source: palm/trunk/SOURCE/time_integration.f90 @ 3525

Last change on this file since 3525 was 3525, checked in by kanani, 3 years ago

Changes related to clean-up of biometeorology (by dom_dwd_user)

  • Property svn:keywords set to Id
File size: 63.3 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2018 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3525 2018-11-14 16:06:14Z kanani $
27! Changes related to clean-up of biometeorology (dom_dwd_user)
28!
29! 3524 2018-11-14 13:36:44Z raasch
30! unused variables removed
31!
32! 3484 2018-11-02 14:41:25Z hellstea
33! pmci_ensure_nest_mass_conservation is premanently removed
34!
35! 3473 2018-10-30 20:50:15Z suehring
36! new module for virtual measurements introduced
37!
38! 3472 2018-10-30 20:43:50Z suehring
39! Add indoor model (kanani, srissman, tlang)
40!
41! 3467 2018-10-30 19:05:21Z suehring
42! Implementation of a new aerosol module salsa.
43!
44! 3448 2018-10-29 18:14:31Z kanani
45! Add biometeorology
46!
47! 3421 2018-10-24 18:39:32Z gronemeier
48! Surface data output
49!
50! 3418 2018-10-24 16:07:39Z kanani
51! call to material_heat_model now with check if spinup runs (rvtils)
52!
53! 3378 2018-10-19 12:34:59Z kanani
54! merge from radiation branch (r3362) into trunk
55! (moh.hefny):
56! Bugfix in the if statement to call radiation_interaction
57!
58! 3347 2018-10-15 14:21:08Z suehring
59! - offline nesting separated from large-scale forcing module
60! - changes for synthetic turbulence generator
61!
62! 3343 2018-10-15 10:38:52Z suehring
63! - Formatting, clean-up, comments (kanani)
64! - Added CALL to chem_emissions_setup (Russo)
65! - Code added for decycling chemistry (basit)
66!
67! 3294 2018-10-01 02:37:10Z raasch
68! changes concerning modularization of ocean option
69!
70! 3274 2018-09-24 15:42:55Z knoop
71! Modularization of all bulk cloud physics code components
72!
73! 3241 2018-09-12 15:02:00Z raasch
74! unused variables removed
75!
76! 3198 2018-08-15 09:23:10Z sward
77! Added multi_agent_system_end; defined start time for MAS relative to
78! time_since_reference_point
79!
80! 3183 2018-07-27 14:25:55Z suehring
81! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
82! Rename subroutines and variables in COSMO nesting mode
83!
84! 3182 2018-07-27 13:36:03Z suehring
85! Added multi agent system
86!
87! 3042 2018-05-25 10:44:37Z schwenkel
88! Changed the name specific humidity to mixing ratio
89!
90! 3040 2018-05-25 10:22:08Z schwenkel
91! Fixed bug in IF statement
92! Ensure that the time when calling the radiation to be the time step of the
93! pre-calculated time when first calculate the positions of the sun
94!
95! 3004 2018-04-27 12:33:25Z Giersch
96! First call of flow_statistics has been removed. It is already called in
97! run_control itself
98!
99! 2984 2018-04-18 11:51:30Z hellstea
100! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
101! as seemingly unnecessary.
102!
103! 2941 2018-04-03 11:54:58Z kanani
104! Deduct spinup_time from RUN_CONTROL output of main 3d run
105! (use time_since_reference_point instead of simulated_time)
106!
107! 2938 2018-03-27 15:52:42Z suehring
108! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
109!
110! 2936 2018-03-27 14:49:27Z suehring
111! Little formatting adjustment.
112!
113! 2817 2018-02-19 16:32:21Z knoop
114! Preliminary gust module interface implemented
115!
116! 2801 2018-02-14 16:01:55Z thiele
117! Changed lpm from subroutine to module.
118! Introduce particle transfer in nested models.
119!
120! 2776 2018-01-31 10:44:42Z Giersch
121! Variable use_synthetic_turbulence_generator has been abbreviated
122!
123! 2773 2018-01-30 14:12:54Z suehring
124! - Nesting for chemical species
125!
126! 2766 2018-01-22 17:17:47Z kanani
127! Removed preprocessor directive __chem
128!
129! 2718 2018-01-02 08:49:38Z maronga
130! Corrected "Former revisions" section
131!
132! 2696 2017-12-14 17:12:51Z kanani
133! - Change in file header (GPL part)
134! - Implementation of uv exposure model (FK)
135! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
136! - renamed diffusivities to tcm_diffusivities (TG)
137! - implement prognostic equation for diss (TG)
138! - Moved/commented CALL to chem_emissions (FK)
139! - Added CALL to chem_emissions (FK)
140! - Implementation of chemistry module (FK)
141! - Calls for setting boundary conditions in USM and LSM (MS)
142! - Large-scale forcing with larger-scale models implemented (MS)
143! - Rename usm_radiation into radiation_interactions; merge with branch
144!   radiation (MS)
145! - added call for usm_green_heat_model for green building surfaces (RvT)
146! - added call for usm_temperature_near_surface for use in indoor model (RvT)
147!
148! 2617 2017-11-16 12:47:24Z suehring
149! Bugfix, assure that the reference state does not become zero.
150!
151! 2563 2017-10-19 15:36:10Z Giersch
152! Variable wind_turbine moved to module control_parameters
153!
154! 2365 2017-08-21 14:59:59Z kanani
155! Vertical grid nesting implemented (SadiqHuq)
156!
157! 2320 2017-07-21 12:47:43Z suehring
158! Set bottom boundary conditions after nesting interpolation and anterpolation
159!
160! 2299 2017-06-29 10:14:38Z maronga
161! Call of soil model adjusted
162!
163! 2292 2017-06-20 09:51:42Z schwenkel
164! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
165! includes two more prognostic equations for cloud drop concentration (nc) 
166! and cloud water content (qc).
167!
168! 2271 2017-06-09 12:34:55Z sward
169! Start timestep message changed
170!
171! 2259 2017-06-08 09:09:11Z gronemeier
172! Implemented synthetic turbulence generator
173!
174! 2233 2017-05-30 18:08:54Z suehring
175!
176! 2232 2017-05-30 17:47:52Z suehring
177! Adjustments to new topography and surface concept
178! Modify passed parameters for disturb_field
179!
180! 2178 2017-03-17 11:07:39Z hellstea
181! Setting perturbations at all times near inflow boundary is removed
182! in case of nested boundaries
183!
184! 2174 2017-03-13 08:18:57Z maronga
185! Added support for nesting with cloud microphysics
186!
187! 2118 2017-01-17 16:38:49Z raasch
188! OpenACC directives and related code removed
189!
190! 2050 2016-11-08 15:00:55Z gronemeier
191! Implement turbulent outflow condition
192!
193! 2031 2016-10-21 15:11:58Z knoop
194! renamed variable rho to rho_ocean
195!
