source: palm/trunk/SOURCE/time_integration.f90 @ 3717

Last change on this file since 3717 was 3705, checked in by suehring, 5 years ago

last commit documented

  • Property svn:keywords set to Id
File size: 71.0 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3705 2019-01-29 19:56:39Z suehring $
27! Data output for virtual measurements added
28!
29! 3704 2019-01-29 19:51:41Z suehring
30! Rename subroutines for surface-data output
31!
32! 3647 2019-01-02 14:10:44Z kanani
33! Bugfix: add time_since_reference_point to IF clause for data_output calls
34! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
35! Clean up indoor_model and biometeorology model call.
36!
37! 3646 2018-12-28 17:58:49Z kanani
38! Bugfix: use time_since_reference_point instead of simulated_time where
39! required (relevant when using wall/soil spinup)
40!
41! 3634 2018-12-18 12:31:28Z knoop
42! OpenACC port for SPEC
43!
44! 3597 2018-12-04 08:40:18Z maronga
45! Removed call to calculation of near air (10 cm) potential temperature (now in
46! surface layer fluxes)
47!
48! 3589 2018-11-30 15:09:51Z suehring
49! Move the control parameter "salsa" from salsa_mod to control_parameters
50! (M. Kurppa)
51!
52! 3582 2018-11-29 19:16:36Z suehring
53! dom_dwd_user, Schrempf:
54! Changes due to merge of uv exposure model into biometeorology_mod.
55!
56! 3525 2018-11-14 16:06:14Z kanani
57! Changes related to clean-up of biometeorology (dom_dwd_user)
58!
59! 3524 2018-11-14 13:36:44Z raasch
60! unused variables removed
61!
62! 3484 2018-11-02 14:41:25Z hellstea
63! pmci_ensure_nest_mass_conservation is premanently removed
64!
65! 3473 2018-10-30 20:50:15Z suehring
66! new module for virtual measurements introduced
67!
68! 3472 2018-10-30 20:43:50Z suehring
69! Add indoor model (kanani, srissman, tlang)
70!
71! 3467 2018-10-30 19:05:21Z suehring
72! Implementation of a new aerosol module salsa.
73!
74! 3448 2018-10-29 18:14:31Z kanani
75! Add biometeorology
76!
77! 3421 2018-10-24 18:39:32Z gronemeier
78! Surface data output
79!
80! 3418 2018-10-24 16:07:39Z kanani
81! call to material_heat_model now with check if spinup runs (rvtils)
82!
83! 3378 2018-10-19 12:34:59Z kanani
84! merge from radiation branch (r3362) into trunk
85! (moh.hefny):
86! Bugfix in the if statement to call radiation_interaction
87!
88! 3347 2018-10-15 14:21:08Z suehring
89! - offline nesting separated from large-scale forcing module
90! - changes for synthetic turbulence generator
91!
92! 3343 2018-10-15 10:38:52Z suehring
93! - Formatting, clean-up, comments (kanani)
94! - Added CALL to chem_emissions_setup (Russo)
95! - Code added for decycling chemistry (basit)
96!
97! 3294 2018-10-01 02:37:10Z raasch
98! changes concerning modularization of ocean option
99!
100! 3274 2018-09-24 15:42:55Z knoop
101! Modularization of all bulk cloud physics code components
102!
103! 3241 2018-09-12 15:02:00Z raasch
104! unused variables removed
105!
106! 3198 2018-08-15 09:23:10Z sward
107! Added multi_agent_system_end; defined start time for MAS relative to
108! time_since_reference_point
109!
110! 3183 2018-07-27 14:25:55Z suehring
111! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
112! Rename subroutines and variables in COSMO nesting mode
113!
114! 3182 2018-07-27 13:36:03Z suehring
115! Added multi agent system
116!
117! 3042 2018-05-25 10:44:37Z schwenkel
118! Changed the name specific humidity to mixing ratio
119!
120! 3040 2018-05-25 10:22:08Z schwenkel
121! Fixed bug in IF statement
122! Ensure that the time when calling the radiation to be the time step of the
123! pre-calculated time when first calculate the positions of the sun
124!
125! 3004 2018-04-27 12:33:25Z Giersch
126! First call of flow_statistics has been removed. It is already called in
127! run_control itself
128!
129! 2984 2018-04-18 11:51:30Z hellstea
130! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
131! as seemingly unnecessary.
132!
133! 2941 2018-04-03 11:54:58Z kanani
134! Deduct spinup_time from RUN_CONTROL output of main 3d run
135! (use time_since_reference_point instead of simulated_time)
136!
137! 2938 2018-03-27 15:52:42Z suehring
138! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
139!
140! 2936 2018-03-27 14:49:27Z suehring
141! Little formatting adjustment.
142!
143! 2817 2018-02-19 16:32:21Z knoop
144! Preliminary gust module interface implemented
145!
146! 2801 2018-02-14 16:01:55Z thiele
147! Changed lpm from subroutine to module.
148! Introduce particle transfer in nested models.
149!
150! 2776 2018-01-31 10:44:42Z Giersch
151! Variable use_synthetic_turbulence_generator has been abbreviated
152!
153! 2773 2018-01-30 14:12:54Z suehring
154! - Nesting for chemical species
155!
156! 2766 2018-01-22 17:17:47Z kanani
157! Removed preprocessor directive __chem
158!
159! 2718 2018-01-02 08:49:38Z maronga
160! Corrected "Former revisions" section
161!
162! 2696 2017-12-14 17:12:51Z kanani
163! - Change in file header (GPL part)
164! - Implementation of uv exposure model (FK)
165! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
166! - renamed diffusivities to tcm_diffusivities (TG)
167! - implement prognostic equation for diss (TG)
168! - Moved/commented CALL to chem_emissions (FK)
169! - Added CALL to chem_emissions (FK)
170! - Implementation of chemistry module (FK)
171! - Calls for setting boundary conditions in USM and LSM (MS)
172! - Large-scale forcing with larger-scale models implemented (MS)
173! - Rename usm_radiation into radiation_interactions; merge with branch
174!   radiation (MS)
175! - added call for usm_green_heat_model for green building surfaces (RvT)
176! - added call for usm_temperature_near_surface for use in indoor model (RvT)
177!
178! 2617 2017-11-16 12:47:24Z suehring
179! Bugfix, assure that the reference state does not become zero.
180!
181! 2563 2017-10-19 15:36:10Z Giersch
182! Variable wind_turbine moved to module control_parameters
183!
184! 2365 2017-08-21 14:59:59Z kanani
185! Vertical grid nesting implemented (SadiqHuq)
186!
187! 2320 2017-07-21 12:47:43Z suehring
188! Set bottom boundary conditions after nesting interpolation and anterpolation
189!
190! 2299 2017-06-29 10:14:38Z maronga
191! Call of soil model adjusted
192!
193! 2292 2017-06-20 09:51:42Z schwenkel
194! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
195! includes two more prognostic equations for cloud drop concentration (nc) 
196! and cloud water content (qc).
197!
198! 2271 2017-06-09 12:34:55Z sward
199! Start timestep message changed
200!
201! 2259 2017-06-08 09:09:11Z gronemeier
202! Implemented synthetic turbulence generator
203!
204! 2233 2017-05-30 18:08:54Z suehring
205!
206! 2232 2017-05-30 17:47:52Z suehring
207! Adjustments to new topography and surface concept
208! Modify passed parameters for disturb_field
209!
