!> @file time_integration.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2020 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: time_integration.f90 4360 2020-01-07 11:25:50Z pavelkrc $ ! Bugfix, hour_call_emis uninitialized at first call of time_integration ! ! 4346 2019-12-18 11:55:56Z motisi ! Introduction of wall_flags_total_0, which currently sets bits based on static ! topography information used in wall_flags_static_0 ! ! 4329 2019-12-10 15:46:36Z motisi ! Renamed wall_flags_0 to wall_flags_static_0 ! ! 4281 2019-10-29 15:15:39Z schwenkel ! Moved boundary conditions to module interface ! ! 4276 2019-10-28 16:03:29Z schwenkel ! Further modularization of lpm code components ! ! 4275 2019-10-28 15:34:55Z schwenkel ! Move call oft lpm to the end of intermediate timestep loop ! ! 4268 2019-10-17 11:29:38Z schwenkel ! Removing module specific boundary conditions an put them into their modules ! ! 4227 2019-09-10 18:04:34Z gronemeier ! implement new palm_date_time_mod ! ! 4226 2019-09-10 17:03:24Z suehring ! Changes in interface for the offline nesting ! ! 4182 2019-08-22 15:20:23Z scharf ! Corrected "Former revisions" section ! ! 4170 2019-08-19 17:12:31Z gronemeier ! copy diss, diss_p, tdiss_m to GPU ! ! 4144 2019-08-06 09:11:47Z raasch ! relational operators .EQ., .NE., etc. replaced by ==, /=, etc. ! ! 4126 2019-07-30 11:09:11Z gronemeier ! renamed routine to calculate uv exposure ! ! 4111 2019-07-22 18:16:57Z suehring ! advc_flags_1 / advc_flags_2 renamed to advc_flags_m / advc_flags_s ! ! 4069 2019-07-01 14:05:51Z Giersch ! Masked output running index mid has been introduced as a local variable to ! avoid runtime error (Loop variable has been modified) in time_integration ! ! 4064 2019-07-01 05:33:33Z gronemeier ! Moved call to radiation module out of intermediate time loop ! ! 4048 2019-06-21 21:00:21Z knoop ! Moved production_e_init call into turbulence_closure_mod ! ! 4047 2019-06-21 18:58:09Z knoop ! Added remainings of swap_timelevel upon its dissolution ! ! 4043 2019-06-18 16:59:00Z schwenkel ! Further LPM modularization ! ! 4039 2019-06-18 10:32:41Z suehring ! Rename subroutines in module for diagnostic quantities ! ! 4029 2019-06-14 14:04:35Z raasch ! exchange of ghost points and boundary conditions separated for chemical species and SALSA module, ! bugfix: decycling of chemistry species after nesting data transfer ! ! 4022 2019-06-12 11:52:39Z suehring ! Call synthetic turbulence generator at last RK3 substep right after boundary ! conditions are updated in offline nesting in order to assure that ! perturbations are always imposed ! ! 4017 2019-06-06 12:16:46Z schwenkel ! Mass (volume) flux correction included to ensure global mass conservation for child domains. ! ! 3994 2019-05-22 18:08:09Z suehring ! output of turbulence intensity added ! ! 3988 2019-05-22 11:32:37Z kanani ! Implement steerable output interval for virtual measurements ! ! 3968 2019-05-13 11:04:01Z suehring ! replace nspec_out with n_matched_vars ! ! 3929 2019-04-24 12:52:08Z banzhafs ! Reverse changes back from revision 3878: use chem_boundary_conds instead of ! chem_boundary_conds_decycle ! ! ! 3885 2019-04-11 11:29:34Z kanani ! Changes related to global restructuring of location messages and introduction ! of additional debug messages ! ! 3879 2019-04-08 20:25:23Z knoop ! Moved wtm_forces to module_interface_actions ! ! 3872 2019-04-08 15:03:06Z knoop ! Modifications made for salsa: ! - Call salsa_emission_update at each time step but do the checks within ! salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point ! and next_aero_emission_update <= time_since_reference_point ). ! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and ! ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig ! - Apply nesting for salsa variables ! - Removed cpu_log calls speciffic for salsa. ! ! 3833 2019-03-28 15:04:04Z forkel ! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated ! ! 3820 2019-03-27 11:53:41Z forkel ! renamed do_emiss to emissions_anthropogenic (ecc) ! ! ! 3774 2019-03-04 10:52:49Z moh.hefny ! rephrase if statement to avoid unallocated array in case of ! nesting_offline is false (crashing during debug mode) ! ! 3761 2019-02-25 15:31:42Z raasch $ ! module section re-formatted and openacc required variables moved to separate section, ! re-formatting to 100 char line width ! ! 3745 2019-02-15 18:57:56Z suehring ! Call indoor model after first timestep ! ! 3744 2019-02-15 18:38:58Z suehring ! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to ! time_integration to make sure averaged input is updated before calculating. ! ! 3739 2019-02-13 08:05:17Z dom_dwd_user ! Removed everything related to "time_bio_results" as this is never used. ! ! 3724 2019-02-06 16:28:23Z kanani ! Correct double-used log_point_s unit ! ! 3719 2019-02-06 13:10:18Z kanani ! - removed wind_turbine cpu measurement, since same time is measured inside ! wtm_forces subroutine as special measures ! - moved the numerous vnest cpulog to special measures ! - extended radiation cpulog over entire radiation part, ! moved radiation_interactions cpulog to special measures ! - moved some cpu_log calls to this routine for better overview ! ! 3705 2019-01-29 19:56:39Z suehring ! Data output for virtual measurements added ! ! 3704 2019-01-29 19:51:41Z suehring ! Rename subroutines for surface-data output ! ! 3647 2019-01-02 14:10:44Z kanani ! Bugfix: add time_since_reference_point to IF clause for data_output calls ! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0). ! Clean up indoor_model and biometeorology model call. ! ! Revision 1.1 1997/08/11 06:19:04 raasch ! Initial revision ! ! ! Description: ! ------------ !> Integration in time of the model equations, statistical analysis and graphic !> output !