196! 2011 2016-09-19 17:29:57Z kanani
197! Flag urban_surface is now defined in module control_parameters,
198! removed commented CALLs of global_min_max.
199!
200! 2007 2016-08-24 15:47:17Z kanani
201! Added CALLs for new urban surface model
202!
203! 2000 2016-08-20 18:09:15Z knoop
204! Forced header and separation lines into 80 columns
205!
206! 1976 2016-07-27 13:28:04Z maronga
207! Simplified calls to radiation model
208!
209! 1960 2016-07-12 16:34:24Z suehring
210! Separate humidity and passive scalar
211!
212! 1957 2016-07-07 10:43:48Z suehring
213! flight module added
214!
215! 1919 2016-05-27 14:51:23Z raasch
216! Initial version of purely vertical nesting introduced.
217!
218! 1918 2016-05-27 14:35:57Z raasch
219! determination of time step moved to the end of the time step loop,
220! the first time step is now always calculated before the time step loop (i.e.
221! also in case of restart runs)
222!
223! 1914 2016-05-26 14:44:07Z witha
224! Added call for wind turbine model
225!
226! 1878 2016-04-19 12:30:36Z hellstea
227! Synchronization for nested runs rewritten
228!
229! 1853 2016-04-11 09:00:35Z maronga
230! Adjusted for use with radiation_scheme = constant
231!
232! 1849 2016-04-08 11:33:18Z hoffmann
233! Adapted for modularization of microphysics
234!
235! 1833 2016-04-07 14:23:03Z raasch
236! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
237!
238! 1831 2016-04-07 13:15:51Z hoffmann
239! turbulence renamed collision_turbulence
240!
241! 1822 2016-04-07 07:49:42Z hoffmann
242! icloud_scheme replaced by microphysics_*
243!
244! 1808 2016-04-05 19:44:00Z raasch
245! output message in case unscheduled radiation calls removed
246!
247! 1797 2016-03-21 16:50:28Z raasch
248! introduction of different datatransfer modes
249!
250! 1791 2016-03-11 10:41:25Z raasch
251! call of pmci_update_new removed
252!
253! 1786 2016-03-08 05:49:27Z raasch
254! +module spectrum
255!
256! 1783 2016-03-06 18:36:17Z raasch
257! switch back of netcdf data format for mask output moved to the mask output
258! routine
259!
260! 1781 2016-03-03 15:12:23Z raasch
261! some pmc calls removed at the beginning (before timeloop),
262! pmc initialization moved to the main program
263!
264! 1764 2016-02-28 12:45:19Z raasch
265! PMC_ACTIVE flags removed,
266! bugfix: nest synchronization after first call of timestep
267!
268! 1762 2016-02-25 12:31:13Z hellstea
269! Introduction of nested domain feature
270!
271! 1736 2015-12-04 08:56:33Z raasch
272! no perturbations added to total domain if energy limit has been set zero
273!
274! 1691 2015-10-26 16:17:44Z maronga
275! Added option for spin-ups without land surface and radiation models. Moved calls
276! for radiation and lan surface schemes.
277!
278! 1682 2015-10-07 23:56:08Z knoop
279! Code annotations made doxygen readable
280!
281! 1671 2015-09-25 03:29:37Z raasch
282! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
283! for particles
284!
285! 1585 2015-04-30 07:05:52Z maronga
286! Moved call of radiation scheme. Added support for RRTM
287!
288! 1551 2015-03-03 14:18:16Z maronga
289! Added interface for different radiation schemes.
290!
291! 1496 2014-12-02 17:25:50Z maronga
292! Added calls for the land surface model and radiation scheme
293!
294! 1402 2014-05-09 14:25:13Z raasch
295! location messages modified
296!
297! 1384 2014-05-02 14:31:06Z raasch
298! location messages added
299!
300! 1380 2014-04-28 12:40:45Z heinze
301! CALL of nudge_ref added
302! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
303!
304! 1365 2014-04-22 15:03:56Z boeske
305! Reset sums_ls_l to zero at each timestep
306! +sums_ls_l
307! Calculation of reference state (previously in subroutine calc_mean_profile)
308
309! 1342 2014-03-26 17:04:47Z kanani
310! REAL constants defined as wp-kind
311!
312! 1320 2014-03-20 08:40:49Z raasch
313! ONLY-attribute added to USE-statements,
314! kind-parameters added to all INTEGER and REAL declaration statements,
315! kinds are defined in new module kinds,
316! old module precision_kind is removed,
317! revision history before 2012 removed,
318! comment fields (!:) to be used for variable explanations added to
319! all variable declaration statements
320! 1318 2014-03-17 13:35:16Z raasch
321! module interfaces removed
322!
323! 1308 2014-03-13 14:58:42Z fricke
324! +netcdf_data_format_save
325! For masked data, parallel netcdf output is not tested so far, hence
326! netcdf_data_format is switched back to non-paralell output.
327!
328! 1276 2014-01-15 13:40:41Z heinze
329! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
330!
331! 1257 2013-11-08 15:18:40Z raasch
332! acc-update-host directive for timestep removed
333!
334! 1241 2013-10-30 11:36:58Z heinze
335! Generalize calc_mean_profile for wider use
336! Determine shf and qsws in dependence on data from LSF_DATA
337! Determine ug and vg in dependence on data from LSF_DATA
338! 1221 2013-09-10 08:59:13Z raasch
339! host update of arrays before timestep is called
340!
341! 1179 2013-06-14 05:57:58Z raasch
342! mean profiles for reference state are only calculated if required,
343! small bugfix for background communication
344!
345! 1171 2013-05-30 11:27:45Z raasch
346! split of prognostic_equations deactivated (comment lines), for the time being
347!
348! 1128 2013-04-12 06:19:32Z raasch
349! asynchronous transfer of ghost point data realized for acc-optimized version:
350! prognostic_equations are first called two times for those points required for
351! the left-right and north-south exchange, respectively, and then for the
352! remaining points,
353! those parts requiring global communication moved from prognostic_equations to
354! here
355!
356! 1115 2013-03-26 18:16:16Z hoffmann
357! calculation of qr and nr is restricted to precipitation
358!
359! 1113 2013-03-10 02:48:14Z raasch
360! GPU-porting of boundary conditions,
361! openACC directives updated
362! formal parameter removed from routine boundary_conds
363!
364! 1111 2013-03-08 23:54:10Z raasch
365! +internal timestep counter for cpu statistics added,
366! openACC directives updated
367!
368! 1092 2013-02-02 11:24:22Z raasch
369! unused variables removed
370!
371! 1065 2012-11-22 17:42:36Z hoffmann
372! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
373!
374! 1053 2012-11-13 17:11:03Z hoffmann
375! exchange of ghost points for nr, qr added
376!
377! 1036 2012-10-22 13:43:42Z raasch
378! code put under GPL (PALM 3.9)
379!
