source: palm/trunk/SOURCE/time_integration.f90 @ 2941

Last change on this file since 2941 was 2941, checked in by kanani, 4 years ago

Fixes for spinup and sky-view-factor (SVF) treatment

  • Property svn:keywords set to Id
File size: 51.4 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2018 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 2941 2018-04-03 11:54:58Z kanani $
27! Deduct spinup_time from RUN_CONTROL output of main 3d run
28! (use time_since_reference_point instead of simulated_time)
29!
30! 2938 2018-03-27 15:52:42Z suehring
31! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
32!
33! 2936 2018-03-27 14:49:27Z suehring
34! Little formatting adjustment.
35!
36! 2817 2018-02-19 16:32:21Z knoop
37! Preliminary gust module interface implemented
38!
39! 2801 2018-02-14 16:01:55Z thiele
40! Changed lpm from subroutine to module.
41! Introduce particle transfer in nested models.
42!
43! 2776 2018-01-31 10:44:42Z Giersch
44! Variable use_synthetic_turbulence_generator has been abbreviated
45!
46! 2773 2018-01-30 14:12:54Z suehring
47! - Nesting for chemical species
48!
49! 2766 2018-01-22 17:17:47Z kanani
50! Removed preprocessor directive __chem
51!
52! 2718 2018-01-02 08:49:38Z maronga
53! Corrected "Former revisions" section
54!
55! 2696 2017-12-14 17:12:51Z kanani
56! - Change in file header (GPL part)
57! - Implementation of uv exposure model (FK)
58! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
59! - renamed diffusivities to tcm_diffusivities (TG)
60! - implement prognostic equation for diss (TG)
61! - Moved/commented CALL to chem_emissions (FK)
62! - Added CALL to chem_emissions (FK)
63! - Implementation of chemistry module (FK)
64! - Calls for setting boundary conditions in USM and LSM (MS)
65! - Large-scale forcing with larger-scale models implemented (MS)
66! - Rename usm_radiation into radiation_interactions; merge with branch
67!   radiation (MS)
68! - added call for usm_green_heat_model for green building surfaces (RvT)
69! - added call for usm_temperature_near_surface for use in indoor model (RvT)
70!
71! 2617 2017-11-16 12:47:24Z suehring
72! Bugfix, assure that the reference state does not become zero.
73!
74! 2563 2017-10-19 15:36:10Z Giersch
75! Variable wind_turbine moved to module control_parameters
76!
77! 2365 2017-08-21 14:59:59Z kanani
78! Vertical grid nesting implemented (SadiqHuq)
79!
80! 2320 2017-07-21 12:47:43Z suehring
81! Set bottom boundary conditions after nesting interpolation and anterpolation
82!
83! 2299 2017-06-29 10:14:38Z maronga
84! Call of soil model adjusted
85!
86! 2292 2017-06-20 09:51:42Z schwenkel
87! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
88! includes two more prognostic equations for cloud drop concentration (nc) 
89! and cloud water content (qc).
90!
91! 2271 2017-06-09 12:34:55Z sward
92! Start timestep message changed
93!
94! 2259 2017-06-08 09:09:11Z gronemeier
95! Implemented synthetic turbulence generator
96!
97! 2233 2017-05-30 18:08:54Z suehring
98!
99! 2232 2017-05-30 17:47:52Z suehring
100! Adjustments to new topography and surface concept
101! Modify passed parameters for disturb_field
102!
103! 2178 2017-03-17 11:07:39Z hellstea
104! Setting perturbations at all times near inflow boundary is removed
105! in case of nested boundaries
106!
107! 2174 2017-03-13 08:18:57Z maronga
108! Added support for nesting with cloud microphysics
109!
110! 2118 2017-01-17 16:38:49Z raasch
111! OpenACC directives and related code removed
112!
113! 2050 2016-11-08 15:00:55Z gronemeier
114! Implement turbulent outflow condition
115!
116! 2031 2016-10-21 15:11:58Z knoop
117! renamed variable rho to rho_ocean
118!
119! 2011 2016-09-19 17:29:57Z kanani
120! Flag urban_surface is now defined in module control_parameters,
121! removed commented CALLs of global_min_max.
122!
123! 2007 2016-08-24 15:47:17Z kanani
124! Added CALLs for new urban surface model
125!
126! 2000 2016-08-20 18:09:15Z knoop
127! Forced header and separation lines into 80 columns
128!
129! 1976 2016-07-27 13:28:04Z maronga
130! Simplified calls to radiation model
131!
132! 1960 2016-07-12 16:34:24Z suehring
133! Separate humidity and passive scalar
134!
135! 1957 2016-07-07 10:43:48Z suehring
136! flight module added
137!
138! 1919 2016-05-27 14:51:23Z raasch
139! Initial version of purely vertical nesting introduced.
140!
141! 1918 2016-05-27 14:35:57Z raasch
142! determination of time step moved to the end of the time step loop,
143! the first time step is now always calculated before the time step loop (i.e.
144! also in case of restart runs)
145!
146! 1914 2016-05-26 14:44:07Z witha
147! Added call for wind turbine model
148!
149! 1878 2016-04-19 12:30:36Z hellstea
150! Synchronization for nested runs rewritten
151!
152! 1853 2016-04-11 09:00:35Z maronga
153! Adjusted for use with radiation_scheme = constant
154!
155! 1849 2016-04-08 11:33:18Z hoffmann
156! Adapted for modularization of microphysics
157!
158! 1833 2016-04-07 14:23:03Z raasch
159! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
160!
161! 1831 2016-04-07 13:15:51Z hoffmann
162! turbulence renamed collision_turbulence
163!
164! 1822 2016-04-07 07:49:42Z hoffmann
165! icloud_scheme replaced by microphysics_*
166!
167! 1808 2016-04-05 19:44:00Z raasch
168! output message in case unscheduled radiation calls removed
169!
