source: palm/trunk/SOURCE/time_integration.f90 @ 3582

Last change on this file since 3582 was 3582, checked in by suehring, 5 years ago

Merge branch salsa with trunk

  • Property svn:keywords set to Id
File size: 63.7 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2018 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22! Move the control parameter "salsa" from salsa_mod to control_parameters
23! (M. Kurppa)
24!
25! Former revisions:
26! -----------------
27! $Id: time_integration.f90 3582 2018-11-29 19:16:36Z suehring $
28! dom_dwd_user, Schrempf:
29! Changes due to merge of uv exposure model into biometeorology_mod.
30!
31! 3525 2018-11-14 16:06:14Z kanani
32! Changes related to clean-up of biometeorology (dom_dwd_user)
33!
34! 3524 2018-11-14 13:36:44Z raasch
35! unused variables removed
36!
37! 3484 2018-11-02 14:41:25Z hellstea
38! pmci_ensure_nest_mass_conservation is premanently removed
39!
40! 3473 2018-10-30 20:50:15Z suehring
41! new module for virtual measurements introduced
42!
43! 3472 2018-10-30 20:43:50Z suehring
44! Add indoor model (kanani, srissman, tlang)
45!
46! 3467 2018-10-30 19:05:21Z suehring
47! Implementation of a new aerosol module salsa.
48!
49! 3448 2018-10-29 18:14:31Z kanani
50! Add biometeorology
51!
52! 3421 2018-10-24 18:39:32Z gronemeier
53! Surface data output
54!
55! 3418 2018-10-24 16:07:39Z kanani
56! call to material_heat_model now with check if spinup runs (rvtils)
57!
58! 3378 2018-10-19 12:34:59Z kanani
59! merge from radiation branch (r3362) into trunk
60! (moh.hefny):
61! Bugfix in the if statement to call radiation_interaction
62!
63! 3347 2018-10-15 14:21:08Z suehring
64! - offline nesting separated from large-scale forcing module
65! - changes for synthetic turbulence generator
66!
67! 3343 2018-10-15 10:38:52Z suehring
68! - Formatting, clean-up, comments (kanani)
69! - Added CALL to chem_emissions_setup (Russo)
70! - Code added for decycling chemistry (basit)
71!
72! 3294 2018-10-01 02:37:10Z raasch
73! changes concerning modularization of ocean option
74!
75! 3274 2018-09-24 15:42:55Z knoop
76! Modularization of all bulk cloud physics code components
77!
78! 3241 2018-09-12 15:02:00Z raasch
79! unused variables removed
80!
81! 3198 2018-08-15 09:23:10Z sward
82! Added multi_agent_system_end; defined start time for MAS relative to
83! time_since_reference_point
84!
85! 3183 2018-07-27 14:25:55Z suehring
86! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
87! Rename subroutines and variables in COSMO nesting mode
88!
89! 3182 2018-07-27 13:36:03Z suehring
90! Added multi agent system
91!
92! 3042 2018-05-25 10:44:37Z schwenkel
93! Changed the name specific humidity to mixing ratio
94!
95! 3040 2018-05-25 10:22:08Z schwenkel
96! Fixed bug in IF statement
97! Ensure that the time when calling the radiation to be the time step of the
98! pre-calculated time when first calculate the positions of the sun
99!
100! 3004 2018-04-27 12:33:25Z Giersch
101! First call of flow_statistics has been removed. It is already called in
102! run_control itself
103!
104! 2984 2018-04-18 11:51:30Z hellstea
105! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
106! as seemingly unnecessary.
107!
108! 2941 2018-04-03 11:54:58Z kanani
109! Deduct spinup_time from RUN_CONTROL output of main 3d run
110! (use time_since_reference_point instead of simulated_time)
111!
112! 2938 2018-03-27 15:52:42Z suehring
113! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
114!
115! 2936 2018-03-27 14:49:27Z suehring
116! Little formatting adjustment.
117!
118! 2817 2018-02-19 16:32:21Z knoop
119! Preliminary gust module interface implemented
120!
121! 2801 2018-02-14 16:01:55Z thiele
122! Changed lpm from subroutine to module.
123! Introduce particle transfer in nested models.
124!
125! 2776 2018-01-31 10:44:42Z Giersch
126! Variable use_synthetic_turbulence_generator has been abbreviated
127!
128! 2773 2018-01-30 14:12:54Z suehring
129! - Nesting for chemical species
130!
131! 2766 2018-01-22 17:17:47Z kanani
132! Removed preprocessor directive __chem
133!
134! 2718 2018-01-02 08:49:38Z maronga
135! Corrected "Former revisions" section
136!
137! 2696 2017-12-14 17:12:51Z kanani
138! - Change in file header (GPL part)
139! - Implementation of uv exposure model (FK)
140! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
141! - renamed diffusivities to tcm_diffusivities (TG)
142! - implement prognostic equation for diss (TG)
143! - Moved/commented CALL to chem_emissions (FK)
144! - Added CALL to chem_emissions (FK)
145! - Implementation of chemistry module (FK)
146! - Calls for setting boundary conditions in USM and LSM (MS)
147! - Large-scale forcing with larger-scale models implemented (MS)
148! - Rename usm_radiation into radiation_interactions; merge with branch
149!   radiation (MS)
150! - added call for usm_green_heat_model for green building surfaces (RvT)
151! - added call for usm_temperature_near_surface for use in indoor model (RvT)
152!
153! 2617 2017-11-16 12:47:24Z suehring
154! Bugfix, assure that the reference state does not become zero.
155!
156! 2563 2017-10-19 15:36:10Z Giersch
157! Variable wind_turbine moved to module control_parameters
158!
159! 2365 2017-08-21 14:59:59Z kanani
160! Vertical grid nesting implemented (SadiqHuq)
161!
162! 2320 2017-07-21 12:47:43Z suehring
163! Set bottom boundary conditions after nesting interpolation and anterpolation
164!
165! 2299 2017-06-29 10:14:38Z maronga
166! Call of soil model adjusted
167!
168! 2292 2017-06-20 09:51:42Z schwenkel
169! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
170! includes two more prognostic equations for cloud drop concentration (nc) 
171! and cloud water content (qc).
172!
173! 2271 2017-06-09 12:34:55Z sward
174! Start timestep message changed
175!
176! 2259 2017-06-08 09:09:11Z gronemeier
177! Implemented synthetic turbulence generator
178!
179! 2233 2017-05-30 18:08:54Z suehring
180!
181! 2232 2017-05-30 17:47:52Z suehring
182! Adjustments to new topography and surface concept
183! Modify passed parameters for disturb_field
184!
185! 2178 2017-03-17 11:07:39Z hellstea
186! Setting perturbations at all times near inflow boundary is removed
187! in case of nested boundaries
188!
189! 2174 2017-03-13 08:18:57Z maronga
190! Added support for nesting with cloud microphysics
191!
