source: palm/trunk/SOURCE/time_integration.f90 @ 4017

Last change on this file since 4017 was 4017, checked in by schwenkel, 5 years ago

Modularization of all lagrangian particle model code components

  • Property svn:keywords set to Id
File size: 77.7 KB
RevLine 
[1682]1!> @file time_integration.f90
[2000]2!------------------------------------------------------------------------------!
[2696]3! This file is part of the PALM model system.
[1036]4!
[2000]5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
[1036]9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
[3647]17! Copyright 1997-2019 Leibniz Universitaet Hannover
[2000]18!------------------------------------------------------------------------------!
[1036]19!
[484]20! Current revisions:
[1092]21! ------------------
[1928]22!
[3745]23!
[1366]24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 4017 2019-06-06 12:16:46Z schwenkel $
[4010]27! Mass (volume) flux correction included to ensure global mass conservation for child domains.
28!
29! 3994 2019-05-22 18:08:09Z suehring
[3994]30! output of turbulence intensity added
31!
32! 3988 2019-05-22 11:32:37Z kanani
[3988]33! Implement steerable output interval for virtual measurements
34!
35! 3968 2019-05-13 11:04:01Z suehring
[3968]36! replace nspec_out with n_matched_vars
37!
38! 3929 2019-04-24 12:52:08Z banzhafs
[3929]39! Reverse changes back from revision 3878: use chem_boundary_conds instead of
40! chem_boundary_conds_decycle
41!
42!
43! 3885 2019-04-11 11:29:34Z kanani
[3885]44! Changes related to global restructuring of location messages and introduction
45! of additional debug messages
[3929]46!
[3885]47! 3879 2019-04-08 20:25:23Z knoop
[3875]48! Moved wtm_forces to module_interface_actions
49!
50! 3872 2019-04-08 15:03:06Z knoop
[3864]51! Modifications made for salsa:
52! - Call salsa_emission_update at each time step but do the checks within
53!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
54!   and next_aero_emission_update <= time_since_reference_point ).
55! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
56!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
57! - Apply nesting for salsa variables
58! - Removed cpu_log calls speciffic for salsa.
59!
60! 3833 2019-03-28 15:04:04Z forkel
[3879]61! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
[3833]62!
63! 3820 2019-03-27 11:53:41Z forkel
[3820]64! renamed do_emiss to emissions_anthropogenic (ecc)
65!
66!
67! 3774 2019-03-04 10:52:49Z moh.hefny
[3774]68! rephrase if statement to avoid unallocated array in case of
69! nesting_offline is false (crashing during debug mode)
70!
71! 3761 2019-02-25 15:31:42Z raasch $
[3761]72! module section re-formatted and openacc required variables moved to separate section,
73! re-formatting to 100 char line width
74!
75! 3745 2019-02-15 18:57:56Z suehring
[3745]76! Call indoor model after first timestep
77!
78! 3744 2019-02-15 18:38:58Z suehring
[3742]79! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
80! time_integration to make sure averaged input is updated before calculating.
81!
82! 3739 2019-02-13 08:05:17Z dom_dwd_user
[3739]83! Removed everything related to "time_bio_results" as this is never used.
84!
85! 3724 2019-02-06 16:28:23Z kanani
[3724]86! Correct double-used log_point_s unit
87!
88! 3719 2019-02-06 13:10:18Z kanani
[3719]89! - removed wind_turbine cpu measurement, since same time is measured inside
90!   wtm_forces subroutine as special measures
91! - moved the numerous vnest cpulog to special measures
92! - extended radiation cpulog over entire radiation part,
93!   moved radiation_interactions cpulog to special measures
94! - moved some cpu_log calls to this routine for better overview
95!
96! 3705 2019-01-29 19:56:39Z suehring
[3705]97! Data output for virtual measurements added
98!
99! 3704 2019-01-29 19:51:41Z suehring
[3648]100! Rename subroutines for surface-data output
101!
102! 3647 2019-01-02 14:10:44Z kanani
[3647]103! Bugfix: add time_since_reference_point to IF clause for data_output calls
104! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
105! Clean up indoor_model and biometeorology model call.
106!
107! 3646 2018-12-28 17:58:49Z kanani
[3646]108! Bugfix: use time_since_reference_point instead of simulated_time where
109! required (relevant when using wall/soil spinup)
110!
111! 3634 2018-12-18 12:31:28Z knoop
[3634]112! OpenACC port for SPEC
113!
114! 3597 2018-12-04 08:40:18Z maronga
[3597]115! Removed call to calculation of near air (10 cm) potential temperature (now in
116! surface layer fluxes)
117!
118! 3589 2018-11-30 15:09:51Z suehring
[3589]119! Move the control parameter "salsa" from salsa_mod to control_parameters
120! (M. Kurppa)
121!
122! 3582 2018-11-29 19:16:36Z suehring
[3569]123! dom_dwd_user, Schrempf:
124! Changes due to merge of uv exposure model into biometeorology_mod.
125!
126! 3525 2018-11-14 16:06:14Z kanani
[3525]127! Changes related to clean-up of biometeorology (dom_dwd_user)
128!
129! 3524 2018-11-14 13:36:44Z raasch
[3524]130! unused variables removed
131!
132! 3484 2018-11-02 14:41:25Z hellstea
[3484]133! pmci_ensure_nest_mass_conservation is premanently removed
134!
135! 3473 2018-10-30 20:50:15Z suehring
[3473]136! new module for virtual measurements introduced
137!
138! 3472 2018-10-30 20:43:50Z suehring
[3469]139! Add indoor model (kanani, srissman, tlang)
140!
141! 3467 2018-10-30 19:05:21Z suehring
[3467]142! Implementation of a new aerosol module salsa.
143!
144! 3448 2018-10-29 18:14:31Z kanani
[3448]145! Add biometeorology
146!
147! 3421 2018-10-24 18:39:32Z gronemeier
[3421]148! Surface data output
149!
150! 3418 2018-10-24 16:07:39Z kanani
[3418]151! call to material_heat_model now with check if spinup runs (rvtils)
152!
153! 3378 2018-10-19 12:34:59Z kanani
[3378]154! merge from radiation branch (r3362) into trunk
155! (moh.hefny):
156! Bugfix in the if statement to call radiation_interaction
157!
158! 3347 2018-10-15 14:21:08Z suehring
[3347]159! - offline nesting separated from large-scale forcing module
160! - changes for synthetic turbulence generator
161!
162! 3343 2018-10-15 10:38:52Z suehring
[3298]163! - Formatting, clean-up, comments (kanani)
164! - Added CALL to chem_emissions_setup (Russo)
165! - Code added for decycling chemistry (basit)
166!
167! 3294 2018-10-01 02:37:10Z raasch
[3294]168! changes concerning modularization of ocean option
169!
170! 3274 2018-09-24 15:42:55Z knoop
[3274]171! Modularization of all bulk cloud physics code components
172!
173! 3241 2018-09-12 15:02:00Z raasch
[3241]174! unused variables removed
175!
176! 3198 2018-08-15 09:23:10Z sward
[3198]177! Added multi_agent_system_end; defined start time for MAS relative to
178! time_since_reference_point
179!
180! 3183 2018-07-27 14:25:55Z suehring
[3183]181! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
182! Rename subroutines and variables in COSMO nesting mode
183!
184! 3182 2018-07-27 13:36:03Z suehring
[3159]185! Added multi agent system
186!
187! 3042 2018-05-25 10:44:37Z schwenkel
[3042]188! Changed the name specific humidity to mixing ratio
189!
190! 3040 2018-05-25 10:22:08Z schwenkel
[3014]191! Fixed bug in IF statement
192! Ensure that the time when calling the radiation to be the time step of the
193! pre-calculated time when first calculate the positions of the sun
194!
195! 3004 2018-04-27 12:33:25Z Giersch
[3004]196! First call of flow_statistics has been removed. It is already called in
197! run_control itself
198!
199! 2984 2018-04-18 11:51:30Z hellstea
[2984]200! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
201! as seemingly unnecessary.
[2977]202!
203! 2941 2018-04-03 11:54:58Z kanani
[2941]204! Deduct spinup_time from RUN_CONTROL output of main 3d run
205! (use time_since_reference_point instead of simulated_time)
206!
207! 2938 2018-03-27 15:52:42Z suehring
[2938]208! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
209!