170! 1797 2016-03-21 16:50:28Z raasch
171! introduction of different datatransfer modes
172!
173! 1791 2016-03-11 10:41:25Z raasch
174! call of pmci_update_new removed
175!
176! 1786 2016-03-08 05:49:27Z raasch
177! +module spectrum
178!
179! 1783 2016-03-06 18:36:17Z raasch
180! switch back of netcdf data format for mask output moved to the mask output
181! routine
182!
183! 1781 2016-03-03 15:12:23Z raasch
184! some pmc calls removed at the beginning (before timeloop),
185! pmc initialization moved to the main program
186!
187! 1764 2016-02-28 12:45:19Z raasch
188! PMC_ACTIVE flags removed,
189! bugfix: nest synchronization after first call of timestep
190!
191! 1762 2016-02-25 12:31:13Z hellstea
192! Introduction of nested domain feature
193!
194! 1736 2015-12-04 08:56:33Z raasch
195! no perturbations added to total domain if energy limit has been set zero
196!
197! 1691 2015-10-26 16:17:44Z maronga
198! Added option for spin-ups without land surface and radiation models. Moved calls
199! for radiation and lan surface schemes.
200!
201! 1682 2015-10-07 23:56:08Z knoop
202! Code annotations made doxygen readable
203!
204! 1671 2015-09-25 03:29:37Z raasch
205! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
206! for particles
207!
208! 1585 2015-04-30 07:05:52Z maronga
209! Moved call of radiation scheme. Added support for RRTM
210!
211! 1551 2015-03-03 14:18:16Z maronga
212! Added interface for different radiation schemes.
213!
214! 1496 2014-12-02 17:25:50Z maronga
215! Added calls for the land surface model and radiation scheme
216!
217! 1402 2014-05-09 14:25:13Z raasch
218! location messages modified
219!
220! 1384 2014-05-02 14:31:06Z raasch
221! location messages added
222!
223! 1380 2014-04-28 12:40:45Z heinze
224! CALL of nudge_ref added
225! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
226!
227! 1365 2014-04-22 15:03:56Z boeske
228! Reset sums_ls_l to zero at each timestep
229! +sums_ls_l
230! Calculation of reference state (previously in subroutine calc_mean_profile)
231
232! 1342 2014-03-26 17:04:47Z kanani
233! REAL constants defined as wp-kind
234!
235! 1320 2014-03-20 08:40:49Z raasch
236! ONLY-attribute added to USE-statements,
237! kind-parameters added to all INTEGER and REAL declaration statements,
238! kinds are defined in new module kinds,
239! old module precision_kind is removed,
240! revision history before 2012 removed,
241! comment fields (!:) to be used for variable explanations added to
242! all variable declaration statements
243! 1318 2014-03-17 13:35:16Z raasch
244! module interfaces removed
245!
246! 1308 2014-03-13 14:58:42Z fricke
247! +netcdf_data_format_save
248! For masked data, parallel netcdf output is not tested so far, hence
249! netcdf_data_format is switched back to non-paralell output.
250!
251! 1276 2014-01-15 13:40:41Z heinze
252! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
253!
254! 1257 2013-11-08 15:18:40Z raasch
255! acc-update-host directive for timestep removed
256!
257! 1241 2013-10-30 11:36:58Z heinze
258! Generalize calc_mean_profile for wider use
259! Determine shf and qsws in dependence on data from LSF_DATA
260! Determine ug and vg in dependence on data from LSF_DATA
261! 1221 2013-09-10 08:59:13Z raasch
262! host update of arrays before timestep is called
263!
264! 1179 2013-06-14 05:57:58Z raasch
265! mean profiles for reference state are only calculated if required,
266! small bugfix for background communication
267!
268! 1171 2013-05-30 11:27:45Z raasch
269! split of prognostic_equations deactivated (comment lines), for the time being
270!
271! 1128 2013-04-12 06:19:32Z raasch
272! asynchronous transfer of ghost point data realized for acc-optimized version:
273! prognostic_equations are first called two times for those points required for
274! the left-right and north-south exchange, respectively, and then for the
275! remaining points,
276! those parts requiring global communication moved from prognostic_equations to
277! here
278!
279! 1115 2013-03-26 18:16:16Z hoffmann
280! calculation of qr and nr is restricted to precipitation
281!
282! 1113 2013-03-10 02:48:14Z raasch
283! GPU-porting of boundary conditions,
284! openACC directives updated
285! formal parameter removed from routine boundary_conds
286!
287! 1111 2013-03-08 23:54:10Z raasch
288! +internal timestep counter for cpu statistics added,
289! openACC directives updated
290!
291! 1092 2013-02-02 11:24:22Z raasch
292! unused variables removed
293!
294! 1065 2012-11-22 17:42:36Z hoffmann
295! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
296!
297! 1053 2012-11-13 17:11:03Z hoffmann
298! exchange of ghost points for nr, qr added
299!
300! 1036 2012-10-22 13:43:42Z raasch
301! code put under GPL (PALM 3.9)
302!
303! 1019 2012-09-28 06:46:45Z raasch
304! non-optimized version of prognostic_equations removed
305!
306! 1015 2012-09-27 09:23:24Z raasch
307! +call of prognostic_equations_acc
308!
309! 1001 2012-09-13 14:08:46Z raasch
310! all actions concerning leapfrog- and upstream-spline-scheme removed
311!
312! 849 2012-03-15 10:35:09Z raasch
313! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
314!
315! 825 2012-02-19 03:03:44Z raasch
316! wang_collision_kernel renamed wang_kernel
317!
318! Revision 1.1  1997/08/11 06:19:04  raasch
319! Initial revision
320!
321!
322! Description:
323! ------------
324!> Integration in time of the model equations, statistical analysis and graphic
325!> output
326!------------------------------------------------------------------------------!
