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
623               usm_material_model,                                             &
624               usm_surface_energy_balance, usm_green_heat_model
625
626    USE synthetic_turbulence_generator_mod,                                    &
627        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
628               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
629               use_syn_turb_gen
630
631
632    USE wind_turbine_model_mod,                                                &
633        ONLY:  wtm_forces
634
635    USE lpm_mod,                                                               &
636        ONLY:  lpm
637
638    USE vertical_nesting_mod,                                                  &
639        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
640               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
641               vnest_deallocate, vnest_init, vnest_init_fine,                  &
642               vnest_start_time
643               
644    USE virtual_measurement_mod,                                               &
645        ONLY:  vm_data_output, vm_sampling, vm_time_start
646
647    IMPLICIT NONE
648
649    CHARACTER (LEN=9) ::  time_to_string   !<
650   
651    INTEGER(iwp)      ::  b !< index for aerosol size bins   
652    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
653    INTEGER(iwp)      ::  g !< index for gaseous compounds
654    INTEGER(iwp)      ::  lsp
655    INTEGER(iwp)      ::  lsp_usr   !<
656    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
657
658    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
659                            !< steering of run control output interval
660    REAL(wp) ::  time_since_reference_point_save  !< original value of
661                                                  !< time_since_reference_point
662
663
664! Copy data from arrays_3d
665!$ACC DATA &
666!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
667!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
668!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
669!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
670!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
671!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
672!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
673!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
674!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
675
676!$ACC DATA &
677!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
678!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
679!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
680!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
681!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
682!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
683!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
684!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
685!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
686!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
687!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
688
689!$ACC DATA &
690!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
691!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
692!$ACC COPYIN(zu(nzb:nzt+1)) &
693!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
694!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
695!$ACC COPYIN(ddzw(1:nzt+1)) &
696!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
697!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
698!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
699!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
700!$ACC COPYIN(ref_state(0:nz+1)) &
701!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
702!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
703!$ACC COPYIN(pt_init(0:nz+1)) &
704!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
705
706! Copy data from control_parameters
707!$ACC DATA &
708!$ACC COPYIN(tsc(1:5))
709
710! Copy data from indices
711!$ACC DATA &
712!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
713!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
714!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
715
716! Copy data from surface_mod
717!$ACC DATA &
718!$ACC COPYIN(bc_h(0:1)) &
719!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
720!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
721!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
722!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
723!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
724!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
725
726! Copy data from statistics
727!$ACC DATA &
728!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
729!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
730!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
731!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
732!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
733!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
734!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
735!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
736!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
737!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
738!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
739!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
740!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
741!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
742!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
743!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
744!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
745!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
746!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
747
748#ifdef _OPENACC
749    CALL enter_surface_arrays
750#endif
751
752!
753!-- At beginning determine the first time step
754    CALL timestep
755!
756!-- Synchronize the timestep in case of nested run.
757    IF ( nested_run )  THEN
758!
759!--    Synchronization by unifying the time step.
760!--    Global minimum of all time-steps is used for all.
761       CALL pmci_synchronize
762    ENDIF
763
764!
765!-- Determine and print out the run control quantities before the first time
766!-- step of this run. For the initial run, some statistics (e.g. divergence)
767!-- need to be determined first --> CALL flow_statistics at the beginning of
768!-- run_control
769    CALL run_control
770!
771!-- Data exchange between coupled models in case that a call has been omitted
772!-- at the end of the previous run of a job chain.
773    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
774!
775!--    In case of model termination initiated by the local model the coupler
776!--    must not be called because this would again cause an MPI hang.
777       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
778          CALL surface_coupler
779          time_coupling = time_coupling - dt_coupling
780       ENDDO
781       IF (time_coupling == 0.0_wp  .AND.                                      &
782           time_since_reference_point < dt_coupling )                          &
783       THEN
784          time_coupling = time_since_reference_point
785       ENDIF
786    ENDIF
787
788#if defined( __dvrp_graphics )
789!
790!-- Time measurement with dvrp software 
791    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
792#endif
793
794    CALL location_message( 'starting timestep-sequence', .TRUE. )
795!
796!-- Start of the time loop
797    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
798                .NOT. terminate_run )
799
800       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
801!
802!--    Vertical nesting: initialize fine grid
803       IF ( vnested ) THEN
804          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
805             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
806             CALL vnest_init_fine
807             vnest_init = .TRUE.
808             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
809          ENDIF
810       ENDIF
811!
812!--    Determine ug, vg and w_subs in dependence on data from external file
813!--    LSF_DATA
814       IF ( large_scale_forcing .AND. lsf_vert )  THEN
815           CALL ls_forcing_vert ( simulated_time )
816           sums_ls_l = 0.0_wp
817       ENDIF
818
819!