192! 2118 2017-01-17 16:38:49Z raasch
193! OpenACC directives and related code removed
194!
195! 2050 2016-11-08 15:00:55Z gronemeier
196! Implement turbulent outflow condition
197!
198! 2031 2016-10-21 15:11:58Z knoop
199! renamed variable rho to rho_ocean
200!
201! 2011 2016-09-19 17:29:57Z kanani
202! Flag urban_surface is now defined in module control_parameters,
203! removed commented CALLs of global_min_max.
204!
205! 2007 2016-08-24 15:47:17Z kanani
206! Added CALLs for new urban surface model
207!
208! 2000 2016-08-20 18:09:15Z knoop
209! Forced header and separation lines into 80 columns
210!
211! 1976 2016-07-27 13:28:04Z maronga
212! Simplified calls to radiation model
213!
214! 1960 2016-07-12 16:34:24Z suehring
215! Separate humidity and passive scalar
216!
217! 1957 2016-07-07 10:43:48Z suehring
218! flight module added
219!
220! 1919 2016-05-27 14:51:23Z raasch
221! Initial version of purely vertical nesting introduced.
222!
223! 1918 2016-05-27 14:35:57Z raasch
224! determination of time step moved to the end of the time step loop,
225! the first time step is now always calculated before the time step loop (i.e.
226! also in case of restart runs)
227!
228! 1914 2016-05-26 14:44:07Z witha
229! Added call for wind turbine model
230!
231! 1878 2016-04-19 12:30:36Z hellstea
232! Synchronization for nested runs rewritten
233!
234! 1853 2016-04-11 09:00:35Z maronga
235! Adjusted for use with radiation_scheme = constant
236!
237! 1849 2016-04-08 11:33:18Z hoffmann
238! Adapted for modularization of microphysics
239!
240! 1833 2016-04-07 14:23:03Z raasch
241! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
242!
243! 1831 2016-04-07 13:15:51Z hoffmann
244! turbulence renamed collision_turbulence
245!
246! 1822 2016-04-07 07:49:42Z hoffmann
247! icloud_scheme replaced by microphysics_*
248!
249! 1808 2016-04-05 19:44:00Z raasch
250! output message in case unscheduled radiation calls removed
251!
252! 1797 2016-03-21 16:50:28Z raasch
253! introduction of different datatransfer modes
254!
255! 1791 2016-03-11 10:41:25Z raasch
256! call of pmci_update_new removed
257!
258! 1786 2016-03-08 05:49:27Z raasch
259! +module spectrum
260!
261! 1783 2016-03-06 18:36:17Z raasch
262! switch back of netcdf data format for mask output moved to the mask output
263! routine
264!
265! 1781 2016-03-03 15:12:23Z raasch
266! some pmc calls removed at the beginning (before timeloop),
267! pmc initialization moved to the main program
268!
269! 1764 2016-02-28 12:45:19Z raasch
270! PMC_ACTIVE flags removed,
271! bugfix: nest synchronization after first call of timestep
272!
273! 1762 2016-02-25 12:31:13Z hellstea
274! Introduction of nested domain feature
275!
276! 1736 2015-12-04 08:56:33Z raasch
277! no perturbations added to total domain if energy limit has been set zero
278!
279! 1691 2015-10-26 16:17:44Z maronga
280! Added option for spin-ups without land surface and radiation models. Moved calls
281! for radiation and lan surface schemes.
282!
283! 1682 2015-10-07 23:56:08Z knoop
284! Code annotations made doxygen readable
285!
286! 1671 2015-09-25 03:29:37Z raasch
287! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
288! for particles
289!
290! 1585 2015-04-30 07:05:52Z maronga
291! Moved call of radiation scheme. Added support for RRTM
292!
293! 1551 2015-03-03 14:18:16Z maronga
294! Added interface for different radiation schemes.
295!
296! 1496 2014-12-02 17:25:50Z maronga
297! Added calls for the land surface model and radiation scheme
298!
299! 1402 2014-05-09 14:25:13Z raasch
300! location messages modified
301!
302! 1384 2014-05-02 14:31:06Z raasch
303! location messages added
304!
305! 1380 2014-04-28 12:40:45Z heinze
306! CALL of nudge_ref added
307! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
308!
309! 1365 2014-04-22 15:03:56Z boeske
310! Reset sums_ls_l to zero at each timestep
311! +sums_ls_l
312! Calculation of reference state (previously in subroutine calc_mean_profile)
313
314! 1342 2014-03-26 17:04:47Z kanani
315! REAL constants defined as wp-kind
316!
317! 1320 2014-03-20 08:40:49Z raasch
318! ONLY-attribute added to USE-statements,
319! kind-parameters added to all INTEGER and REAL declaration statements,
320! kinds are defined in new module kinds,
321! old module precision_kind is removed,
322! revision history before 2012 removed,
323! comment fields (!:) to be used for variable explanations added to
324! all variable declaration statements
325! 1318 2014-03-17 13:35:16Z raasch
326! module interfaces removed
327!
328! 1308 2014-03-13 14:58:42Z fricke
329! +netcdf_data_format_save
330! For masked data, parallel netcdf output is not tested so far, hence
331! netcdf_data_format is switched back to non-paralell output.
332!
333! 1276 2014-01-15 13:40:41Z heinze
334! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
335!
336! 1257 2013-11-08 15:18:40Z raasch
337! acc-update-host directive for timestep removed
338!
339! 1241 2013-10-30 11:36:58Z heinze
340! Generalize calc_mean_profile for wider use
341! Determine shf and qsws in dependence on data from LSF_DATA
342! Determine ug and vg in dependence on data from LSF_DATA
343! 1221 2013-09-10 08:59:13Z raasch
344! host update of arrays before timestep is called
345!
346! 1179 2013-06-14 05:57:58Z raasch
347! mean profiles for reference state are only calculated if required,
348! small bugfix for background communication
349!
350! 1171 2013-05-30 11:27:45Z raasch
351! split of prognostic_equations deactivated (comment lines), for the time being
352!
353! 1128 2013-04-12 06:19:32Z raasch
354! asynchronous transfer of ghost point data realized for acc-optimized version:
355! prognostic_equations are first called two times for those points required for
356! the left-right and north-south exchange, respectively, and then for the
357! remaining points,
358! those parts requiring global communication moved from prognostic_equations to
359! here
360!
361! 1115 2013-03-26 18:16:16Z hoffmann
362! calculation of qr and nr is restricted to precipitation
363!
364! 1113 2013-03-10 02:48:14Z raasch
365! GPU-porting of boundary conditions,
366! openACC directives updated
367! formal parameter removed from routine boundary_conds
368!
369! 1111 2013-03-08 23:54:10Z raasch
370! +internal timestep counter for cpu statistics added,
371! openACC directives updated
372!
373! 1092 2013-02-02 11:24:22Z raasch
374! unused variables removed
375!
376! 1065 2012-11-22 17:42:36Z hoffmann
377! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
378!
