source: palm/trunk/SOURCE/time_integration.f90 @ 3473

Last change on this file since 3473 was 3473, checked in by suehring, 3 years ago

Bugfix for previous commit

  • Property svn:keywords set to Id
File size: 63.6 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2018 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3473 2018-10-30 20:50:15Z suehring $
27! new module for virtual measurements introduced
28!
29! 3472 2018-10-30 20:43:50Z suehring
30! Add indoor model (kanani, srissman, tlang)
31!
32! 3467 2018-10-30 19:05:21Z suehring
33! Implementation of a new aerosol module salsa.
34!
35! 3448 2018-10-29 18:14:31Z kanani
36! Add biometeorology
37!
38! 3421 2018-10-24 18:39:32Z gronemeier
39! Surface data output
40!
41! 3418 2018-10-24 16:07:39Z kanani
42! call to material_heat_model now with check if spinup runs (rvtils)
43!
44! 3378 2018-10-19 12:34:59Z kanani
45! merge from radiation branch (r3362) into trunk
46! (moh.hefny):
47! Bugfix in the if statement to call radiation_interaction
48!
49! 3347 2018-10-15 14:21:08Z suehring
50! - offline nesting separated from large-scale forcing module
51! - changes for synthetic turbulence generator
52!
53! 3343 2018-10-15 10:38:52Z suehring
54! - Formatting, clean-up, comments (kanani)
55! - Added CALL to chem_emissions_setup (Russo)
56! - Code added for decycling chemistry (basit)
57!
58! 3294 2018-10-01 02:37:10Z raasch
59! changes concerning modularization of ocean option
60!
61! 3274 2018-09-24 15:42:55Z knoop
62! Modularization of all bulk cloud physics code components
63!
64! 3241 2018-09-12 15:02:00Z raasch
65! unused variables removed
66!
67! 3198 2018-08-15 09:23:10Z sward
68! Added multi_agent_system_end; defined start time for MAS relative to
69! time_since_reference_point
70!
71! 3183 2018-07-27 14:25:55Z suehring
72! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
73! Rename subroutines and variables in COSMO nesting mode
74!
75! 3182 2018-07-27 13:36:03Z suehring
76! Added multi agent system
77!
78! 3042 2018-05-25 10:44:37Z schwenkel
79! Changed the name specific humidity to mixing ratio
80!
81! 3040 2018-05-25 10:22:08Z schwenkel
82! Fixed bug in IF statement
83! Ensure that the time when calling the radiation to be the time step of the
84! pre-calculated time when first calculate the positions of the sun
85!
86! 3004 2018-04-27 12:33:25Z Giersch
87! First call of flow_statistics has been removed. It is already called in
88! run_control itself
89!
90! 2984 2018-04-18 11:51:30Z hellstea
91! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
92! as seemingly unnecessary.
93!
94! 2941 2018-04-03 11:54:58Z kanani
95! Deduct spinup_time from RUN_CONTROL output of main 3d run
96! (use time_since_reference_point instead of simulated_time)
97!
98! 2938 2018-03-27 15:52:42Z suehring
99! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
100!
101! 2936 2018-03-27 14:49:27Z suehring
102! Little formatting adjustment.
103!
104! 2817 2018-02-19 16:32:21Z knoop
105! Preliminary gust module interface implemented
106!
107! 2801 2018-02-14 16:01:55Z thiele
108! Changed lpm from subroutine to module.
109! Introduce particle transfer in nested models.
110!
111! 2776 2018-01-31 10:44:42Z Giersch
112! Variable use_synthetic_turbulence_generator has been abbreviated
113!
114! 2773 2018-01-30 14:12:54Z suehring
115! - Nesting for chemical species
116!
117! 2766 2018-01-22 17:17:47Z kanani
118! Removed preprocessor directive __chem
119!
120! 2718 2018-01-02 08:49:38Z maronga
121! Corrected "Former revisions" section
122!
123! 2696 2017-12-14 17:12:51Z kanani
124! - Change in file header (GPL part)
125! - Implementation of uv exposure model (FK)
126! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
127! - renamed diffusivities to tcm_diffusivities (TG)
128! - implement prognostic equation for diss (TG)
129! - Moved/commented CALL to chem_emissions (FK)
130! - Added CALL to chem_emissions (FK)
131! - Implementation of chemistry module (FK)
132! - Calls for setting boundary conditions in USM and LSM (MS)
133! - Large-scale forcing with larger-scale models implemented (MS)
134! - Rename usm_radiation into radiation_interactions; merge with branch
135!   radiation (MS)
136! - added call for usm_green_heat_model for green building surfaces (RvT)
137! - added call for usm_temperature_near_surface for use in indoor model (RvT)
138!
139! 2617 2017-11-16 12:47:24Z suehring
140! Bugfix, assure that the reference state does not become zero.
141!
142! 2563 2017-10-19 15:36:10Z Giersch
143! Variable wind_turbine moved to module control_parameters
144!
145! 2365 2017-08-21 14:59:59Z kanani
146! Vertical grid nesting implemented (SadiqHuq)
147!
148! 2320 2017-07-21 12:47:43Z suehring
149! Set bottom boundary conditions after nesting interpolation and anterpolation
150!
151! 2299 2017-06-29 10:14:38Z maronga
152! Call of soil model adjusted
153!
154! 2292 2017-06-20 09:51:42Z schwenkel
155! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
156! includes two more prognostic equations for cloud drop concentration (nc) 
157! and cloud water content (qc).
158!
159! 2271 2017-06-09 12:34:55Z sward
160! Start timestep message changed
161!
162! 2259 2017-06-08 09:09:11Z gronemeier
163! Implemented synthetic turbulence generator
164!
165! 2233 2017-05-30 18:08:54Z suehring
166!
167! 2232 2017-05-30 17:47:52Z suehring
168! Adjustments to new topography and surface concept
169! Modify passed parameters for disturb_field
170!
171! 2178 2017-03-17 11:07:39Z hellstea
172! Setting perturbations at all times near inflow boundary is removed
173! in case of nested boundaries
174!
175! 2174 2017-03-13 08:18:57Z maronga
176! Added support for nesting with cloud microphysics
177!
178! 2118 2017-01-17 16:38:49Z raasch
179! OpenACC directives and related code removed
180!
181! 2050 2016-11-08 15:00:55Z gronemeier
182! Implement turbulent outflow condition
183!
184! 2031 2016-10-21 15:11:58Z knoop
185! renamed variable rho to rho_ocean
186!
187! 2011 2016-09-19 17:29:57Z kanani
188! Flag urban_surface is now defined in module control_parameters,
189! removed commented CALLs of global_min_max.
190!
191! 2007 2016-08-24 15:47:17Z kanani
192! Added CALLs for new urban surface model
193!
194! 2000 2016-08-20 18:09:15Z knoop
195! Forced header and separation lines into 80 columns
196!
197! 1976 2016-07-27 13:28:04Z maronga
198! Simplified calls to radiation model
199!
