source: palm/trunk/SOURCE/time_integration.f90 @ 3968

Last change on this file since 3968 was 3968, checked in by suehring, 5 years ago

Updates from chemistriy branched merged into trunk: code cleaning and formatting, code structure optimizations

  • Property svn:keywords set to Id
File size: 75.4 KB
RevLine 
[1682]1!> @file time_integration.f90
[2000]2!------------------------------------------------------------------------------!
[2696]3! This file is part of the PALM model system.
[1036]4!
[2000]5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
[1036]9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
[3647]17! Copyright 1997-2019 Leibniz Universitaet Hannover
[2000]18!------------------------------------------------------------------------------!
[1036]19!
[484]20! Current revisions:
[1092]21! ------------------
[1928]22!
[3745]23!
[1366]24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3968 2019-05-13 11:04:01Z suehring $
[3968]27! replace nspec_out with n_matched_vars
28!
29! 3929 2019-04-24 12:52:08Z banzhafs
[3929]30! Reverse changes back from revision 3878: use chem_boundary_conds instead of
31! chem_boundary_conds_decycle
32!
33!
34! 3885 2019-04-11 11:29:34Z kanani
[3885]35! Changes related to global restructuring of location messages and introduction
36! of additional debug messages
[3929]37!
[3885]38! 3879 2019-04-08 20:25:23Z knoop
[3875]39! Moved wtm_forces to module_interface_actions
40!
41! 3872 2019-04-08 15:03:06Z knoop
[3864]42! Modifications made for salsa:
43! - Call salsa_emission_update at each time step but do the checks within
44!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
45!   and next_aero_emission_update <= time_since_reference_point ).
46! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
47!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
48! - Apply nesting for salsa variables
49! - Removed cpu_log calls speciffic for salsa.
50!
51! 3833 2019-03-28 15:04:04Z forkel
[3879]52! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
[3833]53!
54! 3820 2019-03-27 11:53:41Z forkel
[3820]55! renamed do_emiss to emissions_anthropogenic (ecc)
56!
57!
58! 3774 2019-03-04 10:52:49Z moh.hefny
[3774]59! rephrase if statement to avoid unallocated array in case of
60! nesting_offline is false (crashing during debug mode)
61!
62! 3761 2019-02-25 15:31:42Z raasch $
[3761]63! module section re-formatted and openacc required variables moved to separate section,
64! re-formatting to 100 char line width
65!
66! 3745 2019-02-15 18:57:56Z suehring
[3745]67! Call indoor model after first timestep
68!
69! 3744 2019-02-15 18:38:58Z suehring
[3742]70! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
71! time_integration to make sure averaged input is updated before calculating.
72!
73! 3739 2019-02-13 08:05:17Z dom_dwd_user
[3739]74! Removed everything related to "time_bio_results" as this is never used.
75!
76! 3724 2019-02-06 16:28:23Z kanani
[3724]77! Correct double-used log_point_s unit
78!
79! 3719 2019-02-06 13:10:18Z kanani
[3719]80! - removed wind_turbine cpu measurement, since same time is measured inside
81!   wtm_forces subroutine as special measures
82! - moved the numerous vnest cpulog to special measures
83! - extended radiation cpulog over entire radiation part,
84!   moved radiation_interactions cpulog to special measures
85! - moved some cpu_log calls to this routine for better overview
86!
87! 3705 2019-01-29 19:56:39Z suehring
[3705]88! Data output for virtual measurements added
89!
90! 3704 2019-01-29 19:51:41Z suehring
[3648]91! Rename subroutines for surface-data output
92!
93! 3647 2019-01-02 14:10:44Z kanani
[3647]94! Bugfix: add time_since_reference_point to IF clause for data_output calls
95! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
96! Clean up indoor_model and biometeorology model call.
97!
98! 3646 2018-12-28 17:58:49Z kanani
[3646]99! Bugfix: use time_since_reference_point instead of simulated_time where
100! required (relevant when using wall/soil spinup)
101!
102! 3634 2018-12-18 12:31:28Z knoop
[3634]103! OpenACC port for SPEC
104!
105! 3597 2018-12-04 08:40:18Z maronga
[3597]106! Removed call to calculation of near air (10 cm) potential temperature (now in
107! surface layer fluxes)
108!
