source: palm/trunk/SOURCE/time_integration.f90 @ 3524

Last change on this file since 3524 was 3524, checked in by raasch, 5 years ago

unused variables removed, missing working precision added, missing preprocessor directives added, bugfix concerning allocation of t_surf_wall_v in nopointer case, declaration statements rearranged to avoid compile time errors, mpi_abort arguments replaced to avoid compile errors

  • Property svn:keywords set to Id
File size: 63.2 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2018 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3524 2018-11-14 13:36:44Z raasch $
27! unused variables removed
28!
29! 3484 2018-11-02 14:41:25Z hellstea
30! pmci_ensure_nest_mass_conservation is premanently removed
31!
32! 3473 2018-10-30 20:50:15Z suehring
33! new module for virtual measurements introduced
34!
35! 3472 2018-10-30 20:43:50Z suehring
36! Add indoor model (kanani, srissman, tlang)
37!
38! 3467 2018-10-30 19:05:21Z suehring
39! Implementation of a new aerosol module salsa.
40!
41! 3448 2018-10-29 18:14:31Z kanani
42! Add biometeorology
43!
44! 3421 2018-10-24 18:39:32Z gronemeier
45! Surface data output
46!
47! 3418 2018-10-24 16:07:39Z kanani
48! call to material_heat_model now with check if spinup runs (rvtils)
49!
50! 3378 2018-10-19 12:34:59Z kanani
51! merge from radiation branch (r3362) into trunk
52! (moh.hefny):
53! Bugfix in the if statement to call radiation_interaction
54!
55! 3347 2018-10-15 14:21:08Z suehring
56! - offline nesting separated from large-scale forcing module
57! - changes for synthetic turbulence generator
58!
59! 3343 2018-10-15 10:38:52Z suehring
60! - Formatting, clean-up, comments (kanani)
61! - Added CALL to chem_emissions_setup (Russo)
62! - Code added for decycling chemistry (basit)
63!
64! 3294 2018-10-01 02:37:10Z raasch
65! changes concerning modularization of ocean option
66!
67! 3274 2018-09-24 15:42:55Z knoop
68! Modularization of all bulk cloud physics code components
69!
70! 3241 2018-09-12 15:02:00Z raasch
71! unused variables removed
72!
73! 3198 2018-08-15 09:23:10Z sward
74! Added multi_agent_system_end; defined start time for MAS relative to
75! time_since_reference_point
76!
77! 3183 2018-07-27 14:25:55Z suehring
78! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
79! Rename subroutines and variables in COSMO nesting mode
80!
81! 3182 2018-07-27 13:36:03Z suehring
82! Added multi agent system
83!
84! 3042 2018-05-25 10:44:37Z schwenkel
85! Changed the name specific humidity to mixing ratio
86!
87! 3040 2018-05-25 10:22:08Z schwenkel
88! Fixed bug in IF statement
89! Ensure that the time when calling the radiation to be the time step of the
90! pre-calculated time when first calculate the positions of the sun
91!
92! 3004 2018-04-27 12:33:25Z Giersch
93! First call of flow_statistics has been removed. It is already called in
94! run_control itself
95!
96! 2984 2018-04-18 11:51:30Z hellstea
97! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
98! as seemingly unnecessary.
99!
100! 2941 2018-04-03 11:54:58Z kanani
101! Deduct spinup_time from RUN_CONTROL output of main 3d run
102! (use time_since_reference_point instead of simulated_time)
103!
104! 2938 2018-03-27 15:52:42Z suehring
105! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
106!
107! 2936 2018-03-27 14:49:27Z suehring
108! Little formatting adjustment.
109!
110! 2817 2018-02-19 16:32:21Z knoop
111! Preliminary gust module interface implemented
112!
113! 2801 2018-02-14 16:01:55Z thiele
114! Changed lpm from subroutine to module.
115! Introduce particle transfer in nested models.
116!
117! 2776 2018-01-31 10:44:42Z Giersch
118! Variable use_synthetic_turbulence_generator has been abbreviated
119!
120! 2773 2018-01-30 14:12:54Z suehring
121! - Nesting for chemical species
122!
123! 2766 2018-01-22 17:17:47Z kanani
124! Removed preprocessor directive __chem
125!
126! 2718 2018-01-02 08:49:38Z maronga
127! Corrected "Former revisions" section
128!
129! 2696 2017-12-14 17:12:51Z kanani
130! - Change in file header (GPL part)
131! - Implementation of uv exposure model (FK)
132! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
133! - renamed diffusivities to tcm_diffusivities (TG)
134! - implement prognostic equation for diss (TG)
135! - Moved/commented CALL to chem_emissions (FK)
136! - Added CALL to chem_emissions (FK)
137! - Implementation of chemistry module (FK)
138! - Calls for setting boundary conditions in USM and LSM (MS)
139! - Large-scale forcing with larger-scale models implemented (MS)
140! - Rename usm_radiation into radiation_interactions; merge with branch
141!   radiation (MS)
142! - added call for usm_green_heat_model for green building surfaces (RvT)
143! - added call for usm_temperature_near_surface for use in indoor model (RvT)
144!
145! 2617 2017-11-16 12:47:24Z suehring
146! Bugfix, assure that the reference state does not become zero.
147!
148! 2563 2017-10-19 15:36:10Z Giersch
149! Variable wind_turbine moved to module control_parameters
150!
151! 2365 2017-08-21 14:59:59Z kanani
152! Vertical grid nesting implemented (SadiqHuq)
153!
154! 2320 2017-07-21 12:47:43Z suehring
155! Set bottom boundary conditions after nesting interpolation and anterpolation
156!
157! 2299 2017-06-29 10:14:38Z maronga
158! Call of soil model adjusted
159!
160! 2292 2017-06-20 09:51:42Z schwenkel
161! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
162! includes two more prognostic equations for cloud drop concentration (nc) 
163! and cloud water content (qc).
164!
165! 2271 2017-06-09 12:34:55Z sward
166! Start timestep message changed
167!
168! 2259 2017-06-08 09:09:11Z gronemeier
169! Implemented synthetic turbulence generator
170!
171! 2233 2017-05-30 18:08:54Z suehring
172!
173! 2232 2017-05-30 17:47:52Z suehring
174! Adjustments to new topography and surface concept
175! Modify passed parameters for disturb_field
176!
177! 2178 2017-03-17 11:07:39Z hellstea
178! Setting perturbations at all times near inflow boundary is removed
179! in case of nested boundaries
180!
181! 2174 2017-03-13 08:18:57Z maronga
182! Added support for nesting with cloud microphysics
183!
184! 2118 2017-01-17 16:38:49Z raasch
185! OpenACC directives and related code removed
186!
187! 2050 2016-11-08 15:00:55Z gronemeier
188! Implement turbulent outflow condition
189!
190! 2031 2016-10-21 15:11:58Z knoop
191! renamed variable rho to rho_ocean
192!
