!> @file time_integration.f90 !------------------------------------------------------------------------------! ! This file is part of PALM. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2017 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: time_integration.f90 2259 2017-06-08 09:09:11Z schwenkel $ ! Implemented synthetic turbulence generator ! ! 2233 2017-05-30 18:08:54Z suehring ! ! 2232 2017-05-30 17:47:52Z suehring ! Adjustments to new topography and surface concept ! Modify passed parameters for disturb_field ! ! 2178 2017-03-17 11:07:39Z hellstea ! Setting perturbations at all times near inflow boundary is removed ! in case of nested boundaries ! ! 2174 2017-03-13 08:18:57Z maronga ! Added support for nesting with cloud microphysics ! ! 2118 2017-01-17 16:38:49Z raasch ! OpenACC directives and related code removed ! ! 2050 2016-11-08 15:00:55Z gronemeier ! Implement turbulent outflow condition ! ! 2031 2016-10-21 15:11:58Z knoop ! renamed variable rho to rho_ocean ! ! 2011 2016-09-19 17:29:57Z kanani ! Flag urban_surface is now defined in module control_parameters, ! removed commented CALLs of global_min_max. ! ! 2007 2016-08-24 15:47:17Z kanani ! Added CALLs for new urban surface model ! ! 2000 2016-08-20 18:09:15Z knoop ! Forced header and separation lines into 80 columns ! ! 1976 2016-07-27 13:28:04Z maronga ! Simplified calls to radiation model ! ! 1960 2016-07-12 16:34:24Z suehring ! Separate humidity and passive scalar ! ! 1957 2016-07-07 10:43:48Z suehring ! flight module added ! ! 1919 2016-05-27 14:51:23Z raasch ! Initial version of purely vertical nesting introduced. ! ! 1918 2016-05-27 14:35:57Z raasch ! determination of time step moved to the end of the time step loop, ! the first time step is now always calculated before the time step loop (i.e. ! also in case of restart runs) ! ! 1914 2016-05-26 14:44:07Z witha ! Added call for wind turbine model ! ! 1878 2016-04-19 12:30:36Z hellstea ! Synchronization for nested runs rewritten ! ! 1853 2016-04-11 09:00:35Z maronga ! Adjusted for use with radiation_scheme = constant ! ! 1849 2016-04-08 11:33:18Z hoffmann ! Adapted for modularization of microphysics ! ! 1833 2016-04-07 14:23:03Z raasch ! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod ! ! 1831 2016-04-07 13:15:51Z hoffmann ! turbulence renamed collision_turbulence ! ! 1822 2016-04-07 07:49:42Z hoffmann ! icloud_scheme replaced by microphysics_* ! ! 1808 2016-04-05 19:44:00Z raasch ! output message in case unscheduled radiation calls removed ! ! 1797 2016-03-21 16:50:28Z raasch ! introduction of different datatransfer modes ! ! 1791 2016-03-11 10:41:25Z raasch ! call of pmci_update_new removed ! ! 1786 2016-03-08 05:49:27Z raasch ! +module spectrum ! ! 1783 2016-03-06 18:36:17Z raasch ! switch back of netcdf data format for mask output moved to the mask output ! routine ! ! 1781 2016-03-03 15:12:23Z raasch ! some pmc calls removed at the beginning (before timeloop), ! pmc initialization moved to the main program ! ! 1764 2016-02-28 12:45:19Z raasch ! PMC_ACTIVE flags removed, ! bugfix: nest synchronization after first call of timestep ! ! 1762 2016-02-25 12:31:13Z hellstea ! Introduction of nested domain feature ! ! 1736 2015-12-04 08:56:33Z raasch ! no perturbations added to total domain if energy limit has been set zero ! ! 1691 2015-10-26 16:17:44Z maronga ! Added option for spin-ups without land surface and radiation models. Moved calls ! for radiation and lan surface schemes. ! ! 1682 2015-10-07 23:56:08Z knoop ! Code annotations made doxygen readable ! ! 1671 2015-09-25 03:29:37Z raasch ! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used ! for particles ! ! 1585 2015-04-30 07:05:52Z maronga ! Moved call of radiation scheme. Added support for RRTM ! ! 1551 2015-03-03 14:18:16Z maronga ! Added interface for different radiation schemes. ! ! 1496 2014-12-02 17:25:50Z maronga ! Added calls for the land surface model and radiation scheme ! ! 1402 2014-05-09 14:25:13Z raasch ! location messages modified ! ! 1384 2014-05-02 14:31:06Z raasch ! location messages added ! ! 