source: palm/trunk/SOURCE/time_integration.f90 @ 3655

Last change on this file since 3655 was 3648, checked in by suehring, 3 years ago

Rename surface_output_mod into surface_data_output_mod, same with all corresponding subroutines

  • Property svn:keywords set to Id
File size: 71.3 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3648 2019-01-02 16:35:46Z knoop $
27! Rename subroutines for surface-data output
28!
29! 3647 2019-01-02 14:10:44Z kanani
30! Bugfix: add time_since_reference_point to IF clause for data_output calls
31! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
32! Clean up indoor_model and biometeorology model call.
33!
34! 3646 2018-12-28 17:58:49Z kanani
35! Bugfix: use time_since_reference_point instead of simulated_time where
36! required (relevant when using wall/soil spinup)
37!
38! 3634 2018-12-18 12:31:28Z knoop
39! OpenACC port for SPEC
40!
41! 3597 2018-12-04 08:40:18Z maronga
42! Removed call to calculation of near air (10 cm) potential temperature (now in
43! surface layer fluxes)
44!
45! 3589 2018-11-30 15:09:51Z suehring
46! Move the control parameter "salsa" from salsa_mod to control_parameters
47! (M. Kurppa)
48!
49! 3582 2018-11-29 19:16:36Z suehring
50! dom_dwd_user, Schrempf:
51! Changes due to merge of uv exposure model into biometeorology_mod.
52!
53! 3525 2018-11-14 16:06:14Z kanani
54! Changes related to clean-up of biometeorology (dom_dwd_user)
55!
56! 3524 2018-11-14 13:36:44Z raasch
57! unused variables removed
58!
59! 3484 2018-11-02 14:41:25Z hellstea
60! pmci_ensure_nest_mass_conservation is premanently removed
61!
62! 3473 2018-10-30 20:50:15Z suehring
63! new module for virtual measurements introduced
64!
65! 3472 2018-10-30 20:43:50Z suehring
66! Add indoor model (kanani, srissman, tlang)
67!
68! 3467 2018-10-30 19:05:21Z suehring
69! Implementation of a new aerosol module salsa.
70!
71! 3448 2018-10-29 18:14:31Z kanani
72! Add biometeorology
73!
74! 3421 2018-10-24 18:39:32Z gronemeier
75! Surface data output
76!
77! 3418 2018-10-24 16:07:39Z kanani
78! call to material_heat_model now with check if spinup runs (rvtils)
79!
80! 3378 2018-10-19 12:34:59Z kanani
81! merge from radiation branch (r3362) into trunk
82! (moh.hefny):
83! Bugfix in the if statement to call radiation_interaction
84!
85! 3347 2018-10-15 14:21:08Z suehring
86! - offline nesting separated from large-scale forcing module
87! - changes for synthetic turbulence generator
88!
89! 3343 2018-10-15 10:38:52Z suehring
90! - Formatting, clean-up, comments (kanani)
91! - Added CALL to chem_emissions_setup (Russo)
92! - Code added for decycling chemistry (basit)
93!
94! 3294 2018-10-01 02:37:10Z raasch
95! changes concerning modularization of ocean option
96!
97! 3274 2018-09-24 15:42:55Z knoop
98! Modularization of all bulk cloud physics code components
99!
100! 3241 2018-09-12 15:02:00Z raasch
101! unused variables removed
102!
103! 3198 2018-08-15 09:23:10Z sward
104! Added multi_agent_system_end; defined start time for MAS relative to
105! time_since_reference_point
106!
107! 3183 2018-07-27 14:25:55Z suehring
108! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
109! Rename subroutines and variables in COSMO nesting mode
110!
111! 3182 2018-07-27 13:36:03Z suehring
112! Added multi agent system
113!
114! 3042 2018-05-25 10:44:37Z schwenkel
115! Changed the name specific humidity to mixing ratio
116!
117! 3040 2018-05-25 10:22:08Z schwenkel
118! Fixed bug in IF statement
119! Ensure that the time when calling the radiation to be the time step of the
120! pre-calculated time when first calculate the positions of the sun
121!
122! 3004 2018-04-27 12:33:25Z Giersch
123! First call of flow_statistics has been removed. It is already called in
124! run_control itself
125!
126! 2984 2018-04-18 11:51:30Z hellstea
127! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
128! as seemingly unnecessary.
129!
130! 2941 2018-04-03 11:54:58Z kanani
131! Deduct spinup_time from RUN_CONTROL output of main 3d run
132! (use time_since_reference_point instead of simulated_time)
133!
134! 2938 2018-03-27 15:52:42Z suehring
135! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
136!
137! 2936 2018-03-27 14:49:27Z suehring
138! Little formatting adjustment.
139!
140! 2817 2018-02-19 16:32:21Z knoop
141! Preliminary gust module interface implemented
142!
143! 2801 2018-02-14 16:01:55Z thiele
144! Changed lpm from subroutine to module.
145! Introduce particle transfer in nested models.
146!
147! 2776 2018-01-31 10:44:42Z Giersch
148! Variable use_synthetic_turbulence_generator has been abbreviated
149!
150! 2773 2018-01-30 14:12:54Z suehring
151! - Nesting for chemical species
152!
153! 2766 2018-01-22 17:17:47Z kanani
154! Removed preprocessor directive __chem
155!
156! 2718 2018-01-02 08:49:38Z maronga
157! Corrected "Former revisions" section
158!
159! 2696 2017-12-14 17:12:51Z kanani
160! - Change in file header (GPL part)
161! - Implementation of uv exposure model (FK)
162! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
163! - renamed diffusivities to tcm_diffusivities (TG)
164! - implement prognostic equation for diss (TG)
165! - Moved/commented CALL to chem_emissions (FK)
166! - Added CALL to chem_emissions (FK)
167! - Implementation of chemistry module (FK)
168! - Calls for setting boundary conditions in USM and LSM (MS)
169! - Large-scale forcing with larger-scale models implemented (MS)
170! - Rename usm_radiation into radiation_interactions; merge with branch
171!   radiation (MS)
172! - added call for usm_green_heat_model for green building surfaces (RvT)
173! - added call for usm_temperature_near_surface for use in indoor model (RvT)
174!
175! 2617 2017-11-16 12:47:24Z suehring
176! Bugfix, assure that the reference state does not become zero.
177!
178! 2563 2017-10-19 15:36:10Z Giersch
179! Variable wind_turbine moved to module control_parameters
180!
181! 2365 2017-08-21 14:59:59Z kanani
182! Vertical grid nesting implemented (SadiqHuq)
183!
184! 2320 2017-07-21 12:47:43Z suehring
185! Set bottom boundary conditions after nesting interpolation and anterpolation
186!
187! 2299 2017-06-29 10:14:38Z maronga
188! Call of soil model adjusted
189!
190! 2292 2017-06-20 09:51:42Z schwenkel
191! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
192! includes two more prognostic equations for cloud drop concentration (nc) 
193! and cloud water content (qc).
194!
195! 2271 2017-06-09 12:34:55Z sward
196! Start timestep message changed
197!
198! 2259 2017-06-08 09:09:11Z gronemeier
199! Implemented synthetic turbulence generator
200!
201! 2233 2017-05-30 18:08:54Z suehring
202!
203! 2232 2017-05-30 17:47:52Z suehring
204! Adjustments to new topography and surface concept
205! Modify passed parameters for disturb_field
206!