193! 2011 2016-09-19 17:29:57Z kanani
194! Flag urban_surface is now defined in module control_parameters,
195! removed commented CALLs of global_min_max.
196!
197! 2007 2016-08-24 15:47:17Z kanani
198! Added CALLs for new urban surface model
199!
200! 2000 2016-08-20 18:09:15Z knoop
201! Forced header and separation lines into 80 columns
202!
203! 1976 2016-07-27 13:28:04Z maronga
204! Simplified calls to radiation model
205!
206! 1960 2016-07-12 16:34:24Z suehring
207! Separate humidity and passive scalar
208!
209! 1957 2016-07-07 10:43:48Z suehring
210! flight module added
211!
212! 1919 2016-05-27 14:51:23Z raasch
213! Initial version of purely vertical nesting introduced.
214!
215! 1918 2016-05-27 14:35:57Z raasch
216! determination of time step moved to the end of the time step loop,
217! the first time step is now always calculated before the time step loop (i.e.
218! also in case of restart runs)
219!
220! 1914 2016-05-26 14:44:07Z witha
221! Added call for wind turbine model
222!
223! 1878 2016-04-19 12:30:36Z hellstea
224! Synchronization for nested runs rewritten
225!
226! 1853 2016-04-11 09:00:35Z maronga
227! Adjusted for use with radiation_scheme = constant
228!
229! 1849 2016-04-08 11:33:18Z hoffmann
230! Adapted for modularization of microphysics
231!
232! 1833 2016-04-07 14:23:03Z raasch
233! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
234!
235! 1831 2016-04-07 13:15:51Z hoffmann
236! turbulence renamed collision_turbulence
237!
238! 1822 2016-04-07 07:49:42Z hoffmann
239! icloud_scheme replaced by microphysics_*
240!
241! 1808 2016-04-05 19:44:00Z raasch
242! output message in case unscheduled radiation calls removed
243!
244! 1797 2016-03-21 16:50:28Z raasch
245! introduction of different datatransfer modes
246!
247! 1791 2016-03-11 10:41:25Z raasch
248! call of pmci_update_new removed
249!
250! 1786 2016-03-08 05:49:27Z raasch
251! +module spectrum
252!
253! 1783 2016-03-06 18:36:17Z raasch
254! switch back of netcdf data format for mask output moved to the mask output
255! routine
256!
257! 1781 2016-03-03 15:12:23Z raasch
258! some pmc calls removed at the beginning (before timeloop),
259! pmc initialization moved to the main program
260!
261! 1764 2016-02-28 12:45:19Z raasch
262! PMC_ACTIVE flags removed,
263! bugfix: nest synchronization after first call of timestep
264!
265! 1762 2016-02-25 12:31:13Z hellstea
266! Introduction of nested domain feature
267!
268! 1736 2015-12-04 08:56:33Z raasch
269! no perturbations added to total domain if energy limit has been set zero
270!
271! 1691 2015-10-26 16:17:44Z maronga
272! Added option for spin-ups without land surface and radiation models. Moved calls
273! for radiation and lan surface schemes.
274!
275! 1682 2015-10-07 23:56:08Z knoop
276! Code annotations made doxygen readable
277!
278! 1671 2015-09-25 03:29:37Z raasch
279! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
280! for particles
281!
282! 1585 2015-04-30 07:05:52Z maronga
283! Moved call of radiation scheme. Added support for RRTM
284!
285! 1551 2015-03-03 14:18:16Z maronga
286! Added interface for different radiation schemes.
287!
288! 1496 2014-12-02 17:25:50Z maronga
289! Added calls for the land surface model and radiation scheme
290!
291! 1402 2014-05-09 14:25:13Z raasch
292! location messages modified
293!
294! 1384 2014-05-02 14:31:06Z raasch
295! location messages added
296!
297! 1380 2014-04-28 12:40:45Z heinze
298! CALL of nudge_ref added
299! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
300!
301! 1365 2014-04-22 15:03:56Z boeske
302! Reset sums_ls_l to zero at each timestep
303! +sums_ls_l
304! Calculation of reference state (previously in subroutine calc_mean_profile)
305
306! 1342 2014-03-26 17:04:47Z kanani
307! REAL constants defined as wp-kind
308!
309! 1320 2014-03-20 08:40:49Z raasch
310! ONLY-attribute added to USE-statements,
311! kind-parameters added to all INTEGER and REAL declaration statements,
312! kinds are defined in new module kinds,
313! old module precision_kind is removed,
314! revision history before 2012 removed,
315! comment fields (!:) to be used for variable explanations added to
316! all variable declaration statements
317! 1318 2014-03-17 13:35:16Z raasch
318! module interfaces removed
319!
320! 1308 2014-03-13 14:58:42Z fricke
321! +netcdf_data_format_save
322! For masked data, parallel netcdf output is not tested so far, hence
323! netcdf_data_format is switched back to non-paralell output.
324!
325! 1276 2014-01-15 13:40:41Z heinze
326! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
327!
328! 1257 2013-11-08 15:18:40Z raasch
329! acc-update-host directive for timestep removed
330!
331! 1241 2013-10-30 11:36:58Z heinze
332! Generalize calc_mean_profile for wider use
333! Determine shf and qsws in dependence on data from LSF_DATA
334! Determine ug and vg in dependence on data from LSF_DATA
335! 1221 2013-09-10 08:59:13Z raasch
336! host update of arrays before timestep is called
337!
338! 1179 2013-06-14 05:57:58Z raasch
339! mean profiles for reference state are only calculated if required,
340! small bugfix for background communication
341!
342! 1171 2013-05-30 11:27:45Z raasch
343! split of prognostic_equations deactivated (comment lines), for the time being
344!
345! 1128 2013-04-12 06:19:32Z raasch
346! asynchronous transfer of ghost point data realized for acc-optimized version:
347! prognostic_equations are first called two times for those points required for
348! the left-right and north-south exchange, respectively, and then for the
349! remaining points,
350! those parts requiring global communication moved from prognostic_equations to
351! here
352!
353! 1115 2013-03-26 18:16:16Z hoffmann
354! calculation of qr and nr is restricted to precipitation
355!
356! 1113 2013-03-10 02:48:14Z raasch
357! GPU-porting of boundary conditions,
358! openACC directives updated
359! formal parameter removed from routine boundary_conds
360!
361! 1111 2013-03-08 23:54:10Z raasch
362! +internal timestep counter for cpu statistics added,
363! openACC directives updated
364!
365! 1092 2013-02-02 11:24:22Z raasch
366! unused variables removed
367!
368! 1065 2012-11-22 17:42:36Z hoffmann
369! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
370!
371! 1053 2012-11-13 17:11:03Z hoffmann
372! exchange of ghost points for nr, qr added
373!
374! 1036 2012-10-22 13:43:42Z raasch
375! code put under GPL (PALM 3.9)
376!