1380 2014-04-28 12:40:45Z heinze ! CALL of nudge_ref added ! bc_pt_t_val and bc_q_t_val are updated in case nudging is used ! ! 1365 2014-04-22 15:03:56Z boeske ! Reset sums_ls_l to zero at each timestep ! +sums_ls_l ! Calculation of reference state (previously in subroutine calc_mean_profile) ! 1342 2014-03-26 17:04:47Z kanani ! REAL constants defined as wp-kind ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! old module precision_kind is removed, ! revision history before 2012 removed, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! 1318 2014-03-17 13:35:16Z raasch ! module interfaces removed ! ! 1308 2014-03-13 14:58:42Z fricke ! +netcdf_data_format_save ! For masked data, parallel netcdf output is not tested so far, hence ! netcdf_data_format is switched back to non-paralell output. ! ! 1276 2014-01-15 13:40:41Z heinze ! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars ! ! 1257 2013-11-08 15:18:40Z raasch ! acc-update-host directive for timestep removed ! ! 1241 2013-10-30 11:36:58Z heinze ! Generalize calc_mean_profile for wider use ! Determine shf and qsws in dependence on data from LSF_DATA ! Determine ug and vg in dependence on data from LSF_DATA ! 1221 2013-09-10 08:59:13Z raasch ! host update of arrays before timestep is called ! ! 1179 2013-06-14 05:57:58Z raasch ! mean profiles for reference state are only calculated if required, ! small bugfix for background communication ! ! 1171 2013-05-30 11:27:45Z raasch ! split of prognostic_equations deactivated (comment lines), for the time being ! ! 1128 2013-04-12 06:19:32Z raasch ! asynchronous transfer of ghost point data realized for acc-optimized version: ! prognostic_equations are first called two times for those points required for ! the left-right and north-south exchange, respectively, and then for the ! remaining points, ! those parts requiring global communication moved from prognostic_equations to ! here ! ! 1115 2013-03-26 18:16:16Z hoffmann ! calculation of qr and nr is restricted to precipitation ! ! 1113 2013-03-10 02:48:14Z raasch ! GPU-porting of boundary conditions, ! openACC directives updated ! formal parameter removed from routine boundary_conds ! ! 1111 2013-03-08 23:54:10Z raasch ! +internal timestep counter for cpu statistics added, ! openACC directives updated ! ! 1092 2013-02-02 11:24:22Z raasch ! unused variables removed ! ! 1065 2012-11-22 17:42:36Z hoffmann ! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added ! ! 1053 2012-11-13 17:11:03Z hoffmann ! exchange of ghost points for nr, qr added ! ! 1036 2012-10-22 13:43:42Z raasch ! code put under GPL (PALM 3.9) ! ! 1019 2012-09-28 06:46:45Z raasch ! non-optimized version of prognostic_equations removed ! ! 1015 2012-09-27 09:23:24Z raasch ! +call of prognostic_equations_acc ! ! 1001 2012-09-13 14:08:46Z raasch ! all actions concerning leapfrog- and upstream-spline-scheme removed ! ! 849 2012-03-15 10:35:09Z raasch ! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm ! ! 825 2012-02-19 03:03:44Z raasch ! wang_collision_kernel renamed wang_kernel ! ! Revision 1.1 1997/08/11 06:19:04 raasch ! Initial revision ! ! ! Description: ! ------------ !> Integration in time of the model equations, statistical analysis and graphic !> output !------------------------------------------------------------------------------! SUBROUTINE time_integration USE advec_ws, & ONLY: ws_statistics USE arrays_3d, & ONLY: diss, dzu, e, e_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,& ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, & s, s_p, sa_p, tend, u, u_p, v, vpt, v_p, w, w_p USE calc_mean_profile_mod, & ONLY: calc_mean_profile USE control_parameters, & ONLY: advected_distance_x, advected_distance_y, average_count_3d, & averaging_interval, averaging_interval_pr, & bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, & bc_q_t_val, call_psolver_at_all_substeps, cloud_droplets, & cloud_physics, constant_flux_layer, constant_heatflux, & create_disturbances, dopr_n, constant_diffusion, coupling_mode, & coupling_start_time, current_timestep_number, & disturbance_created, disturbance_energy_limit, dist_range, & do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, & dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy, & dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr, & dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, & end_time, first_call_lpm, galilei_transformation, humidity, & intermediate_timestep_count, intermediate_timestep_count_max, & land_surface, large_scale_forcing, & loop_optimization, lsf_surf, lsf_vert, masks, & microphysics_seifert, mid, nest_domain, & neutral, nr_timesteps_this_run, nudging, & ocean, passive_scalar, & prho_reference, pt_reference, pt_slope_offset, random_heatflux, & run_coupled, simulated_time, simulated_time_chr, & skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz, & skip_time_do3d, skip_time_domask, skip_time_dopr, & skip_time_data_output_av, sloping_surface, & stop_dt, terminate_coupled, terminate_run, timestep_scheme, & time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz, & time_do3d, time_domask, time_dopr, time_dopr_av, & time_dopr_listing, time_dopts, time_dosp, time_dosp_av, & time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp, & time_run_control, time_since_reference_point, & turbulent_inflow, turbulent_outflow, urban_surface, & use_initial_profile_as_reference, & use_single_reference_value, u_gtrans, v_gtrans, virtual_flight, & ws_scheme_mom, ws_scheme_sca USE cpulog, & ONLY: cpu_log, log_point, log_point_s USE flight_mod, & ONLY: flight_measurement USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt USE interaction_droplets_ptq_mod, & ONLY: interaction_droplets_ptq USE interfaces USE kinds USE land_surface_model_mod, & ONLY: lsm_energy_balance, lsm_soil_model, & skip_time_do_lsm USE ls_forcing_mod, & ONLY: ls_forcing_surf, ls_forcing_vert USE microphysics_mod, & ONLY: collision_turbulence USE nudge_mod, & ONLY: calc_tnudge, nudge_ref USE particle_attributes, & ONLY: particle_advection, particle_advection_start, & use_sgs_for_particles, wang_kernel USE pegrid USE pmc_interface, & ONLY: nested_run, nesting_mode, pmci_datatrans, & pmci_ensure_nest_mass_conservation, pmci_synchronize USE production_e_mod, & ONLY: production_e_init USE progress_bar, & ONLY: finish_progress_bar, output_progress_bar USE prognostic_equations_mod, & ONLY: prognostic_equations_cache, prognostic_equations_vector USE radiation_model_mod, & ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,& skip_time_do_radiation, time_radiation USE spectra_mod, & ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, & skip_time_dosp USE statistics, & ONLY: flow_statistics_called, hom, pr_palm, sums_ls_l, u_max, & u_max_ijk, v_max, v_max_ijk, w_max, w_max_ijk USE surface_layer_fluxes_mod, & ONLY: surface_layer_fluxes USE surface_mod, & ONLY: surf_def_h, surf_lsm_h, surf_usm_h USE urban_surface_mod, & ONLY: usm_material_heat_model, usm_material_model, & usm_radiation, usm_surface_energy_balance USE synthetic_turbulence_generator_mod, & ONLY: stg_main, use_synthetic_turbulence_generator USE user_actions_mod, & ONLY: user_actions USE wind_turbine_model_mod, & ONLY: wind_turbine, wtm_forces IMPLICIT NONE CHARACTER (LEN=9) :: time_to_string !< REAL(wp) :: dt_3d_old !< temporary storage of timestep to be used for !< steering of run control output interval ! !-- At beginning determine the first time step CALL timestep ! !-- Synchronize the timestep in case of nested run. IF ( nested_run ) THEN ! !-- Synchronization by unifying the time step. !-- Global minimum of all time-steps is used for all. CALL pmci_synchronize ENDIF ! !-- Determine and print out the run control quantities before the first time !-- step of this run. For the initial run, some statistics (e.g. divergence) !-- need to be determined first. IF ( simulated_time == 0.0_wp ) CALL flow_statistics CALL run_control ! !-- Data exchange between coupled models in case that a call has been omitted !-- at the end of the previous run of a job chain. IF ( coupling_mode /= 'uncoupled' .AND. run_coupled ) THEN ! !