------------------------------------------------------------------------------! SUBROUTINE time_integration USE advec_ws, & ONLY: ws_statistics USE arrays_3d, & ONLY: diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q, & qc, qc_p, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, & tend, u, u_p, v, vpt, v_p, w, w_p USE biometeorology_mod, & ONLY: bio_calculate_thermal_index_maps, thermal_comfort, bio_calculate_uv_exposure, & uv_exposure USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence, & microphysics_morrison, microphysics_seifert USE calc_mean_profile_mod, & ONLY: calc_mean_profile USE chem_emissions_mod, & ONLY: chem_emissions_setup USE chem_gasphase_mod, & ONLY: nvar USE chem_modules, & ONLY: bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars USE chemistry_model_mod, & ONLY: chem_boundary_conds USE control_parameters, & ONLY: advected_distance_x, advected_distance_y, air_chemistry, average_count_3d, & averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, & bc_q_t_val, biometeorology, call_psolver_at_all_substeps, child_domain, & constant_flux_layer, constant_heatflux, create_disturbances, & dopr_n, constant_diffusion, coupling_mode, coupling_start_time, & current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, & do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling, & dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d, & dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_run_control, & end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity, & indoor_model, intermediate_timestep_count, intermediate_timestep_count_max, & land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks, & multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral, & nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference, & pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa, & simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz, & skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr, & skip_time_data_output_av, sloping_surface, stop_dt, surface_output, & terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy, & time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av, & time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av, & time_do_sla, time_disturb, time_run_control, time_since_reference_point, & turbulent_inflow, turbulent_outflow, urban_surface, & use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans, & virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca, timestep_count USE cpulog, & ONLY: cpu_log, log_point, log_point_s USE diagnostic_output_quantities_mod, & ONLY: doq_calculate, & timestep_number_at_prev_calc USE flight_mod, & ONLY: flight_measurement USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt USE indoor_model_mod, & ONLY: dt_indoor, im_main_heatcool, time_indoor USE interfaces USE kinds USE land_surface_model_mod, & ONLY: lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm USE lagrangian_particle_model_mod, & ONLY: lpm_data_output_ptseries USE lsf_nudging_mod, & ONLY: calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref USE module_interface, & ONLY: module_interface_actions, module_interface_swap_timelevel, & module_interface_boundary_conditions USE multi_agent_system_mod, & ONLY: agents_active, multi_agent_system USE nesting_offl_mod, & ONLY: nesting_offl_bc, & nesting_offl_geostrophic_wind, & nesting_offl_input, & nesting_offl_interpolation_factor, & nesting_offl_mass_conservation USE netcdf_data_input_mod, & ONLY: chem_emis, chem_emis_att USE ocean_mod, & ONLY: prho_reference USE palm_date_time_mod, & ONLY: get_date_time USE particle_attributes, & ONLY: particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel USE pegrid USE pmc_interface, & ONLY: nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize, & pmci_ensure_nest_mass_conservation, pmci_ensure_nest_mass_conservation_vertical, & pmci_set_swaplevel USE progress_bar, & ONLY: finish_progress_bar, output_progress_bar USE prognostic_equations_mod, & ONLY: prognostic_equations_cache, prognostic_equations_vector USE radiation_model_mod, & ONLY: dt_radiation, force_radiation_call, radiation, radiation_control, & radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation USE salsa_mod, & ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val, & nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds, & salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa USE spectra_mod, & ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp USE statistics, & ONLY: flow_statistics_called, hom, pr_palm, sums_ls_l USE surface_layer_fluxes_mod, & ONLY: surface_layer_fluxes USE surface_data_output_mod, & ONLY: average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av, & surface_data_output, surface_data_output_averaging, skip_time_dosurf, & skip_time_dosurf_av, time_dosurf, time_dosurf_av USE surface_mod, & ONLY: surf_def_h, surf_lsm_h, surf_usm_h USE synthetic_turbulence_generator_mod, & ONLY: dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main, & time_stg_adjust, time_stg_call, use_syn_turb_gen USE turbulence_closure_mod, & ONLY: tcm_diffusivities USE urban_surface_mod, & ONLY: usm_boundary_condition, usm_material_heat_model, usm_material_model, & usm_surface_energy_balance, usm_green_heat_model USE vertical_nesting_mod, & ONLY: vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds, & vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine, & vnest_start_time USE virtual_measurement_mod, & ONLY: dt_virtual_measurement, & time_virtual_measurement, & vm_data_output, & vm_sampling, & vm_time_start #if defined( _OPENACC ) USE arrays_3d, & ONLY: d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh, & km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air, & rho_air_zw, tdiss_m, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, & v_init, v_stokes_zu, zu USE control_parameters, & ONLY: tsc USE indices, & ONLY: advc_flags_m, advc_flags_s, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_total_0 USE statistics, & ONLY: rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l, & sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l, & sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, & sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l USE surface_mod, & ONLY: bc_h, enter_surface_arrays, exit_surface_arrays #endif IMPLICIT NONE CHARACTER (LEN=9) :: time_to_string !