379! 1053 2012-11-13 17:11:03Z hoffmann
380! exchange of ghost points for nr, qr added
381!
382! 1036 2012-10-22 13:43:42Z raasch
383! code put under GPL (PALM 3.9)
384!
385! 1019 2012-09-28 06:46:45Z raasch
386! non-optimized version of prognostic_equations removed
387!
388! 1015 2012-09-27 09:23:24Z raasch
389! +call of prognostic_equations_acc
390!
391! 1001 2012-09-13 14:08:46Z raasch
392! all actions concerning leapfrog- and upstream-spline-scheme removed
393!
394! 849 2012-03-15 10:35:09Z raasch
395! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
396!
397! 825 2012-02-19 03:03:44Z raasch
398! wang_collision_kernel renamed wang_kernel
399!
400! Revision 1.1  1997/08/11 06:19:04  raasch
401! Initial revision
402!
403!
404! Description:
405! ------------
406!> Integration in time of the model equations, statistical analysis and graphic
407!> output
408!------------------------------------------------------------------------------!
409 SUBROUTINE time_integration
410 
411
412    USE advec_ws,                                                              &
413        ONLY:  ws_statistics
414
415    USE arrays_3d,                                                             &
416        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, &
417               q_init, q, qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p,      &
418               ref_state, rho_ocean, s, s_p, sa_p, tend, u, u_p, v, vpt,       &
419               v_p, w, w_p
420
421    USE biometeorology_mod,                                                    &
422        ONLY:  bio_calculate_thermal_index_maps, time_bio_results,             &
423               thermal_comfort, uvem_calc_exposure, uv_exposure
424
425    USE bulk_cloud_model_mod,                                                  &
426        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
427              collision_turbulence, microphysics_morrison, microphysics_seifert
428
429    USE calc_mean_profile_mod,                                                 &
430        ONLY:  calc_mean_profile
431
432    USE chem_emissions_mod,                                                    &
433        ONLY:  chem_emissions_setup
434
435    USE chem_modules,                                                          &
436        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
437
438    USE chemistry_model_mod,                                                   &
439        ONLY:  chem_boundary_conds, chem_species
440
441    USE control_parameters,                                                    &
442        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
443               average_count_3d, averaging_interval, averaging_interval_pr,    &
444               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
445               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
446               constant_flux_layer, constant_heatflux,                         &
447               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
448               coupling_start_time, current_timestep_number,                   &
449               disturbance_created, disturbance_energy_limit, dist_range,      &
450               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
451               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
452               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
453               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
454               first_call_lpm, first_call_mas, galilei_transformation,         &
455               humidity, indoor_model, intermediate_timestep_count,            &
456               intermediate_timestep_count_max,                                &
457               land_surface, large_scale_forcing,                              &
458               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
459               multi_agent_system_end, multi_agent_system_start,               &
460               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
461               ocean_mode, passive_scalar, pt_reference,                       &
462               pt_slope_offset, random_heatflux, rans_mode,                    &
463               rans_tke_e, run_coupled, salsa,                                 &
464               simulated_time, simulated_time_chr,                             &
465               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
466               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
467               skip_time_data_output_av, sloping_surface, stop_dt,             &
468               surface_data_output, terminate_coupled, terminate_run,          &
469               timestep_scheme,                                                &
470               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
471               time_do3d, time_domask, time_dopr, time_dopr_av,                &
472               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
473               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
474               time_run_control, time_since_reference_point,                   &
475               turbulent_inflow, turbulent_outflow, urban_surface,             &
476               use_initial_profile_as_reference,                               &
477               use_single_reference_value, u_gtrans, v_gtrans,                 &
478               virtual_flight, virtual_measurement, wind_turbine,              &
479               ws_scheme_mom, ws_scheme_sca 
480
481    USE cpulog,                                                                &
482        ONLY:  cpu_log, log_point, log_point_s
483
484    USE date_and_time_mod,                                                     &
485        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
486
487    USE flight_mod,                                                            &
488        ONLY:  flight_measurement
489
490    USE gust_mod,                                                              &
491        ONLY:  gust_actions, gust_module_enabled
492
493    USE indices,                                                               &
494        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
495
496    USE indoor_model_mod,                                                      &
497        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
498
499    USE interaction_droplets_ptq_mod,                                          &
500        ONLY:  interaction_droplets_ptq
501
502    USE interfaces
503
504    USE kinds
505
506    USE land_surface_model_mod,                                                &
507        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
508               skip_time_do_lsm
509
510    USE lsf_nudging_mod,                                                       &
511        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
512
513    USE multi_agent_system_mod,                                                &
514        ONLY:  agents_active, multi_agent_system
515
516    USE nesting_offl_mod,                                                      &
517        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
518       
519    USE netcdf_data_input_mod,                                                 &
520        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
521               netcdf_data_input_offline_nesting
522
523    USE ocean_mod,                                                             &
524        ONLY:  prho_reference
525
526    USE particle_attributes,                                                   &
527        ONLY:  particle_advection, particle_advection_start,                   &
528               use_sgs_for_particles, wang_kernel
529
530    USE pegrid
531
532    USE pmc_interface,                                                         &
533        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
534               pmci_synchronize
535
536    USE progress_bar,                                                          &
537        ONLY:  finish_progress_bar, output_progress_bar
538
539    USE prognostic_equations_mod,                                              &
540        ONLY:  prognostic_equations_cache, prognostic_equations_vector
541
542    USE radiation_model_mod,                                                   &
543        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
544              radiation_interaction, radiation_interactions,                   &
545              skip_time_do_radiation, time_radiation
546         
547    USE salsa_mod,                                                             &
548        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast,             &
549              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
550              skip_time_do_salsa                     
551
552    USE spectra_mod,                                                           &
553        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
554              skip_time_dosp
555
556    USE statistics,                                                            &
557        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
558
559    USE surface_layer_fluxes_mod,                                              &
560        ONLY:  surface_layer_fluxes
561
562    USE surface_mod,                                                           &
563        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
564
565    USE surface_output_mod,                                                    &
566        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
567               dt_dosurf_av, surface_output, surface_output_averaging,         &
568               skip_time_dosurf, skip_time_dosurf_av, time_dosurf,             &
569               time_dosurf_av
570
571    USE turbulence_closure_mod,                                                &
572        ONLY:  tcm_diffusivities, production_e_init
573
574    USE urban_surface_mod,                                                     &
575        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
576               usm_material_model,                                             &
577               usm_surface_energy_balance, usm_green_heat_model,               &
578               usm_temperature_near_surface
579
580    USE synthetic_turbulence_generator_mod,                                    &
581        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
582               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
583               use_syn_turb_gen   
584
585    USE user_actions_mod,                                                      &
586        ONLY:  user_actions
587
588
589    USE wind_turbine_model_mod,                                                &
590        ONLY:  wtm_forces
591
592    USE lpm_mod,                                                               &
593        ONLY:  lpm
594
595    USE vertical_nesting_mod,                                                  &
596        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
597               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
598               vnest_deallocate, vnest_init, vnest_init_fine,                  &
599               vnest_start_time
600               
601    USE virtual_measurement_mod,                                               &
602        ONLY:  vm_sampling, vm_time_start
603
604    IMPLICIT NONE
605
606    CHARACTER (LEN=9) ::  time_to_string   !<
607   
608    INTEGER(iwp)      ::  b !< index for aerosol size bins   
609    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
610    INTEGER(iwp)      ::  g !< index for gaseous compounds
611    INTEGER(iwp)      ::  lsp
612    INTEGER(iwp)      ::  lsp_usr   !<
613    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
614
615    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
616                            !< steering of run control output interval
617    REAL(wp) ::  time_since_reference_point_save  !< original value of
618                                                  !< time_since_reference_point
619
620!