327 SUBROUTINE time_integration
328 
329
330    USE advec_ws,                                                              &
331        ONLY:  ws_statistics
332
333    USE arrays_3d,                                                             &
334        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, &
335               q_init, q, qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p,      &
336               ref_state, rho_ocean, s, s_p, sa_p, tend, u, u_p, v, vpt,       &
337               v_p, w, w_p
338
339    USE calc_mean_profile_mod,                                                 &
340        ONLY:  calc_mean_profile
341
342    USE chemistry_model_mod,                                                   &
343        ONLY:  chem_emissions, chem_species
344
345    USE chem_modules,                                                          &
346        ONLY:  nspec
347
348    USE control_parameters,                                                    &
349        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
350               average_count_3d, averaging_interval, averaging_interval_pr,    &
351               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,                              &
352               bc_q_t_val, call_psolver_at_all_substeps, cloud_droplets,       &
353               cloud_physics, constant_flux_layer, constant_heatflux,          &
354               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
355               coupling_start_time, current_timestep_number,                   &
356               disturbance_created, disturbance_energy_limit, dist_range,      &
357               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
358               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
359               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
360               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
361               first_call_lpm, forcing, galilei_transformation, humidity,      &
362               intermediate_timestep_count, intermediate_timestep_count_max,   &
363               land_surface, large_scale_forcing,                              &
364               loop_optimization, lsf_surf, lsf_vert, masks,                   &
365               microphysics_morrison, microphysics_seifert, mid, nest_domain,  &
366               neutral, nr_timesteps_this_run, nudging,                        &
367               ocean, passive_scalar, prho_reference, pt_reference,            &
368               pt_slope_offset, random_heatflux, rans_mode,                    &
369               rans_tke_e, run_coupled, simulated_time, simulated_time_chr,    &
370               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
371               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
372               skip_time_data_output_av, sloping_surface,                      &
373               stop_dt, terminate_coupled, terminate_run, timestep_scheme,     &
374               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
375               time_do3d, time_domask, time_dopr, time_dopr_av,                &
376               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
377               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
378               time_run_control, time_since_reference_point,                   &
379               turbulent_inflow, turbulent_outflow, urban_surface,             &
380               use_initial_profile_as_reference,                               &
381               use_single_reference_value, uv_exposure, u_gtrans, v_gtrans,    &
382               virtual_flight, wind_turbine, ws_scheme_mom, ws_scheme_sca
383
384    USE cpulog,                                                                &
385        ONLY:  cpu_log, log_point, log_point_s
386
387    USE flight_mod,                                                            &
388        ONLY:  flight_measurement
389
390    USE gust_mod,                                                              &
391        ONLY:  gust_actions, gust_module_enabled
392
393    USE indices,                                                               &
394        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt
395
396    USE interaction_droplets_ptq_mod,                                          &
397        ONLY:  interaction_droplets_ptq
398
399    USE interfaces
400
401    USE kinds
402
403    USE land_surface_model_mod,                                                &
404        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
405               skip_time_do_lsm
406
407    USE lsf_nudging_mod,                                                       &
408        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref,       &
409               forcing_bc, forcing_bc_mass_conservation
410
411    USE netcdf_data_input_mod,                                                 &
412        ONLY:  force, netcdf_data_input_lsf
413
414    USE microphysics_mod,                                                      &
415        ONLY: collision_turbulence
416
417    USE particle_attributes,                                                   &
418        ONLY:  particle_advection, particle_advection_start,                   &
419               use_sgs_for_particles, wang_kernel
420
421    USE pegrid
422
423    USE pmc_interface,                                                         &
424        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
425               pmci_ensure_nest_mass_conservation, pmci_synchronize
426
427    USE progress_bar,                                                          &
428        ONLY:  finish_progress_bar, output_progress_bar
429
430    USE prognostic_equations_mod,                                              &
431        ONLY:  prognostic_equations_cache, prognostic_equations_vector
432
433    USE radiation_model_mod,                                                   &
434        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
435              radiation_interaction, radiation_interactions,                   &
436              skip_time_do_radiation, time_radiation
437
438    USE spectra_mod,                                                           &
439        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
440              skip_time_dosp
441
442    USE statistics,                                                            &
443        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l, u_max,         &
444               u_max_ijk, v_max, v_max_ijk, w_max, w_max_ijk
445
446    USE surface_layer_fluxes_mod,                                              &
447        ONLY:  surface_layer_fluxes
448
449    USE surface_mod,                                                           &
450        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
451
452    USE turbulence_closure_mod,                                                &
453        ONLY:  tcm_diffusivities, production_e_init
454
455    USE urban_surface_mod,                                                     &
456        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
457               usm_material_model,                                             &
458               usm_surface_energy_balance, usm_green_heat_model,               &
459               usm_temperature_near_surface
460
461    USE synthetic_turbulence_generator_mod,                                    &
462        ONLY:  stg_main, use_syn_turb_gen
463
464    USE user_actions_mod,                                                      &
465        ONLY:  user_actions
466
467    USE uv_exposure_model_mod,                                                 &
468        ONLY:  uvem_calc_exposure
469
470    USE wind_turbine_model_mod,                                                &
471        ONLY:  wtm_forces
472
473    USE lpm_mod,                                                               &
474        ONLY:  lpm
475
476    USE vertical_nesting_mod,                                                  &
477        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
478               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
479               vnest_deallocate, vnest_init, vnest_init_fine,                  &
480               vnest_start_time
481
482    IMPLICIT NONE
483
484    CHARACTER (LEN=9) ::  time_to_string          !<
485    INTEGER           ::  n
486    INTEGER           ::  lsp
487
488    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
489                            !< steering of run control output interval
490!
491!-- At beginning determine the first time step
492    CALL timestep
493!
494!-- Synchronize the timestep in case of nested run.
495    IF ( nested_run )  THEN
496!
497!--    Synchronization by unifying the time step.
498!--    Global minimum of all time-steps is used for all.
499       CALL pmci_synchronize
500    ENDIF
501
502!