820!--    Set pt_init and q_init to the current profiles taken from
821!--    NUDGING_DATA
822       IF ( nudging )  THEN
823           CALL nudge_ref ( simulated_time )
824!
825!--        Store temperature gradient at the top boundary for possible Neumann
826!--        boundary condition
827           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
828           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
829           IF ( air_chemistry )  THEN
830              DO  lsp = 1, nspec
831                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
832                                - chem_species(lsp)%conc_pr_init(nzt) )       &
833                               / dzu(nzt+1)
834              ENDDO
835           ENDIF
836       ENDIF
837!
838!--    If forcing by larger-scale models is applied, check if new data
839!--    at domain boundaries need to be read.
840       IF ( nesting_offline )  THEN
841          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
842             CALL netcdf_data_input_offline_nesting
843       ENDIF
844
845!
846!--    Execute alle other module actions routunes
847       CALL module_interface_actions( 'before_timestep' )
848
849!
850!--    Calculate forces by wind turbines
851       IF ( wind_turbine )  CALL wtm_forces 
852       
853!
854!--    Start of intermediate step loop
855       intermediate_timestep_count = 0
856       DO  WHILE ( intermediate_timestep_count < &
857                   intermediate_timestep_count_max )
858
859          intermediate_timestep_count = intermediate_timestep_count + 1
860
861!
862!--       Set the steering factors for the prognostic equations which depend
863!--       on the timestep scheme
864          CALL timestep_scheme_steering
865
866!
867!--       Calculate those variables needed in the tendency terms which need
868!--       global communication
869          IF ( .NOT. use_single_reference_value  .AND. &
870               .NOT. use_initial_profile_as_reference )  THEN
871!
872!--          Horizontally averaged profiles to be used as reference state in
873!--          buoyancy terms (WARNING: only the respective last call of
874!--          calc_mean_profile defines the reference state!)
875             IF ( .NOT. neutral )  THEN
876                CALL calc_mean_profile( pt, 4 )
877                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
878             ENDIF
879             IF ( ocean_mode )  THEN
880                CALL calc_mean_profile( rho_ocean, 64 )
881                ref_state(:)  = hom(:,1,64,0)
882             ENDIF
883             IF ( humidity )  THEN
884                CALL calc_mean_profile( vpt, 44 )
885                ref_state(:)  = hom(:,1,44,0)
886             ENDIF
887!
888!--          Assure that ref_state does not become zero at any level
889!--          ( might be the case if a vertical level is completely occupied
890!--            with topography ).
891             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
892                                ref_state == 0.0_wp )
893          ENDIF
894
895          IF ( .NOT. constant_diffusion )  CALL production_e_init
896          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
897               intermediate_timestep_count == 1 )  CALL ws_statistics
898!
899!--       In case of nudging calculate current nudging time scale and horizontal
900!--       means of u, v, pt and q
901          IF ( nudging )  THEN
902             CALL calc_tnudge( simulated_time )
903             CALL calc_mean_profile( u, 1 )
904             CALL calc_mean_profile( v, 2 )
905             CALL calc_mean_profile( pt, 4 )
906             CALL calc_mean_profile( q, 41 )
907          ENDIF
908
909!
910!--       Solve the prognostic equations. A fast cache optimized version with
911!--       only one single loop is used in case of Piascek-Williams advection
912!--       scheme. NEC vector machines use a different version, because
913!--       in the other versions a good vectorization is prohibited due to
914!--       inlining problems.
915          IF ( loop_optimization == 'cache' )  THEN
916             CALL prognostic_equations_cache
917          ELSEIF ( loop_optimization == 'vector' )  THEN
918             CALL prognostic_equations_vector
919          ENDIF
920
921!
922!--       Particle transport/physics with the Lagrangian particle model
923!--       (only once during intermediate steps, because it uses an Euler-step)
924!--       ### particle model should be moved before prognostic_equations, in order
925!--       to regard droplet interactions directly
926          IF ( particle_advection  .AND.                         &
927               time_since_reference_point >= particle_advection_start  .AND. &
928               intermediate_timestep_count == 1 )  THEN
929             CALL lpm
930             first_call_lpm = .FALSE.
931          ENDIF
932
933!
934!--       Interaction of droplets with temperature and mixing ratio.
935!--       Droplet condensation and evaporation is calculated within
936!--       advec_particles.
937          IF ( cloud_droplets  .AND.  &
938               intermediate_timestep_count == intermediate_timestep_count_max )&
939          THEN
940             CALL interaction_droplets_ptq
941          ENDIF
942
943!