210! 2178 2017-03-17 11:07:39Z hellstea
211! Setting perturbations at all times near inflow boundary is removed
212! in case of nested boundaries
213!
214! 2174 2017-03-13 08:18:57Z maronga
215! Added support for nesting with cloud microphysics
216!
217! 2118 2017-01-17 16:38:49Z raasch
218! OpenACC directives and related code removed
219!
220! 2050 2016-11-08 15:00:55Z gronemeier
221! Implement turbulent outflow condition
222!
223! 2031 2016-10-21 15:11:58Z knoop
224! renamed variable rho to rho_ocean
225!
226! 2011 2016-09-19 17:29:57Z kanani
227! Flag urban_surface is now defined in module control_parameters,
228! removed commented CALLs of global_min_max.
229!
230! 2007 2016-08-24 15:47:17Z kanani
231! Added CALLs for new urban surface model
232!
233! 2000 2016-08-20 18:09:15Z knoop
234! Forced header and separation lines into 80 columns
235!
236! 1976 2016-07-27 13:28:04Z maronga
237! Simplified calls to radiation model
238!
239! 1960 2016-07-12 16:34:24Z suehring
240! Separate humidity and passive scalar
241!
242! 1957 2016-07-07 10:43:48Z suehring
243! flight module added
244!
245! 1919 2016-05-27 14:51:23Z raasch
246! Initial version of purely vertical nesting introduced.
247!
248! 1918 2016-05-27 14:35:57Z raasch
249! determination of time step moved to the end of the time step loop,
250! the first time step is now always calculated before the time step loop (i.e.
251! also in case of restart runs)
252!
253! 1914 2016-05-26 14:44:07Z witha
254! Added call for wind turbine model
255!
256! 1878 2016-04-19 12:30:36Z hellstea
257! Synchronization for nested runs rewritten
258!
259! 1853 2016-04-11 09:00:35Z maronga
260! Adjusted for use with radiation_scheme = constant
261!
262! 1849 2016-04-08 11:33:18Z hoffmann
263! Adapted for modularization of microphysics
264!
265! 1833 2016-04-07 14:23:03Z raasch
266! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
267!
268! 1831 2016-04-07 13:15:51Z hoffmann
269! turbulence renamed collision_turbulence
270!
271! 1822 2016-04-07 07:49:42Z hoffmann
272! icloud_scheme replaced by microphysics_*
273!
274! 1808 2016-04-05 19:44:00Z raasch
275! output message in case unscheduled radiation calls removed
276!
277! 1797 2016-03-21 16:50:28Z raasch
278! introduction of different datatransfer modes
279!
280! 1791 2016-03-11 10:41:25Z raasch
281! call of pmci_update_new removed
282!
283! 1786 2016-03-08 05:49:27Z raasch
284! +module spectrum
285!
286! 1783 2016-03-06 18:36:17Z raasch
287! switch back of netcdf data format for mask output moved to the mask output
288! routine
289!
290! 1781 2016-03-03 15:12:23Z raasch
291! some pmc calls removed at the beginning (before timeloop),
292! pmc initialization moved to the main program
293!
294! 1764 2016-02-28 12:45:19Z raasch
295! PMC_ACTIVE flags removed,
296! bugfix: nest synchronization after first call of timestep
297!
298! 1762 2016-02-25 12:31:13Z hellstea
299! Introduction of nested domain feature
300!
301! 1736 2015-12-04 08:56:33Z raasch
302! no perturbations added to total domain if energy limit has been set zero
303!
304! 1691 2015-10-26 16:17:44Z maronga
305! Added option for spin-ups without land surface and radiation models. Moved calls
306! for radiation and lan surface schemes.
307!
308! 1682 2015-10-07 23:56:08Z knoop
309! Code annotations made doxygen readable
310!
311! 1671 2015-09-25 03:29:37Z raasch
312! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
313! for particles
314!
315! 1585 2015-04-30 07:05:52Z maronga
316! Moved call of radiation scheme. Added support for RRTM
317!
318! 1551 2015-03-03 14:18:16Z maronga
319! Added interface for different radiation schemes.
320!
321! 1496 2014-12-02 17:25:50Z maronga
322! Added calls for the land surface model and radiation scheme
323!
324! 1402 2014-05-09 14:25:13Z raasch
325! location messages modified
326!
327! 1384 2014-05-02 14:31:06Z raasch
328! location messages added
329!
330! 1380 2014-04-28 12:40:45Z heinze
331! CALL of nudge_ref added
332! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
333!
334! 1365 2014-04-22 15:03:56Z boeske
335! Reset sums_ls_l to zero at each timestep
336! +sums_ls_l
337! Calculation of reference state (previously in subroutine calc_mean_profile)
338
339! 1342 2014-03-26 17:04:47Z kanani
340! REAL constants defined as wp-kind
341!
342! 1320 2014-03-20 08:40:49Z raasch
343! ONLY-attribute added to USE-statements,
344! kind-parameters added to all INTEGER and REAL declaration statements,
345! kinds are defined in new module kinds,
346! old module precision_kind is removed,
347! revision history before 2012 removed,
348! comment fields (!:) to be used for variable explanations added to
349! all variable declaration statements
350! 1318 2014-03-17 13:35:16Z raasch
351! module interfaces removed
352!
353! 1308 2014-03-13 14:58:42Z fricke
354! +netcdf_data_format_save
355! For masked data, parallel netcdf output is not tested so far, hence
356! netcdf_data_format is switched back to non-paralell output.
357!
358! 1276 2014-01-15 13:40:41Z heinze
359! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
360!
361! 1257 2013-11-08 15:18:40Z raasch
362! acc-update-host directive for timestep removed
363!
364! 1241 2013-10-30 11:36:58Z heinze
365! Generalize calc_mean_profile for wider use
366! Determine shf and qsws in dependence on data from LSF_DATA
367! Determine ug and vg in dependence on data from LSF_DATA
368! 1221 2013-09-10 08:59:13Z raasch
369! host update of arrays before timestep is called
370!
371! 1179 2013-06-14 05:57:58Z raasch
372! mean profiles for reference state are only calculated if required,
373! small bugfix for background communication
374!
375! 1171 2013-05-30 11:27:45Z raasch
376! split of prognostic_equations deactivated (comment lines), for the time being
377!
378! 1128 2013-04-12 06:19:32Z raasch
379! asynchronous transfer of ghost point data realized for acc-optimized version:
380! prognostic_equations are first called two times for those points required for
381! the left-right and north-south exchange, respectively, and then for the
382! remaining points,
383! those parts requiring global communication moved from prognostic_equations to
384! here
385!
386! 1115 2013-03-26 18:16:16Z hoffmann
387! calculation of qr and nr is restricted to precipitation
388!
389! 1113 2013-03-10 02:48:14Z raasch
390! GPU-porting of boundary conditions,
391! openACC directives updated
392! formal parameter removed from routine boundary_conds
393!
394! 1111 2013-03-08 23:54:10Z raasch
395! +internal timestep counter for cpu statistics added,
396! openACC directives updated
397!
398! 1092 2013-02-02 11:24:22Z raasch
399! unused variables removed
400!
401! 1065 2012-11-22 17:42:36Z hoffmann
402! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
403!
404! 1053 2012-11-13 17:11:03Z hoffmann
405! exchange of ghost points for nr, qr added
406!