377! 1019 2012-09-28 06:46:45Z raasch
378! non-optimized version of prognostic_equations removed
379!
380! 1015 2012-09-27 09:23:24Z raasch
381! +call of prognostic_equations_acc
382!
383! 1001 2012-09-13 14:08:46Z raasch
384! all actions concerning leapfrog- and upstream-spline-scheme removed
385!
386! 849 2012-03-15 10:35:09Z raasch
387! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
388!
389! 825 2012-02-19 03:03:44Z raasch
390! wang_collision_kernel renamed wang_kernel
391!
392! Revision 1.1  1997/08/11 06:19:04  raasch
393! Initial revision
394!
395!
396! Description:
397! ------------
398!> Integration in time of the model equations, statistical analysis and graphic
399!> output
400!------------------------------------------------------------------------------!
401 SUBROUTINE time_integration
402 
403
404    USE advec_ws,                                                              &
405        ONLY:  ws_statistics
406
407    USE arrays_3d,                                                             &
408        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, &
409               q_init, q, qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p,      &
410               ref_state, rho_ocean, s, s_p, sa_p, tend, u, u_p, v, vpt,       &
411               v_p, w, w_p
412
413    USE biometeorology_mod,                                                    &
414        ONLY:  biom_calculate_static_grid, time_biom_results
415
416    USE bulk_cloud_model_mod,                                                  &
417        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
418              collision_turbulence, microphysics_morrison, microphysics_seifert
419
420    USE calc_mean_profile_mod,                                                 &
421        ONLY:  calc_mean_profile
422
423    USE chem_emissions_mod,                                                    &
424        ONLY:  chem_emissions_setup
425
426    USE chem_modules,                                                          &
427        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
428
429    USE chemistry_model_mod,                                                   &
430        ONLY:  chem_boundary_conds, chem_species
431
432    USE control_parameters,                                                    &
433        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
434               average_count_3d, averaging_interval, averaging_interval_pr,    &
435               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
436               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
437               constant_flux_layer, constant_heatflux,                         &
438               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
439               coupling_start_time, current_timestep_number,                   &
440               disturbance_created, disturbance_energy_limit, dist_range,      &
441               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
442               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
443               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
444               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
445               first_call_lpm, first_call_mas, galilei_transformation,         &
446               humidity, indoor_model, intermediate_timestep_count,            &
447               intermediate_timestep_count_max,                                &
448               land_surface, large_scale_forcing,                              &
449               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
450               multi_agent_system_end, multi_agent_system_start,               &
451               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
452               ocean_mode, passive_scalar, pt_reference,                       &
453               pt_slope_offset, random_heatflux, rans_mode,                    &
454               rans_tke_e, run_coupled, simulated_time, simulated_time_chr,    &
455               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
456               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
457               skip_time_data_output_av, sloping_surface, stop_dt,             &
458               surface_data_output, terminate_coupled, terminate_run,          &
459               timestep_scheme,                                                &
460               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
461               time_do3d, time_domask, time_dopr, time_dopr_av,                &
462               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
463               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
464               time_run_control, time_since_reference_point,                   &
465               turbulent_inflow, turbulent_outflow, urban_surface,             &
466               use_initial_profile_as_reference,                               &
467               use_single_reference_value, uv_exposure, u_gtrans, v_gtrans,    &
468               virtual_flight, virtual_measurement, wind_turbine,              &
469               ws_scheme_mom, ws_scheme_sca
470
471    USE cpulog,                                                                &
472        ONLY:  cpu_log, log_point, log_point_s
473
474    USE date_and_time_mod,                                                     &
475        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
476
477    USE flight_mod,                                                            &
478        ONLY:  flight_measurement
479
480    USE gust_mod,                                                              &
481        ONLY:  gust_actions, gust_module_enabled
482
483    USE indices,                                                               &
484        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
485
486    USE indoor_model_mod,                                                      &
487        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
488
489    USE interaction_droplets_ptq_mod,                                          &
490        ONLY:  interaction_droplets_ptq
491
492    USE interfaces
493
494    USE kinds
495
496    USE land_surface_model_mod,                                                &
497        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
498               skip_time_do_lsm
499
500    USE lsf_nudging_mod,                                                       &
501        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
502
503    USE multi_agent_system_mod,                                                &
504        ONLY:  agents_active, multi_agent_system
505
506    USE nesting_offl_mod,                                                      &
507        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
508       
509    USE netcdf_data_input_mod,                                                 &
510        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
511               netcdf_data_input_offline_nesting
512
513    USE ocean_mod,                                                             &
514        ONLY:  prho_reference
515
516    USE particle_attributes,                                                   &
517        ONLY:  particle_advection, particle_advection_start,                   &
518               use_sgs_for_particles, wang_kernel
519
520    USE pegrid
521
522    USE pmc_interface,                                                         &
523        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
524               pmci_synchronize
525
526    USE progress_bar,                                                          &
527        ONLY:  finish_progress_bar, output_progress_bar
528
529    USE prognostic_equations_mod,                                              &
530        ONLY:  prognostic_equations_cache, prognostic_equations_vector
531
532    USE radiation_model_mod,                                                   &
533        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
534              radiation_interaction, radiation_interactions,                   &
535              skip_time_do_radiation, time_radiation
536
537    USE spectra_mod,                                                           &
538        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
539              skip_time_dosp
540
541    USE statistics,                                                            &
542        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
543
544    USE surface_layer_fluxes_mod,                                              &
545        ONLY:  surface_layer_fluxes
546
547    USE surface_mod,                                                           &
548        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
549
550    USE surface_output_mod,                                                    &
551        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
552               dt_dosurf_av, surface_output, surface_output_averaging,         &
553               skip_time_dosurf, skip_time_dosurf_av, time_dosurf,             &
554               time_dosurf_av
555
556    USE turbulence_closure_mod,                                                &
557        ONLY:  tcm_diffusivities, production_e_init
558
559    USE urban_surface_mod,                                                     &
560        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
561               usm_material_model,                                             &
562               usm_surface_energy_balance, usm_green_heat_model,               &
563               usm_temperature_near_surface
564
565    USE synthetic_turbulence_generator_mod,                                    &
566        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
567               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
568               use_syn_turb_gen
569         
570    USE salsa_mod,                                                             &
571        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast, salsa,      &
572              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
573              skip_time_do_salsa           
574
575    USE user_actions_mod,                                                      &
576        ONLY:  user_actions
577
578    USE uv_exposure_model_mod,                                                 &
579        ONLY:  uvem_calc_exposure
580
581    USE wind_turbine_model_mod,                                                &
582        ONLY:  wtm_forces
583
584    USE lpm_mod,                                                               &
585        ONLY:  lpm
586
587    USE vertical_nesting_mod,                                                  &
588        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
589               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
590               vnest_deallocate, vnest_init, vnest_init_fine,                  &
591               vnest_start_time
592               
593    USE virtual_measurement_mod,                                               &
594        ONLY:  vm_sampling, vm_time_start
595
596    IMPLICIT NONE
597
598    CHARACTER (LEN=9) ::  time_to_string   !<
599   
600    INTEGER(iwp)      ::  b !< index for aerosol size bins   
601    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
602    INTEGER(iwp)      ::  g !< index for gaseous compounds
603    INTEGER(iwp)      ::  lsp
604    INTEGER(iwp)      ::  lsp_usr   !<
605    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
606
607    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
608                            !< steering of run control output interval
609    REAL(wp) ::  time_since_reference_point_save  !< original value of
610                                                  !< time_since_reference_point
611
612!