210! 2936 2018-03-27 14:49:27Z suehring
[2934]211! Little formatting adjustment.
212!
213! 2817 2018-02-19 16:32:21Z knoop
[2817]214! Preliminary gust module interface implemented
215!
216! 2801 2018-02-14 16:01:55Z thiele
[2801]217! Changed lpm from subroutine to module.
218! Introduce particle transfer in nested models.
219!
220! 2776 2018-01-31 10:44:42Z Giersch
[2776]221! Variable use_synthetic_turbulence_generator has been abbreviated
222!
223! 2773 2018-01-30 14:12:54Z suehring
[2773]224! - Nesting for chemical species
225!
226! 2766 2018-01-22 17:17:47Z kanani
[2766]227! Removed preprocessor directive __chem
228!
229! 2718 2018-01-02 08:49:38Z maronga
[2716]230! Corrected "Former revisions" section
231!
232! 2696 2017-12-14 17:12:51Z kanani
233! - Change in file header (GPL part)
[2696]234! - Implementation of uv exposure model (FK)
235! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
236! - renamed diffusivities to tcm_diffusivities (TG)
237! - implement prognostic equation for diss (TG)
238! - Moved/commented CALL to chem_emissions (FK)
239! - Added CALL to chem_emissions (FK)
240! - Implementation of chemistry module (FK)
241! - Calls for setting boundary conditions in USM and LSM (MS)
242! - Large-scale forcing with larger-scale models implemented (MS)
243! - Rename usm_radiation into radiation_interactions; merge with branch
244!   radiation (MS)
245! - added call for usm_green_heat_model for green building surfaces (RvT)
246! - added call for usm_temperature_near_surface for use in indoor model (RvT)
247!
248! 2617 2017-11-16 12:47:24Z suehring
[2617]249! Bugfix, assure that the reference state does not become zero.
250!
251! 2563 2017-10-19 15:36:10Z Giersch
[2563]252! Variable wind_turbine moved to module control_parameters
253!
254! 2365 2017-08-21 14:59:59Z kanani
[2365]255! Vertical grid nesting implemented (SadiqHuq)
256!
257! 2320 2017-07-21 12:47:43Z suehring
[2311]258! Set bottom boundary conditions after nesting interpolation and anterpolation
259!
260! 2299 2017-06-29 10:14:38Z maronga
[2299]261! Call of soil model adjusted
262!
263! 2292 2017-06-20 09:51:42Z schwenkel
[2292]264! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
265! includes two more prognostic equations for cloud drop concentration (nc) 
266! and cloud water content (qc).
267!
268! 2271 2017-06-09 12:34:55Z sward
[2271]269! Start timestep message changed
270!
271! 2259 2017-06-08 09:09:11Z gronemeier
[2259]272! Implemented synthetic turbulence generator
[1366]273!
[2259]274! 2233 2017-05-30 18:08:54Z suehring
275!
[2233]276! 2232 2017-05-30 17:47:52Z suehring
277! Adjustments to new topography and surface concept
278! Modify passed parameters for disturb_field
279!
[2179]280! 2178 2017-03-17 11:07:39Z hellstea
281! Setting perturbations at all times near inflow boundary is removed
282! in case of nested boundaries
283!
[2175]284! 2174 2017-03-13 08:18:57Z maronga
285! Added support for nesting with cloud microphysics
286!
[2119]287! 2118 2017-01-17 16:38:49Z raasch
288! OpenACC directives and related code removed
289!
[2051]290! 2050 2016-11-08 15:00:55Z gronemeier
291! Implement turbulent outflow condition
292!
[2032]293! 2031 2016-10-21 15:11:58Z knoop
294! renamed variable rho to rho_ocean
295!
[2012]296! 2011 2016-09-19 17:29:57Z kanani
297! Flag urban_surface is now defined in module control_parameters,
298! removed commented CALLs of global_min_max.
299!
[2008]300! 2007 2016-08-24 15:47:17Z kanani
301! Added CALLs for new urban surface model
302!
[2001]303! 2000 2016-08-20 18:09:15Z knoop
304! Forced header and separation lines into 80 columns
305!
[1977]306! 1976 2016-07-27 13:28:04Z maronga
307! Simplified calls to radiation model
308!
[1961]309! 1960 2016-07-12 16:34:24Z suehring
310! Separate humidity and passive scalar
311!
[1958]312! 1957 2016-07-07 10:43:48Z suehring
313! flight module added
314!
[1933]315! 1919 2016-05-27 14:51:23Z raasch
316! Initial version of purely vertical nesting introduced.
[1928]317!
[1919]318! 1918 2016-05-27 14:35:57Z raasch
319! determination of time step moved to the end of the time step loop,
320! the first time step is now always calculated before the time step loop (i.e.
321! also in case of restart runs)
322!
[1917]323! 1914 2016-05-26 14:44:07Z witha
324! Added call for wind turbine model
325!
[1879]326! 1878 2016-04-19 12:30:36Z hellstea
327! Synchronization for nested runs rewritten
328!
[1854]329! 1853 2016-04-11 09:00:35Z maronga
330! Adjusted for use with radiation_scheme = constant
331!
[1851]332! 1849 2016-04-08 11:33:18Z hoffmann
333! Adapted for modularization of microphysics
334!
[1834]335! 1833 2016-04-07 14:23:03Z raasch
336! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
337!
[1832]338! 1831 2016-04-07 13:15:51Z hoffmann
339! turbulence renamed collision_turbulence
340!
[1823]341! 1822 2016-04-07 07:49:42Z hoffmann
342! icloud_scheme replaced by microphysics_*
343!
[1809]344! 1808 2016-04-05 19:44:00Z raasch
345! output message in case unscheduled radiation calls removed
346!
[1798]347! 1797 2016-03-21 16:50:28Z raasch
348! introduction of different datatransfer modes
349!
[1792]350! 1791 2016-03-11 10:41:25Z raasch
351! call of pmci_update_new removed
352!
[1787]353! 1786 2016-03-08 05:49:27Z raasch
354! +module spectrum
355!
[1784]356! 1783 2016-03-06 18:36:17Z raasch
357! switch back of netcdf data format for mask output moved to the mask output
358! routine
359!
[1782]360! 1781 2016-03-03 15:12:23Z raasch
361! some pmc calls removed at the beginning (before timeloop),
362! pmc initialization moved to the main program
363!
[1765]364! 1764 2016-02-28 12:45:19Z raasch
365! PMC_ACTIVE flags removed,
366! bugfix: nest synchronization after first call of timestep
367!
[1763]368! 1762 2016-02-25 12:31:13Z hellstea
369! Introduction of nested domain feature
370!
[1737]371! 1736 2015-12-04 08:56:33Z raasch
372! no perturbations added to total domain if energy limit has been set zero
373!
[1692]374! 1691 2015-10-26 16:17:44Z maronga
375! Added option for spin-ups without land surface and radiation models. Moved calls
376! for radiation and lan surface schemes.
377!
[1683]378! 1682 2015-10-07 23:56:08Z knoop
379! Code annotations made doxygen readable
380!
[1672]381! 1671 2015-09-25 03:29:37Z raasch
382! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
383! for particles
384!
[1586]385! 1585 2015-04-30 07:05:52Z maronga
386! Moved call of radiation scheme. Added support for RRTM
387!
[1552]388! 1551 2015-03-03 14:18:16Z maronga
389! Added interface for different radiation schemes.
390!
[1497]391! 1496 2014-12-02 17:25:50Z maronga
392! Added calls for the land surface model and radiation scheme
393!
[1403]394! 1402 2014-05-09 14:25:13Z raasch
395! location messages modified
396!
[1385]397! 1384 2014-05-02 14:31:06Z raasch
398! location messages added
399!
[1381]400! 1380 2014-04-28 12:40:45Z heinze
401! CALL of nudge_ref added
402! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
403!
[1366]404! 1365 2014-04-22 15:03:56Z boeske
[1365]405! Reset sums_ls_l to zero at each timestep
406! +sums_ls_l
407! Calculation of reference state (previously in subroutine calc_mean_profile)
408
[1343]409! 1342 2014-03-26 17:04:47Z kanani
410! REAL constants defined as wp-kind
411!
