source: palm/trunk/SOURCE/time_integration.f90 @ 1112

Last change on this file since 1112 was 1112, checked in by raasch, 12 years ago

last commit documented

  • Property svn:keywords set to Id
File size: 22.4 KB
Line 
1 SUBROUTINE time_integration
2
3!--------------------------------------------------------------------------------!
4! This file is part of PALM.
5!
6! PALM is free software: you can redistribute it and/or modify it under the terms
7! of the GNU General Public License as published by the Free Software Foundation,
8! either version 3 of the License, or (at your option) any later version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2012  Leibniz University Hannover
18!--------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 1112 2013-03-09 00:34:37Z raasch $
27!
28! 1111 2013-03-08 23:54:10Z raasch
29! +internal timestep counter for cpu statistics added,
30! openACC directives updated
31!
32! 1092 2013-02-02 11:24:22Z raasch
33! unused variables removed
34!
35! 1065 2012-11-22 17:42:36Z hoffmann
36! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
37!
38! 1053 2012-11-13 17:11:03Z hoffmann
39! exchange of ghost points for nr, qr added
40!
41! 1036 2012-10-22 13:43:42Z raasch
42! code put under GPL (PALM 3.9)
43!
44! 1019 2012-09-28 06:46:45Z raasch
45! non-optimized version of prognostic_equations removed
46!
47! 1015 2012-09-27 09:23:24Z raasch
48! +call of prognostic_equations_acc
49!
50! 1001 2012-09-13 14:08:46Z raasch
51! all actions concerning leapfrog- and upstream-spline-scheme removed
52!
53! 849 2012-03-15 10:35:09Z raasch
54! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
55!
56! 825 2012-02-19 03:03:44Z raasch
57! wang_collision_kernel renamed wang_kernel
58!
59! 790 2011-11-29 03:11:20Z raasch
60! exchange of ghostpoints for array diss
61!
62! 707 2011-03-29 11:39:40Z raasch
63! bc_lr/ns replaced by bc_lr/ns_cyc, calls of exchange_horiz are modified,
64! adaption to sloping surface
65!
66! 667  2010-12-23 12:06:00Z suehring/gryschka
67! Calls of exchange_horiz are modified.
68! Adaption to slooping surface.
69!
70! 449 2010-02-02 11:23:59Z raasch
71! Bugfix: exchange of ghost points for prho included
72!
73! 410 2009-12-04 17:05:40Z letzel
74! masked data output
75!
76! 388 2009-09-23 09:40:33Z raasch
77! Using prho instead of rho in diffusvities.
78! Coupling with independent precursor runs.
79! Bugfix: output of particle time series only if particle advection is switched
80!         on
81!
82! 151 2008-03-07 13:42:18Z raasch
83! inflow turbulence is imposed by calling new routine inflow_turbulence
84!
85! 108 2007-08-24 15:10:38Z letzel
86! Call of new routine surface_coupler,
87! presure solver is called after the first Runge-Kutta substep instead of the
88! last in case that call_psolver_at_all_substeps = .F.; for this case, the
89! random perturbation has to be added to the velocity fields also after the
90! first substep
91!
92! 97 2007-06-21 08:23:15Z raasch
93! diffusivities is called with argument rho in case of ocean runs,
94! new argument pt_/prho_reference in calls of diffusivities,
95! ghostpoint exchange for salinity and density
96!
97! 87 2007-05-22 15:46:47Z raasch
98! var_hom renamed pr_palm
99!
100! 75 2007-03-22 09:54:05Z raasch
101! Move call of user_actions( 'after_integration' ) below increment of times
102! and counters,
103! calls of prognostic_equations_.. changed to .._noopt, .._cache, and
104! .._vector, these calls are now controlled by switch loop_optimization,
105! uxrp, vynp eliminated, 2nd+3rd argument removed from exchange horiz,
106! moisture renamed humidity
107!
108! RCS Log replace by Id keyword, revision history cleaned up
109!
110! Revision 1.8  2006/08/22 14:16:05  raasch
111! Disturbances are imposed only for the last Runge-Kutta-substep
112!
113! Revision 1.2  2004/04/30 13:03:40  raasch
114! decalpha-specific warning removed, routine name changed to time_integration,
115! particle advection is carried out only once during the intermediate steps,
116! impulse_advec renamed momentum_advec
117!