944!--       Movement of agents in multi agent system
945          IF ( agents_active  .AND.                                            &
946               time_since_reference_point >= multi_agent_system_start  .AND.   &
947               time_since_reference_point <= multi_agent_system_end    .AND.   &
948               intermediate_timestep_count == 1 )  THEN
949             CALL multi_agent_system
950             first_call_mas = .FALSE.
951          ENDIF
952
953!
954!--       Exchange of ghost points (lateral boundary conditions)
955          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
956
957          CALL exchange_horiz( u_p, nbgp )
958          CALL exchange_horiz( v_p, nbgp )
959          CALL exchange_horiz( w_p, nbgp )
960          CALL exchange_horiz( pt_p, nbgp )
961          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
962          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
963               .OR.  use_sgs_for_particles )  THEN
964             IF ( rans_tke_e )  THEN
965                CALL exchange_horiz( diss_p, nbgp )
966             ELSE
967                CALL exchange_horiz( diss, nbgp )
968             ENDIF
969          ENDIF
970          IF ( ocean_mode )  THEN
971             CALL exchange_horiz( sa_p, nbgp )
972             CALL exchange_horiz( rho_ocean, nbgp )
973             CALL exchange_horiz( prho, nbgp )
974          ENDIF
975          IF ( humidity )  THEN
976             CALL exchange_horiz( q_p, nbgp )
977             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
978                CALL exchange_horiz( qc_p, nbgp )
979                CALL exchange_horiz( nc_p, nbgp )
980             ENDIF
981             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
982                CALL exchange_horiz( qr_p, nbgp )
983                CALL exchange_horiz( nr_p, nbgp )
984             ENDIF
985          ENDIF
986          IF ( cloud_droplets )  THEN
987             CALL exchange_horiz( ql, nbgp )
988             CALL exchange_horiz( ql_c, nbgp )
989             CALL exchange_horiz( ql_v, nbgp )
990             CALL exchange_horiz( ql_vp, nbgp )
991          ENDIF
992          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
993          IF ( air_chemistry )  THEN
994             DO  lsp = 1, nspec
995                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
996!
997!--             kanani: Push chem_boundary_conds after CALL boundary_conds
998                lsp_usr = 1
999                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1000                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1001                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
1002                                                chem_species(lsp)%conc_pr_init )
1003                   ENDIF
1004                   lsp_usr = lsp_usr + 1
1005                ENDDO
1006             ENDDO
1007          ENDIF
1008
1009          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1010          THEN
1011             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1012             DO  b = 1, nbins
1013                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1014                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1015                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
1016                                           aerosol_number(b)%init )
1017                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1018                DO  c = 1, ncc_tot
1019                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
1020                                        nbgp )
1021                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1022                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
1023                                              aerosol_mass((c-1)*nbins+b)%init )
1024                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1025                ENDDO
1026             ENDDO
1027             IF ( .NOT. salsa_gases_from_chem )  THEN
1028                DO  g = 1, ngast
1029                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1030                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1031                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
1032                                              salsa_gas(g)%init )
1033                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1034             ENDDO
1035             ENDIF
1036             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1037          ENDIF         
1038          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1039
1040!
1041!--       Boundary conditions for the prognostic quantities (except of the
1042!--       velocities at the outflow in case of a non-cyclic lateral wall)
1043          CALL boundary_conds
1044!
1045!--       Swap the time levels in preparation for the next time step.
1046          CALL swap_timelevel
1047
1048!
1049!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1050          IF ( vnest_init ) THEN
1051             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1052             CALL vnest_anterpolate
1053             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1054          ENDIF
1055
1056          IF ( nested_run )  THEN
1057
1058             CALL cpu_log( log_point(60), 'nesting', 'start' )
1059!
1060!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1061!--          and pmci_child_datatrans are called inside the wrapper
1062!--          subroutine pmci_datatrans according to the control parameters
1063!--          nesting_mode and nesting_datatransfer_mode.
1064!--          TO_DO: why is nesting_mode given as a parameter here?
1065             CALL pmci_datatrans( nesting_mode )
1066
1067             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
1068                  nesting_mode == 'vertical' )  THEN
1069!
1070!--             Exchange_horiz is needed for all parent-domains after the
1071!--             anterpolation
1072                CALL exchange_horiz( u, nbgp )
1073                CALL exchange_horiz( v, nbgp )
1074                CALL exchange_horiz( w, nbgp )
1075                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1076
1077                IF ( humidity )  THEN
1078
1079                   CALL exchange_horiz( q, nbgp )
1080
1081                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1082                       CALL exchange_horiz( qc, nbgp )
1083                       CALL exchange_horiz( nc, nbgp )
1084                   ENDIF
1085                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1086                       CALL exchange_horiz( qr, nbgp )
1087                       CALL exchange_horiz( nr, nbgp )
1088                   ENDIF
1089
1090                ENDIF
1091
1092                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1093               
1094                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1095
1096                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
1097                                                      rans_tke_e )             &
1098                   CALL exchange_horiz( diss, nbgp )
1099
1100                IF ( air_chemistry )  THEN
1101                   DO  n = 1, nspec     
1102                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1103                   ENDDO
1104                ENDIF
1105
1106             ENDIF
1107!
