source: palm/trunk/SOURCE/time_integration.f90 @ 3589

Last change on this file since 3589 was 3589, checked in by suehring, 3 years ago

Remove erroneous UTF encoding; last commit documented

  • Property svn:keywords set to Id
File size: 63.8 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2018 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3589 2018-11-30 15:09:51Z suehring $
27! Move the control parameter "salsa" from salsa_mod to control_parameters
28! (M. Kurppa)
29!
30! 3582 2018-11-29 19:16:36Z suehring
31! dom_dwd_user, Schrempf:
32! Changes due to merge of uv exposure model into biometeorology_mod.
33!
34! 3525 2018-11-14 16:06:14Z kanani
35! Changes related to clean-up of biometeorology (dom_dwd_user)
36!
37! 3524 2018-11-14 13:36:44Z raasch
38! unused variables removed
39!
40! 3484 2018-11-02 14:41:25Z hellstea
41! pmci_ensure_nest_mass_conservation is premanently removed
42!
43! 3473 2018-10-30 20:50:15Z suehring
44! new module for virtual measurements introduced
45!
46! 3472 2018-10-30 20:43:50Z suehring
47! Add indoor model (kanani, srissman, tlang)
48!
49! 3467 2018-10-30 19:05:21Z suehring
50! Implementation of a new aerosol module salsa.
51!
52! 3448 2018-10-29 18:14:31Z kanani
53! Add biometeorology
54!
55! 3421 2018-10-24 18:39:32Z gronemeier
56! Surface data output
57!
58! 3418 2018-10-24 16:07:39Z kanani
59! call to material_heat_model now with check if spinup runs (rvtils)
60!
61! 3378 2018-10-19 12:34:59Z kanani
62! merge from radiation branch (r3362) into trunk
63! (moh.hefny):
64! Bugfix in the if statement to call radiation_interaction
65!
66! 3347 2018-10-15 14:21:08Z suehring
67! - offline nesting separated from large-scale forcing module
68! - changes for synthetic turbulence generator
69!
70! 3343 2018-10-15 10:38:52Z suehring
71! - Formatting, clean-up, comments (kanani)
72! - Added CALL to chem_emissions_setup (Russo)
73! - Code added for decycling chemistry (basit)
74!
75! 3294 2018-10-01 02:37:10Z raasch
76! changes concerning modularization of ocean option
77!
78! 3274 2018-09-24 15:42:55Z knoop
79! Modularization of all bulk cloud physics code components
80!
81! 3241 2018-09-12 15:02:00Z raasch
82! unused variables removed
83!
84! 3198 2018-08-15 09:23:10Z sward
85! Added multi_agent_system_end; defined start time for MAS relative to
86! time_since_reference_point
87!
88! 3183 2018-07-27 14:25:55Z suehring
89! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
90! Rename subroutines and variables in COSMO nesting mode
91!
92! 3182 2018-07-27 13:36:03Z suehring
93! Added multi agent system
94!
95! 3042 2018-05-25 10:44:37Z schwenkel
96! Changed the name specific humidity to mixing ratio
97!
98! 3040 2018-05-25 10:22:08Z schwenkel
99! Fixed bug in IF statement
100! Ensure that the time when calling the radiation to be the time step of the
101! pre-calculated time when first calculate the positions of the sun
102!
103! 3004 2018-04-27 12:33:25Z Giersch
104! First call of flow_statistics has been removed. It is already called in
105! run_control itself
106!
107! 2984 2018-04-18 11:51:30Z hellstea
108! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
109! as seemingly unnecessary.
110!
111! 2941 2018-04-03 11:54:58Z kanani
112! Deduct spinup_time from RUN_CONTROL output of main 3d run
113! (use time_since_reference_point instead of simulated_time)
114!
115! 2938 2018-03-27 15:52:42Z suehring
116! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
117!
118! 2936 2018-03-27 14:49:27Z suehring
119! Little formatting adjustment.
120!
121! 2817 2018-02-19 16:32:21Z knoop
122! Preliminary gust module interface implemented
123!
124! 2801 2018-02-14 16:01:55Z thiele
125! Changed lpm from subroutine to module.
126! Introduce particle transfer in nested models.
127!
128! 2776 2018-01-31 10:44:42Z Giersch
129! Variable use_synthetic_turbulence_generator has been abbreviated
130!
131! 2773 2018-01-30 14:12:54Z suehring
132! - Nesting for chemical species
133!
134! 2766 2018-01-22 17:17:47Z kanani
135! Removed preprocessor directive __chem
136!
137! 2718 2018-01-02 08:49:38Z maronga
138! Corrected "Former revisions" section
139!
140! 2696 2017-12-14 17:12:51Z kanani
141! - Change in file header (GPL part)
142! - Implementation of uv exposure model (FK)
143! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
144! - renamed diffusivities to tcm_diffusivities (TG)
145! - implement prognostic equation for diss (TG)
146! - Moved/commented CALL to chem_emissions (FK)
147! - Added CALL to chem_emissions (FK)
148! - Implementation of chemistry module (FK)
149! - Calls for setting boundary conditions in USM and LSM (MS)
150! - Large-scale forcing with larger-scale models implemented (MS)
151! - Rename usm_radiation into radiation_interactions; merge with branch
152!   radiation (MS)
153! - added call for usm_green_heat_model for green building surfaces (RvT)
154! - added call for usm_temperature_near_surface for use in indoor model (RvT)
155!
156! 2617 2017-11-16 12:47:24Z suehring
157! Bugfix, assure that the reference state does not become zero.
158!
159! 2563 2017-10-19 15:36:10Z Giersch
160! Variable wind_turbine moved to module control_parameters
161!
162! 2365 2017-08-21 14:59:59Z kanani
163! Vertical grid nesting implemented (SadiqHuq)
164!
165! 2320 2017-07-21 12:47:43Z suehring
166! Set bottom boundary conditions after nesting interpolation and anterpolation
167!
168! 2299 2017-06-29 10:14:38Z maronga
169! Call of soil model adjusted
170!
171! 2292 2017-06-20 09:51:42Z schwenkel
172! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
173! includes two more prognostic equations for cloud drop concentration (nc) 
174! and cloud water content (qc).
175!
176! 2271 2017-06-09 12:34:55Z sward
177! Start timestep message changed
178!
179! 2259 2017-06-08 09:09:11Z gronemeier
180! Implemented synthetic turbulence generator
181!
182! 2233 2017-05-30 18:08:54Z suehring
183!
184! 2232 2017-05-30 17:47:52Z suehring
185! Adjustments to new topography and surface concept
186! Modify passed parameters for disturb_field
187!
188! 2178 2017-03-17 11:07:39Z hellstea
189! Setting perturbations at all times near inflow boundary is removed
190! in case of nested boundaries
191!
192! 2174 2017-03-13 08:18:57Z maronga
193! Added support for nesting with cloud microphysics
194!
