!> @file time_integration.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2019 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: time_integration.f90 3684 2019-01-20 20:20:58Z maronga $ ! Rename subroutines for surface-data output ! ! 3647 2019-01-02 14:10:44Z kanani ! Bugfix: add time_since_reference_point to IF clause for data_output calls ! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0). ! Clean up indoor_model and biometeorology model call. ! ! 3646 2018-12-28 17:58:49Z kanani ! Bugfix: use time_since_reference_point instead of simulated_time where ! required (relevant when using wall/soil spinup) ! ! 3634 2018-12-18 12:31:28Z knoop ! OpenACC port for SPEC ! ! 3597 2018-12-04 08:40:18Z maronga ! Removed call to calculation of near air (10 cm) potential temperature (now in ! surface layer fluxes) ! ! 3589 2018-11-30 15:09:51Z suehring ! Move the control parameter "salsa" from salsa_mod to control_parameters ! (M. Kurppa) ! ! 3582 2018-11-29 19:16:36Z suehring ! dom_dwd_user, Schrempf: ! Changes due to merge of uv exposure model into biometeorology_mod. ! ! 3525 2018-11-14 16:06:14Z kanani ! Changes related to clean-up of biometeorology (dom_dwd_user) ! ! 3524 2018-11-14 13:36:44Z raasch ! unused variables removed ! ! 3484 2018-11-02 14:41:25Z hellstea ! pmci_ensure_nest_mass_conservation is premanently removed ! ! 3473 2018-10-30 20:50:15Z suehring ! new module for virtual measurements introduced ! ! 3472 2018-10-30 20:43:50Z suehring ! Add indoor model (kanani, srissman, tlang) ! ! 3467 2018-10-30 19:05:21Z suehring ! Implementation of a new aerosol module salsa. ! ! 3448 2018-10-29 18:14:31Z kanani ! Add biometeorology ! ! 3421 2018-10-24 18:39:32Z gronemeier ! Surface data output ! ! 3418 2018-10-24 16:07:39Z kanani ! call to material_heat_model now with check if spinup runs (rvtils) ! ! 3378 2018-10-19 12:34:59Z kanani ! merge from radiation branch (r3362) into trunk ! (moh.hefny): ! Bugfix in the if statement to call radiation_interaction ! ! 3347 2018-10-15 14:21:08Z suehring ! - offline nesting separated from large-scale forcing module ! - changes for synthetic turbulence generator ! ! 3343 2018-10-15 10:38:52Z suehring ! - Formatting, clean-up, comments (kanani) ! - Added CALL to chem_emissions_setup (Russo) ! - Code added for decycling chemistry (basit) ! ! 3294 2018-10-01 02:37:10Z raasch ! changes concerning modularization of ocean option ! ! 3274 2018-09-24 15:42:55Z knoop ! Modularization of all bulk cloud physics code components ! ! 3241 2018-09-12 15:02:00Z raasch ! unused variables removed ! ! 3198 2018-08-15 09:23:10Z sward ! Added multi_agent_system_end; defined start time for MAS relative to ! time_since_reference_point ! ! 3183 2018-07-27 14:25:55Z suehring ! Replace simulated_time by time_since_reference_point in COSMO nesting mode. ! Rename subroutines and variables in COSMO nesting mode ! ! 3182 2018-07-27 13:36:03Z suehring ! Added multi agent system ! ! 3042 2018-05-25 10:44:37Z schwenkel ! Changed the name specific humidity to mixing ratio ! ! 3040 2018-05-25 10:22:08Z schwenkel ! Fixed bug in IF statement ! Ensure that the time when calling the radiation to be the time step of the ! pre-calculated time when first calculate the positions of the sun ! ! 3004 2018-04-27 12:33:25Z Giersch ! First call of flow_statistics has been removed. It is already called in ! run_control itself ! ! 2984 2018-04-18 11:51:30Z hellstea ! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out) ! as seemingly unnecessary. ! ! 2941 2018-04-03 11:54:58Z kanani ! Deduct spinup_time from RUN_CONTROL output of main 3d run ! (use time_since_reference_point instead of simulated_time) ! ! 2938 2018-03-27 15:52:42Z suehring ! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied ! ! 2936 2018-03-27 14:49:27Z suehring ! Little formatting adjustment. ! ! 2817 2018-02-19 16:32:21Z knoop ! Preliminary gust module interface implemented ! ! 2801 2018-02-14 16:01:55Z thiele ! Changed lpm from subroutine to module. ! Introduce particle transfer in nested models. ! ! 2776 2018-01-31 10:44:42Z Giersch ! Variable use_synthetic_turbulence_generator has been abbreviated ! ! 2773 2018-01-30 14:12:54Z suehring ! - Nesting for chemical species ! ! 2766 2018-01-22 17:17:47Z kanani ! Removed preprocessor directive __chem ! ! 2718 2018-01-02 08:49:38Z maronga ! Corrected "Former revisions" section ! ! 2696 2017-12-14 17:12:51Z kanani ! - Change in file header (GPL part) ! - Implementation of uv exposure model (FK) ! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG) ! - renamed diffusivities to tcm_diffusivities (TG) ! - implement prognostic equation for diss (TG) ! - Moved/commented CALL to chem_emissions (FK) ! - Added CALL to chem_emissions (FK) ! - Implementation of chemistry module (FK) ! - Calls for setting boundary conditions in USM and LSM (MS) ! - Large-scale forcing with larger-scale models implemented (MS) ! - Rename usm_radiation into radiation_interactions; merge with branch ! radiation (MS) ! - added call for usm_green_heat_model for green building surfaces (RvT) ! - added call for usm_temperature_near_surface for use in indoor model (RvT) ! ! 2617 2017-11-16 12:47:24Z suehring ! Bugfix, assure that the reference state does not become zero. ! ! 2563 2017-10-19 15:36:10Z Giersch ! Variable wind_turbine moved to module control_parameters ! ! 2365 2017-08-21 14:59:59Z kanani ! Vertical grid nesting implemented (SadiqHuq) ! ! 2320 2017-07-21 12:47:43Z suehring ! Set bottom boundary conditions after nesting interpolation and anterpolation ! ! 2299 2017-06-29 10:14:38Z maronga ! Call of soil model adjusted ! ! 2292 2017-06-20 09:51:42Z schwenkel ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' ! includes two more prognostic equations for cloud drop concentration (nc) ! and cloud water content (qc). ! ! 2271 2017-06-09 12:34:55Z sward ! Start timestep message changed ! ! 2259 2017-06-08 09:09:11Z gronemeier ! Implemented synthetic turbulence generator ! ! 2233 2017-05-30 18:08:54Z suehring ! ! 2232 2017-05-30 17:47:52Z suehring ! Adjustments to new topography and surface concept ! Modify passed parameters for disturb_field ! ! 2178 2017-03-17 11:07:39Z hellstea ! Setting perturbations at all times near inflow boundary is removed ! in case of nested boundaries ! ! 2174 2017-03-13 08:18:57Z maronga ! Added support for nesting with cloud microphysics ! ! 2118 2017-01-17 16:38:49Z raasch ! OpenACC directives and related code removed ! ! 2050 2016-11-08 15:00:55Z gronemeier ! Implement turbulent outflow condition ! ! 2031 2016-10-21 15:11:58Z knoop ! renamed variable rho to rho_ocean ! ! 