< INTEGER(iwp) :: hour !< hour of current time INTEGER(iwp) :: hour_call_emis = -1 !< last hour where emission was called INTEGER(iwp) :: ib !< index for aerosol size bins INTEGER(iwp) :: ic !< index for aerosol mass bins INTEGER(iwp) :: icc !< additional index for aerosol mass bins INTEGER(iwp) :: ig !< index for salsa gases INTEGER(iwp) :: lsp !< INTEGER(iwp) :: lsp_usr !< INTEGER(iwp) :: mid !< masked output running index INTEGER(iwp) :: n !< loop counter for chemistry species REAL(wp) :: dt_3d_old !< temporary storage of timestep to be used for !< steering of run control output interval REAL(wp) :: time_since_reference_point_save !< original value of !< time_since_reference_point ! !-- Copy data from arrays_3d !$ACC DATA & !$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) & !$ACC COPY(diss(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) !$ACC DATA & !$ACC COPY(diss_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(tdiss_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) !$ACC DATA & !$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) & !$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) & !$ACC COPYIN(zu(nzb:nzt+1)) & !$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) & !$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) & !$ACC COPYIN(ddzw(1:nzt+1)) & !$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) & !$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) & !$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) & !$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) & !$ACC COPYIN(ref_state(0:nz+1)) & !$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) & !$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) & !$ACC COPYIN(pt_init(0:nz+1)) & !$ACC COPYIN(ug(0:nz+1), vg(0:nz+1)) ! !-- Copy data from control_parameters !$ACC DATA & !$ACC COPYIN(tsc(1:5)) ! !-- Copy data from indices !$ACC DATA & !$ACC COPYIN(advc_flags_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPYIN(advc_flags_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPYIN(wall_flags_total_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) ! !-- Copy data from surface_mod !$ACC DATA & !$ACC COPYIN(bc_h(0:1)) & !$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) & !$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) & !$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns)) ! !-- Copy data from statistics !$ACC DATA & !$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) & !$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) & !$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) & !$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) & !$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) & !$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0)) #if defined( _OPENACC ) CALL enter_surface_arrays #endif ! !-- At beginning determine the first time step CALL timestep ! !-- Synchronize the timestep in case of nested run. IF ( nested_run ) THEN ! !-- Synchronization by unifying the time step. !-- Global minimum of all time-steps is used for all. CALL pmci_synchronize ENDIF ! !-- Determine and print out the run control quantities before the first time !-- step of this run. For the initial run, some statistics (e.g. divergence) !-- need to be determined first --> CALL flow_statistics at the beginning of !-- run_control CALL run_control ! !-- Data exchange between coupled models in case that a call has been omitted !-- at the end of the previous run of a job chain. IF ( coupling_mode /= 'uncoupled' .AND. run_coupled .AND. .NOT. vnested ) THEN ! !-- In case of model termination initiated by the local model the coupler !-- must not be called because this would again cause an MPI hang. DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 ) CALL surface_coupler time_coupling = time_coupling - dt_coupling ENDDO IF (time_coupling == 0.0_wp .AND. time_since_reference_point < dt_coupling ) THEN time_coupling = time_since_reference_point ENDIF ENDIF CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' ) ! !-- Start of the time loop DO WHILE ( simulated_time < end_time .AND. .NOT. stop_dt .AND. .NOT. terminate_run ) CALL cpu_log( log_point_s(10), 'timesteps', 'start' ) ! !-- Vertical nesting: initialize fine grid IF ( vnested ) THEN IF ( .NOT. vnest_init .AND. simulated_time >= vnest_start_time ) THEN CALL cpu_log( log_point_s(22), 'vnest_init', 'start' ) CALL vnest_init_fine vnest_init = .TRUE. CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' ) ENDIF ENDIF ! !-- Determine ug, vg and w_subs in dependence on data from external file !-- LSF_DATA IF ( large_scale_forcing .AND. lsf_vert ) THEN CALL ls_forcing_vert ( simulated_time ) sums_ls_l = 0.0_wp ENDIF ! !-- Set pt_init and q_init to the current profiles taken from !-- NUDGING_DATA IF ( nudging ) THEN CALL nudge_ref ( simulated_time ) ! !-- Store temperature gradient at the top boundary for possible Neumann !-- boundary condition bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1) bc_q_t_val = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1) IF ( air_chemistry ) THEN DO lsp = 1, nvar bc_cs_t_val = ( chem_species(lsp)%conc_pr_init(nzt+1) & - chem_species(lsp)%conc_pr_init(nzt) ) & / dzu(nzt+1) ENDDO ENDIF IF ( salsa .AND. time_since_reference_point >= skip_time_do_salsa ) THEN DO ib = 1, nbins_aerosol bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / & dzu(nzt+1) DO ic = 1, ncomponents_mass icc = ( ic - 1 ) * nbins_aerosol + ib bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /& dzu(nzt+1) ENDDO ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO ig = 1, ngases_salsa bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) / & dzu(nzt+1) ENDDO ENDIF ENDIF ENDIF ! !-- Input of boundary data. IF ( nesting_offline ) CALL nesting_offl_input ! !-- Execute all other module actions routines CALL module_interface_actions( 'before_timestep' ) !-- Start of intermediate step loop intermediate_timestep_count = 0 DO WHILE ( intermediate_timestep_count < intermediate_timestep_count_max ) intermediate_timestep_count = intermediate_timestep_count + 1 ! !