195! 2118 2017-01-17 16:38:49Z raasch
196! OpenACC directives and related code removed
197!
198! 2050 2016-11-08 15:00:55Z gronemeier
199! Implement turbulent outflow condition
200!
201! 2031 2016-10-21 15:11:58Z knoop
202! renamed variable rho to rho_ocean
203!
204! 2011 2016-09-19 17:29:57Z kanani
205! Flag urban_surface is now defined in module control_parameters,
206! removed commented CALLs of global_min_max.
207!
208! 2007 2016-08-24 15:47:17Z kanani
209! Added CALLs for new urban surface model
210!
211! 2000 2016-08-20 18:09:15Z knoop
212! Forced header and separation lines into 80 columns
213!
214! 1976 2016-07-27 13:28:04Z maronga
215! Simplified calls to radiation model
216!
217! 1960 2016-07-12 16:34:24Z suehring
218! Separate humidity and passive scalar
219!
220! 1957 2016-07-07 10:43:48Z suehring
221! flight module added
222!
223! 1919 2016-05-27 14:51:23Z raasch
224! Initial version of purely vertical nesting introduced.
225!
226! 1918 2016-05-27 14:35:57Z raasch
227! determination of time step moved to the end of the time step loop,
228! the first time step is now always calculated before the time step loop (i.e.
229! also in case of restart runs)
230!
231! 1914 2016-05-26 14:44:07Z witha
232! Added call for wind turbine model
233!
234! 1878 2016-04-19 12:30:36Z hellstea
235! Synchronization for nested runs rewritten
236!
237! 1853 2016-04-11 09:00:35Z maronga
238! Adjusted for use with radiation_scheme = constant
239!
240! 1849 2016-04-08 11:33:18Z hoffmann
241! Adapted for modularization of microphysics
242!
243! 1833 2016-04-07 14:23:03Z raasch
244! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
245!
246! 1831 2016-04-07 13:15:51Z hoffmann
247! turbulence renamed collision_turbulence
248!
249! 1822 2016-04-07 07:49:42Z hoffmann
250! icloud_scheme replaced by microphysics_*
251!
252! 1808 2016-04-05 19:44:00Z raasch
253! output message in case unscheduled radiation calls removed
254!
255! 1797 2016-03-21 16:50:28Z raasch
256! introduction of different datatransfer modes
257!
258! 1791 2016-03-11 10:41:25Z raasch
259! call of pmci_update_new removed
260!
261! 1786 2016-03-08 05:49:27Z raasch
262! +module spectrum
263!
264! 1783 2016-03-06 18:36:17Z raasch
265! switch back of netcdf data format for mask output moved to the mask output
266! routine
267!
268! 1781 2016-03-03 15:12:23Z raasch
269! some pmc calls removed at the beginning (before timeloop),
270! pmc initialization moved to the main program
271!
272! 1764 2016-02-28 12:45:19Z raasch
273! PMC_ACTIVE flags removed,
274! bugfix: nest synchronization after first call of timestep
275!
276! 1762 2016-02-25 12:31:13Z hellstea
277! Introduction of nested domain feature
278!
279! 1736 2015-12-04 08:56:33Z raasch
280! no perturbations added to total domain if energy limit has been set zero
281!
282! 1691 2015-10-26 16:17:44Z maronga
283! Added option for spin-ups without land surface and radiation models. Moved calls
284! for radiation and lan surface schemes.
285!
286! 1682 2015-10-07 23:56:08Z knoop
287! Code annotations made doxygen readable
288!
289! 1671 2015-09-25 03:29:37Z raasch
290! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
291! for particles
292!
293! 1585 2015-04-30 07:05:52Z maronga
294! Moved call of radiation scheme. Added support for RRTM
295!
296! 1551 2015-03-03 14:18:16Z maronga
297! Added interface for different radiation schemes.
298!
299! 1496 2014-12-02 17:25:50Z maronga
300! Added calls for the land surface model and radiation scheme
301!
302! 1402 2014-05-09 14:25:13Z raasch
303! location messages modified
304!
305! 1384 2014-05-02 14:31:06Z raasch
306! location messages added
307!
308! 1380 2014-04-28 12:40:45Z heinze
309! CALL of nudge_ref added
310! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
311!
312! 1365 2014-04-22 15:03:56Z boeske
313! Reset sums_ls_l to zero at each timestep
314! +sums_ls_l
315! Calculation of reference state (previously in subroutine calc_mean_profile)
316
317! 1342 2014-03-26 17:04:47Z kanani
318! REAL constants defined as wp-kind
319!
320! 1320 2014-03-20 08:40:49Z raasch
321! ONLY-attribute added to USE-statements,
322! kind-parameters added to all INTEGER and REAL declaration statements,
323! kinds are defined in new module kinds,
324! old module precision_kind is removed,
325! revision history before 2012 removed,
326! comment fields (!:) to be used for variable explanations added to
327! all variable declaration statements
328! 1318 2014-03-17 13:35:16Z raasch
329! module interfaces removed
330!
331! 1308 2014-03-13 14:58:42Z fricke
332! +netcdf_data_format_save
333! For masked data, parallel netcdf output is not tested so far, hence
334! netcdf_data_format is switched back to non-paralell output.
335!
336! 1276 2014-01-15 13:40:41Z heinze
337! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
338!
339! 1257 2013-11-08 15:18:40Z raasch
340! acc-update-host directive for timestep removed
341!
342! 1241 2013-10-30 11:36:58Z heinze
343! Generalize calc_mean_profile for wider use
344! Determine shf and qsws in dependence on data from LSF_DATA
345! Determine ug and vg in dependence on data from LSF_DATA
346! 1221 2013-09-10 08:59:13Z raasch
347! host update of arrays before timestep is called
348!
349! 1179 2013-06-14 05:57:58Z raasch
350! mean profiles for reference state are only calculated if required,
351! small bugfix for background communication
352!
353! 1171 2013-05-30 11:27:45Z raasch
354! split of prognostic_equations deactivated (comment lines), for the time being
355!
356! 1128 2013-04-12 06:19:32Z raasch
357! asynchronous transfer of ghost point data realized for acc-optimized version:
358! prognostic_equations are first called two times for those points required for
359! the left-right and north-south exchange, respectively, and then for the
360! remaining points,
361! those parts requiring global communication moved from prognostic_equations to
362! here
363!
364! 1115 2013-03-26 18:16:16Z hoffmann
365! calculation of qr and nr is restricted to precipitation
366!
367! 1113 2013-03-10 02:48:14Z raasch
368! GPU-porting of boundary conditions,
369! openACC directives updated
370! formal parameter removed from routine boundary_conds
371!
372! 1111 2013-03-08 23:54:10Z raasch
373! +internal timestep counter for cpu statistics added,
374! openACC directives updated
375!
376! 1092 2013-02-02 11:24:22Z raasch
377! unused variables removed
378!
379! 1065 2012-11-22 17:42:36Z hoffmann
380! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
381!