380! 1019 2012-09-28 06:46:45Z raasch
381! non-optimized version of prognostic_equations removed
382!
383! 1015 2012-09-27 09:23:24Z raasch
384! +call of prognostic_equations_acc
385!
386! 1001 2012-09-13 14:08:46Z raasch
387! all actions concerning leapfrog- and upstream-spline-scheme removed
388!
389! 849 2012-03-15 10:35:09Z raasch
390! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
391!
392! 825 2012-02-19 03:03:44Z raasch
393! wang_collision_kernel renamed wang_kernel
394!
395! Revision 1.1  1997/08/11 06:19:04  raasch
396! Initial revision
397!
398!
399! Description:
400! ------------
401!> Integration in time of the model equations, statistical analysis and graphic
402!> output
403!------------------------------------------------------------------------------!
404 SUBROUTINE time_integration
405 
406
407    USE advec_ws,                                                              &
408        ONLY:  ws_statistics
409
410    USE arrays_3d,                                                             &
411        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, &
412               q_init, q, qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p,      &
413               ref_state, rho_ocean, s, s_p, sa_p, tend, u, u_p, v, vpt,       &
414               v_p, w, w_p
415
416    USE biometeorology_mod,                                                    &
417        ONLY:  bio_calculate_thermal_index_maps, time_bio_results
418
419    USE bulk_cloud_model_mod,                                                  &
420        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
421              collision_turbulence, microphysics_morrison, microphysics_seifert
422
423    USE calc_mean_profile_mod,                                                 &
424        ONLY:  calc_mean_profile
425
426    USE chem_emissions_mod,                                                    &
427        ONLY:  chem_emissions_setup
428
429    USE chem_modules,                                                          &
430        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
431
432    USE chemistry_model_mod,                                                   &
433        ONLY:  chem_boundary_conds, chem_species
434
435    USE control_parameters,                                                    &
436        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
437               average_count_3d, averaging_interval, averaging_interval_pr,    &
438               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
439               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
440               constant_flux_layer, constant_heatflux,                         &
441               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
442               coupling_start_time, current_timestep_number,                   &
443               disturbance_created, disturbance_energy_limit, dist_range,      &
444               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
445               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
446               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
447               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
448               first_call_lpm, first_call_mas, galilei_transformation,         &
449               humidity, indoor_model, intermediate_timestep_count,            &
450               intermediate_timestep_count_max,                                &
451               land_surface, large_scale_forcing,                              &
452               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
453               multi_agent_system_end, multi_agent_system_start,               &
454               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
455               ocean_mode, passive_scalar, pt_reference,                       &
456               pt_slope_offset, random_heatflux, rans_mode,                    &
457               rans_tke_e, run_coupled, simulated_time, simulated_time_chr,    &
458               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
459               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
460               skip_time_data_output_av, sloping_surface, stop_dt,             &
461               surface_data_output, terminate_coupled, terminate_run,          &
462               timestep_scheme,                                                &
463               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
464               time_do3d, time_domask, time_dopr, time_dopr_av,                &
465               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
466               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
467               time_run_control, time_since_reference_point,                   &
468               turbulent_inflow, turbulent_outflow, urban_surface,             &
469               use_initial_profile_as_reference,                               &
470               use_single_reference_value, uv_exposure, u_gtrans, v_gtrans,    &
471               virtual_flight, virtual_measurement, wind_turbine,              &
472               ws_scheme_mom, ws_scheme_sca
473
474    USE cpulog,                                                                &
475        ONLY:  cpu_log, log_point, log_point_s
476
477    USE date_and_time_mod,                                                     &
478        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
479
480    USE flight_mod,                                                            &
481        ONLY:  flight_measurement
482
483    USE gust_mod,                                                              &
484        ONLY:  gust_actions, gust_module_enabled
485
486    USE indices,                                                               &
487        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
488
489    USE indoor_model_mod,                                                      &
490        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
491
492    USE interaction_droplets_ptq_mod,                                          &
493        ONLY:  interaction_droplets_ptq
494
495    USE interfaces
496
497    USE kinds
498
499    USE land_surface_model_mod,                                                &
500        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
501               skip_time_do_lsm
502
503    USE lsf_nudging_mod,                                                       &
504        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
505
506    USE multi_agent_system_mod,                                                &
507        ONLY:  agents_active, multi_agent_system
508
509    USE nesting_offl_mod,                                                      &
510        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
511       
512    USE netcdf_data_input_mod,                                                 &
513        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
514               netcdf_data_input_offline_nesting
515
516    USE ocean_mod,                                                             &
517        ONLY:  prho_reference
518
519    USE particle_attributes,                                                   &
520        ONLY:  particle_advection, particle_advection_start,                   &
521               use_sgs_for_particles, wang_kernel
522
523    USE pegrid
524
525    USE pmc_interface,                                                         &
526        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
527               pmci_synchronize
528
529    USE progress_bar,                                                          &
530        ONLY:  finish_progress_bar, output_progress_bar
531
532    USE prognostic_equations_mod,                                              &
533        ONLY:  prognostic_equations_cache, prognostic_equations_vector
534
535    USE radiation_model_mod,                                                   &
536        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
537              radiation_interaction, radiation_interactions,                   &
538              skip_time_do_radiation, time_radiation
539
540    USE spectra_mod,                                                           &
541        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
542              skip_time_dosp
543
544    USE statistics,                                                            &
545        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
546
547    USE surface_layer_fluxes_mod,                                              &
548        ONLY:  surface_layer_fluxes
549
550    USE surface_mod,                                                           &
551        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
552
553    USE surface_output_mod,                                                    &
554        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
555               dt_dosurf_av, surface_output, surface_output_averaging,         &
556               skip_time_dosurf, skip_time_dosurf_av, time_dosurf,             &
557               time_dosurf_av
558
559    USE turbulence_closure_mod,                                                &
560        ONLY:  tcm_diffusivities, production_e_init
561
562    USE urban_surface_mod,                                                     &
563        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
564               usm_material_model,                                             &
565               usm_surface_energy_balance, usm_green_heat_model,               &
566               usm_temperature_near_surface
567
568    USE synthetic_turbulence_generator_mod,                                    &
569        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
570               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
571               use_syn_turb_gen
572         
573    USE salsa_mod,                                                             &
574        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast, salsa,      &
575              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
576              skip_time_do_salsa           
577
578    USE user_actions_mod,                                                      &
579        ONLY:  user_actions
580
581    USE uv_exposure_model_mod,                                                 &
582        ONLY:  uvem_calc_exposure
583
584    USE wind_turbine_model_mod,                                                &
585        ONLY:  wtm_forces
586
587    USE lpm_mod,                                                               &
588        ONLY:  lpm
589
590    USE vertical_nesting_mod,                                                  &
591        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
592               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
593               vnest_deallocate, vnest_init, vnest_init_fine,                  &
594               vnest_start_time
595               
596    USE virtual_measurement_mod,                                               &
597        ONLY:  vm_sampling, vm_time_start
598
599    IMPLICIT NONE
600
601    CHARACTER (LEN=9) ::  time_to_string   !<
602   
603    INTEGER(iwp)      ::  b !< index for aerosol size bins   
604    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
605    INTEGER(iwp)      ::  g !< index for gaseous compounds
606    INTEGER(iwp)      ::  lsp
607    INTEGER(iwp)      ::  lsp_usr   !<
608    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
609
610    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
611                            !< steering of run control output interval
612    REAL(wp) ::  time_since_reference_point_save  !< original value of
613                                                  !< time_since_reference_point
614
615!