503!-- Determine and print out the run control quantities before the first time
504!-- step of this run. For the initial run, some statistics (e.g. divergence)
505!-- need to be determined first.
506    IF ( simulated_time == 0.0_wp )  CALL flow_statistics
507    CALL run_control
508!
509!-- Data exchange between coupled models in case that a call has been omitted
510!-- at the end of the previous run of a job chain.
511    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
512!
513!--    In case of model termination initiated by the local model the coupler
514!--    must not be called because this would again cause an MPI hang.
515       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
516          CALL surface_coupler
517          time_coupling = time_coupling - dt_coupling
518       ENDDO
519       IF (time_coupling == 0.0_wp  .AND.                                      &
520           time_since_reference_point < dt_coupling )                          &
521       THEN
522          time_coupling = time_since_reference_point
523       ENDIF
524    ENDIF
525
526#if defined( __dvrp_graphics )
527!
528!-- Time measurement with dvrp software 
529    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
530#endif
531
532    CALL location_message( 'starting timestep-sequence', .TRUE. )
533!
534!-- Start of the time loop
535    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
536                .NOT. terminate_run )
537
538       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
539!
540!--    Vertical nesting: initialize fine grid
541       IF ( vnested ) THEN
542          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
543             CALL cpu_log( log_point(80), 'vnest_init', 'start' )
544             CALL vnest_init_fine
545             vnest_init = .TRUE.
546             CALL cpu_log( log_point(80), 'vnest_init', 'stop' )
547          ENDIF
548       ENDIF
549!
550!--    Determine ug, vg and w_subs in dependence on data from external file
551!--    LSF_DATA
552       IF ( large_scale_forcing .AND. lsf_vert )  THEN
553           CALL ls_forcing_vert ( simulated_time )
554           sums_ls_l = 0.0_wp
555       ENDIF
556
557!
558!--    Set pt_init and q_init to the current profiles taken from
559!--    NUDGING_DATA
560       IF ( nudging )  THEN
561           CALL nudge_ref ( simulated_time )
562!
563!--        Store temperature gradient at the top boundary for possible Neumann
564!--        boundary condition
565           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
566           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
567       ENDIF
568!
569!--    If forcing by larger-scale models is applied, check if new data
570!--    at domain boundaries need to be read.
571       IF ( forcing )  THEN
572          IF ( force%time(force%tind_p) <= simulated_time )                    &
573             CALL netcdf_data_input_lsf
574       ENDIF
575
576!
577!--    Execute the gust module actions
578       IF ( gust_module_enabled )  THEN
579          CALL gust_actions( 'before_timestep' )
580       ENDIF
581
582!
583!--    Execute the user-defined actions
584       CALL user_actions( 'before_timestep' )
585
586!
587!--    Calculate forces by wind turbines
588       IF ( wind_turbine )  THEN
589
590          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
591
592          CALL wtm_forces
593
594          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
595
596       ENDIF       
597       
598!
599!--    Start of intermediate step loop
600       intermediate_timestep_count = 0
601       DO  WHILE ( intermediate_timestep_count < &
602                   intermediate_timestep_count_max )
603
604          intermediate_timestep_count = intermediate_timestep_count + 1
605
606!
607!--       Set the steering factors for the prognostic equations which depend
608!--       on the timestep scheme
609          CALL timestep_scheme_steering
610
611!
612!--       Calculate those variables needed in the tendency terms which need
613!--       global communication
614          IF ( .NOT. use_single_reference_value  .AND. &
615               .NOT. use_initial_profile_as_reference )  THEN
616!
617!--          Horizontally averaged profiles to be used as reference state in
618!--          buoyancy terms (WARNING: only the respective last call of
619!--          calc_mean_profile defines the reference state!)
620             IF ( .NOT. neutral )  THEN
621                CALL calc_mean_profile( pt, 4 )
622                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
623             ENDIF
624             IF ( ocean )  THEN
625                CALL calc_mean_profile( rho_ocean, 64 )
626                ref_state(:)  = hom(:,1,64,0)
627             ENDIF
628             IF ( humidity )  THEN
629                CALL calc_mean_profile( vpt, 44 )
630                ref_state(:)  = hom(:,1,44,0)
631             ENDIF
632!
633!--          Assure that ref_state does not become zero at any level
634!--          ( might be the case if a vertical level is completely occupied
635!--            with topography ).
636             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
637                                ref_state == 0.0_wp )
638          ENDIF
639
640          IF ( .NOT. constant_diffusion )  CALL production_e_init
641          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
642               intermediate_timestep_count == 1 )  CALL ws_statistics
643!
644!--       In case of nudging calculate current nudging time scale and horizontal
645!--       means of u, v, pt and q
646          IF ( nudging )  THEN
647             CALL calc_tnudge( simulated_time )
648             CALL calc_mean_profile( u, 1 )
649             CALL calc_mean_profile( v, 2 )
650             CALL calc_mean_profile( pt, 4 )
651             CALL calc_mean_profile( q, 41 )
652          ENDIF
653
654!
655!--       Solve the prognostic equations. A fast cache optimized version with
656!--       only one single loop is used in case of Piascek-Williams advection
657!--       scheme. NEC vector machines use a different version, because
658!--       in the other versions a good vectorization is prohibited due to
659!--       inlining problems.
660          IF ( loop_optimization == 'cache' )  THEN
661             CALL prognostic_equations_cache
662          ELSEIF ( loop_optimization == 'vector' )  THEN
663             CALL prognostic_equations_vector
664          ENDIF
665
666!
667!--       Particle transport/physics with the Lagrangian particle model
668!--       (only once during intermediate steps, because it uses an Euler-step)
669!--       ### particle model should be moved before prognostic_equations, in order
670!--       to regard droplet interactions directly
671          IF ( particle_advection  .AND.                         &
672               simulated_time >= particle_advection_start  .AND. &
673               intermediate_timestep_count == 1 )  THEN
674             CALL lpm
675             first_call_lpm = .FALSE.