2011 2016-09-19 17:29:57Z kanani ! Flag urban_surface is now defined in module control_parameters, ! removed commented CALLs of global_min_max. ! ! 2007 2016-08-24 15:47:17Z kanani ! Added CALLs for new urban surface model ! ! 2000 2016-08-20 18:09:15Z knoop ! Forced header and separation lines into 80 columns ! ! 1976 2016-07-27 13:28:04Z maronga ! Simplified calls to radiation model ! ! 1960 2016-07-12 16:34:24Z suehring ! Separate humidity and passive scalar ! ! 1957 2016-07-07 10:43:48Z suehring ! flight module added ! ! 1919 2016-05-27 14:51:23Z raasch ! Initial version of purely vertical nesting introduced. ! ! 1918 2016-05-27 14:35:57Z raasch ! determination of time step moved to the end of the time step loop, ! the first time step is now always calculated before the time step loop (i.e. ! also in case of restart runs) ! ! 1914 2016-05-26 14:44:07Z witha ! Added call for wind turbine model ! ! 1878 2016-04-19 12:30:36Z hellstea ! Synchronization for nested runs rewritten ! ! 1853 2016-04-11 09:00:35Z maronga ! Adjusted for use with radiation_scheme = constant ! ! 1849 2016-04-08 11:33:18Z hoffmann ! Adapted for modularization of microphysics ! ! 1833 2016-04-07 14:23:03Z raasch ! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod ! ! 1831 2016-04-07 13:15:51Z hoffmann ! turbulence renamed collision_turbulence ! ! 1822 2016-04-07 07:49:42Z hoffmann ! icloud_scheme replaced by microphysics_* ! ! 1808 2016-04-05 19:44:00Z raasch ! output message in case unscheduled radiation calls removed ! ! 1797 2016-03-21 16:50:28Z raasch ! introduction of different datatransfer modes ! ! 1791 2016-03-11 10:41:25Z raasch ! call of pmci_update_new removed ! ! 1786 2016-03-08 05:49:27Z raasch ! +module spectrum ! ! 1783 2016-03-06 18:36:17Z raasch ! switch back of netcdf data format for mask output moved to the mask output ! routine ! ! 1781 2016-03-03 15:12:23Z raasch ! some pmc calls removed at the beginning (before timeloop), ! pmc initialization moved to the main program ! ! 1764 2016-02-28 12:45:19Z raasch ! PMC_ACTIVE flags removed, ! bugfix: nest synchronization after first call of timestep ! ! 1762 2016-02-25 12:31:13Z hellstea ! Introduction of nested domain feature ! ! 1736 2015-12-04 08:56:33Z raasch ! no perturbations added to total domain if energy limit has been set zero ! ! 1691 2015-10-26 16:17:44Z maronga ! Added option for spin-ups without land surface and radiation models. Moved calls ! for radiation and lan surface schemes. ! ! 1682 2015-10-07 23:56:08Z knoop ! Code annotations made doxygen readable ! ! 1671 2015-09-25 03:29:37Z raasch ! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used ! for particles ! ! 1585 2015-04-30 07:05:52Z maronga ! Moved call of radiation scheme. Added support for RRTM ! ! 1551 2015-03-03 14:18:16Z maronga ! Added interface for different radiation schemes. ! ! 1496 2014-12-02 17:25:50Z maronga ! Added calls for the land surface model and radiation scheme ! ! 1402 2014-05-09 14:25:13Z raasch ! location messages modified ! ! 1384 2014-05-02 14:31:06Z raasch ! location messages added ! ! 1380 2014-04-28 12:40:45Z heinze ! CALL of nudge_ref added ! bc_pt_t_val and bc_q_t_val are updated in case nudging is used ! ! 1365 2014-04-22 15:03:56Z boeske ! Reset sums_ls_l to zero at each timestep ! +sums_ls_l ! Calculation of reference state (previously in subroutine calc_mean_profile) ! 1342 2014-03-26 17:04:47Z kanani ! REAL constants defined as wp-kind ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! old module precision_kind is removed, ! revision history before 2012 removed, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! 1318 2014-03-17 13:35:16Z raasch ! module interfaces removed ! ! 1308 2014-03-13 14:58:42Z fricke ! +netcdf_data_format_save ! For masked data, parallel netcdf output is not tested so far, hence ! netcdf_data_format is switched back to non-paralell output. ! ! 1276 2014-01-15 13:40:41Z heinze ! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars ! ! 1257 2013-11-08 15:18:40Z raasch ! acc-update-host directive for timestep removed ! ! 1241 2013-10-30 11:36:58Z heinze ! Generalize calc_mean_profile for wider use ! Determine shf and qsws in dependence on data from LSF_DATA ! Determine ug and vg in dependence on data from LSF_DATA ! 1221 2013-09-10 08:59:13Z raasch ! host update of arrays before timestep is called ! ! 1179 2013-06-14 05:57:58Z raasch ! mean profiles for reference state are only calculated if required, ! small bugfix for background communication ! ! 1171 2013-05-30 11:27:45Z raasch ! split of prognostic_equations deactivated (comment lines), for the time being ! ! 1128 2013-04-12 06:19:32Z raasch ! asynchronous transfer of ghost point data realized for acc-optimized version: ! prognostic_equations are first called two times for those points required for ! the left-right and north-south exchange, respectively, and then for the ! remaining points, ! those parts requiring global communication moved from prognostic_equations to ! here ! ! 1115 2013-03-26 18:16:16Z hoffmann ! calculation of qr and nr is restricted to precipitation ! ! 1113 2013-03-10 02:48:14Z raasch ! GPU-porting of boundary conditions, ! openACC directives updated ! formal parameter removed from routine boundary_conds ! ! 1111 2013-03-08 23:54:10Z raasch ! +internal timestep counter for cpu statistics added, ! openACC directives updated ! ! 1092 2013-02-02 11:24:22Z raasch ! unused variables removed ! ! 1065 2012-11-22 17:42:36Z hoffmann ! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added ! ! 1053 2012-11-13 17:11:03Z hoffmann ! exchange of ghost points for nr, qr added ! ! 1036 2012-10-22 13:43:42Z raasch ! code put under GPL (PALM 3.9) ! ! 1019 2012-09-28 06:46:45Z raasch ! non-optimized version of prognostic_equations removed ! ! 1015 2012-09-27 09:23:24Z raasch ! +call of prognostic_equations_acc ! ! 1001 2012-09-13 14:08:46Z raasch ! all actions concerning leapfrog- and upstream-spline-scheme removed ! ! 849 2012-03-15 10:35:09Z raasch ! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm ! ! 825 2012-02-19 03:03:44Z raasch ! wang_collision_kernel renamed wang_kernel ! ! Revision 1.1 1997/08/11 06:19:04 raasch ! Initial revision ! ! ! Description: ! ------------ !> Integration in time of the model equations, statistical analysis and graphic !> output !