407! 1036 2012-10-22 13:43:42Z raasch
408! code put under GPL (PALM 3.9)
409!
410! 1019 2012-09-28 06:46:45Z raasch
411! non-optimized version of prognostic_equations removed
412!
413! 1015 2012-09-27 09:23:24Z raasch
414! +call of prognostic_equations_acc
415!
416! 1001 2012-09-13 14:08:46Z raasch
417! all actions concerning leapfrog- and upstream-spline-scheme removed
418!
419! 849 2012-03-15 10:35:09Z raasch
420! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
421!
422! 825 2012-02-19 03:03:44Z raasch
423! wang_collision_kernel renamed wang_kernel
424!
425! Revision 1.1  1997/08/11 06:19:04  raasch
426! Initial revision
427!
428!
429! Description:
430! ------------
431!> Integration in time of the model equations, statistical analysis and graphic
432!> output
433!------------------------------------------------------------------------------!
434 SUBROUTINE time_integration
435 
436
437    USE advec_ws,                                                              &
438        ONLY:  ws_statistics
439
440    USE arrays_3d,                                                             &
441        ONLY:  d, diss, diss_p, ddzu, dd2zu, ddzw, drho_air, drho_air_zw, dzu, &
442               dzw, e, e_p, kh, km, nc, nc_p, nr, nr_p, p, prho, pt, pt_p,     &
443               pt_init, ptdf_x, ptdf_y, q_init, q, qc, qc_p, ql, ql_c, ql_v,   &
444               ql_vp, qr, qr_p, q_p, rdf, rdf_sc, ref_state, rho_air,          &
445               rho_air_zw, rho_ocean, s, s_p, sa_p, te_m, tend, tpt_m, tu_m,   &
446               tv_m, tw_m, u, ug, u_init, u_p, u_stokes_zu, v, vg, v_init, vpt,&
447               v_p, v_stokes_zu, w, w_p, zu, heatflux_output_conversion,       &
448               momentumflux_output_conversion
449
450    USE biometeorology_mod,                                                    &
451        ONLY:  bio_calculate_thermal_index_maps, time_bio_results,             &
452               thermal_comfort, uvem_calc_exposure, uv_exposure
453
454    USE bulk_cloud_model_mod,                                                  &
455        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
456              collision_turbulence, microphysics_morrison, microphysics_seifert
457
458    USE calc_mean_profile_mod,                                                 &
459        ONLY:  calc_mean_profile
460
461    USE chem_emissions_mod,                                                    &
462        ONLY:  chem_emissions_setup
463
464    USE chem_modules,                                                          &
465        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
466
467    USE chemistry_model_mod,                                                   &
468        ONLY:  chem_boundary_conds, chem_species
469
470    USE control_parameters,                                                    &
471        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
472               average_count_3d, averaging_interval, averaging_interval_pr,    &
473               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
474               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
475               constant_flux_layer, constant_heatflux,                         &
476               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
477               coupling_start_time, current_timestep_number,                   &
478               disturbance_created, disturbance_energy_limit, dist_range,      &
479               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
480               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
481               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
482               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
483               first_call_lpm, first_call_mas, galilei_transformation,         &
484               humidity, indoor_model, intermediate_timestep_count,            &
485               intermediate_timestep_count_max,                                &
486               land_surface, large_scale_forcing,                              &
487               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
488               multi_agent_system_end, multi_agent_system_start,               &
489               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
490               ocean_mode, passive_scalar, pt_reference,                       &
491               pt_slope_offset, random_heatflux, rans_mode,                    &
492               rans_tke_e, run_coupled, salsa,                                 &
493               simulated_time, simulated_time_chr,                             &
494               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
495               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
496               skip_time_data_output_av, sloping_surface, stop_dt,             &
497               surface_output, terminate_coupled, terminate_run,               &
498               timestep_scheme,                                                &
499               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
500               time_do3d, time_domask, time_dopr, time_dopr_av,                &
501               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
502               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
503               time_run_control, time_since_reference_point, tsc,              &
504               turbulent_inflow, turbulent_outflow, urban_surface,             &
505               use_initial_profile_as_reference,                               &
506               use_single_reference_value, u_gtrans, v_gtrans,                 &
507               virtual_flight, virtual_measurement, wind_turbine,              &
508               ws_scheme_mom, ws_scheme_sca 
509
510    USE cpulog,                                                                &
511        ONLY:  cpu_log, log_point, log_point_s
512
513    USE date_and_time_mod,                                                     &
514        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
515
516    USE flight_mod,                                                            &
517        ONLY:  flight_measurement
518
519    USE indices,                                                               &
520        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, &
521               nz, nzb_max, advc_flags_1, advc_flags_2, wall_flags_0
522
523    USE indoor_model_mod,                                                      &
524        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
525
526    USE interaction_droplets_ptq_mod,                                          &
527        ONLY:  interaction_droplets_ptq
528
529    USE interfaces
530
531    USE kinds
532
533    USE land_surface_model_mod,                                                &
534        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
535               skip_time_do_lsm
536
537    USE lsf_nudging_mod,                                                       &
538        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
539
540    USE module_interface,                                                      &
541        ONLY:  module_interface_actions
542
543    USE multi_agent_system_mod,                                                &
544        ONLY:  agents_active, multi_agent_system
545
546    USE nesting_offl_mod,                                                      &
547        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
548       
549    USE netcdf_data_input_mod,                                                 &
550        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
551               netcdf_data_input_offline_nesting
552
553    USE ocean_mod,                                                             &
554        ONLY:  prho_reference
555
556    USE particle_attributes,                                                   &
557        ONLY:  particle_advection, particle_advection_start,                   &
558               use_sgs_for_particles, wang_kernel
559
560    USE pegrid
561
562    USE pmc_interface,                                                         &
563        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
564               pmci_synchronize
565
566    USE progress_bar,                                                          &
567        ONLY:  finish_progress_bar, output_progress_bar
568
569    USE prognostic_equations_mod,                                              &
570        ONLY:  prognostic_equations_cache, prognostic_equations_vector
571
572    USE radiation_model_mod,                                                   &
573        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
574              radiation_interaction, radiation_interactions,                   &
575              skip_time_do_radiation, time_radiation
576         
577    USE salsa_mod,                                                             &
578        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast,             &
579              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
580              skip_time_do_salsa                     
581   
582    USE salsa_util_mod,                                                        &
583           ONLY:  sums_salsa_ws_l     
584
585    USE spectra_mod,                                                           &
586        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
587              skip_time_dosp
588
589    USE statistics,                                                            &
590        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l,                &
591               rmask, statistic_regions, weight_substep, sums_l, sums_l_l,     &
592               sums_us2_ws_l, sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l,   &
593               sums_ws2_ws_l, sums_wspts_ws_l, sums_wsqs_ws_l, sums_wssas_ws_l,&
594               sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l,              &
595               sums_wsnrs_ws_l, sums_wsss_ws_l
596
597    USE surface_layer_fluxes_mod,                                              &
598        ONLY:  surface_layer_fluxes
599
600    USE surface_mod,                                                           &
601        ONLY:  bc_h, surf_def_h, surf_lsm_h, surf_usm_h,                       &
602               enter_surface_arrays, exit_surface_arrays
603
604    USE surface_data_output_mod,                                               &
605        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
606               dt_dosurf_av, surface_data_output,                              &
607               surface_data_output_averaging, skip_time_dosurf,                &
608               skip_time_dosurf_av, time_dosurf, time_dosurf_av
609
610    USE turbulence_closure_mod,                                                &
611        ONLY:  tcm_diffusivities, production_e_init
612
613    USE urban_surface_mod,                                                     &
614        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
615               usm_material_model,                                             &