207! 2178 2017-03-17 11:07:39Z hellstea
208! Setting perturbations at all times near inflow boundary is removed
209! in case of nested boundaries
210!
211! 2174 2017-03-13 08:18:57Z maronga
212! Added support for nesting with cloud microphysics
213!
214! 2118 2017-01-17 16:38:49Z raasch
215! OpenACC directives and related code removed
216!
217! 2050 2016-11-08 15:00:55Z gronemeier
218! Implement turbulent outflow condition
219!
220! 2031 2016-10-21 15:11:58Z knoop
221! renamed variable rho to rho_ocean
222!
223! 2011 2016-09-19 17:29:57Z kanani
224! Flag urban_surface is now defined in module control_parameters,
225! removed commented CALLs of global_min_max.
226!
227! 2007 2016-08-24 15:47:17Z kanani
228! Added CALLs for new urban surface model
229!
230! 2000 2016-08-20 18:09:15Z knoop
231! Forced header and separation lines into 80 columns
232!
233! 1976 2016-07-27 13:28:04Z maronga
234! Simplified calls to radiation model
235!
236! 1960 2016-07-12 16:34:24Z suehring
237! Separate humidity and passive scalar
238!
239! 1957 2016-07-07 10:43:48Z suehring
240! flight module added
241!
242! 1919 2016-05-27 14:51:23Z raasch
243! Initial version of purely vertical nesting introduced.
244!
245! 1918 2016-05-27 14:35:57Z raasch
246! determination of time step moved to the end of the time step loop,
247! the first time step is now always calculated before the time step loop (i.e.
248! also in case of restart runs)
249!
250! 1914 2016-05-26 14:44:07Z witha
251! Added call for wind turbine model
252!
253! 1878 2016-04-19 12:30:36Z hellstea
254! Synchronization for nested runs rewritten
255!
256! 1853 2016-04-11 09:00:35Z maronga
257! Adjusted for use with radiation_scheme = constant
258!
259! 1849 2016-04-08 11:33:18Z hoffmann
260! Adapted for modularization of microphysics
261!
262! 1833 2016-04-07 14:23:03Z raasch
263! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
264!
265! 1831 2016-04-07 13:15:51Z hoffmann
266! turbulence renamed collision_turbulence
267!
268! 1822 2016-04-07 07:49:42Z hoffmann
269! icloud_scheme replaced by microphysics_*
270!
271! 1808 2016-04-05 19:44:00Z raasch
272! output message in case unscheduled radiation calls removed
273!
274! 1797 2016-03-21 16:50:28Z raasch
275! introduction of different datatransfer modes
276!
277! 1791 2016-03-11 10:41:25Z raasch
278! call of pmci_update_new removed
279!
280! 1786 2016-03-08 05:49:27Z raasch
281! +module spectrum
282!
283! 1783 2016-03-06 18:36:17Z raasch
284! switch back of netcdf data format for mask output moved to the mask output
285! routine
286!
287! 1781 2016-03-03 15:12:23Z raasch
288! some pmc calls removed at the beginning (before timeloop),
289! pmc initialization moved to the main program
290!
291! 1764 2016-02-28 12:45:19Z raasch
292! PMC_ACTIVE flags removed,
293! bugfix: nest synchronization after first call of timestep
294!
295! 1762 2016-02-25 12:31:13Z hellstea
296! Introduction of nested domain feature
297!
298! 1736 2015-12-04 08:56:33Z raasch
299! no perturbations added to total domain if energy limit has been set zero
300!
301! 1691 2015-10-26 16:17:44Z maronga
302! Added option for spin-ups without land surface and radiation models. Moved calls
303! for radiation and lan surface schemes.
304!
305! 1682 2015-10-07 23:56:08Z knoop
306! Code annotations made doxygen readable
307!
308! 1671 2015-09-25 03:29:37Z raasch
309! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
310! for particles
311!
312! 1585 2015-04-30 07:05:52Z maronga
313! Moved call of radiation scheme. Added support for RRTM
314!
315! 1551 2015-03-03 14:18:16Z maronga
316! Added interface for different radiation schemes.
317!
318! 1496 2014-12-02 17:25:50Z maronga
319! Added calls for the land surface model and radiation scheme
320!
321! 1402 2014-05-09 14:25:13Z raasch
322! location messages modified
323!
324! 1384 2014-05-02 14:31:06Z raasch
325! location messages added
326!
327! 1380 2014-04-28 12:40:45Z heinze
328! CALL of nudge_ref added
329! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
330!
331! 1365 2014-04-22 15:03:56Z boeske
332! Reset sums_ls_l to zero at each timestep
333! +sums_ls_l
334! Calculation of reference state (previously in subroutine calc_mean_profile)
335
336! 1342 2014-03-26 17:04:47Z kanani
337! REAL constants defined as wp-kind
338!
339! 1320 2014-03-20 08:40:49Z raasch
340! ONLY-attribute added to USE-statements,
341! kind-parameters added to all INTEGER and REAL declaration statements,
342! kinds are defined in new module kinds,
343! old module precision_kind is removed,
344! revision history before 2012 removed,
345! comment fields (!:) to be used for variable explanations added to
346! all variable declaration statements
347! 1318 2014-03-17 13:35:16Z raasch
348! module interfaces removed
349!
350! 1308 2014-03-13 14:58:42Z fricke
351! +netcdf_data_format_save
352! For masked data, parallel netcdf output is not tested so far, hence
353! netcdf_data_format is switched back to non-paralell output.
354!
355! 1276 2014-01-15 13:40:41Z heinze
356! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
357!
358! 1257 2013-11-08 15:18:40Z raasch
359! acc-update-host directive for timestep removed
360!
361! 1241 2013-10-30 11:36:58Z heinze
362! Generalize calc_mean_profile for wider use
363! Determine shf and qsws in dependence on data from LSF_DATA
364! Determine ug and vg in dependence on data from LSF_DATA
365! 1221 2013-09-10 08:59:13Z raasch
366! host update of arrays before timestep is called
367!
368! 1179 2013-06-14 05:57:58Z raasch
369! mean profiles for reference state are only calculated if required,
370! small bugfix for background communication
371!
372! 1171 2013-05-30 11:27:45Z raasch
373! split of prognostic_equations deactivated (comment lines), for the time being
374!
375! 1128 2013-04-12 06:19:32Z raasch
376! asynchronous transfer of ghost point data realized for acc-optimized version:
377! prognostic_equations are first called two times for those points required for
378! the left-right and north-south exchange, respectively, and then for the
379! remaining points,
380! those parts requiring global communication moved from prognostic_equations to
381! here
382!
383! 1115 2013-03-26 18:16:16Z hoffmann
384! calculation of qr and nr is restricted to precipitation
385!
386! 1113 2013-03-10 02:48:14Z raasch
387! GPU-porting of boundary conditions,
388! openACC directives updated
389! formal parameter removed from routine boundary_conds
390!
391! 1111 2013-03-08 23:54:10Z raasch
392! +internal timestep counter for cpu statistics added,
393! openACC directives updated
394!
395! 1092 2013-02-02 11:24:22Z raasch
396! unused variables removed
397!
398! 1065 2012-11-22 17:42:36Z hoffmann
399! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
400!
401! 1053 2012-11-13 17:11:03Z hoffmann
402! exchange of ghost points for nr, qr added
403!
404! 1036 2012-10-22 13:43:42Z raasch
405! code put under GPL (PALM 3.9)
406!