200! 1960 2016-07-12 16:34:24Z suehring
201! Separate humidity and passive scalar
202!
203! 1957 2016-07-07 10:43:48Z suehring
204! flight module added
205!
206! 1919 2016-05-27 14:51:23Z raasch
207! Initial version of purely vertical nesting introduced.
208!
209! 1918 2016-05-27 14:35:57Z raasch
210! determination of time step moved to the end of the time step loop,
211! the first time step is now always calculated before the time step loop (i.e.
212! also in case of restart runs)
213!
214! 1914 2016-05-26 14:44:07Z witha
215! Added call for wind turbine model
216!
217! 1878 2016-04-19 12:30:36Z hellstea
218! Synchronization for nested runs rewritten
219!
220! 1853 2016-04-11 09:00:35Z maronga
221! Adjusted for use with radiation_scheme = constant
222!
223! 1849 2016-04-08 11:33:18Z hoffmann
224! Adapted for modularization of microphysics
225!
226! 1833 2016-04-07 14:23:03Z raasch
227! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
228!
229! 1831 2016-04-07 13:15:51Z hoffmann
230! turbulence renamed collision_turbulence
231!
232! 1822 2016-04-07 07:49:42Z hoffmann
233! icloud_scheme replaced by microphysics_*
234!
235! 1808 2016-04-05 19:44:00Z raasch
236! output message in case unscheduled radiation calls removed
237!
238! 1797 2016-03-21 16:50:28Z raasch
239! introduction of different datatransfer modes
240!
241! 1791 2016-03-11 10:41:25Z raasch
242! call of pmci_update_new removed
243!
244! 1786 2016-03-08 05:49:27Z raasch
245! +module spectrum
246!
247! 1783 2016-03-06 18:36:17Z raasch
248! switch back of netcdf data format for mask output moved to the mask output
249! routine
250!
251! 1781 2016-03-03 15:12:23Z raasch
252! some pmc calls removed at the beginning (before timeloop),
253! pmc initialization moved to the main program
254!
255! 1764 2016-02-28 12:45:19Z raasch
256! PMC_ACTIVE flags removed,
257! bugfix: nest synchronization after first call of timestep
258!
259! 1762 2016-02-25 12:31:13Z hellstea
260! Introduction of nested domain feature
261!
262! 1736 2015-12-04 08:56:33Z raasch
263! no perturbations added to total domain if energy limit has been set zero
264!
265! 1691 2015-10-26 16:17:44Z maronga
266! Added option for spin-ups without land surface and radiation models. Moved calls
267! for radiation and lan surface schemes.
268!
269! 1682 2015-10-07 23:56:08Z knoop
270! Code annotations made doxygen readable
271!
272! 1671 2015-09-25 03:29:37Z raasch
273! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
274! for particles
275!
276! 1585 2015-04-30 07:05:52Z maronga
277! Moved call of radiation scheme. Added support for RRTM
278!
279! 1551 2015-03-03 14:18:16Z maronga
280! Added interface for different radiation schemes.
281!
282! 1496 2014-12-02 17:25:50Z maronga
283! Added calls for the land surface model and radiation scheme
284!
285! 1402 2014-05-09 14:25:13Z raasch
286! location messages modified
287!
288! 1384 2014-05-02 14:31:06Z raasch
289! location messages added
290!
291! 1380 2014-04-28 12:40:45Z heinze
292! CALL of nudge_ref added
293! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
294!
295! 1365 2014-04-22 15:03:56Z boeske
296! Reset sums_ls_l to zero at each timestep
297! +sums_ls_l
298! Calculation of reference state (previously in subroutine calc_mean_profile)
299
300! 1342 2014-03-26 17:04:47Z kanani
301! REAL constants defined as wp-kind
302!
303! 1320 2014-03-20 08:40:49Z raasch
304! ONLY-attribute added to USE-statements,
305! kind-parameters added to all INTEGER and REAL declaration statements,
306! kinds are defined in new module kinds,
307! old module precision_kind is removed,
308! revision history before 2012 removed,
309! comment fields (!:) to be used for variable explanations added to
310! all variable declaration statements
311! 1318 2014-03-17 13:35:16Z raasch
312! module interfaces removed
313!
314! 1308 2014-03-13 14:58:42Z fricke
315! +netcdf_data_format_save
316! For masked data, parallel netcdf output is not tested so far, hence
317! netcdf_data_format is switched back to non-paralell output.
318!
319! 1276 2014-01-15 13:40:41Z heinze
320! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
321!
322! 1257 2013-11-08 15:18:40Z raasch
323! acc-update-host directive for timestep removed
324!
325! 1241 2013-10-30 11:36:58Z heinze
326! Generalize calc_mean_profile for wider use
327! Determine shf and qsws in dependence on data from LSF_DATA
328! Determine ug and vg in dependence on data from LSF_DATA
329! 1221 2013-09-10 08:59:13Z raasch
330! host update of arrays before timestep is called
331!
332! 1179 2013-06-14 05:57:58Z raasch
333! mean profiles for reference state are only calculated if required,
334! small bugfix for background communication
335!
336! 1171 2013-05-30 11:27:45Z raasch
337! split of prognostic_equations deactivated (comment lines), for the time being
338!
339! 1128 2013-04-12 06:19:32Z raasch
340! asynchronous transfer of ghost point data realized for acc-optimized version:
341! prognostic_equations are first called two times for those points required for
342! the left-right and north-south exchange, respectively, and then for the
343! remaining points,
344! those parts requiring global communication moved from prognostic_equations to
345! here
346!
347! 1115 2013-03-26 18:16:16Z hoffmann
348! calculation of qr and nr is restricted to precipitation
349!
350! 1113 2013-03-10 02:48:14Z raasch
351! GPU-porting of boundary conditions,
352! openACC directives updated
353! formal parameter removed from routine boundary_conds
354!
355! 1111 2013-03-08 23:54:10Z raasch
356! +internal timestep counter for cpu statistics added,
357! openACC directives updated
358!
359! 1092 2013-02-02 11:24:22Z raasch
360! unused variables removed
361!
362! 1065 2012-11-22 17:42:36Z hoffmann
363! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
364!
365! 1053 2012-11-13 17:11:03Z hoffmann
366! exchange of ghost points for nr, qr added
367!
368! 1036 2012-10-22 13:43:42Z raasch
369! code put under GPL (PALM 3.9)
370!
371! 1019 2012-09-28 06:46:45Z raasch
372! non-optimized version of prognostic_equations removed
373!
374! 1015 2012-09-27 09:23:24Z raasch
375! +call of prognostic_equations_acc
376!
377! 1001 2012-09-13 14:08:46Z raasch
378! all actions concerning leapfrog- and upstream-spline-scheme removed
379!
380! 849 2012-03-15 10:35:09Z raasch
381! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
382!
383! 825 2012-02-19 03:03:44Z raasch
384! wang_collision_kernel renamed wang_kernel
385!