-- Set the steering factors for the prognostic equations which depend !-- on the timestep scheme CALL timestep_scheme_steering ! !-- Calculate those variables needed in the tendency terms which need !-- global communication IF ( .NOT. use_single_reference_value .AND. .NOT. use_initial_profile_as_reference ) & THEN ! !-- Horizontally averaged profiles to be used as reference state in !-- buoyancy terms (WARNING: only the respective last call of !-- calc_mean_profile defines the reference state!) IF ( .NOT. neutral ) THEN CALL calc_mean_profile( pt, 4 ) ref_state(:) = hom(:,1,4,0) ! this is used in the buoyancy term ENDIF IF ( ocean_mode ) THEN CALL calc_mean_profile( rho_ocean, 64 ) ref_state(:) = hom(:,1,64,0) ENDIF IF ( humidity ) THEN CALL calc_mean_profile( vpt, 44 ) ref_state(:) = hom(:,1,44,0) ENDIF ! !-- Assure that ref_state does not become zero at any level !-- ( might be the case if a vertical level is completely occupied !-- with topography ). ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp ) ENDIF IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. intermediate_timestep_count == 1 ) & THEN CALL ws_statistics ENDIF ! !-- In case of nudging calculate current nudging time scale and horizontal !-- means of u, v, pt and q IF ( nudging ) THEN CALL calc_tnudge( simulated_time ) CALL calc_mean_profile( u, 1 ) CALL calc_mean_profile( v, 2 ) CALL calc_mean_profile( pt, 4 ) CALL calc_mean_profile( q, 41 ) ENDIF ! !-- Execute all other module actions routunes CALL module_interface_actions( 'before_prognostic_equations' ) ! !-- Solve the prognostic equations. A fast cache optimized version with !-- only one single loop is used in case of Piascek-Williams advection !-- scheme. NEC vector machines use a different version, because !-- in the other versions a good vectorization is prohibited due to !-- inlining problems. IF ( loop_optimization == 'cache' ) THEN CALL prognostic_equations_cache ELSEIF ( loop_optimization == 'vector' ) THEN CALL prognostic_equations_vector ENDIF ! !-- Movement of agents in multi agent system IF ( agents_active .AND. time_since_reference_point >= multi_agent_system_start .AND. & time_since_reference_point <= multi_agent_system_end .AND. & intermediate_timestep_count == 1 ) & THEN CALL multi_agent_system first_call_mas = .FALSE. ENDIF ! !-- Exchange of ghost points (lateral boundary conditions) CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' ) CALL exchange_horiz( u_p, nbgp ) CALL exchange_horiz( v_p, nbgp ) CALL exchange_horiz( w_p, nbgp ) CALL exchange_horiz( pt_p, nbgp ) IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e_p, nbgp ) IF ( rans_tke_e .OR. wang_kernel .OR. collision_turbulence & .OR. use_sgs_for_particles ) THEN IF ( rans_tke_e ) THEN CALL exchange_horiz( diss_p, nbgp ) ELSE CALL exchange_horiz( diss, nbgp ) ENDIF ENDIF IF ( ocean_mode ) THEN CALL exchange_horiz( sa_p, nbgp ) CALL exchange_horiz( rho_ocean, nbgp ) CALL exchange_horiz( prho, nbgp ) ENDIF IF ( humidity ) THEN CALL exchange_horiz( q_p, nbgp ) IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN CALL exchange_horiz( qc_p, nbgp ) CALL exchange_horiz( nc_p, nbgp ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN CALL exchange_horiz( qr_p, nbgp ) CALL exchange_horiz( nr_p, nbgp ) ENDIF ENDIF IF ( passive_scalar ) CALL exchange_horiz( s_p, nbgp ) IF ( air_chemistry ) THEN DO lsp = 1, nvar CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp ) ENDDO ENDIF IF ( salsa .AND. time_since_reference_point >= skip_time_do_salsa ) THEN DO ib = 1, nbins_aerosol CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp ) DO ic = 1, ncomponents_mass icc = ( ic - 1 ) * nbins_aerosol + ib CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp ) ENDDO ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO ig = 1, ngases_salsa CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp ) ENDDO ENDIF ENDIF CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' ) ! !-- Boundary conditions for the prognostic quantities (except of the !-- velocities at the outflow in case of a non-cyclic lateral wall) and !-- boundary conditions for module-specific variables CALL module_interface_boundary_conditions ! !-- Incrementing timestep counter timestep_count = timestep_count + 1 CALL cpu_log( log_point(28), 'swap_timelevel', 'start' ) ! !-- Set the swap level for all modules CALL module_interface_swap_timelevel( MOD( timestep_count, 2) ) ! !-- Set the swap level for steering the pmc data transfer IF ( nested_run ) CALL pmci_set_swaplevel( MOD( timestep_count, 2) + 1 ) !> @todo: why the +1 ? CALL cpu_log( log_point(28), 'swap_timelevel', 'stop' ) ! !-- Vertical nesting: Interpolate fine grid data to the coarse grid IF ( vnest_init ) THEN CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' ) CALL vnest_anterpolate CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' ) ENDIF IF ( nested_run ) THEN CALL cpu_log( log_point(60), 'nesting', 'start' ) ! !-- Domain nesting. The data transfer subroutines pmci_parent_datatrans !-- and pmci_child_datatrans are called inside the wrapper !-- subroutine pmci_datatrans according to the control parameters !-- nesting_mode and nesting_datatransfer_mode. !-- TO_DO: why is nesting_mode given as a parameter here? CALL pmci_datatrans( nesting_mode ) IF ( TRIM( nesting_mode ) == 'two-way' .OR. nesting_mode == 'vertical' ) THEN CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'start' ) ! !-- Exchange_horiz is needed for all parent-domains after the !