613!-- At beginning determine the first time step
614    CALL timestep
615!
616!-- Synchronize the timestep in case of nested run.
617    IF ( nested_run )  THEN
618!
619!--    Synchronization by unifying the time step.
620!--    Global minimum of all time-steps is used for all.
621       CALL pmci_synchronize
622    ENDIF
623
624!
625!-- Determine and print out the run control quantities before the first time
626!-- step of this run. For the initial run, some statistics (e.g. divergence)
627!-- need to be determined first --> CALL flow_statistics at the beginning of
628!-- run_control
629    CALL run_control
630!
631!-- Data exchange between coupled models in case that a call has been omitted
632!-- at the end of the previous run of a job chain.
633    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
634!
635!--    In case of model termination initiated by the local model the coupler
636!--    must not be called because this would again cause an MPI hang.
637       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
638          CALL surface_coupler
639          time_coupling = time_coupling - dt_coupling
640       ENDDO
641       IF (time_coupling == 0.0_wp  .AND.                                      &
642           time_since_reference_point < dt_coupling )                          &
643       THEN
644          time_coupling = time_since_reference_point
645       ENDIF
646    ENDIF
647
648#if defined( __dvrp_graphics )
649!
650!-- Time measurement with dvrp software 
651    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
652#endif
653
654    CALL location_message( 'starting timestep-sequence', .TRUE. )
655!
656!-- Start of the time loop
657    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
658                .NOT. terminate_run )
659
660       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
661!
662!--    Vertical nesting: initialize fine grid
663       IF ( vnested ) THEN
664          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
665             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
666             CALL vnest_init_fine
667             vnest_init = .TRUE.
668             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
669          ENDIF
670       ENDIF
671!
672!--    Determine ug, vg and w_subs in dependence on data from external file
673!--    LSF_DATA
674       IF ( large_scale_forcing .AND. lsf_vert )  THEN
675           CALL ls_forcing_vert ( simulated_time )
676           sums_ls_l = 0.0_wp
677       ENDIF
678
679!
680!--    Set pt_init and q_init to the current profiles taken from
681!--    NUDGING_DATA
682       IF ( nudging )  THEN
683           CALL nudge_ref ( simulated_time )
684!
685!--        Store temperature gradient at the top boundary for possible Neumann
686!--        boundary condition
687           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
688           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
689           IF ( air_chemistry )  THEN
690              DO  lsp = 1, nspec
691                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
692                                - chem_species(lsp)%conc_pr_init(nzt) )       &
693                               / dzu(nzt+1)
694              ENDDO
695           ENDIF
696       ENDIF
697!
698!--    If forcing by larger-scale models is applied, check if new data
699!--    at domain boundaries need to be read.
700       IF ( nesting_offline )  THEN
701          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
702             CALL netcdf_data_input_offline_nesting
703       ENDIF
704
705!
706!--    Execute the gust module actions
707       IF ( gust_module_enabled )  THEN
708          CALL gust_actions( 'before_timestep' )
709       ENDIF
710
711!
712!--    Execute the user-defined actions
713       CALL user_actions( 'before_timestep' )
714
715!
716!--    Calculate forces by wind turbines
717       IF ( wind_turbine )  THEN
718
719          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
720
721          CALL wtm_forces
722
723          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
724
725       ENDIF   
726       
727!
728!--    Start of intermediate step loop
729       intermediate_timestep_count = 0
730       DO  WHILE ( intermediate_timestep_count < &
731                   intermediate_timestep_count_max )
732
733          intermediate_timestep_count = intermediate_timestep_count + 1
734
735!
736!--       Set the steering factors for the prognostic equations which depend
737!--       on the timestep scheme
738          CALL timestep_scheme_steering
739
740!
741!--       Calculate those variables needed in the tendency terms which need
742!--       global communication
743          IF ( .NOT. use_single_reference_value  .AND. &
744               .NOT. use_initial_profile_as_reference )  THEN
745!
746!--          Horizontally averaged profiles to be used as reference state in
747!--          buoyancy terms (WARNING: only the respective last call of
748!--          calc_mean_profile defines the reference state!)
749             IF ( .NOT. neutral )  THEN
750                CALL calc_mean_profile( pt, 4 )
751                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
752             ENDIF
753             IF ( ocean_mode )  THEN
754                CALL calc_mean_profile( rho_ocean, 64 )
755                ref_state(:)  = hom(:,1,64,0)
756             ENDIF
757             IF ( humidity )  THEN
758                CALL calc_mean_profile( vpt, 44 )
759                ref_state(:)  = hom(:,1,44,0)
760             ENDIF
761!
762!--          Assure that ref_state does not become zero at any level
763!--          ( might be the case if a vertical level is completely occupied
764!--            with topography ).
765             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
766                                ref_state == 0.0_wp )
767          ENDIF
768
769          IF ( .NOT. constant_diffusion )  CALL production_e_init
770          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
771               intermediate_timestep_count == 1 )  CALL ws_statistics
772!
773!--       In case of nudging calculate current nudging time scale and horizontal
774!--       means of u, v, pt and q
775          IF ( nudging )  THEN
776             CALL calc_tnudge( simulated_time )
777             CALL calc_mean_profile( u, 1 )
778             CALL calc_mean_profile( v, 2 )
779             CALL calc_mean_profile( pt, 4 )
780             CALL calc_mean_profile( q, 41 )
781          ENDIF
782
783!
784!--       Solve the prognostic equations. A fast cache optimized version with
785!--       only one single loop is used in case of Piascek-Williams advection
786!--       scheme. NEC vector machines use a different version, because
787!--       in the other versions a good vectorization is prohibited due to
788!--       inlining problems.
789          IF ( loop_optimization == 'cache' )  THEN
790             CALL prognostic_equations_cache
791          ELSEIF ( loop_optimization == 'vector' )  THEN
792             CALL prognostic_equations_vector
793          ENDIF
794
795!
796!--       Particle transport/physics with the Lagrangian particle model
797!--       (only once during intermediate steps, because it uses an Euler-step)
798!--       ### particle model should be moved before prognostic_equations, in order
799!--       to regard droplet interactions directly
800          IF ( particle_advection  .AND.                         &
801               simulated_time >= particle_advection_start  .AND. &
802               intermediate_timestep_count == 1 )  THEN
803             CALL lpm
804             first_call_lpm = .FALSE.