386! Revision 1.1  1997/08/11 06:19:04  raasch
387! Initial revision
388!
389!
390! Description:
391! ------------
392!> Integration in time of the model equations, statistical analysis and graphic
393!> output
394!------------------------------------------------------------------------------!
395 SUBROUTINE time_integration
396 
397
398    USE advec_ws,                                                              &
399        ONLY:  ws_statistics
400
401    USE arrays_3d,                                                             &
402        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, &
403               q_init, q, qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p,      &
404               ref_state, rho_ocean, s, s_p, sa_p, tend, u, u_p, v, vpt,       &
405               v_p, w, w_p
406
407    USE biometeorology_mod,                                                    &
408        ONLY:  biom_calculate_static_grid, time_biom_results
409
410    USE bulk_cloud_model_mod,                                                  &
411        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
412              collision_turbulence, microphysics_morrison, microphysics_seifert
413
414    USE calc_mean_profile_mod,                                                 &
415        ONLY:  calc_mean_profile
416
417    USE chem_emissions_mod,                                                    &
418        ONLY:  chem_emissions_setup
419
420    USE chem_modules,                                                          &
421        ONLY:  bc_cs_t_val, call_chem_at_all_substeps, cs_name,                &
422               constant_csflux, do_emis, nspec, nspec_out
423
424    USE chemistry_model_mod,                                                   &
425        ONLY:  chem_boundary_conds, chem_species
426
427    USE control_parameters,                                                    &
428        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
429               average_count_3d, averaging_interval, averaging_interval_pr,    &
430               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
431               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
432               constant_flux_layer, constant_heatflux,                         &
433               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
434               coupling_start_time, current_timestep_number,                   &
435               disturbance_created, disturbance_energy_limit, dist_range,      &
436               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
437               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
438               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
439               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
440               first_call_lpm, first_call_mas, galilei_transformation,         &
441               humidity, indoor_model, intermediate_timestep_count,            &
442               intermediate_timestep_count_max,                                &
443               land_surface, large_scale_forcing,                              &
444               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
445               multi_agent_system_end, multi_agent_system_start,               &
446               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
447               ocean_mode, passive_scalar, pt_reference,                       &
448               pt_slope_offset, random_heatflux, rans_mode,                    &
449               rans_tke_e, run_coupled, simulated_time, simulated_time_chr,    &
450               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
451               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
452               skip_time_data_output_av, sloping_surface, stop_dt,             &
453               surface_data_output, terminate_coupled, terminate_run,          &
454               timestep_scheme,                                                &
455               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
456               time_do3d, time_domask, time_dopr, time_dopr_av,                &
457               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
458               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
459               time_run_control, time_since_reference_point,                   &
460               turbulent_inflow, turbulent_outflow, urban_surface,             &
461               use_initial_profile_as_reference,                               &
462               use_single_reference_value, uv_exposure, u_gtrans, v_gtrans,    &
463               virtual_flight, virtual_measurement, wind_turbine,              &
464               ws_scheme_mom, ws_scheme_sca
465
466    USE cpulog,                                                                &
467        ONLY:  cpu_log, log_point, log_point_s
468
469    USE date_and_time_mod,                                                     &
470        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
471
472    USE flight_mod,                                                            &
473        ONLY:  flight_measurement
474
475    USE gust_mod,                                                              &
476        ONLY:  gust_actions, gust_module_enabled
477
478    USE indices,                                                               &
479        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
480
481    USE indoor_model_mod,                                                      &
482        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
483
484    USE interaction_droplets_ptq_mod,                                          &
485        ONLY:  interaction_droplets_ptq
486
487    USE interfaces
488
489    USE kinds
490
491    USE land_surface_model_mod,                                                &
492        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
493               skip_time_do_lsm
494
495    USE lsf_nudging_mod,                                                       &
496        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
497
498    USE multi_agent_system_mod,                                                &
499        ONLY:  agents_active, multi_agent_system
500
501    USE nesting_offl_mod,                                                      &
502        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
503       
504    USE netcdf_data_input_mod,                                                 &
505        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
506               netcdf_data_input_offline_nesting
507
508    USE ocean_mod,                                                             &
509        ONLY:  prho_reference
510
511    USE particle_attributes,                                                   &
512        ONLY:  particle_advection, particle_advection_start,                   &
513               use_sgs_for_particles, wang_kernel
514
515    USE pegrid
516
517    USE pmc_interface,                                                         &
518        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
519               pmci_ensure_nest_mass_conservation, pmci_synchronize
520
521    USE progress_bar,                                                          &
522        ONLY:  finish_progress_bar, output_progress_bar
523
524    USE prognostic_equations_mod,                                              &
525        ONLY:  prognostic_equations_cache, prognostic_equations_vector
526
527    USE radiation_model_mod,                                                   &
528        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
529              radiation_interaction, radiation_interactions,                   &
530              skip_time_do_radiation, time_radiation
531
532    USE spectra_mod,                                                           &
533        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
534              skip_time_dosp
535
536    USE statistics,                                                            &
537        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
538
539    USE surface_layer_fluxes_mod,                                              &
540        ONLY:  surface_layer_fluxes
541
542    USE surface_mod,                                                           &
543        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
544
545    USE surface_output_mod,                                                    &
546        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
547               dt_dosurf_av, surface_output, surface_output_averaging,         &
548               skip_time_dosurf, skip_time_dosurf_av, time_dosurf,             &
549               time_dosurf_av
550
551    USE turbulence_closure_mod,                                                &
552        ONLY:  tcm_diffusivities, production_e_init
553
554    USE urban_surface_mod,                                                     &
555        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
556               usm_material_model,                                             &
557               usm_surface_energy_balance, usm_green_heat_model,               &
558               usm_temperature_near_surface
559
560    USE synthetic_turbulence_generator_mod,                                    &
561        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
562               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
563               use_syn_turb_gen
564         
565    USE salsa_mod,                                                             &
566        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast, salsa,      &
567              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
568              skip_time_do_salsa           
569
570    USE user_actions_mod,                                                      &
571        ONLY:  user_actions
572
573    USE uv_exposure_model_mod,                                                 &
574        ONLY:  uvem_calc_exposure
575
576    USE wind_turbine_model_mod,                                                &
577        ONLY:  wtm_forces
578
579    USE lpm_mod,                                                               &
580        ONLY:  lpm
581
582    USE vertical_nesting_mod,                                                  &
583        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
584               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
585               vnest_deallocate, vnest_init, vnest_init_fine,                  &
586               vnest_start_time
587               
588    USE virtual_measurement_mod,                                               &
589        ONLY:  vm_sampling, vm_time_start
590
591    IMPLICIT NONE
592
593    CHARACTER (LEN=9) ::  time_to_string   !<
594   
595    INTEGER(iwp)      ::  b !< index for aerosol size bins   
596    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
597    INTEGER(iwp)      ::  g !< index for gaseous compounds
598    INTEGER(iwp)      ::  lsp
599    INTEGER(iwp)      ::  lsp_usr   !<
600    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
601
602    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
603                            !< steering of run control output interval
604    REAL(wp) ::  time_since_reference_point_save  !< original value of
605                                                  !< time_since_reference_point
606
607!