1108!--          Set boundary conditions again after interpolation and anterpolation.
1109             CALL pmci_boundary_conds
1110
1111             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1112
1113          ENDIF
1114
1115!
1116!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1117!--       when a sloping surface is used
1118          IF ( sloping_surface )  THEN
1119             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
1120                                                    pt_slope_offset
1121             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1122                                                    pt_slope_offset
1123          ENDIF
1124
1125!
1126!--       Impose a turbulent inflow using the recycling method
1127          IF ( turbulent_inflow )  CALL inflow_turbulence
1128
1129!
1130!--       Set values at outflow boundary using the special outflow condition
1131          IF ( turbulent_outflow )  CALL outflow_turbulence
1132
1133!
1134!--       Impose a random perturbation on the horizontal velocity field
1135          IF ( create_disturbances  .AND.                                      &
1136               ( call_psolver_at_all_substeps  .AND.                           &
1137               intermediate_timestep_count == intermediate_timestep_count_max )&
1138          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1139               intermediate_timestep_count == 1 ) )                            &
1140          THEN
1141             time_disturb = time_disturb + dt_3d
1142             IF ( time_disturb >= dt_disturb )  THEN
1143                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1144                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1145                   CALL disturb_field( 'u', tend, u )
1146                   CALL disturb_field( 'v', tend, v )
1147                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1148                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1149                THEN
1150!
1151!--                Runs with a non-cyclic lateral wall need perturbations
1152!--                near the inflow throughout the whole simulation
1153                   dist_range = 1
1154                   CALL disturb_field( 'u', tend, u )
1155                   CALL disturb_field( 'v', tend, v )
1156                   dist_range = 0
1157                ENDIF
1158                time_disturb = time_disturb - dt_disturb
1159             ENDIF
1160          ENDIF
1161
1162!
1163!--       Map forcing data derived from larger scale model onto domain
1164!--       boundaries.
1165          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1166                                       intermediate_timestep_count_max  )      &
1167             CALL nesting_offl_bc
1168!
1169!--       Impose a turbulent inflow using synthetic generated turbulence,
1170!--       only once per time step.
1171          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1172             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1173             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1174             CALL stg_main
1175             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1176          ENDIF
1177!
1178!--       Ensure mass conservation. This need to be done after imposing
1179!--       synthetic turbulence and top boundary condition for pressure is set to
1180!--       Neumann conditions.
1181!--       Is this also required in case of Dirichlet?
1182          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1183!
1184!--       Reduce the velocity divergence via the equation for perturbation
1185!--       pressure.
1186          IF ( intermediate_timestep_count == 1  .OR. &
1187                call_psolver_at_all_substeps )  THEN
1188
1189             IF (  vnest_init ) THEN
1190!
1191!--             Compute pressure in the CG, interpolate top boundary conditions
1192!--             to the FG and then compute pressure in the FG
1193                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1194
1195                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1196                CALL vnest_boundary_conds
1197                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1198 
1199                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1200
1201!--             Anterpolate TKE, satisfy Germano Identity
1202                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1203                CALL vnest_anterpolate_e
1204                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1205
1206             ELSE
1207
1208                CALL pres
1209
1210             ENDIF
1211
1212          ENDIF
1213
1214!
1215!--       If required, compute liquid water content
1216          IF ( bulk_cloud_model )  THEN
1217             CALL calc_liquid_water_content
1218          ENDIF
1219!
1220!--       If required, compute virtual potential temperature
1221          IF ( humidity )  THEN
1222             CALL compute_vpt 
1223          ENDIF 
1224
1225!
1226!--       Compute the diffusion quantities
1227          IF ( .NOT. constant_diffusion )  THEN
1228
1229!
1230!--          Determine surface fluxes shf and qsws and surface values
1231!--          pt_surface and q_surface in dependence on data from external
1232!--          file LSF_DATA respectively
1233             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1234                 intermediate_timestep_count == intermediate_timestep_count_max )&
1235             THEN
1236                CALL ls_forcing_surf( simulated_time )
1237             ENDIF
1238
1239!
1240!--          First the vertical (and horizontal) fluxes in the surface
1241!--          (constant flux) layer are computed
1242             IF ( constant_flux_layer )  THEN
1243                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1244                CALL surface_layer_fluxes
1245                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1246             ENDIF
1247!