407! 1019 2012-09-28 06:46:45Z raasch
408! non-optimized version of prognostic_equations removed
409!
410! 1015 2012-09-27 09:23:24Z raasch
411! +call of prognostic_equations_acc
412!
413! 1001 2012-09-13 14:08:46Z raasch
414! all actions concerning leapfrog- and upstream-spline-scheme removed
415!
416! 849 2012-03-15 10:35:09Z raasch
417! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
418!
419! 825 2012-02-19 03:03:44Z raasch
420! wang_collision_kernel renamed wang_kernel
421!
422! Revision 1.1  1997/08/11 06:19:04  raasch
423! Initial revision
424!
425!
426! Description:
427! ------------
428!> Integration in time of the model equations, statistical analysis and graphic
429!> output
430!------------------------------------------------------------------------------!
431 SUBROUTINE time_integration
432 
433
434    USE advec_ws,                                                              &
435        ONLY:  ws_statistics
436
437    USE arrays_3d,                                                             &
438        ONLY:  d, diss, diss_p, ddzu, dd2zu, ddzw, drho_air, drho_air_zw, dzu, &
439               dzw, e, e_p, kh, km, nc, nc_p, nr, nr_p, p, prho, pt, pt_p,     &
440               pt_init, ptdf_x, ptdf_y, q_init, q, qc, qc_p, ql, ql_c, ql_v,   &
441               ql_vp, qr, qr_p, q_p, rdf, rdf_sc, ref_state, rho_air,          &
442               rho_air_zw, rho_ocean, s, s_p, sa_p, te_m, tend, tpt_m, tu_m,   &
443               tv_m, tw_m, u, ug, u_init, u_p, u_stokes_zu, v, vg, v_init, vpt,&
444               v_p, v_stokes_zu, w, w_p, zu
445
446    USE biometeorology_mod,                                                    &
447        ONLY:  bio_calculate_thermal_index_maps, time_bio_results,             &
448               thermal_comfort, uvem_calc_exposure, uv_exposure
449
450    USE bulk_cloud_model_mod,                                                  &
451        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
452              collision_turbulence, microphysics_morrison, microphysics_seifert
453
454    USE calc_mean_profile_mod,                                                 &
455        ONLY:  calc_mean_profile
456
457    USE chem_emissions_mod,                                                    &
458        ONLY:  chem_emissions_setup
459
460    USE chem_modules,                                                          &
461        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
462
463    USE chemistry_model_mod,                                                   &
464        ONLY:  chem_boundary_conds, chem_species
465
466    USE control_parameters,                                                    &
467        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
468               average_count_3d, averaging_interval, averaging_interval_pr,    &
469               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
470               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
471               constant_flux_layer, constant_heatflux,                         &
472               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
473               coupling_start_time, current_timestep_number,                   &
474               disturbance_created, disturbance_energy_limit, dist_range,      &
475               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
476               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
477               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
478               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
479               first_call_lpm, first_call_mas, galilei_transformation,         &
480               humidity, indoor_model, intermediate_timestep_count,            &
481               intermediate_timestep_count_max,                                &
482               land_surface, large_scale_forcing,                              &
483               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
484               multi_agent_system_end, multi_agent_system_start,               &
485               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
486               ocean_mode, passive_scalar, pt_reference,                       &
487               pt_slope_offset, random_heatflux, rans_mode,                    &
488               rans_tke_e, run_coupled, salsa,                                 &
489               simulated_time, simulated_time_chr,                             &
490               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
491               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
492               skip_time_data_output_av, sloping_surface, stop_dt,             &
493               surface_output, terminate_coupled, terminate_run,               &
494               timestep_scheme,                                                &
495               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
496               time_do3d, time_domask, time_dopr, time_dopr_av,                &
497               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
498               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
499               time_run_control, time_since_reference_point, tsc,              &
500               turbulent_inflow, turbulent_outflow, urban_surface,             &
501               use_initial_profile_as_reference,                               &
502               use_single_reference_value, u_gtrans, v_gtrans,                 &
503               virtual_flight, virtual_measurement, wind_turbine,              &
504               ws_scheme_mom, ws_scheme_sca
505
506    USE cpulog,                                                                &
507        ONLY:  cpu_log, log_point, log_point_s
508
509    USE date_and_time_mod,                                                     &
510        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
511
512    USE flight_mod,                                                            &
513        ONLY:  flight_measurement
514
515    USE gust_mod,                                                              &
516        ONLY:  gust_actions, gust_module_enabled
517
518    USE indices,                                                               &
519        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, &
520               nz, nzb_max, advc_flags_1, advc_flags_2, wall_flags_0
521
522    USE indoor_model_mod,                                                      &
523        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
524
525    USE interaction_droplets_ptq_mod,                                          &
526        ONLY:  interaction_droplets_ptq
527
528    USE interfaces
529
530    USE kinds
531
532    USE land_surface_model_mod,                                                &
533        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
534               skip_time_do_lsm
535
536    USE lsf_nudging_mod,                                                       &
537        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
538
539    USE multi_agent_system_mod,                                                &
540        ONLY:  agents_active, multi_agent_system
541
542    USE nesting_offl_mod,                                                      &
543        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
544       
545    USE netcdf_data_input_mod,                                                 &
546        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
547               netcdf_data_input_offline_nesting
548
549    USE ocean_mod,                                                             &
550        ONLY:  prho_reference
551
552    USE particle_attributes,                                                   &
553        ONLY:  particle_advection, particle_advection_start,                   &
554               use_sgs_for_particles, wang_kernel
555
556    USE pegrid
557
558    USE pmc_interface,                                                         &
559        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
560               pmci_synchronize
561
562    USE progress_bar,                                                          &
563        ONLY:  finish_progress_bar, output_progress_bar
564
565    USE prognostic_equations_mod,                                              &
566        ONLY:  prognostic_equations_cache, prognostic_equations_vector
567
568    USE radiation_model_mod,                                                   &
569        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
570              radiation_interaction, radiation_interactions,                   &
571              skip_time_do_radiation, time_radiation
572         
573    USE salsa_mod,                                                             &
574        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast,             &
575              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
576              skip_time_do_salsa                     
577   
578    USE salsa_util_mod,                                                        &
579           ONLY:  sums_salsa_ws_l     
580
581    USE spectra_mod,                                                           &
582        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
583              skip_time_dosp
584
585    USE statistics,                                                            &
586        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l,                &
587               rmask, statistic_regions, weight_substep, sums_l_l,             &
588               sums_us2_ws_l, sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l,   &
589               sums_ws2_ws_l, sums_wspts_ws_l, sums_wsqs_ws_l, sums_wssas_ws_l,&
590               sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l,              &
591               sums_wsnrs_ws_l, sums_wsss_ws_l
592
593    USE surface_layer_fluxes_mod,                                              &
594        ONLY:  surface_layer_fluxes
595
596    USE surface_mod,                                                           &
597        ONLY:  bc_h, surf_def_h, surf_lsm_h, surf_usm_h,                       &
598               enter_surface_arrays, exit_surface_arrays
599
600    USE surface_data_output_mod,                                               &
601        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
602               dt_dosurf_av, surface_data_output,                              &
603               surface_data_output_averaging, skip_time_dosurf,                &
604               skip_time_dosurf_av, time_dosurf, time_dosurf_av
605
606    USE turbulence_closure_mod,                                                &
607        ONLY:  tcm_diffusivities, production_e_init
608
609    USE urban_surface_mod,                                                     &
610        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
611               usm_material_model,                                             &
612               usm_surface_energy_balance, usm_green_heat_model
613