616               usm_surface_energy_balance, usm_green_heat_model
617
618    USE synthetic_turbulence_generator_mod,                                    &
619        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
620               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
621               use_syn_turb_gen
622
623
624    USE wind_turbine_model_mod,                                                &
625        ONLY:  wtm_forces
626
627    USE lpm_mod,                                                               &
628        ONLY:  lpm
629
630    USE vertical_nesting_mod,                                                  &
631        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
632               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
633               vnest_deallocate, vnest_init, vnest_init_fine,                  &
634               vnest_start_time
635               
636    USE virtual_measurement_mod,                                               &
637        ONLY:  vm_data_output, vm_sampling, vm_time_start
638
639    IMPLICIT NONE
640
641    CHARACTER (LEN=9) ::  time_to_string   !<
642   
643    INTEGER(iwp)      ::  b !< index for aerosol size bins   
644    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
645    INTEGER(iwp)      ::  g !< index for gaseous compounds
646    INTEGER(iwp)      ::  lsp
647    INTEGER(iwp)      ::  lsp_usr   !<
648    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
649
650    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
651                            !< steering of run control output interval
652    REAL(wp) ::  time_since_reference_point_save  !< original value of
653                                                  !< time_since_reference_point
654
655
656! Copy data from arrays_3d
657!$ACC DATA &
658!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
659!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
660!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
661!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
662!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
663!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
664!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
665!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
666!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
667
668!$ACC DATA &
669!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
670!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
671!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
672!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
673!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
674!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
675!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
676!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
677!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
678!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
679!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
680
681!$ACC DATA &
682!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
683!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
684!$ACC COPYIN(zu(nzb:nzt+1)) &
685!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
686!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
687!$ACC COPYIN(ddzw(1:nzt+1)) &
688!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
689!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
690!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
691!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
692!$ACC COPYIN(ref_state(0:nz+1)) &
693!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
694!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
695!$ACC COPYIN(pt_init(0:nz+1)) &
696!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
697
698! Copy data from control_parameters
699!$ACC DATA &
700!$ACC COPYIN(tsc(1:5))
701
702! Copy data from indices
703!$ACC DATA &
704!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
705!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
706!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
707
708! Copy data from surface_mod
709!$ACC DATA &
710!$ACC COPYIN(bc_h(0:1)) &
711!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
712!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
713!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
714!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
715!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
716!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
717
718! Copy data from statistics
719!$ACC DATA &
720!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
721!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
722!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
723!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
724!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
725!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
726!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
727!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
728!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
729!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
730!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
731!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
732!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
733!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
734!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
735!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
736!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
737!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
738!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
739
740#ifdef _OPENACC
741    CALL enter_surface_arrays
742#endif
743
744!
745!-- At beginning determine the first time step
746    CALL timestep
747!
748!-- Synchronize the timestep in case of nested run.
749    IF ( nested_run )  THEN
750!
751!--    Synchronization by unifying the time step.
752!--    Global minimum of all time-steps is used for all.
753       CALL pmci_synchronize
754    ENDIF
755
756!
757!-- Determine and print out the run control quantities before the first time
758!-- step of this run. For the initial run, some statistics (e.g. divergence)
759!-- need to be determined first --> CALL flow_statistics at the beginning of
760!-- run_control
761    CALL run_control
762!
763!-- Data exchange between coupled models in case that a call has been omitted
764!-- at the end of the previous run of a job chain.
765    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
766!
767!--    In case of model termination initiated by the local model the coupler
768!--    must not be called because this would again cause an MPI hang.
769       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
770          CALL surface_coupler
771          time_coupling = time_coupling - dt_coupling
772       ENDDO
773       IF (time_coupling == 0.0_wp  .AND.                                      &
774           time_since_reference_point < dt_coupling )                          &
775       THEN
776          time_coupling = time_since_reference_point
777       ENDIF
778    ENDIF
779
780#if defined( __dvrp_graphics )
781!
782!-- Time measurement with dvrp software 
783    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
784#endif
785
786    CALL location_message( 'starting timestep-sequence', .TRUE. )
787!
788!-- Start of the time loop
789    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
790                .NOT. terminate_run )
791
792       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
793!
794!--    Vertical nesting: initialize fine grid
795       IF ( vnested ) THEN
796          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
797             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
798             CALL vnest_init_fine
799             vnest_init = .TRUE.
800             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
801          ENDIF
802       ENDIF
803!
804!--    Determine ug, vg and w_subs in dependence on data from external file
805!--    LSF_DATA
806       IF ( large_scale_forcing .AND. lsf_vert )  THEN
807           CALL ls_forcing_vert ( simulated_time )
808           sums_ls_l = 0.0_wp
809       ENDIF
810
811!
812!--    Set pt_init and q_init to the current profiles taken from
813!--    NUDGING_DATA
814       IF ( nudging )  THEN
815           CALL nudge_ref ( simulated_time )
816!
817!--        Store temperature gradient at the top boundary for possible Neumann
818!--        boundary condition
819           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
820           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
821           IF ( air_chemistry )  THEN
822              DO  lsp = 1, nspec
823                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
824                                - chem_species(lsp)%conc_pr_init(nzt) )       &
825                               / dzu(nzt+1)
826              ENDDO
827           ENDIF
828       ENDIF
829!
830!--    If forcing by larger-scale models is applied, check if new data
831!--    at domain boundaries need to be read.
832       IF ( nesting_offline )  THEN
833          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
834             CALL netcdf_data_input_offline_nesting
835       ENDIF
836
837!
838!--    Execute alle other module actions routunes
839       CALL module_interface_actions( 'before_timestep' )
840
841!
842!--    Calculate forces by wind turbines
843       IF ( wind_turbine )  THEN
844
845          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
846
847          CALL wtm_forces
848
849          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
850
851       ENDIF   
852       
853!
854!--    Start of intermediate step loop
855       intermediate_timestep_count = 0
856       DO  WHILE ( intermediate_timestep_count < &
857                   intermediate_timestep_count_max )
858
859          intermediate_timestep_count = intermediate_timestep_count + 1
860
861!
862!--       Set the steering factors for the prognostic equations which depend
863!--       on the timestep scheme
864          CALL timestep_scheme_steering
865
866!
867!--       Calculate those variables needed in the tendency terms which need
868!--       global communication
869          IF ( .NOT. use_single_reference_value  .AND. &
870               .NOT. use_initial_profile_as_reference )  THEN
871!
872!--          Horizontally averaged profiles to be used as reference state in
873!--          buoyancy terms (WARNING: only the respective last call of
874!--          calc_mean_profile defines the reference state!)
875             IF ( .NOT. neutral )  THEN
876                CALL calc_mean_profile( pt, 4 )
877                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
878             ENDIF
879             IF ( ocean_mode )  THEN
880                CALL calc_mean_profile( rho_ocean, 64 )
881                ref_state(:)  = hom(:,1,64,0)
882             ENDIF
883             IF ( humidity )  THEN
884                CALL calc_mean_profile( vpt, 44 )
885                ref_state(:)  = hom(:,1,44,0)
886             ENDIF
887!