------------------------------------------------------------------------------! SUBROUTINE time_integration USE advec_ws, & ONLY: ws_statistics USE arrays_3d, & ONLY: d, diss, diss_p, ddzu, dd2zu, ddzw, drho_air, drho_air_zw, dzu, & dzw, e, e_p, kh, km, nc, nc_p, nr, nr_p, p, prho, pt, pt_p, & pt_init, ptdf_x, ptdf_y, q_init, q, qc, qc_p, ql, ql_c, ql_v, & ql_vp, qr, qr_p, q_p, rdf, rdf_sc, ref_state, rho_air, & rho_air_zw, rho_ocean, s, s_p, sa_p, te_m, tend, tpt_m, tu_m, & tv_m, tw_m, u, ug, u_init, u_p, u_stokes_zu, v, vg, v_init, vpt,& v_p, v_stokes_zu, w, w_p, zu, heatflux_output_conversion, & momentumflux_output_conversion USE biometeorology_mod, & ONLY: bio_calculate_thermal_index_maps, time_bio_results, & thermal_comfort, uvem_calc_exposure, uv_exposure USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model, calc_liquid_water_content, & collision_turbulence, microphysics_morrison, microphysics_seifert USE calc_mean_profile_mod, & ONLY: calc_mean_profile USE chem_emissions_mod, & ONLY: chem_emissions_setup USE chem_modules, & ONLY: bc_cs_t_val, cs_name, do_emis, nspec, nspec_out USE chemistry_model_mod, & ONLY: chem_boundary_conds, chem_species USE control_parameters, & ONLY: advected_distance_x, advected_distance_y, air_chemistry, & average_count_3d, averaging_interval, averaging_interval_pr, & bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology, & call_psolver_at_all_substeps, child_domain, cloud_droplets, & constant_flux_layer, constant_heatflux, & create_disturbances, dopr_n, constant_diffusion, coupling_mode, & coupling_start_time, current_timestep_number, & disturbance_created, disturbance_energy_limit, dist_range, & do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, & dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy, & dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr, & dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time, & first_call_lpm, first_call_mas, galilei_transformation, & humidity, indoor_model, intermediate_timestep_count, & intermediate_timestep_count_max, & land_surface, large_scale_forcing, & loop_optimization, lsf_surf, lsf_vert, masks, mid, & multi_agent_system_end, multi_agent_system_start, & nesting_offline, neutral, nr_timesteps_this_run, nudging, & ocean_mode, passive_scalar, pt_reference, & pt_slope_offset, random_heatflux, rans_mode, & rans_tke_e, run_coupled, salsa, & simulated_time, simulated_time_chr, & skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz, & skip_time_do3d, skip_time_domask, skip_time_dopr, & skip_time_data_output_av, sloping_surface, stop_dt, & surface_output, terminate_coupled, terminate_run, & timestep_scheme, & time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz, & time_do3d, time_domask, time_dopr, time_dopr_av, & time_dopr_listing, time_dopts, time_dosp, time_dosp_av, & time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp, & time_run_control, time_since_reference_point, tsc, & turbulent_inflow, turbulent_outflow, urban_surface, & use_initial_profile_as_reference, & use_single_reference_value, u_gtrans, v_gtrans, & virtual_flight, virtual_measurement, wind_turbine, & ws_scheme_mom, ws_scheme_sca USE cpulog, & ONLY: cpu_log, log_point, log_point_s USE date_and_time_mod, & ONLY: calc_date_and_time, hour_call_emis, hour_of_year USE flight_mod, & ONLY: flight_measurement USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, & nz, nzb_max, advc_flags_1, advc_flags_2, wall_flags_0 USE indoor_model_mod, & ONLY: dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor USE interaction_droplets_ptq_mod, & ONLY: interaction_droplets_ptq USE interfaces USE kinds USE land_surface_model_mod, & ONLY: lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, & skip_time_do_lsm USE lsf_nudging_mod, & ONLY: calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref USE module_interface, & ONLY: module_interface_actions USE multi_agent_system_mod, & ONLY: agents_active, multi_agent_system USE nesting_offl_mod, & ONLY: nesting_offl_bc, nesting_offl_mass_conservation USE netcdf_data_input_mod, & ONLY: chem_emis, chem_emis_att, nest_offl, & netcdf_data_input_offline_nesting USE ocean_mod, & ONLY: prho_reference USE particle_attributes, & ONLY: particle_advection, particle_advection_start, & use_sgs_for_particles, wang_kernel USE pegrid USE pmc_interface, & ONLY: nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, & pmci_synchronize USE progress_bar, & ONLY: finish_progress_bar, output_progress_bar USE prognostic_equations_mod, & ONLY: prognostic_equations_cache, prognostic_equations_vector USE radiation_model_mod, & ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,& radiation_interaction, radiation_interactions, & skip_time_do_radiation, time_radiation USE salsa_mod, & ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast, & salsa_boundary_conds, salsa_gas, salsa_gases_from_chem, & skip_time_do_salsa USE salsa_util_mod, & ONLY: sums_salsa_ws_l USE spectra_mod, & ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, & skip_time_dosp USE statistics, & ONLY: flow_statistics_called, hom, pr_palm, sums_ls_l, & rmask, statistic_regions, weight_substep, sums_l, sums_l_l, & sums_us2_ws_l, sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, & sums_ws2_ws_l, sums_wspts_ws_l, sums_wsqs_ws_l, sums_wssas_ws_l,& sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, & sums_wsnrs_ws_l, sums_wsss_ws_l USE surface_layer_fluxes_mod, & ONLY: surface_layer_fluxes USE surface_mod, & ONLY: bc_h, surf_def_h, surf_lsm_h, surf_usm_h, & enter_surface_arrays, exit_surface_arrays USE surface_data_output_mod, & ONLY: average_count_surf, averaging_interval_surf, dt_dosurf, & dt_dosurf_av, surface_data_output, & surface_data_output_averaging, skip_time_dosurf, & skip_time_dosurf_av, time_dosurf, time_dosurf_av USE turbulence_closure_mod, & ONLY: tcm_diffusivities, production_e_init USE urban_surface_mod, & ONLY: usm_boundary_condition, usm_material_heat_model, & usm_material_model, & usm_surface_energy_balance, usm_green_heat_model USE synthetic_turbulence_generator_mod, & ONLY: dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, & stg_adjust, stg_main, time_stg_adjust, time_stg_call, & use_syn_turb_gen USE wind_turbine_model_mod, & ONLY: wtm_forces USE lpm_mod, & ONLY: lpm USE vertical_nesting_mod, & ONLY: vnested, vnest_anterpolate, vnest_anterpolate_e, & vnest_boundary_conds, vnest_boundary_conds_khkm, & vnest_deallocate, vnest_init, vnest_init_fine, & vnest_start_time USE virtual_measurement_mod, & ONLY: vm_sampling, vm_time_start IMPLICIT NONE CHARACTER (LEN=9) :: time_to_string !< INTEGER(iwp) :: b !< index for aerosol size bins INTEGER(iwp) :: c !< index for chemical compounds in aerosol size bins INTEGER(iwp) :: g !< index for gaseous compounds INTEGER(iwp) :: lsp INTEGER(iwp) :: lsp_usr !< INTEGER(iwp) :: n !< loop counter for chemistry species REAL(wp) :: dt_3d_old !< temporary storage of timestep to be used for !< steering of run control output interval REAL(wp) :: time_since_reference_point_save !