382! 1053 2012-11-13 17:11:03Z hoffmann
383! exchange of ghost points for nr, qr added
384!
385! 1036 2012-10-22 13:43:42Z raasch
386! code put under GPL (PALM 3.9)
387!
388! 1019 2012-09-28 06:46:45Z raasch
389! non-optimized version of prognostic_equations removed
390!
391! 1015 2012-09-27 09:23:24Z raasch
392! +call of prognostic_equations_acc
393!
394! 1001 2012-09-13 14:08:46Z raasch
395! all actions concerning leapfrog- and upstream-spline-scheme removed
396!
397! 849 2012-03-15 10:35:09Z raasch
398! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
399!
400! 825 2012-02-19 03:03:44Z raasch
401! wang_collision_kernel renamed wang_kernel
402!
403! Revision 1.1  1997/08/11 06:19:04  raasch
404! Initial revision
405!
406!
407! Description:
408! ------------
409!> Integration in time of the model equations, statistical analysis and graphic
410!> output
411!------------------------------------------------------------------------------!
412 SUBROUTINE time_integration
413 
414
415    USE advec_ws,                                                              &
416        ONLY:  ws_statistics
417
418    USE arrays_3d,                                                             &
419        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, &
420               q_init, q, qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p,      &
421               ref_state, rho_ocean, s, s_p, sa_p, tend, u, u_p, v, vpt,       &
422               v_p, w, w_p
423
424    USE biometeorology_mod,                                                    &
425        ONLY:  bio_calculate_thermal_index_maps, time_bio_results,             &
426               thermal_comfort, uvem_calc_exposure, uv_exposure
427
428    USE bulk_cloud_model_mod,                                                  &
429        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
430              collision_turbulence, microphysics_morrison, microphysics_seifert
431
432    USE calc_mean_profile_mod,                                                 &
433        ONLY:  calc_mean_profile
434
435    USE chem_emissions_mod,                                                    &
436        ONLY:  chem_emissions_setup
437
438    USE chem_modules,                                                          &
439        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
440
441    USE chemistry_model_mod,                                                   &
442        ONLY:  chem_boundary_conds, chem_species
443
444    USE control_parameters,                                                    &
445        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
446               average_count_3d, averaging_interval, averaging_interval_pr,    &
447               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
448               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
449               constant_flux_layer, constant_heatflux,                         &
450               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
451               coupling_start_time, current_timestep_number,                   &
452               disturbance_created, disturbance_energy_limit, dist_range,      &
453               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
454               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
455               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
456               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
457               first_call_lpm, first_call_mas, galilei_transformation,         &
458               humidity, indoor_model, intermediate_timestep_count,            &
459               intermediate_timestep_count_max,                                &
460               land_surface, large_scale_forcing,                              &
461               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
462               multi_agent_system_end, multi_agent_system_start,               &
463               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
464               ocean_mode, passive_scalar, pt_reference,                       &
465               pt_slope_offset, random_heatflux, rans_mode,                    &
466               rans_tke_e, run_coupled, salsa,                                 &
467               simulated_time, simulated_time_chr,                             &
468               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
469               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
470               skip_time_data_output_av, sloping_surface, stop_dt,             &
471               surface_data_output, terminate_coupled, terminate_run,          &
472               timestep_scheme,                                                &
473               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
474               time_do3d, time_domask, time_dopr, time_dopr_av,                &
475               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
476               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
477               time_run_control, time_since_reference_point,                   &
478               turbulent_inflow, turbulent_outflow, urban_surface,             &
479               use_initial_profile_as_reference,                               &
480               use_single_reference_value, u_gtrans, v_gtrans,                 &
481               virtual_flight, virtual_measurement, wind_turbine,              &
482               ws_scheme_mom, ws_scheme_sca
483
484    USE cpulog,                                                                &
485        ONLY:  cpu_log, log_point, log_point_s
486
487    USE date_and_time_mod,                                                     &
488        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
489
490    USE flight_mod,                                                            &
491        ONLY:  flight_measurement
492
493    USE gust_mod,                                                              &
494        ONLY:  gust_actions, gust_module_enabled
495
496    USE indices,                                                               &
497        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
498
499    USE indoor_model_mod,                                                      &
500        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
501
502    USE interaction_droplets_ptq_mod,                                          &
503        ONLY:  interaction_droplets_ptq
504
505    USE interfaces
506
507    USE kinds
508
509    USE land_surface_model_mod,                                                &
510        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
511               skip_time_do_lsm
512
513    USE lsf_nudging_mod,                                                       &
514        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
515
516    USE multi_agent_system_mod,                                                &
517        ONLY:  agents_active, multi_agent_system
518
519    USE nesting_offl_mod,                                                      &
520        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
521       
522    USE netcdf_data_input_mod,                                                 &
523        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
524               netcdf_data_input_offline_nesting
525
526    USE ocean_mod,                                                             &
527        ONLY:  prho_reference
528
529    USE particle_attributes,                                                   &
530        ONLY:  particle_advection, particle_advection_start,                   &
531               use_sgs_for_particles, wang_kernel
532
533    USE pegrid
534
535    USE pmc_interface,                                                         &
536        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
537               pmci_synchronize
538
539    USE progress_bar,                                                          &
540        ONLY:  finish_progress_bar, output_progress_bar
541
542    USE prognostic_equations_mod,                                              &
543        ONLY:  prognostic_equations_cache, prognostic_equations_vector
544
545    USE radiation_model_mod,                                                   &
546        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
547              radiation_interaction, radiation_interactions,                   &
548              skip_time_do_radiation, time_radiation
549         
550    USE salsa_mod,                                                             &
551        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast,             &
552              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
553              skip_time_do_salsa                     
554
555    USE spectra_mod,                                                           &
556        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
557              skip_time_dosp
558
559    USE statistics,                                                            &
560        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
561
562    USE surface_layer_fluxes_mod,                                              &
563        ONLY:  surface_layer_fluxes
564
565    USE surface_mod,                                                           &
566        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
567
568    USE surface_output_mod,                                                    &
569        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
570               dt_dosurf_av, surface_output, surface_output_averaging,         &
571               skip_time_dosurf, skip_time_dosurf_av, time_dosurf,             &
572               time_dosurf_av
573
574    USE turbulence_closure_mod,                                                &
575        ONLY:  tcm_diffusivities, production_e_init
576
577    USE urban_surface_mod,                                                     &
578        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
579               usm_material_model,                                             &
580               usm_surface_energy_balance, usm_green_heat_model,               &
581               usm_temperature_near_surface
582
583    USE synthetic_turbulence_generator_mod,                                    &
584        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
585               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
586               use_syn_turb_gen   
587
588    USE user_actions_mod,                                                      &
589        ONLY:  user_actions
590
591
592    USE wind_turbine_model_mod,                                                &
593        ONLY:  wtm_forces
594
595    USE lpm_mod,                                                               &
596        ONLY:  lpm
597
598    USE vertical_nesting_mod,                                                  &
599        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
600               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
601               vnest_deallocate, vnest_init, vnest_init_fine,                  &
602               vnest_start_time
603               
604    USE virtual_measurement_mod,                                               &
605        ONLY:  vm_sampling, vm_time_start
606
607    IMPLICIT NONE
608
609    CHARACTER (LEN=9) ::  time_to_string   !<
610   
611    INTEGER(iwp)      ::  b !< index for aerosol size bins   
612    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
613    INTEGER(iwp)      ::  g !< index for gaseous compounds
614    INTEGER(iwp)      ::  lsp
615    INTEGER(iwp)      ::  lsp_usr   !<
616    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
617
618    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
619                            !< steering of run control output interval
620    REAL(wp) ::  time_since_reference_point_save  !< original value of
621                                                  !< time_since_reference_point
622
623!