-- In case of model termination initiated by the local model the coupler !-- must not be called because this would again cause an MPI hang. DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 ) CALL surface_coupler time_coupling = time_coupling - dt_coupling ENDDO IF (time_coupling == 0.0_wp .AND. & time_since_reference_point < dt_coupling ) & THEN time_coupling = time_since_reference_point ENDIF ENDIF #if defined( __dvrp_graphics ) ! !-- Time measurement with dvrp software CALL DVRP_LOG_EVENT( 2, current_timestep_number ) #endif CALL location_message( 'start with time-stepping', .TRUE. ) ! !-- Start of the time loop DO WHILE ( simulated_time < end_time .AND. .NOT. stop_dt .AND. & .NOT. terminate_run ) CALL cpu_log( log_point_s(10), 'timesteps', 'start' ) ! !-- Determine ug, vg and w_subs in dependence on data from external file !-- LSF_DATA IF ( large_scale_forcing .AND. lsf_vert ) THEN CALL ls_forcing_vert ( simulated_time ) sums_ls_l = 0.0_wp ENDIF ! !-- Set pt_init and q_init to the current profiles taken from !-- NUDGING_DATA IF ( nudging ) THEN CALL nudge_ref ( simulated_time ) ! !-- Store temperature gradient at the top boundary for possible Neumann !-- boundary condition bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1) bc_q_t_val = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1) ENDIF ! !-- Execute the user-defined actions CALL user_actions( 'before_timestep' ) ! !-- Calculate forces by wind turbines IF ( wind_turbine ) THEN CALL cpu_log( log_point(55), 'wind_turbine', 'start' ) CALL wtm_forces CALL cpu_log( log_point(55), 'wind_turbine', 'stop' ) ENDIF ! !-- Start of intermediate step loop intermediate_timestep_count = 0 DO WHILE ( intermediate_timestep_count < & intermediate_timestep_count_max ) intermediate_timestep_count = intermediate_timestep_count + 1 ! !-- Set the steering factors for the prognostic equations which depend !-- on the timestep scheme CALL timestep_scheme_steering ! !-- Calculate those variables needed in the tendency terms which need !-- global communication IF ( .NOT. use_single_reference_value .AND. & .NOT. use_initial_profile_as_reference ) THEN ! !-- Horizontally averaged profiles to be used as reference state in !-- buoyancy terms (WARNING: only the respective last call of !-- calc_mean_profile defines the reference state!) IF ( .NOT. neutral ) THEN CALL calc_mean_profile( pt, 4 ) ref_state(:) = hom(:,1,4,0) ! this is used in the buoyancy term ENDIF IF ( ocean ) THEN CALL calc_mean_profile( rho_ocean, 64 ) ref_state(:) = hom(:,1,64,0) ENDIF IF ( humidity ) THEN CALL calc_mean_profile( vpt, 44 ) ref_state(:) = hom(:,1,44,0) ENDIF ENDIF IF ( .NOT. constant_diffusion ) CALL production_e_init IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & intermediate_timestep_count == 1 ) CALL ws_statistics ! !-- In case of nudging calculate current nudging time scale and horizontal !-- means of u, v, pt and q IF ( nudging ) THEN CALL calc_tnudge( simulated_time ) CALL calc_mean_profile( u, 1 ) CALL calc_mean_profile( v, 2 ) CALL calc_mean_profile( pt, 4 ) CALL calc_mean_profile( q, 41 ) ENDIF ! !-- Solve the prognostic equations. A fast cache optimized version with !-- only one single loop is used in case of Piascek-Williams advection !-- scheme. NEC vector machines use a different version, because !-- in the other versions a good vectorization is prohibited due to !-- inlining problems. IF ( loop_optimization == 'cache' ) THEN CALL prognostic_equations_cache ELSEIF ( loop_optimization == 'vector' ) THEN CALL prognostic_equations_vector ENDIF ! !-- Particle transport/physics with the Lagrangian particle model !-- (only once during intermediate steps, because it uses an Euler-step) !-- ### particle model should be moved before prognostic_equations, in order !-- to regard droplet interactions directly IF ( particle_advection .AND. & simulated_time >= particle_advection_start .AND. & intermediate_timestep_count == 1 ) THEN CALL lpm first_call_lpm = .FALSE. ENDIF ! !-- Interaction of droplets with temperature and specific humidity. !-- Droplet condensation and evaporation is calculated within !