-- anterpolation CALL exchange_horiz( u, nbgp ) CALL exchange_horiz( v, nbgp ) CALL exchange_horiz( w, nbgp ) IF ( .NOT. neutral ) CALL exchange_horiz( pt, nbgp ) IF ( humidity ) THEN CALL exchange_horiz( q, nbgp ) IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN CALL exchange_horiz( qc, nbgp ) CALL exchange_horiz( nc, nbgp ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN CALL exchange_horiz( qr, nbgp ) CALL exchange_horiz( nr, nbgp ) ENDIF ENDIF IF ( passive_scalar ) CALL exchange_horiz( s, nbgp ) IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) IF ( .NOT. constant_diffusion .AND. rans_mode .AND. rans_tke_e ) THEN CALL exchange_horiz( diss, nbgp ) ENDIF IF ( air_chemistry ) THEN DO n = 1, nvar CALL exchange_horiz( chem_species(n)%conc, nbgp ) ENDDO ENDIF IF ( salsa .AND. time_since_reference_point >= skip_time_do_salsa ) THEN DO ib = 1, nbins_aerosol CALL exchange_horiz( aerosol_number(ib)%conc, nbgp ) DO ic = 1, ncomponents_mass icc = ( ic - 1 ) * nbins_aerosol + ib CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp ) ENDDO ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO ig = 1, ngases_salsa CALL exchange_horiz( salsa_gas(ig)%conc, nbgp ) ENDDO ENDIF ENDIF CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'stop' ) ENDIF ! !-- Set boundary conditions again after interpolation and anterpolation. CALL pmci_boundary_conds ! !-- Set chemistry boundary conditions (decycling) IF ( air_chemistry ) THEN DO lsp = 1, nvar lsp_usr = 1 DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' ) IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) ) THEN CALL chem_boundary_conds( chem_species(lsp)%conc, & chem_species(lsp)%conc_pr_init ) ENDIF lsp_usr = lsp_usr + 1 ENDDO ENDDO ENDIF ! !-- Set SALSA boundary conditions (decycling) IF ( salsa .AND. time_since_reference_point >= skip_time_do_salsa ) THEN DO ib = 1, nbins_aerosol CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init ) DO ic = 1, ncomponents_mass icc = ( ic - 1 ) * nbins_aerosol + ib CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init ) ENDDO ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO ig = 1, ngases_salsa CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init ) ENDDO ENDIF ENDIF CALL cpu_log( log_point(60), 'nesting', 'stop' ) ENDIF ! !-- Temperature offset must be imposed at cyclic boundaries in x-direction !-- when a sloping surface is used IF ( sloping_surface ) THEN IF ( nxl == 0 ) pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset IF ( nxr == nx ) pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset ENDIF ! !-- Impose a turbulent inflow using the recycling method IF ( turbulent_inflow ) CALL inflow_turbulence ! !-- Set values at outflow boundary using the special outflow condition IF ( turbulent_outflow ) CALL outflow_turbulence ! !-- Impose a random perturbation on the horizontal velocity field IF ( create_disturbances .AND. ( call_psolver_at_all_substeps .AND. & intermediate_timestep_count == intermediate_timestep_count_max ) & .OR. ( .NOT. call_psolver_at_all_substeps .AND. intermediate_timestep_count == 1 ) ) & THEN time_disturb = time_disturb + dt_3d IF ( time_disturb >= dt_disturb ) THEN IF ( disturbance_energy_limit /= 0.0_wp .AND. & hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit ) THEN CALL disturb_field( 'u', tend, u ) CALL disturb_field( 'v', tend, v ) ELSEIF ( ( .NOT. bc_lr_cyc .OR. .NOT. bc_ns_cyc ) & .AND. .NOT. child_domain .AND. .NOT. nesting_offline ) & THEN ! !-- Runs with a non-cyclic lateral wall need perturbations !-- near the inflow throughout the whole simulation dist_range = 1 CALL disturb_field( 'u', tend, u ) CALL disturb_field( 'v', tend, v ) dist_range = 0 ENDIF time_disturb = time_disturb - dt_disturb ENDIF ENDIF ! !-- Map forcing data derived from larger scale model onto domain !-- boundaries. Further, update geostrophic wind components. IF ( nesting_offline .AND. intermediate_timestep_count == & intermediate_timestep_count_max ) THEN !-- Determine interpolation factor before boundary conditions and geostrophic wind !-- is updated. CALL nesting_offl_interpolation_factor CALL nesting_offl_bc CALL nesting_offl_geostrophic_wind ENDIF ! !-- Impose a turbulent inflow using synthetic generated turbulence. IF ( use_syn_turb_gen .AND. & intermediate_timestep_count == intermediate_timestep_count_max ) THEN CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' ) CALL stg_main CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' ) ENDIF ! !-- Ensure mass conservation. This need to be done after imposing !-- synthetic turbulence and top boundary condition for pressure is set to !-- Neumann conditions. !-- Is this also required in case of Dirichlet? IF ( nesting_offline ) CALL nesting_offl_mass_conservation ! !-- Reduce the velocity divergence via the equation for perturbation !-- pressure. IF ( intermediate_timestep_count == 1 .OR. & call_psolver_at_all_substeps ) THEN IF ( vnest_init ) THEN ! !-- Compute pressure in the CG, interpolate top boundary conditions !-- to the FG and then compute pressure in the FG IF ( coupling_mode == 'vnested_crse' ) CALL pres CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' ) CALL vnest_boundary_conds CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' ) IF ( coupling_mode == 'vnested_fine' ) CALL pres !-- Anterpolate TKE, satisfy Germano Identity CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' ) CALL vnest_anterpolate_e CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' ) ELSE ! !-- Mass (volume) flux correction to ensure global mass conservation for child domains. IF ( child_domain ) THEN IF ( nesting_mode == 'vertical' ) THEN CALL pmci_ensure_nest_mass_conservation_vertical ELSE CALL pmci_ensure_nest_mass_conservation ENDIF ENDIF CALL pres ENDIF ENDIF ! !-- Particle transport/physics with the Lagrangian particle model !-- (only once during intermediate steps, because it uses an Euler-step) !-- ### particle model should be moved before prognostic_equations, in order !-- to regard droplet interactions directly CALL module_interface_actions( 'after_pressure_solver' ) ! !-- Interaction of droplets with temperature and mixing ratio. !-- Droplet condensation and evaporation is calculated within !-- advec_particles. ! !-- If required, compute liquid water content IF ( bulk_cloud_model ) THEN CALL calc_liquid_water_content ENDIF ! !-- If required, compute virtual potential temperature IF ( humidity ) THEN CALL compute_vpt ENDIF ! !-- Compute the diffusion quantities IF ( .NOT. constant_diffusion ) THEN ! !-- Determine surface fluxes shf and qsws and surface values !