< original value of !< time_since_reference_point ! Copy data from arrays_3d !$ACC DATA & !$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) & !$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) !$ACC DATA & !$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) !$ACC DATA & !$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) & !$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) & !$ACC COPYIN(zu(nzb:nzt+1)) & !$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) & !$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) & !$ACC COPYIN(ddzw(1:nzt+1)) & !$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) & !$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) & !$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) & !$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) & !$ACC COPYIN(ref_state(0:nz+1)) & !$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) & !$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) & !$ACC COPYIN(pt_init(0:nz+1)) & !$ACC COPYIN(ug(0:nz+1), vg(0:nz+1)) ! Copy data from control_parameters !$ACC DATA & !$ACC COPYIN(tsc(1:5)) ! Copy data from indices !$ACC DATA & !$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) ! Copy data from surface_mod !$ACC DATA & !$ACC COPYIN(bc_h(0:1)) & !$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) & !$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) & !$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns)) ! Copy data from statistics !$ACC DATA & !$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) & !$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) & !$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) & !$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) & !$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) & !$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) & !$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0)) #ifdef _OPENACC CALL enter_surface_arrays #endif ! !-- At beginning determine the first time step CALL timestep ! !-- Synchronize the timestep in case of nested run. IF ( nested_run ) THEN ! !-- Synchronization by unifying the time step. !-- Global minimum of all time-steps is used for all. CALL pmci_synchronize ENDIF ! !-- Determine and print out the run control quantities before the first time !-- step of this run. For the initial run, some statistics (e.g. divergence) !-- need to be determined first --> CALL flow_statistics at the beginning of !-- run_control CALL run_control ! !-- Data exchange between coupled models in case that a call has been omitted !-- at the end of the previous run of a job chain. IF ( coupling_mode /= 'uncoupled' .AND. run_coupled .AND. .NOT. vnested) THEN ! !-- In case of model termination initiated by the local model the coupler !-- must not be called because this would again cause an MPI hang. DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 ) CALL surface_coupler time_coupling = time_coupling - dt_coupling ENDDO IF (time_coupling == 0.0_wp .AND. & time_since_reference_point < dt_coupling ) & THEN time_coupling = time_since_reference_point ENDIF ENDIF #if defined( __dvrp_graphics ) ! !-- Time measurement with dvrp software CALL DVRP_LOG_EVENT( 2, current_timestep_number ) #endif CALL location_message( 'starting timestep-sequence', .TRUE. ) ! !-- Start of the time loop DO WHILE ( simulated_time < end_time .AND. .NOT. stop_dt .AND. & .NOT. terminate_run ) CALL cpu_log( log_point_s(10), 'timesteps', 'start' ) ! !-- Vertical nesting: initialize fine grid IF ( vnested ) THEN IF ( .NOT. vnest_init .AND. simulated_time >= vnest_start_time ) THEN CALL cpu_log( log_point(80), 'vnest_init', 'start' ) CALL vnest_init_fine vnest_init = .TRUE. CALL cpu_log( log_point(80), 'vnest_init', 'stop' ) ENDIF ENDIF ! !-- Determine ug, vg and w_subs in dependence on data from external file !-- LSF_DATA IF ( large_scale_forcing .AND. lsf_vert ) THEN CALL ls_forcing_vert ( simulated_time ) sums_ls_l = 0.0_wp ENDIF ! !-- Set pt_init and q_init to the current profiles taken from !-- NUDGING_DATA IF ( nudging ) THEN CALL nudge_ref ( simulated_time ) ! !-- Store temperature gradient at the top boundary for possible Neumann !-- boundary condition bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1) bc_q_t_val = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1) IF ( air_chemistry ) THEN DO lsp = 1, nspec bc_cs_t_val = ( chem_species(lsp)%conc_pr_init(nzt+1) & - chem_species(lsp)%conc_pr_init(nzt) ) & / dzu(nzt+1) ENDDO ENDIF ENDIF ! !-- If forcing by larger-scale models is applied, check if new data !-- at domain boundaries need to be read. IF ( nesting_offline ) THEN IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )& CALL netcdf_data_input_offline_nesting ENDIF ! !-- Execute alle other module actions routunes CALL module_interface_actions( 'before_timestep' ) ! !-- Calculate forces by wind turbines IF ( wind_turbine ) THEN CALL cpu_log( log_point(55), 'wind_turbine', 'start' ) CALL wtm_forces CALL cpu_log( log_point(55), 'wind_turbine', 'stop' ) ENDIF ! !-- Start of intermediate step loop intermediate_timestep_count = 0 DO WHILE ( intermediate_timestep_count < & intermediate_timestep_count_max ) intermediate_timestep_count = intermediate_timestep_count + 1 ! !-- Set the steering factors for the prognostic equations which depend !-- on the timestep scheme CALL timestep_scheme_steering ! !-- Calculate those variables needed in the tendency terms which need !-- global communication IF ( .NOT. use_single_reference_value .AND. & .NOT. use_initial_profile_as_reference ) THEN ! !-- Horizontally averaged profiles to be used as reference state in !-- buoyancy terms (WARNING: only the respective last call of !-- calc_mean_profile defines the reference state!) IF ( .NOT. neutral ) THEN CALL calc_mean_profile( pt, 4 ) ref_state(:) = hom(:,1,4,0) ! this is used in the buoyancy term ENDIF IF ( ocean_mode ) THEN CALL calc_mean_profile( rho_ocean, 64 ) ref_state(:) = hom(:,1,64,0) ENDIF IF ( humidity ) THEN CALL calc_mean_profile( vpt, 44 ) ref_state(:) = hom(:,1,44,0) ENDIF ! !-- Assure that ref_state does not become zero at any level !-- ( might be the case if a vertical level is completely occupied !-- with topography ). ref_state = MERGE( MAXVAL(ref_state), ref_state, & ref_state == 0.0_wp ) ENDIF IF ( .NOT. constant_diffusion ) CALL production_e_init IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & intermediate_timestep_count == 1 ) CALL ws_statistics ! !-- In case of nudging calculate current nudging time scale and horizontal !