118! Revision 1.1  1997/08/11 06:19:04  raasch
119! Initial revision
120!
121!
122! Description:
123! ------------
124! Integration in time of the model equations, statistical analysis and graphic
125! output
126!------------------------------------------------------------------------------!
127
128    USE arrays_3d
129    USE averaging
130    USE control_parameters
131    USE cpulog
132#if defined( __dvrp_graphics )
133    USE DVRP
134#endif
135    USE grid_variables
136    USE indices
137    USE interaction_droplets_ptq_mod
138    USE interfaces
139    USE particle_attributes
140    USE pegrid
141    USE prognostic_equations_mod
142    USE statistics
143    USE user_actions_mod
144
145    IMPLICIT NONE
146
147    CHARACTER (LEN=9) ::  time_to_string
148
149!
150!-- At the beginning of a simulation determine the time step as well as
151!-- determine and print out the run control parameters
152    IF ( simulated_time == 0.0 )  CALL timestep
153
154    CALL run_control
155
156
157!
158!-- Data exchange between coupled models in case that a call has been omitted
159!-- at the end of the previous run of a job chain.
160    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
161!
162!--    In case of model termination initiated by the local model the coupler
163!--    must not be called because this would again cause an MPI hang.
164       DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
165          CALL surface_coupler
166          time_coupling = time_coupling - dt_coupling
167       ENDDO
168       IF (time_coupling == 0.0 .AND. time_since_reference_point < dt_coupling)&
169       THEN
170          time_coupling = time_since_reference_point
171       ENDIF
172    ENDIF
173
174
175#if defined( __dvrp_graphics )
176!
177!-- Time measurement with dvrp software 
178    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
179#endif
180
181!
182!-- Start of the time loop
183    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
184                .NOT. terminate_run )
185
186       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
187!
188!--    Determine size of next time step
189       IF ( simulated_time /= 0.0 )  CALL timestep
190!
191!--    Execute the user-defined actions
192       CALL user_actions( 'before_timestep' )
193
194!
195!--    Start of intermediate step loop
196       intermediate_timestep_count = 0
197       DO  WHILE ( intermediate_timestep_count < &
198                   intermediate_timestep_count_max )
199
200          intermediate_timestep_count = intermediate_timestep_count + 1
201
202!
203!--       Set the steering factors for the prognostic equations which depend
204!--       on the timestep scheme
205          CALL timestep_scheme_steering
206
207!
208!--       Solve the prognostic equations. A fast cache optimized version with
209!--       only one single loop is used in case of Piascek-Williams advection
210!--       scheme. NEC vector machines use a different version, because
211!--       in the other versions a good vectorization is prohibited due to
212!--       inlining problems.
213          IF ( loop_optimization == 'cache' )  THEN
214             CALL prognostic_equations_cache
215          ELSEIF ( loop_optimization == 'vector' )  THEN
216             CALL prognostic_equations_vector
217          ELSEIF ( loop_optimization == 'acc' )  THEN
218             CALL prognostic_equations_acc
219          ENDIF
220
221!
222!--       Particle transport/physics with the Lagrangian particle model
223!--       (only once during intermediate steps, because it uses an Euler-step)
224          IF ( particle_advection  .AND.                         &
225               simulated_time >= particle_advection_start  .AND. &
226               intermediate_timestep_count == 1 )  THEN
227             CALL lpm
228             first_call_lpm = .FALSE.
229          ENDIF
230
231!
232!--       Interaction of droplets with temperature and specific humidity.
233!--       Droplet condensation and evaporation is calculated within
234!--       advec_particles.
235          IF ( cloud_droplets  .AND.  &
236               intermediate_timestep_count == intermediate_timestep_count_max )&
237          THEN
238             CALL interaction_droplets_ptq
239          ENDIF
240
241!