1248!--          If required, solve the energy balance for the surface and run soil
1249!--          model. Call for horizontal as well as vertical surfaces
1250             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1251
1252                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1253!
1254!--             Call for horizontal upward-facing surfaces
1255                CALL lsm_energy_balance( .TRUE., -1 )
1256                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1257!
1258!--             Call for northward-facing surfaces
1259                CALL lsm_energy_balance( .FALSE., 0 )
1260                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1261!
1262!--             Call for southward-facing surfaces
1263                CALL lsm_energy_balance( .FALSE., 1 )
1264                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1265!
1266!--             Call for eastward-facing surfaces
1267                CALL lsm_energy_balance( .FALSE., 2 )
1268                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1269!
1270!--             Call for westward-facing surfaces
1271                CALL lsm_energy_balance( .FALSE., 3 )
1272                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1273               
1274!
1275!--             At the end, set boundary conditons for potential temperature
1276!--             and humidity after running the land-surface model. This
1277!--             might be important for the nesting, where arrays are transfered.
1278                CALL lsm_boundary_condition
1279
1280               
1281                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1282             ENDIF
1283!
1284!--          If required, solve the energy balance for urban surfaces and run
1285!--          the material heat model
1286             IF (urban_surface) THEN
1287                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1288               
1289                CALL usm_surface_energy_balance( .FALSE. )
1290                IF ( usm_material_model )  THEN
1291                   CALL usm_green_heat_model
1292                   CALL usm_material_heat_model ( .FALSE. )
1293                ENDIF
1294
1295!
1296!--             At the end, set boundary conditons for potential temperature
1297!--             and humidity after running the urban-surface model. This
1298!--             might be important for the nesting, where arrays are transfered.
1299                CALL usm_boundary_condition
1300
1301                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1302             ENDIF
1303!
1304!--          Compute the diffusion coefficients
1305             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1306             IF ( .NOT. humidity ) THEN
1307                IF ( ocean_mode )  THEN
1308                   CALL tcm_diffusivities( prho, prho_reference )
1309                ELSE
1310                   CALL tcm_diffusivities( pt, pt_reference )
1311                ENDIF
1312             ELSE
1313                CALL tcm_diffusivities( vpt, pt_reference )
1314             ENDIF
1315             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1316!
1317!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1318             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1319
1320          ENDIF
1321
1322!
1323!--       If required, calculate radiative fluxes and heating rates
1324          IF ( radiation .AND. intermediate_timestep_count                     &
1325               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1326               skip_time_do_radiation )  THEN
1327
1328               time_radiation = time_radiation + dt_3d
1329
1330             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1331             THEN
1332
1333                CALL cpu_log( log_point(50), 'radiation', 'start' )
1334
1335                IF ( .NOT. force_radiation_call )  THEN
1336                   time_radiation = time_radiation - dt_radiation
1337                ENDIF
1338
1339!
1340!--             Adjust the current time to the time step of the radiation model.
1341!--             Needed since radiation is pre-calculated and stored only on apparent
1342!--             solar positions
1343                time_since_reference_point_save = time_since_reference_point
1344                time_since_reference_point =                                   &
1345                                    REAL( FLOOR( time_since_reference_point /  &
1346                                                 dt_radiation), wp )           &
1347                                             * dt_radiation
1348
1349                CALL radiation_control
1350
1351                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1352                     radiation_interactions )  THEN
1353                   CALL cpu_log( log_point_s(75), 'radiation_interaction', 'start' )
1354                   CALL radiation_interaction
1355                   CALL cpu_log( log_point_s(75), 'radiation_interaction', 'stop' )
1356                ENDIF
1357   
1358!
1359!--             Return the current time to its original value
1360                time_since_reference_point = time_since_reference_point_save
1361
1362                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1363
1364             ENDIF
1365          ENDIF
1366
1367       ENDDO   ! Intermediate step loop
1368
1369!
1370!--    Will be used at some point by flow_statistics.
1371       !$ACC UPDATE &
1372       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1373       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1374       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1375       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1376       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1377       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1378       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1379       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1380       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1381       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1382       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1383       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1384       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1385       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1386       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1387
1388!
1389!--    If required, consider chemical emissions
1390       IF ( air_chemistry  .AND.  do_emis )  THEN
1391!
1392!--       Update the time --> kanani: revise location of this CALL
1393          CALL calc_date_and_time
1394!
1395!--       Call emission routine only once an hour
1396          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1397             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1398             hour_call_emis = hour_of_year
1399          ENDIF
1400       ENDIF
1401
1402!
1403!--    If required, calculate indoor temperature, waste heat, heat flux
1404!--    through wall, etc.