-- advec_particles. IF ( cloud_droplets .AND. & intermediate_timestep_count == intermediate_timestep_count_max )& THEN CALL interaction_droplets_ptq ENDIF ! !-- Exchange of ghost points (lateral boundary conditions) CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' ) CALL exchange_horiz( u_p, nbgp ) CALL exchange_horiz( v_p, nbgp ) CALL exchange_horiz( w_p, nbgp ) CALL exchange_horiz( pt_p, nbgp ) IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e_p, nbgp ) IF ( ocean ) THEN CALL exchange_horiz( sa_p, nbgp ) CALL exchange_horiz( rho_ocean, nbgp ) CALL exchange_horiz( prho, nbgp ) ENDIF IF ( humidity ) THEN CALL exchange_horiz( q_p, nbgp ) IF ( cloud_physics .AND. microphysics_seifert ) THEN CALL exchange_horiz( qr_p, nbgp ) CALL exchange_horiz( nr_p, nbgp ) ENDIF ENDIF IF ( cloud_droplets ) THEN CALL exchange_horiz( ql, nbgp ) CALL exchange_horiz( ql_c, nbgp ) CALL exchange_horiz( ql_v, nbgp ) CALL exchange_horiz( ql_vp, nbgp ) ENDIF IF ( wang_kernel .OR. collision_turbulence .OR. & use_sgs_for_particles ) THEN CALL exchange_horiz( diss, nbgp ) ENDIF IF ( passive_scalar ) CALL exchange_horiz( s_p, nbgp ) CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' ) ! !-- Boundary conditions for the prognostic quantities (except of the !-- velocities at the outflow in case of a non-cyclic lateral wall) CALL boundary_conds ! !-- Swap the time levels in preparation for the next time step. CALL swap_timelevel IF ( nested_run ) THEN CALL cpu_log( log_point(60), 'nesting', 'start' ) ! !-- Domain nesting. The data transfer subroutines pmci_parent_datatrans !-- and pmci_child_datatrans are called inside the wrapper !-- subroutine pmci_datatrans according to the control parameters !-- nesting_mode and nesting_datatransfer_mode. !-- TO_DO: why is nesting_mode given as a parameter here? CALL pmci_datatrans( nesting_mode ) IF ( TRIM( nesting_mode ) == 'two-way' .OR. & nesting_mode == 'vertical' ) THEN ! !-- Exchange_horiz is needed for all parent-domains after the !-- anterpolation CALL exchange_horiz( u, nbgp ) CALL exchange_horiz( v, nbgp ) CALL exchange_horiz( w, nbgp ) IF ( .NOT. neutral ) CALL exchange_horiz( pt, nbgp ) IF ( humidity ) THEN CALL exchange_horiz( q, nbgp ) IF ( cloud_physics .AND. microphysics_seifert ) THEN ! CALL exchange_horiz( qc, nbgp ) CALL exchange_horiz( qr, nbgp ) ! CALL exchange_horiz( nc, nbgp ) CALL exchange_horiz( nr, nbgp ) ENDIF ENDIF IF ( passive_scalar ) CALL exchange_horiz( s, nbgp ) IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e, nbgp ) ENDIF ! !-- Correct the w top-BC in nest domains to ensure mass conservation. !-- This action must never be done for the root domain. Vertical !-- nesting implies mass conservation. IF ( nest_domain ) THEN CALL pmci_ensure_nest_mass_conservation ENDIF CALL cpu_log( log_point(60), 'nesting', 'stop' ) ENDIF ! !-- Temperature offset must be imposed at cyclic boundaries in x-direction !-- when a sloping surface is used IF ( sloping_surface ) THEN IF ( nxl == 0 ) pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - & pt_slope_offset IF ( nxr == nx ) pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + & pt_slope_offset ENDIF ! !-- Impose a turbulent inflow using the recycling method IF ( turbulent_inflow ) CALL inflow_turbulence ! !-- Impose a turbulent inflow using synthetic generated turbulence IF ( use_synthetic_turbulence_generator ) THEN CALL stg_main ENDIF ! !-- Set values at outflow boundary using the special outflow condition IF ( turbulent_outflow ) CALL outflow_turbulence ! !-- Impose a random perturbation on the horizontal velocity field IF ( create_disturbances .AND. & ( call_psolver_at_all_substeps .AND. & intermediate_timestep_count == intermediate_timestep_count_max )& .OR. ( .NOT. call_psolver_at_all_substeps .AND. & intermediate_timestep_count == 1 ) ) & THEN time_disturb = time_disturb + dt_3d IF ( time_disturb >= dt_disturb ) THEN IF ( disturbance_energy_limit /= 0.0_wp .AND. & hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit ) THEN CALL disturb_field( 'u', tend, u ) CALL disturb_field( 'v', tend, v ) ELSEIF ( ( .NOT. bc_lr_cyc .OR. .NOT. bc_ns_cyc ) & .AND. .NOT. nest_domain ) THEN ! !