805          ENDIF
806
807!
808!--       Interaction of droplets with temperature and mixing ratio.
809!--       Droplet condensation and evaporation is calculated within
810!--       advec_particles.
811          IF ( cloud_droplets  .AND.  &
812               intermediate_timestep_count == intermediate_timestep_count_max )&
813          THEN
814             CALL interaction_droplets_ptq
815          ENDIF
816
817!
818!--       Movement of agents in multi agent system
819          IF ( agents_active  .AND.                                            &
820               time_since_reference_point >= multi_agent_system_start  .AND.   &
821               time_since_reference_point <= multi_agent_system_end    .AND.   &
822               intermediate_timestep_count == 1 )  THEN
823             CALL multi_agent_system
824             first_call_mas = .FALSE.
825          ENDIF
826
827!
828!--       Exchange of ghost points (lateral boundary conditions)
829          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
830
831          CALL exchange_horiz( u_p, nbgp )
832          CALL exchange_horiz( v_p, nbgp )
833          CALL exchange_horiz( w_p, nbgp )
834          CALL exchange_horiz( pt_p, nbgp )
835          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
836          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
837               .OR.  use_sgs_for_particles )  THEN
838             IF ( rans_tke_e )  THEN
839                CALL exchange_horiz( diss_p, nbgp )
840             ELSE
841                CALL exchange_horiz( diss, nbgp )
842             ENDIF
843          ENDIF
844          IF ( ocean_mode )  THEN
845             CALL exchange_horiz( sa_p, nbgp )
846             CALL exchange_horiz( rho_ocean, nbgp )
847             CALL exchange_horiz( prho, nbgp )
848          ENDIF
849          IF ( humidity )  THEN
850             CALL exchange_horiz( q_p, nbgp )
851             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
852                CALL exchange_horiz( qc_p, nbgp )
853                CALL exchange_horiz( nc_p, nbgp )
854             ENDIF
855             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
856                CALL exchange_horiz( qr_p, nbgp )
857                CALL exchange_horiz( nr_p, nbgp )
858             ENDIF
859          ENDIF
860          IF ( cloud_droplets )  THEN
861             CALL exchange_horiz( ql, nbgp )
862             CALL exchange_horiz( ql_c, nbgp )
863             CALL exchange_horiz( ql_v, nbgp )
864             CALL exchange_horiz( ql_vp, nbgp )
865          ENDIF
866          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
867          IF ( air_chemistry )  THEN
868             DO  lsp = 1, nspec
869                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
870!
871!--             kanani: Push chem_boundary_conds after CALL boundary_conds
872                lsp_usr = 1
873                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
874                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
875                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
876                                                chem_species(lsp)%conc_pr_init )
877                   ENDIF
878                   lsp_usr = lsp_usr + 1
879                ENDDO
880             ENDDO
881          ENDIF
882
883          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
884          THEN
885             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
886             DO  b = 1, nbins
887                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
888                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
889                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
890                                           aerosol_number(b)%init )
891                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
892                DO  c = 1, ncc_tot
893                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
894                                        nbgp )
895                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
896                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
897                                              aerosol_mass((c-1)*nbins+b)%init )
898                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
899                ENDDO
900             ENDDO
901             IF ( .NOT. salsa_gases_from_chem )  THEN
902                DO  g = 1, ngast
903                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
904                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
905                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
906                                              salsa_gas(g)%init )
907                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
908             ENDDO
909             ENDIF
910             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
911          ENDIF         
912
913          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
914
915!
916!--       Boundary conditions for the prognostic quantities (except of the
917!--       velocities at the outflow in case of a non-cyclic lateral wall)
918          CALL boundary_conds
919!
920!--       Swap the time levels in preparation for the next time step.
921          CALL swap_timelevel
922
923!
924!--       Vertical nesting: Interpolate fine grid data to the coarse grid
925          IF ( vnest_init ) THEN
926             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
927             CALL vnest_anterpolate
928             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
929          ENDIF
930
931          IF ( nested_run )  THEN
932
933             CALL cpu_log( log_point(60), 'nesting', 'start' )
934!
935!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
936!--          and pmci_child_datatrans are called inside the wrapper
937!--          subroutine pmci_datatrans according to the control parameters
938!--          nesting_mode and nesting_datatransfer_mode.
939!--          TO_DO: why is nesting_mode given as a parameter here?
940             CALL pmci_datatrans( nesting_mode )
941
942             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
943                  nesting_mode == 'vertical' )  THEN
944!
945!--             Exchange_horiz is needed for all parent-domains after the
946!--             anterpolation
947                CALL exchange_horiz( u, nbgp )
948                CALL exchange_horiz( v, nbgp )
949                CALL exchange_horiz( w, nbgp )
950                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
951
952                IF ( humidity )  THEN
953
954                   CALL exchange_horiz( q, nbgp )
955
956                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
957                       CALL exchange_horiz( qc, nbgp )
958                       CALL exchange_horiz( nc, nbgp )
959                   ENDIF
960                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
961                       CALL exchange_horiz( qr, nbgp )
962                       CALL exchange_horiz( nr, nbgp )
963                   ENDIF
964
965                ENDIF
966
967                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
968               
969                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
970
971                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
972                                                      rans_tke_e )             &
973                   CALL exchange_horiz( diss, nbgp )
974
975                IF ( air_chemistry )  THEN
976                   DO  n = 1, nspec     
977                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
978                   ENDDO
979                ENDIF
980
981             ENDIF
982!
983!--          Set boundary conditions again after interpolation and anterpolation.
984             CALL pmci_boundary_conds
985
986             CALL cpu_log( log_point(60), 'nesting', 'stop' )
987
988          ENDIF
989
990!
991!--       Temperature offset must be imposed at cyclic boundaries in x-direction
992!--       when a sloping surface is used
993          IF ( sloping_surface )  THEN
994             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
995                                                    pt_slope_offset
996             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
997                                                    pt_slope_offset
998          ENDIF
999
1000!
1001!--       Impose a turbulent inflow using the recycling method
1002          IF ( turbulent_inflow )  CALL  inflow_turbulence
1003
1004!
1005!--       Set values at outflow boundary using the special outflow condition
1006          IF ( turbulent_outflow )  CALL  outflow_turbulence
1007
1008!
1009!--       Impose a random perturbation on the horizontal velocity field
1010          IF ( create_disturbances  .AND.                                      &
1011               ( call_psolver_at_all_substeps  .AND.                           &
1012               intermediate_timestep_count == intermediate_timestep_count_max )&
1013          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1014               intermediate_timestep_count == 1 ) )                            &
1015          THEN
1016             time_disturb = time_disturb + dt_3d
1017             IF ( time_disturb >= dt_disturb )  THEN
1018                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1019                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1020                   CALL disturb_field( 'u', tend, u )
1021                   CALL disturb_field( 'v', tend, v )
1022                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1023                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1024                THEN
1025!