[1321]412! 1320 2014-03-20 08:40:49Z raasch
[1320]413! ONLY-attribute added to USE-statements,
414! kind-parameters added to all INTEGER and REAL declaration statements,
415! kinds are defined in new module kinds,
416! old module precision_kind is removed,
417! revision history before 2012 removed,
418! comment fields (!:) to be used for variable explanations added to
419! all variable declaration statements
[1319]420! 1318 2014-03-17 13:35:16Z raasch
421! module interfaces removed
422!
[1309]423! 1308 2014-03-13 14:58:42Z fricke
424! +netcdf_data_format_save
425! For masked data, parallel netcdf output is not tested so far, hence
426! netcdf_data_format is switched back to non-paralell output.
427!
[1277]428! 1276 2014-01-15 13:40:41Z heinze
429! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
430!
[1258]431! 1257 2013-11-08 15:18:40Z raasch
432! acc-update-host directive for timestep removed
433!
[1242]434! 1241 2013-10-30 11:36:58Z heinze
435! Generalize calc_mean_profile for wider use
436! Determine shf and qsws in dependence on data from LSF_DATA
437! Determine ug and vg in dependence on data from LSF_DATA
[1222]438! 1221 2013-09-10 08:59:13Z raasch
439! host update of arrays before timestep is called
440!
[1182]441! 1179 2013-06-14 05:57:58Z raasch
442! mean profiles for reference state are only calculated if required,
443! small bugfix for background communication
444!
[1172]445! 1171 2013-05-30 11:27:45Z raasch
446! split of prognostic_equations deactivated (comment lines), for the time being
447!
[1132]448! 1128 2013-04-12 06:19:32Z raasch
[1128]449! asynchronous transfer of ghost point data realized for acc-optimized version:
450! prognostic_equations are first called two times for those points required for
451! the left-right and north-south exchange, respectively, and then for the
452! remaining points,
453! those parts requiring global communication moved from prognostic_equations to
454! here
[392]455!
[1116]456! 1115 2013-03-26 18:16:16Z hoffmann
457! calculation of qr and nr is restricted to precipitation
458!
[1114]459! 1113 2013-03-10 02:48:14Z raasch
460! GPU-porting of boundary conditions,
461! openACC directives updated
462! formal parameter removed from routine boundary_conds
463!
[1112]464! 1111 2013-03-08 23:54:10Z raasch
465! +internal timestep counter for cpu statistics added,
466! openACC directives updated
467!
[1093]468! 1092 2013-02-02 11:24:22Z raasch
469! unused variables removed
470!
[1066]471! 1065 2012-11-22 17:42:36Z hoffmann
472! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
473!
[1054]474! 1053 2012-11-13 17:11:03Z hoffmann
475! exchange of ghost points for nr, qr added
476!
[1037]477! 1036 2012-10-22 13:43:42Z raasch
478! code put under GPL (PALM 3.9)
479!
[1020]480! 1019 2012-09-28 06:46:45Z raasch
481! non-optimized version of prognostic_equations removed
482!
[1017]483! 1015 2012-09-27 09:23:24Z raasch
484! +call of prognostic_equations_acc
485!
[1002]486! 1001 2012-09-13 14:08:46Z raasch
487! all actions concerning leapfrog- and upstream-spline-scheme removed
488!
[850]489! 849 2012-03-15 10:35:09Z raasch
490! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
491!
[826]492! 825 2012-02-19 03:03:44Z raasch
493! wang_collision_kernel renamed wang_kernel
494!
[1]495! Revision 1.1  1997/08/11 06:19:04  raasch
496! Initial revision
497!
498!
499! Description:
500! ------------
[1682]501!> Integration in time of the model equations, statistical analysis and graphic
502!> output
[1]503!------------------------------------------------------------------------------!
[1682]504 SUBROUTINE time_integration
505 
[1]506
[3761]507    USE advec_ws,                                                                                  &
[1320]508        ONLY:  ws_statistics
509
[3761]510    USE arrays_3d,                                                                                 &
511        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
512               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
513               tend, u, u_p, v, vpt, v_p, w, w_p
[1320]514
[3761]515    USE biometeorology_mod,                                                                        &
516        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
[3448]517
[3761]518    USE bulk_cloud_model_mod,                                                                      &
519        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
520              microphysics_morrison, microphysics_seifert
[3294]521
[3761]522    USE calc_mean_profile_mod,                                                                     &
[1320]523        ONLY:  calc_mean_profile
524
[3761]525    USE chem_emissions_mod,                                                                        &
[3298]526        ONLY:  chem_emissions_setup
[2696]527
[3833]528    USE chem_gasphase_mod,                                                                         &
[3929]529        ONLY:  nvar
[3833]530
[3761]531    USE chem_modules,                                                                              &
[3968]532        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
[2696]533
[3761]534    USE chemistry_model_mod,                                                                       &
[3929]535        ONLY:  chem_boundary_conds
[3298]536
[3761]537    USE control_parameters,                                                                        &
538        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
539               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
540               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
541               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
542               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
543               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
544               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
545               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
[4017]546               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_run_control,              &
[3761]547               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
548               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
549               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
550               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
551               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
552               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
553               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
554               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
555               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
556               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
557               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
558               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
[4017]559               time_do_sla, time_disturb, time_run_control, time_since_reference_point,            &
[3761]560               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
561               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
[3875]562               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca
[1320]563
[3761]564    USE cpulog,                                                                                    &
[1320]565        ONLY:  cpu_log, log_point, log_point_s
566
[3761]567    USE date_and_time_mod,                                                                         &
[3298]568        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
569
[3994]570    USE diagnostic_output_quantities_mod,                                                          &
571        ONLY:  diagnostic_output_quantities_calculate,                                             &
572               timestep_number_at_prev_calc
573
[3761]574    USE flight_mod,                                                                                &
[1957]575        ONLY:  flight_measurement
576
[3761]577    USE indices,                                                                                   &
578        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
[1320]579
[3761]580    USE indoor_model_mod,                                                                          &
581        ONLY:  dt_indoor, im_main_heatcool, time_indoor
[3469]582
[3761]583    USE interaction_droplets_ptq_mod,                                                              &
[1320]584        ONLY:  interaction_droplets_ptq
585
[1918]586    USE interfaces
587
[1320]588    USE kinds
589
[3761]590    USE land_surface_model_mod,                                                                    &
591        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
[1496]592
[4017]593    USE lagrangian_particle_model_mod,                                                             &
594        ONLY:  lpm_data_output_ptseries
[3761]595
596    USE lsf_nudging_mod,                                                                           &
[3347]597        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
[1320]598
[3761]599    USE module_interface,                                                                          &
[3684]600        ONLY:  module_interface_actions
601
[3761]602    USE multi_agent_system_mod,                                                                    &
[3198]603        ONLY:  agents_active, multi_agent_system
[3448]604
[3761]605    USE nesting_offl_mod,                                                                          &
[3347]606        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
[3864]607
[3761]608    USE netcdf_data_input_mod,                                                                     &
609        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
[3298]610
[3761]611    USE ocean_mod,                                                                                 &
[3294]612        ONLY:  prho_reference
613
[3761]614    USE particle_attributes,                                                                       &
615        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
[1320]616
[1]617    USE pegrid
618
[3761]619    USE pmc_interface,                                                                             &
[4010]620        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize,    &
621        pmci_ensure_nest_mass_conservation, pmci_ensure_nest_mass_conservation_vertical
[1762]622
[3761]623    USE progress_bar,                                                                              &
[1402]624        ONLY:  finish_progress_bar, output_progress_bar
625
[3761]626    USE prognostic_equations_mod,                                                                  &
[2118]627        ONLY:  prognostic_equations_cache, prognostic_equations_vector
[1320]628
[3761]629    USE radiation_model_mod,                                                                       &
630        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
631              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
[3864]632
[3761]633    USE salsa_mod,                                                                                 &
[3864]634        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
635              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
636              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
[1496]637
[3761]638    USE spectra_mod,                                                                               &
639        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
[1786]640
[3761]641    USE statistics,                                                                                &
642        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
[1320]643
[3761]644
645    USE surface_layer_fluxes_mod,                                                                  &
[1691]646        ONLY:  surface_layer_fluxes
647
[3761]648    USE surface_data_output_mod,                                                                   &
649        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
650               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
[3648]651               skip_time_dosurf_av, time_dosurf, time_dosurf_av
[2232]652
[3761]653    USE surface_mod,                                                                               &
654        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
655
656    USE synthetic_turbulence_generator_mod,                                                        &
657        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
658               time_stg_adjust, time_stg_call, use_syn_turb_gen
659
660    USE turbulence_closure_mod,                                                                    &
[2696]661        ONLY:  tcm_diffusivities, production_e_init
662
[3761]663    USE urban_surface_mod,                                                                         &
664        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
[3597]665               usm_surface_energy_balance, usm_green_heat_model
[2007]666
[3761]667    USE vertical_nesting_mod,                                                                      &
668        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
669               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
670               vnest_start_time
[3864]671
[3761]672    USE virtual_measurement_mod,                                                                   &
[3988]673        ONLY:  dt_virtual_measurement,                                                             &
674               time_virtual_measurement,                                                           &
675               vm_data_output,                                                                     &
676               vm_sampling,                                                                        &
677               vm_time_start
[2259]678
[1914]679
[3761]680#if defined( _OPENACC )
681    USE arrays_3d,                                                             &
682        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
683               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
684               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
685               v_stokes_zu, zu
[2365]686
[3761]687    USE control_parameters,                                                                        &
688        ONLY:  tsc
689
690    USE indices,                                                                                   &
691        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
692
693    USE statistics,                                                                                &
694        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
695               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
696               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
[3872]697               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
[3761]698
699    USE surface_mod,                                                                               &
700        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
701#endif
702
703
[1]704    IMPLICIT NONE
705
[3298]706    CHARACTER (LEN=9) ::  time_to_string   !<
[3864]707
708    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
709    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
710    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
711    INTEGER(iwp)      ::  ig        !< index for salsa gases
[3929]712    INTEGER(iwp)      ::  lsp
713    INTEGER(iwp)      ::  lsp_usr   !<
[3298]714    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
[3014]715
[1918]716    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
717                            !< steering of run control output interval
[3241]718    REAL(wp) ::  time_since_reference_point_save  !< original value of
719                                                  !< time_since_reference_point
720
[3634]721
[3761]722!