676          ENDIF
677
678!
679!--       Interaction of droplets with temperature and specific humidity.
680!--       Droplet condensation and evaporation is calculated within
681!--       advec_particles.
682          IF ( cloud_droplets  .AND.  &
683               intermediate_timestep_count == intermediate_timestep_count_max )&
684          THEN
685             CALL interaction_droplets_ptq
686          ENDIF
687
688!
689!--       Exchange of ghost points (lateral boundary conditions)
690          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
691
692          CALL exchange_horiz( u_p, nbgp )
693          CALL exchange_horiz( v_p, nbgp )
694          CALL exchange_horiz( w_p, nbgp )
695          CALL exchange_horiz( pt_p, nbgp )
696          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
697          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
698               .OR.  use_sgs_for_particles )  THEN
699             IF ( rans_tke_e )  THEN
700                CALL exchange_horiz( diss_p, nbgp )
701             ELSE
702                CALL exchange_horiz( diss, nbgp )
703             ENDIF
704          ENDIF
705          IF ( ocean )  THEN
706             CALL exchange_horiz( sa_p, nbgp )
707             CALL exchange_horiz( rho_ocean, nbgp )
708             CALL exchange_horiz( prho, nbgp )
709          ENDIF
710          IF ( humidity )  THEN
711             CALL exchange_horiz( q_p, nbgp )
712             IF ( cloud_physics .AND. microphysics_morrison )  THEN
713                CALL exchange_horiz( qc_p, nbgp )
714                CALL exchange_horiz( nc_p, nbgp )
715             ENDIF
716             IF ( cloud_physics .AND. microphysics_seifert )  THEN
717                CALL exchange_horiz( qr_p, nbgp )
718                CALL exchange_horiz( nr_p, nbgp )
719             ENDIF
720          ENDIF
721          IF ( cloud_droplets )  THEN
722             CALL exchange_horiz( ql, nbgp )
723             CALL exchange_horiz( ql_c, nbgp )
724             CALL exchange_horiz( ql_v, nbgp )
725             CALL exchange_horiz( ql_vp, nbgp )
726          ENDIF
727          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
728          IF ( air_chemistry )  THEN
729             DO  n = 1, nspec     
730                CALL exchange_horiz( chem_species(n)%conc_p, nbgp ) 
731             ENDDO
732          ENDIF
733
734          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
735
736!
737!--       Boundary conditions for the prognostic quantities (except of the
738!--       velocities at the outflow in case of a non-cyclic lateral wall)
739          CALL boundary_conds
740!
741!--       Swap the time levels in preparation for the next time step.
742          CALL swap_timelevel
743
744!
745!--       Vertical nesting: Interpolate fine grid data to the coarse grid
746          IF ( vnest_init ) THEN
747             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' )
748             CALL vnest_anterpolate
749             CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' )
750          ENDIF
751
752          IF ( nested_run )  THEN
753
754             CALL cpu_log( log_point(60), 'nesting', 'start' )
755!
756!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
757!--          and pmci_child_datatrans are called inside the wrapper
758!--          subroutine pmci_datatrans according to the control parameters
759!--          nesting_mode and nesting_datatransfer_mode.
760!--          TO_DO: why is nesting_mode given as a parameter here?
761             CALL pmci_datatrans( nesting_mode )
762
763             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
764                  nesting_mode == 'vertical' )  THEN
765!
766!--             Exchange_horiz is needed for all parent-domains after the
767!--             anterpolation
768                CALL exchange_horiz( u, nbgp )
769                CALL exchange_horiz( v, nbgp )
770                CALL exchange_horiz( w, nbgp )
771                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
772
773                IF ( humidity )  THEN
774
775                   CALL exchange_horiz( q, nbgp )
776
777                   IF ( cloud_physics  .AND.  microphysics_morrison )  THEN
778                       CALL exchange_horiz( qc, nbgp )
779                       CALL exchange_horiz( nc, nbgp )
780                   ENDIF
781                   IF ( cloud_physics  .AND.  microphysics_seifert )  THEN
782                       CALL exchange_horiz( qr, nbgp )
783                       CALL exchange_horiz( nr, nbgp )
784                   ENDIF
785
786                ENDIF
787
788                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp )
789                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
790
791                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
792                                                      rans_tke_e )             &
793                   CALL exchange_horiz( diss, nbgp )
794
795                IF ( air_chemistry )  THEN
796                   DO  n = 1, nspec     
797                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
798                   ENDDO
799                ENDIF
800
801             ENDIF
802!
803!--          Set boundary conditions again after interpolation and anterpolation.
804             CALL pmci_boundary_conds
805!
806!--          Correct the w top-BC in nest domains to ensure mass conservation.
807!--          This action must never be done for the root domain. Vertical
808!--          nesting implies mass conservation.
809             IF ( nest_domain )  THEN
810                CALL pmci_ensure_nest_mass_conservation
811             ENDIF
812
813             CALL cpu_log( log_point(60), 'nesting', 'stop' )
814
815          ENDIF
816
817!
818!--       Temperature offset must be imposed at cyclic boundaries in x-direction
819!--       when a sloping surface is used
820          IF ( sloping_surface )  THEN
821             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
822                                                    pt_slope_offset
823             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
824                                                    pt_slope_offset
825          ENDIF
826
827!
828!--       Impose a turbulent inflow using the recycling method
829          IF ( turbulent_inflow )  CALL  inflow_turbulence
830
831!
832!--       Impose a turbulent inflow using synthetic generated turbulence
833          IF ( use_syn_turb_gen )  CALL  stg_main
834
835!
836!--       Set values at outflow boundary using the special outflow condition
837          IF ( turbulent_outflow )  CALL  outflow_turbulence
838
839!