621!-- At beginning determine the first time step
622    CALL timestep
623!
624!-- Synchronize the timestep in case of nested run.
625    IF ( nested_run )  THEN
626!
627!--    Synchronization by unifying the time step.
628!--    Global minimum of all time-steps is used for all.
629       CALL pmci_synchronize
630    ENDIF
631
632!
633!-- Determine and print out the run control quantities before the first time
634!-- step of this run. For the initial run, some statistics (e.g. divergence)
635!-- need to be determined first --> CALL flow_statistics at the beginning of
636!-- run_control
637    CALL run_control
638!
639!-- Data exchange between coupled models in case that a call has been omitted
640!-- at the end of the previous run of a job chain.
641    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
642!
643!--    In case of model termination initiated by the local model the coupler
644!--    must not be called because this would again cause an MPI hang.
645       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
646          CALL surface_coupler
647          time_coupling = time_coupling - dt_coupling
648       ENDDO
649       IF (time_coupling == 0.0_wp  .AND.                                      &
650           time_since_reference_point < dt_coupling )                          &
651       THEN
652          time_coupling = time_since_reference_point
653       ENDIF
654    ENDIF
655
656#if defined( __dvrp_graphics )
657!
658!-- Time measurement with dvrp software 
659    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
660#endif
661
662    CALL location_message( 'starting timestep-sequence', .TRUE. )
663!
664!-- Start of the time loop
665    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
666                .NOT. terminate_run )
667
668       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
669!
670!--    Vertical nesting: initialize fine grid
671       IF ( vnested ) THEN
672          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
673             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
674             CALL vnest_init_fine
675             vnest_init = .TRUE.
676             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
677          ENDIF
678       ENDIF
679!
680!--    Determine ug, vg and w_subs in dependence on data from external file
681!--    LSF_DATA
682       IF ( large_scale_forcing .AND. lsf_vert )  THEN
683           CALL ls_forcing_vert ( simulated_time )
684           sums_ls_l = 0.0_wp
685       ENDIF
686
687!
688!--    Set pt_init and q_init to the current profiles taken from
689!--    NUDGING_DATA
690       IF ( nudging )  THEN
691           CALL nudge_ref ( simulated_time )
692!
693!--        Store temperature gradient at the top boundary for possible Neumann
694!--        boundary condition
695           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
696           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
697           IF ( air_chemistry )  THEN
698              DO  lsp = 1, nspec
699                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
700                                - chem_species(lsp)%conc_pr_init(nzt) )       &
701                               / dzu(nzt+1)
702              ENDDO
703           ENDIF
704       ENDIF
705!
706!--    If forcing by larger-scale models is applied, check if new data
707!--    at domain boundaries need to be read.
708       IF ( nesting_offline )  THEN
709          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
710             CALL netcdf_data_input_offline_nesting
711       ENDIF
712
713!
714!--    Execute the gust module actions
715       IF ( gust_module_enabled )  THEN
716          CALL gust_actions( 'before_timestep' )
717       ENDIF
718
719!
720!--    Execute the user-defined actions
721       CALL user_actions( 'before_timestep' )
722
723!
724!--    Calculate forces by wind turbines
725       IF ( wind_turbine )  THEN
726
727          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
728
729          CALL wtm_forces
730
731          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
732
733       ENDIF   
734       
735!
736!--    Start of intermediate step loop
737       intermediate_timestep_count = 0
738       DO  WHILE ( intermediate_timestep_count < &
739                   intermediate_timestep_count_max )
740
741          intermediate_timestep_count = intermediate_timestep_count + 1
742
743!
744!--       Set the steering factors for the prognostic equations which depend
745!--       on the timestep scheme
746          CALL timestep_scheme_steering
747
748!
749!--       Calculate those variables needed in the tendency terms which need
750!--       global communication
751          IF ( .NOT. use_single_reference_value  .AND. &
752               .NOT. use_initial_profile_as_reference )  THEN
753!
754!--          Horizontally averaged profiles to be used as reference state in
755!--          buoyancy terms (WARNING: only the respective last call of
756!--          calc_mean_profile defines the reference state!)
757             IF ( .NOT. neutral )  THEN
758                CALL calc_mean_profile( pt, 4 )
759                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
760             ENDIF
761             IF ( ocean_mode )  THEN
762                CALL calc_mean_profile( rho_ocean, 64 )
763                ref_state(:)  = hom(:,1,64,0)
764             ENDIF
765             IF ( humidity )  THEN
766                CALL calc_mean_profile( vpt, 44 )
767                ref_state(:)  = hom(:,1,44,0)
768             ENDIF
769!
770!--          Assure that ref_state does not become zero at any level
771!--          ( might be the case if a vertical level is completely occupied
772!--            with topography ).
773             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
774                                ref_state == 0.0_wp )
775          ENDIF
776
777          IF ( .NOT. constant_diffusion )  CALL production_e_init
778          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
779               intermediate_timestep_count == 1 )  CALL ws_statistics
780!
781!--       In case of nudging calculate current nudging time scale and horizontal
782!--       means of u, v, pt and q
783          IF ( nudging )  THEN
784             CALL calc_tnudge( simulated_time )
785             CALL calc_mean_profile( u, 1 )
786             CALL calc_mean_profile( v, 2 )
787             CALL calc_mean_profile( pt, 4 )
788             CALL calc_mean_profile( q, 41 )
789          ENDIF
790
791!
792!--       Solve the prognostic equations. A fast cache optimized version with
793!--       only one single loop is used in case of Piascek-Williams advection
794!--       scheme. NEC vector machines use a different version, because
795!--       in the other versions a good vectorization is prohibited due to
796!--       inlining problems.
797          IF ( loop_optimization == 'cache' )  THEN
798             CALL prognostic_equations_cache
799          ELSEIF ( loop_optimization == 'vector' )  THEN
800             CALL prognostic_equations_vector
801          ENDIF
802
803!
804!--       Particle transport/physics with the Lagrangian particle model
805!--       (only once during intermediate steps, because it uses an Euler-step)
806!--       ### particle model should be moved before prognostic_equations, in order
807!--       to regard droplet interactions directly
808          IF ( particle_advection  .AND.                         &
809               simulated_time >= particle_advection_start  .AND. &
810               intermediate_timestep_count == 1 )  THEN
811             CALL lpm
812             first_call_lpm = .FALSE.