624!-- At beginning determine the first time step
625    CALL timestep
626!
627!-- Synchronize the timestep in case of nested run.
628    IF ( nested_run )  THEN
629!
630!--    Synchronization by unifying the time step.
631!--    Global minimum of all time-steps is used for all.
632       CALL pmci_synchronize
633    ENDIF
634
635!
636!-- Determine and print out the run control quantities before the first time
637!-- step of this run. For the initial run, some statistics (e.g. divergence)
638!-- need to be determined first --> CALL flow_statistics at the beginning of
639!-- run_control
640    CALL run_control
641!
642!-- Data exchange between coupled models in case that a call has been omitted
643!-- at the end of the previous run of a job chain.
644    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
645!
646!--    In case of model termination initiated by the local model the coupler
647!--    must not be called because this would again cause an MPI hang.
648       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
649          CALL surface_coupler
650          time_coupling = time_coupling - dt_coupling
651       ENDDO
652       IF (time_coupling == 0.0_wp  .AND.                                      &
653           time_since_reference_point < dt_coupling )                          &
654       THEN
655          time_coupling = time_since_reference_point
656       ENDIF
657    ENDIF
658
659#if defined( __dvrp_graphics )
660!
661!-- Time measurement with dvrp software 
662    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
663#endif
664
665    CALL location_message( 'starting timestep-sequence', .TRUE. )
666!
667!-- Start of the time loop
668    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
669                .NOT. terminate_run )
670
671       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
672!
673!--    Vertical nesting: initialize fine grid
674       IF ( vnested ) THEN
675          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
676             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
677             CALL vnest_init_fine
678             vnest_init = .TRUE.
679             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
680          ENDIF
681       ENDIF
682!
683!--    Determine ug, vg and w_subs in dependence on data from external file
684!--    LSF_DATA
685       IF ( large_scale_forcing .AND. lsf_vert )  THEN
686           CALL ls_forcing_vert ( simulated_time )
687           sums_ls_l = 0.0_wp
688       ENDIF
689
690!
691!--    Set pt_init and q_init to the current profiles taken from
692!--    NUDGING_DATA
693       IF ( nudging )  THEN
694           CALL nudge_ref ( simulated_time )
695!
696!--        Store temperature gradient at the top boundary for possible Neumann
697!--        boundary condition
698           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
699           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
700           IF ( air_chemistry )  THEN
701              DO  lsp = 1, nspec
702                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
703                                - chem_species(lsp)%conc_pr_init(nzt) )       &
704                               / dzu(nzt+1)
705              ENDDO
706           ENDIF
707       ENDIF
708!
709!--    If forcing by larger-scale models is applied, check if new data
710!--    at domain boundaries need to be read.
711       IF ( nesting_offline )  THEN
712          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
713             CALL netcdf_data_input_offline_nesting
714       ENDIF
715
716!
717!--    Execute the gust module actions
718       IF ( gust_module_enabled )  THEN
719          CALL gust_actions( 'before_timestep' )
720       ENDIF
721
722!
723!--    Execute the user-defined actions
724       CALL user_actions( 'before_timestep' )
725
726!
727!--    Calculate forces by wind turbines
728       IF ( wind_turbine )  THEN
729
730          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
731
732          CALL wtm_forces
733
734          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
735
736       ENDIF   
737       
738!
739!--    Start of intermediate step loop
740       intermediate_timestep_count = 0
741       DO  WHILE ( intermediate_timestep_count < &
742                   intermediate_timestep_count_max )
743
744          intermediate_timestep_count = intermediate_timestep_count + 1
745
746!
747!--       Set the steering factors for the prognostic equations which depend
748!--       on the timestep scheme
749          CALL timestep_scheme_steering
750
751!
752!--       Calculate those variables needed in the tendency terms which need
753!--       global communication
754          IF ( .NOT. use_single_reference_value  .AND. &
755               .NOT. use_initial_profile_as_reference )  THEN
756!
757!--          Horizontally averaged profiles to be used as reference state in
758!--          buoyancy terms (WARNING: only the respective last call of
759!--          calc_mean_profile defines the reference state!)
760             IF ( .NOT. neutral )  THEN
761                CALL calc_mean_profile( pt, 4 )
762                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
763             ENDIF
764             IF ( ocean_mode )  THEN
765                CALL calc_mean_profile( rho_ocean, 64 )
766                ref_state(:)  = hom(:,1,64,0)
767             ENDIF
768             IF ( humidity )  THEN
769                CALL calc_mean_profile( vpt, 44 )
770                ref_state(:)  = hom(:,1,44,0)
771             ENDIF
772!
773!--          Assure that ref_state does not become zero at any level
774!--          ( might be the case if a vertical level is completely occupied
775!--            with topography ).
776             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
777                                ref_state == 0.0_wp )
778          ENDIF
779
780          IF ( .NOT. constant_diffusion )  CALL production_e_init
781          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
782               intermediate_timestep_count == 1 )  CALL ws_statistics
783!
784!--       In case of nudging calculate current nudging time scale and horizontal
785!--       means of u, v, pt and q
786          IF ( nudging )  THEN
787             CALL calc_tnudge( simulated_time )
788             CALL calc_mean_profile( u, 1 )
789             CALL calc_mean_profile( v, 2 )
790             CALL calc_mean_profile( pt, 4 )
791             CALL calc_mean_profile( q, 41 )
792          ENDIF
793
794!
795!--       Solve the prognostic equations. A fast cache optimized version with
796!--       only one single loop is used in case of Piascek-Williams advection
797!--       scheme. NEC vector machines use a different version, because
798!--       in the other versions a good vectorization is prohibited due to
799!--       inlining problems.
800          IF ( loop_optimization == 'cache' )  THEN
801             CALL prognostic_equations_cache
802          ELSEIF ( loop_optimization == 'vector' )  THEN
803             CALL prognostic_equations_vector
804          ENDIF
805
806!