608!-- At beginning determine the first time step
609    CALL timestep
610!
611!-- Synchronize the timestep in case of nested run.
612    IF ( nested_run )  THEN
613!
614!--    Synchronization by unifying the time step.
615!--    Global minimum of all time-steps is used for all.
616       CALL pmci_synchronize
617    ENDIF
618
619!
620!-- Determine and print out the run control quantities before the first time
621!-- step of this run. For the initial run, some statistics (e.g. divergence)
622!-- need to be determined first --> CALL flow_statistics at the beginning of
623!-- run_control
624    CALL run_control
625!
626!-- Data exchange between coupled models in case that a call has been omitted
627!-- at the end of the previous run of a job chain.
628    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
629!
630!--    In case of model termination initiated by the local model the coupler
631!--    must not be called because this would again cause an MPI hang.
632       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
633          CALL surface_coupler
634          time_coupling = time_coupling - dt_coupling
635       ENDDO
636       IF (time_coupling == 0.0_wp  .AND.                                      &
637           time_since_reference_point < dt_coupling )                          &
638       THEN
639          time_coupling = time_since_reference_point
640       ENDIF
641    ENDIF
642
643#if defined( __dvrp_graphics )
644!
645!-- Time measurement with dvrp software 
646    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
647#endif
648
649    CALL location_message( 'starting timestep-sequence', .TRUE. )
650!
651!-- Start of the time loop
652    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
653                .NOT. terminate_run )
654
655       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
656!
657!--    Vertical nesting: initialize fine grid
658       IF ( vnested ) THEN
659          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
660             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
661             CALL vnest_init_fine
662             vnest_init = .TRUE.
663             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
664          ENDIF
665       ENDIF
666!
667!--    Determine ug, vg and w_subs in dependence on data from external file
668!--    LSF_DATA
669       IF ( large_scale_forcing .AND. lsf_vert )  THEN
670           CALL ls_forcing_vert ( simulated_time )
671           sums_ls_l = 0.0_wp
672       ENDIF
673
674!
675!--    Set pt_init and q_init to the current profiles taken from
676!--    NUDGING_DATA
677       IF ( nudging )  THEN
678           CALL nudge_ref ( simulated_time )
679!
680!--        Store temperature gradient at the top boundary for possible Neumann
681!--        boundary condition
682           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
683           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
684           IF ( air_chemistry )  THEN
685              DO  lsp = 1, nspec
686                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
687                                - chem_species(lsp)%conc_pr_init(nzt) )       &
688                               / dzu(nzt+1)
689              ENDDO
690           ENDIF
691       ENDIF
692!
693!--    If forcing by larger-scale models is applied, check if new data
694!--    at domain boundaries need to be read.
695       IF ( nesting_offline )  THEN
696          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
697             CALL netcdf_data_input_offline_nesting
698       ENDIF
699
700!
701!--    Execute the gust module actions
702       IF ( gust_module_enabled )  THEN
703          CALL gust_actions( 'before_timestep' )
704       ENDIF
705
706!
707!--    Execute the user-defined actions
708       CALL user_actions( 'before_timestep' )
709
710!
711!--    Calculate forces by wind turbines
712       IF ( wind_turbine )  THEN
713
714          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
715
716          CALL wtm_forces
717
718          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
719
720       ENDIF   
721       
722!
723!--    Start of intermediate step loop
724       intermediate_timestep_count = 0
725       DO  WHILE ( intermediate_timestep_count < &
726                   intermediate_timestep_count_max )
727
728          intermediate_timestep_count = intermediate_timestep_count + 1
729
730!
731!--       Set the steering factors for the prognostic equations which depend
732!--       on the timestep scheme
733          CALL timestep_scheme_steering
734
735!
736!--       Calculate those variables needed in the tendency terms which need
737!--       global communication
738          IF ( .NOT. use_single_reference_value  .AND. &
739               .NOT. use_initial_profile_as_reference )  THEN
740!
741!--          Horizontally averaged profiles to be used as reference state in
742!--          buoyancy terms (WARNING: only the respective last call of
743!--          calc_mean_profile defines the reference state!)
744             IF ( .NOT. neutral )  THEN
745                CALL calc_mean_profile( pt, 4 )
746                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
747             ENDIF
748             IF ( ocean_mode )  THEN
749                CALL calc_mean_profile( rho_ocean, 64 )
750                ref_state(:)  = hom(:,1,64,0)
751             ENDIF
752             IF ( humidity )  THEN
753                CALL calc_mean_profile( vpt, 44 )
754                ref_state(:)  = hom(:,1,44,0)
755             ENDIF
756!
757!--          Assure that ref_state does not become zero at any level
758!--          ( might be the case if a vertical level is completely occupied
759!--            with topography ).
760             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
761                                ref_state == 0.0_wp )
762          ENDIF
763
764          IF ( .NOT. constant_diffusion )  CALL production_e_init
765          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
766               intermediate_timestep_count == 1 )  CALL ws_statistics
767!
768!--       In case of nudging calculate current nudging time scale and horizontal
769!--       means of u, v, pt and q
770          IF ( nudging )  THEN
771             CALL calc_tnudge( simulated_time )
772             CALL calc_mean_profile( u, 1 )
773             CALL calc_mean_profile( v, 2 )
774             CALL calc_mean_profile( pt, 4 )
775             CALL calc_mean_profile( q, 41 )
776          ENDIF
777
778!
779!--       Solve the prognostic equations. A fast cache optimized version with
780!--       only one single loop is used in case of Piascek-Williams advection
781!--       scheme. NEC vector machines use a different version, because
782!--       in the other versions a good vectorization is prohibited due to
783!--       inlining problems.
784          IF ( loop_optimization == 'cache' )  THEN
785             CALL prognostic_equations_cache
786          ELSEIF ( loop_optimization == 'vector' )  THEN
787             CALL prognostic_equations_vector
788          ENDIF
789
790!
791!--       Particle transport/physics with the Lagrangian particle model
792!--       (only once during intermediate steps, because it uses an Euler-step)
793!--       ### particle model should be moved before prognostic_equations, in order
794!--       to regard droplet interactions directly
795          IF ( particle_advection  .AND.                         &
796               simulated_time >= particle_advection_start  .AND. &
797               intermediate_timestep_count == 1 )  THEN
798             CALL lpm
799             first_call_lpm = .FALSE.
800          ENDIF
801
802!
803!--       Interaction of droplets with temperature and mixing ratio.
804!--       Droplet condensation and evaporation is calculated within
805!--       advec_particles.
806          IF ( cloud_droplets  .AND.  &
807               intermediate_timestep_count == intermediate_timestep_count_max )&
808          THEN
809             CALL interaction_droplets_ptq
810          ENDIF
811
812!