242!--       Exchange of ghost points (lateral boundary conditions)
243          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
244          !$acc update host( e_p, pt_p, u_p, v_p, w_p )
245          CALL exchange_horiz( u_p, nbgp )
246          CALL exchange_horiz( v_p, nbgp )
247          CALL exchange_horiz( w_p, nbgp )
248          CALL exchange_horiz( pt_p, nbgp )
249          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
250          IF ( ocean )  THEN
251             CALL exchange_horiz( sa_p, nbgp )
252             CALL exchange_horiz( rho, nbgp )
253             CALL exchange_horiz( prho, nbgp )
254          ENDIF
255          IF (humidity  .OR.  passive_scalar)  THEN
256             CALL exchange_horiz( q_p, nbgp )
257             IF ( cloud_physics .AND. icloud_scheme == 0 )  THEN
258                CALL exchange_horiz( qr_p, nbgp )
259                CALL exchange_horiz( nr_p, nbgp )
260             ENDIF
261          ENDIF
262          IF ( cloud_droplets )  THEN
263             CALL exchange_horiz( ql, nbgp )
264             CALL exchange_horiz( ql_c, nbgp )
265             CALL exchange_horiz( ql_v, nbgp )
266             CALL exchange_horiz( ql_vp, nbgp )
267          ENDIF
268          IF ( wang_kernel  .OR.  turbulence )  CALL exchange_horiz( diss, nbgp )
269
270          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
271
272!
273!--       Boundary conditions for the prognostic quantities (except of the
274!--       velocities at the outflow in case of a non-cyclic lateral wall)
275          CALL boundary_conds( 'main' )
276
277!
278!--       Swap the time levels in preparation for the next time step.
279          !$acc update device( e_p, pt_p, u_p, v_p, w_p )
280          CALL swap_timelevel
281
282!
283!--       Temperature offset must be imposed at cyclic boundaries in x-direction
284!--       when a sloping surface is used
285          IF ( sloping_surface )  THEN
286             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
287                                                    pt_slope_offset
288             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
289                                                    pt_slope_offset
290          ENDIF
291
292!
293!--       Impose a turbulent inflow using the recycling method
294          IF ( turbulent_inflow )  CALL  inflow_turbulence
295
296!
297!--       Impose a random perturbation on the horizontal velocity field
298          IF ( create_disturbances  .AND.                                      &
299               ( call_psolver_at_all_substeps  .AND.                           &
300               intermediate_timestep_count == intermediate_timestep_count_max )&
301          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
302               intermediate_timestep_count == 1 ) )                            &
303          THEN
304             time_disturb = time_disturb + dt_3d
305             IF ( time_disturb >= dt_disturb )  THEN
306                !$acc update host( u, v )
307                IF ( hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
308                   CALL disturb_field( nzb_u_inner, tend, u )
309                   CALL disturb_field( nzb_v_inner, tend, v )
310                ELSEIF ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )  THEN
311!
312!--                Runs with a non-cyclic lateral wall need perturbations
313!--                near the inflow throughout the whole simulation
314                   dist_range = 1
315                   CALL disturb_field( nzb_u_inner, tend, u )
316                   CALL disturb_field( nzb_v_inner, tend, v )
317                   dist_range = 0
318                ENDIF
319                !$acc update device( u, v )
320                time_disturb = time_disturb - dt_disturb
321             ENDIF
322          ENDIF
323
324!
325!--       Reduce the velocity divergence via the equation for perturbation
326!--       pressure.
327          IF ( intermediate_timestep_count == 1  .OR. &
328                call_psolver_at_all_substeps )  THEN
329             CALL pres
330          ENDIF
331
332!
333!--       If required, compute virtuell potential temperature
334          IF ( humidity )  THEN
335             CALL compute_vpt
336             !$acc update device( vpt )
337          ENDIF
338
339!
340!--       If required, compute liquid water content
341          IF ( cloud_physics )  THEN
342             CALL calc_liquid_water_content
343             !$acc update device( ql )
344          ENDIF
345
346!
347!--       Compute the diffusion quantities
348          IF ( .NOT. constant_diffusion )  THEN
349
350!
351!--          First the vertical fluxes in the Prandtl layer are being computed
352             IF ( prandtl_layer )  THEN
353                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'start' )
354                CALL prandtl_fluxes
355                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'stop' )
356             ENDIF
357
358!
359!--          Compute the diffusion coefficients
360             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
361             IF ( .NOT. humidity ) THEN
362                IF ( ocean )  THEN
363                   CALL diffusivities( prho, prho_reference )
364                ELSE
365                   CALL diffusivities( pt, pt_reference )
366                ENDIF
367             ELSE
368                CALL diffusivities( vpt, pt_reference )
369             ENDIF
370             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
371
372          ENDIF
373
374       ENDDO   ! Intermediate step loop
375
376!