807!--       Particle transport/physics with the Lagrangian particle model
808!--       (only once during intermediate steps, because it uses an Euler-step)
809!--       ### particle model should be moved before prognostic_equations, in order
810!--       to regard droplet interactions directly
811          IF ( particle_advection  .AND.                         &
812               simulated_time >= particle_advection_start  .AND. &
813               intermediate_timestep_count == 1 )  THEN
814             CALL lpm
815             first_call_lpm = .FALSE.
816          ENDIF
817
818!
819!--       Interaction of droplets with temperature and mixing ratio.
820!--       Droplet condensation and evaporation is calculated within
821!--       advec_particles.
822          IF ( cloud_droplets  .AND.  &
823               intermediate_timestep_count == intermediate_timestep_count_max )&
824          THEN
825             CALL interaction_droplets_ptq
826          ENDIF
827
828!
829!--       Movement of agents in multi agent system
830          IF ( agents_active  .AND.                                            &
831               time_since_reference_point >= multi_agent_system_start  .AND.   &
832               time_since_reference_point <= multi_agent_system_end    .AND.   &
833               intermediate_timestep_count == 1 )  THEN
834             CALL multi_agent_system
835             first_call_mas = .FALSE.
836          ENDIF
837
838!
839!--       Exchange of ghost points (lateral boundary conditions)
840          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
841
842          CALL exchange_horiz( u_p, nbgp )
843          CALL exchange_horiz( v_p, nbgp )
844          CALL exchange_horiz( w_p, nbgp )
845          CALL exchange_horiz( pt_p, nbgp )
846          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
847          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
848               .OR.  use_sgs_for_particles )  THEN
849             IF ( rans_tke_e )  THEN
850                CALL exchange_horiz( diss_p, nbgp )
851             ELSE
852                CALL exchange_horiz( diss, nbgp )
853             ENDIF
854          ENDIF
855          IF ( ocean_mode )  THEN
856             CALL exchange_horiz( sa_p, nbgp )
857             CALL exchange_horiz( rho_ocean, nbgp )
858             CALL exchange_horiz( prho, nbgp )
859          ENDIF
860          IF ( humidity )  THEN
861             CALL exchange_horiz( q_p, nbgp )
862             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
863                CALL exchange_horiz( qc_p, nbgp )
864                CALL exchange_horiz( nc_p, nbgp )
865             ENDIF
866             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
867                CALL exchange_horiz( qr_p, nbgp )
868                CALL exchange_horiz( nr_p, nbgp )
869             ENDIF
870          ENDIF
871          IF ( cloud_droplets )  THEN
872             CALL exchange_horiz( ql, nbgp )
873             CALL exchange_horiz( ql_c, nbgp )
874             CALL exchange_horiz( ql_v, nbgp )
875             CALL exchange_horiz( ql_vp, nbgp )
876          ENDIF
877          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
878          IF ( air_chemistry )  THEN
879             DO  lsp = 1, nspec
880                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
881!
882!--             kanani: Push chem_boundary_conds after CALL boundary_conds
883                lsp_usr = 1
884                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
885                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
886                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
887                                                chem_species(lsp)%conc_pr_init )
888                   ENDIF
889                   lsp_usr = lsp_usr + 1
890                ENDDO
891             ENDDO
892          ENDIF
893
894          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
895          THEN
896             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
897             DO  b = 1, nbins
898                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
899                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
900                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
901                                           aerosol_number(b)%init )
902                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
903                DO  c = 1, ncc_tot
904                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
905                                        nbgp )
906                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
907                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
908                                              aerosol_mass((c-1)*nbins+b)%init )
909                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
910                ENDDO
911             ENDDO
912             IF ( .NOT. salsa_gases_from_chem )  THEN
913                DO  g = 1, ngast
914                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
915                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
916                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
917                                              salsa_gas(g)%init )
918                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
919             ENDDO
920             ENDIF
921             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
922          ENDIF         
923          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
924
925!
926!--       Boundary conditions for the prognostic quantities (except of the
927!--       velocities at the outflow in case of a non-cyclic lateral wall)
928          CALL boundary_conds
929!
930!--       Swap the time levels in preparation for the next time step.
931          CALL swap_timelevel
932
933!
934!--       Vertical nesting: Interpolate fine grid data to the coarse grid
935          IF ( vnest_init ) THEN
936             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
937             CALL vnest_anterpolate
938             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
939          ENDIF
940
941          IF ( nested_run )  THEN
942
943             CALL cpu_log( log_point(60), 'nesting', 'start' )
944!
945!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
946!--          and pmci_child_datatrans are called inside the wrapper
947!--          subroutine pmci_datatrans according to the control parameters
948!--          nesting_mode and nesting_datatransfer_mode.
949!--          TO_DO: why is nesting_mode given as a parameter here?
950             CALL pmci_datatrans( nesting_mode )
951
952             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
953                  nesting_mode == 'vertical' )  THEN
954!
955!--             Exchange_horiz is needed for all parent-domains after the
956!--             anterpolation
957                CALL exchange_horiz( u, nbgp )
958                CALL exchange_horiz( v, nbgp )
959                CALL exchange_horiz( w, nbgp )
960                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
961
962                IF ( humidity )  THEN
963
964                   CALL exchange_horiz( q, nbgp )
965
966                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
967                       CALL exchange_horiz( qc, nbgp )
968                       CALL exchange_horiz( nc, nbgp )
969                   ENDIF
970                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
971                       CALL exchange_horiz( qr, nbgp )
972                       CALL exchange_horiz( nr, nbgp )
973                   ENDIF
974
975                ENDIF
976
977                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
978               
979                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
980
981                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
982                                                      rans_tke_e )             &
983                   CALL exchange_horiz( diss, nbgp )
984
985                IF ( air_chemistry )  THEN
986                   DO  n = 1, nspec     
987                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
988                   ENDDO
989                ENDIF
990
991             ENDIF
992!
993!--          Set boundary conditions again after interpolation and anterpolation.
994             CALL pmci_boundary_conds
995
996             CALL cpu_log( log_point(60), 'nesting', 'stop' )
997
998          ENDIF
999
1000!
1001!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1002!--       when a sloping surface is used
1003          IF ( sloping_surface )  THEN
1004             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
1005                                                    pt_slope_offset
1006             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1007                                                    pt_slope_offset
1008          ENDIF
1009
1010!
1011!--       Impose a turbulent inflow using the recycling method
1012          IF ( turbulent_inflow )  CALL  inflow_turbulence
1013
1014!
1015!--       Set values at outflow boundary using the special outflow condition
1016          IF ( turbulent_outflow )  CALL  outflow_turbulence
1017
1018!
1019!--       Impose a random perturbation on the horizontal velocity field
1020          IF ( create_disturbances  .AND.                                      &
1021               ( call_psolver_at_all_substeps  .AND.                           &
1022               intermediate_timestep_count == intermediate_timestep_count_max )&
1023          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1024               intermediate_timestep_count == 1 ) )                            &
1025          THEN
1026             time_disturb = time_disturb + dt_3d
1027             IF ( time_disturb >= dt_disturb )  THEN
1028                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1029                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1030                   CALL disturb_field( 'u', tend, u )
1031                   CALL disturb_field( 'v', tend, v )
1032                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1033                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1034                THEN
1035!