813!--       Movement of agents in multi agent system
814          IF ( agents_active  .AND.                                            &
815               time_since_reference_point >= multi_agent_system_start  .AND.   &
816               time_since_reference_point <= multi_agent_system_end    .AND.   &
817               intermediate_timestep_count == 1 )  THEN
818             CALL multi_agent_system
819             first_call_mas = .FALSE.
820          ENDIF
821
822!
823!--       Exchange of ghost points (lateral boundary conditions)
824          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
825
826          CALL exchange_horiz( u_p, nbgp )
827          CALL exchange_horiz( v_p, nbgp )
828          CALL exchange_horiz( w_p, nbgp )
829          CALL exchange_horiz( pt_p, nbgp )
830          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
831          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
832               .OR.  use_sgs_for_particles )  THEN
833             IF ( rans_tke_e )  THEN
834                CALL exchange_horiz( diss_p, nbgp )
835             ELSE
836                CALL exchange_horiz( diss, nbgp )
837             ENDIF
838          ENDIF
839          IF ( ocean_mode )  THEN
840             CALL exchange_horiz( sa_p, nbgp )
841             CALL exchange_horiz( rho_ocean, nbgp )
842             CALL exchange_horiz( prho, nbgp )
843          ENDIF
844          IF ( humidity )  THEN
845             CALL exchange_horiz( q_p, nbgp )
846             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
847                CALL exchange_horiz( qc_p, nbgp )
848                CALL exchange_horiz( nc_p, nbgp )
849             ENDIF
850             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
851                CALL exchange_horiz( qr_p, nbgp )
852                CALL exchange_horiz( nr_p, nbgp )
853             ENDIF
854          ENDIF
855          IF ( cloud_droplets )  THEN
856             CALL exchange_horiz( ql, nbgp )
857             CALL exchange_horiz( ql_c, nbgp )
858             CALL exchange_horiz( ql_v, nbgp )
859             CALL exchange_horiz( ql_vp, nbgp )
860          ENDIF
861          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
862          IF ( air_chemistry )  THEN
863             DO  lsp = 1, nspec
864                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
865!
866!--             kanani: Push chem_boundary_conds after CALL boundary_conds
867                lsp_usr = 1
868                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
869                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
870                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
871                                                chem_species(lsp)%conc_pr_init )
872                   ENDIF
873                   lsp_usr = lsp_usr + 1
874                ENDDO
875             ENDDO
876          ENDIF
877
878          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
879          THEN
880             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
881             DO  b = 1, nbins
882                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
883                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
884                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
885                                           aerosol_number(b)%init )
886                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
887                DO  c = 1, ncc_tot
888                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
889                                        nbgp )
890                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
891                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
892                                              aerosol_mass((c-1)*nbins+b)%init )
893                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
894                ENDDO
895             ENDDO
896             IF ( .NOT. salsa_gases_from_chem )  THEN
897                DO  g = 1, ngast
898                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
899                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
900                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
901                                              salsa_gas(g)%init )
902                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
903             ENDDO
904             ENDIF
905             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
906          ENDIF         
907
908          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
909
910!
911!--       Boundary conditions for the prognostic quantities (except of the
912!--       velocities at the outflow in case of a non-cyclic lateral wall)
913          CALL boundary_conds
914!
915!--       Swap the time levels in preparation for the next time step.
916          CALL swap_timelevel
917
918!
919!--       Vertical nesting: Interpolate fine grid data to the coarse grid
920          IF ( vnest_init ) THEN
921             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
922             CALL vnest_anterpolate
923             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
924          ENDIF
925
926          IF ( nested_run )  THEN
927
928             CALL cpu_log( log_point(60), 'nesting', 'start' )
929!
930!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
931!--          and pmci_child_datatrans are called inside the wrapper
932!--          subroutine pmci_datatrans according to the control parameters
933!--          nesting_mode and nesting_datatransfer_mode.
934!--          TO_DO: why is nesting_mode given as a parameter here?
935             CALL pmci_datatrans( nesting_mode )
936
937             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
938                  nesting_mode == 'vertical' )  THEN
939!
940!--             Exchange_horiz is needed for all parent-domains after the
941!--             anterpolation
942                CALL exchange_horiz( u, nbgp )
943                CALL exchange_horiz( v, nbgp )
944                CALL exchange_horiz( w, nbgp )
945                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
946
947                IF ( humidity )  THEN
948
949                   CALL exchange_horiz( q, nbgp )
950
951                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
952                       CALL exchange_horiz( qc, nbgp )
953                       CALL exchange_horiz( nc, nbgp )
954                   ENDIF
955                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
956                       CALL exchange_horiz( qr, nbgp )
957                       CALL exchange_horiz( nr, nbgp )
958                   ENDIF
959
960                ENDIF
961
962                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
963               
964                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
965
966                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
967                                                      rans_tke_e )             &
968                   CALL exchange_horiz( diss, nbgp )
969
970                IF ( air_chemistry )  THEN
971                   DO  n = 1, nspec     
972                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
973                   ENDDO
974                ENDIF
975
976             ENDIF
977!
978!--          Set boundary conditions again after interpolation and anterpolation.
979             CALL pmci_boundary_conds
980!
981!--          Correct the w top-BC in nest domains to ensure mass conservation.
982!--          This action must never be done for the root domain. Vertical
983!--          Commented out April 18, 2018 as seemingly unnecessary.
984!--          Will later be completely removed.
985!--             IF ( child_domain )  THEN
986!--                CALL pmci_ensure_nest_mass_conservation
987!--             ENDIF
988
989
990             CALL cpu_log( log_point(60), 'nesting', 'stop' )
991
992          ENDIF
993
994!
995!--       Temperature offset must be imposed at cyclic boundaries in x-direction
996!--       when a sloping surface is used
997          IF ( sloping_surface )  THEN
998             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
999                                                    pt_slope_offset
1000             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1001                                                    pt_slope_offset
1002          ENDIF
1003
1004!
1005!--       Impose a turbulent inflow using the recycling method
1006          IF ( turbulent_inflow )  CALL  inflow_turbulence
1007
1008!
1009!--       Set values at outflow boundary using the special outflow condition
1010          IF ( turbulent_outflow )  CALL  outflow_turbulence
1011
1012!
1013!--       Impose a random perturbation on the horizontal velocity field
1014          IF ( create_disturbances  .AND.                                      &
1015               ( call_psolver_at_all_substeps  .AND.                           &
1016               intermediate_timestep_count == intermediate_timestep_count_max )&
1017          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1018               intermediate_timestep_count == 1 ) )                            &
1019          THEN
1020             time_disturb = time_disturb + dt_3d
1021             IF ( time_disturb >= dt_disturb )  THEN
1022                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1023                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1024                   CALL disturb_field( 'u', tend, u )
1025                   CALL disturb_field( 'v', tend, v )
1026                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1027                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1028                THEN
1029!