1405!--    dt_indoor steers the frequency of the indoor model calculations
1406       IF ( indoor_model )  THEN
1407
1408          time_indoor = time_indoor + dt_3d
1409
1410          IF ( time_indoor >= dt_indoor )  THEN
1411
1412             time_indoor = time_indoor - dt_indoor
1413
1414             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1415             CALL im_main_heatcool
1416             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1417
1418          ENDIF
1419       ENDIF
1420!
1421!--    Increase simulation time and output times
1422       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1423       current_timestep_number    = current_timestep_number + 1
1424       simulated_time             = simulated_time   + dt_3d
1425       time_since_reference_point = simulated_time - coupling_start_time
1426       simulated_time_chr         = time_to_string( time_since_reference_point )
1427
1428
1429
1430
1431       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1432          time_do_av         = time_do_av       + dt_3d
1433       ENDIF
1434       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1435          time_do2d_xy       = time_do2d_xy     + dt_3d
1436       ENDIF
1437       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1438          time_do2d_xz       = time_do2d_xz     + dt_3d
1439       ENDIF
1440       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1441          time_do2d_yz       = time_do2d_yz     + dt_3d
1442       ENDIF
1443       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1444          time_do3d          = time_do3d        + dt_3d
1445       ENDIF
1446       DO  mid = 1, masks
1447          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1448             time_domask(mid)= time_domask(mid) + dt_3d
1449          ENDIF
1450       ENDDO
1451       time_dvrp          = time_dvrp        + dt_3d
1452       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1453          time_dosp       = time_dosp        + dt_3d
1454       ENDIF
1455       time_dots          = time_dots        + dt_3d
1456       IF ( .NOT. first_call_lpm )  THEN
1457          time_dopts      = time_dopts       + dt_3d
1458       ENDIF
1459       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1460          time_dopr       = time_dopr        + dt_3d
1461       ENDIF
1462       time_dopr_listing  = time_dopr_listing + dt_3d
1463       time_run_control   = time_run_control + dt_3d
1464!
1465!--    Increment time-counter for surface output
1466       IF ( surface_output )  THEN
1467          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1468             time_dosurf    = time_dosurf + dt_3d
1469          ENDIF
1470          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1471             time_dosurf_av = time_dosurf_av + dt_3d
1472          ENDIF
1473       ENDIF
1474!
1475!--    In case of synthetic turbulence generation and parametrized turbulence
1476!--    information, update the time counter and if required, adjust the
1477!--    STG to new atmospheric conditions.
1478       IF ( use_syn_turb_gen  )  THEN
1479          IF ( parametrize_inflow_turbulence )  THEN
1480             time_stg_adjust = time_stg_adjust + dt_3d
1481             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1482                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1483                CALL stg_adjust
1484                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1485             ENDIF
1486          ENDIF
1487          time_stg_call = time_stg_call + dt_3d
1488       ENDIF
1489
1490!
1491!--    Data exchange between coupled models
1492       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1493                                          .AND. .NOT. vnested )  THEN
1494          time_coupling = time_coupling + dt_3d
1495
1496!
1497!--       In case of model termination initiated by the local model
1498!--       (terminate_coupled > 0), the coupler must be skipped because it would
1499!--       cause an MPI intercomminucation hang.
1500!--       If necessary, the coupler will be called at the beginning of the
1501!--       next restart run.
1502          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1503             CALL surface_coupler
1504             time_coupling = time_coupling - dt_coupling
1505          ENDDO
1506       ENDIF
1507
1508!
1509!--    Biometeorology calculation of stationary thermal indices
1510!--    Todo (kanani): biometeorology needs own time_... treatment.
1511!--                   It might be that time_do2d_xy differs from time_do3d,
1512!--                   and then we might get trouble with the biomet output,
1513!--                   because we can have 2d and/or 3d biomet output!!
1514       IF (         biometeorology  &
1515             .AND.  ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )          &
1516                      .OR.                                                                                   &
1517                      ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1518                    ) )  THEN
1519!
1520!--       If required, do thermal comfort calculations
1521          IF ( thermal_comfort )  THEN
1522             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1523             time_bio_results = time_since_reference_point
1524          ENDIF
1525!
1526!--       If required, do UV exposure calculations
1527          IF ( uv_exposure )  THEN
1528             CALL uvem_calc_exposure
1529          ENDIF
1530       ENDIF
1531
1532!
1533!--    Execute alle other module actions routunes
1534       CALL module_interface_actions( 'after_integration' )
1535
1536!
1537!--    If Galilei transformation is used, determine the distance that the
1538!--    model has moved so far
1539       IF ( galilei_transformation )  THEN
1540          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1541          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1542       ENDIF
1543
1544!