723!-- Copy data from arrays_3d
[3634]724!$ACC DATA &
725!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
726!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
727!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
728!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
729!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
730!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
731!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
732!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
733!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
734
735!$ACC DATA &
736!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
737!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
738!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
739!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
740!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
741!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
742!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
743!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
744!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
745!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
746!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
747
748!$ACC DATA &
749!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
750!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
751!$ACC COPYIN(zu(nzb:nzt+1)) &
752!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
753!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
754!$ACC COPYIN(ddzw(1:nzt+1)) &
[3658]755!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
756!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
[3634]757!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
758!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
759!$ACC COPYIN(ref_state(0:nz+1)) &
760!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
761!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
762!$ACC COPYIN(pt_init(0:nz+1)) &
763!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
764
[3761]765!
766!-- Copy data from control_parameters
[3634]767!$ACC DATA &
768!$ACC COPYIN(tsc(1:5))
769
[3761]770!
771!-- Copy data from indices
[3634]772!$ACC DATA &
773!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
774!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
775!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
776
[3761]777!
778!-- Copy data from surface_mod
[3634]779!$ACC DATA &
780!$ACC COPYIN(bc_h(0:1)) &
781!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
782!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
783!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
784!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
785!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
786!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
787
[3761]788!
789!-- Copy data from statistics
[3634]790!$ACC DATA &
[3658]791!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
[3634]792!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
793!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
[3658]794!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
[3634]795!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
796!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
797!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
798!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
799!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
800!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
801!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
802!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
803!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
804!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
805!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
806!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
807!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
808!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
809!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
810
[3761]811#if defined( _OPENACC )
[3658]812    CALL enter_surface_arrays
813#endif
814
[1]815!
[1918]816!-- At beginning determine the first time step
817    CALL timestep
[1764]818!
819!-- Synchronize the timestep in case of nested run.
820    IF ( nested_run )  THEN
[1878]821!
822!--    Synchronization by unifying the time step.
823!--    Global minimum of all time-steps is used for all.
824       CALL pmci_synchronize
[1764]825    ENDIF
826
[1918]827!
828!-- Determine and print out the run control quantities before the first time
829!-- step of this run. For the initial run, some statistics (e.g. divergence)
[3004]830!-- need to be determined first --> CALL flow_statistics at the beginning of
831!-- run_control
[1]832    CALL run_control
[108]833!
834!-- Data exchange between coupled models in case that a call has been omitted
835!-- at the end of the previous run of a job chain.
[3761]836    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
[108]837!
838!--    In case of model termination initiated by the local model the coupler
839!--    must not be called because this would again cause an MPI hang.
[1918]840       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[108]841          CALL surface_coupler
842          time_coupling = time_coupling - dt_coupling
843       ENDDO
[3761]844       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
[348]845          time_coupling = time_since_reference_point
846       ENDIF
[108]847    ENDIF
848
[3885]849    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
[3761]850
[1]851!
852!-- Start of the time loop
[3761]853    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
[1]854
855       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
856!
[2365]857!--    Vertical nesting: initialize fine grid
858       IF ( vnested ) THEN
859          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
[3719]860             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
[2365]861             CALL vnest_init_fine
862             vnest_init = .TRUE.
[3719]863             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
[2365]864          ENDIF
865       ENDIF
866!
[1241]867!--    Determine ug, vg and w_subs in dependence on data from external file
868!--    LSF_DATA
[1365]869       IF ( large_scale_forcing .AND. lsf_vert )  THEN
[1241]870           CALL ls_forcing_vert ( simulated_time )
[1365]871           sums_ls_l = 0.0_wp
[1241]872       ENDIF
873
874!
[1380]875!--    Set pt_init and q_init to the current profiles taken from
876!--    NUDGING_DATA
877       IF ( nudging )  THEN
878           CALL nudge_ref ( simulated_time )
879!
880!--        Store temperature gradient at the top boundary for possible Neumann
881!--        boundary condition
882           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
883           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
[3298]884           IF ( air_chemistry )  THEN
[3929]885              DO  lsp = 1, nvar
886                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
887                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
[3298]888                               / dzu(nzt+1)
889              ENDDO
890           ENDIF
[3864]891           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
892              DO  ib = 1, nbins_aerosol
893                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
894                               dzu(nzt+1)
895                 DO  ic = 1, ncomponents_mass
896                    icc = ( ic - 1 ) * nbins_aerosol + ib
897                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
898                                  dzu(nzt+1)
899                 ENDDO
900              ENDDO
901              IF ( .NOT. salsa_gases_from_chem )  THEN
902                 DO  ig = 1, ngases_salsa
903                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
904                                  dzu(nzt+1)
905                 ENDDO
906              ENDIF
907           ENDIF
[1380]908       ENDIF
[2696]909!
910!--    If forcing by larger-scale models is applied, check if new data
911!--    at domain boundaries need to be read.
[3774]912       IF ( nesting_offline ) THEN
913          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
914               CALL netcdf_data_input_offline_nesting
[2696]915       ENDIF
[1380]916
917!
[3876]918!--    Execute all other module actions routunes
[3684]919       CALL module_interface_actions( 'before_timestep' )
[1914]920       
921!
[1]922!--    Start of intermediate step loop
923       intermediate_timestep_count = 0
[3761]924       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
[1]925
926          intermediate_timestep_count = intermediate_timestep_count + 1
927
928!
929!--       Set the steering factors for the prognostic equations which depend
930!--       on the timestep scheme
931          CALL timestep_scheme_steering
932
933!
[1128]934!--       Calculate those variables needed in the tendency terms which need
935!--       global communication
[3761]936          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
937          THEN
[1179]938!
939!--          Horizontally averaged profiles to be used as reference state in
940!--          buoyancy terms (WARNING: only the respective last call of
941!--          calc_mean_profile defines the reference state!)
[1365]942             IF ( .NOT. neutral )  THEN
943                CALL calc_mean_profile( pt, 4 )
944                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
945             ENDIF
[3294]946             IF ( ocean_mode )  THEN
[2031]947                CALL calc_mean_profile( rho_ocean, 64 )
[1365]948                ref_state(:)  = hom(:,1,64,0)
949             ENDIF
950             IF ( humidity )  THEN
951                CALL calc_mean_profile( vpt, 44 )
952                ref_state(:)  = hom(:,1,44,0)
953             ENDIF
[2617]954!