614    USE synthetic_turbulence_generator_mod,                                    &
615        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
616               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
617               use_syn_turb_gen   
618
619    USE user_actions_mod,                                                      &
620        ONLY:  user_actions
621
622
623    USE wind_turbine_model_mod,                                                &
624        ONLY:  wtm_forces
625
626    USE lpm_mod,                                                               &
627        ONLY:  lpm
628
629    USE vertical_nesting_mod,                                                  &
630        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
631               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
632               vnest_deallocate, vnest_init, vnest_init_fine,                  &
633               vnest_start_time
634               
635    USE virtual_measurement_mod,                                               &
636        ONLY:  vm_sampling, vm_time_start
637
638    IMPLICIT NONE
639
640    CHARACTER (LEN=9) ::  time_to_string   !<
641   
642    INTEGER(iwp)      ::  b !< index for aerosol size bins   
643    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
644    INTEGER(iwp)      ::  g !< index for gaseous compounds
645    INTEGER(iwp)      ::  lsp
646    INTEGER(iwp)      ::  lsp_usr   !<
647    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
648
649    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
650                            !< steering of run control output interval
651    REAL(wp) ::  time_since_reference_point_save  !< original value of
652                                                  !< time_since_reference_point
653
654
655! Copy data from arrays_3d
656!$ACC DATA &
657!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
658!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
659!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
660!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
661!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
662!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
663!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
664!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
665!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
666
667!$ACC DATA &
668!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
669!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
670!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
671!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
672!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
673!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
674!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
675!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
676!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
677!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
678!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
679
680!$ACC DATA &
681!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
682!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
683!$ACC COPYIN(zu(nzb:nzt+1)) &
684!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
685!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
686!$ACC COPYIN(ddzw(1:nzt+1)) &
687!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
688!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
689!$ACC COPYIN(ref_state(0:nz+1)) &
690!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
691!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
692!$ACC COPYIN(pt_init(0:nz+1)) &
693!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
694
695! Copy data from control_parameters
696!$ACC DATA &
697!$ACC COPYIN(tsc(1:5))
698
699! Copy data from indices
700!$ACC DATA &
701!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
702!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
703!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
704
705! Copy data from surface_mod
706!$ACC DATA &
707!$ACC COPYIN(bc_h(0:1)) &
708!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
709!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
710!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
711!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
712!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
713!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
714
715! Copy data from statistics
716!$ACC DATA &
717!$ACC COPYIN(hom(nzb+1:nzb_max,1,1:3,0)) &
718!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
719!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
720!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
721!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
722!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
723!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
724!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
725!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
726!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
727!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
728!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
729!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
730!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
731!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
732!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
733!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
734!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
735
736!
737!-- At beginning determine the first time step
738    CALL timestep
739!
740!-- Synchronize the timestep in case of nested run.
741    IF ( nested_run )  THEN
742!
743!--    Synchronization by unifying the time step.
744!--    Global minimum of all time-steps is used for all.
745       CALL pmci_synchronize
746    ENDIF
747
748!
749!-- Determine and print out the run control quantities before the first time
750!-- step of this run. For the initial run, some statistics (e.g. divergence)
751!-- need to be determined first --> CALL flow_statistics at the beginning of
752!-- run_control
753    CALL run_control
754!
755!-- Data exchange between coupled models in case that a call has been omitted
756!-- at the end of the previous run of a job chain.
757    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
758!
759!--    In case of model termination initiated by the local model the coupler
760!--    must not be called because this would again cause an MPI hang.
761       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
762          CALL surface_coupler
763          time_coupling = time_coupling - dt_coupling
764       ENDDO
765       IF (time_coupling == 0.0_wp  .AND.                                      &
766           time_since_reference_point < dt_coupling )                          &
767       THEN
768          time_coupling = time_since_reference_point
769       ENDIF
770    ENDIF
771
772#if defined( __dvrp_graphics )
773!
774!-- Time measurement with dvrp software 
775    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
776#endif
777
778    CALL location_message( 'starting timestep-sequence', .TRUE. )
779!
780!-- Start of the time loop
781    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
782                .NOT. terminate_run )
783
784       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
785!
786!--    Vertical nesting: initialize fine grid
787       IF ( vnested ) THEN
788          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
789             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
790             CALL vnest_init_fine
791             vnest_init = .TRUE.
792             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
793          ENDIF
794       ENDIF
795!
796!--    Determine ug, vg and w_subs in dependence on data from external file
797!--    LSF_DATA
798       IF ( large_scale_forcing .AND. lsf_vert )  THEN
799           CALL ls_forcing_vert ( simulated_time )
800           sums_ls_l = 0.0_wp
801       ENDIF
802
803!
804!--    Set pt_init and q_init to the current profiles taken from
805!--    NUDGING_DATA
806       IF ( nudging )  THEN
807           CALL nudge_ref ( simulated_time )
808!
809!--        Store temperature gradient at the top boundary for possible Neumann
810!--        boundary condition
811           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
812           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
813           IF ( air_chemistry )  THEN
814              DO  lsp = 1, nspec
815                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
816                                - chem_species(lsp)%conc_pr_init(nzt) )       &
817                               / dzu(nzt+1)
818              ENDDO
819           ENDIF
820       ENDIF
821!
822!--    If forcing by larger-scale models is applied, check if new data
823!--    at domain boundaries need to be read.
824       IF ( nesting_offline )  THEN
825          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
826             CALL netcdf_data_input_offline_nesting
827       ENDIF
828
829!
830!--    Execute the gust module actions
831       IF ( gust_module_enabled )  THEN
832          CALL gust_actions( 'before_timestep' )
833       ENDIF
834
835!
836!--    Execute the user-defined actions
837       CALL user_actions( 'before_timestep' )
838
839!
840!--    Calculate forces by wind turbines
841       IF ( wind_turbine )  THEN
842
843          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
844
845          CALL wtm_forces
846
847          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
848
849       ENDIF   
850       
851#ifdef _OPENACC
852       CALL enter_surface_arrays
853#endif
854       
855!
856!--    Start of intermediate step loop
857       intermediate_timestep_count = 0
858       DO  WHILE ( intermediate_timestep_count < &
859                   intermediate_timestep_count_max )
860
861          intermediate_timestep_count = intermediate_timestep_count + 1
862
863!
864!--       Set the steering factors for the prognostic equations which depend
865!--       on the timestep scheme
866          CALL timestep_scheme_steering
867
868!
869!--       Calculate those variables needed in the tendency terms which need
870!--       global communication
871          IF ( .NOT. use_single_reference_value  .AND. &
872               .NOT. use_initial_profile_as_reference )  THEN
873!
874!--          Horizontally averaged profiles to be used as reference state in
875!--          buoyancy terms (WARNING: only the respective last call of
876!--          calc_mean_profile defines the reference state!)
877             IF ( .NOT. neutral )  THEN
878                CALL calc_mean_profile( pt, 4 )
879                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
880             ENDIF
881             IF ( ocean_mode )  THEN
882                CALL calc_mean_profile( rho_ocean, 64 )
883                ref_state(:)  = hom(:,1,64,0)
884             ENDIF
885             IF ( humidity )  THEN
886                CALL calc_mean_profile( vpt, 44 )
887                ref_state(:)  = hom(:,1,44,0)
888             ENDIF
889!