1545!--    Check, if restart is necessary (because cpu-time is expiring or
1546!--    because it is forced by user) and set stop flag
1547!--    This call is skipped if the remote model has already initiated a restart.
1548       IF ( .NOT. terminate_run )  CALL check_for_restart
1549
1550!
1551!--    Carry out statistical analysis and output at the requested output times.
1552!--    The MOD function is used for calculating the output time counters (like
1553!--    time_dopr) in order to regard a possible decrease of the output time
1554!--    interval in case of restart runs
1555
1556!
1557!--    Set a flag indicating that so far no statistics have been created
1558!--    for this time step
1559       flow_statistics_called = .FALSE.
1560
1561!
1562!--    If required, call flow_statistics for averaging in time
1563       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1564            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1565            time_since_reference_point >= skip_time_dopr )  THEN
1566          time_dopr_av = time_dopr_av + dt_3d
1567          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1568             do_sum = .TRUE.
1569             time_dopr_av = MOD( time_dopr_av, &
1570                                    MAX( dt_averaging_input_pr, dt_3d ) )
1571          ENDIF
1572       ENDIF
1573       IF ( do_sum )  CALL flow_statistics
1574
1575!
1576!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1577       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1578            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.    &
1579            time_since_reference_point >= skip_time_data_output_av )           &
1580       THEN
1581          time_do_sla = time_do_sla + dt_3d
1582          IF ( time_do_sla >= dt_averaging_input )  THEN
1583             CALL sum_up_3d_data
1584             average_count_3d = average_count_3d + 1
1585             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1586          ENDIF
1587       ENDIF
1588!
1589!--    Average surface data
1590       IF ( surface_output )  THEN
1591          IF (         averaging_interval_surf /= 0.0_wp                               &
1592                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1593                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1594             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1595                CALL surface_data_output_averaging
1596                average_count_surf = average_count_surf + 1
1597             ENDIF
1598          ENDIF
1599       ENDIF
1600
1601!
1602!--    Calculate spectra for time averaging
1603       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1604            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1605            time_since_reference_point >= skip_time_dosp )  THEN
1606          time_dosp_av = time_dosp_av + dt_3d
1607          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1608             CALL calc_spectra
1609             time_dosp_av = MOD( time_dosp_av, &
1610                                 MAX( dt_averaging_input_pr, dt_3d ) )
1611          ENDIF
1612       ENDIF
1613
1614!
1615!--    Call flight module and output data
1616       IF ( virtual_flight )  THEN
1617          CALL flight_measurement
1618          CALL data_output_flight
1619       ENDIF
1620!
1621!--    Take virtual measurements
1622       IF ( virtual_measurement  .AND.                                         &
1623            vm_time_start <= time_since_reference_point )  THEN
1624          CALL vm_sampling
1625          CALL vm_data_output
1626       ENDIF
1627
1628!
1629!--    Profile output (ASCII) on file
1630       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1631          CALL print_1d
1632          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1633                                                           dt_3d ) )
1634       ENDIF
1635
1636!
1637!--    Graphic output for PROFIL
1638       IF (        time_dopr >= dt_dopr                                     &
1639            .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1640          IF ( dopr_n /= 0 )  CALL data_output_profiles
1641          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1642          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1643       ENDIF
1644
1645!
1646!--    Graphic output for time series
1647       IF ( time_dots >= dt_dots )  THEN
1648          CALL data_output_tseries
1649          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1650       ENDIF
1651
1652!
1653!--    Output of spectra (formatted for use with PROFIL), in case of no
1654!--    time averaging, spectra has to be calculated before
1655       IF (         time_dosp >= dt_dosp                                     &
1656             .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1657          IF ( average_count_sp == 0 )  CALL calc_spectra
1658          CALL data_output_spectra
1659          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1660       ENDIF
1661
1662!
1663!--    2d-data output (cross-sections)
1664       IF (         time_do2d_xy >= dt_do2d_xy                               &
1665             .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1666          CALL data_output_2d( 'xy', 0 )
1667          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1668       ENDIF
1669       IF (         time_do2d_xz >= dt_do2d_xz                               &
1670             .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1671          CALL data_output_2d( 'xz', 0 )
1672          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1673       ENDIF
1674       IF (         time_do2d_yz >= dt_do2d_yz                               &
1675             .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1676          CALL data_output_2d( 'yz', 0 )
1677          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1678       ENDIF
1679
1680!
1681!--    3d-data output (volume data)
1682       IF (         time_do3d >= dt_do3d                                     & 
1683             .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1684          CALL data_output_3d( 0 )
1685          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1686       ENDIF
1687
1688!