1036!--                Runs with a non-cyclic lateral wall need perturbations
1037!--                near the inflow throughout the whole simulation
1038                   dist_range = 1
1039                   CALL disturb_field( 'u', tend, u )
1040                   CALL disturb_field( 'v', tend, v )
1041                   dist_range = 0
1042                ENDIF
1043                time_disturb = time_disturb - dt_disturb
1044             ENDIF
1045          ENDIF
1046
1047!
1048!--       Map forcing data derived from larger scale model onto domain
1049!--       boundaries.
1050          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1051                                       intermediate_timestep_count_max  )      &
1052             CALL nesting_offl_bc
1053!
1054!--       Impose a turbulent inflow using synthetic generated turbulence,
1055!--       only once per time step.
1056          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1057             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1058             CALL stg_main
1059          ENDIF
1060!
1061!--       Ensure mass conservation. This need to be done after imposing
1062!--       synthetic turbulence and top boundary condition for pressure is set to
1063!--       Neumann conditions.
1064!--       Is this also required in case of Dirichlet?
1065          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1066!
1067!--       Reduce the velocity divergence via the equation for perturbation
1068!--       pressure.
1069          IF ( intermediate_timestep_count == 1  .OR. &
1070                call_psolver_at_all_substeps )  THEN
1071
1072             IF (  vnest_init ) THEN
1073!
1074!--             Compute pressure in the CG, interpolate top boundary conditions
1075!--             to the FG and then compute pressure in the FG
1076                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1077
1078                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1079                CALL vnest_boundary_conds
1080                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1081 
1082                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1083
1084!--             Anterpolate TKE, satisfy Germano Identity
1085                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1086                CALL vnest_anterpolate_e
1087                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1088
1089             ELSE
1090
1091                CALL pres
1092
1093             ENDIF
1094
1095          ENDIF
1096
1097!
1098!--       If required, compute liquid water content
1099          IF ( bulk_cloud_model )  THEN
1100             CALL calc_liquid_water_content
1101          ENDIF
1102!
1103!--       If required, compute virtual potential temperature
1104          IF ( humidity )  THEN
1105             CALL compute_vpt
1106          ENDIF
1107
1108!
1109!--       Compute the diffusion quantities
1110          IF ( .NOT. constant_diffusion )  THEN
1111
1112!
1113!--          Determine surface fluxes shf and qsws and surface values
1114!--          pt_surface and q_surface in dependence on data from external
1115!--          file LSF_DATA respectively
1116             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1117                 intermediate_timestep_count == intermediate_timestep_count_max )&
1118             THEN
1119                CALL ls_forcing_surf( simulated_time )
1120             ENDIF
1121
1122!
1123!--          First the vertical (and horizontal) fluxes in the surface
1124!--          (constant flux) layer are computed
1125             IF ( constant_flux_layer )  THEN
1126                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1127                CALL surface_layer_fluxes
1128                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1129             ENDIF
1130!
1131!--          If required, solve the energy balance for the surface and run soil
1132!--          model. Call for horizontal as well as vertical surfaces
1133             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1134
1135                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1136!
1137!--             Call for horizontal upward-facing surfaces
1138                CALL lsm_energy_balance( .TRUE., -1 )
1139                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1140!
1141!--             Call for northward-facing surfaces
1142                CALL lsm_energy_balance( .FALSE., 0 )
1143                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1144!
1145!--             Call for southward-facing surfaces
1146                CALL lsm_energy_balance( .FALSE., 1 )
1147                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1148!
1149!--             Call for eastward-facing surfaces
1150                CALL lsm_energy_balance( .FALSE., 2 )
1151                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1152!
1153!--             Call for westward-facing surfaces
1154                CALL lsm_energy_balance( .FALSE., 3 )
1155                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1156!
1157!--             At the end, set boundary conditons for potential temperature
1158!--             and humidity after running the land-surface model. This
1159!--             might be important for the nesting, where arrays are transfered.
1160                CALL lsm_boundary_condition
1161
1162                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1163             ENDIF
1164!
1165!--          If required, solve the energy balance for urban surfaces and run
1166!--          the material heat model
1167             IF (urban_surface) THEN
1168                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1169               
1170                CALL usm_surface_energy_balance( .FALSE. )
1171                IF ( usm_material_model )  THEN
1172                   CALL usm_green_heat_model
1173                   CALL usm_material_heat_model ( .FALSE. )
1174                ENDIF
1175
1176                CALL usm_temperature_near_surface
1177!
1178!--             At the end, set boundary conditons for potential temperature
1179!--             and humidity after running the urban-surface model. This
1180!--             might be important for the nesting, where arrays are transfered.
1181                CALL usm_boundary_condition
1182
1183                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1184             ENDIF
1185!
1186!--          Compute the diffusion coefficients
1187             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1188             IF ( .NOT. humidity ) THEN
1189                IF ( ocean_mode )  THEN
1190                   CALL tcm_diffusivities( prho, prho_reference )
1191                ELSE
1192                   CALL tcm_diffusivities( pt, pt_reference )
1193                ENDIF
1194             ELSE
1195                CALL tcm_diffusivities( vpt, pt_reference )
1196             ENDIF
1197             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1198!
1199!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1200             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1201
1202          ENDIF
1203
1204!
1205!--       If required, calculate radiative fluxes and heating rates
1206          IF ( radiation .AND. intermediate_timestep_count                     &
1207               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1208               skip_time_do_radiation )  THEN
1209
1210               time_radiation = time_radiation + dt_3d
1211
1212             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1213             THEN
1214
1215                CALL cpu_log( log_point(50), 'radiation', 'start' )
1216
1217                IF ( .NOT. force_radiation_call )  THEN
1218                   time_radiation = time_radiation - dt_radiation
1219                ENDIF
1220
1221!
1222!--             Adjust the current time to the time step of the radiation model.
1223!--             Needed since radiation is pre-calculated and stored only on apparent
1224!--             solar positions
1225                time_since_reference_point_save = time_since_reference_point
1226                time_since_reference_point =                                   &
1227                                    REAL( FLOOR( time_since_reference_point /  &
1228                                                 dt_radiation), wp )           &
1229                                             * dt_radiation
1230
1231                CALL radiation_control
1232
1233                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1234
1235                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1236                     radiation_interactions )  THEN
1237                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1238                   CALL radiation_interaction
1239                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1240                ENDIF
1241   
1242!
1243!--             Return the current time to its original value
1244                time_since_reference_point = time_since_reference_point_save
1245
1246             ENDIF
1247          ENDIF
1248
1249       ENDDO   ! Intermediate step loop
1250!
1251!--    If required, consider chemical emissions
1252       IF ( air_chemistry  .AND.  do_emis )  THEN
1253!
1254!--       Update the time --> kanani: revise location of this CALL
1255          CALL calc_date_and_time
1256!