890!--          Assure that ref_state does not become zero at any level
891!--          ( might be the case if a vertical level is completely occupied
892!--            with topography ).
893             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
894                                ref_state == 0.0_wp )
895          ENDIF
896
897          IF ( .NOT. constant_diffusion )  CALL production_e_init
898          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
899               intermediate_timestep_count == 1 )  CALL ws_statistics
900!
901!--       In case of nudging calculate current nudging time scale and horizontal
902!--       means of u, v, pt and q
903          IF ( nudging )  THEN
904             CALL calc_tnudge( simulated_time )
905             CALL calc_mean_profile( u, 1 )
906             CALL calc_mean_profile( v, 2 )
907             CALL calc_mean_profile( pt, 4 )
908             CALL calc_mean_profile( q, 41 )
909          ENDIF
910
911!
912!--       Solve the prognostic equations. A fast cache optimized version with
913!--       only one single loop is used in case of Piascek-Williams advection
914!--       scheme. NEC vector machines use a different version, because
915!--       in the other versions a good vectorization is prohibited due to
916!--       inlining problems.
917          IF ( loop_optimization == 'cache' )  THEN
918             CALL prognostic_equations_cache
919          ELSEIF ( loop_optimization == 'vector' )  THEN
920             CALL prognostic_equations_vector
921          ENDIF
922
923!
924!--       Particle transport/physics with the Lagrangian particle model
925!--       (only once during intermediate steps, because it uses an Euler-step)
926!--       ### particle model should be moved before prognostic_equations, in order
927!--       to regard droplet interactions directly
928          IF ( particle_advection  .AND.                         &
929               time_since_reference_point >= particle_advection_start  .AND. &
930               intermediate_timestep_count == 1 )  THEN
931             CALL lpm
932             first_call_lpm = .FALSE.
933          ENDIF
934
935!
936!--       Interaction of droplets with temperature and mixing ratio.
937!--       Droplet condensation and evaporation is calculated within
938!--       advec_particles.
939          IF ( cloud_droplets  .AND.  &
940               intermediate_timestep_count == intermediate_timestep_count_max )&
941          THEN
942             CALL interaction_droplets_ptq
943          ENDIF
944
945!
946!--       Movement of agents in multi agent system
947          IF ( agents_active  .AND.                                            &
948               time_since_reference_point >= multi_agent_system_start  .AND.   &
949               time_since_reference_point <= multi_agent_system_end    .AND.   &
950               intermediate_timestep_count == 1 )  THEN
951             CALL multi_agent_system
952             first_call_mas = .FALSE.
953          ENDIF
954
955!
956!--       Exchange of ghost points (lateral boundary conditions)
957          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
958
959          CALL exchange_horiz( u_p, nbgp )
960          CALL exchange_horiz( v_p, nbgp )
961          CALL exchange_horiz( w_p, nbgp )
962          CALL exchange_horiz( pt_p, nbgp )
963          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
964          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
965               .OR.  use_sgs_for_particles )  THEN
966             IF ( rans_tke_e )  THEN
967                CALL exchange_horiz( diss_p, nbgp )
968             ELSE
969                CALL exchange_horiz( diss, nbgp )
970             ENDIF
971          ENDIF
972          IF ( ocean_mode )  THEN
973             CALL exchange_horiz( sa_p, nbgp )
974             CALL exchange_horiz( rho_ocean, nbgp )
975             CALL exchange_horiz( prho, nbgp )
976          ENDIF
977          IF ( humidity )  THEN
978             CALL exchange_horiz( q_p, nbgp )
979             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
980                CALL exchange_horiz( qc_p, nbgp )
981                CALL exchange_horiz( nc_p, nbgp )
982             ENDIF
983             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
984                CALL exchange_horiz( qr_p, nbgp )
985                CALL exchange_horiz( nr_p, nbgp )
986             ENDIF
987          ENDIF
988          IF ( cloud_droplets )  THEN
989             CALL exchange_horiz( ql, nbgp )
990             CALL exchange_horiz( ql_c, nbgp )
991             CALL exchange_horiz( ql_v, nbgp )
992             CALL exchange_horiz( ql_vp, nbgp )
993          ENDIF
994          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
995          IF ( air_chemistry )  THEN
996             DO  lsp = 1, nspec
997                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
998!
999!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1000                lsp_usr = 1
1001                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1002                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1003                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
1004                                                chem_species(lsp)%conc_pr_init )
1005                   ENDIF
1006                   lsp_usr = lsp_usr + 1
1007                ENDDO
1008             ENDDO
1009          ENDIF
1010
1011          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1012          THEN
1013             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1014             DO  b = 1, nbins
1015                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1016                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1017                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
1018                                           aerosol_number(b)%init )
1019                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1020                DO  c = 1, ncc_tot
1021                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
1022                                        nbgp )
1023                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1024                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
1025                                              aerosol_mass((c-1)*nbins+b)%init )
1026                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1027                ENDDO
1028             ENDDO
1029             IF ( .NOT. salsa_gases_from_chem )  THEN
1030                DO  g = 1, ngast
1031                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1032                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1033                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
1034                                              salsa_gas(g)%init )
1035                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1036             ENDDO
1037             ENDIF
1038             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1039          ENDIF         
1040          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1041
1042!
1043!--       Boundary conditions for the prognostic quantities (except of the
1044!--       velocities at the outflow in case of a non-cyclic lateral wall)
1045          CALL boundary_conds
1046!
1047!--       Swap the time levels in preparation for the next time step.
1048          CALL swap_timelevel
1049
1050!
1051!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1052          IF ( vnest_init ) THEN
1053             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
1054             CALL vnest_anterpolate
1055             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
1056          ENDIF
1057
1058          IF ( nested_run )  THEN
1059
1060             CALL cpu_log( log_point(60), 'nesting', 'start' )
1061!
1062!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1063!--          and pmci_child_datatrans are called inside the wrapper
1064!--          subroutine pmci_datatrans according to the control parameters
1065!--          nesting_mode and nesting_datatransfer_mode.
1066!--          TO_DO: why is nesting_mode given as a parameter here?
1067             CALL pmci_datatrans( nesting_mode )
1068
1069             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
1070                  nesting_mode == 'vertical' )  THEN
1071!
1072!--             Exchange_horiz is needed for all parent-domains after the
1073!--             anterpolation
1074                CALL exchange_horiz( u, nbgp )
1075                CALL exchange_horiz( v, nbgp )
1076                CALL exchange_horiz( w, nbgp )
1077                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1078
1079                IF ( humidity )  THEN
1080
1081                   CALL exchange_horiz( q, nbgp )
1082
1083                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1084                       CALL exchange_horiz( qc, nbgp )
1085                       CALL exchange_horiz( nc, nbgp )
1086                   ENDIF
1087                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1088                       CALL exchange_horiz( qr, nbgp )
1089                       CALL exchange_horiz( nr, nbgp )
1090                   ENDIF
1091
1092                ENDIF
1093
1094                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1095               
1096                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1097
1098                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
1099                                                      rans_tke_e )             &
1100                   CALL exchange_horiz( diss, nbgp )
1101
1102                IF ( air_chemistry )  THEN
1103                   DO  n = 1, nspec     
1104                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1105                   ENDDO
1106                ENDIF
1107
1108             ENDIF
1109!
1110!--          Set boundary conditions again after interpolation and anterpolation.
1111             CALL pmci_boundary_conds
1112
1113             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1114
1115          ENDIF
1116
1117!