955!--          Assure that ref_state does not become zero at any level
956!--          ( might be the case if a vertical level is completely occupied
957!--            with topography ).
[3761]958             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
[1179]959          ENDIF
960
[1128]961          IF ( .NOT. constant_diffusion )  CALL production_e_init
[3761]962          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
963          THEN
964             CALL ws_statistics
965          ENDIF
[1365]966!
967!--       In case of nudging calculate current nudging time scale and horizontal
[1380]968!--       means of u, v, pt and q
[1365]969          IF ( nudging )  THEN
970             CALL calc_tnudge( simulated_time )
971             CALL calc_mean_profile( u, 1 )
972             CALL calc_mean_profile( v, 2 )
973             CALL calc_mean_profile( pt, 4 )
974             CALL calc_mean_profile( q, 41 )
975          ENDIF
[1128]976!
[3876]977!--       Execute all other module actions routunes
978          CALL module_interface_actions( 'before_prognostic_equations' )
979!
[1]980!--       Solve the prognostic equations. A fast cache optimized version with
981!--       only one single loop is used in case of Piascek-Williams advection
982!--       scheme. NEC vector machines use a different version, because
983!--       in the other versions a good vectorization is prohibited due to
984!--       inlining problems.
[1019]985          IF ( loop_optimization == 'cache' )  THEN
986             CALL prognostic_equations_cache
987          ELSEIF ( loop_optimization == 'vector' )  THEN
[63]988             CALL prognostic_equations_vector
[1]989          ENDIF
990
991!
[849]992!--       Particle transport/physics with the Lagrangian particle model
993!--       (only once during intermediate steps, because it uses an Euler-step)
[1128]994!--       ### particle model should be moved before prognostic_equations, in order
995!--       to regard droplet interactions directly
[3761]996          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
997               .AND.  intermediate_timestep_count == 1 )                                           &
998          THEN
[4017]999             CALL module_interface_actions( 'after_prognostic_equations' )
[849]1000             first_call_lpm = .FALSE.
[1]1001          ENDIF
1002
1003!
[3040]1004!--       Interaction of droplets with temperature and mixing ratio.
[1]1005!--       Droplet condensation and evaporation is calculated within
1006!--       advec_particles.
[3761]1007          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
[1]1008          THEN
1009             CALL interaction_droplets_ptq
1010          ENDIF
1011
1012!
[3159]1013!--       Movement of agents in multi agent system
[3761]1014          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1015               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1016               intermediate_timestep_count == 1 )                                                  &
1017          THEN
[3159]1018             CALL multi_agent_system
1019             first_call_mas = .FALSE.
1020          ENDIF
1021
1022!
[1]1023!--       Exchange of ghost points (lateral boundary conditions)
[2118]1024          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
[1113]1025
[2118]1026          CALL exchange_horiz( u_p, nbgp )
1027          CALL exchange_horiz( v_p, nbgp )
1028          CALL exchange_horiz( w_p, nbgp )
1029          CALL exchange_horiz( pt_p, nbgp )
1030          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
[3761]1031          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
[2696]1032               .OR.  use_sgs_for_particles )  THEN
1033             IF ( rans_tke_e )  THEN
1034                CALL exchange_horiz( diss_p, nbgp )
1035             ELSE
1036                CALL exchange_horiz( diss, nbgp )
1037             ENDIF
1038          ENDIF
[3294]1039          IF ( ocean_mode )  THEN
[2118]1040             CALL exchange_horiz( sa_p, nbgp )
1041             CALL exchange_horiz( rho_ocean, nbgp )
1042             CALL exchange_horiz( prho, nbgp )
1043          ENDIF
1044          IF ( humidity )  THEN
1045             CALL exchange_horiz( q_p, nbgp )
[3274]1046             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
[2292]1047                CALL exchange_horiz( qc_p, nbgp )
1048                CALL exchange_horiz( nc_p, nbgp )
1049             ENDIF
[3274]1050             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
[2118]1051                CALL exchange_horiz( qr_p, nbgp )
1052                CALL exchange_horiz( nr_p, nbgp )
[1053]1053             ENDIF
[2118]1054          ENDIF
1055          IF ( cloud_droplets )  THEN
1056             CALL exchange_horiz( ql, nbgp )
1057             CALL exchange_horiz( ql_c, nbgp )
1058             CALL exchange_horiz( ql_v, nbgp )
1059             CALL exchange_horiz( ql_vp, nbgp )
1060          ENDIF
[2696]1061          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
[3929]1062          IF ( air_chemistry )  THEN
1063             DO  lsp = 1, nvar
1064                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1065!
1066!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1067                lsp_usr = 1
1068                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1069                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1070                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1071                                                chem_species(lsp)%conc_pr_init )
1072                   ENDIF
1073                   lsp_usr = lsp_usr + 1
1074                ENDDO
1075             ENDDO
1076          ENDIF
[2766]1077
[3864]1078          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1079!
1080!--          Exchange ghost points and decycle boundary concentrations if needed
1081             DO  ib = 1, nbins_aerosol
1082                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1083                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1084                DO  ic = 1, ncomponents_mass
1085                   icc = ( ic - 1 ) * nbins_aerosol + ib
1086                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1087                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
[3467]1088                ENDDO
1089             ENDDO
1090             IF ( .NOT. salsa_gases_from_chem )  THEN
[3864]1091                DO  ig = 1, ngases_salsa
1092                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1093                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1094                ENDDO
[3467]1095             ENDIF
[3864]1096          ENDIF
[2118]1097          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
[1128]1098
[1]1099!
1100!--       Boundary conditions for the prognostic quantities (except of the
1101!--       velocities at the outflow in case of a non-cyclic lateral wall)
[1113]1102          CALL boundary_conds
[1]1103!
[73]1104!--       Swap the time levels in preparation for the next time step.
1105          CALL swap_timelevel
1106
[2365]1107!
1108!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1109          IF ( vnest_init ) THEN
[3719]1110             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
[2365]1111             CALL vnest_anterpolate
[3719]1112             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
[2365]1113          ENDIF
1114
[1764]1115          IF ( nested_run )  THEN
[1797]1116
[1764]1117             CALL cpu_log( log_point(60), 'nesting', 'start' )
[1762]1118!
[1933]1119!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1120!--          and pmci_child_datatrans are called inside the wrapper
[1797]1121!--          subroutine pmci_datatrans according to the control parameters
1122!--          nesting_mode and nesting_datatransfer_mode.
1123!--          TO_DO: why is nesting_mode given as a parameter here?
1124             CALL pmci_datatrans( nesting_mode )
[1762]1125
[3761]1126             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
[1762]1127!
[1933]1128!--             Exchange_horiz is needed for all parent-domains after the
[1764]1129!--             anterpolation
1130                CALL exchange_horiz( u, nbgp )
1131                CALL exchange_horiz( v, nbgp )
1132                CALL exchange_horiz( w, nbgp )
[2174]1133                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1134
1135                IF ( humidity )  THEN
1136
1137                   CALL exchange_horiz( q, nbgp )
1138
[3274]1139                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
[2292]1140                       CALL exchange_horiz( qc, nbgp )
1141                       CALL exchange_horiz( nc, nbgp )
1142                   ENDIF
[3274]1143                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
[2174]1144                       CALL exchange_horiz( qr, nbgp )
1145                       CALL exchange_horiz( nr, nbgp )
1146                   ENDIF
1147
1148                ENDIF
1149
[3467]1150                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
[3864]1151
[2174]1152                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
[2773]1153
[3761]1154                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
[2938]1155                   CALL exchange_horiz( diss, nbgp )
[3761]1156                ENDIF
[2938]1157
[2773]1158                IF ( air_chemistry )  THEN
[3929]1159                   DO  n = 1, nvar
[2773]1160                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1161                   ENDDO
1162                ENDIF
1163
[3864]1164                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1165                   DO  ib = 1, nbins_aerosol
1166                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1167                      CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1168                      DO  ic = 1, ncomponents_mass
1169                         icc = ( ic - 1 ) * nbins_aerosol + ib
1170                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1171                         CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1172                      ENDDO
1173                   ENDDO
1174                   IF ( .NOT. salsa_gases_from_chem )  THEN
1175                      DO  ig = 1, ngases_salsa
1176                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1177                         CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1178                      ENDDO
1179                   ENDIF
1180                ENDIF
1181                CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1182
[1762]1183             ENDIF
1184!