-- Runs with a non-cyclic lateral wall need perturbations !-- near the inflow throughout the whole simulation dist_range = 1 CALL disturb_field( 'u', tend, u ) CALL disturb_field( 'v', tend, v ) dist_range = 0 ENDIF time_disturb = time_disturb - dt_disturb ENDIF ENDIF ! !-- Reduce the velocity divergence via the equation for perturbation !-- pressure. IF ( intermediate_timestep_count == 1 .OR. & call_psolver_at_all_substeps ) THEN CALL pres ENDIF ! !-- If required, compute liquid water content IF ( cloud_physics ) THEN CALL calc_liquid_water_content ENDIF ! !-- If required, compute virtual potential temperature IF ( humidity ) THEN CALL compute_vpt ENDIF ! !-- Compute the diffusion quantities IF ( .NOT. constant_diffusion ) THEN ! !-- Determine surface fluxes shf and qsws and surface values !-- pt_surface and q_surface in dependence on data from external !-- file LSF_DATA respectively IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. & intermediate_timestep_count == intermediate_timestep_count_max )& THEN CALL ls_forcing_surf ( simulated_time ) ENDIF ! !-- First the vertical (and horizontal) fluxes in the surface !-- (constant flux) layer are computed IF ( constant_flux_layer ) THEN CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' ) CALL surface_layer_fluxes CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' ) ENDIF ! !-- If required, solve the energy balance for the surface and run soil !-- model. Call for horizontal as well as vertical surfaces IF ( land_surface .AND. simulated_time > skip_time_do_lsm) THEN CALL cpu_log( log_point(54), 'land_surface', 'start' ) ! !-- Call for horizontal upward-facing surfaces CALL lsm_energy_balance( .TRUE., -1 ) CALL lsm_soil_model( .TRUE., -1 ) ! !-- Call for northward-facing surfaces CALL lsm_energy_balance( .FALSE., 0 ) CALL lsm_soil_model( .FALSE., 0 ) ! !-- Call for southward-facing surfaces CALL lsm_energy_balance( .FALSE., 1 ) CALL lsm_soil_model( .FALSE., 1 ) ! !-- Call for eastward-facing surfaces CALL lsm_energy_balance( .FALSE., 2 ) CALL lsm_soil_model( .FALSE., 2 ) ! !-- Call for westward-facing surfaces CALL lsm_energy_balance( .FALSE., 3 ) CALL lsm_soil_model( .FALSE., 3 ) CALL cpu_log( log_point(54), 'land_surface', 'stop' ) ENDIF ! !-- If required, solve the energy balance for urban surfaces and run !-- the material heat model IF (urban_surface) THEN CALL cpu_log( log_point(74), 'urban_surface', 'start' ) CALL usm_surface_energy_balance IF ( usm_material_model ) THEN CALL usm_material_heat_model ENDIF CALL cpu_log( log_point(74), 'urban_surface', 'stop' ) ENDIF ! !-- Compute the diffusion coefficients CALL cpu_log( log_point(17), 'diffusivities', 'start' ) IF ( .NOT. humidity ) THEN IF ( ocean ) THEN CALL diffusivities( prho, prho_reference ) ELSE CALL diffusivities( pt, pt_reference ) ENDIF ELSE CALL diffusivities( vpt, pt_reference ) ENDIF CALL cpu_log( log_point(17), 'diffusivities', 'stop' ) ENDIF ! !-- If required, calculate radiative fluxes and heating rates IF ( radiation .AND. intermediate_timestep_count & == intermediate_timestep_count_max .AND. simulated_time > & skip_time_do_radiation ) THEN time_radiation = time_radiation + dt_3d IF ( time_radiation >= dt_radiation .OR. force_radiation_call ) & THEN CALL cpu_log( log_point(50), 'radiation', 'start' ) IF ( .NOT. force_radiation_call ) THEN time_radiation = time_radiation - dt_radiation ENDIF CALL radiation_control CALL cpu_log( log_point(50), 'radiation', 'stop' ) IF (urban_surface) THEN CALL cpu_log( log_point(75), 'usm_radiation', 'start' ) CALL usm_radiation CALL cpu_log( log_point(75), 'usm_radiation', 'stop' ) ENDIF ENDIF ENDIF ENDDO ! Intermediate step loop ! !