1118!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1119!--       when a sloping surface is used
1120          IF ( sloping_surface )  THEN
1121             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
1122                                                    pt_slope_offset
1123             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1124                                                    pt_slope_offset
1125          ENDIF
1126
1127!
1128!--       Impose a turbulent inflow using the recycling method
1129          IF ( turbulent_inflow )  CALL  inflow_turbulence
1130
1131!
1132!--       Set values at outflow boundary using the special outflow condition
1133          IF ( turbulent_outflow )  CALL  outflow_turbulence
1134
1135!
1136!--       Impose a random perturbation on the horizontal velocity field
1137          IF ( create_disturbances  .AND.                                      &
1138               ( call_psolver_at_all_substeps  .AND.                           &
1139               intermediate_timestep_count == intermediate_timestep_count_max )&
1140          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1141               intermediate_timestep_count == 1 ) )                            &
1142          THEN
1143             time_disturb = time_disturb + dt_3d
1144             IF ( time_disturb >= dt_disturb )  THEN
1145                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1146                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1147                   CALL disturb_field( 'u', tend, u )
1148                   CALL disturb_field( 'v', tend, v )
1149                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1150                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1151                THEN
1152!
1153!--                Runs with a non-cyclic lateral wall need perturbations
1154!--                near the inflow throughout the whole simulation
1155                   dist_range = 1
1156                   CALL disturb_field( 'u', tend, u )
1157                   CALL disturb_field( 'v', tend, v )
1158                   dist_range = 0
1159                ENDIF
1160                time_disturb = time_disturb - dt_disturb
1161             ENDIF
1162          ENDIF
1163
1164!
1165!--       Map forcing data derived from larger scale model onto domain
1166!--       boundaries.
1167          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1168                                       intermediate_timestep_count_max  )      &
1169             CALL nesting_offl_bc
1170!
1171!--       Impose a turbulent inflow using synthetic generated turbulence,
1172!--       only once per time step.
1173          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1174             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1175             CALL stg_main
1176          ENDIF
1177!
1178!--       Ensure mass conservation. This need to be done after imposing
1179!--       synthetic turbulence and top boundary condition for pressure is set to
1180!--       Neumann conditions.
1181!--       Is this also required in case of Dirichlet?
1182          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1183!
1184!--       Reduce the velocity divergence via the equation for perturbation
1185!--       pressure.
1186          IF ( intermediate_timestep_count == 1  .OR. &
1187                call_psolver_at_all_substeps )  THEN
1188
1189             IF (  vnest_init ) THEN
1190!
1191!--             Compute pressure in the CG, interpolate top boundary conditions
1192!--             to the FG and then compute pressure in the FG
1193                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1194
1195                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1196                CALL vnest_boundary_conds
1197                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1198 
1199                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1200
1201!--             Anterpolate TKE, satisfy Germano Identity
1202                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1203                CALL vnest_anterpolate_e
1204                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1205
1206             ELSE
1207
1208                CALL pres
1209
1210             ENDIF
1211
1212          ENDIF
1213
1214!
1215!--       If required, compute liquid water content
1216          IF ( bulk_cloud_model )  THEN
1217             CALL calc_liquid_water_content
1218          ENDIF
1219!
1220!--       If required, compute virtual potential temperature
1221          IF ( humidity )  THEN
1222             CALL compute_vpt
1223          ENDIF
1224
1225!
1226!--       Compute the diffusion quantities
1227          IF ( .NOT. constant_diffusion )  THEN
1228
1229!
1230!--          Determine surface fluxes shf and qsws and surface values
1231!--          pt_surface and q_surface in dependence on data from external
1232!--          file LSF_DATA respectively
1233             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1234                 intermediate_timestep_count == intermediate_timestep_count_max )&
1235             THEN
1236                CALL ls_forcing_surf( simulated_time )
1237             ENDIF
1238
1239!
1240!--          First the vertical (and horizontal) fluxes in the surface
1241!--          (constant flux) layer are computed
1242             IF ( constant_flux_layer )  THEN
1243                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1244                CALL surface_layer_fluxes
1245                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1246             ENDIF
1247!
1248!--          If required, solve the energy balance for the surface and run soil
1249!--          model. Call for horizontal as well as vertical surfaces
1250             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1251
1252                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1253!
1254!--             Call for horizontal upward-facing surfaces
1255                CALL lsm_energy_balance( .TRUE., -1 )
1256                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1257!
1258!--             Call for northward-facing surfaces
1259                CALL lsm_energy_balance( .FALSE., 0 )
1260                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1261!
1262!--             Call for southward-facing surfaces
1263                CALL lsm_energy_balance( .FALSE., 1 )
1264                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1265!
1266!--             Call for eastward-facing surfaces
1267                CALL lsm_energy_balance( .FALSE., 2 )
1268                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1269!
1270!--             Call for westward-facing surfaces
1271                CALL lsm_energy_balance( .FALSE., 3 )
1272                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1273               
1274!
1275!--             At the end, set boundary conditons for potential temperature
1276!--             and humidity after running the land-surface model. This
1277!--             might be important for the nesting, where arrays are transfered.
1278                CALL lsm_boundary_condition
1279
1280               
1281                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1282             ENDIF
1283!
1284!--          If required, solve the energy balance for urban surfaces and run
1285!--          the material heat model
1286             IF (urban_surface) THEN
1287                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1288               
1289                CALL usm_surface_energy_balance( .FALSE. )
1290                IF ( usm_material_model )  THEN
1291                   CALL usm_green_heat_model
1292                   CALL usm_material_heat_model ( .FALSE. )
1293                ENDIF
1294
1295!
1296!--             At the end, set boundary conditons for potential temperature
1297!--             and humidity after running the urban-surface model. This
1298!--             might be important for the nesting, where arrays are transfered.
1299                CALL usm_boundary_condition
1300
1301                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1302             ENDIF
1303!
1304!--          Compute the diffusion coefficients
1305             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1306             IF ( .NOT. humidity ) THEN
1307                IF ( ocean_mode )  THEN
1308                   CALL tcm_diffusivities( prho, prho_reference )
1309                ELSE
1310                   CALL tcm_diffusivities( pt, pt_reference )
1311                ENDIF
1312             ELSE
1313                CALL tcm_diffusivities( vpt, pt_reference )
1314             ENDIF
1315             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1316!
1317!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1318             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1319
1320          ENDIF
1321
1322!
1323!--       If required, calculate radiative fluxes and heating rates
1324          IF ( radiation .AND. intermediate_timestep_count                     &
1325               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1326               skip_time_do_radiation )  THEN
1327
1328               time_radiation = time_radiation + dt_3d
1329
1330             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1331             THEN
1332
1333                CALL cpu_log( log_point(50), 'radiation', 'start' )
1334
1335                IF ( .NOT. force_radiation_call )  THEN
1336                   time_radiation = time_radiation - dt_radiation
1337                ENDIF
1338
1339!
1340!--             Adjust the current time to the time step of the radiation model.
1341!--             Needed since radiation is pre-calculated and stored only on apparent
1342!--             solar positions
1343                time_since_reference_point_save = time_since_reference_point
1344                time_since_reference_point =                                   &
1345                                    REAL( FLOOR( time_since_reference_point /  &
1346                                                 dt_radiation), wp )           &
1347                                             * dt_radiation
1348
1349                CALL radiation_control
1350
1351                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1352
1353                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1354                     radiation_interactions )  THEN
1355                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1356                   CALL radiation_interaction
1357                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1358                ENDIF
1359   
1360!