[2311]1185!--          Set boundary conditions again after interpolation and anterpolation.
1186             CALL pmci_boundary_conds
[1764]1187
1188             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1189
[1762]1190          ENDIF
1191
1192!
[1]1193!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1194!--       when a sloping surface is used
1195          IF ( sloping_surface )  THEN
[3761]1196             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1197             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
[1]1198          ENDIF
1199
1200!
[151]1201!--       Impose a turbulent inflow using the recycling method
[3719]1202          IF ( turbulent_inflow )  CALL inflow_turbulence
[151]1203
1204!
[2050]1205!--       Set values at outflow boundary using the special outflow condition
[3719]1206          IF ( turbulent_outflow )  CALL outflow_turbulence
[2050]1207
1208!
[1]1209!--       Impose a random perturbation on the horizontal velocity field
[3761]1210          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1211               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1212               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
[1]1213          THEN
1214             time_disturb = time_disturb + dt_3d
1215             IF ( time_disturb >= dt_disturb )  THEN
[3761]1216                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
[1736]1217                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
[2232]1218                   CALL disturb_field( 'u', tend, u )
1219                   CALL disturb_field( 'v', tend, v )
[3761]1220                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1221                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
[3182]1222                THEN
[1]1223!
1224!--                Runs with a non-cyclic lateral wall need perturbations
1225!--                near the inflow throughout the whole simulation
1226                   dist_range = 1
[2232]1227                   CALL disturb_field( 'u', tend, u )
1228                   CALL disturb_field( 'v', tend, v )
[1]1229                   dist_range = 0
1230                ENDIF
1231                time_disturb = time_disturb - dt_disturb
1232             ENDIF
1233          ENDIF
1234
1235!
[2696]1236!--       Map forcing data derived from larger scale model onto domain
1237!--       boundaries.
[3761]1238          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1239                                       intermediate_timestep_count_max  )                          &
[3347]1240             CALL nesting_offl_bc
[2938]1241!
[3347]1242!--       Impose a turbulent inflow using synthetic generated turbulence,
1243!--       only once per time step.
[3761]1244          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
[3719]1245             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1246             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
[3347]1247             CALL stg_main
[3719]1248             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
[2696]1249          ENDIF
1250!
[3347]1251!--       Ensure mass conservation. This need to be done after imposing
1252!--       synthetic turbulence and top boundary condition for pressure is set to
1253!--       Neumann conditions.
1254!--       Is this also required in case of Dirichlet?
1255          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1256!
[1]1257!--       Reduce the velocity divergence via the equation for perturbation
1258!--       pressure.
[106]1259          IF ( intermediate_timestep_count == 1  .OR. &
1260                call_psolver_at_all_substeps )  THEN
[2365]1261
1262             IF (  vnest_init ) THEN
1263!
1264!--             Compute pressure in the CG, interpolate top boundary conditions
1265!--             to the FG and then compute pressure in the FG
1266                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1267
[3719]1268                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
[2365]1269                CALL vnest_boundary_conds
[3719]1270                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
[2365]1271 
1272                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1273
1274!--             Anterpolate TKE, satisfy Germano Identity
[3719]1275                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
[2365]1276                CALL vnest_anterpolate_e
[3719]1277                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
[2365]1278
1279             ELSE
[4010]1280!               
1281!--             Mass (volume) flux correction to ensure global mass conservation for child domains.
1282                IF ( child_domain )  THEN
1283                   IF ( nesting_mode == 'vertical' )  THEN
1284                      CALL pmci_ensure_nest_mass_conservation_vertical
1285                   ELSE
1286                      CALL pmci_ensure_nest_mass_conservation
1287                   ENDIF
1288                ENDIF
1289               
[2365]1290                CALL pres
1291
1292             ENDIF
1293
[1]1294          ENDIF
1295
1296!
1297!--       If required, compute liquid water content
[3274]1298          IF ( bulk_cloud_model )  THEN
[1015]1299             CALL calc_liquid_water_content
1300          ENDIF
[2174]1301!
[1115]1302!--       If required, compute virtual potential temperature
1303          IF ( humidity )  THEN
1304             CALL compute_vpt 
1305          ENDIF 
[1585]1306
[1]1307!
1308!--       Compute the diffusion quantities
1309          IF ( .NOT. constant_diffusion )  THEN
1310
1311!
[1276]1312!--          Determine surface fluxes shf and qsws and surface values
1313!--          pt_surface and q_surface in dependence on data from external
1314!--          file LSF_DATA respectively
[3761]1315             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1316                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
[1276]1317             THEN
[2320]1318                CALL ls_forcing_surf( simulated_time )
[1276]1319             ENDIF
1320
1321!
[2232]1322!--          First the vertical (and horizontal) fluxes in the surface
1323!--          (constant flux) layer are computed
[1691]1324             IF ( constant_flux_layer )  THEN
1325                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1326                CALL surface_layer_fluxes
1327                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
[1]1328             ENDIF
1329!
[1691]1330!--          If required, solve the energy balance for the surface and run soil
[2232]1331!--          model. Call for horizontal as well as vertical surfaces
[2696]1332             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
[1691]1333
1334                CALL cpu_log( log_point(54), 'land_surface', 'start' )
[2232]1335!
1336!--             Call for horizontal upward-facing surfaces
1337                CALL lsm_energy_balance( .TRUE., -1 )
[2299]1338                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
[2232]1339!
1340!--             Call for northward-facing surfaces
1341                CALL lsm_energy_balance( .FALSE., 0 )
[2299]1342                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
[2232]1343!
1344!--             Call for southward-facing surfaces
1345                CALL lsm_energy_balance( .FALSE., 1 )
[2299]1346                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
[2232]1347!
1348!--             Call for eastward-facing surfaces
1349                CALL lsm_energy_balance( .FALSE., 2 )
[2299]1350                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
[2232]1351!
1352!--             Call for westward-facing surfaces
1353                CALL lsm_energy_balance( .FALSE., 3 )
[2299]1354                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
[3597]1355               
[2696]1356!
1357!--             At the end, set boundary conditons for potential temperature
1358!--             and humidity after running the land-surface model. This
1359!--             might be important for the nesting, where arrays are transfered.
1360                CALL lsm_boundary_condition
[2232]1361
[3597]1362               
[1691]1363                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1364             ENDIF
1365!
[2007]1366!--          If required, solve the energy balance for urban surfaces and run
1367!--          the material heat model
1368             IF (urban_surface) THEN
1369                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
[3176]1370               
[3418]1371                CALL usm_surface_energy_balance( .FALSE. )
[2007]1372                IF ( usm_material_model )  THEN
[2696]1373                   CALL usm_green_heat_model
[3418]1374                   CALL usm_material_heat_model ( .FALSE. )
[2007]1375                ENDIF
[2696]1376
1377!
1378!--             At the end, set boundary conditons for potential temperature
1379!--             and humidity after running the urban-surface model. This
1380!--             might be important for the nesting, where arrays are transfered.
1381                CALL usm_boundary_condition
1382
[2007]1383                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1384             ENDIF
1385!
[1]1386!--          Compute the diffusion coefficients
1387             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
[75]1388             IF ( .NOT. humidity ) THEN
[3294]1389                IF ( ocean_mode )  THEN
[2696]1390                   CALL tcm_diffusivities( prho, prho_reference )
[97]1391                ELSE
[2696]1392                   CALL tcm_diffusivities( pt, pt_reference )
[97]1393                ENDIF
[1]1394             ELSE
[2696]1395                CALL tcm_diffusivities( vpt, pt_reference )
[1]1396             ENDIF
1397             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
[2696]1398!
1399!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1400             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
[1]1401
1402          ENDIF
1403
[1691]1404!
1405!--       If required, calculate radiative fluxes and heating rates
[3761]1406          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1407               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
[1691]1408
1409               time_radiation = time_radiation + dt_3d
1410
[3761]1411             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
[1691]1412
1413                CALL cpu_log( log_point(50), 'radiation', 'start' )
1414
1415                IF ( .NOT. force_radiation_call )  THEN
1416                   time_radiation = time_radiation - dt_radiation
1417                ENDIF
1418
[3014]1419!
[3241]1420!--             Adjust the current time to the time step of the radiation model.