813          ENDIF
814
815!
816!--       Interaction of droplets with temperature and mixing ratio.
817!--       Droplet condensation and evaporation is calculated within
818!--       advec_particles.
819          IF ( cloud_droplets  .AND.  &
820               intermediate_timestep_count == intermediate_timestep_count_max )&
821          THEN
822             CALL interaction_droplets_ptq
823          ENDIF
824
825!
826!--       Movement of agents in multi agent system
827          IF ( agents_active  .AND.                                            &
828               time_since_reference_point >= multi_agent_system_start  .AND.   &
829               time_since_reference_point <= multi_agent_system_end    .AND.   &
830               intermediate_timestep_count == 1 )  THEN
831             CALL multi_agent_system
832             first_call_mas = .FALSE.
833          ENDIF
834
835!
836!--       Exchange of ghost points (lateral boundary conditions)
837          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
838
839          CALL exchange_horiz( u_p, nbgp )
840          CALL exchange_horiz( v_p, nbgp )
841          CALL exchange_horiz( w_p, nbgp )
842          CALL exchange_horiz( pt_p, nbgp )
843          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
844          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
845               .OR.  use_sgs_for_particles )  THEN
846             IF ( rans_tke_e )  THEN
847                CALL exchange_horiz( diss_p, nbgp )
848             ELSE
849                CALL exchange_horiz( diss, nbgp )
850             ENDIF
851          ENDIF
852          IF ( ocean_mode )  THEN
853             CALL exchange_horiz( sa_p, nbgp )
854             CALL exchange_horiz( rho_ocean, nbgp )
855             CALL exchange_horiz( prho, nbgp )
856          ENDIF
857          IF ( humidity )  THEN
858             CALL exchange_horiz( q_p, nbgp )
859             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
860                CALL exchange_horiz( qc_p, nbgp )
861                CALL exchange_horiz( nc_p, nbgp )
862             ENDIF
863             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
864                CALL exchange_horiz( qr_p, nbgp )
865                CALL exchange_horiz( nr_p, nbgp )
866             ENDIF
867          ENDIF
868          IF ( cloud_droplets )  THEN
869             CALL exchange_horiz( ql, nbgp )
870             CALL exchange_horiz( ql_c, nbgp )
871             CALL exchange_horiz( ql_v, nbgp )
872             CALL exchange_horiz( ql_vp, nbgp )
873          ENDIF
874          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
875          IF ( air_chemistry )  THEN
876             DO  lsp = 1, nspec
877                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
878!
879!--             kanani: Push chem_boundary_conds after CALL boundary_conds
880                lsp_usr = 1
881                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
882                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
883                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
884                                                chem_species(lsp)%conc_pr_init )
885                   ENDIF
886                   lsp_usr = lsp_usr + 1
887                ENDDO
888             ENDDO
889          ENDIF
890
891          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
892          THEN
893             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
894             DO  b = 1, nbins
895                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
896                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
897                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
898                                           aerosol_number(b)%init )
899                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
900                DO  c = 1, ncc_tot
901                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
902                                        nbgp )
903                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
904                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
905                                              aerosol_mass((c-1)*nbins+b)%init )
906                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
907                ENDDO
908             ENDDO
909             IF ( .NOT. salsa_gases_from_chem )  THEN
910                DO  g = 1, ngast
911                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
912                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
913                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
914                                              salsa_gas(g)%init )
915                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
916             ENDDO
917             ENDIF
918             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
919          ENDIF         
920          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
921
922!
923!--       Boundary conditions for the prognostic quantities (except of the
924!--       velocities at the outflow in case of a non-cyclic lateral wall)
925          CALL boundary_conds
926!
927!--       Swap the time levels in preparation for the next time step.
928          CALL swap_timelevel
929
930!
931!--       Vertical nesting: Interpolate fine grid data to the coarse grid
932          IF ( vnest_init ) THEN
933             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
934             CALL vnest_anterpolate
935             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
936          ENDIF
937
938          IF ( nested_run )  THEN
939
940             CALL cpu_log( log_point(60), 'nesting', 'start' )
941!
942!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
943!--          and pmci_child_datatrans are called inside the wrapper
944!--          subroutine pmci_datatrans according to the control parameters
945!--          nesting_mode and nesting_datatransfer_mode.
946!--          TO_DO: why is nesting_mode given as a parameter here?
947             CALL pmci_datatrans( nesting_mode )
948
949             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
950                  nesting_mode == 'vertical' )  THEN
951!
952!--             Exchange_horiz is needed for all parent-domains after the
953!--             anterpolation
954                CALL exchange_horiz( u, nbgp )
955                CALL exchange_horiz( v, nbgp )
956                CALL exchange_horiz( w, nbgp )
957                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
958
959                IF ( humidity )  THEN
960
961                   CALL exchange_horiz( q, nbgp )
962
963                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
964                       CALL exchange_horiz( qc, nbgp )
965                       CALL exchange_horiz( nc, nbgp )
966                   ENDIF
967                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
968                       CALL exchange_horiz( qr, nbgp )
969                       CALL exchange_horiz( nr, nbgp )
970                   ENDIF
971
972                ENDIF
973
974                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
975               
976                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
977
978                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
979                                                      rans_tke_e )             &
980                   CALL exchange_horiz( diss, nbgp )
981
982                IF ( air_chemistry )  THEN
983                   DO  n = 1, nspec     
984                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
985                   ENDDO
986                ENDIF
987
988             ENDIF
989!
990!--          Set boundary conditions again after interpolation and anterpolation.
991             CALL pmci_boundary_conds
992
993             CALL cpu_log( log_point(60), 'nesting', 'stop' )
994
995          ENDIF
996
997!
998!--       Temperature offset must be imposed at cyclic boundaries in x-direction
999!--       when a sloping surface is used
1000          IF ( sloping_surface )  THEN
1001             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
1002                                                    pt_slope_offset
1003             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1004                                                    pt_slope_offset
1005          ENDIF
1006
1007!
1008!--       Impose a turbulent inflow using the recycling method
1009          IF ( turbulent_inflow )  CALL  inflow_turbulence
1010
1011!
1012!--       Set values at outflow boundary using the special outflow condition
1013          IF ( turbulent_outflow )  CALL  outflow_turbulence
1014
1015!
1016!--       Impose a random perturbation on the horizontal velocity field
1017          IF ( create_disturbances  .AND.                                      &
1018               ( call_psolver_at_all_substeps  .AND.                           &
1019               intermediate_timestep_count == intermediate_timestep_count_max )&
1020          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1021               intermediate_timestep_count == 1 ) )                            &
1022          THEN
1023             time_disturb = time_disturb + dt_3d
1024             IF ( time_disturb >= dt_disturb )  THEN
1025                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1026                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1027                   CALL disturb_field( 'u', tend, u )
1028                   CALL disturb_field( 'v', tend, v )
1029                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1030                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1031                THEN
1032!