1361!--             Return the current time to its original value
1362                time_since_reference_point = time_since_reference_point_save
1363
1364             ENDIF
1365          ENDIF
1366
1367       ENDDO   ! Intermediate step loop
1368
1369!
1370!--    Will be used at some point by flow_statistics.
1371       !$ACC UPDATE HOST(e, u, v, w, pt) &
1372       !$ACC HOST(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
1373       !$ACC HOST(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
1374       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1375       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1376       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1377       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1378       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1379       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1380       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1381       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1382       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1383       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1384       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1385       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1386       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1387       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1388       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1389#ifdef _OPENACC
1390       CALL exit_surface_arrays
1391#endif
1392
1393!
1394!--    If required, consider chemical emissions
1395       IF ( air_chemistry  .AND.  do_emis )  THEN
1396!
1397!--       Update the time --> kanani: revise location of this CALL
1398          CALL calc_date_and_time
1399!
1400!--       Call emission routine only once an hour
1401          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1402             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1403             hour_call_emis = hour_of_year
1404          ENDIF
1405       ENDIF
1406
1407!
1408!--    If required, calculate indoor temperature, waste heat, heat flux
1409!--    through wall, etc.
1410!--    dt_indoor steers the frequency of the indoor model calculations
1411       IF ( indoor_model )  THEN
1412
1413          time_indoor = time_indoor + dt_3d
1414
1415          IF ( time_indoor >= dt_indoor )  THEN
1416
1417             time_indoor = time_indoor - dt_indoor
1418
1419             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1420             CALL im_main_heatcool
1421             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1422
1423          ENDIF
1424       ENDIF
1425!
1426!--    Increase simulation time and output times
1427       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1428       current_timestep_number    = current_timestep_number + 1
1429       simulated_time             = simulated_time   + dt_3d
1430       time_since_reference_point = simulated_time - coupling_start_time
1431       simulated_time_chr         = time_to_string( time_since_reference_point )
1432
1433
1434
1435
1436       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1437          time_do_av         = time_do_av       + dt_3d
1438       ENDIF
1439       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1440          time_do2d_xy       = time_do2d_xy     + dt_3d
1441       ENDIF
1442       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1443          time_do2d_xz       = time_do2d_xz     + dt_3d
1444       ENDIF
1445       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1446          time_do2d_yz       = time_do2d_yz     + dt_3d
1447       ENDIF
1448       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1449          time_do3d          = time_do3d        + dt_3d
1450       ENDIF
1451       DO  mid = 1, masks
1452          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1453             time_domask(mid)= time_domask(mid) + dt_3d
1454          ENDIF
1455       ENDDO
1456       time_dvrp          = time_dvrp        + dt_3d
1457       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1458          time_dosp       = time_dosp        + dt_3d
1459       ENDIF
1460       time_dots          = time_dots        + dt_3d
1461       IF ( .NOT. first_call_lpm )  THEN
1462          time_dopts      = time_dopts       + dt_3d
1463       ENDIF
1464       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1465          time_dopr       = time_dopr        + dt_3d
1466       ENDIF
1467       time_dopr_listing  = time_dopr_listing + dt_3d
1468       time_run_control   = time_run_control + dt_3d
1469!
1470!--    Increment time-counter for surface output
1471       IF ( surface_output )  THEN
1472          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1473             time_dosurf    = time_dosurf + dt_3d
1474          ENDIF
1475          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1476             time_dosurf_av = time_dosurf_av + dt_3d
1477          ENDIF
1478       ENDIF
1479!
1480!--    In case of synthetic turbulence generation and parametrized turbulence
1481!--    information, update the time counter and if required, adjust the
1482!--    STG to new atmospheric conditions.
1483       IF ( use_syn_turb_gen  )  THEN
1484          IF ( parametrize_inflow_turbulence )  THEN
1485             time_stg_adjust = time_stg_adjust + dt_3d
1486             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1487          ENDIF
1488          time_stg_call = time_stg_call + dt_3d
1489       ENDIF
1490
1491!
1492!--    Data exchange between coupled models
1493       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1494                                          .AND. .NOT. vnested )  THEN
1495          time_coupling = time_coupling + dt_3d
1496
1497!
1498!--       In case of model termination initiated by the local model
1499!--       (terminate_coupled > 0), the coupler must be skipped because it would
1500!--       cause an MPI intercomminucation hang.
1501!--       If necessary, the coupler will be called at the beginning of the
1502!--       next restart run.
1503          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1504             CALL surface_coupler
1505             time_coupling = time_coupling - dt_coupling
1506          ENDDO
1507       ENDIF
1508
1509!
1510!--    Biometeorology calculation of stationary thermal indices
1511!--    Todo (kanani): biometeorology needs own time_... treatment.
1512!--                   It might be that time_do2d_xy differs from time_do3d,
1513!--                   and then we might get trouble with the biomet output,
1514!--                   because we can have 2d and/or 3d biomet output!!
1515       IF (         biometeorology  &
1516             .AND.  ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )          &
1517                      .OR.                                                                                   &
1518                      ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1519                    ) )  THEN
1520!
1521!--       If required, do thermal comfort calculations
1522          IF ( thermal_comfort )  THEN
1523             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1524             time_bio_results = time_since_reference_point
1525          ENDIF
1526!
1527!--       If required, do UV exposure calculations
1528          IF ( uv_exposure )  THEN
1529             CALL uvem_calc_exposure
1530          ENDIF
1531       ENDIF
1532
1533!
1534!--    Execute the gust module actions
1535       IF ( gust_module_enabled )  THEN
1536          CALL gust_actions( 'after_integration' )
1537       ENDIF
1538
1539!
1540!--    Execute user-defined actions
1541       CALL user_actions( 'after_integration' )
1542
1543!
1544!--    If Galilei transformation is used, determine the distance that the
1545!--    model has moved so far
1546       IF ( galilei_transformation )  THEN
1547          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1548          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1549       ENDIF
1550
1551!
1552!--    Check, if restart is necessary (because cpu-time is expiring or
1553!--    because it is forced by user) and set stop flag
1554!--    This call is skipped if the remote model has already initiated a restart.
1555       IF ( .NOT. terminate_run )  CALL check_for_restart
1556
1557!
1558!--    Carry out statistical analysis and output at the requested output times.
1559!--    The MOD function is used for calculating the output time counters (like
1560!--    time_dopr) in order to regard a possible decrease of the output time
1561!--    interval in case of restart runs
1562
1563!
1564!--    Set a flag indicating that so far no statistics have been created
1565!--    for this time step
1566       flow_statistics_called = .FALSE.
1567
1568!
1569!--    If required, call flow_statistics for averaging in time
1570       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1571            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1572            time_since_reference_point >= skip_time_dopr )  THEN
1573          time_dopr_av = time_dopr_av + dt_3d
1574          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1575             do_sum = .TRUE.
1576             time_dopr_av = MOD( time_dopr_av, &
1577                                    MAX( dt_averaging_input_pr, dt_3d ) )
1578          ENDIF
1579       ENDIF
1580       IF ( do_sum )  CALL flow_statistics
1581
1582!
1583!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1584       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1585            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.    &
1586            time_since_reference_point >= skip_time_data_output_av )           &
1587       THEN
1588          time_do_sla = time_do_sla + dt_3d
1589          IF ( time_do_sla >= dt_averaging_input )  THEN
1590             CALL sum_up_3d_data
1591             average_count_3d = average_count_3d + 1
1592             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1593          ENDIF
1594       ENDIF
1595!