1689!--    Masked data output
1690       DO  mid = 1, masks
1691          IF (         time_domask(mid) >= dt_domask(mid)                          &
1692                .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1693             CALL data_output_mask( 0 )
1694             time_domask(mid) = MOD( time_domask(mid),                             &
1695                                     MAX( dt_domask(mid), dt_3d ) )
1696          ENDIF
1697       ENDDO
1698
1699!
1700!--    Output of time-averaged 2d/3d/masked data
1701       IF (         time_do_av >= dt_data_output_av                                &
1702             .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1703          CALL average_3d_data
1704          CALL data_output_2d( 'xy', 1 )
1705          CALL data_output_2d( 'xz', 1 )
1706          CALL data_output_2d( 'yz', 1 )
1707          CALL data_output_3d( 1 )
1708          DO  mid = 1, masks
1709             CALL data_output_mask( 1 )
1710          ENDDO
1711          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1712       ENDIF
1713!
1714!--    Output of surface data, instantaneous and averaged data
1715       IF ( surface_output )  THEN
1716          IF (         time_dosurf >= dt_dosurf                                    &
1717                .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1718             CALL surface_data_output( 0 )
1719             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1720          ENDIF
1721          IF (         time_dosurf_av >= dt_dosurf_av                              &
1722                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1723             CALL surface_data_output( 1 )
1724             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1725          ENDIF
1726       ENDIF
1727
1728!
1729!--    Output of particle time series
1730       IF ( particle_advection )  THEN
1731          IF ( time_dopts >= dt_dopts  .OR.                                    &
1732               ( time_since_reference_point >= particle_advection_start  .AND. &
1733                 first_call_lpm ) )  THEN
1734             CALL data_output_ptseries
1735             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1736          ENDIF
1737       ENDIF
1738
1739!
1740!--    Output of dvrp-graphics (isosurface, particles, slicer)
1741#if defined( __dvrp_graphics )
1742       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1743#endif
1744       IF ( time_dvrp >= dt_dvrp )  THEN
1745          CALL data_output_dvrp
1746          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1747       ENDIF
1748#if defined( __dvrp_graphics )
1749       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1750#endif
1751
1752!
1753!--    If required, set the heat flux for the next time step to a random value
1754       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1755          IF ( surf_def_h(0)%ns >= 1 )  THEN
1756             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1757             CALL disturb_heatflux( surf_def_h(0) )
1758             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1759          ENDIF
1760          IF ( surf_lsm_h%ns    >= 1 )  THEN
1761             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1762             CALL disturb_heatflux( surf_lsm_h    )
1763             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1764          ENDIF
1765          IF ( surf_usm_h%ns    >= 1 )  THEN
1766             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1767             CALL disturb_heatflux( surf_usm_h    )
1768             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1769          ENDIF
1770       ENDIF
1771
1772!
1773!--    Execute alle other module actions routunes
1774       CALL module_interface_actions( 'after_timestep' )
1775
1776!
1777!--    Determine size of next time step. Save timestep dt_3d because it is
1778!--    newly calculated in routine timestep, but required further below for
1779!--    steering the run control output interval
1780       dt_3d_old = dt_3d
1781       CALL timestep
1782
1783!
1784!--    Synchronize the timestep in case of nested run.
1785       IF ( nested_run )  THEN
1786!
1787!--       Synchronize by unifying the time step.
1788!--       Global minimum of all time-steps is used for all.
1789          CALL pmci_synchronize
1790       ENDIF
1791
1792!
1793!--    Computation and output of run control parameters.
1794!--    This is also done whenever perturbations have been imposed
1795       IF ( time_run_control >= dt_run_control  .OR.                     &
1796            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1797       THEN
1798          CALL run_control
1799          IF ( time_run_control >= dt_run_control )  THEN
1800             time_run_control = MOD( time_run_control, &
1801                                     MAX( dt_run_control, dt_3d_old ) )
1802          ENDIF
1803       ENDIF
1804
1805!
1806!--    Output elapsed simulated time in form of a progress bar on stdout
1807       IF ( myid == 0 )  CALL output_progress_bar
1808
1809       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1810
1811
1812    ENDDO   ! time loop
1813
1814#ifdef _OPENACC
1815    CALL exit_surface_arrays
1816#endif
1817!$ACC END DATA
1818!$ACC END DATA
1819!$ACC END DATA
1820!$ACC END DATA
1821!$ACC END DATA
1822!$ACC END DATA
1823!$ACC END DATA
1824
1825!
1826!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1827    IF ( vnest_init )  CALL vnest_deallocate
1828
1829    IF ( myid == 0 )  CALL finish_progress_bar
1830
1831#if defined( __dvrp_graphics )
1832    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1833#endif
1834
1835    CALL location_message( 'finished time-stepping', .TRUE. )
1836
1837 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.