-- means of u, v, pt and q IF ( nudging ) THEN CALL calc_tnudge( simulated_time ) CALL calc_mean_profile( u, 1 ) CALL calc_mean_profile( v, 2 ) CALL calc_mean_profile( pt, 4 ) CALL calc_mean_profile( q, 41 ) ENDIF ! !-- Solve the prognostic equations. A fast cache optimized version with !-- only one single loop is used in case of Piascek-Williams advection !-- scheme. NEC vector machines use a different version, because !-- in the other versions a good vectorization is prohibited due to !-- inlining problems. IF ( loop_optimization == 'cache' ) THEN CALL prognostic_equations_cache ELSEIF ( loop_optimization == 'vector' ) THEN CALL prognostic_equations_vector ENDIF ! !-- Particle transport/physics with the Lagrangian particle model !-- (only once during intermediate steps, because it uses an Euler-step) !-- ### particle model should be moved before prognostic_equations, in order !-- to regard droplet interactions directly IF ( particle_advection .AND. & time_since_reference_point >= particle_advection_start .AND. & intermediate_timestep_count == 1 ) THEN CALL lpm first_call_lpm = .FALSE. ENDIF ! !-- Interaction of droplets with temperature and mixing ratio. !-- Droplet condensation and evaporation is calculated within !-- advec_particles. IF ( cloud_droplets .AND. & intermediate_timestep_count == intermediate_timestep_count_max )& THEN CALL interaction_droplets_ptq ENDIF ! !-- Movement of agents in multi agent system IF ( agents_active .AND. & time_since_reference_point >= multi_agent_system_start .AND. & time_since_reference_point <= multi_agent_system_end .AND. & intermediate_timestep_count == 1 ) THEN CALL multi_agent_system first_call_mas = .FALSE. ENDIF ! !-- Exchange of ghost points (lateral boundary conditions) CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' ) CALL exchange_horiz( u_p, nbgp ) CALL exchange_horiz( v_p, nbgp ) CALL exchange_horiz( w_p, nbgp ) CALL exchange_horiz( pt_p, nbgp ) IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e_p, nbgp ) IF ( rans_tke_e .OR. wang_kernel .OR. collision_turbulence & .OR. use_sgs_for_particles ) THEN IF ( rans_tke_e ) THEN CALL exchange_horiz( diss_p, nbgp ) ELSE CALL exchange_horiz( diss, nbgp ) ENDIF ENDIF IF ( ocean_mode ) THEN CALL exchange_horiz( sa_p, nbgp ) CALL exchange_horiz( rho_ocean, nbgp ) CALL exchange_horiz( prho, nbgp ) ENDIF IF ( humidity ) THEN CALL exchange_horiz( q_p, nbgp ) IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN CALL exchange_horiz( qc_p, nbgp ) CALL exchange_horiz( nc_p, nbgp ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN CALL exchange_horiz( qr_p, nbgp ) CALL exchange_horiz( nr_p, nbgp ) ENDIF ENDIF IF ( cloud_droplets ) THEN CALL exchange_horiz( ql, nbgp ) CALL exchange_horiz( ql_c, nbgp ) CALL exchange_horiz( ql_v, nbgp ) CALL exchange_horiz( ql_vp, nbgp ) ENDIF IF ( passive_scalar ) CALL exchange_horiz( s_p, nbgp ) IF ( air_chemistry ) THEN DO lsp = 1, nspec CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp ) ! !-- kanani: Push chem_boundary_conds after CALL boundary_conds lsp_usr = 1 DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' ) IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) ) THEN CALL chem_boundary_conds( chem_species(lsp)%conc_p, & chem_species(lsp)%conc_pr_init ) ENDIF lsp_usr = lsp_usr + 1 ENDDO ENDDO ENDIF IF ( salsa .AND. time_since_reference_point >= skip_time_do_salsa )& THEN CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' ) DO b = 1, nbins CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp ) CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' ) CALL salsa_boundary_conds( aerosol_number(b)%conc_p, & aerosol_number(b)%init ) CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' ) DO c = 1, ncc_tot CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p, & nbgp ) CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' ) CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,& aerosol_mass((c-1)*nbins+b)%init ) CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' ) ENDDO ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO g = 1, ngast CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' ) CALL salsa_boundary_conds( salsa_gas(g)%conc_p, & salsa_gas(g)%init ) CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' ) ENDDO ENDIF CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' ) ENDIF CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' ) ! !-- Boundary conditions for the prognostic quantities (except of the !-- velocities at the outflow in case of a non-cyclic lateral wall) CALL boundary_conds ! !-- Swap the time levels in preparation for the next time step. CALL swap_timelevel ! !-- Vertical nesting: Interpolate fine grid data to the coarse grid IF ( vnest_init ) THEN CALL cpu_log( log_point(81), 'vnest_anterpolate', 'start' ) CALL vnest_anterpolate CALL cpu_log( log_point(81), 'vnest_anterpolate', 'stop' ) ENDIF IF ( nested_run ) THEN CALL cpu_log( log_point(60), 'nesting', 'start' ) ! !-- Domain nesting. The data transfer subroutines pmci_parent_datatrans !-- and pmci_child_datatrans are called inside the wrapper !-- subroutine pmci_datatrans according to the control parameters !-- nesting_mode and nesting_datatransfer_mode. !-- TO_DO: why is nesting_mode given as a parameter here? CALL pmci_datatrans( nesting_mode ) IF ( TRIM( nesting_mode ) == 'two-way' .OR. & nesting_mode == 'vertical' ) THEN ! !-- Exchange_horiz is needed for all parent-domains after the !-- anterpolation CALL exchange_horiz( u, nbgp ) CALL exchange_horiz( v, nbgp ) CALL exchange_horiz( w, nbgp ) IF ( .NOT. neutral ) CALL exchange_horiz( pt, nbgp ) IF ( humidity ) THEN CALL exchange_horiz( q, nbgp ) IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN CALL exchange_horiz( qc, nbgp ) CALL exchange_horiz( nc, nbgp ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN CALL exchange_horiz( qr, nbgp ) CALL exchange_horiz( nr, nbgp ) ENDIF ENDIF IF ( passive_scalar ) CALL exchange_horiz( s, nbgp ) IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) IF ( .NOT. constant_diffusion .AND. rans_mode .AND. & rans_tke_e ) & CALL exchange_horiz( diss, nbgp ) IF ( air_chemistry ) THEN DO n = 1, nspec CALL exchange_horiz( chem_species(n)%conc, nbgp ) ENDDO ENDIF ENDIF ! !-- Set boundary conditions again after interpolation and anterpolation. CALL pmci_boundary_conds CALL cpu_log( log_point(60), 'nesting', 'stop' ) ENDIF ! !-- Temperature offset must be imposed at cyclic boundaries in x-direction !-- when a sloping surface is used IF ( sloping_surface ) THEN IF ( nxl == 0 ) pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - & pt_slope_offset IF ( nxr == nx ) pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + & pt_slope_offset ENDIF ! !