[3014]1421!--             Needed since radiation is pre-calculated and stored only on apparent
1422!--             solar positions
[3241]1423                time_since_reference_point_save = time_since_reference_point
[3761]1424                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1425                                                          dt_radiation), wp ) * dt_radiation
[3014]1426
[1976]1427                CALL radiation_control
[1691]1428
[3761]1429                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
[3724]1430                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
[2696]1431                   CALL radiation_interaction
[3724]1432                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
[2007]1433                ENDIF
[3014]1434   
1435!
1436!--             Return the current time to its original value
[3241]1437                time_since_reference_point = time_since_reference_point_save
[2007]1438
[3719]1439                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1440
[1691]1441             ENDIF
1442          ENDIF
1443
[1]1444       ENDDO   ! Intermediate step loop
[3634]1445
[1]1446!
[3634]1447!--    Will be used at some point by flow_statistics.
[3658]1448       !$ACC UPDATE &
[3634]1449       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1450       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1451       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1452       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1453       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1454       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1455       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1456       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1457       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1458       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1459       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1460       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1461       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1462       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1463       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1464
1465!
[2766]1466!--    If required, consider chemical emissions
[3820]1467       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
[3298]1468!
1469!--       Update the time --> kanani: revise location of this CALL
1470          CALL calc_date_and_time
1471!
1472!--       Call emission routine only once an hour
1473          IF (hour_of_year  .GT.  hour_call_emis )  THEN
[3968]1474             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
[3298]1475             hour_call_emis = hour_of_year
1476          ENDIF
[2766]1477       ENDIF
[3864]1478!
1479!--    If required, consider aerosol emissions for the salsa model
1480       IF ( salsa )  THEN
1481!
1482!--       Call emission routine to update emissions if needed
1483          CALL salsa_emission_update
[3569]1484
[3864]1485       ENDIF
[2696]1486!
[3469]1487!--    If required, calculate indoor temperature, waste heat, heat flux
1488!--    through wall, etc.
[3744]1489!--    dt_indoor steers the frequency of the indoor model calculations.
1490!--    Note, at first timestep indoor model is called, in order to provide
1491!--    a waste heat flux.
[3647]1492       IF ( indoor_model )  THEN
[3469]1493
1494          time_indoor = time_indoor + dt_3d
1495
[3761]1496          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
[3469]1497
1498             time_indoor = time_indoor - dt_indoor
1499
1500             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1501             CALL im_main_heatcool
1502             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1503
1504          ENDIF
1505       ENDIF
1506!
[1]1507!--    Increase simulation time and output times
[1111]1508       nr_timesteps_this_run      = nr_timesteps_this_run + 1
[291]1509       current_timestep_number    = current_timestep_number + 1
1510       simulated_time             = simulated_time   + dt_3d
1511       time_since_reference_point = simulated_time - coupling_start_time
[2941]1512       simulated_time_chr         = time_to_string( time_since_reference_point )
[291]1513
[1957]1514
1515
[2941]1516
[3646]1517       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1518          time_do_av         = time_do_av       + dt_3d
1519       ENDIF
[3646]1520       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
[1]1521          time_do2d_xy       = time_do2d_xy     + dt_3d
1522       ENDIF
[3646]1523       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
[1]1524          time_do2d_xz       = time_do2d_xz     + dt_3d
1525       ENDIF
[3646]1526       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
[1]1527          time_do2d_yz       = time_do2d_yz     + dt_3d
1528       ENDIF
[3646]1529       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
[1]1530          time_do3d          = time_do3d        + dt_3d
1531       ENDIF
[410]1532       DO  mid = 1, masks
[3646]1533          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
[410]1534             time_domask(mid)= time_domask(mid) + dt_3d
1535          ENDIF
1536       ENDDO
[3646]1537       IF ( time_since_reference_point >= skip_time_dosp )  THEN
[1]1538          time_dosp       = time_dosp        + dt_3d
1539       ENDIF
1540       time_dots          = time_dots        + dt_3d
[849]1541       IF ( .NOT. first_call_lpm )  THEN
[1]1542          time_dopts      = time_dopts       + dt_3d
1543       ENDIF
[3646]1544       IF ( time_since_reference_point >= skip_time_dopr )  THEN
[1]1545          time_dopr       = time_dopr        + dt_3d
1546       ENDIF
[3467]1547       time_dopr_listing  = time_dopr_listing + dt_3d
[1]1548       time_run_control   = time_run_control + dt_3d
[3347]1549!
[3421]1550!--    Increment time-counter for surface output
[3648]1551       IF ( surface_output )  THEN
[3646]1552          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
[3421]1553             time_dosurf    = time_dosurf + dt_3d
1554          ENDIF
[3646]1555          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1556             time_dosurf_av = time_dosurf_av + dt_3d
1557          ENDIF
1558       ENDIF
1559!
[3988]1560!--    Increment time-counter for virtual measurements
1561       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1562          time_virtual_measurement = time_virtual_measurement + dt_3d
1563       ENDIF
1564!
[3347]1565!--    In case of synthetic turbulence generation and parametrized turbulence
1566!--    information, update the time counter and if required, adjust the
1567!--    STG to new atmospheric conditions.
1568       IF ( use_syn_turb_gen  )  THEN
1569          IF ( parametrize_inflow_turbulence )  THEN
1570             time_stg_adjust = time_stg_adjust + dt_3d
[3719]1571             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1572                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1573                CALL stg_adjust
1574                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1575             ENDIF
[3347]1576          ENDIF
1577          time_stg_call = time_stg_call + dt_3d
1578       ENDIF
[1]1579
1580!
[102]1581!--    Data exchange between coupled models
[3761]1582       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
[102]1583          time_coupling = time_coupling + dt_3d
[343]1584
[108]1585!
1586!--       In case of model termination initiated by the local model
1587!--       (terminate_coupled > 0), the coupler must be skipped because it would
1588!--       cause an MPI intercomminucation hang.
1589!--       If necessary, the coupler will be called at the beginning of the
1590!--       next restart run.
[3761]1591          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[102]1592             CALL surface_coupler
1593             time_coupling = time_coupling - dt_coupling
1594          ENDDO
1595       ENDIF
1596
1597!
[3448]1598!--    Biometeorology calculation of stationary thermal indices
[3647]1599!--    Todo (kanani): biometeorology needs own time_... treatment.
1600!--                   It might be that time_do2d_xy differs from time_do3d,
1601!--                   and then we might get trouble with the biomet output,
1602!--                   because we can have 2d and/or 3d biomet output!!
[3761]1603       IF ( biometeorology                                                                         &
1604            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1605                  .OR.                                                                             &
1606            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
[3647]1607                    ) )  THEN
[3569]1608!
1609!--       If required, do thermal comfort calculations
1610          IF ( thermal_comfort )  THEN
1611             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1612          ENDIF
1613!
1614!--       If required, do UV exposure calculations
1615          IF ( uv_exposure )  THEN
1616             CALL uvem_calc_exposure
1617          ENDIF
[3448]1618       ENDIF
1619
1620!
[3684]1621!--    Execute alle other module actions routunes
1622       CALL module_interface_actions( 'after_integration' )
[2817]1623
1624!
[1]1625!--    If Galilei transformation is used, determine the distance that the
1626!--    model has moved so far
1627       IF ( galilei_transformation )  THEN
1628          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1629          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1630       ENDIF
1631
1632!
1633!--    Check, if restart is necessary (because cpu-time is expiring or
1634!--    because it is forced by user) and set stop flag
[108]1635!--    This call is skipped if the remote model has already initiated a restart.
1636       IF ( .NOT. terminate_run )  CALL check_for_restart
[1]1637
1638!
1639!--    Carry out statistical analysis and output at the requested output times.
1640!--    The MOD function is used for calculating the output time counters (like
1641!--    time_dopr) in order to regard a possible decrease of the output time
1642!--    interval in case of restart runs
1643
1644!
1645!--    Set a flag indicating that so far no statistics have been created
1646!--    for this time step
1647       flow_statistics_called = .FALSE.
1648
1649!
1650!--    If required, call flow_statistics for averaging in time
[3761]1651       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1652            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
[3646]1653            time_since_reference_point >= skip_time_dopr )  THEN
[1]1654          time_dopr_av = time_dopr_av + dt_3d
1655          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1656             do_sum = .TRUE.