1257!--       Call emission routine only once an hour
1258          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1259             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1260             hour_call_emis = hour_of_year
1261          ENDIF
1262       ENDIF
1263
1264!
1265!--    If required, calculate indoor temperature, waste heat, heat flux
1266!--    through wall, etc.
1267!--    dt_indoor steers the frequency of the indoor model calculations
1268       IF (       indoor_model                                                    &
1269            .AND. intermediate_timestep_count == intermediate_timestep_count_max  &
1270            .AND. time_since_reference_point > skip_time_do_indoor )  THEN
1271
1272          time_indoor = time_indoor + dt_3d
1273
1274          IF ( time_indoor >= dt_indoor )  THEN
1275
1276             time_indoor = time_indoor - dt_indoor
1277
1278             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1279             CALL im_main_heatcool
1280             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1281
1282          ENDIF
1283       ENDIF
1284!
1285!--    Increase simulation time and output times
1286       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1287       current_timestep_number    = current_timestep_number + 1
1288       simulated_time             = simulated_time   + dt_3d
1289       time_since_reference_point = simulated_time - coupling_start_time
1290       simulated_time_chr         = time_to_string( time_since_reference_point )
1291
1292
1293
1294
1295       IF ( simulated_time >= skip_time_data_output_av )  THEN
1296          time_do_av         = time_do_av       + dt_3d
1297       ENDIF
1298       IF ( simulated_time >= skip_time_do2d_xy )  THEN
1299          time_do2d_xy       = time_do2d_xy     + dt_3d
1300       ENDIF
1301       IF ( simulated_time >= skip_time_do2d_xz )  THEN
1302          time_do2d_xz       = time_do2d_xz     + dt_3d
1303       ENDIF
1304       IF ( simulated_time >= skip_time_do2d_yz )  THEN
1305          time_do2d_yz       = time_do2d_yz     + dt_3d
1306       ENDIF
1307       IF ( simulated_time >= skip_time_do3d    )  THEN
1308          time_do3d          = time_do3d        + dt_3d
1309       ENDIF
1310       DO  mid = 1, masks
1311          IF ( simulated_time >= skip_time_domask(mid) )  THEN
1312             time_domask(mid)= time_domask(mid) + dt_3d
1313          ENDIF
1314       ENDDO
1315       time_dvrp          = time_dvrp        + dt_3d
1316       IF ( simulated_time >= skip_time_dosp )  THEN
1317          time_dosp       = time_dosp        + dt_3d
1318       ENDIF
1319       time_dots          = time_dots        + dt_3d
1320       IF ( .NOT. first_call_lpm )  THEN
1321          time_dopts      = time_dopts       + dt_3d
1322       ENDIF
1323       IF ( simulated_time >= skip_time_dopr )  THEN
1324          time_dopr       = time_dopr        + dt_3d
1325       ENDIF
1326       time_dopr_listing  = time_dopr_listing + dt_3d
1327       time_run_control   = time_run_control + dt_3d
1328!
1329!--    Increment time-counter for surface output
1330       IF ( surface_data_output )  THEN
1331          IF ( simulated_time >= skip_time_dosurf )  THEN
1332             time_dosurf    = time_dosurf + dt_3d
1333          ENDIF
1334          IF ( simulated_time >= skip_time_dosurf_av )  THEN
1335             time_dosurf_av = time_dosurf_av + dt_3d
1336          ENDIF
1337       ENDIF
1338!
1339!--    In case of synthetic turbulence generation and parametrized turbulence
1340!--    information, update the time counter and if required, adjust the
1341!--    STG to new atmospheric conditions.
1342       IF ( use_syn_turb_gen  )  THEN
1343          IF ( parametrize_inflow_turbulence )  THEN
1344             time_stg_adjust = time_stg_adjust + dt_3d
1345             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1346          ENDIF
1347          time_stg_call = time_stg_call + dt_3d
1348       ENDIF
1349
1350!
1351!--    Data exchange between coupled models
1352       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1353                                          .AND. .NOT. vnested )  THEN
1354          time_coupling = time_coupling + dt_3d
1355
1356!
1357!--       In case of model termination initiated by the local model
1358!--       (terminate_coupled > 0), the coupler must be skipped because it would
1359!--       cause an MPI intercomminucation hang.
1360!--       If necessary, the coupler will be called at the beginning of the
1361!--       next restart run.
1362          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1363             CALL surface_coupler
1364             time_coupling = time_coupling - dt_coupling
1365          ENDDO
1366       ENDIF
1367
1368!
1369!--    Biometeorology calculation of stationary thermal indices
1370       IF ( biometeorology  .AND.  time_do3d >= dt_do3d )  THEN
1371!
1372!--       If required, do thermal comfort calculations
1373          IF ( thermal_comfort )  THEN
1374             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1375             time_bio_results = time_since_reference_point
1376          ENDIF
1377!
1378!--       If required, do UV exposure calculations
1379          IF ( uv_exposure )  THEN
1380             CALL uvem_calc_exposure
1381          ENDIF
1382       ENDIF
1383
1384!
1385!--    Execute the gust module actions
1386       IF ( gust_module_enabled )  THEN
1387          CALL gust_actions( 'after_integration' )
1388       ENDIF
1389
1390!
1391!--    Execute user-defined actions
1392       CALL user_actions( 'after_integration' )
1393
1394!
1395!--    If Galilei transformation is used, determine the distance that the
1396!--    model has moved so far
1397       IF ( galilei_transformation )  THEN
1398          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1399          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1400       ENDIF
1401
1402!
1403!--    Check, if restart is necessary (because cpu-time is expiring or
1404!--    because it is forced by user) and set stop flag
1405!--    This call is skipped if the remote model has already initiated a restart.
1406       IF ( .NOT. terminate_run )  CALL check_for_restart
1407
1408!
1409!--    Carry out statistical analysis and output at the requested output times.
1410!--    The MOD function is used for calculating the output time counters (like
1411!--    time_dopr) in order to regard a possible decrease of the output time
1412!--    interval in case of restart runs
1413
1414!
1415!--    Set a flag indicating that so far no statistics have been created
1416!--    for this time step
1417       flow_statistics_called = .FALSE.
1418
1419!
1420!--    If required, call flow_statistics for averaging in time
1421       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1422            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1423            simulated_time >= skip_time_dopr )  THEN
1424          time_dopr_av = time_dopr_av + dt_3d
1425          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1426             do_sum = .TRUE.
1427             time_dopr_av = MOD( time_dopr_av, &
1428                                    MAX( dt_averaging_input_pr, dt_3d ) )
1429          ENDIF
1430       ENDIF
1431       IF ( do_sum )  CALL flow_statistics
1432
1433!
1434!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1435       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1436            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
1437            simulated_time >= skip_time_data_output_av )                    &
1438       THEN
1439          time_do_sla = time_do_sla + dt_3d
1440          IF ( time_do_sla >= dt_averaging_input )  THEN
1441             CALL sum_up_3d_data
1442             average_count_3d = average_count_3d + 1
1443             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1444          ENDIF
1445       ENDIF
1446!