377!--    Increase simulation time and output times
378       nr_timesteps_this_run      = nr_timesteps_this_run + 1
379       current_timestep_number    = current_timestep_number + 1
380       simulated_time             = simulated_time   + dt_3d
381       simulated_time_chr         = time_to_string( simulated_time )
382       time_since_reference_point = simulated_time - coupling_start_time
383
384       IF ( simulated_time >= skip_time_data_output_av )  THEN
385          time_do_av         = time_do_av       + dt_3d
386       ENDIF
387       IF ( simulated_time >= skip_time_do2d_xy )  THEN
388          time_do2d_xy       = time_do2d_xy     + dt_3d
389       ENDIF
390       IF ( simulated_time >= skip_time_do2d_xz )  THEN
391          time_do2d_xz       = time_do2d_xz     + dt_3d
392       ENDIF
393       IF ( simulated_time >= skip_time_do2d_yz )  THEN
394          time_do2d_yz       = time_do2d_yz     + dt_3d
395       ENDIF
396       IF ( simulated_time >= skip_time_do3d    )  THEN
397          time_do3d          = time_do3d        + dt_3d
398       ENDIF
399       DO  mid = 1, masks
400          IF ( simulated_time >= skip_time_domask(mid) )  THEN
401             time_domask(mid)= time_domask(mid) + dt_3d
402          ENDIF
403       ENDDO
404       time_dvrp          = time_dvrp        + dt_3d
405       IF ( simulated_time >= skip_time_dosp )  THEN
406          time_dosp       = time_dosp        + dt_3d
407       ENDIF
408       time_dots          = time_dots        + dt_3d
409       IF ( .NOT. first_call_lpm )  THEN
410          time_dopts      = time_dopts       + dt_3d
411       ENDIF
412       IF ( simulated_time >= skip_time_dopr )  THEN
413          time_dopr       = time_dopr        + dt_3d
414       ENDIF
415       time_dopr_listing          = time_dopr_listing        + dt_3d
416       time_run_control   = time_run_control + dt_3d
417
418!
419!--    Data exchange between coupled models
420       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
421          time_coupling = time_coupling + dt_3d
422
423!
424!--       In case of model termination initiated by the local model
425!--       (terminate_coupled > 0), the coupler must be skipped because it would
426!--       cause an MPI intercomminucation hang.
427!--       If necessary, the coupler will be called at the beginning of the
428!--       next restart run.
429          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
430             CALL surface_coupler
431             time_coupling = time_coupling - dt_coupling
432          ENDDO
433       ENDIF
434
435!
436!--    Execute user-defined actions
437       CALL user_actions( 'after_integration' )
438
439!
440!--    If Galilei transformation is used, determine the distance that the
441!--    model has moved so far
442       IF ( galilei_transformation )  THEN
443          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
444          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
445       ENDIF
446
447!
448!--    Check, if restart is necessary (because cpu-time is expiring or
449!--    because it is forced by user) and set stop flag
450!--    This call is skipped if the remote model has already initiated a restart.
451       IF ( .NOT. terminate_run )  CALL check_for_restart
452
453!
454!--    Carry out statistical analysis and output at the requested output times.
455!--    The MOD function is used for calculating the output time counters (like
456!--    time_dopr) in order to regard a possible decrease of the output time
457!--    interval in case of restart runs
458
459!
460!--    Set a flag indicating that so far no statistics have been created
461!--    for this time step
462       flow_statistics_called = .FALSE.
463
464!
465!--    If required, call flow_statistics for averaging in time
466       IF ( averaging_interval_pr /= 0.0  .AND.  &
467            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
468            simulated_time >= skip_time_dopr )  THEN
469          time_dopr_av = time_dopr_av + dt_3d
470          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
471             do_sum = .TRUE.
472             time_dopr_av = MOD( time_dopr_av, &
473                                    MAX( dt_averaging_input_pr, dt_3d ) )
474          ENDIF
475       ENDIF
476       IF ( do_sum )  CALL flow_statistics
477
478!
479!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
480       IF ( averaging_interval /= 0.0  .AND.                                &
481            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
482            simulated_time >= skip_time_data_output_av )                    &
483       THEN
484          time_do_sla = time_do_sla + dt_3d
485          IF ( time_do_sla >= dt_averaging_input )  THEN
486             CALL sum_up_3d_data
487             average_count_3d = average_count_3d + 1
488             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
489          ENDIF
490       ENDIF
491
492!