1030!--                Runs with a non-cyclic lateral wall need perturbations
1031!--                near the inflow throughout the whole simulation
1032                   dist_range = 1
1033                   CALL disturb_field( 'u', tend, u )
1034                   CALL disturb_field( 'v', tend, v )
1035                   dist_range = 0
1036                ENDIF
1037                time_disturb = time_disturb - dt_disturb
1038             ENDIF
1039          ENDIF
1040
1041!
1042!--       Map forcing data derived from larger scale model onto domain
1043!--       boundaries.
1044          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1045                                       intermediate_timestep_count_max  )      &
1046             CALL nesting_offl_bc
1047!
1048!--       Impose a turbulent inflow using synthetic generated turbulence,
1049!--       only once per time step.
1050          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1051             intermediate_timestep_count == intermediate_timestep_count_max )  THEN! &
1052             CALL stg_main
1053          ENDIF
1054!
1055!--       Ensure mass conservation. This need to be done after imposing
1056!--       synthetic turbulence and top boundary condition for pressure is set to
1057!--       Neumann conditions.
1058!--       Is this also required in case of Dirichlet?
1059          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1060!
1061!--       Reduce the velocity divergence via the equation for perturbation
1062!--       pressure.
1063          IF ( intermediate_timestep_count == 1  .OR. &
1064                call_psolver_at_all_substeps )  THEN
1065
1066             IF (  vnest_init ) THEN
1067!
1068!--             Compute pressure in the CG, interpolate top boundary conditions
1069!--             to the FG and then compute pressure in the FG
1070                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1071
1072                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
1073                CALL vnest_boundary_conds
1074                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
1075 
1076                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1077
1078!--             Anterpolate TKE, satisfy Germano Identity
1079                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
1080                CALL vnest_anterpolate_e
1081                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
1082
1083             ELSE
1084
1085                CALL pres
1086
1087             ENDIF
1088
1089          ENDIF
1090
1091!
1092!--       If required, compute liquid water content
1093          IF ( bulk_cloud_model )  THEN
1094             CALL calc_liquid_water_content
1095          ENDIF
1096!
1097!--       If required, compute virtual potential temperature
1098          IF ( humidity )  THEN
1099             CALL compute_vpt
1100          ENDIF
1101
1102!
1103!--       Compute the diffusion quantities
1104          IF ( .NOT. constant_diffusion )  THEN
1105
1106!
1107!--          Determine surface fluxes shf and qsws and surface values
1108!--          pt_surface and q_surface in dependence on data from external
1109!--          file LSF_DATA respectively
1110             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1111                 intermediate_timestep_count == intermediate_timestep_count_max )&
1112             THEN
1113                CALL ls_forcing_surf( simulated_time )
1114             ENDIF
1115
1116!
1117!--          First the vertical (and horizontal) fluxes in the surface
1118!--          (constant flux) layer are computed
1119             IF ( constant_flux_layer )  THEN
1120                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1121                CALL surface_layer_fluxes
1122                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1123             ENDIF
1124!
1125!--          If required, solve the energy balance for the surface and run soil
1126!--          model. Call for horizontal as well as vertical surfaces
1127             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1128
1129                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1130!
1131!--             Call for horizontal upward-facing surfaces
1132                CALL lsm_energy_balance( .TRUE., -1 )
1133                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1134!
1135!--             Call for northward-facing surfaces
1136                CALL lsm_energy_balance( .FALSE., 0 )
1137                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1138!
1139!--             Call for southward-facing surfaces
1140                CALL lsm_energy_balance( .FALSE., 1 )
1141                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1142!
1143!--             Call for eastward-facing surfaces
1144                CALL lsm_energy_balance( .FALSE., 2 )
1145                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1146!
1147!--             Call for westward-facing surfaces
1148                CALL lsm_energy_balance( .FALSE., 3 )
1149                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1150!
1151!--             At the end, set boundary conditons for potential temperature
1152!--             and humidity after running the land-surface model. This
1153!--             might be important for the nesting, where arrays are transfered.
1154                CALL lsm_boundary_condition
1155
1156                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1157             ENDIF
1158!
1159!--          If required, solve the energy balance for urban surfaces and run
1160!--          the material heat model
1161             IF (urban_surface) THEN
1162                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1163               
1164                CALL usm_surface_energy_balance( .FALSE. )
1165                IF ( usm_material_model )  THEN
1166                   CALL usm_green_heat_model
1167                   CALL usm_material_heat_model ( .FALSE. )
1168                ENDIF
1169
1170                CALL usm_temperature_near_surface
1171!
1172!--             At the end, set boundary conditons for potential temperature
1173!--             and humidity after running the urban-surface model. This
1174!--             might be important for the nesting, where arrays are transfered.
1175                CALL usm_boundary_condition
1176
1177                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1178             ENDIF
1179!
1180!--          Compute the diffusion coefficients
1181             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1182             IF ( .NOT. humidity ) THEN
1183                IF ( ocean_mode )  THEN
1184                   CALL tcm_diffusivities( prho, prho_reference )
1185                ELSE
1186                   CALL tcm_diffusivities( pt, pt_reference )
1187                ENDIF
1188             ELSE
1189                CALL tcm_diffusivities( vpt, pt_reference )
1190             ENDIF
1191             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1192!
1193!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1194             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1195
1196          ENDIF
1197
1198!
1199!--       If required, calculate radiative fluxes and heating rates
1200          IF ( radiation .AND. intermediate_timestep_count                     &
1201               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1202               skip_time_do_radiation )  THEN
1203
1204               time_radiation = time_radiation + dt_3d
1205
1206             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1207             THEN
1208
1209                CALL cpu_log( log_point(50), 'radiation', 'start' )
1210
1211                IF ( .NOT. force_radiation_call )  THEN
1212                   time_radiation = time_radiation - dt_radiation
1213                ENDIF
1214
1215!
1216!--             Adjust the current time to the time step of the radiation model.
1217!--             Needed since radiation is pre-calculated and stored only on apparent
1218!--             solar positions
1219                time_since_reference_point_save = time_since_reference_point
1220                time_since_reference_point =                                   &
1221                                    REAL( FLOOR( time_since_reference_point /  &
1222                                                 dt_radiation), wp )           &
1223                                             * dt_radiation
1224
1225                CALL radiation_control
1226
1227                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1228
1229                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1230                     radiation_interactions )  THEN
1231                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1232                   CALL radiation_interaction
1233                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1234                ENDIF
1235   
1236!
1237!--             Return the current time to its original value
1238                time_since_reference_point = time_since_reference_point_save
1239
1240             ENDIF
1241          ENDIF
1242
1243       ENDDO   ! Intermediate step loop
1244!
1245!--    If required, consider chemical emissions
1246       IF ( air_chemistry  .AND.  do_emis )  THEN
1247!
1248!--       Update the time --> kanani: revise location of this CALL
1249          CALL calc_date_and_time
1250!