616!-- At beginning determine the first time step
617    CALL timestep
618!
619!-- Synchronize the timestep in case of nested run.
620    IF ( nested_run )  THEN
621!
622!--    Synchronization by unifying the time step.
623!--    Global minimum of all time-steps is used for all.
624       CALL pmci_synchronize
625    ENDIF
626
627!
628!-- Determine and print out the run control quantities before the first time
629!-- step of this run. For the initial run, some statistics (e.g. divergence)
630!-- need to be determined first --> CALL flow_statistics at the beginning of
631!-- run_control
632    CALL run_control
633!
634!-- Data exchange between coupled models in case that a call has been omitted
635!-- at the end of the previous run of a job chain.
636    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
637!
638!--    In case of model termination initiated by the local model the coupler
639!--    must not be called because this would again cause an MPI hang.
640       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
641          CALL surface_coupler
642          time_coupling = time_coupling - dt_coupling
643       ENDDO
644       IF (time_coupling == 0.0_wp  .AND.                                      &
645           time_since_reference_point < dt_coupling )                          &
646       THEN
647          time_coupling = time_since_reference_point
648       ENDIF
649    ENDIF
650
651#if defined( __dvrp_graphics )
652!
653!-- Time measurement with dvrp software 
654    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
655#endif
656
657    CALL location_message( 'starting timestep-sequence', .TRUE. )
658!
659!-- Start of the time loop
660    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
661                .NOT. terminate_run )
662
663       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
664!
665!--    Vertical nesting: initialize fine grid
666       IF ( vnested ) THEN
667          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
668             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
669             CALL vnest_init_fine
670             vnest_init = .TRUE.
671             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
672          ENDIF
673       ENDIF
674!
675!--    Determine ug, vg and w_subs in dependence on data from external file
676!--    LSF_DATA
677       IF ( large_scale_forcing .AND. lsf_vert )  THEN
678           CALL ls_forcing_vert ( simulated_time )
679           sums_ls_l = 0.0_wp
680       ENDIF
681
682!
683!--    Set pt_init and q_init to the current profiles taken from
684!--    NUDGING_DATA
685       IF ( nudging )  THEN
686           CALL nudge_ref ( simulated_time )
687!
688!--        Store temperature gradient at the top boundary for possible Neumann
689!--        boundary condition
690           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
691           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
692           IF ( air_chemistry )  THEN
693              DO  lsp = 1, nspec
694                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
695                                - chem_species(lsp)%conc_pr_init(nzt) )       &
696                               / dzu(nzt+1)
697              ENDDO
698           ENDIF
699       ENDIF
700!
701!--    If forcing by larger-scale models is applied, check if new data
702!--    at domain boundaries need to be read.
703       IF ( nesting_offline )  THEN
704          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
705             CALL netcdf_data_input_offline_nesting
706       ENDIF
707
708!
709!--    Execute the gust module actions
710       IF ( gust_module_enabled )  THEN
711          CALL gust_actions( 'before_timestep' )
712       ENDIF
713
714!
715!--    Execute the user-defined actions
716       CALL user_actions( 'before_timestep' )
717
718!
719!--    Calculate forces by wind turbines
720       IF ( wind_turbine )  THEN
721
722          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
723
724          CALL wtm_forces
725
726          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
727
728       ENDIF   
729       
730!
731!--    Start of intermediate step loop
732       intermediate_timestep_count = 0
733       DO  WHILE ( intermediate_timestep_count < &
734                   intermediate_timestep_count_max )
735
736          intermediate_timestep_count = intermediate_timestep_count + 1
737
738!
739!--       Set the steering factors for the prognostic equations which depend
740!--       on the timestep scheme
741          CALL timestep_scheme_steering
742
743!
744!--       Calculate those variables needed in the tendency terms which need
745!--       global communication
746          IF ( .NOT. use_single_reference_value  .AND. &
747               .NOT. use_initial_profile_as_reference )  THEN
748!
749!--          Horizontally averaged profiles to be used as reference state in
750!--          buoyancy terms (WARNING: only the respective last call of
751!--          calc_mean_profile defines the reference state!)
752             IF ( .NOT. neutral )  THEN
753                CALL calc_mean_profile( pt, 4 )
754                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
755             ENDIF
756             IF ( ocean_mode )  THEN
757                CALL calc_mean_profile( rho_ocean, 64 )
758                ref_state(:)  = hom(:,1,64,0)
759             ENDIF
760             IF ( humidity )  THEN
761                CALL calc_mean_profile( vpt, 44 )
762                ref_state(:)  = hom(:,1,44,0)
763             ENDIF
764!
765!--          Assure that ref_state does not become zero at any level
766!--          ( might be the case if a vertical level is completely occupied
767!--            with topography ).
768             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
769                                ref_state == 0.0_wp )
770          ENDIF
771
772          IF ( .NOT. constant_diffusion )  CALL production_e_init
773          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
774               intermediate_timestep_count == 1 )  CALL ws_statistics
775!
776!--       In case of nudging calculate current nudging time scale and horizontal
777!--       means of u, v, pt and q
778          IF ( nudging )  THEN
779             CALL calc_tnudge( simulated_time )
780             CALL calc_mean_profile( u, 1 )
781             CALL calc_mean_profile( v, 2 )
782             CALL calc_mean_profile( pt, 4 )
783             CALL calc_mean_profile( q, 41 )
784          ENDIF
785
786!
787!--       Solve the prognostic equations. A fast cache optimized version with
788!--       only one single loop is used in case of Piascek-Williams advection
789!--       scheme. NEC vector machines use a different version, because
790!--       in the other versions a good vectorization is prohibited due to
791!--       inlining problems.
792          IF ( loop_optimization == 'cache' )  THEN
793             CALL prognostic_equations_cache
794          ELSEIF ( loop_optimization == 'vector' )  THEN
795             CALL prognostic_equations_vector
796          ENDIF
797
798!
799!--       Particle transport/physics with the Lagrangian particle model
800!--       (only once during intermediate steps, because it uses an Euler-step)
801!--       ### particle model should be moved before prognostic_equations, in order
802!--       to regard droplet interactions directly
803          IF ( particle_advection  .AND.                         &
804               simulated_time >= particle_advection_start  .AND. &
805               intermediate_timestep_count == 1 )  THEN
806             CALL lpm
807             first_call_lpm = .FALSE.