-- pt_surface and q_surface in dependence on data from external !-- file LSF_DATA respectively IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. & intermediate_timestep_count == intermediate_timestep_count_max ) & THEN CALL ls_forcing_surf( simulated_time ) ENDIF ! !-- First the vertical (and horizontal) fluxes in the surface !-- (constant flux) layer are computed IF ( constant_flux_layer ) THEN CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' ) CALL surface_layer_fluxes CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' ) ENDIF ! !-- If required, solve the energy balance for the surface and run soil !-- model. Call for horizontal as well as vertical surfaces IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm) THEN CALL cpu_log( log_point(54), 'land_surface', 'start' ) ! !-- Call for horizontal upward-facing surfaces CALL lsm_energy_balance( .TRUE., -1 ) CALL lsm_soil_model( .TRUE., -1, .TRUE. ) ! !-- Call for northward-facing surfaces CALL lsm_energy_balance( .FALSE., 0 ) CALL lsm_soil_model( .FALSE., 0, .TRUE. ) ! !-- Call for southward-facing surfaces CALL lsm_energy_balance( .FALSE., 1 ) CALL lsm_soil_model( .FALSE., 1, .TRUE. ) ! !-- Call for eastward-facing surfaces CALL lsm_energy_balance( .FALSE., 2 ) CALL lsm_soil_model( .FALSE., 2, .TRUE. ) ! !-- Call for westward-facing surfaces CALL lsm_energy_balance( .FALSE., 3 ) CALL lsm_soil_model( .FALSE., 3, .TRUE. ) ! !-- At the end, set boundary conditons for potential temperature !-- and humidity after running the land-surface model. This !-- might be important for the nesting, where arrays are transfered. CALL lsm_boundary_condition CALL cpu_log( log_point(54), 'land_surface', 'stop' ) ENDIF ! !-- If required, solve the energy balance for urban surfaces and run !-- the material heat model IF (urban_surface) THEN CALL cpu_log( log_point(74), 'urban_surface', 'start' ) CALL usm_surface_energy_balance( .FALSE. ) IF ( usm_material_model ) THEN CALL usm_green_heat_model CALL usm_material_heat_model ( .FALSE. ) ENDIF ! !-- At the end, set boundary conditons for potential temperature !-- and humidity after running the urban-surface model. This !-- might be important for the nesting, where arrays are transfered. CALL usm_boundary_condition CALL cpu_log( log_point(74), 'urban_surface', 'stop' ) ENDIF ! !-- Compute the diffusion coefficients CALL cpu_log( log_point(17), 'diffusivities', 'start' ) IF ( .NOT. humidity ) THEN IF ( ocean_mode ) THEN CALL tcm_diffusivities( prho, prho_reference ) ELSE CALL tcm_diffusivities( pt, pt_reference ) ENDIF ELSE CALL tcm_diffusivities( vpt, pt_reference ) ENDIF CALL cpu_log( log_point(17), 'diffusivities', 'stop' ) ! !-- Vertical nesting: set fine grid eddy viscosity top boundary condition IF ( vnest_init ) CALL vnest_boundary_conds_khkm ENDIF ENDDO ! Intermediate step loop ! !-- Will be used at some point by flow_statistics. !$ACC UPDATE & !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) & !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0)) ! !-- If required, calculate radiative fluxes and heating rates IF ( radiation .AND. time_since_reference_point > skip_time_do_radiation ) THEN time_radiation = time_radiation + dt_3d IF ( time_radiation >= dt_radiation .OR. force_radiation_call ) THEN CALL cpu_log( log_point(50), 'radiation', 'start' ) IF ( .NOT. force_radiation_call ) THEN time_radiation = time_radiation - dt_radiation ENDIF ! !-- Adjust the current time to the time step of the radiation model. !-- Needed since radiation is pre-calculated and stored only on apparent !-- solar positions time_since_reference_point_save = time_since_reference_point time_since_reference_point = REAL( FLOOR( time_since_reference_point / & dt_radiation ), wp ) * dt_radiation CALL radiation_control IF ( ( urban_surface .OR. land_surface ) .AND. radiation_interactions ) THEN CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' ) CALL radiation_interaction CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' ) ENDIF ! !-- Return the current time to its original value time_since_reference_point = time_since_reference_point_save CALL cpu_log( log_point(50), 'radiation', 'stop' ) ENDIF ENDIF ! !-- If required, consider chemical emissions IF ( air_chemistry .AND. emissions_anthropogenic ) THEN ! !-- Call emission routine only once an hour !> @todo Move check of hour_call_emis into chem_emissions_setup CALL get_date_time( time_since_reference_point, hour=hour ) IF ( hour_call_emis /= hour ) THEN !> @question Which of these two if-statements is correct? ! IF ( hour_of_year > hour_call_emis ) THEN CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars ) hour_call_emis = hour ENDIF ENDIF ! !-- If required, consider aerosol emissions for the salsa model IF ( salsa ) THEN ! !-- Call emission routine to update emissions if needed CALL salsa_emission_update ENDIF ! !-- If required, calculate indoor temperature, waste heat, heat flux !-- through wall, etc. !-- dt_indoor steers the frequency of the indoor model calculations. !-- Note, at first timestep indoor model is called, in order to provide !-- a waste heat flux. IF ( indoor_model ) THEN time_indoor = time_indoor + dt_3d IF ( time_indoor >= dt_indoor .OR. current_timestep_number == 0 ) THEN time_indoor = time_indoor - dt_indoor CALL cpu_log( log_point(76), 'indoor_model', 'start' ) CALL im_main_heatcool CALL cpu_log( log_point(76), 'indoor_model', 'stop' ) ENDIF ENDIF ! !-- Increase simulation time and output times nr_timesteps_this_run = nr_timesteps_this_run + 1 current_timestep_number = current_timestep_number + 1 simulated_time = simulated_time + dt_3d time_since_reference_point = simulated_time - coupling_start_time simulated_time_chr = time_to_string( time_since_reference_point ) IF ( time_since_reference_point >= skip_time_data_output_av ) THEN time_do_av = time_do_av + dt_3d ENDIF IF ( time_since_reference_point >= skip_time_do2d_xy ) THEN time_do2d_xy = time_do2d_xy + dt_3d ENDIF IF ( time_since_reference_point >= skip_time_do2d_xz ) THEN time_do2d_xz = time_do2d_xz + dt_3d ENDIF IF ( time_since_reference_point >= skip_time_do2d_yz ) THEN time_do2d_yz = time_do2d_yz + dt_3d ENDIF IF ( time_since_reference_point >= skip_time_do3d ) THEN time_do3d = time_do3d + dt_3d ENDIF DO mid = 1, masks IF ( time_since_reference_point >= skip_time_domask(mid) ) THEN time_domask(mid)= time_domask(mid) + dt_3d ENDIF ENDDO IF ( time_since_reference_point >= skip_time_dosp ) THEN time_dosp = time_dosp + dt_3d ENDIF time_dots = time_dots + dt_3d IF ( .NOT. first_call_lpm ) THEN time_dopts = time_dopts + dt_3d ENDIF IF ( time_since_reference_point >= skip_time_dopr ) THEN time_dopr = time_dopr + dt_3d ENDIF time_dopr_listing = time_dopr_listing + dt_3d time_run_control = time_run_control + dt_3d ! !