888!--          Assure that ref_state does not become zero at any level
889!--          ( might be the case if a vertical level is completely occupied
890!--            with topography ).
891             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
892                                ref_state == 0.0_wp )
893          ENDIF
894
895          IF ( .NOT. constant_diffusion )  CALL production_e_init
896          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
897               intermediate_timestep_count == 1 )  CALL ws_statistics
898!
899!--       In case of nudging calculate current nudging time scale and horizontal
900!--       means of u, v, pt and q
901          IF ( nudging )  THEN
902             CALL calc_tnudge( simulated_time )
903             CALL calc_mean_profile( u, 1 )
904             CALL calc_mean_profile( v, 2 )
905             CALL calc_mean_profile( pt, 4 )
906             CALL calc_mean_profile( q, 41 )
907          ENDIF
908
909!
910!--       Solve the prognostic equations. A fast cache optimized version with
911!--       only one single loop is used in case of Piascek-Williams advection
912!--       scheme. NEC vector machines use a different version, because
913!--       in the other versions a good vectorization is prohibited due to
914!--       inlining problems.
915          IF ( loop_optimization == 'cache' )  THEN
916             CALL prognostic_equations_cache
917          ELSEIF ( loop_optimization == 'vector' )  THEN
918             CALL prognostic_equations_vector
919          ENDIF
920
921!
922!--       Particle transport/physics with the Lagrangian particle model
923!--       (only once during intermediate steps, because it uses an Euler-step)
924!--       ### particle model should be moved before prognostic_equations, in order
925!--       to regard droplet interactions directly
926          IF ( particle_advection  .AND.                         &
927               time_since_reference_point >= particle_advection_start  .AND. &
928               intermediate_timestep_count == 1 )  THEN
929             CALL lpm
930             first_call_lpm = .FALSE.
931          ENDIF
932
933!
934!--       Interaction of droplets with temperature and mixing ratio.
935!--       Droplet condensation and evaporation is calculated within
936!--       advec_particles.
937          IF ( cloud_droplets  .AND.  &
938               intermediate_timestep_count == intermediate_timestep_count_max )&
939          THEN
940             CALL interaction_droplets_ptq
941          ENDIF
942
943!
944!--       Movement of agents in multi agent system
945          IF ( agents_active  .AND.                                            &
946               time_since_reference_point >= multi_agent_system_start  .AND.   &
947               time_since_reference_point <= multi_agent_system_end    .AND.   &
948               intermediate_timestep_count == 1 )  THEN
949             CALL multi_agent_system
950             first_call_mas = .FALSE.
951          ENDIF
952
953!
954!--       Exchange of ghost points (lateral boundary conditions)
955          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
956
957          CALL exchange_horiz( u_p, nbgp )
958          CALL exchange_horiz( v_p, nbgp )
959          CALL exchange_horiz( w_p, nbgp )
960          CALL exchange_horiz( pt_p, nbgp )
961          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
962          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
963               .OR.  use_sgs_for_particles )  THEN
964             IF ( rans_tke_e )  THEN
965                CALL exchange_horiz( diss_p, nbgp )
966             ELSE
967                CALL exchange_horiz( diss, nbgp )
968             ENDIF
969          ENDIF
970          IF ( ocean_mode )  THEN
971             CALL exchange_horiz( sa_p, nbgp )
972             CALL exchange_horiz( rho_ocean, nbgp )
973             CALL exchange_horiz( prho, nbgp )
974          ENDIF
975          IF ( humidity )  THEN
976             CALL exchange_horiz( q_p, nbgp )
977             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
978                CALL exchange_horiz( qc_p, nbgp )
979                CALL exchange_horiz( nc_p, nbgp )
980             ENDIF
981             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
982                CALL exchange_horiz( qr_p, nbgp )
983                CALL exchange_horiz( nr_p, nbgp )
984             ENDIF
985          ENDIF
986          IF ( cloud_droplets )  THEN
987             CALL exchange_horiz( ql, nbgp )
988             CALL exchange_horiz( ql_c, nbgp )
989             CALL exchange_horiz( ql_v, nbgp )
990             CALL exchange_horiz( ql_vp, nbgp )
991          ENDIF
992          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
993          IF ( air_chemistry )  THEN
994             DO  lsp = 1, nspec
995                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
996!
997!--             kanani: Push chem_boundary_conds after CALL boundary_conds
998                lsp_usr = 1
999                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1000                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1001                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
1002                                                chem_species(lsp)%conc_pr_init )
1003                   ENDIF
1004                   lsp_usr = lsp_usr + 1
1005                ENDDO
1006             ENDDO
1007          ENDIF
1008
1009          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1010          THEN
1011             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1012             DO  b = 1, nbins
1013                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1014                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1015                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
1016                                           aerosol_number(b)%init )
1017                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1018                DO  c = 1, ncc_tot
1019                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
1020                                        nbgp )
1021                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1022                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
1023                                              aerosol_mass((c-1)*nbins+b)%init )
1024                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1025                ENDDO
1026             ENDDO
1027             IF ( .NOT. salsa_gases_from_chem )  THEN
1028                DO  g = 1, ngast
1029                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1030                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1031                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
1032                                              salsa_gas(g)%init )
1033                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1034             ENDDO
1035             ENDIF
1036             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1037          ENDIF         
1038          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1039
1040!
1041!--       Boundary conditions for the prognostic quantities (except of the
1042!--       velocities at the outflow in case of a non-cyclic lateral wall)
1043          CALL boundary_conds
1044!
1045!--       Swap the time levels in preparation for the next time step.
1046          CALL swap_timelevel
1047
1048!
1049!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1050          IF ( vnest_init ) THEN
1051             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
1052             CALL vnest_anterpolate
1053             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
1054          ENDIF
1055
1056          IF ( nested_run )  THEN
1057
1058             CALL cpu_log( log_point(60), 'nesting', 'start' )
1059!
1060!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1061!--          and pmci_child_datatrans are called inside the wrapper
1062!--          subroutine pmci_datatrans according to the control parameters
1063!--          nesting_mode and nesting_datatransfer_mode.
1064!--          TO_DO: why is nesting_mode given as a parameter here?
1065             CALL pmci_datatrans( nesting_mode )
1066
1067             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
1068                  nesting_mode == 'vertical' )  THEN
1069!
1070!--             Exchange_horiz is needed for all parent-domains after the
1071!--             anterpolation
1072                CALL exchange_horiz( u, nbgp )
1073                CALL exchange_horiz( v, nbgp )
1074                CALL exchange_horiz( w, nbgp )
1075                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1076
1077                IF ( humidity )  THEN
1078
1079                   CALL exchange_horiz( q, nbgp )
1080
1081                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1082                       CALL exchange_horiz( qc, nbgp )
1083                       CALL exchange_horiz( nc, nbgp )
1084                   ENDIF
1085                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1086                       CALL exchange_horiz( qr, nbgp )
1087                       CALL exchange_horiz( nr, nbgp )
1088                   ENDIF
1089
1090                ENDIF
1091
1092                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1093               
1094                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1095
1096                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
1097                                                      rans_tke_e )             &
1098                   CALL exchange_horiz( diss, nbgp )
1099
1100                IF ( air_chemistry )  THEN
1101                   DO  n = 1, nspec     
1102                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1103                   ENDDO
1104                ENDIF
1105
1106             ENDIF
1107!