840!--       Impose a random perturbation on the horizontal velocity field
841          IF ( create_disturbances  .AND.                                      &
842               ( call_psolver_at_all_substeps  .AND.                           &
843               intermediate_timestep_count == intermediate_timestep_count_max )&
844          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
845               intermediate_timestep_count == 1 ) )                            &
846          THEN
847             time_disturb = time_disturb + dt_3d
848             IF ( time_disturb >= dt_disturb )  THEN
849                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
850                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
851                   CALL disturb_field( 'u', tend, u )
852                   CALL disturb_field( 'v', tend, v )
853                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
854                     .AND. .NOT. nest_domain  .AND.  .NOT.  forcing )  THEN
855!
856!--                Runs with a non-cyclic lateral wall need perturbations
857!--                near the inflow throughout the whole simulation
858                   dist_range = 1
859                   CALL disturb_field( 'u', tend, u )
860                   CALL disturb_field( 'v', tend, v )
861                   dist_range = 0
862                ENDIF
863                time_disturb = time_disturb - dt_disturb
864             ENDIF
865          ENDIF
866
867!
868!--       Map forcing data derived from larger scale model onto domain
869!--       boundaries.
870          IF ( forcing  .AND.  intermediate_timestep_count ==                  &
871                               intermediate_timestep_count_max  )  THEN
872             CALL forcing_bc
873!
874!--          Moreover, ensure mass conservation
875             CALL forcing_bc_mass_conservation
876          ENDIF
877
878!
879!--       Reduce the velocity divergence via the equation for perturbation
880!--       pressure.
881          IF ( intermediate_timestep_count == 1  .OR. &
882                call_psolver_at_all_substeps )  THEN
883
884             IF (  vnest_init ) THEN
885!
886!--             Compute pressure in the CG, interpolate top boundary conditions
887!--             to the FG and then compute pressure in the FG
888                IF ( coupling_mode == 'vnested_crse' )  CALL pres
889
890                CALL cpu_log( log_point(82), 'vnest_bc', 'start' )
891                CALL vnest_boundary_conds
892                CALL cpu_log( log_point(82), 'vnest_bc', 'stop' )
893 
894                IF ( coupling_mode == 'vnested_fine' )  CALL pres
895
896!--             Anterpolate TKE, satisfy Germano Identity
897                CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' )
898                CALL vnest_anterpolate_e
899                CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' )
900
901             ELSE
902
903                CALL pres
904
905             ENDIF
906
907          ENDIF
908
909!
910!--       If required, compute liquid water content
911          IF ( cloud_physics )  THEN
912             CALL calc_liquid_water_content
913          ENDIF
914!
915!--       If required, compute virtual potential temperature
916          IF ( humidity )  THEN
917             CALL compute_vpt
918          ENDIF
919
920!
921!--       Compute the diffusion quantities
922          IF ( .NOT. constant_diffusion )  THEN
923
924!
925!--          Determine surface fluxes shf and qsws and surface values
926!--          pt_surface and q_surface in dependence on data from external
927!--          file LSF_DATA respectively
928             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
929                 intermediate_timestep_count == intermediate_timestep_count_max )&
930             THEN
931                CALL ls_forcing_surf( simulated_time )
932             ENDIF
933
934!
935!--          First the vertical (and horizontal) fluxes in the surface
936!--          (constant flux) layer are computed
937             IF ( constant_flux_layer )  THEN
938                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
939                CALL surface_layer_fluxes
940                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
941             ENDIF
942!
943!--          If required, solve the energy balance for the surface and run soil
944!--          model. Call for horizontal as well as vertical surfaces
945             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
946
947                CALL cpu_log( log_point(54), 'land_surface', 'start' )
948!
949!--             Call for horizontal upward-facing surfaces
950                CALL lsm_energy_balance( .TRUE., -1 )
951                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
952!
953!--             Call for northward-facing surfaces
954                CALL lsm_energy_balance( .FALSE., 0 )
955                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
956!
957!--             Call for southward-facing surfaces
958                CALL lsm_energy_balance( .FALSE., 1 )
959                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
960!
961!--             Call for eastward-facing surfaces
962                CALL lsm_energy_balance( .FALSE., 2 )
963                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
964!
965!--             Call for westward-facing surfaces
966                CALL lsm_energy_balance( .FALSE., 3 )
967                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
968!
969!--             At the end, set boundary conditons for potential temperature
970!--             and humidity after running the land-surface model. This
971!--             might be important for the nesting, where arrays are transfered.
972                CALL lsm_boundary_condition
973
974                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
975             ENDIF
976!
977!--          If required, solve the energy balance for urban surfaces and run
978!--          the material heat model
979             IF (urban_surface) THEN
980                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
981                CALL usm_surface_energy_balance
982                IF ( usm_material_model )  THEN
983                   CALL usm_green_heat_model
984                   CALL usm_material_heat_model
985                ENDIF
986
987                CALL usm_temperature_near_surface
988!
989!--             At the end, set boundary conditons for potential temperature
990!--             and humidity after running the urban-surface model. This
991!--             might be important for the nesting, where arrays are transfered.
992                CALL usm_boundary_condition
993
994                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
995             ENDIF
996!
997!--          Compute the diffusion coefficients
998             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
999             IF ( .NOT. humidity ) THEN
1000                IF ( ocean )  THEN
1001                   CALL tcm_diffusivities( prho, prho_reference )
1002                ELSE
1003                   CALL tcm_diffusivities( pt, pt_reference )
1004                ENDIF
1005             ELSE
1006                CALL tcm_diffusivities( vpt, pt_reference )
1007             ENDIF
1008             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1009!
1010!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1011             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1012
1013          ENDIF
1014
1015!