1026!--                Runs with a non-cyclic lateral wall need perturbations
1027!--                near the inflow throughout the whole simulation
1028                   dist_range = 1
1029                   CALL disturb_field( 'u', tend, u )
1030                   CALL disturb_field( 'v', tend, v )
1031                   dist_range = 0
1032                ENDIF
1033                time_disturb = time_disturb - dt_disturb
1034             ENDIF
1035          ENDIF
1036
1037!
1038!--       Map forcing data derived from larger scale model onto domain
1039!--       boundaries.
1040          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1041                                       intermediate_timestep_count_max  )      &
1042             CALL nesting_offl_bc
1043!
1044!--       Impose a turbulent inflow using synthetic generated turbulence,
1045!--       only once per time step.
1046          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1047             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1048             CALL stg_main
1049          ENDIF
1050!
1051!--       Ensure mass conservation. This need to be done after imposing
1052!--       synthetic turbulence and top boundary condition for pressure is set to
1053!--       Neumann conditions.
1054!--       Is this also required in case of Dirichlet?
1055          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1056!
1057!--       Reduce the velocity divergence via the equation for perturbation
1058!--       pressure.
1059          IF ( intermediate_timestep_count == 1  .OR. &
1060                call_psolver_at_all_substeps )  THEN
1061
1062             IF (  vnest_init ) THEN
1063!
1064!--             Compute pressure in the CG, interpolate top boundary conditions
1065!--             to the FG and then compute pressure in the FG
1066                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1067
1068                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1069                CALL vnest_boundary_conds
1070                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1071 
1072                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1073
1074!--             Anterpolate TKE, satisfy Germano Identity
1075                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1076                CALL vnest_anterpolate_e
1077                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1078
1079             ELSE
1080
1081                CALL pres
1082
1083             ENDIF
1084
1085          ENDIF
1086
1087!
1088!--       If required, compute liquid water content
1089          IF ( bulk_cloud_model )  THEN
1090             CALL calc_liquid_water_content
1091          ENDIF
1092!
1093!--       If required, compute virtual potential temperature
1094          IF ( humidity )  THEN
1095             CALL compute_vpt 
1096          ENDIF 
1097
1098!
1099!--       Compute the diffusion quantities
1100          IF ( .NOT. constant_diffusion )  THEN
1101
1102!
1103!--          Determine surface fluxes shf and qsws and surface values
1104!--          pt_surface and q_surface in dependence on data from external
1105!--          file LSF_DATA respectively
1106             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1107                 intermediate_timestep_count == intermediate_timestep_count_max )&
1108             THEN
1109                CALL ls_forcing_surf( simulated_time )
1110             ENDIF
1111
1112!
1113!--          First the vertical (and horizontal) fluxes in the surface
1114!--          (constant flux) layer are computed
1115             IF ( constant_flux_layer )  THEN
1116                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1117                CALL surface_layer_fluxes
1118                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1119             ENDIF
1120!
1121!--          If required, solve the energy balance for the surface and run soil
1122!--          model. Call for horizontal as well as vertical surfaces
1123             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1124
1125                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1126!
1127!--             Call for horizontal upward-facing surfaces
1128                CALL lsm_energy_balance( .TRUE., -1 )
1129                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1130!
1131!--             Call for northward-facing surfaces
1132                CALL lsm_energy_balance( .FALSE., 0 )
1133                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1134!
1135!--             Call for southward-facing surfaces
1136                CALL lsm_energy_balance( .FALSE., 1 )
1137                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1138!
1139!--             Call for eastward-facing surfaces
1140                CALL lsm_energy_balance( .FALSE., 2 )
1141                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1142!
1143!--             Call for westward-facing surfaces
1144                CALL lsm_energy_balance( .FALSE., 3 )
1145                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1146!
1147!--             At the end, set boundary conditons for potential temperature
1148!--             and humidity after running the land-surface model. This
1149!--             might be important for the nesting, where arrays are transfered.
1150                CALL lsm_boundary_condition
1151
1152                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1153             ENDIF
1154!
1155!--          If required, solve the energy balance for urban surfaces and run
1156!--          the material heat model
1157             IF (urban_surface) THEN
1158                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1159               
1160                CALL usm_surface_energy_balance( .FALSE. )
1161                IF ( usm_material_model )  THEN
1162                   CALL usm_green_heat_model
1163                   CALL usm_material_heat_model ( .FALSE. )
1164                ENDIF
1165
1166                CALL usm_temperature_near_surface
1167!
1168!--             At the end, set boundary conditons for potential temperature
1169!--             and humidity after running the urban-surface model. This
1170!--             might be important for the nesting, where arrays are transfered.
1171                CALL usm_boundary_condition
1172
1173                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1174             ENDIF
1175!
1176!--          Compute the diffusion coefficients
1177             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1178             IF ( .NOT. humidity ) THEN
1179                IF ( ocean_mode )  THEN
1180                   CALL tcm_diffusivities( prho, prho_reference )
1181                ELSE
1182                   CALL tcm_diffusivities( pt, pt_reference )
1183                ENDIF
1184             ELSE
1185                CALL tcm_diffusivities( vpt, pt_reference )
1186             ENDIF
1187             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1188!
1189!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1190             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1191
1192          ENDIF
1193
1194!
1195!--       If required, calculate radiative fluxes and heating rates
1196          IF ( radiation .AND. intermediate_timestep_count                     &
1197               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1198               skip_time_do_radiation )  THEN
1199
1200               time_radiation = time_radiation + dt_3d
1201
1202             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1203             THEN
1204
1205                CALL cpu_log( log_point(50), 'radiation', 'start' )
1206
1207                IF ( .NOT. force_radiation_call )  THEN
1208                   time_radiation = time_radiation - dt_radiation
1209                ENDIF
1210
1211!
1212!--             Adjust the current time to the time step of the radiation model.
1213!--             Needed since radiation is pre-calculated and stored only on apparent
1214!--             solar positions
1215                time_since_reference_point_save = time_since_reference_point
1216                time_since_reference_point =                                   &
1217                                    REAL( FLOOR( time_since_reference_point /  &
1218                                                 dt_radiation), wp )           &
1219                                             * dt_radiation
1220
1221                CALL radiation_control
1222
1223                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1224
1225                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1226                     radiation_interactions )  THEN
1227                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1228                   CALL radiation_interaction
1229                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1230                ENDIF
1231   
1232!
1233!--             Return the current time to its original value
1234                time_since_reference_point = time_since_reference_point_save
1235
1236             ENDIF
1237          ENDIF
1238
1239       ENDDO   ! Intermediate step loop
1240!
1241!--    If required, consider chemical emissions
1242       IF ( air_chemistry  .AND.  do_emis )  THEN
1243!
1244!--       Update the time --> kanani: revise location of this CALL
1245          CALL calc_date_and_time
1246!