-- Increase simulation time and output times nr_timesteps_this_run = nr_timesteps_this_run + 1 current_timestep_number = current_timestep_number + 1 simulated_time = simulated_time + dt_3d simulated_time_chr = time_to_string( simulated_time ) time_since_reference_point = simulated_time - coupling_start_time IF ( simulated_time >= skip_time_data_output_av ) THEN time_do_av = time_do_av + dt_3d ENDIF IF ( simulated_time >= skip_time_do2d_xy ) THEN time_do2d_xy = time_do2d_xy + dt_3d ENDIF IF ( simulated_time >= skip_time_do2d_xz ) THEN time_do2d_xz = time_do2d_xz + dt_3d ENDIF IF ( simulated_time >= skip_time_do2d_yz ) THEN time_do2d_yz = time_do2d_yz + dt_3d ENDIF IF ( simulated_time >= skip_time_do3d ) THEN time_do3d = time_do3d + dt_3d ENDIF DO mid = 1, masks IF ( simulated_time >= skip_time_domask(mid) ) THEN time_domask(mid)= time_domask(mid) + dt_3d ENDIF ENDDO time_dvrp = time_dvrp + dt_3d IF ( simulated_time >= skip_time_dosp ) THEN time_dosp = time_dosp + dt_3d ENDIF time_dots = time_dots + dt_3d IF ( .NOT. first_call_lpm ) THEN time_dopts = time_dopts + dt_3d ENDIF IF ( simulated_time >= skip_time_dopr ) THEN time_dopr = time_dopr + dt_3d ENDIF time_dopr_listing = time_dopr_listing + dt_3d time_run_control = time_run_control + dt_3d ! !-- Data exchange between coupled models IF ( coupling_mode /= 'uncoupled' .AND. run_coupled ) THEN time_coupling = time_coupling + dt_3d ! !-- In case of model termination initiated by the local model !-- (terminate_coupled > 0), the coupler must be skipped because it would !-- cause an MPI intercomminucation hang. !-- If necessary, the coupler will be called at the beginning of the !-- next restart run. DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 ) CALL surface_coupler time_coupling = time_coupling - dt_coupling ENDDO ENDIF ! !-- Execute user-defined actions CALL user_actions( 'after_integration' ) ! !-- If Galilei transformation is used, determine the distance that the !-- model has moved so far IF ( galilei_transformation ) THEN advected_distance_x = advected_distance_x + u_gtrans * dt_3d advected_distance_y = advected_distance_y + v_gtrans * dt_3d ENDIF ! !-- Check, if restart is necessary (because cpu-time is expiring or !-- because it is forced by user) and set stop flag !-- This call is skipped if the remote model has already initiated a restart. IF ( .NOT. terminate_run ) CALL check_for_restart ! !-- Carry out statistical analysis and output at the requested output times. !-- The MOD function is used for calculating the output time counters (like !-- time_dopr) in order to regard a possible decrease of the output time !-- interval in case of restart runs ! !-- Set a flag indicating that so far no statistics have been created !-- for this time step flow_statistics_called = .FALSE. ! !-- If required, call flow_statistics for averaging in time IF ( averaging_interval_pr /= 0.0_wp .AND. & ( dt_dopr - time_dopr ) <= averaging_interval_pr .AND. & simulated_time >= skip_time_dopr ) THEN time_dopr_av = time_dopr_av + dt_3d IF ( time_dopr_av >= dt_averaging_input_pr ) THEN do_sum = .TRUE. time_dopr_av = MOD( time_dopr_av, & MAX( dt_averaging_input_pr, dt_3d ) ) ENDIF ENDIF IF ( do_sum ) CALL flow_statistics ! !-- Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data IF ( averaging_interval /= 0.0_wp .AND. & ( dt_data_output_av - time_do_av ) <= averaging_interval .AND. & simulated_time >= skip_time_data_output_av ) & THEN time_do_sla = time_do_sla + dt_3d IF ( time_do_sla >= dt_averaging_input ) THEN CALL sum_up_3d_data average_count_3d = average_count_3d + 1 time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) ) ENDIF ENDIF ! !-- Calculate spectra for time averaging IF ( averaging_interval_sp /= 0.0_wp .AND. & ( dt_dosp - time_dosp ) <= averaging_interval_sp .AND. & simulated_time >= skip_time_dosp ) THEN time_dosp_av = time_dosp_av + dt_3d IF ( time_dosp_av >= dt_averaging_input_pr ) THEN CALL calc_spectra time_dosp_av = MOD( time_dosp_av, & MAX( dt_averaging_input_pr, dt_3d ) ) ENDIF ENDIF ! !-- Call flight module and output data IF ( virtual_flight ) THEN CALL flight_measurement CALL data_output_flight ENDIF ! !-- Profile output (ASCII) on file IF ( time_dopr_listing >= dt_dopr_listing ) THEN CALL print_1d time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, & dt_3d ) ) ENDIF ! !