[3761]1657             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
[1]1658          ENDIF
1659       ENDIF
1660       IF ( do_sum )  CALL flow_statistics
1661
1662!
[410]1663!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
[3761]1664       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1665            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1666            time_since_reference_point >= skip_time_data_output_av )                               &
[1]1667       THEN
1668          time_do_sla = time_do_sla + dt_3d
1669          IF ( time_do_sla >= dt_averaging_input )  THEN
[3994]1670             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1671                CALL diagnostic_output_quantities_calculate
1672
[1]1673             CALL sum_up_3d_data
1674             average_count_3d = average_count_3d + 1
1675             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1676          ENDIF
1677       ENDIF
[3421]1678!
1679!--    Average surface data
[3648]1680       IF ( surface_output )  THEN
[3761]1681          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1682                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
[3647]1683                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1684             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
[3648]1685                CALL surface_data_output_averaging
[3421]1686                average_count_surf = average_count_surf + 1
1687             ENDIF
1688          ENDIF
1689       ENDIF
[1]1690
1691!
1692!--    Calculate spectra for time averaging
[3761]1693       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1694            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1695          time_dosp_av = time_dosp_av + dt_3d
1696          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1697             CALL calc_spectra
[3761]1698             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
[1]1699          ENDIF
1700       ENDIF
1701
1702!
[1957]1703!--    Call flight module and output data
1704       IF ( virtual_flight )  THEN
1705          CALL flight_measurement
1706          CALL data_output_flight
1707       ENDIF
[3472]1708!
1709!--    Take virtual measurements
[3988]1710       IF ( virtual_measurement  .AND.  time_virtual_measurement >= dt_virtual_measurement         &
1711                                 .AND.  vm_time_start <= time_since_reference_point )  THEN
[3704]1712          CALL vm_sampling
1713          CALL vm_data_output
[3988]1714          time_virtual_measurement = MOD(      time_virtual_measurement,                           &
1715                                          MAX( dt_virtual_measurement, dt_3d ) )
[3704]1716       ENDIF
[1957]1717!
[1]1718!--    Profile output (ASCII) on file
1719       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1720          CALL print_1d
[3761]1721          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
[1]1722       ENDIF
1723
1724!
1725!--    Graphic output for PROFIL
[3761]1726       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
[1]1727          IF ( dopr_n /= 0 )  CALL data_output_profiles
1728          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
[1342]1729          time_dopr_av = 0.0_wp    ! due to averaging (see above)
[1]1730       ENDIF
1731
1732!
1733!--    Graphic output for time series
1734       IF ( time_dots >= dt_dots )  THEN
[48]1735          CALL data_output_tseries
[1]1736          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1737       ENDIF
1738
1739!
1740!--    Output of spectra (formatted for use with PROFIL), in case of no
1741!--    time averaging, spectra has to be calculated before
[3761]1742       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1743          IF ( average_count_sp == 0 )  CALL calc_spectra
1744          CALL data_output_spectra
1745          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1746       ENDIF
1747
1748!
1749!--    2d-data output (cross-sections)
[3761]1750       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
[3994]1751          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1752             CALL diagnostic_output_quantities_calculate
1753
[1]1754          CALL data_output_2d( 'xy', 0 )
1755          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1756       ENDIF
[3761]1757       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
[3994]1758          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1759
1760             CALL diagnostic_output_quantities_calculate
[1]1761          CALL data_output_2d( 'xz', 0 )
1762          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1763       ENDIF
[3761]1764       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
[3994]1765          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1766             CALL diagnostic_output_quantities_calculate
1767
[1]1768          CALL data_output_2d( 'yz', 0 )
1769          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1770       ENDIF
1771
1772!
1773!--    3d-data output (volume data)
[3761]1774       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
[3994]1775          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1776             CALL diagnostic_output_quantities_calculate
1777
[1]1778          CALL data_output_3d( 0 )
1779          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1780       ENDIF
1781
1782!
[1783]1783!--    Masked data output
[410]1784       DO  mid = 1, masks
[3761]1785          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1786               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
[3994]1787             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1788                CALL diagnostic_output_quantities_calculate
1789
[410]1790             CALL data_output_mask( 0 )
[3761]1791             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
[410]1792          ENDIF
1793       ENDDO
1794
1795!
1796!--    Output of time-averaged 2d/3d/masked data
[3761]1797       IF ( time_do_av >= dt_data_output_av                                                        &
1798            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1799          CALL average_3d_data
[3742]1800!
1801!--       Udate thermal comfort indices based on updated averaged input
1802          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1803             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1804          ENDIF
[1]1805          CALL data_output_2d( 'xy', 1 )
1806          CALL data_output_2d( 'xz', 1 )
1807          CALL data_output_2d( 'yz', 1 )
1808          CALL data_output_3d( 1 )
[410]1809          DO  mid = 1, masks
1810             CALL data_output_mask( 1 )
1811          ENDDO
[1]1812          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1813       ENDIF
[3421]1814!
1815!--    Output of surface data, instantaneous and averaged data
[3648]1816       IF ( surface_output )  THEN
[3761]1817          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
[3648]1818             CALL surface_data_output( 0 )
[3421]1819             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1820          ENDIF
[3761]1821          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3648]1822             CALL surface_data_output( 1 )
[3421]1823             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1824          ENDIF
1825       ENDIF
[1]1826
1827!
1828!--    Output of particle time series
[253]1829       IF ( particle_advection )  THEN
[3761]1830          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1831               ( time_since_reference_point >= particle_advection_start  .AND.                     &
[849]1832                 first_call_lpm ) )  THEN
[4017]1833             CALL lpm_data_output_ptseries
[253]1834             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1835          ENDIF
[1]1836       ENDIF
1837
1838!
[3719]1839!--    If required, set the heat flux for the next time step to a random value
[2232]1840       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
[3719]1841          IF ( surf_def_h(0)%ns >= 1 )  THEN
1842             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1843             CALL disturb_heatflux( surf_def_h(0) )
1844             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1845          ENDIF
1846          IF ( surf_lsm_h%ns    >= 1 )  THEN
1847             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1848             CALL disturb_heatflux( surf_lsm_h    )
1849             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1850          ENDIF
1851          IF ( surf_usm_h%ns    >= 1 )  THEN
1852             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1853             CALL disturb_heatflux( surf_usm_h    )
1854             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1855          ENDIF
[2232]1856       ENDIF
[1]1857
1858!
[3684]1859!--    Execute alle other module actions routunes
1860       CALL module_interface_actions( 'after_timestep' )
[2817]1861
1862!
[1918]1863!--    Determine size of next time step. Save timestep dt_3d because it is
1864!--    newly calculated in routine timestep, but required further below for
1865!--    steering the run control output interval
1866       dt_3d_old = dt_3d
1867       CALL timestep
1868
1869!
[1925]1870!--    Synchronize the timestep in case of nested run.
1871       IF ( nested_run )  THEN
1872!
1873!--       Synchronize by unifying the time step.
1874!--       Global minimum of all time-steps is used for all.
1875          CALL pmci_synchronize
1876       ENDIF
1877
1878!
[1918]1879!--    Computation and output of run control parameters.
1880!--    This is also done whenever perturbations have been imposed
[3761]1881       IF ( time_run_control >= dt_run_control  .OR.                                               &
1882            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
[1918]1883       THEN
1884          CALL run_control
1885          IF ( time_run_control >= dt_run_control )  THEN
[3761]1886             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
[1918]1887          ENDIF
1888       ENDIF
1889
1890!
[1402]1891!--    Output elapsed simulated time in form of a progress bar on stdout
1892       IF ( myid == 0 )  CALL output_progress_bar
1893
[1]1894       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1895
[667]1896
[1]1897    ENDDO   ! time loop
[3448]1898
[3761]1899#if defined( _OPENACC )
[3658]1900    CALL exit_surface_arrays
1901#endif
[3634]1902!$ACC END DATA
1903!$ACC END DATA
1904!$ACC END DATA
1905!$ACC END DATA
1906!$ACC END DATA
1907!$ACC END DATA
1908!$ACC END DATA
1909
[3347]1910!
[2365]1911!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1912    IF ( vnest_init )  CALL vnest_deallocate
1913
[1402]1914    IF ( myid == 0 )  CALL finish_progress_bar
1915
[3885]1916    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
[1384]1917
[1]1918 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.