1108!--          Set boundary conditions again after interpolation and anterpolation.
1109             CALL pmci_boundary_conds
1110
1111             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1112
1113          ENDIF
1114
1115!
1116!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1117!--       when a sloping surface is used
1118          IF ( sloping_surface )  THEN
1119             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
1120                                                    pt_slope_offset
1121             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1122                                                    pt_slope_offset
1123          ENDIF
1124
1125!
1126!--       Impose a turbulent inflow using the recycling method
1127          IF ( turbulent_inflow )  CALL  inflow_turbulence
1128
1129!
1130!--       Set values at outflow boundary using the special outflow condition
1131          IF ( turbulent_outflow )  CALL  outflow_turbulence
1132
1133!
1134!--       Impose a random perturbation on the horizontal velocity field
1135          IF ( create_disturbances  .AND.                                      &
1136               ( call_psolver_at_all_substeps  .AND.                           &
1137               intermediate_timestep_count == intermediate_timestep_count_max )&
1138          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1139               intermediate_timestep_count == 1 ) )                            &
1140          THEN
1141             time_disturb = time_disturb + dt_3d
1142             IF ( time_disturb >= dt_disturb )  THEN
1143                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1144                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1145                   CALL disturb_field( 'u', tend, u )
1146                   CALL disturb_field( 'v', tend, v )
1147                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1148                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1149                THEN
1150!
1151!--                Runs with a non-cyclic lateral wall need perturbations
1152!--                near the inflow throughout the whole simulation
1153                   dist_range = 1
1154                   CALL disturb_field( 'u', tend, u )
1155                   CALL disturb_field( 'v', tend, v )
1156                   dist_range = 0
1157                ENDIF
1158                time_disturb = time_disturb - dt_disturb
1159             ENDIF
1160          ENDIF
1161
1162!
1163!--       Map forcing data derived from larger scale model onto domain
1164!--       boundaries.
1165          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1166                                       intermediate_timestep_count_max  )      &
1167             CALL nesting_offl_bc
1168!
1169!--       Impose a turbulent inflow using synthetic generated turbulence,
1170!--       only once per time step.
1171          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1172             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1173             CALL stg_main
1174          ENDIF
1175!
1176!--       Ensure mass conservation. This need to be done after imposing
1177!--       synthetic turbulence and top boundary condition for pressure is set to
1178!--       Neumann conditions.
1179!--       Is this also required in case of Dirichlet?
1180          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1181!
1182!--       Reduce the velocity divergence via the equation for perturbation
1183!--       pressure.
1184          IF ( intermediate_timestep_count == 1  .OR. &
1185                call_psolver_at_all_substeps )  THEN
1186
1187             IF (  vnest_init ) THEN
1188!
1189!--             Compute pressure in the CG, interpolate top boundary conditions
1190!--             to the FG and then compute pressure in the FG
1191                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1192
1193                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1194                CALL vnest_boundary_conds
1195                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1196 
1197                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1198
1199!--             Anterpolate TKE, satisfy Germano Identity
1200                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1201                CALL vnest_anterpolate_e
1202                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1203
1204             ELSE
1205
1206                CALL pres
1207
1208             ENDIF
1209
1210          ENDIF
1211
1212!
1213!--       If required, compute liquid water content
1214          IF ( bulk_cloud_model )  THEN
1215             CALL calc_liquid_water_content
1216          ENDIF
1217!
1218!--       If required, compute virtual potential temperature
1219          IF ( humidity )  THEN
1220             CALL compute_vpt 
1221          ENDIF 
1222
1223!
1224!--       Compute the diffusion quantities
1225          IF ( .NOT. constant_diffusion )  THEN
1226
1227!
1228!--          Determine surface fluxes shf and qsws and surface values
1229!--          pt_surface and q_surface in dependence on data from external
1230!--          file LSF_DATA respectively
1231             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1232                 intermediate_timestep_count == intermediate_timestep_count_max )&
1233             THEN
1234                CALL ls_forcing_surf( simulated_time )
1235             ENDIF
1236
1237!
1238!--          First the vertical (and horizontal) fluxes in the surface
1239!--          (constant flux) layer are computed
1240             IF ( constant_flux_layer )  THEN
1241                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1242                CALL surface_layer_fluxes
1243                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1244             ENDIF
1245!
1246!--          If required, solve the energy balance for the surface and run soil
1247!--          model. Call for horizontal as well as vertical surfaces
1248             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1249
1250                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1251!
1252!--             Call for horizontal upward-facing surfaces
1253                CALL lsm_energy_balance( .TRUE., -1 )
1254                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1255!
1256!--             Call for northward-facing surfaces
1257                CALL lsm_energy_balance( .FALSE., 0 )
1258                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1259!
1260!--             Call for southward-facing surfaces
1261                CALL lsm_energy_balance( .FALSE., 1 )
1262                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1263!
1264!--             Call for eastward-facing surfaces
1265                CALL lsm_energy_balance( .FALSE., 2 )
1266                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1267!
1268!--             Call for westward-facing surfaces
1269                CALL lsm_energy_balance( .FALSE., 3 )
1270                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1271               
1272!
1273!--             At the end, set boundary conditons for potential temperature
1274!--             and humidity after running the land-surface model. This
1275!--             might be important for the nesting, where arrays are transfered.
1276                CALL lsm_boundary_condition
1277
1278               
1279                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1280             ENDIF
1281!
1282!--          If required, solve the energy balance for urban surfaces and run
1283!--          the material heat model
1284             IF (urban_surface) THEN
1285                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1286               
1287                CALL usm_surface_energy_balance( .FALSE. )
1288                IF ( usm_material_model )  THEN
1289                   CALL usm_green_heat_model
1290                   CALL usm_material_heat_model ( .FALSE. )
1291                ENDIF
1292
1293!
1294!--             At the end, set boundary conditons for potential temperature
1295!--             and humidity after running the urban-surface model. This
1296!--             might be important for the nesting, where arrays are transfered.
1297                CALL usm_boundary_condition
1298
1299                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1300             ENDIF
1301!
1302!--          Compute the diffusion coefficients
1303             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1304             IF ( .NOT. humidity ) THEN
1305                IF ( ocean_mode )  THEN
1306                   CALL tcm_diffusivities( prho, prho_reference )
1307                ELSE
1308                   CALL tcm_diffusivities( pt, pt_reference )
1309                ENDIF
1310             ELSE
1311                CALL tcm_diffusivities( vpt, pt_reference )
1312             ENDIF
1313             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1314!
1315!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1316             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1317
1318          ENDIF
1319
1320!
1321!--       If required, calculate radiative fluxes and heating rates
1322          IF ( radiation .AND. intermediate_timestep_count                     &
1323               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1324               skip_time_do_radiation )  THEN
1325
1326               time_radiation = time_radiation + dt_3d
1327
1328             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1329             THEN
1330
1331                CALL cpu_log( log_point(50), 'radiation', 'start' )
1332
1333                IF ( .NOT. force_radiation_call )  THEN
1334                   time_radiation = time_radiation - dt_radiation
1335                ENDIF
1336
1337!
1338!--             Adjust the current time to the time step of the radiation model.