1247!--       Call emission routine only once an hour
1248          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1249             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1250             hour_call_emis = hour_of_year
1251          ENDIF
1252       ENDIF
1253!
1254!--    If required, do UV exposure calculations
1255       IF ( uv_exposure )  THEN
1256          CALL uvem_calc_exposure
1257       ENDIF
1258!
1259!--    If required, calculate indoor temperature, waste heat, heat flux
1260!--    through wall, etc.
1261!--    dt_indoor steers the frequency of the indoor model calculations
1262       IF (       indoor_model                                                    &
1263            .AND. intermediate_timestep_count == intermediate_timestep_count_max  &
1264            .AND. time_since_reference_point > skip_time_do_indoor )  THEN
1265
1266          time_indoor = time_indoor + dt_3d
1267
1268          IF ( time_indoor >= dt_indoor )  THEN
1269
1270             time_indoor = time_indoor - dt_indoor
1271
1272             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1273             CALL im_main_heatcool
1274             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1275
1276          ENDIF
1277       ENDIF
1278!
1279!--    Increase simulation time and output times
1280       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1281       current_timestep_number    = current_timestep_number + 1
1282       simulated_time             = simulated_time   + dt_3d
1283       time_since_reference_point = simulated_time - coupling_start_time
1284       simulated_time_chr         = time_to_string( time_since_reference_point )
1285
1286
1287
1288
1289       IF ( simulated_time >= skip_time_data_output_av )  THEN
1290          time_do_av         = time_do_av       + dt_3d
1291       ENDIF
1292       IF ( simulated_time >= skip_time_do2d_xy )  THEN
1293          time_do2d_xy       = time_do2d_xy     + dt_3d
1294       ENDIF
1295       IF ( simulated_time >= skip_time_do2d_xz )  THEN
1296          time_do2d_xz       = time_do2d_xz     + dt_3d
1297       ENDIF
1298       IF ( simulated_time >= skip_time_do2d_yz )  THEN
1299          time_do2d_yz       = time_do2d_yz     + dt_3d
1300       ENDIF
1301       IF ( simulated_time >= skip_time_do3d    )  THEN
1302          time_do3d          = time_do3d        + dt_3d
1303       ENDIF
1304       DO  mid = 1, masks
1305          IF ( simulated_time >= skip_time_domask(mid) )  THEN
1306             time_domask(mid)= time_domask(mid) + dt_3d
1307          ENDIF
1308       ENDDO
1309       time_dvrp          = time_dvrp        + dt_3d
1310       IF ( simulated_time >= skip_time_dosp )  THEN
1311          time_dosp       = time_dosp        + dt_3d
1312       ENDIF
1313       time_dots          = time_dots        + dt_3d
1314       IF ( .NOT. first_call_lpm )  THEN
1315          time_dopts      = time_dopts       + dt_3d
1316       ENDIF
1317       IF ( simulated_time >= skip_time_dopr )  THEN
1318          time_dopr       = time_dopr        + dt_3d
1319       ENDIF
1320       time_dopr_listing  = time_dopr_listing + dt_3d
1321       time_run_control   = time_run_control + dt_3d
1322!
1323!--    Increment time-counter for surface output
1324       IF ( surface_data_output )  THEN
1325          IF ( simulated_time >= skip_time_dosurf )  THEN
1326             time_dosurf    = time_dosurf + dt_3d
1327          ENDIF
1328          IF ( simulated_time >= skip_time_dosurf_av )  THEN
1329             time_dosurf_av = time_dosurf_av + dt_3d
1330          ENDIF
1331       ENDIF
1332!
1333!--    In case of synthetic turbulence generation and parametrized turbulence
1334!--    information, update the time counter and if required, adjust the
1335!--    STG to new atmospheric conditions.
1336       IF ( use_syn_turb_gen  )  THEN
1337          IF ( parametrize_inflow_turbulence )  THEN
1338             time_stg_adjust = time_stg_adjust + dt_3d
1339             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1340          ENDIF
1341          time_stg_call = time_stg_call + dt_3d
1342       ENDIF
1343
1344!
1345!--    Data exchange between coupled models
1346       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1347                                          .AND. .NOT. vnested )  THEN
1348          time_coupling = time_coupling + dt_3d
1349
1350!
1351!--       In case of model termination initiated by the local model
1352!--       (terminate_coupled > 0), the coupler must be skipped because it would
1353!--       cause an MPI intercomminucation hang.
1354!--       If necessary, the coupler will be called at the beginning of the
1355!--       next restart run.
1356          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1357             CALL surface_coupler
1358             time_coupling = time_coupling - dt_coupling
1359          ENDDO
1360       ENDIF
1361
1362!
1363!--    Biometeorology calculation of stationary thermal indices
1364       IF ( biometeorology  .AND.  time_do3d >= dt_do3d )  THEN
1365          CALL biom_calculate_static_grid ( .FALSE. )
1366          time_biom_results = time_since_reference_point
1367       ENDIF
1368
1369!
1370!--    Execute the gust module actions
1371       IF ( gust_module_enabled )  THEN
1372          CALL gust_actions( 'after_integration' )
1373       ENDIF
1374
1375!
1376!--    Execute user-defined actions
1377       CALL user_actions( 'after_integration' )
1378
1379!
1380!--    If Galilei transformation is used, determine the distance that the
1381!--    model has moved so far
1382       IF ( galilei_transformation )  THEN
1383          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1384          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1385       ENDIF
1386
1387!
1388!--    Check, if restart is necessary (because cpu-time is expiring or
1389!--    because it is forced by user) and set stop flag
1390!--    This call is skipped if the remote model has already initiated a restart.
1391       IF ( .NOT. terminate_run )  CALL check_for_restart
1392
1393!
1394!--    Carry out statistical analysis and output at the requested output times.
1395!--    The MOD function is used for calculating the output time counters (like
1396!--    time_dopr) in order to regard a possible decrease of the output time
1397!--    interval in case of restart runs
1398
1399!
1400!--    Set a flag indicating that so far no statistics have been created
1401!--    for this time step
1402       flow_statistics_called = .FALSE.
1403
1404!
1405!--    If required, call flow_statistics for averaging in time
1406       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1407            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1408            simulated_time >= skip_time_dopr )  THEN
1409          time_dopr_av = time_dopr_av + dt_3d
1410          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1411             do_sum = .TRUE.
1412             time_dopr_av = MOD( time_dopr_av, &
1413                                    MAX( dt_averaging_input_pr, dt_3d ) )
1414          ENDIF
1415       ENDIF
1416       IF ( do_sum )  CALL flow_statistics
1417
1418!
1419!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1420       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1421            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
1422            simulated_time >= skip_time_data_output_av )                    &
1423       THEN
1424          time_do_sla = time_do_sla + dt_3d
1425          IF ( time_do_sla >= dt_averaging_input )  THEN
1426             CALL sum_up_3d_data
1427             average_count_3d = average_count_3d + 1
1428             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1429          ENDIF
1430       ENDIF
1431!