1596!--    Average surface data
1597       IF ( surface_output )  THEN
1598          IF (         averaging_interval_surf /= 0.0_wp                               &
1599                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1600                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1601             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1602                CALL surface_data_output_averaging
1603                average_count_surf = average_count_surf + 1
1604             ENDIF
1605          ENDIF
1606       ENDIF
1607
1608!
1609!--    Calculate spectra for time averaging
1610       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1611            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1612            time_since_reference_point >= skip_time_dosp )  THEN
1613          time_dosp_av = time_dosp_av + dt_3d
1614          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1615             CALL calc_spectra
1616             time_dosp_av = MOD( time_dosp_av, &
1617                                 MAX( dt_averaging_input_pr, dt_3d ) )
1618          ENDIF
1619       ENDIF
1620
1621!
1622!--    Call flight module and output data
1623       IF ( virtual_flight )  THEN
1624          CALL flight_measurement
1625          CALL data_output_flight
1626       ENDIF
1627!
1628!--    Take virtual measurements
1629       IF ( virtual_measurement  .AND.                                         &
1630            vm_time_start <= time_since_reference_point )  CALL vm_sampling
1631
1632!
1633!--    Profile output (ASCII) on file
1634       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1635          CALL print_1d
1636          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1637                                                           dt_3d ) )
1638       ENDIF
1639
1640!
1641!--    Graphic output for PROFIL
1642       IF (        time_dopr >= dt_dopr                                     &
1643            .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1644          IF ( dopr_n /= 0 )  CALL data_output_profiles
1645          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1646          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1647       ENDIF
1648
1649!
1650!--    Graphic output for time series
1651       IF ( time_dots >= dt_dots )  THEN
1652          CALL data_output_tseries
1653          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1654       ENDIF
1655
1656!
1657!--    Output of spectra (formatted for use with PROFIL), in case of no
1658!--    time averaging, spectra has to be calculated before
1659       IF (         time_dosp >= dt_dosp                                     &
1660             .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1661          IF ( average_count_sp == 0 )  CALL calc_spectra
1662          CALL data_output_spectra
1663          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1664       ENDIF
1665
1666!
1667!--    2d-data output (cross-sections)
1668       IF (         time_do2d_xy >= dt_do2d_xy                               &
1669             .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1670          CALL data_output_2d( 'xy', 0 )
1671          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1672       ENDIF
1673       IF (         time_do2d_xz >= dt_do2d_xz                               &
1674             .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1675          CALL data_output_2d( 'xz', 0 )
1676          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1677       ENDIF
1678       IF (         time_do2d_yz >= dt_do2d_yz                               &
1679             .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1680          CALL data_output_2d( 'yz', 0 )
1681          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1682       ENDIF
1683
1684!
1685!--    3d-data output (volume data)
1686       IF (         time_do3d >= dt_do3d                                     & 
1687             .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1688          CALL data_output_3d( 0 )
1689          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1690       ENDIF
1691
1692!
1693!--    Masked data output
1694       DO  mid = 1, masks
1695          IF (         time_domask(mid) >= dt_domask(mid)                          &
1696                .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1697             CALL data_output_mask( 0 )
1698             time_domask(mid) = MOD( time_domask(mid),                             &
1699                                     MAX( dt_domask(mid), dt_3d ) )
1700          ENDIF
1701       ENDDO
1702
1703!
1704!--    Output of time-averaged 2d/3d/masked data
1705       IF (         time_do_av >= dt_data_output_av                                &
1706             .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1707          CALL average_3d_data
1708          CALL data_output_2d( 'xy', 1 )
1709          CALL data_output_2d( 'xz', 1 )
1710          CALL data_output_2d( 'yz', 1 )
1711          CALL data_output_3d( 1 )
1712          DO  mid = 1, masks
1713             CALL data_output_mask( 1 )
1714          ENDDO
1715          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1716       ENDIF
1717!
1718!--    Output of surface data, instantaneous and averaged data
1719       IF ( surface_output )  THEN
1720          IF (         time_dosurf >= dt_dosurf                                    &
1721                .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1722             CALL surface_data_output( 0 )
1723             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1724          ENDIF
1725          IF (         time_dosurf_av >= dt_dosurf_av                              &
1726                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1727             CALL surface_data_output( 1 )
1728             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1729          ENDIF
1730       ENDIF
1731
1732!
1733!--    Output of particle time series
1734       IF ( particle_advection )  THEN
1735          IF ( time_dopts >= dt_dopts  .OR.                                    &
1736               ( time_since_reference_point >= particle_advection_start  .AND. &
1737                 first_call_lpm ) )  THEN
1738             CALL data_output_ptseries
1739             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1740          ENDIF
1741       ENDIF
1742
1743!
1744!--    Output of dvrp-graphics (isosurface, particles, slicer)
1745#if defined( __dvrp_graphics )
1746       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1747#endif
1748       IF ( time_dvrp >= dt_dvrp )  THEN
1749          CALL data_output_dvrp
1750          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1751       ENDIF
1752#if defined( __dvrp_graphics )
1753       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1754#endif
1755
1756!
1757!--    If required, set the heat flux for the next time step at a random value
1758       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1759          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1760          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1761          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1762       ENDIF
1763
1764!
1765!--    Execute the gust module actions
1766       IF ( gust_module_enabled )  THEN
1767          CALL gust_actions( 'after_timestep' )
1768       ENDIF
1769
1770!
1771!--    Execute user-defined actions
1772       CALL user_actions( 'after_timestep' )
1773
1774!
1775!--    Determine size of next time step. Save timestep dt_3d because it is
1776!--    newly calculated in routine timestep, but required further below for
1777!--    steering the run control output interval
1778       dt_3d_old = dt_3d
1779       CALL timestep
1780
1781!
1782!--    Synchronize the timestep in case of nested run.
1783       IF ( nested_run )  THEN
1784!
1785!--       Synchronize by unifying the time step.
1786!--       Global minimum of all time-steps is used for all.
1787          CALL pmci_synchronize
1788       ENDIF
1789
1790!
1791!--    Computation and output of run control parameters.
1792!--    This is also done whenever perturbations have been imposed
1793       IF ( time_run_control >= dt_run_control  .OR.                     &
1794            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1795       THEN
1796          CALL run_control
1797          IF ( time_run_control >= dt_run_control )  THEN
1798             time_run_control = MOD( time_run_control, &
1799                                     MAX( dt_run_control, dt_3d_old ) )
1800          ENDIF
1801       ENDIF
1802
1803!
1804!--    Output elapsed simulated time in form of a progress bar on stdout
1805       IF ( myid == 0 )  CALL output_progress_bar
1806
1807       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1808
1809
1810    ENDDO   ! time loop
1811
1812!$ACC END DATA
1813!$ACC END DATA
1814!$ACC END DATA
1815!$ACC END DATA
1816!$ACC END DATA
1817!$ACC END DATA
1818!$ACC END DATA
1819
1820!
1821!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1822    IF ( vnest_init )  CALL vnest_deallocate
1823
1824    IF ( myid == 0 )  CALL finish_progress_bar
1825
1826#if defined( __dvrp_graphics )
1827    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1828#endif
1829
1830    CALL location_message( 'finished time-stepping', .TRUE. )
1831
1832 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.