-- Impose a turbulent inflow using the recycling method IF ( turbulent_inflow ) CALL inflow_turbulence ! !-- Set values at outflow boundary using the special outflow condition IF ( turbulent_outflow ) CALL outflow_turbulence ! !-- Impose a random perturbation on the horizontal velocity field IF ( create_disturbances .AND. & ( call_psolver_at_all_substeps .AND. & intermediate_timestep_count == intermediate_timestep_count_max )& .OR. ( .NOT. call_psolver_at_all_substeps .AND. & intermediate_timestep_count == 1 ) ) & THEN time_disturb = time_disturb + dt_3d IF ( time_disturb >= dt_disturb ) THEN IF ( disturbance_energy_limit /= 0.0_wp .AND. & hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit ) THEN CALL disturb_field( 'u', tend, u ) CALL disturb_field( 'v', tend, v ) ELSEIF ( ( .NOT. bc_lr_cyc .OR. .NOT. bc_ns_cyc ) & .AND. .NOT. child_domain .AND. .NOT. nesting_offline ) & THEN ! !-- Runs with a non-cyclic lateral wall need perturbations !-- near the inflow throughout the whole simulation dist_range = 1 CALL disturb_field( 'u', tend, u ) CALL disturb_field( 'v', tend, v ) dist_range = 0 ENDIF time_disturb = time_disturb - dt_disturb ENDIF ENDIF ! !-- Map forcing data derived from larger scale model onto domain !-- boundaries. IF ( nesting_offline .AND. intermediate_timestep_count == & intermediate_timestep_count_max ) & CALL nesting_offl_bc ! !-- Impose a turbulent inflow using synthetic generated turbulence, !-- only once per time step. IF ( use_syn_turb_gen .AND. time_stg_call >= dt_stg_call .AND. & intermediate_timestep_count == intermediate_timestep_count_max ) THEN! & CALL stg_main ENDIF ! !-- Ensure mass conservation. This need to be done after imposing !-- synthetic turbulence and top boundary condition for pressure is set to !-- Neumann conditions. !-- Is this also required in case of Dirichlet? IF ( nesting_offline ) CALL nesting_offl_mass_conservation ! !-- Reduce the velocity divergence via the equation for perturbation !-- pressure. IF ( intermediate_timestep_count == 1 .OR. & call_psolver_at_all_substeps ) THEN IF ( vnest_init ) THEN ! !-- Compute pressure in the CG, interpolate top boundary conditions !-- to the FG and then compute pressure in the FG IF ( coupling_mode == 'vnested_crse' ) CALL pres CALL cpu_log( log_point(82), 'vnest_bc', 'start' ) CALL vnest_boundary_conds CALL cpu_log( log_point(82), 'vnest_bc', 'stop' ) IF ( coupling_mode == 'vnested_fine' ) CALL pres !-- Anterpolate TKE, satisfy Germano Identity CALL cpu_log( log_point(83), 'vnest_anter_e', 'start' ) CALL vnest_anterpolate_e CALL cpu_log( log_point(83), 'vnest_anter_e', 'stop' ) ELSE CALL pres ENDIF ENDIF ! !-- If required, compute liquid water content IF ( bulk_cloud_model ) THEN CALL calc_liquid_water_content ENDIF ! !-- If required, compute virtual potential temperature IF ( humidity ) THEN CALL compute_vpt ENDIF ! !-- Compute the diffusion quantities IF ( .NOT. constant_diffusion ) THEN ! !-- Determine surface fluxes shf and qsws and surface values !-- pt_surface and q_surface in dependence on data from external !-- file LSF_DATA respectively IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. & intermediate_timestep_count == intermediate_timestep_count_max )& THEN CALL ls_forcing_surf( simulated_time ) ENDIF ! !-- First the vertical (and horizontal) fluxes in the surface !-- (constant flux) layer are computed IF ( constant_flux_layer ) THEN CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' ) CALL surface_layer_fluxes CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' ) ENDIF ! !-- If required, solve the energy balance for the surface and run soil !-- model. Call for horizontal as well as vertical surfaces IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm) THEN CALL cpu_log( log_point(54), 'land_surface', 'start' ) ! !-- Call for horizontal upward-facing surfaces CALL lsm_energy_balance( .TRUE., -1 ) CALL lsm_soil_model( .TRUE., -1, .TRUE. ) ! !-- Call for northward-facing surfaces CALL lsm_energy_balance( .FALSE., 0 ) CALL lsm_soil_model( .FALSE., 0, .TRUE. ) ! !-- Call for southward-facing surfaces CALL lsm_energy_balance( .FALSE., 1 ) CALL lsm_soil_model( .FALSE., 1, .TRUE. ) ! !-- Call for eastward-facing surfaces CALL lsm_energy_balance( .FALSE., 2 ) CALL lsm_soil_model( .FALSE., 2, .TRUE. ) ! !-- Call for westward-facing surfaces CALL lsm_energy_balance( .FALSE., 3 ) CALL lsm_soil_model( .FALSE., 3, .TRUE. ) ! !-- At the end, set boundary conditons for potential temperature !-- and humidity after running the land-surface model. This !-- might be important for the nesting, where arrays are transfered. CALL lsm_boundary_condition CALL cpu_log( log_point(54), 'land_surface', 'stop' ) ENDIF ! !-- If required, solve the energy balance for urban surfaces and run !-- the material heat model IF (urban_surface) THEN CALL cpu_log( log_point(74), 'urban_surface', 'start' ) CALL usm_surface_energy_balance( .FALSE. ) IF ( usm_material_model ) THEN CALL usm_green_heat_model CALL usm_material_heat_model ( .FALSE. ) ENDIF ! !-- At the end, set boundary conditons for potential temperature !-- and humidity after running the urban-surface model. This !-- might be important for the nesting, where arrays are transfered. CALL usm_boundary_condition CALL cpu_log( log_point(74), 'urban_surface', 'stop' ) ENDIF ! !-- Compute the diffusion coefficients CALL cpu_log( log_point(17), 'diffusivities', 'start' ) IF ( .NOT. humidity ) THEN IF ( ocean_mode ) THEN CALL tcm_diffusivities( prho, prho_reference ) ELSE CALL tcm_diffusivities( pt, pt_reference ) ENDIF ELSE CALL tcm_diffusivities( vpt, pt_reference ) ENDIF CALL cpu_log( log_point(17), 'diffusivities', 'stop' ) ! !-- Vertical nesting: set fine grid eddy viscosity top boundary condition IF ( vnest_init ) CALL vnest_boundary_conds_khkm ENDIF ! !-- If required, calculate radiative fluxes and heating rates IF ( radiation .AND. intermediate_timestep_count & == intermediate_timestep_count_max .AND. time_since_reference_point > & skip_time_do_radiation ) THEN time_radiation = time_radiation + dt_3d IF ( time_radiation >= dt_radiation .OR. force_radiation_call ) & THEN CALL cpu_log( log_point(50), 'radiation', 'start' ) IF ( .NOT. force_radiation_call ) THEN time_radiation = time_radiation - dt_radiation ENDIF ! !-- Adjust the current time to the time step of the radiation model. !-- Needed since radiation is pre-calculated and stored only on apparent !-- solar positions time_since_reference_point_save = time_since_reference_point time_since_reference_point = & REAL( FLOOR( time_since_reference_point / & dt_radiation), wp ) & * dt_radiation CALL radiation_control CALL cpu_log( log_point(50), 'radiation', 'stop' ) IF ( ( urban_surface .OR. land_surface ) .AND. & radiation_interactions ) THEN CALL cpu_log( log_point(75), 'radiation_interaction', 'start' ) CALL radiation_interaction CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' ) ENDIF ! !