808          ENDIF
809
810!
811!--       Interaction of droplets with temperature and mixing ratio.
812!--       Droplet condensation and evaporation is calculated within
813!--       advec_particles.
814          IF ( cloud_droplets  .AND.  &
815               intermediate_timestep_count == intermediate_timestep_count_max )&
816          THEN
817             CALL interaction_droplets_ptq
818          ENDIF
819
820!
821!--       Movement of agents in multi agent system
822          IF ( agents_active  .AND.                                            &
823               time_since_reference_point >= multi_agent_system_start  .AND.   &
824               time_since_reference_point <= multi_agent_system_end    .AND.   &
825               intermediate_timestep_count == 1 )  THEN
826             CALL multi_agent_system
827             first_call_mas = .FALSE.
828          ENDIF
829
830!
831!--       Exchange of ghost points (lateral boundary conditions)
832          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
833
834          CALL exchange_horiz( u_p, nbgp )
835          CALL exchange_horiz( v_p, nbgp )
836          CALL exchange_horiz( w_p, nbgp )
837          CALL exchange_horiz( pt_p, nbgp )
838          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
839          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
840               .OR.  use_sgs_for_particles )  THEN
841             IF ( rans_tke_e )  THEN
842                CALL exchange_horiz( diss_p, nbgp )
843             ELSE
844                CALL exchange_horiz( diss, nbgp )
845             ENDIF
846          ENDIF
847          IF ( ocean_mode )  THEN
848             CALL exchange_horiz( sa_p, nbgp )
849             CALL exchange_horiz( rho_ocean, nbgp )
850             CALL exchange_horiz( prho, nbgp )
851          ENDIF
852          IF ( humidity )  THEN
853             CALL exchange_horiz( q_p, nbgp )
854             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
855                CALL exchange_horiz( qc_p, nbgp )
856                CALL exchange_horiz( nc_p, nbgp )
857             ENDIF
858             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
859                CALL exchange_horiz( qr_p, nbgp )
860                CALL exchange_horiz( nr_p, nbgp )
861             ENDIF
862          ENDIF
863          IF ( cloud_droplets )  THEN
864             CALL exchange_horiz( ql, nbgp )
865             CALL exchange_horiz( ql_c, nbgp )
866             CALL exchange_horiz( ql_v, nbgp )
867             CALL exchange_horiz( ql_vp, nbgp )
868          ENDIF
869          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
870          IF ( air_chemistry )  THEN
871             DO  lsp = 1, nspec
872                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
873!
874!--             kanani: Push chem_boundary_conds after CALL boundary_conds
875                lsp_usr = 1
876                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
877                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
878                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
879                                                chem_species(lsp)%conc_pr_init )
880                   ENDIF
881                   lsp_usr = lsp_usr + 1
882                ENDDO
883             ENDDO
884          ENDIF
885
886          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
887          THEN
888             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
889             DO  b = 1, nbins
890                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
891                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
892                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
893                                           aerosol_number(b)%init )
894                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
895                DO  c = 1, ncc_tot
896                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
897                                        nbgp )
898                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
899                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
900                                              aerosol_mass((c-1)*nbins+b)%init )
901                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
902                ENDDO
903             ENDDO
904             IF ( .NOT. salsa_gases_from_chem )  THEN
905                DO  g = 1, ngast
906                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
907                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
908                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
909                                              salsa_gas(g)%init )
910                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
911             ENDDO
912             ENDIF
913             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
914          ENDIF         
915
916          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
917
918!
919!--       Boundary conditions for the prognostic quantities (except of the
920!--       velocities at the outflow in case of a non-cyclic lateral wall)
921          CALL boundary_conds
922!
923!--       Swap the time levels in preparation for the next time step.
924          CALL swap_timelevel
925
926!
927!--       Vertical nesting: Interpolate fine grid data to the coarse grid
928          IF ( vnest_init ) THEN
929             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
930             CALL vnest_anterpolate
931             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
932          ENDIF
933
934          IF ( nested_run )  THEN
935
936             CALL cpu_log( log_point(60), 'nesting', 'start' )
937!
938!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
939!--          and pmci_child_datatrans are called inside the wrapper
940!--          subroutine pmci_datatrans according to the control parameters
941!--          nesting_mode and nesting_datatransfer_mode.
942!--          TO_DO: why is nesting_mode given as a parameter here?
943             CALL pmci_datatrans( nesting_mode )
944
945             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
946                  nesting_mode == 'vertical' )  THEN
947!
948!--             Exchange_horiz is needed for all parent-domains after the
949!--             anterpolation
950                CALL exchange_horiz( u, nbgp )
951                CALL exchange_horiz( v, nbgp )
952                CALL exchange_horiz( w, nbgp )
953                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
954
955                IF ( humidity )  THEN
956
957                   CALL exchange_horiz( q, nbgp )
958
959                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
960                       CALL exchange_horiz( qc, nbgp )
961                       CALL exchange_horiz( nc, nbgp )
962                   ENDIF
963                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
964                       CALL exchange_horiz( qr, nbgp )
965                       CALL exchange_horiz( nr, nbgp )
966                   ENDIF
967
968                ENDIF
969
970                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
971               
972                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
973
974                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
975                                                      rans_tke_e )             &
976                   CALL exchange_horiz( diss, nbgp )
977
978                IF ( air_chemistry )  THEN
979                   DO  n = 1, nspec     
980                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
981                   ENDDO
982                ENDIF
983
984             ENDIF
985!
986!--          Set boundary conditions again after interpolation and anterpolation.
987             CALL pmci_boundary_conds
988
989             CALL cpu_log( log_point(60), 'nesting', 'stop' )
990
991          ENDIF
992
993!
994!--       Temperature offset must be imposed at cyclic boundaries in x-direction
995!--       when a sloping surface is used
996          IF ( sloping_surface )  THEN
997             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
998                                                    pt_slope_offset
999             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1000                                                    pt_slope_offset
1001          ENDIF
1002
1003!
1004!--       Impose a turbulent inflow using the recycling method
1005          IF ( turbulent_inflow )  CALL  inflow_turbulence
1006
1007!
1008!--       Set values at outflow boundary using the special outflow condition
1009          IF ( turbulent_outflow )  CALL  outflow_turbulence
1010
1011!
1012!--       Impose a random perturbation on the horizontal velocity field
1013          IF ( create_disturbances  .AND.                                      &
1014               ( call_psolver_at_all_substeps  .AND.                           &
1015               intermediate_timestep_count == intermediate_timestep_count_max )&
1016          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1017               intermediate_timestep_count == 1 ) )                            &
1018          THEN
1019             time_disturb = time_disturb + dt_3d
1020             IF ( time_disturb >= dt_disturb )  THEN
1021                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1022                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1023                   CALL disturb_field( 'u', tend, u )
1024                   CALL disturb_field( 'v', tend, v )
1025                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1026                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1027                THEN
1028!