1251!--       Call emission routine only once an hour
1252          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1253             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1254             hour_call_emis = hour_of_year
1255          ENDIF
1256       ENDIF
1257!
1258!--    If required, do UV exposure calculations
1259       IF ( uv_exposure )  THEN
1260          CALL uvem_calc_exposure
1261       ENDIF
1262!
1263!--    If required, calculate indoor temperature, waste heat, heat flux
1264!--    through wall, etc.
1265!--    dt_indoor steers the frequency of the indoor model calculations
1266       IF (       indoor_model                                                    &
1267            .AND. intermediate_timestep_count == intermediate_timestep_count_max  &
1268            .AND. time_since_reference_point > skip_time_do_indoor )  THEN
1269
1270          time_indoor = time_indoor + dt_3d
1271
1272          IF ( time_indoor >= dt_indoor )  THEN
1273
1274             time_indoor = time_indoor - dt_indoor
1275
1276             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1277             CALL im_main_heatcool
1278             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1279
1280          ENDIF
1281       ENDIF
1282!
1283!--    Increase simulation time and output times
1284       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1285       current_timestep_number    = current_timestep_number + 1
1286       simulated_time             = simulated_time   + dt_3d
1287       time_since_reference_point = simulated_time - coupling_start_time
1288       simulated_time_chr         = time_to_string( time_since_reference_point )
1289
1290
1291
1292
1293       IF ( simulated_time >= skip_time_data_output_av )  THEN
1294          time_do_av         = time_do_av       + dt_3d
1295       ENDIF
1296       IF ( simulated_time >= skip_time_do2d_xy )  THEN
1297          time_do2d_xy       = time_do2d_xy     + dt_3d
1298       ENDIF
1299       IF ( simulated_time >= skip_time_do2d_xz )  THEN
1300          time_do2d_xz       = time_do2d_xz     + dt_3d
1301       ENDIF
1302       IF ( simulated_time >= skip_time_do2d_yz )  THEN
1303          time_do2d_yz       = time_do2d_yz     + dt_3d
1304       ENDIF
1305       IF ( simulated_time >= skip_time_do3d    )  THEN
1306          time_do3d          = time_do3d        + dt_3d
1307       ENDIF
1308       DO  mid = 1, masks
1309          IF ( simulated_time >= skip_time_domask(mid) )  THEN
1310             time_domask(mid)= time_domask(mid) + dt_3d
1311          ENDIF
1312       ENDDO
1313       time_dvrp          = time_dvrp        + dt_3d
1314       IF ( simulated_time >= skip_time_dosp )  THEN
1315          time_dosp       = time_dosp        + dt_3d
1316       ENDIF
1317       time_dots          = time_dots        + dt_3d
1318       IF ( .NOT. first_call_lpm )  THEN
1319          time_dopts      = time_dopts       + dt_3d
1320       ENDIF
1321       IF ( simulated_time >= skip_time_dopr )  THEN
1322          time_dopr       = time_dopr        + dt_3d
1323       ENDIF
1324       time_dopr_listing  = time_dopr_listing + dt_3d
1325       time_run_control   = time_run_control + dt_3d
1326!
1327!--    Increment time-counter for surface output
1328       IF ( surface_data_output )  THEN
1329          IF ( simulated_time >= skip_time_dosurf )  THEN
1330             time_dosurf    = time_dosurf + dt_3d
1331          ENDIF
1332          IF ( simulated_time >= skip_time_dosurf_av )  THEN
1333             time_dosurf_av = time_dosurf_av + dt_3d
1334          ENDIF
1335       ENDIF
1336!
1337!--    In case of synthetic turbulence generation and parametrized turbulence
1338!--    information, update the time counter and if required, adjust the
1339!--    STG to new atmospheric conditions.
1340       IF ( use_syn_turb_gen  )  THEN
1341          IF ( parametrize_inflow_turbulence )  THEN
1342             time_stg_adjust = time_stg_adjust + dt_3d
1343             IF ( time_stg_adjust >= dt_stg_adjust )  CALL stg_adjust
1344          ENDIF
1345          time_stg_call = time_stg_call + dt_3d
1346       ENDIF
1347
1348!
1349!--    Data exchange between coupled models
1350       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1351                                          .AND. .NOT. vnested )  THEN
1352          time_coupling = time_coupling + dt_3d
1353
1354!
1355!--       In case of model termination initiated by the local model
1356!--       (terminate_coupled > 0), the coupler must be skipped because it would
1357!--       cause an MPI intercomminucation hang.
1358!--       If necessary, the coupler will be called at the beginning of the
1359!--       next restart run.
1360          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1361             CALL surface_coupler
1362             time_coupling = time_coupling - dt_coupling
1363          ENDDO
1364       ENDIF
1365
1366!
1367!--    Biometeorology calculation of stationary thermal indices
1368       IF ( biometeorology  .AND.  time_do3d >= dt_do3d )  THEN
1369          CALL biom_calculate_static_grid ( .FALSE. )
1370          time_biom_results = time_since_reference_point
1371       ENDIF
1372
1373!
1374!--    Execute the gust module actions
1375       IF ( gust_module_enabled )  THEN
1376          CALL gust_actions( 'after_integration' )
1377       ENDIF
1378
1379!
1380!--    Execute user-defined actions
1381       CALL user_actions( 'after_integration' )
1382
1383!
1384!--    If Galilei transformation is used, determine the distance that the
1385!--    model has moved so far
1386       IF ( galilei_transformation )  THEN
1387          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1388          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1389       ENDIF
1390
1391!
1392!--    Check, if restart is necessary (because cpu-time is expiring or
1393!--    because it is forced by user) and set stop flag
1394!--    This call is skipped if the remote model has already initiated a restart.
1395       IF ( .NOT. terminate_run )  CALL check_for_restart
1396
1397!
1398!--    Carry out statistical analysis and output at the requested output times.
1399!--    The MOD function is used for calculating the output time counters (like
1400!--    time_dopr) in order to regard a possible decrease of the output time
1401!--    interval in case of restart runs
1402
1403!
1404!--    Set a flag indicating that so far no statistics have been created
1405!--    for this time step
1406       flow_statistics_called = .FALSE.
1407
1408!
1409!--    If required, call flow_statistics for averaging in time
1410       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1411            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1412            simulated_time >= skip_time_dopr )  THEN
1413          time_dopr_av = time_dopr_av + dt_3d
1414          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1415             do_sum = .TRUE.
1416             time_dopr_av = MOD( time_dopr_av, &
1417                                    MAX( dt_averaging_input_pr, dt_3d ) )
1418          ENDIF
1419       ENDIF
1420       IF ( do_sum )  CALL flow_statistics
1421
1422!
1423!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1424       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1425            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
1426            simulated_time >= skip_time_data_output_av )                    &
1427       THEN
1428          time_do_sla = time_do_sla + dt_3d
1429          IF ( time_do_sla >= dt_averaging_input )  THEN
1430             CALL sum_up_3d_data
1431             average_count_3d = average_count_3d + 1
1432             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1433          ENDIF
1434       ENDIF
1435!