-- Return the current time to its original value time_since_reference_point = time_since_reference_point_save ENDIF ENDIF ENDDO ! Intermediate step loop ! !-- Will be used at some point by flow_statistics. !$ACC UPDATE & !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) & !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) & !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0)) ! !-- If required, consider chemical emissions IF ( air_chemistry .AND. do_emis ) THEN ! !-- Update the time --> kanani: revise location of this CALL CALL calc_date_and_time ! !-- Call emission routine only once an hour IF (hour_of_year .GT. hour_call_emis ) THEN CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out ) hour_call_emis = hour_of_year ENDIF ENDIF ! !-- If required, calculate indoor temperature, waste heat, heat flux !-- through wall, etc. !-- dt_indoor steers the frequency of the indoor model calculations IF ( indoor_model ) THEN time_indoor = time_indoor + dt_3d IF ( time_indoor >= dt_indoor ) THEN time_indoor = time_indoor - dt_indoor CALL cpu_log( log_point(76), 'indoor_model', 'start' ) CALL im_main_heatcool CALL cpu_log( log_point(76), 'indoor_model', 'stop' ) ENDIF ENDIF ! !-- Increase simulation time and output times nr_timesteps_this_run = nr_timesteps_this_run + 1 current_timestep_number = current_timestep_number + 1 simulated_time = simulated_time + dt_3d time_since_reference_point = simulated_time - coupling_start_time simulated_time_chr = time_to_string( time_since_reference_point ) IF ( time_since_reference_point >= skip_time_data_output_av ) THEN time_do_av = time_do_av + dt_3d ENDIF IF ( time_since_reference_point >= skip_time_do2d_xy ) THEN time_do2d_xy = time_do2d_xy + dt_3d ENDIF IF ( time_since_reference_point >= skip_time_do2d_xz ) THEN time_do2d_xz = time_do2d_xz + dt_3d ENDIF IF ( time_since_reference_point >= skip_time_do2d_yz ) THEN time_do2d_yz = time_do2d_yz + dt_3d ENDIF IF ( time_since_reference_point >= skip_time_do3d ) THEN time_do3d = time_do3d + dt_3d ENDIF DO mid = 1, masks IF ( time_since_reference_point >= skip_time_domask(mid) ) THEN time_domask(mid)= time_domask(mid) + dt_3d ENDIF ENDDO time_dvrp = time_dvrp + dt_3d IF ( time_since_reference_point >= skip_time_dosp ) THEN time_dosp = time_dosp + dt_3d ENDIF time_dots = time_dots + dt_3d IF ( .NOT. first_call_lpm ) THEN time_dopts = time_dopts + dt_3d ENDIF IF ( time_since_reference_point >= skip_time_dopr ) THEN time_dopr = time_dopr + dt_3d ENDIF time_dopr_listing = time_dopr_listing + dt_3d time_run_control = time_run_control + dt_3d ! !-- Increment time-counter for surface output IF ( surface_output ) THEN IF ( time_since_reference_point >= skip_time_dosurf ) THEN time_dosurf = time_dosurf + dt_3d ENDIF IF ( time_since_reference_point >= skip_time_dosurf_av ) THEN time_dosurf_av = time_dosurf_av + dt_3d ENDIF ENDIF ! !-- In case of synthetic turbulence generation and parametrized turbulence !-- information, update the time counter and if required, adjust the !-- STG to new atmospheric conditions. IF ( use_syn_turb_gen ) THEN IF ( parametrize_inflow_turbulence ) THEN time_stg_adjust = time_stg_adjust + dt_3d IF ( time_stg_adjust >= dt_stg_adjust ) CALL stg_adjust ENDIF time_stg_call = time_stg_call + dt_3d ENDIF ! !-- Data exchange between coupled models IF ( coupling_mode /= 'uncoupled' .AND. run_coupled & .AND. .NOT. vnested ) THEN time_coupling = time_coupling + dt_3d ! !-- In case of model termination initiated by the local model !-- (terminate_coupled > 0), the coupler must be skipped because it would !-- cause an MPI intercomminucation hang. !-- If necessary, the coupler will be called at the beginning of the !-- next restart run. DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 ) CALL surface_coupler time_coupling = time_coupling - dt_coupling ENDDO ENDIF ! !-- Biometeorology calculation of stationary thermal indices !-- Todo (kanani): biometeorology needs own time_... treatment. !-- It might be that time_do2d_xy differs from time_do3d, !-- and then we might get trouble with the biomet output, !-- because we can have 2d and/or 3d biomet output!! IF ( biometeorology & .AND. ( ( time_do3d >= dt_do3d .AND. time_since_reference_point >= skip_time_do3d ) & .OR. & ( time_do2d_xy >= dt_do2d_xy .AND. time_since_reference_point >= skip_time_do2d_xy ) & ) ) THEN ! !-- If required, do thermal comfort calculations IF ( thermal_comfort ) THEN CALL bio_calculate_thermal_index_maps ( .FALSE. ) time_bio_results = time_since_reference_point ENDIF ! !-- If required, do UV exposure calculations IF ( uv_exposure ) THEN CALL uvem_calc_exposure ENDIF ENDIF ! !-- Execute alle other module actions routunes CALL module_interface_actions( 'after_integration' ) ! !-- If Galilei transformation is used, determine the distance that the !-- model has moved so far IF ( galilei_transformation ) THEN advected_distance_x = advected_distance_x + u_gtrans * dt_3d advected_distance_y = advected_distance_y + v_gtrans * dt_3d ENDIF ! !-- Check, if restart is necessary (because cpu-time is expiring or !-- because it is forced by user) and set stop flag !-- This call is skipped if the remote model has already initiated a restart. IF ( .NOT. terminate_run ) CALL check_for_restart ! !-- Carry out statistical analysis and output at the requested output times. !-- The MOD function is used for calculating the output time counters (like !-- time_dopr) in order to regard a possible decrease of the output time !-- interval in case of restart runs ! !-- Set a flag indicating that so far no statistics have been created !-- for this time step flow_statistics_called = .FALSE. ! !-- If required, call flow_statistics for averaging in time IF ( averaging_interval_pr /= 0.0_wp .AND. & ( dt_dopr - time_dopr ) <= averaging_interval_pr .AND. & time_since_reference_point >= skip_time_dopr ) THEN time_dopr_av = time_dopr_av + dt_3d IF ( time_dopr_av >= dt_averaging_input_pr ) THEN do_sum = .TRUE. time_dopr_av = MOD( time_dopr_av, & MAX( dt_averaging_input_pr, dt_3d ) ) ENDIF ENDIF IF ( do_sum ) CALL flow_statistics ! !-- Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data IF ( averaging_interval /= 0.0_wp .AND. & ( dt_data_output_av - time_do_av ) <= averaging_interval .AND. & time_since_reference_point >= skip_time_data_output_av ) & THEN time_do_sla = time_do_sla + dt_3d IF ( time_do_sla >= dt_averaging_input ) THEN CALL sum_up_3d_data average_count_3d = average_count_3d + 1 time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) ) ENDIF ENDIF ! !