1029!--                Runs with a non-cyclic lateral wall need perturbations
1030!--                near the inflow throughout the whole simulation
1031                   dist_range = 1
1032                   CALL disturb_field( 'u', tend, u )
1033                   CALL disturb_field( 'v', tend, v )
1034                   dist_range = 0
1035                ENDIF
1036                time_disturb = time_disturb - dt_disturb
1037             ENDIF
1038          ENDIF
1039
1040!
1041!--       Map forcing data derived from larger scale model onto domain
1042!--       boundaries.
1043          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1044                                       intermediate_timestep_count_max  )      &
1045             CALL nesting_offl_bc
1046!
1047!--       Impose a turbulent inflow using synthetic generated turbulence,
1048!--       only once per time step.
1049          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1050             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1051             CALL stg_main
1052          ENDIF
1053!
1054!--       Ensure mass conservation. This need to be done after imposing
1055!--       synthetic turbulence and top boundary condition for pressure is set to
1056!--       Neumann conditions.
1057!--       Is this also required in case of Dirichlet?
1058          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1059!
1060!--       Reduce the velocity divergence via the equation for perturbation
1061!--       pressure.
1062          IF ( intermediate_timestep_count == 1  .OR. &
1063                call_psolver_at_all_substeps )  THEN
1064
1065             IF (  vnest_init ) THEN
1066!
1067!--             Compute pressure in the CG, interpolate top boundary conditions
1068!--             to the FG and then compute pressure in the FG
1069                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1070
1071                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1072                CALL vnest_boundary_conds
1073                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1074 
1075                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1076
1077!--             Anterpolate TKE, satisfy Germano Identity
1078                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1079                CALL vnest_anterpolate_e
1080                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1081
1082             ELSE
1083
1084                CALL pres
1085
1086             ENDIF
1087
1088          ENDIF
1089
1090!
1091!--       If required, compute liquid water content
1092          IF ( bulk_cloud_model )  THEN
1093             CALL calc_liquid_water_content
1094          ENDIF
1095!
1096!--       If required, compute virtual potential temperature
1097          IF ( humidity )  THEN
1098             CALL compute_vpt
1099          ENDIF
1100
1101!
1102!--       Compute the diffusion quantities
1103          IF ( .NOT. constant_diffusion )  THEN
1104
1105!
1106!--          Determine surface fluxes shf and qsws and surface values
1107!--          pt_surface and q_surface in dependence on data from external
1108!--          file LSF_DATA respectively
1109             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1110                 intermediate_timestep_count == intermediate_timestep_count_max )&
1111             THEN
1112                CALL ls_forcing_surf( simulated_time )
1113             ENDIF
1114
1115!
1116!--          First the vertical (and horizontal) fluxes in the surface
1117!--          (constant flux) layer are computed
1118             IF ( constant_flux_layer )  THEN
1119                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1120                CALL surface_layer_fluxes
1121                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1122             ENDIF
1123!
1124!--          If required, solve the energy balance for the surface and run soil
1125!--          model. Call for horizontal as well as vertical surfaces
1126             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1127
1128                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1129!
1130!--             Call for horizontal upward-facing surfaces
1131                CALL lsm_energy_balance( .TRUE., -1 )
1132                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1133!
1134!--             Call for northward-facing surfaces
1135                CALL lsm_energy_balance( .FALSE., 0 )
1136                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1137!
1138!--             Call for southward-facing surfaces
1139                CALL lsm_energy_balance( .FALSE., 1 )
1140                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1141!
1142!--             Call for eastward-facing surfaces
1143                CALL lsm_energy_balance( .FALSE., 2 )
1144                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1145!
1146!--             Call for westward-facing surfaces
1147                CALL lsm_energy_balance( .FALSE., 3 )
1148                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1149!
1150!--             At the end, set boundary conditons for potential temperature
1151!--             and humidity after running the land-surface model. This
1152!--             might be important for the nesting, where arrays are transfered.
1153                CALL lsm_boundary_condition
1154
1155                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1156             ENDIF
1157!
1158!--          If required, solve the energy balance for urban surfaces and run
1159!--          the material heat model
1160             IF (urban_surface) THEN
1161                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1162               
1163                CALL usm_surface_energy_balance( .FALSE. )
1164                IF ( usm_material_model )  THEN
1165                   CALL usm_green_heat_model
1166                   CALL usm_material_heat_model ( .FALSE. )
1167                ENDIF
1168
1169                CALL usm_temperature_near_surface
1170!
1171!--             At the end, set boundary conditons for potential temperature
1172!--             and humidity after running the urban-surface model. This
1173!--             might be important for the nesting, where arrays are transfered.
1174                CALL usm_boundary_condition
1175
1176                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1177             ENDIF
1178!
1179!--          Compute the diffusion coefficients
1180             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1181             IF ( .NOT. humidity ) THEN
1182                IF ( ocean_mode )  THEN
1183                   CALL tcm_diffusivities( prho, prho_reference )
1184                ELSE
1185                   CALL tcm_diffusivities( pt, pt_reference )
1186                ENDIF
1187             ELSE
1188                CALL tcm_diffusivities( vpt, pt_reference )
1189             ENDIF
1190             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1191!
1192!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1193             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1194
1195          ENDIF
1196
1197!
1198!--       If required, calculate radiative fluxes and heating rates
1199          IF ( radiation .AND. intermediate_timestep_count                     &
1200               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1201               skip_time_do_radiation )  THEN
1202
1203               time_radiation = time_radiation + dt_3d
1204
1205             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1206             THEN
1207
1208                CALL cpu_log( log_point(50), 'radiation', 'start' )
1209
1210                IF ( .NOT. force_radiation_call )  THEN
1211                   time_radiation = time_radiation - dt_radiation
1212                ENDIF
1213
1214!
1215!--             Adjust the current time to the time step of the radiation model.
1216!--             Needed since radiation is pre-calculated and stored only on apparent
1217!--             solar positions
1218                time_since_reference_point_save = time_since_reference_point
1219                time_since_reference_point =                                   &
1220                                    REAL( FLOOR( time_since_reference_point /  &
1221                                                 dt_radiation), wp )           &
1222                                             * dt_radiation
1223
1224                CALL radiation_control
1225
1226                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1227
1228                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1229                     radiation_interactions )  THEN
1230                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1231                   CALL radiation_interaction
1232                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1233                ENDIF
1234   
1235!
1236!--             Return the current time to its original value
1237                time_since_reference_point = time_since_reference_point_save
1238
1239             ENDIF
1240          ENDIF
1241
1242       ENDDO   ! Intermediate step loop
1243!
1244!--    If required, consider chemical emissions
1245       IF ( air_chemistry  .AND.  do_emis )  THEN
1246!
1247!--       Update the time --> kanani: revise location of this CALL
1248          CALL calc_date_and_time
1249!