1436!--    Average surface data
1437       IF ( surface_data_output )  THEN
1438          IF ( averaging_interval_surf /= 0.0_wp  .AND.                        & 
1439               ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1440          .AND.  simulated_time >= skip_time_dosurf_av )  THEN
1441             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1442                CALL surface_output_averaging
1443                average_count_surf = average_count_surf + 1
1444             ENDIF
1445          ENDIF
1446       ENDIF
1447
1448!
1449!--    Calculate spectra for time averaging
1450       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1451            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1452            simulated_time >= skip_time_dosp )  THEN
1453          time_dosp_av = time_dosp_av + dt_3d
1454          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1455             CALL calc_spectra
1456             time_dosp_av = MOD( time_dosp_av, &
1457                                 MAX( dt_averaging_input_pr, dt_3d ) )
1458          ENDIF
1459       ENDIF
1460
1461!
1462!--    Call flight module and output data
1463       IF ( virtual_flight )  THEN
1464          CALL flight_measurement
1465          CALL data_output_flight
1466       ENDIF
1467!
1468!--    Take virtual measurements
1469       IF ( virtual_measurement  .AND.                                         &
1470            vm_time_start <= time_since_reference_point )  CALL vm_sampling
1471
1472!
1473!--    Profile output (ASCII) on file
1474       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1475          CALL print_1d
1476          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1477                                                           dt_3d ) )
1478       ENDIF
1479
1480!
1481!--    Graphic output for PROFIL
1482       IF ( time_dopr >= dt_dopr )  THEN
1483          IF ( dopr_n /= 0 )  CALL data_output_profiles
1484          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1485          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1486       ENDIF
1487
1488!
1489!--    Graphic output for time series
1490       IF ( time_dots >= dt_dots )  THEN
1491          CALL data_output_tseries
1492          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1493       ENDIF
1494
1495!
1496!--    Output of spectra (formatted for use with PROFIL), in case of no
1497!--    time averaging, spectra has to be calculated before
1498       IF ( time_dosp >= dt_dosp )  THEN
1499          IF ( average_count_sp == 0 )  CALL calc_spectra
1500          CALL data_output_spectra
1501          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1502       ENDIF
1503
1504!
1505!--    2d-data output (cross-sections)
1506       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
1507          CALL data_output_2d( 'xy', 0 )
1508          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1509       ENDIF
1510       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
1511          CALL data_output_2d( 'xz', 0 )
1512          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1513       ENDIF
1514       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
1515          CALL data_output_2d( 'yz', 0 )
1516          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1517       ENDIF
1518
1519!
1520!--    3d-data output (volume data)
1521       IF ( time_do3d >= dt_do3d )  THEN
1522          CALL data_output_3d( 0 )
1523          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1524       ENDIF
1525
1526!
1527!--    Masked data output
1528       DO  mid = 1, masks
1529          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
1530             CALL data_output_mask( 0 )
1531             time_domask(mid) = MOD( time_domask(mid),  &
1532                                     MAX( dt_domask(mid), dt_3d ) )
1533          ENDIF
1534       ENDDO
1535
1536!
1537!--    Output of time-averaged 2d/3d/masked data
1538       IF ( time_do_av >= dt_data_output_av )  THEN
1539          CALL average_3d_data
1540          CALL data_output_2d( 'xy', 1 )
1541          CALL data_output_2d( 'xz', 1 )
1542          CALL data_output_2d( 'yz', 1 )
1543          CALL data_output_3d( 1 )
1544          DO  mid = 1, masks
1545             CALL data_output_mask( 1 )
1546          ENDDO
1547          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1548       ENDIF
1549!
1550!--    Output of surface data, instantaneous and averaged data
1551       IF ( surface_data_output )  THEN
1552          IF ( time_dosurf >= dt_dosurf )  THEN
1553             CALL surface_output( 0 )
1554             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1555          ENDIF
1556          IF ( time_dosurf_av >= dt_dosurf_av )  THEN
1557             CALL surface_output( 1 )
1558             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1559          ENDIF
1560       ENDIF
1561
1562!
1563!--    Output of particle time series
1564       IF ( particle_advection )  THEN
1565          IF ( time_dopts >= dt_dopts  .OR. &
1566               ( simulated_time >= particle_advection_start  .AND. &
1567                 first_call_lpm ) )  THEN
1568             CALL data_output_ptseries
1569             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1570          ENDIF
1571       ENDIF
1572
1573!
1574!--    Output of dvrp-graphics (isosurface, particles, slicer)
1575#if defined( __dvrp_graphics )
1576       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1577#endif
1578       IF ( time_dvrp >= dt_dvrp )  THEN
1579          CALL data_output_dvrp
1580          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1581       ENDIF
1582#if defined( __dvrp_graphics )
1583       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1584#endif
1585
1586!
1587!--    If required, set the heat flux for the next time step at a random value
1588       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1589          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1590          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1591          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1592       ENDIF
1593
1594!
1595!--    Execute the gust module actions
1596       IF ( gust_module_enabled )  THEN
1597          CALL gust_actions( 'after_timestep' )
1598       ENDIF
1599
1600!
1601!--    Execute user-defined actions
1602       CALL user_actions( 'after_timestep' )
1603
1604!
1605!--    Determine size of next time step. Save timestep dt_3d because it is
1606!--    newly calculated in routine timestep, but required further below for
1607!--    steering the run control output interval
1608       dt_3d_old = dt_3d
1609       CALL timestep
1610
1611!
1612!--    Synchronize the timestep in case of nested run.
1613       IF ( nested_run )  THEN
1614!
1615!--       Synchronize by unifying the time step.
1616!--       Global minimum of all time-steps is used for all.
1617          CALL pmci_synchronize
1618       ENDIF
1619
1620!
1621!--    Computation and output of run control parameters.
1622!--    This is also done whenever perturbations have been imposed
1623       IF ( time_run_control >= dt_run_control  .OR.                     &
1624            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1625       THEN
1626          CALL run_control
1627          IF ( time_run_control >= dt_run_control )  THEN
1628             time_run_control = MOD( time_run_control, &
1629                                     MAX( dt_run_control, dt_3d_old ) )
1630          ENDIF
1631       ENDIF
1632
1633!
1634!--    Output elapsed simulated time in form of a progress bar on stdout
1635       IF ( myid == 0 )  CALL output_progress_bar
1636
1637       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1638
1639
1640    ENDDO   ! time loop
1641
1642!
1643!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1644    IF ( vnest_init )  CALL vnest_deallocate
1645
1646    IF ( myid == 0 )  CALL finish_progress_bar
1647
1648#if defined( __dvrp_graphics )
1649    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1650#endif
1651
1652    CALL location_message( 'finished time-stepping', .TRUE. )
1653
1654 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.