1447!--    Average surface data
1448       IF ( surface_data_output )  THEN
1449          IF ( averaging_interval_surf /= 0.0_wp  .AND.                        & 
1450               ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1451          .AND.  simulated_time >= skip_time_dosurf_av )  THEN
1452             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1453                CALL surface_output_averaging
1454                average_count_surf = average_count_surf + 1
1455             ENDIF
1456          ENDIF
1457       ENDIF
1458
1459!
1460!--    Calculate spectra for time averaging
1461       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1462            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1463            simulated_time >= skip_time_dosp )  THEN
1464          time_dosp_av = time_dosp_av + dt_3d
1465          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1466             CALL calc_spectra
1467             time_dosp_av = MOD( time_dosp_av, &
1468                                 MAX( dt_averaging_input_pr, dt_3d ) )
1469          ENDIF
1470       ENDIF
1471
1472!
1473!--    Call flight module and output data
1474       IF ( virtual_flight )  THEN
1475          CALL flight_measurement
1476          CALL data_output_flight
1477       ENDIF
1478!
1479!--    Take virtual measurements
1480       IF ( virtual_measurement  .AND.                                         &
1481            vm_time_start <= time_since_reference_point )  CALL vm_sampling
1482
1483!
1484!--    Profile output (ASCII) on file
1485       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1486          CALL print_1d
1487          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1488                                                           dt_3d ) )
1489       ENDIF
1490
1491!
1492!--    Graphic output for PROFIL
1493       IF ( time_dopr >= dt_dopr )  THEN
1494          IF ( dopr_n /= 0 )  CALL data_output_profiles
1495          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1496          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1497       ENDIF
1498
1499!
1500!--    Graphic output for time series
1501       IF ( time_dots >= dt_dots )  THEN
1502          CALL data_output_tseries
1503          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1504       ENDIF
1505
1506!
1507!--    Output of spectra (formatted for use with PROFIL), in case of no
1508!--    time averaging, spectra has to be calculated before
1509       IF ( time_dosp >= dt_dosp )  THEN
1510          IF ( average_count_sp == 0 )  CALL calc_spectra
1511          CALL data_output_spectra
1512          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1513       ENDIF
1514
1515!
1516!--    2d-data output (cross-sections)
1517       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
1518          CALL data_output_2d( 'xy', 0 )
1519          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1520       ENDIF
1521       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
1522          CALL data_output_2d( 'xz', 0 )
1523          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1524       ENDIF
1525       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
1526          CALL data_output_2d( 'yz', 0 )
1527          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1528       ENDIF
1529
1530!
1531!--    3d-data output (volume data)
1532       IF ( time_do3d >= dt_do3d )  THEN
1533          CALL data_output_3d( 0 )
1534          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1535       ENDIF
1536
1537!
1538!--    Masked data output
1539       DO  mid = 1, masks
1540          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
1541             CALL data_output_mask( 0 )
1542             time_domask(mid) = MOD( time_domask(mid),  &
1543                                     MAX( dt_domask(mid), dt_3d ) )
1544          ENDIF
1545       ENDDO
1546
1547!
1548!--    Output of time-averaged 2d/3d/masked data
1549       IF ( time_do_av >= dt_data_output_av )  THEN
1550          CALL average_3d_data
1551          CALL data_output_2d( 'xy', 1 )
1552          CALL data_output_2d( 'xz', 1 )
1553          CALL data_output_2d( 'yz', 1 )
1554          CALL data_output_3d( 1 )
1555          DO  mid = 1, masks
1556             CALL data_output_mask( 1 )
1557          ENDDO
1558          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1559       ENDIF
1560!
1561!--    Output of surface data, instantaneous and averaged data
1562       IF ( surface_data_output )  THEN
1563          IF ( time_dosurf >= dt_dosurf )  THEN
1564             CALL surface_output( 0 )
1565             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1566          ENDIF
1567          IF ( time_dosurf_av >= dt_dosurf_av )  THEN
1568             CALL surface_output( 1 )
1569             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1570          ENDIF
1571       ENDIF
1572
1573!
1574!--    Output of particle time series
1575       IF ( particle_advection )  THEN
1576          IF ( time_dopts >= dt_dopts  .OR. &
1577               ( simulated_time >= particle_advection_start  .AND. &
1578                 first_call_lpm ) )  THEN
1579             CALL data_output_ptseries
1580             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1581          ENDIF
1582       ENDIF
1583
1584!
1585!--    Output of dvrp-graphics (isosurface, particles, slicer)
1586#if defined( __dvrp_graphics )
1587       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1588#endif
1589       IF ( time_dvrp >= dt_dvrp )  THEN
1590          CALL data_output_dvrp
1591          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1592       ENDIF
1593#if defined( __dvrp_graphics )
1594       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1595#endif
1596
1597!
1598!--    If required, set the heat flux for the next time step at a random value
1599       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1600          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1601          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1602          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1603       ENDIF
1604
1605!
1606!--    Execute the gust module actions
1607       IF ( gust_module_enabled )  THEN
1608          CALL gust_actions( 'after_timestep' )
1609       ENDIF
1610
1611!
1612!--    Execute user-defined actions
1613       CALL user_actions( 'after_timestep' )
1614
1615!
1616!--    Determine size of next time step. Save timestep dt_3d because it is
1617!--    newly calculated in routine timestep, but required further below for
1618!--    steering the run control output interval
1619       dt_3d_old = dt_3d
1620       CALL timestep
1621
1622!
1623!--    Synchronize the timestep in case of nested run.
1624       IF ( nested_run )  THEN
1625!
1626!--       Synchronize by unifying the time step.
1627!--       Global minimum of all time-steps is used for all.
1628          CALL pmci_synchronize
1629       ENDIF
1630
1631!
1632!--    Computation and output of run control parameters.
1633!--    This is also done whenever perturbations have been imposed
1634       IF ( time_run_control >= dt_run_control  .OR.                     &
1635            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1636       THEN
1637          CALL run_control
1638          IF ( time_run_control >= dt_run_control )  THEN
1639             time_run_control = MOD( time_run_control, &
1640                                     MAX( dt_run_control, dt_3d_old ) )
1641          ENDIF
1642       ENDIF
1643
1644!
1645!--    Output elapsed simulated time in form of a progress bar on stdout
1646       IF ( myid == 0 )  CALL output_progress_bar
1647
1648       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1649
1650
1651    ENDDO   ! time loop
1652
1653!
1654!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1655    IF ( vnest_init )  CALL vnest_deallocate
1656
1657    IF ( myid == 0 )  CALL finish_progress_bar
1658
1659#if defined( __dvrp_graphics )
1660    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1661#endif
1662
1663    CALL location_message( 'finished time-stepping', .TRUE. )
1664
1665 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.