1339!--             Needed since radiation is pre-calculated and stored only on apparent
1340!--             solar positions
1341                time_since_reference_point_save = time_since_reference_point
1342                time_since_reference_point =                                   &
1343                                    REAL( FLOOR( time_since_reference_point /  &
1344                                                 dt_radiation), wp )           &
1345                                             * dt_radiation
1346
1347                CALL radiation_control
1348
1349                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1350
1351                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1352                     radiation_interactions )  THEN
1353                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1354                   CALL radiation_interaction
1355                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1356                ENDIF
1357   
1358!
1359!--             Return the current time to its original value
1360                time_since_reference_point = time_since_reference_point_save
1361
1362             ENDIF
1363          ENDIF
1364
1365       ENDDO   ! Intermediate step loop
1366
1367!
1368!--    Will be used at some point by flow_statistics.
1369       !$ACC UPDATE &
1370       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1371       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1372       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1373       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1374       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1375       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1376       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1377       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1378       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1379       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1380       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1381       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1382       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1383       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1384       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1385
1386!
1387!--    If required, consider chemical emissions
1388       IF ( air_chemistry  .AND.  do_emis )  THEN
1389!
1390!--       Update the time --> kanani: revise location of this CALL
1391          CALL calc_date_and_time
1392!
1393!--       Call emission routine only once an hour
1394          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1395             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1396             hour_call_emis = hour_of_year
1397          ENDIF
1398       ENDIF
1399
1400!
1401!--    If required, calculate indoor temperature, waste heat, heat flux
1402!--    through wall, etc.
1403!--    dt_indoor steers the frequency of the indoor model calculations
1404       IF ( indoor_model )  THEN
1405
1406          time_indoor = time_indoor + dt_3d
1407
1408          IF ( time_indoor >= dt_indoor )  THEN
1409
1410             time_indoor = time_indoor - dt_indoor
1411
1412             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1413             CALL im_main_heatcool
1414             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1415
1416          ENDIF
1417       ENDIF
1418!
1419!--    Increase simulation time and output times
1420       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1421       current_timestep_number    = current_timestep_number + 1
1422       simulated_time             = simulated_time   + dt_3d
1423       time_since_reference_point = simulated_time - coupling_start_time
1424       simulated_time_chr         = time_to_string( time_since_reference_point )
1425
1426
1427
1428
1429       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1430          time_do_av         = time_do_av       + dt_3d
1431       ENDIF
1432       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1433          time_do2d_xy       = time_do2d_xy     + dt_3d
1434       ENDIF
1435       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1436          time_do2d_xz       = time_do2d_xz     + dt_3d
1437       ENDIF
1438       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1439          time_do2d_yz       = time_do2d_yz     + dt_3d
1440       ENDIF
1441       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1442          time_do3d          = time_do3d        + dt_3d
1443       ENDIF
1444       DO  mid = 1, masks
1445          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1446             time_domask(mid)= time_domask(mid) + dt_3d
1447          ENDIF
1448       ENDDO
1449       time_dvrp          = time_dvrp        + dt_3d
1450       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1451          time_dosp       = time_dosp        + dt_3d
1452       ENDIF
1453       time_dots          = time_dots        + dt_3d
1454       IF ( .NOT. first_call_lpm )  THEN
1455          time_dopts      = time_dopts       + dt_3d
1456       ENDIF
1457       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1458          time_dopr       = time_dopr        + dt_3d
1459       ENDIF
1460       time_dopr_listing  = time_dopr_listing + dt_3d
1461       time_run_control   = time_run_control + dt_3d
1462!
1463!--    Increment time-counter for surface output
1464       IF ( surface_output )  THEN
1465          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1466             time_dosurf    = time_dosurf + dt_3d
1467          ENDIF
1468          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1469             time_dosurf_av = time_dosurf_av + dt_3d
1470          ENDIF
1471       ENDIF
1472!
1473!--    In case of synthetic turbulence generation and parametrized turbulence
1474!--    information, update the time counter and if required, adjust the
1475!--    STG to new atmospheric conditions.
1476       IF ( use_syn_turb_gen  )  THEN
1477          IF ( parametrize_inflow_turbulence )  THEN
1478             time_stg_adjust = time_stg_adjust + dt_3d
1479             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1480          ENDIF
1481          time_stg_call = time_stg_call + dt_3d
1482       ENDIF
1483
1484!
1485!--    Data exchange between coupled models
1486       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1487                                          .AND. .NOT. vnested )  THEN
1488          time_coupling = time_coupling + dt_3d
1489
1490!
1491!--       In case of model termination initiated by the local model
1492!--       (terminate_coupled > 0), the coupler must be skipped because it would
1493!--       cause an MPI intercomminucation hang.
1494!--       If necessary, the coupler will be called at the beginning of the
1495!--       next restart run.
1496          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1497             CALL surface_coupler
1498             time_coupling = time_coupling - dt_coupling
1499          ENDDO
1500       ENDIF
1501
1502!
1503!--    Biometeorology calculation of stationary thermal indices
1504!--    Todo (kanani): biometeorology needs own time_... treatment.
1505!--                   It might be that time_do2d_xy differs from time_do3d,
1506!--                   and then we might get trouble with the biomet output,
1507!--                   because we can have 2d and/or 3d biomet output!!
1508       IF (         biometeorology  &
1509             .AND.  ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )          &
1510                      .OR.                                                                                   &
1511                      ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1512                    ) )  THEN
1513!
1514!--       If required, do thermal comfort calculations
1515          IF ( thermal_comfort )  THEN
1516             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1517             time_bio_results = time_since_reference_point
1518          ENDIF
1519!
1520!--       If required, do UV exposure calculations
1521          IF ( uv_exposure )  THEN
1522             CALL uvem_calc_exposure
1523          ENDIF
1524       ENDIF
1525
1526!
1527!--    Execute alle other module actions routunes
1528       CALL module_interface_actions( 'after_integration' )
1529
1530!
1531!--    If Galilei transformation is used, determine the distance that the
1532!--    model has moved so far
1533       IF ( galilei_transformation )  THEN
1534          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1535          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1536       ENDIF
1537
1538!
1539!--    Check, if restart is necessary (because cpu-time is expiring or
1540!--    because it is forced by user) and set stop flag
1541!--    This call is skipped if the remote model has already initiated a restart.
1542       IF ( .NOT. terminate_run )  CALL check_for_restart
1543
1544!
1545!--    Carry out statistical analysis and output at the requested output times.
1546!--    The MOD function is used for calculating the output time counters (like
1547!--    time_dopr) in order to regard a possible decrease of the output time
1548!--    interval in case of restart runs
1549
1550!
1551!--    Set a flag indicating that so far no statistics have been created
1552!--    for this time step
1553       flow_statistics_called = .FALSE.
1554
1555!
1556!--    If required, call flow_statistics for averaging in time
1557       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1558            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1559            time_since_reference_point >= skip_time_dopr )  THEN
1560          time_dopr_av = time_dopr_av + dt_3d
1561          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1562             do_sum = .TRUE.
1563             time_dopr_av = MOD( time_dopr_av, &
1564                                    MAX( dt_averaging_input_pr, dt_3d ) )
1565          ENDIF
1566       ENDIF
1567       IF ( do_sum )  CALL flow_statistics
1568
1569!
1570!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1571       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1572            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.    &
1573            time_since_reference_point >= skip_time_data_output_av )           &
1574       THEN
1575          time_do_sla = time_do_sla + dt_3d
1576          IF ( time_do_sla >= dt_averaging_input )  THEN
1577             CALL sum_up_3d_data
1578             average_count_3d = average_count_3d + 1
1579             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1580          ENDIF
1581       ENDIF
1582!