1033!--                Runs with a non-cyclic lateral wall need perturbations
1034!--                near the inflow throughout the whole simulation
1035                   dist_range = 1
1036                   CALL disturb_field( 'u', tend, u )
1037                   CALL disturb_field( 'v', tend, v )
1038                   dist_range = 0
1039                ENDIF
1040                time_disturb = time_disturb - dt_disturb
1041             ENDIF
1042          ENDIF
1043
1044!
1045!--       Map forcing data derived from larger scale model onto domain
1046!--       boundaries.
1047          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1048                                       intermediate_timestep_count_max  )      &
1049             CALL nesting_offl_bc
1050!
1051!--       Impose a turbulent inflow using synthetic generated turbulence,
1052!--       only once per time step.
1053          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1054             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1055             CALL stg_main
1056          ENDIF
1057!
1058!--       Ensure mass conservation. This need to be done after imposing
1059!--       synthetic turbulence and top boundary condition for pressure is set to
1060!--       Neumann conditions.
1061!--       Is this also required in case of Dirichlet?
1062          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1063!
1064!--       Reduce the velocity divergence via the equation for perturbation
1065!--       pressure.
1066          IF ( intermediate_timestep_count == 1  .OR. &
1067                call_psolver_at_all_substeps )  THEN
1068
1069             IF (  vnest_init ) THEN
1070!
1071!--             Compute pressure in the CG, interpolate top boundary conditions
1072!--             to the FG and then compute pressure in the FG
1073                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1074
1075                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1076                CALL vnest_boundary_conds
1077                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1078 
1079                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1080
1081!--             Anterpolate TKE, satisfy Germano Identity
1082                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1083                CALL vnest_anterpolate_e
1084                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1085
1086             ELSE
1087
1088                CALL pres
1089
1090             ENDIF
1091
1092          ENDIF
1093
1094!
1095!--       If required, compute liquid water content
1096          IF ( bulk_cloud_model )  THEN
1097             CALL calc_liquid_water_content
1098          ENDIF
1099!
1100!--       If required, compute virtual potential temperature
1101          IF ( humidity )  THEN
1102             CALL compute_vpt 
1103          ENDIF 
1104
1105!
1106!--       Compute the diffusion quantities
1107          IF ( .NOT. constant_diffusion )  THEN
1108
1109!
1110!--          Determine surface fluxes shf and qsws and surface values
1111!--          pt_surface and q_surface in dependence on data from external
1112!--          file LSF_DATA respectively
1113             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1114                 intermediate_timestep_count == intermediate_timestep_count_max )&
1115             THEN
1116                CALL ls_forcing_surf( simulated_time )
1117             ENDIF
1118
1119!
1120!--          First the vertical (and horizontal) fluxes in the surface
1121!--          (constant flux) layer are computed
1122             IF ( constant_flux_layer )  THEN
1123                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1124                CALL surface_layer_fluxes
1125                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1126             ENDIF
1127!
1128!--          If required, solve the energy balance for the surface and run soil
1129!--          model. Call for horizontal as well as vertical surfaces
1130             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1131
1132                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1133!
1134!--             Call for horizontal upward-facing surfaces
1135                CALL lsm_energy_balance( .TRUE., -1 )
1136                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1137!
1138!--             Call for northward-facing surfaces
1139                CALL lsm_energy_balance( .FALSE., 0 )
1140                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1141!
1142!--             Call for southward-facing surfaces
1143                CALL lsm_energy_balance( .FALSE., 1 )
1144                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1145!
1146!--             Call for eastward-facing surfaces
1147                CALL lsm_energy_balance( .FALSE., 2 )
1148                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1149!
1150!--             Call for westward-facing surfaces
1151                CALL lsm_energy_balance( .FALSE., 3 )
1152                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1153!
1154!--             At the end, set boundary conditons for potential temperature
1155!--             and humidity after running the land-surface model. This
1156!--             might be important for the nesting, where arrays are transfered.
1157                CALL lsm_boundary_condition
1158
1159                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1160             ENDIF
1161!
1162!--          If required, solve the energy balance for urban surfaces and run
1163!--          the material heat model
1164             IF (urban_surface) THEN
1165                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1166               
1167                CALL usm_surface_energy_balance( .FALSE. )
1168                IF ( usm_material_model )  THEN
1169                   CALL usm_green_heat_model
1170                   CALL usm_material_heat_model ( .FALSE. )
1171                ENDIF
1172
1173                CALL usm_temperature_near_surface
1174!
1175!--             At the end, set boundary conditons for potential temperature
1176!--             and humidity after running the urban-surface model. This
1177!--             might be important for the nesting, where arrays are transfered.
1178                CALL usm_boundary_condition
1179
1180                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1181             ENDIF
1182!
1183!--          Compute the diffusion coefficients
1184             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1185             IF ( .NOT. humidity ) THEN
1186                IF ( ocean_mode )  THEN
1187                   CALL tcm_diffusivities( prho, prho_reference )
1188                ELSE
1189                   CALL tcm_diffusivities( pt, pt_reference )
1190                ENDIF
1191             ELSE
1192                CALL tcm_diffusivities( vpt, pt_reference )
1193             ENDIF
1194             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1195!
1196!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1197             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1198
1199          ENDIF
1200
1201!
1202!--       If required, calculate radiative fluxes and heating rates
1203          IF ( radiation .AND. intermediate_timestep_count                     &
1204               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1205               skip_time_do_radiation )  THEN
1206
1207               time_radiation = time_radiation + dt_3d
1208
1209             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1210             THEN
1211
1212                CALL cpu_log( log_point(50), 'radiation', 'start' )
1213
1214                IF ( .NOT. force_radiation_call )  THEN
1215                   time_radiation = time_radiation - dt_radiation
1216                ENDIF
1217
1218!
1219!--             Adjust the current time to the time step of the radiation model.
1220!--             Needed since radiation is pre-calculated and stored only on apparent
1221!--             solar positions
1222                time_since_reference_point_save = time_since_reference_point
1223                time_since_reference_point =                                   &
1224                                    REAL( FLOOR( time_since_reference_point /  &
1225                                                 dt_radiation), wp )           &
1226                                             * dt_radiation
1227
1228                CALL radiation_control
1229
1230                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1231
1232                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1233                     radiation_interactions )  THEN
1234                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1235                   CALL radiation_interaction
1236                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1237                ENDIF
1238   
1239!
1240!--             Return the current time to its original value
1241                time_since_reference_point = time_since_reference_point_save
1242
1243             ENDIF
1244          ENDIF
1245
1246       ENDDO   ! Intermediate step loop
1247!
1248!--    If required, consider chemical emissions
1249       IF ( air_chemistry  .AND.  do_emis )  THEN
1250!