1250!--       Call emission routine only once an hour
1251          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1252             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1253             hour_call_emis = hour_of_year
1254          ENDIF
1255       ENDIF
1256!
1257!--    If required, do UV exposure calculations
1258       IF ( uv_exposure )  THEN
1259          CALL uvem_calc_exposure
1260       ENDIF
1261!
1262!--    If required, calculate indoor temperature, waste heat, heat flux
1263!--    through wall, etc.
1264!--    dt_indoor steers the frequency of the indoor model calculations
1265       IF (       indoor_model                                                    &
1266            .AND. intermediate_timestep_count == intermediate_timestep_count_max  &
1267            .AND. time_since_reference_point > skip_time_do_indoor )  THEN
1268
1269          time_indoor = time_indoor + dt_3d
1270
1271          IF ( time_indoor >= dt_indoor )  THEN
1272
1273             time_indoor = time_indoor - dt_indoor
1274
1275             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1276             CALL im_main_heatcool
1277             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1278
1279          ENDIF
1280       ENDIF
1281!
1282!--    Increase simulation time and output times
1283       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1284       current_timestep_number    = current_timestep_number + 1
1285       simulated_time             = simulated_time   + dt_3d
1286       time_since_reference_point = simulated_time - coupling_start_time
1287       simulated_time_chr         = time_to_string( time_since_reference_point )
1288
1289
1290
1291
1292       IF ( simulated_time >= skip_time_data_output_av )  THEN
1293          time_do_av         = time_do_av       + dt_3d
1294       ENDIF
1295       IF ( simulated_time >= skip_time_do2d_xy )  THEN
1296          time_do2d_xy       = time_do2d_xy     + dt_3d
1297       ENDIF
1298       IF ( simulated_time >= skip_time_do2d_xz )  THEN
1299          time_do2d_xz       = time_do2d_xz     + dt_3d
1300       ENDIF
1301       IF ( simulated_time >= skip_time_do2d_yz )  THEN
1302          time_do2d_yz       = time_do2d_yz     + dt_3d
1303       ENDIF
1304       IF ( simulated_time >= skip_time_do3d    )  THEN
1305          time_do3d          = time_do3d        + dt_3d
1306       ENDIF
1307       DO  mid = 1, masks
1308          IF ( simulated_time >= skip_time_domask(mid) )  THEN
1309             time_domask(mid)= time_domask(mid) + dt_3d
1310          ENDIF
1311       ENDDO
1312       time_dvrp          = time_dvrp        + dt_3d
1313       IF ( simulated_time >= skip_time_dosp )  THEN
1314          time_dosp       = time_dosp        + dt_3d
1315       ENDIF
1316       time_dots          = time_dots        + dt_3d
1317       IF ( .NOT. first_call_lpm )  THEN
1318          time_dopts      = time_dopts       + dt_3d
1319       ENDIF
1320       IF ( simulated_time >= skip_time_dopr )  THEN
1321          time_dopr       = time_dopr        + dt_3d
1322       ENDIF
1323       time_dopr_listing  = time_dopr_listing + dt_3d
1324       time_run_control   = time_run_control + dt_3d
1325!
1326!--    Increment time-counter for surface output
1327       IF ( surface_data_output )  THEN
1328          IF ( simulated_time >= skip_time_dosurf )  THEN
1329             time_dosurf    = time_dosurf + dt_3d
1330          ENDIF
1331          IF ( simulated_time >= skip_time_dosurf_av )  THEN
1332             time_dosurf_av = time_dosurf_av + dt_3d
1333          ENDIF
1334       ENDIF
1335!
1336!--    In case of synthetic turbulence generation and parametrized turbulence
1337!--    information, update the time counter and if required, adjust the
1338!--    STG to new atmospheric conditions.
1339       IF ( use_syn_turb_gen  )  THEN
1340          IF ( parametrize_inflow_turbulence )  THEN
1341             time_stg_adjust = time_stg_adjust + dt_3d
1342             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1343          ENDIF
1344          time_stg_call = time_stg_call + dt_3d
1345       ENDIF
1346
1347!
1348!--    Data exchange between coupled models
1349       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1350                                          .AND. .NOT. vnested )  THEN
1351          time_coupling = time_coupling + dt_3d
1352
1353!
1354!--       In case of model termination initiated by the local model
1355!--       (terminate_coupled > 0), the coupler must be skipped because it would
1356!--       cause an MPI intercomminucation hang.
1357!--       If necessary, the coupler will be called at the beginning of the
1358!--       next restart run.
1359          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1360             CALL surface_coupler
1361             time_coupling = time_coupling - dt_coupling
1362          ENDDO
1363       ENDIF
1364
1365!
1366!--    Biometeorology calculation of stationary thermal indices
1367       IF ( biometeorology  .AND.  time_do3d >= dt_do3d )  THEN
1368          CALL bio_calculate_thermal_index_maps ( .FALSE. )
1369          time_bio_results = time_since_reference_point
1370       ENDIF
1371
1372!
1373!--    Execute the gust module actions
1374       IF ( gust_module_enabled )  THEN
1375          CALL gust_actions( 'after_integration' )
1376       ENDIF
1377
1378!
1379!--    Execute user-defined actions
1380       CALL user_actions( 'after_integration' )
1381
1382!
1383!--    If Galilei transformation is used, determine the distance that the
1384!--    model has moved so far
1385       IF ( galilei_transformation )  THEN
1386          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1387          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1388       ENDIF
1389
1390!
1391!--    Check, if restart is necessary (because cpu-time is expiring or
1392!--    because it is forced by user) and set stop flag
1393!--    This call is skipped if the remote model has already initiated a restart.
1394       IF ( .NOT. terminate_run )  CALL check_for_restart
1395
1396!
1397!--    Carry out statistical analysis and output at the requested output times.
1398!--    The MOD function is used for calculating the output time counters (like
1399!--    time_dopr) in order to regard a possible decrease of the output time
1400!--    interval in case of restart runs
1401
1402!
1403!--    Set a flag indicating that so far no statistics have been created
1404!--    for this time step
1405       flow_statistics_called = .FALSE.
1406
1407!
1408!--    If required, call flow_statistics for averaging in time
1409       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1410            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1411            simulated_time >= skip_time_dopr )  THEN
1412          time_dopr_av = time_dopr_av + dt_3d
1413          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1414             do_sum = .TRUE.
1415             time_dopr_av = MOD( time_dopr_av, &
1416                                    MAX( dt_averaging_input_pr, dt_3d ) )
1417          ENDIF
1418       ENDIF
1419       IF ( do_sum )  CALL flow_statistics
1420
1421!
1422!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1423       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1424            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
1425            simulated_time >= skip_time_data_output_av )                    &
1426       THEN
1427          time_do_sla = time_do_sla + dt_3d
1428          IF ( time_do_sla >= dt_averaging_input )  THEN
1429             CALL sum_up_3d_data
1430             average_count_3d = average_count_3d + 1
1431             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1432          ENDIF
1433       ENDIF
1434!