1583!--    Average surface data
1584       IF ( surface_output )  THEN
1585          IF (         averaging_interval_surf /= 0.0_wp                               &
1586                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1587                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1588             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1589                CALL surface_data_output_averaging
1590                average_count_surf = average_count_surf + 1
1591             ENDIF
1592          ENDIF
1593       ENDIF
1594
1595!
1596!--    Calculate spectra for time averaging
1597       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1598            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1599            time_since_reference_point >= skip_time_dosp )  THEN
1600          time_dosp_av = time_dosp_av + dt_3d
1601          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1602             CALL calc_spectra
1603             time_dosp_av = MOD( time_dosp_av, &
1604                                 MAX( dt_averaging_input_pr, dt_3d ) )
1605          ENDIF
1606       ENDIF
1607
1608!
1609!--    Call flight module and output data
1610       IF ( virtual_flight )  THEN
1611          CALL flight_measurement
1612          CALL data_output_flight
1613       ENDIF
1614!
1615!--    Take virtual measurements
1616       IF ( virtual_measurement  .AND.                                         &
1617            vm_time_start <= time_since_reference_point )  THEN
1618          CALL vm_sampling
1619          CALL vm_data_output
1620       ENDIF
1621
1622!
1623!--    Profile output (ASCII) on file
1624       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1625          CALL print_1d
1626          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1627                                                           dt_3d ) )
1628       ENDIF
1629
1630!
1631!--    Graphic output for PROFIL
1632       IF (        time_dopr >= dt_dopr                                     &
1633            .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1634          IF ( dopr_n /= 0 )  CALL data_output_profiles
1635          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1636          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1637       ENDIF
1638
1639!
1640!--    Graphic output for time series
1641       IF ( time_dots >= dt_dots )  THEN
1642          CALL data_output_tseries
1643          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1644       ENDIF
1645
1646!
1647!--    Output of spectra (formatted for use with PROFIL), in case of no
1648!--    time averaging, spectra has to be calculated before
1649       IF (         time_dosp >= dt_dosp                                     &
1650             .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1651          IF ( average_count_sp == 0 )  CALL calc_spectra
1652          CALL data_output_spectra
1653          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1654       ENDIF
1655
1656!
1657!--    2d-data output (cross-sections)
1658       IF (         time_do2d_xy >= dt_do2d_xy                               &
1659             .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1660          CALL data_output_2d( 'xy', 0 )
1661          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1662       ENDIF
1663       IF (         time_do2d_xz >= dt_do2d_xz                               &
1664             .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1665          CALL data_output_2d( 'xz', 0 )
1666          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1667       ENDIF
1668       IF (         time_do2d_yz >= dt_do2d_yz                               &
1669             .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1670          CALL data_output_2d( 'yz', 0 )
1671          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1672       ENDIF
1673
1674!
1675!--    3d-data output (volume data)
1676       IF (         time_do3d >= dt_do3d                                     & 
1677             .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1678          CALL data_output_3d( 0 )
1679          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1680       ENDIF
1681
1682!
1683!--    Masked data output
1684       DO  mid = 1, masks
1685          IF (         time_domask(mid) >= dt_domask(mid)                          &
1686                .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1687             CALL data_output_mask( 0 )
1688             time_domask(mid) = MOD( time_domask(mid),                             &
1689                                     MAX( dt_domask(mid), dt_3d ) )
1690          ENDIF
1691       ENDDO
1692
1693!
1694!--    Output of time-averaged 2d/3d/masked data
1695       IF (         time_do_av >= dt_data_output_av                                &
1696             .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1697          CALL average_3d_data
1698          CALL data_output_2d( 'xy', 1 )
1699          CALL data_output_2d( 'xz', 1 )
1700          CALL data_output_2d( 'yz', 1 )
1701          CALL data_output_3d( 1 )
1702          DO  mid = 1, masks
1703             CALL data_output_mask( 1 )
1704          ENDDO
1705          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1706       ENDIF
1707!
1708!--    Output of surface data, instantaneous and averaged data
1709       IF ( surface_output )  THEN
1710          IF (         time_dosurf >= dt_dosurf                                    &
1711                .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1712             CALL surface_data_output( 0 )
1713             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1714          ENDIF
1715          IF (         time_dosurf_av >= dt_dosurf_av                              &
1716                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1717             CALL surface_data_output( 1 )
1718             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1719          ENDIF
1720       ENDIF
1721
1722!
1723!--    Output of particle time series
1724       IF ( particle_advection )  THEN
1725          IF ( time_dopts >= dt_dopts  .OR.                                    &
1726               ( time_since_reference_point >= particle_advection_start  .AND. &
1727                 first_call_lpm ) )  THEN
1728             CALL data_output_ptseries
1729             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1730          ENDIF
1731       ENDIF
1732
1733!
1734!--    Output of dvrp-graphics (isosurface, particles, slicer)
1735#if defined( __dvrp_graphics )
1736       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1737#endif
1738       IF ( time_dvrp >= dt_dvrp )  THEN
1739          CALL data_output_dvrp
1740          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1741       ENDIF
1742#if defined( __dvrp_graphics )
1743       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1744#endif
1745
1746!
1747!--    If required, set the heat flux for the next time step at a random value
1748       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1749          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1750          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1751          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1752       ENDIF
1753
1754!
1755!--    Execute alle other module actions routunes
1756       CALL module_interface_actions( 'after_timestep' )
1757
1758!
1759!--    Determine size of next time step. Save timestep dt_3d because it is
1760!--    newly calculated in routine timestep, but required further below for
1761!--    steering the run control output interval
1762       dt_3d_old = dt_3d
1763       CALL timestep
1764
1765!
1766!--    Synchronize the timestep in case of nested run.
1767       IF ( nested_run )  THEN
1768!
1769!--       Synchronize by unifying the time step.
1770!--       Global minimum of all time-steps is used for all.
1771          CALL pmci_synchronize
1772       ENDIF
1773
1774!
1775!--    Computation and output of run control parameters.
1776!--    This is also done whenever perturbations have been imposed
1777       IF ( time_run_control >= dt_run_control  .OR.                     &
1778            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1779       THEN
1780          CALL run_control
1781          IF ( time_run_control >= dt_run_control )  THEN
1782             time_run_control = MOD( time_run_control, &
1783                                     MAX( dt_run_control, dt_3d_old ) )
1784          ENDIF
1785       ENDIF
1786
1787!
1788!--    Output elapsed simulated time in form of a progress bar on stdout
1789       IF ( myid == 0 )  CALL output_progress_bar
1790
1791       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1792
1793
1794    ENDDO   ! time loop
1795
1796#ifdef _OPENACC
1797    CALL exit_surface_arrays
1798#endif
1799!$ACC END DATA
1800!$ACC END DATA
1801!$ACC END DATA
1802!$ACC END DATA
1803!$ACC END DATA
1804!$ACC END DATA
1805!$ACC END DATA
1806
1807!
1808!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1809    IF ( vnest_init )  CALL vnest_deallocate
1810
1811    IF ( myid == 0 )  CALL finish_progress_bar
1812
1813#if defined( __dvrp_graphics )
1814    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1815#endif
1816
1817    CALL location_message( 'finished time-stepping', .TRUE. )
1818
1819 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.