1251!--       Update the time --> kanani: revise location of this CALL
1252          CALL calc_date_and_time
1253!
1254!--       Call emission routine only once an hour
1255          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1256             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1257             hour_call_emis = hour_of_year
1258          ENDIF
1259       ENDIF
1260
1261!
1262!--    If required, calculate indoor temperature, waste heat, heat flux
1263!--    through wall, etc.
1264!--    dt_indoor steers the frequency of the indoor model calculations
1265       IF (       indoor_model                                                    &
1266            .AND. intermediate_timestep_count == intermediate_timestep_count_max  &
1267            .AND. time_since_reference_point > skip_time_do_indoor )  THEN
1268
1269          time_indoor = time_indoor + dt_3d
1270
1271          IF ( time_indoor >= dt_indoor )  THEN
1272
1273             time_indoor = time_indoor - dt_indoor
1274
1275             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1276             CALL im_main_heatcool
1277             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1278
1279          ENDIF
1280       ENDIF
1281!
1282!--    Increase simulation time and output times
1283       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1284       current_timestep_number    = current_timestep_number + 1
1285       simulated_time             = simulated_time   + dt_3d
1286       time_since_reference_point = simulated_time - coupling_start_time
1287       simulated_time_chr         = time_to_string( time_since_reference_point )
1288
1289
1290
1291
1292       IF ( simulated_time >= skip_time_data_output_av )  THEN
1293          time_do_av         = time_do_av       + dt_3d
1294       ENDIF
1295       IF ( simulated_time >= skip_time_do2d_xy )  THEN
1296          time_do2d_xy       = time_do2d_xy     + dt_3d
1297       ENDIF
1298       IF ( simulated_time >= skip_time_do2d_xz )  THEN
1299          time_do2d_xz       = time_do2d_xz     + dt_3d
1300       ENDIF
1301       IF ( simulated_time >= skip_time_do2d_yz )  THEN
1302          time_do2d_yz       = time_do2d_yz     + dt_3d
1303       ENDIF
1304       IF ( simulated_time >= skip_time_do3d    )  THEN
1305          time_do3d          = time_do3d        + dt_3d
1306       ENDIF
1307       DO  mid = 1, masks
1308          IF ( simulated_time >= skip_time_domask(mid) )  THEN
1309             time_domask(mid)= time_domask(mid) + dt_3d
1310          ENDIF
1311       ENDDO
1312       time_dvrp          = time_dvrp        + dt_3d
1313       IF ( simulated_time >= skip_time_dosp )  THEN
1314          time_dosp       = time_dosp        + dt_3d
1315       ENDIF
1316       time_dots          = time_dots        + dt_3d
1317       IF ( .NOT. first_call_lpm )  THEN
1318          time_dopts      = time_dopts       + dt_3d
1319       ENDIF
1320       IF ( simulated_time >= skip_time_dopr )  THEN
1321          time_dopr       = time_dopr        + dt_3d
1322       ENDIF
1323       time_dopr_listing  = time_dopr_listing + dt_3d
1324       time_run_control   = time_run_control + dt_3d
1325!
1326!--    Increment time-counter for surface output
1327       IF ( surface_data_output )  THEN
1328          IF ( simulated_time >= skip_time_dosurf )  THEN
1329             time_dosurf    = time_dosurf + dt_3d
1330          ENDIF
1331          IF ( simulated_time >= skip_time_dosurf_av )  THEN
1332             time_dosurf_av = time_dosurf_av + dt_3d
1333          ENDIF
1334       ENDIF
1335!
1336!--    In case of synthetic turbulence generation and parametrized turbulence
1337!--    information, update the time counter and if required, adjust the
1338!--    STG to new atmospheric conditions.
1339       IF ( use_syn_turb_gen  )  THEN
1340          IF ( parametrize_inflow_turbulence )  THEN
1341             time_stg_adjust = time_stg_adjust + dt_3d
1342             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1343          ENDIF
1344          time_stg_call = time_stg_call + dt_3d
1345       ENDIF
1346
1347!
1348!--    Data exchange between coupled models
1349       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1350                                          .AND. .NOT. vnested )  THEN
1351          time_coupling = time_coupling + dt_3d
1352
1353!
1354!--       In case of model termination initiated by the local model
1355!--       (terminate_coupled > 0), the coupler must be skipped because it would
1356!--       cause an MPI intercomminucation hang.
1357!--       If necessary, the coupler will be called at the beginning of the
1358!--       next restart run.
1359          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1360             CALL surface_coupler
1361             time_coupling = time_coupling - dt_coupling
1362          ENDDO
1363       ENDIF
1364
1365!
1366!--    Biometeorology calculation of stationary thermal indices
1367       IF ( biometeorology  .AND.  time_do3d >= dt_do3d )  THEN
1368!
1369!--       If required, do thermal comfort calculations
1370          IF ( thermal_comfort )  THEN
1371             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1372             time_bio_results = time_since_reference_point
1373          ENDIF
1374!
1375!--       If required, do UV exposure calculations
1376          IF ( uv_exposure )  THEN
1377             CALL uvem_calc_exposure
1378          ENDIF
1379       ENDIF
1380
1381!
1382!--    Execute the gust module actions
1383       IF ( gust_module_enabled )  THEN
1384          CALL gust_actions( 'after_integration' )
1385       ENDIF
1386
1387!
1388!--    Execute user-defined actions
1389       CALL user_actions( 'after_integration' )
1390
1391!
1392!--    If Galilei transformation is used, determine the distance that the
1393!--    model has moved so far
1394       IF ( galilei_transformation )  THEN
1395          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1396          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1397       ENDIF
1398
1399!
1400!--    Check, if restart is necessary (because cpu-time is expiring or
1401!--    because it is forced by user) and set stop flag
1402!--    This call is skipped if the remote model has already initiated a restart.
1403       IF ( .NOT. terminate_run )  CALL check_for_restart
1404
1405!
1406!--    Carry out statistical analysis and output at the requested output times.
1407!--    The MOD function is used for calculating the output time counters (like
1408!--    time_dopr) in order to regard a possible decrease of the output time
1409!--    interval in case of restart runs
1410
1411!
1412!--    Set a flag indicating that so far no statistics have been created
1413!--    for this time step
1414       flow_statistics_called = .FALSE.
1415
1416!
1417!--    If required, call flow_statistics for averaging in time
1418       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1419            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1420            simulated_time >= skip_time_dopr )  THEN
1421          time_dopr_av = time_dopr_av + dt_3d
1422          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1423             do_sum = .TRUE.
1424             time_dopr_av = MOD( time_dopr_av, &
1425                                    MAX( dt_averaging_input_pr, dt_3d ) )
1426          ENDIF
1427       ENDIF
1428       IF ( do_sum )  CALL flow_statistics
1429
1430!
1431!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1432       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1433            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
1434            simulated_time >= skip_time_data_output_av )                    &
1435       THEN
1436          time_do_sla = time_do_sla + dt_3d
1437          IF ( time_do_sla >= dt_averaging_input )  THEN
1438             CALL sum_up_3d_data
1439             average_count_3d = average_count_3d + 1
1440             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1441          ENDIF
1442       ENDIF
1443!