1432!--    Average surface data
1433       IF ( surface_data_output )  THEN
1434          IF ( averaging_interval_surf /= 0.0_wp  .AND.                        & 
1435               ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1436          .AND.  simulated_time >= skip_time_dosurf_av )  THEN
1437             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1438                CALL surface_output_averaging
1439                average_count_surf = average_count_surf + 1
1440             ENDIF
1441          ENDIF
1442       ENDIF
1443
1444!
1445!--    Calculate spectra for time averaging
1446       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1447            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1448            simulated_time >= skip_time_dosp )  THEN
1449          time_dosp_av = time_dosp_av + dt_3d
1450          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1451             CALL calc_spectra
1452             time_dosp_av = MOD( time_dosp_av, &
1453                                 MAX( dt_averaging_input_pr, dt_3d ) )
1454          ENDIF
1455       ENDIF
1456
1457!
1458!--    Call flight module and output data
1459       IF ( virtual_flight )  THEN
1460          CALL flight_measurement
1461          CALL data_output_flight
1462       ENDIF
1463!
1464!--    Take virtual measurements
1465       IF ( virtual_measurement  .AND.                                         &
1466            vm_time_start <= time_since_reference_point )  CALL vm_sampling
1467
1468!
1469!--    Profile output (ASCII) on file
1470       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1471          CALL print_1d
1472          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1473                                                           dt_3d ) )
1474       ENDIF
1475
1476!
1477!--    Graphic output for PROFIL
1478       IF ( time_dopr >= dt_dopr )  THEN
1479          IF ( dopr_n /= 0 )  CALL data_output_profiles
1480          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1481          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1482       ENDIF
1483
1484!
1485!--    Graphic output for time series
1486       IF ( time_dots >= dt_dots )  THEN
1487          CALL data_output_tseries
1488          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1489       ENDIF
1490
1491!
1492!--    Output of spectra (formatted for use with PROFIL), in case of no
1493!--    time averaging, spectra has to be calculated before
1494       IF ( time_dosp >= dt_dosp )  THEN
1495          IF ( average_count_sp == 0 )  CALL calc_spectra
1496          CALL data_output_spectra
1497          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1498       ENDIF
1499
1500!
1501!--    2d-data output (cross-sections)
1502       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
1503          CALL data_output_2d( 'xy', 0 )
1504          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1505       ENDIF
1506       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
1507          CALL data_output_2d( 'xz', 0 )
1508          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1509       ENDIF
1510       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
1511          CALL data_output_2d( 'yz', 0 )
1512          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1513       ENDIF
1514
1515!
1516!--    3d-data output (volume data)
1517       IF ( time_do3d >= dt_do3d )  THEN
1518          CALL data_output_3d( 0 )
1519          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1520       ENDIF
1521
1522!
1523!--    Masked data output
1524       DO  mid = 1, masks
1525          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
1526             CALL data_output_mask( 0 )
1527             time_domask(mid) = MOD( time_domask(mid),  &
1528                                     MAX( dt_domask(mid), dt_3d ) )
1529          ENDIF
1530       ENDDO
1531
1532!
1533!--    Output of time-averaged 2d/3d/masked data
1534       IF ( time_do_av >= dt_data_output_av )  THEN
1535          CALL average_3d_data
1536          CALL data_output_2d( 'xy', 1 )
1537          CALL data_output_2d( 'xz', 1 )
1538          CALL data_output_2d( 'yz', 1 )
1539          CALL data_output_3d( 1 )
1540          DO  mid = 1, masks
1541             CALL data_output_mask( 1 )
1542          ENDDO
1543          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1544       ENDIF
1545!
1546!--    Output of surface data, instantaneous and averaged data
1547       IF ( surface_data_output )  THEN
1548          IF ( time_dosurf >= dt_dosurf )  THEN
1549             CALL surface_output( 0 )
1550             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1551          ENDIF
1552          IF ( time_dosurf_av >= dt_dosurf_av )  THEN
1553             CALL surface_output( 1 )
1554             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1555          ENDIF
1556       ENDIF
1557
1558!
1559!--    Output of particle time series
1560       IF ( particle_advection )  THEN
1561          IF ( time_dopts >= dt_dopts  .OR. &
1562               ( simulated_time >= particle_advection_start  .AND. &
1563                 first_call_lpm ) )  THEN
1564             CALL data_output_ptseries
1565             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1566          ENDIF
1567       ENDIF
1568
1569!
1570!--    Output of dvrp-graphics (isosurface, particles, slicer)
1571#if defined( __dvrp_graphics )
1572       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1573#endif
1574       IF ( time_dvrp >= dt_dvrp )  THEN
1575          CALL data_output_dvrp
1576          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1577       ENDIF
1578#if defined( __dvrp_graphics )
1579       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1580#endif
1581
1582!
1583!--    If required, set the heat flux for the next time step at a random value
1584       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1585          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1586          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1587          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1588       ENDIF
1589
1590!
1591!--    Execute the gust module actions
1592       IF ( gust_module_enabled )  THEN
1593          CALL gust_actions( 'after_timestep' )
1594       ENDIF
1595
1596!
1597!--    Execute user-defined actions
1598       CALL user_actions( 'after_timestep' )
1599
1600!
1601!--    Determine size of next time step. Save timestep dt_3d because it is
1602!--    newly calculated in routine timestep, but required further below for
1603!--    steering the run control output interval
1604       dt_3d_old = dt_3d
1605       CALL timestep
1606
1607!
1608!--    Synchronize the timestep in case of nested run.
1609       IF ( nested_run )  THEN
1610!
1611!--       Synchronize by unifying the time step.
1612!--       Global minimum of all time-steps is used for all.
1613          CALL pmci_synchronize
1614       ENDIF
1615
1616!
1617!--    Computation and output of run control parameters.
1618!--    This is also done whenever perturbations have been imposed
1619       IF ( time_run_control >= dt_run_control  .OR.                     &
1620            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1621       THEN
1622          CALL run_control
1623          IF ( time_run_control >= dt_run_control )  THEN
1624             time_run_control = MOD( time_run_control, &
1625                                     MAX( dt_run_control, dt_3d_old ) )
1626          ENDIF
1627       ENDIF
1628
1629!
1630!--    Output elapsed simulated time in form of a progress bar on stdout
1631       IF ( myid == 0 )  CALL output_progress_bar
1632
1633       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1634
1635
1636    ENDDO   ! time loop
1637
1638!
1639!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1640    IF ( vnest_init )  CALL vnest_deallocate
1641
1642    IF ( myid == 0 )  CALL finish_progress_bar
1643
1644#if defined( __dvrp_graphics )
1645    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1646#endif
1647
1648    CALL location_message( 'finished time-stepping', .TRUE. )
1649
1650 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.