-- Graphic output for PROFIL IF ( time_dopr >= dt_dopr ) THEN IF ( dopr_n /= 0 ) CALL data_output_profiles time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) ) time_dopr_av = 0.0_wp ! due to averaging (see above) ENDIF ! !-- Graphic output for time series IF ( time_dots >= dt_dots ) THEN CALL data_output_tseries time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) ) ENDIF ! !-- Output of spectra (formatted for use with PROFIL), in case of no !-- time averaging, spectra has to be calculated before IF ( time_dosp >= dt_dosp ) THEN IF ( average_count_sp == 0 ) CALL calc_spectra CALL data_output_spectra time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) ) ENDIF ! !-- 2d-data output (cross-sections) IF ( time_do2d_xy >= dt_do2d_xy ) THEN CALL data_output_2d( 'xy', 0 ) time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) ) ENDIF IF ( time_do2d_xz >= dt_do2d_xz ) THEN CALL data_output_2d( 'xz', 0 ) time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) ) ENDIF IF ( time_do2d_yz >= dt_do2d_yz ) THEN CALL data_output_2d( 'yz', 0 ) time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) ) ENDIF ! !-- 3d-data output (volume data) IF ( time_do3d >= dt_do3d ) THEN CALL data_output_3d( 0 ) time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) ) ENDIF ! !-- Masked data output DO mid = 1, masks IF ( time_domask(mid) >= dt_domask(mid) ) THEN CALL data_output_mask( 0 ) time_domask(mid) = MOD( time_domask(mid), & MAX( dt_domask(mid), dt_3d ) ) ENDIF ENDDO ! !-- Output of time-averaged 2d/3d/masked data IF ( time_do_av >= dt_data_output_av ) THEN CALL average_3d_data CALL data_output_2d( 'xy', 1 ) CALL data_output_2d( 'xz', 1 ) CALL data_output_2d( 'yz', 1 ) CALL data_output_3d( 1 ) DO mid = 1, masks CALL data_output_mask( 1 ) ENDDO time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) ) ENDIF ! !-- Output of particle time series IF ( particle_advection ) THEN IF ( time_dopts >= dt_dopts .OR. & ( simulated_time >= particle_advection_start .AND. & first_call_lpm ) ) THEN CALL data_output_ptseries time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) ) ENDIF ENDIF ! !-- Output of dvrp-graphics (isosurface, particles, slicer) #if defined( __dvrp_graphics ) CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 ) #endif IF ( time_dvrp >= dt_dvrp ) THEN CALL data_output_dvrp time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) ) ENDIF #if defined( __dvrp_graphics ) CALL DVRP_LOG_EVENT( 2, current_timestep_number ) #endif ! !-- If required, set the heat flux for the next time step at a random value IF ( constant_heatflux .AND. random_heatflux ) THEN IF ( surf_def_h(0)%ns >= 1 ) CALL disturb_heatflux( surf_def_h(0) ) IF ( surf_lsm_h%ns >= 1 ) CALL disturb_heatflux( surf_lsm_h ) IF ( surf_usm_h%ns >= 1 ) CALL disturb_heatflux( surf_usm_h ) ENDIF ! !-- Execute user-defined actions CALL user_actions( 'after_timestep' ) ! !-- Determine size of next time step. Save timestep dt_3d because it is !-- newly calculated in routine timestep, but required further below for !-- steering the run control output interval dt_3d_old = dt_3d CALL timestep ! !-- Synchronize the timestep in case of nested run. IF ( nested_run ) THEN ! !-- Synchronize by unifying the time step. !-- Global minimum of all time-steps is used for all. CALL pmci_synchronize ENDIF ! !-- Computation and output of run control parameters. !-- This is also done whenever perturbations have been imposed IF ( time_run_control >= dt_run_control .OR. & timestep_scheme(1:5) /= 'runge' .OR. disturbance_created ) & THEN CALL run_control IF ( time_run_control >= dt_run_control ) THEN time_run_control = MOD( time_run_control, & MAX( dt_run_control, dt_3d_old ) ) ENDIF ENDIF ! !-- Output elapsed simulated time in form of a progress bar on stdout IF ( myid == 0 ) CALL output_progress_bar CALL cpu_log( log_point_s(10), 'timesteps', 'stop' ) ENDDO ! time loop IF ( myid == 0 ) CALL finish_progress_bar #if defined( __dvrp_graphics ) CALL DVRP_LOG_EVENT( -2, current_timestep_number ) #endif CALL location_message( 'finished time-stepping', .TRUE. ) END SUBROUTINE time_integration