1444!--    Average surface data
1445       IF ( surface_data_output )  THEN
1446          IF ( averaging_interval_surf /= 0.0_wp  .AND.                        & 
1447               ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1448          .AND.  simulated_time >= skip_time_dosurf_av )  THEN
1449             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1450                CALL surface_output_averaging
1451                average_count_surf = average_count_surf + 1
1452             ENDIF
1453          ENDIF
1454       ENDIF
1455
1456!
1457!--    Calculate spectra for time averaging
1458       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1459            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1460            simulated_time >= skip_time_dosp )  THEN
1461          time_dosp_av = time_dosp_av + dt_3d
1462          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1463             CALL calc_spectra
1464             time_dosp_av = MOD( time_dosp_av, &
1465                                 MAX( dt_averaging_input_pr, dt_3d ) )
1466          ENDIF
1467       ENDIF
1468
1469!
1470!--    Call flight module and output data
1471       IF ( virtual_flight )  THEN
1472          CALL flight_measurement
1473          CALL data_output_flight
1474       ENDIF
1475!
1476!--    Take virtual measurements
1477       IF ( virtual_measurement  .AND.                                         &
1478            vm_time_start <= time_since_reference_point )  CALL vm_sampling
1479
1480!
1481!--    Profile output (ASCII) on file
1482       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1483          CALL print_1d
1484          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1485                                                           dt_3d ) )
1486       ENDIF
1487
1488!
1489!--    Graphic output for PROFIL
1490       IF ( time_dopr >= dt_dopr )  THEN
1491          IF ( dopr_n /= 0 )  CALL data_output_profiles
1492          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1493          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1494       ENDIF
1495
1496!
1497!--    Graphic output for time series
1498       IF ( time_dots >= dt_dots )  THEN
1499          CALL data_output_tseries
1500          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1501       ENDIF
1502
1503!
1504!--    Output of spectra (formatted for use with PROFIL), in case of no
1505!--    time averaging, spectra has to be calculated before
1506       IF ( time_dosp >= dt_dosp )  THEN
1507          IF ( average_count_sp == 0 )  CALL calc_spectra
1508          CALL data_output_spectra
1509          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1510       ENDIF
1511
1512!
1513!--    2d-data output (cross-sections)
1514       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
1515          CALL data_output_2d( 'xy', 0 )
1516          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1517       ENDIF
1518       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
1519          CALL data_output_2d( 'xz', 0 )
1520          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1521       ENDIF
1522       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
1523          CALL data_output_2d( 'yz', 0 )
1524          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1525       ENDIF
1526
1527!
1528!--    3d-data output (volume data)
1529       IF ( time_do3d >= dt_do3d )  THEN
1530          CALL data_output_3d( 0 )
1531          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1532       ENDIF
1533
1534!
1535!--    Masked data output
1536       DO  mid = 1, masks
1537          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
1538             CALL data_output_mask( 0 )
1539             time_domask(mid) = MOD( time_domask(mid),  &
1540                                     MAX( dt_domask(mid), dt_3d ) )
1541          ENDIF
1542       ENDDO
1543
1544!
1545!--    Output of time-averaged 2d/3d/masked data
1546       IF ( time_do_av >= dt_data_output_av )  THEN
1547          CALL average_3d_data
1548          CALL data_output_2d( 'xy', 1 )
1549          CALL data_output_2d( 'xz', 1 )
1550          CALL data_output_2d( 'yz', 1 )
1551          CALL data_output_3d( 1 )
1552          DO  mid = 1, masks
1553             CALL data_output_mask( 1 )
1554          ENDDO
1555          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1556       ENDIF
1557!
1558!--    Output of surface data, instantaneous and averaged data
1559       IF ( surface_data_output )  THEN
1560          IF ( time_dosurf >= dt_dosurf )  THEN
1561             CALL surface_output( 0 )
1562             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1563          ENDIF
1564          IF ( time_dosurf_av >= dt_dosurf_av )  THEN
1565             CALL surface_output( 1 )
1566             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1567          ENDIF
1568       ENDIF
1569
1570!
1571!--    Output of particle time series
1572       IF ( particle_advection )  THEN
1573          IF ( time_dopts >= dt_dopts  .OR. &
1574               ( simulated_time >= particle_advection_start  .AND. &
1575                 first_call_lpm ) )  THEN
1576             CALL data_output_ptseries
1577             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1578          ENDIF
1579       ENDIF
1580
1581!
1582!--    Output of dvrp-graphics (isosurface, particles, slicer)
1583#if defined( __dvrp_graphics )
1584       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1585#endif
1586       IF ( time_dvrp >= dt_dvrp )  THEN
1587          CALL data_output_dvrp
1588          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1589       ENDIF
1590#if defined( __dvrp_graphics )
1591       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1592#endif
1593
1594!
1595!--    If required, set the heat flux for the next time step at a random value
1596       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1597          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1598          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1599          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1600       ENDIF
1601
1602!
1603!--    Execute the gust module actions
1604       IF ( gust_module_enabled )  THEN
1605          CALL gust_actions( 'after_timestep' )
1606       ENDIF
1607
1608!
1609!--    Execute user-defined actions
1610       CALL user_actions( 'after_timestep' )
1611
1612!
1613!--    Determine size of next time step. Save timestep dt_3d because it is
1614!--    newly calculated in routine timestep, but required further below for
1615!--    steering the run control output interval
1616       dt_3d_old = dt_3d
1617       CALL timestep
1618
1619!
1620!--    Synchronize the timestep in case of nested run.
1621       IF ( nested_run )  THEN
1622!
1623!--       Synchronize by unifying the time step.
1624!--       Global minimum of all time-steps is used for all.
1625          CALL pmci_synchronize
1626       ENDIF
1627
1628!
1629!--    Computation and output of run control parameters.
1630!--    This is also done whenever perturbations have been imposed
1631       IF ( time_run_control >= dt_run_control  .OR.                     &
1632            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1633       THEN
1634          CALL run_control
1635          IF ( time_run_control >= dt_run_control )  THEN
1636             time_run_control = MOD( time_run_control, &
1637                                     MAX( dt_run_control, dt_3d_old ) )
1638          ENDIF
1639       ENDIF
1640
1641!
1642!--    Output elapsed simulated time in form of a progress bar on stdout
1643       IF ( myid == 0 )  CALL output_progress_bar
1644
1645       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1646
1647
1648    ENDDO   ! time loop
1649
1650!
1651!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1652    IF ( vnest_init )  CALL vnest_deallocate
1653
1654    IF ( myid == 0 )  CALL finish_progress_bar
1655
1656#if defined( __dvrp_graphics )
1657    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1658#endif
1659
1660    CALL location_message( 'finished time-stepping', .TRUE. )
1661
1662 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.