-- Average surface data IF ( surface_output ) THEN IF ( averaging_interval_surf /= 0.0_wp & .AND. ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf & .AND. time_since_reference_point >= skip_time_dosurf_av ) THEN IF ( time_dosurf_av >= dt_averaging_input ) THEN CALL surface_data_output_averaging average_count_surf = average_count_surf + 1 ENDIF ENDIF ENDIF ! !-- Calculate spectra for time averaging IF ( averaging_interval_sp /= 0.0_wp .AND. & ( dt_dosp - time_dosp ) <= averaging_interval_sp .AND. & time_since_reference_point >= skip_time_dosp ) THEN time_dosp_av = time_dosp_av + dt_3d IF ( time_dosp_av >= dt_averaging_input_pr ) THEN CALL calc_spectra time_dosp_av = MOD( time_dosp_av, & MAX( dt_averaging_input_pr, dt_3d ) ) ENDIF ENDIF ! !-- Call flight module and output data IF ( virtual_flight ) THEN CALL flight_measurement CALL data_output_flight ENDIF ! !-- Take virtual measurements IF ( virtual_measurement .AND. & vm_time_start <= time_since_reference_point ) CALL vm_sampling ! !-- Profile output (ASCII) on file IF ( time_dopr_listing >= dt_dopr_listing ) THEN CALL print_1d time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, & dt_3d ) ) ENDIF ! !-- Graphic output for PROFIL IF ( time_dopr >= dt_dopr & .AND. time_since_reference_point >= skip_time_dopr ) THEN IF ( dopr_n /= 0 ) CALL data_output_profiles time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) ) time_dopr_av = 0.0_wp ! due to averaging (see above) ENDIF ! !-- Graphic output for time series IF ( time_dots >= dt_dots ) THEN CALL data_output_tseries time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) ) ENDIF ! !-- Output of spectra (formatted for use with PROFIL), in case of no !-- time averaging, spectra has to be calculated before IF ( time_dosp >= dt_dosp & .AND. time_since_reference_point >= skip_time_dosp ) THEN IF ( average_count_sp == 0 ) CALL calc_spectra CALL data_output_spectra time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) ) ENDIF ! !-- 2d-data output (cross-sections) IF ( time_do2d_xy >= dt_do2d_xy & .AND. time_since_reference_point >= skip_time_do2d_xy ) THEN CALL data_output_2d( 'xy', 0 ) time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) ) ENDIF IF ( time_do2d_xz >= dt_do2d_xz & .AND. time_since_reference_point >= skip_time_do2d_xz ) THEN CALL data_output_2d( 'xz', 0 ) time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) ) ENDIF IF ( time_do2d_yz >= dt_do2d_yz & .AND. time_since_reference_point >= skip_time_do2d_yz ) THEN CALL data_output_2d( 'yz', 0 ) time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) ) ENDIF ! !-- 3d-data output (volume data) IF ( time_do3d >= dt_do3d & .AND. time_since_reference_point >= skip_time_do3d ) THEN CALL data_output_3d( 0 ) time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) ) ENDIF ! !-- Masked data output DO mid = 1, masks IF ( time_domask(mid) >= dt_domask(mid) & .AND. time_since_reference_point >= skip_time_domask(mid) ) THEN CALL data_output_mask( 0 ) time_domask(mid) = MOD( time_domask(mid), & MAX( dt_domask(mid), dt_3d ) ) ENDIF ENDDO ! !-- Output of time-averaged 2d/3d/masked data IF ( time_do_av >= dt_data_output_av & .AND. time_since_reference_point >= skip_time_data_output_av ) THEN CALL average_3d_data CALL data_output_2d( 'xy', 1 ) CALL data_output_2d( 'xz', 1 ) CALL data_output_2d( 'yz', 1 ) CALL data_output_3d( 1 ) DO mid = 1, masks CALL data_output_mask( 1 ) ENDDO time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) ) ENDIF ! !-- Output of surface data, instantaneous and averaged data IF ( surface_output ) THEN IF ( time_dosurf >= dt_dosurf & .AND. time_since_reference_point >= skip_time_dosurf ) THEN CALL surface_data_output( 0 ) time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) ) ENDIF IF ( time_dosurf_av >= dt_dosurf_av & .AND. time_since_reference_point >= skip_time_dosurf_av ) THEN CALL surface_data_output( 1 ) time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) ) ENDIF ENDIF ! !-- Output of particle time series IF ( particle_advection ) THEN IF ( time_dopts >= dt_dopts .OR. & ( time_since_reference_point >= particle_advection_start .AND. & first_call_lpm ) ) THEN CALL data_output_ptseries time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) ) ENDIF ENDIF ! !-- Output of dvrp-graphics (isosurface, particles, slicer) #if defined( __dvrp_graphics ) CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 ) #endif IF ( time_dvrp >= dt_dvrp ) THEN CALL data_output_dvrp time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) ) ENDIF #if defined( __dvrp_graphics ) CALL DVRP_LOG_EVENT( 2, current_timestep_number ) #endif ! !-- If required, set the heat flux for the next time step at a random value IF ( constant_heatflux .AND. random_heatflux ) THEN IF ( surf_def_h(0)%ns >= 1 ) CALL disturb_heatflux( surf_def_h(0) ) IF ( surf_lsm_h%ns >= 1 ) CALL disturb_heatflux( surf_lsm_h ) IF ( surf_usm_h%ns >= 1 ) CALL disturb_heatflux( surf_usm_h ) ENDIF ! !-- Execute alle other module actions routunes CALL module_interface_actions( 'after_timestep' ) ! !-- Determine size of next time step. Save timestep dt_3d because it is !-- newly calculated in routine timestep, but required further below for !-- steering the run control output interval dt_3d_old = dt_3d CALL timestep ! !-- Synchronize the timestep in case of nested run. IF ( nested_run ) THEN ! !-- Synchronize by unifying the time step. !-- Global minimum of all time-steps is used for all. CALL pmci_synchronize ENDIF ! !-- Computation and output of run control parameters. !-- This is also done whenever perturbations have been imposed IF ( time_run_control >= dt_run_control .OR. & timestep_scheme(1:5) /= 'runge' .OR. disturbance_created ) & THEN CALL run_control IF ( time_run_control >= dt_run_control ) THEN time_run_control = MOD( time_run_control, & MAX( dt_run_control, dt_3d_old ) ) ENDIF ENDIF ! !-- Output elapsed simulated time in form of a progress bar on stdout IF ( myid == 0 ) CALL output_progress_bar CALL cpu_log( log_point_s(10), 'timesteps', 'stop' ) ENDDO ! time loop #ifdef _OPENACC CALL exit_surface_arrays #endif !$ACC END DATA !$ACC END DATA !$ACC END DATA !$ACC END DATA !$ACC END DATA !$ACC END DATA !$ACC END DATA ! !-- Vertical nesting: Deallocate variables initialized for vertical nesting IF ( vnest_init ) CALL vnest_deallocate IF ( myid == 0 ) CALL finish_progress_bar #if defined( __dvrp_graphics ) CALL DVRP_LOG_EVENT( -2, current_timestep_number ) #endif CALL location_message( 'finished time-stepping', .TRUE. ) END SUBROUTINE time_integration