-- Increment time-counter for surface output IF ( surface_output ) THEN IF ( time_since_reference_point >= skip_time_dosurf ) THEN time_dosurf = time_dosurf + dt_3d ENDIF IF ( time_since_reference_point >= skip_time_dosurf_av ) THEN time_dosurf_av = time_dosurf_av + dt_3d ENDIF ENDIF ! !-- Increment time-counter for virtual measurements IF ( virtual_measurement .AND. vm_time_start <= time_since_reference_point ) THEN time_virtual_measurement = time_virtual_measurement + dt_3d ENDIF ! !-- In case of synthetic turbulence generation and parametrized turbulence !-- information, update the time counter and if required, adjust the !-- STG to new atmospheric conditions. IF ( use_syn_turb_gen ) THEN IF ( parametrize_inflow_turbulence ) THEN time_stg_adjust = time_stg_adjust + dt_3d IF ( time_stg_adjust >= dt_stg_adjust ) THEN CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' ) CALL stg_adjust CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' ) ENDIF ENDIF time_stg_call = time_stg_call + dt_3d ENDIF ! !-- Data exchange between coupled models IF ( coupling_mode /= 'uncoupled' .AND. run_coupled .AND. .NOT. vnested ) THEN time_coupling = time_coupling + dt_3d ! !-- In case of model termination initiated by the local model !-- (terminate_coupled > 0), the coupler must be skipped because it would !-- cause an MPI intercomminucation hang. !-- If necessary, the coupler will be called at the beginning of the !-- next restart run. DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 ) CALL surface_coupler time_coupling = time_coupling - dt_coupling ENDDO ENDIF ! !-- Biometeorology calculation of stationary thermal indices !-- Todo (kanani): biometeorology needs own time_... treatment. !-- It might be that time_do2d_xy differs from time_do3d, !-- and then we might get trouble with the biomet output, !-- because we can have 2d and/or 3d biomet output!! IF ( biometeorology & .AND. ( ( time_do3d >= dt_do3d .AND. time_since_reference_point >= skip_time_do3d ) & .OR. & ( time_do2d_xy >= dt_do2d_xy .AND. time_since_reference_point >= skip_time_do2d_xy ) & ) ) THEN ! !-- If required, do thermal comfort calculations IF ( thermal_comfort ) THEN CALL bio_calculate_thermal_index_maps ( .FALSE. ) ENDIF ! !-- If required, do UV exposure calculations IF ( uv_exposure ) THEN CALL bio_calculate_uv_exposure ENDIF ENDIF ! !-- Execute alle other module actions routunes CALL module_interface_actions( 'after_integration' ) ! !-- If Galilei transformation is used, determine the distance that the !-- model has moved so far IF ( galilei_transformation ) THEN advected_distance_x = advected_distance_x + u_gtrans * dt_3d advected_distance_y = advected_distance_y + v_gtrans * dt_3d ENDIF ! !-- Check, if restart is necessary (because cpu-time is expiring or !-- because it is forced by user) and set stop flag !-- This call is skipped if the remote model has already initiated a restart. IF ( .NOT. terminate_run ) CALL check_for_restart ! !-- Carry out statistical analysis and output at the requested output times. !-- The MOD function is used for calculating the output time counters (like !-- time_dopr) in order to regard a possible decrease of the output time !-- interval in case of restart runs ! !-- Set a flag indicating that so far no statistics have been created !-- for this time step flow_statistics_called = .FALSE. ! !-- If required, call flow_statistics for averaging in time IF ( averaging_interval_pr /= 0.0_wp .AND. & ( dt_dopr - time_dopr ) <= averaging_interval_pr .AND. & time_since_reference_point >= skip_time_dopr ) THEN time_dopr_av = time_dopr_av + dt_3d IF ( time_dopr_av >= dt_averaging_input_pr ) THEN do_sum = .TRUE. time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) ) ENDIF ENDIF IF ( do_sum ) CALL flow_statistics ! !-- Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data IF ( averaging_interval /= 0.0_wp .AND. & ( dt_data_output_av - time_do_av ) <= averaging_interval .AND. & time_since_reference_point >= skip_time_data_output_av ) & THEN time_do_sla = time_do_sla + dt_3d IF ( time_do_sla >= dt_averaging_input ) THEN IF ( current_timestep_number > timestep_number_at_prev_calc ) & CALL doq_calculate CALL sum_up_3d_data average_count_3d = average_count_3d + 1 time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) ) ENDIF ENDIF ! !-- Average surface data IF ( surface_output ) THEN IF ( averaging_interval_surf /= 0.0_wp & .AND. ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf & .AND. time_since_reference_point >= skip_time_dosurf_av ) THEN IF ( time_dosurf_av >= dt_averaging_input ) THEN CALL surface_data_output_averaging average_count_surf = average_count_surf + 1 ENDIF ENDIF ENDIF ! !-- Calculate spectra for time averaging IF ( averaging_interval_sp /= 0.0_wp .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp& .AND. time_since_reference_point >= skip_time_dosp ) THEN time_dosp_av = time_dosp_av + dt_3d IF ( time_dosp_av >= dt_averaging_input_pr ) THEN CALL calc_spectra time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) ) ENDIF ENDIF ! !-- Call flight module and output data IF ( virtual_flight ) THEN CALL flight_measurement CALL data_output_flight ENDIF ! !-- Take virtual measurements IF ( virtual_measurement .AND. time_virtual_measurement >= dt_virtual_measurement & .AND. vm_time_start <= time_since_reference_point ) THEN CALL vm_sampling CALL vm_data_output time_virtual_measurement = MOD( time_virtual_measurement, & MAX( dt_virtual_measurement, dt_3d ) ) ENDIF ! !