1016!--       If required, calculate radiative fluxes and heating rates
1017          IF ( radiation .AND. intermediate_timestep_count                     &
1018               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1019               skip_time_do_radiation )  THEN
1020
1021               time_radiation = time_radiation + dt_3d
1022
1023             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1024             THEN
1025
1026                CALL cpu_log( log_point(50), 'radiation', 'start' )
1027
1028                IF ( .NOT. force_radiation_call )  THEN
1029                   time_radiation = time_radiation - dt_radiation
1030                ENDIF
1031
1032                CALL radiation_control
1033
1034                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1035
1036                IF ( urban_surface  .OR.  land_surface  .AND.                  &
1037                     radiation_interactions )  THEN
1038                   CALL cpu_log( log_point(75), 'radiation_interaction', 'start' )
1039                   CALL radiation_interaction
1040                   CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' )
1041                ENDIF
1042
1043             ENDIF
1044          ENDIF
1045
1046       ENDDO   ! Intermediate step loop
1047!
1048!--    If required, consider chemical emissions
1049!--    (todo (FK): Implement hourly call of emissions, using time_utc from
1050!--                data_and_time_mod.f90;
1051!--                move the CALL to appropriate location)
1052       IF ( air_chemistry ) THEN
1053          CALL chem_emissions
1054       ENDIF
1055!
1056!--    If required, do UV exposure calculations
1057       IF ( uv_exposure )  THEN
1058          CALL uvem_calc_exposure
1059       ENDIF
1060!
1061!--    Increase simulation time and output times
1062       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1063       current_timestep_number    = current_timestep_number + 1
1064       simulated_time             = simulated_time   + dt_3d
1065       time_since_reference_point = simulated_time - coupling_start_time
1066       simulated_time_chr         = time_to_string( time_since_reference_point )
1067
1068
1069
1070
1071       IF ( simulated_time >= skip_time_data_output_av )  THEN
1072          time_do_av         = time_do_av       + dt_3d
1073       ENDIF
1074       IF ( simulated_time >= skip_time_do2d_xy )  THEN
1075          time_do2d_xy       = time_do2d_xy     + dt_3d
1076       ENDIF
1077       IF ( simulated_time >= skip_time_do2d_xz )  THEN
1078          time_do2d_xz       = time_do2d_xz     + dt_3d
1079       ENDIF
1080       IF ( simulated_time >= skip_time_do2d_yz )  THEN
1081          time_do2d_yz       = time_do2d_yz     + dt_3d
1082       ENDIF
1083       IF ( simulated_time >= skip_time_do3d    )  THEN
1084          time_do3d          = time_do3d        + dt_3d
1085       ENDIF
1086       DO  mid = 1, masks
1087          IF ( simulated_time >= skip_time_domask(mid) )  THEN
1088             time_domask(mid)= time_domask(mid) + dt_3d
1089          ENDIF
1090       ENDDO
1091       time_dvrp          = time_dvrp        + dt_3d
1092       IF ( simulated_time >= skip_time_dosp )  THEN
1093          time_dosp       = time_dosp        + dt_3d
1094       ENDIF
1095       time_dots          = time_dots        + dt_3d
1096       IF ( .NOT. first_call_lpm )  THEN
1097          time_dopts      = time_dopts       + dt_3d
1098       ENDIF
1099       IF ( simulated_time >= skip_time_dopr )  THEN
1100          time_dopr       = time_dopr        + dt_3d
1101       ENDIF
1102       time_dopr_listing          = time_dopr_listing        + dt_3d
1103       time_run_control   = time_run_control + dt_3d
1104
1105!
1106!--    Data exchange between coupled models
1107       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1108                                          .AND. .NOT. vnested )  THEN
1109          time_coupling = time_coupling + dt_3d
1110
1111!
1112!--       In case of model termination initiated by the local model
1113!--       (terminate_coupled > 0), the coupler must be skipped because it would
1114!--       cause an MPI intercomminucation hang.
1115!--       If necessary, the coupler will be called at the beginning of the
1116!--       next restart run.
1117          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1118             CALL surface_coupler
1119             time_coupling = time_coupling - dt_coupling
1120          ENDDO
1121       ENDIF
1122
1123!
1124!--    Execute the gust module actions
1125       IF ( gust_module_enabled )  THEN
1126          CALL gust_actions( 'after_integration' )
1127       ENDIF
1128
1129!
1130!--    Execute user-defined actions
1131       CALL user_actions( 'after_integration' )
1132
1133!
1134!--    If Galilei transformation is used, determine the distance that the
1135!--    model has moved so far
1136       IF ( galilei_transformation )  THEN
1137          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1138          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1139       ENDIF
1140
1141!
1142!--    Check, if restart is necessary (because cpu-time is expiring or
1143!--    because it is forced by user) and set stop flag
1144!--    This call is skipped if the remote model has already initiated a restart.
1145       IF ( .NOT. terminate_run )  CALL check_for_restart
1146
1147!
1148!--    Carry out statistical analysis and output at the requested output times.
1149!--    The MOD function is used for calculating the output time counters (like
1150!--    time_dopr) in order to regard a possible decrease of the output time
1151!--    interval in case of restart runs
1152
1153!
1154!--    Set a flag indicating that so far no statistics have been created
1155!--    for this time step
1156       flow_statistics_called = .FALSE.
1157
1158!
1159!--    If required, call flow_statistics for averaging in time
1160       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1161            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1162            simulated_time >= skip_time_dopr )  THEN
1163          time_dopr_av = time_dopr_av + dt_3d
1164          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1165             do_sum = .TRUE.
1166             time_dopr_av = MOD( time_dopr_av, &
1167                                    MAX( dt_averaging_input_pr, dt_3d ) )
1168          ENDIF
1169       ENDIF
1170       IF ( do_sum )  CALL flow_statistics
1171
1172!
1173!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1174       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1175            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
1176            simulated_time >= skip_time_data_output_av )                    &
1177       THEN
1178          time_do_sla = time_do_sla + dt_3d
1179          IF ( time_do_sla >= dt_averaging_input )  THEN
1180             CALL sum_up_3d_data
1181             average_count_3d = average_count_3d + 1
1182             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1183          ENDIF
1184       ENDIF
1185
1186!