493!--    Calculate spectra for time averaging
494       IF ( averaging_interval_sp /= 0.0  .AND.  &
495            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
496            simulated_time >= skip_time_dosp )  THEN
497          time_dosp_av = time_dosp_av + dt_3d
498          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
499             CALL calc_spectra
500             time_dosp_av = MOD( time_dosp_av, &
501                                 MAX( dt_averaging_input_pr, dt_3d ) )
502          ENDIF
503       ENDIF
504
505!
506!--    Computation and output of run control parameters.
507!--    This is also done whenever perturbations have been imposed
508       IF ( time_run_control >= dt_run_control  .OR.                     &
509            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
510       THEN
511          CALL run_control
512          IF ( time_run_control >= dt_run_control )  THEN
513             time_run_control = MOD( time_run_control, &
514                                     MAX( dt_run_control, dt_3d ) )
515          ENDIF
516       ENDIF
517
518!
519!--    Profile output (ASCII) on file
520       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
521          CALL print_1d
522          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
523                                                           dt_3d ) )
524       ENDIF
525
526!
527!--    Graphic output for PROFIL
528       IF ( time_dopr >= dt_dopr )  THEN
529          IF ( dopr_n /= 0 )  CALL data_output_profiles
530          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
531          time_dopr_av = 0.0    ! due to averaging (see above)
532       ENDIF
533
534!
535!--    Graphic output for time series
536       IF ( time_dots >= dt_dots )  THEN
537          CALL data_output_tseries
538          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
539       ENDIF
540
541!
542!--    Output of spectra (formatted for use with PROFIL), in case of no
543!--    time averaging, spectra has to be calculated before
544       IF ( time_dosp >= dt_dosp )  THEN
545          IF ( average_count_sp == 0 )  CALL calc_spectra
546          CALL data_output_spectra
547          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
548       ENDIF
549
550!
551!--    2d-data output (cross-sections)
552       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
553          CALL data_output_2d( 'xy', 0 )
554          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
555       ENDIF
556       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
557          CALL data_output_2d( 'xz', 0 )
558          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
559       ENDIF
560       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
561          CALL data_output_2d( 'yz', 0 )
562          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
563       ENDIF
564
565!
566!--    3d-data output (volume data)
567       IF ( time_do3d >= dt_do3d )  THEN
568          CALL data_output_3d( 0 )
569          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
570       ENDIF
571
572!
573!--    masked data output
574       DO  mid = 1, masks
575          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
576             CALL data_output_mask( 0 )
577             time_domask(mid) = MOD( time_domask(mid),  &
578                                     MAX( dt_domask(mid), dt_3d ) )
579          ENDIF
580       ENDDO
581
582!
583!--    Output of time-averaged 2d/3d/masked data
584       IF ( time_do_av >= dt_data_output_av )  THEN
585          CALL average_3d_data
586          CALL data_output_2d( 'xy', 1 )
587          CALL data_output_2d( 'xz', 1 )
588          CALL data_output_2d( 'yz', 1 )
589          CALL data_output_3d( 1 )
590          DO  mid = 1, masks
591             CALL data_output_mask( 1 )
592          ENDDO
593          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
594       ENDIF
595
596!
597!--    Output of particle time series
598       IF ( particle_advection )  THEN
599          IF ( time_dopts >= dt_dopts  .OR. &
600               ( simulated_time >= particle_advection_start  .AND. &
601                 first_call_lpm ) )  THEN
602             CALL data_output_ptseries
603             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
604          ENDIF
605       ENDIF
606
607!
608!--    Output of dvrp-graphics (isosurface, particles, slicer)
609#if defined( __dvrp_graphics )
610       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
611#endif
612       IF ( time_dvrp >= dt_dvrp )  THEN
613          CALL data_output_dvrp
614          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
615       ENDIF
616#if defined( __dvrp_graphics )
617       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
618#endif
619
620!
621!--    If required, set the heat flux for the next time step at a random value
622       IF ( constant_heatflux  .AND.  random_heatflux )  CALL disturb_heatflux
623
624!
625!--    Execute user-defined actions
626       CALL user_actions( 'after_timestep' )
627
628       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
629
630
631    ENDDO   ! time loop
632
633#if defined( __dvrp_graphics )
634    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
635#endif
636
637 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.