1435!--    Average surface data
1436       IF ( surface_data_output )  THEN
1437          IF ( averaging_interval_surf /= 0.0_wp  .AND.                        & 
1438               ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1439          .AND.  simulated_time >= skip_time_dosurf_av )  THEN
1440             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1441                CALL surface_output_averaging
1442                average_count_surf = average_count_surf + 1
1443             ENDIF
1444          ENDIF
1445       ENDIF
1446
1447!
1448!--    Calculate spectra for time averaging
1449       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1450            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1451            simulated_time >= skip_time_dosp )  THEN
1452          time_dosp_av = time_dosp_av + dt_3d
1453          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1454             CALL calc_spectra
1455             time_dosp_av = MOD( time_dosp_av, &
1456                                 MAX( dt_averaging_input_pr, dt_3d ) )
1457          ENDIF
1458       ENDIF
1459
1460!
1461!--    Call flight module and output data
1462       IF ( virtual_flight )  THEN
1463          CALL flight_measurement
1464          CALL data_output_flight
1465       ENDIF
1466!
1467!--    Take virtual measurements
1468       IF ( virtual_measurement  .AND.                                         &
1469            vm_time_start <= time_since_reference_point )  CALL vm_sampling
1470
1471!
1472!--    Profile output (ASCII) on file
1473       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1474          CALL print_1d
1475          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1476                                                           dt_3d ) )
1477       ENDIF
1478
1479!
1480!--    Graphic output for PROFIL
1481       IF ( time_dopr >= dt_dopr )  THEN
1482          IF ( dopr_n /= 0 )  CALL data_output_profiles
1483          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1484          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1485       ENDIF
1486
1487!
1488!--    Graphic output for time series
1489       IF ( time_dots >= dt_dots )  THEN
1490          CALL data_output_tseries
1491          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1492       ENDIF
1493
1494!
1495!--    Output of spectra (formatted for use with PROFIL), in case of no
1496!--    time averaging, spectra has to be calculated before
1497       IF ( time_dosp >= dt_dosp )  THEN
1498          IF ( average_count_sp == 0 )  CALL calc_spectra
1499          CALL data_output_spectra
1500          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1501       ENDIF
1502
1503!
1504!--    2d-data output (cross-sections)
1505       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
1506          CALL data_output_2d( 'xy', 0 )
1507          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1508       ENDIF
1509       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
1510          CALL data_output_2d( 'xz', 0 )
1511          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1512       ENDIF
1513       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
1514          CALL data_output_2d( 'yz', 0 )
1515          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1516       ENDIF
1517
1518!
1519!--    3d-data output (volume data)
1520       IF ( time_do3d >= dt_do3d )  THEN
1521          CALL data_output_3d( 0 )
1522          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1523       ENDIF
1524
1525!
1526!--    Masked data output
1527       DO  mid = 1, masks
1528          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
1529             CALL data_output_mask( 0 )
1530             time_domask(mid) = MOD( time_domask(mid),  &
1531                                     MAX( dt_domask(mid), dt_3d ) )
1532          ENDIF
1533       ENDDO
1534
1535!
1536!--    Output of time-averaged 2d/3d/masked data
1537       IF ( time_do_av >= dt_data_output_av )  THEN
1538          CALL average_3d_data
1539          CALL data_output_2d( 'xy', 1 )
1540          CALL data_output_2d( 'xz', 1 )
1541          CALL data_output_2d( 'yz', 1 )
1542          CALL data_output_3d( 1 )
1543          DO  mid = 1, masks
1544             CALL data_output_mask( 1 )
1545          ENDDO
1546          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1547       ENDIF
1548!
1549!--    Output of surface data, instantaneous and averaged data
1550       IF ( surface_data_output )  THEN
1551          IF ( time_dosurf >= dt_dosurf )  THEN
1552             CALL surface_output( 0 )
1553             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1554          ENDIF
1555          IF ( time_dosurf_av >= dt_dosurf_av )  THEN
1556             CALL surface_output( 1 )
1557             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1558          ENDIF
1559       ENDIF
1560
1561!
1562!--    Output of particle time series
1563       IF ( particle_advection )  THEN
1564          IF ( time_dopts >= dt_dopts  .OR. &
1565               ( simulated_time >= particle_advection_start  .AND. &
1566                 first_call_lpm ) )  THEN
1567             CALL data_output_ptseries
1568             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1569          ENDIF
1570       ENDIF
1571
1572!
1573!--    Output of dvrp-graphics (isosurface, particles, slicer)
1574#if defined( __dvrp_graphics )
1575       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1576#endif
1577       IF ( time_dvrp >= dt_dvrp )  THEN
1578          CALL data_output_dvrp
1579          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1580       ENDIF
1581#if defined( __dvrp_graphics )
1582       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1583#endif
1584
1585!
1586!--    If required, set the heat flux for the next time step at a random value
1587       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1588          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1589          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1590          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1591       ENDIF
1592
1593!
1594!--    Execute the gust module actions
1595       IF ( gust_module_enabled )  THEN
1596          CALL gust_actions( 'after_timestep' )
1597       ENDIF
1598
1599!
1600!--    Execute user-defined actions
1601       CALL user_actions( 'after_timestep' )
1602
1603!
1604!--    Determine size of next time step. Save timestep dt_3d because it is
1605!--    newly calculated in routine timestep, but required further below for
1606!--    steering the run control output interval
1607       dt_3d_old = dt_3d
1608       CALL timestep
1609
1610!
1611!--    Synchronize the timestep in case of nested run.
1612       IF ( nested_run )  THEN
1613!
1614!--       Synchronize by unifying the time step.
1615!--       Global minimum of all time-steps is used for all.
1616          CALL pmci_synchronize
1617       ENDIF
1618
1619!
1620!--    Computation and output of run control parameters.
1621!--    This is also done whenever perturbations have been imposed
1622       IF ( time_run_control >= dt_run_control  .OR.                     &
1623            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1624       THEN
1625          CALL run_control
1626          IF ( time_run_control >= dt_run_control )  THEN
1627             time_run_control = MOD( time_run_control, &
1628                                     MAX( dt_run_control, dt_3d_old ) )
1629          ENDIF
1630       ENDIF
1631
1632!
1633!--    Output elapsed simulated time in form of a progress bar on stdout
1634       IF ( myid == 0 )  CALL output_progress_bar
1635
1636       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1637
1638
1639    ENDDO   ! time loop
1640
1641!
1642!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1643    IF ( vnest_init )  CALL vnest_deallocate
1644
1645    IF ( myid == 0 )  CALL finish_progress_bar
1646
1647#if defined( __dvrp_graphics )
1648    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1649#endif
1650
1651    CALL location_message( 'finished time-stepping', .TRUE. )
1652
1653 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.