1187!--    Calculate spectra for time averaging
1188       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1189            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1190            simulated_time >= skip_time_dosp )  THEN
1191          time_dosp_av = time_dosp_av + dt_3d
1192          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1193             CALL calc_spectra
1194             time_dosp_av = MOD( time_dosp_av, &
1195                                 MAX( dt_averaging_input_pr, dt_3d ) )
1196          ENDIF
1197       ENDIF
1198
1199!
1200!--    Call flight module and output data
1201       IF ( virtual_flight )  THEN
1202          CALL flight_measurement
1203          CALL data_output_flight
1204       ENDIF
1205
1206!
1207!--    Profile output (ASCII) on file
1208       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1209          CALL print_1d
1210          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1211                                                           dt_3d ) )
1212       ENDIF
1213
1214!
1215!--    Graphic output for PROFIL
1216       IF ( time_dopr >= dt_dopr )  THEN
1217          IF ( dopr_n /= 0 )  CALL data_output_profiles
1218          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1219          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1220       ENDIF
1221
1222!
1223!--    Graphic output for time series
1224       IF ( time_dots >= dt_dots )  THEN
1225          CALL data_output_tseries
1226          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1227       ENDIF
1228
1229!
1230!--    Output of spectra (formatted for use with PROFIL), in case of no
1231!--    time averaging, spectra has to be calculated before
1232       IF ( time_dosp >= dt_dosp )  THEN
1233          IF ( average_count_sp == 0 )  CALL calc_spectra
1234          CALL data_output_spectra
1235          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1236       ENDIF
1237
1238!
1239!--    2d-data output (cross-sections)
1240       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
1241          CALL data_output_2d( 'xy', 0 )
1242          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1243       ENDIF
1244       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
1245          CALL data_output_2d( 'xz', 0 )
1246          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1247       ENDIF
1248       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
1249          CALL data_output_2d( 'yz', 0 )
1250          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1251       ENDIF
1252
1253!
1254!--    3d-data output (volume data)
1255       IF ( time_do3d >= dt_do3d )  THEN
1256          CALL data_output_3d( 0 )
1257          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1258       ENDIF
1259
1260!
1261!--    Masked data output
1262       DO  mid = 1, masks
1263          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
1264             CALL data_output_mask( 0 )
1265             time_domask(mid) = MOD( time_domask(mid),  &
1266                                     MAX( dt_domask(mid), dt_3d ) )
1267          ENDIF
1268       ENDDO
1269
1270!
1271!--    Output of time-averaged 2d/3d/masked data
1272       IF ( time_do_av >= dt_data_output_av )  THEN
1273          CALL average_3d_data
1274          CALL data_output_2d( 'xy', 1 )
1275          CALL data_output_2d( 'xz', 1 )
1276          CALL data_output_2d( 'yz', 1 )
1277          CALL data_output_3d( 1 )
1278          DO  mid = 1, masks
1279             CALL data_output_mask( 1 )
1280          ENDDO
1281          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1282       ENDIF
1283
1284!
1285!--    Output of particle time series
1286       IF ( particle_advection )  THEN
1287          IF ( time_dopts >= dt_dopts  .OR. &
1288               ( simulated_time >= particle_advection_start  .AND. &
1289                 first_call_lpm ) )  THEN
1290             CALL data_output_ptseries
1291             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1292          ENDIF
1293       ENDIF
1294
1295!
1296!--    Output of dvrp-graphics (isosurface, particles, slicer)
1297#if defined( __dvrp_graphics )
1298       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1299#endif
1300       IF ( time_dvrp >= dt_dvrp )  THEN
1301          CALL data_output_dvrp
1302          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1303       ENDIF
1304#if defined( __dvrp_graphics )
1305       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1306#endif
1307
1308!
1309!--    If required, set the heat flux for the next time step at a random value
1310       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1311          IF ( surf_def_h(0)%ns >= 1 )  CALL disturb_heatflux( surf_def_h(0) )
1312          IF ( surf_lsm_h%ns    >= 1 )  CALL disturb_heatflux( surf_lsm_h    )
1313          IF ( surf_usm_h%ns    >= 1 )  CALL disturb_heatflux( surf_usm_h    )
1314       ENDIF
1315
1316!
1317!--    Execute the gust module actions
1318       IF ( gust_module_enabled )  THEN
1319          CALL gust_actions( 'after_timestep' )
1320       ENDIF
1321
1322!
1323!--    Execute user-defined actions
1324       CALL user_actions( 'after_timestep' )
1325
1326!
1327!--    Determine size of next time step. Save timestep dt_3d because it is
1328!--    newly calculated in routine timestep, but required further below for
1329!--    steering the run control output interval
1330       dt_3d_old = dt_3d
1331       CALL timestep
1332
1333!
1334!--    Synchronize the timestep in case of nested run.
1335       IF ( nested_run )  THEN
1336!
1337!--       Synchronize by unifying the time step.
1338!--       Global minimum of all time-steps is used for all.
1339          CALL pmci_synchronize
1340       ENDIF
1341
1342!
1343!--    Computation and output of run control parameters.
1344!--    This is also done whenever perturbations have been imposed
1345       IF ( time_run_control >= dt_run_control  .OR.                     &
1346            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1347       THEN
1348          CALL run_control
1349          IF ( time_run_control >= dt_run_control )  THEN
1350             time_run_control = MOD( time_run_control, &
1351                                     MAX( dt_run_control, dt_3d_old ) )
1352          ENDIF
1353       ENDIF
1354
1355!
1356!--    Output elapsed simulated time in form of a progress bar on stdout
1357       IF ( myid == 0 )  CALL output_progress_bar
1358
1359       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1360
1361
1362    ENDDO   ! time loop
1363
1364!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1365    IF ( vnest_init )  CALL vnest_deallocate
1366
1367    IF ( myid == 0 )  CALL finish_progress_bar
1368
1369#if defined( __dvrp_graphics )
1370    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1371#endif
1372
1373    CALL location_message( 'finished time-stepping', .TRUE. )
1374
1375 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.