-- Profile output (ASCII) on file IF ( time_dopr_listing >= dt_dopr_listing ) THEN CALL print_1d time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) ) ENDIF ! !-- Graphic output for PROFIL IF ( time_dopr >= dt_dopr .AND. time_since_reference_point >= skip_time_dopr ) THEN IF ( dopr_n /= 0 ) CALL data_output_profiles time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) ) time_dopr_av = 0.0_wp ! due to averaging (see above) ENDIF ! !-- Graphic output for time series IF ( time_dots >= dt_dots ) THEN CALL data_output_tseries time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) ) ENDIF ! !-- Output of spectra (formatted for use with PROFIL), in case of no !-- time averaging, spectra has to be calculated before IF ( time_dosp >= dt_dosp .AND. time_since_reference_point >= skip_time_dosp ) THEN IF ( average_count_sp == 0 ) CALL calc_spectra CALL data_output_spectra time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) ) ENDIF ! !-- 2d-data output (cross-sections) IF ( time_do2d_xy >= dt_do2d_xy .AND. time_since_reference_point >= skip_time_do2d_xy ) THEN IF ( current_timestep_number > timestep_number_at_prev_calc ) & CALL doq_calculate CALL data_output_2d( 'xy', 0 ) time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) ) ENDIF IF ( time_do2d_xz >= dt_do2d_xz .AND. time_since_reference_point >= skip_time_do2d_xz ) THEN IF ( current_timestep_number > timestep_number_at_prev_calc ) & CALL doq_calculate CALL data_output_2d( 'xz', 0 ) time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) ) ENDIF IF ( time_do2d_yz >= dt_do2d_yz .AND. time_since_reference_point >= skip_time_do2d_yz ) THEN IF ( current_timestep_number > timestep_number_at_prev_calc ) & CALL doq_calculate CALL data_output_2d( 'yz', 0 ) time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) ) ENDIF ! !-- 3d-data output (volume data) IF ( time_do3d >= dt_do3d .AND. time_since_reference_point >= skip_time_do3d ) THEN IF ( current_timestep_number > timestep_number_at_prev_calc ) & CALL doq_calculate CALL data_output_3d( 0 ) time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) ) ENDIF ! !-- Masked data output DO mid = 1, masks IF ( time_domask(mid) >= dt_domask(mid) & .AND. time_since_reference_point >= skip_time_domask(mid) ) THEN IF ( current_timestep_number > timestep_number_at_prev_calc ) & CALL doq_calculate CALL data_output_mask( 0, mid ) time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) ) ENDIF ENDDO ! !-- Output of time-averaged 2d/3d/masked data IF ( time_do_av >= dt_data_output_av & .AND. time_since_reference_point >= skip_time_data_output_av ) THEN CALL average_3d_data ! !-- Udate thermal comfort indices based on updated averaged input IF ( biometeorology .AND. thermal_comfort ) THEN CALL bio_calculate_thermal_index_maps ( .TRUE. ) ENDIF CALL data_output_2d( 'xy', 1 ) CALL data_output_2d( 'xz', 1 ) CALL data_output_2d( 'yz', 1 ) CALL data_output_3d( 1 ) DO mid = 1, masks CALL data_output_mask( 1, mid ) ENDDO time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) ) ENDIF ! !-- Output of surface data, instantaneous and averaged data IF ( surface_output ) THEN IF ( time_dosurf >= dt_dosurf .AND. time_since_reference_point >= skip_time_dosurf ) THEN CALL surface_data_output( 0 ) time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) ) ENDIF IF ( time_dosurf_av >= dt_dosurf_av .AND. time_since_reference_point >= skip_time_dosurf_av ) THEN CALL surface_data_output( 1 ) time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) ) ENDIF ENDIF ! !-- Output of particle time series IF ( particle_advection ) THEN IF ( time_dopts >= dt_dopts .OR. & ( time_since_reference_point >= particle_advection_start .AND. & first_call_lpm ) ) THEN CALL lpm_data_output_ptseries time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) ) ENDIF ENDIF ! !-- If required, set the heat flux for the next time step to a random value IF ( constant_heatflux .AND. random_heatflux ) THEN IF ( surf_def_h(0)%ns >= 1 ) THEN CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' ) CALL disturb_heatflux( surf_def_h(0) ) CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' ) ENDIF IF ( surf_lsm_h%ns >= 1 ) THEN CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' ) CALL disturb_heatflux( surf_lsm_h ) CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' ) ENDIF IF ( surf_usm_h%ns >= 1 ) THEN CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' ) CALL disturb_heatflux( surf_usm_h ) CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' ) ENDIF ENDIF ! !-- Execute alle other module actions routunes CALL module_interface_actions( 'after_timestep' ) ! !-- Determine size of next time step. Save timestep dt_3d because it is !-- newly calculated in routine timestep, but required further below for !-- steering the run control output interval dt_3d_old = dt_3d CALL timestep ! !-- Synchronize the timestep in case of nested run. IF ( nested_run ) THEN ! !-- Synchronize by unifying the time step. !-- Global minimum of all time-steps is used for all. CALL pmci_synchronize ENDIF ! !-- Computation and output of run control parameters. !-- This is also done whenever perturbations have been imposed IF ( time_run_control >= dt_run_control .OR. & timestep_scheme(1:5) /= 'runge' .OR. disturbance_created ) & THEN CALL run_control IF ( time_run_control >= dt_run_control ) THEN time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) ) ENDIF ENDIF ! !-- Output elapsed simulated time in form of a progress bar on stdout IF ( myid == 0 ) CALL output_progress_bar CALL cpu_log( log_point_s(10), 'timesteps', 'stop' ) ENDDO ! time loop #if defined( _OPENACC ) CALL exit_surface_arrays #endif !$ACC END DATA !$ACC END DATA !$ACC END DATA !$ACC END DATA !$ACC END DATA !$ACC END DATA !$ACC END DATA ! !-- Vertical nesting: Deallocate variables initialized for vertical nesting IF ( vnest_init ) CALL vnest_deallocate IF ( myid == 0 ) CALL finish_progress_bar CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' ) END SUBROUTINE time_integration