109! 3589 2018-11-30 15:09:51Z suehring
[3589]110! Move the control parameter "salsa" from salsa_mod to control_parameters
111! (M. Kurppa)
112!
113! 3582 2018-11-29 19:16:36Z suehring
[3569]114! dom_dwd_user, Schrempf:
115! Changes due to merge of uv exposure model into biometeorology_mod.
116!
117! 3525 2018-11-14 16:06:14Z kanani
[3525]118! Changes related to clean-up of biometeorology (dom_dwd_user)
119!
120! 3524 2018-11-14 13:36:44Z raasch
[3524]121! unused variables removed
122!
123! 3484 2018-11-02 14:41:25Z hellstea
[3484]124! pmci_ensure_nest_mass_conservation is premanently removed
125!
126! 3473 2018-10-30 20:50:15Z suehring
[3473]127! new module for virtual measurements introduced
128!
129! 3472 2018-10-30 20:43:50Z suehring
[3469]130! Add indoor model (kanani, srissman, tlang)
131!
132! 3467 2018-10-30 19:05:21Z suehring
[3467]133! Implementation of a new aerosol module salsa.
134!
135! 3448 2018-10-29 18:14:31Z kanani
[3448]136! Add biometeorology
137!
138! 3421 2018-10-24 18:39:32Z gronemeier
[3421]139! Surface data output
140!
141! 3418 2018-10-24 16:07:39Z kanani
[3418]142! call to material_heat_model now with check if spinup runs (rvtils)
143!
144! 3378 2018-10-19 12:34:59Z kanani
[3378]145! merge from radiation branch (r3362) into trunk
146! (moh.hefny):
147! Bugfix in the if statement to call radiation_interaction
148!
149! 3347 2018-10-15 14:21:08Z suehring
[3347]150! - offline nesting separated from large-scale forcing module
151! - changes for synthetic turbulence generator
152!
153! 3343 2018-10-15 10:38:52Z suehring
[3298]154! - Formatting, clean-up, comments (kanani)
155! - Added CALL to chem_emissions_setup (Russo)
156! - Code added for decycling chemistry (basit)
157!
158! 3294 2018-10-01 02:37:10Z raasch
[3294]159! changes concerning modularization of ocean option
160!
161! 3274 2018-09-24 15:42:55Z knoop
[3274]162! Modularization of all bulk cloud physics code components
163!
164! 3241 2018-09-12 15:02:00Z raasch
[3241]165! unused variables removed
166!
167! 3198 2018-08-15 09:23:10Z sward
[3198]168! Added multi_agent_system_end; defined start time for MAS relative to
169! time_since_reference_point
170!
171! 3183 2018-07-27 14:25:55Z suehring
[3183]172! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
173! Rename subroutines and variables in COSMO nesting mode
174!
175! 3182 2018-07-27 13:36:03Z suehring
[3159]176! Added multi agent system
177!
178! 3042 2018-05-25 10:44:37Z schwenkel
[3042]179! Changed the name specific humidity to mixing ratio
180!
181! 3040 2018-05-25 10:22:08Z schwenkel
[3014]182! Fixed bug in IF statement
183! Ensure that the time when calling the radiation to be the time step of the
184! pre-calculated time when first calculate the positions of the sun
185!
186! 3004 2018-04-27 12:33:25Z Giersch
[3004]187! First call of flow_statistics has been removed. It is already called in
188! run_control itself
189!
190! 2984 2018-04-18 11:51:30Z hellstea
[2984]191! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
192! as seemingly unnecessary.
[2977]193!
194! 2941 2018-04-03 11:54:58Z kanani
[2941]195! Deduct spinup_time from RUN_CONTROL output of main 3d run
196! (use time_since_reference_point instead of simulated_time)
197!
198! 2938 2018-03-27 15:52:42Z suehring
[2938]199! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
200!
201! 2936 2018-03-27 14:49:27Z suehring
[2934]202! Little formatting adjustment.
203!
204! 2817 2018-02-19 16:32:21Z knoop
[2817]205! Preliminary gust module interface implemented
206!
207! 2801 2018-02-14 16:01:55Z thiele
[2801]208! Changed lpm from subroutine to module.
209! Introduce particle transfer in nested models.
210!
211! 2776 2018-01-31 10:44:42Z Giersch
[2776]212! Variable use_synthetic_turbulence_generator has been abbreviated
213!
214! 2773 2018-01-30 14:12:54Z suehring
[2773]215! - Nesting for chemical species
216!
217! 2766 2018-01-22 17:17:47Z kanani
[2766]218! Removed preprocessor directive __chem
219!
220! 2718 2018-01-02 08:49:38Z maronga
[2716]221! Corrected "Former revisions" section
222!
223! 2696 2017-12-14 17:12:51Z kanani
224! - Change in file header (GPL part)
[2696]225! - Implementation of uv exposure model (FK)
226! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
227! - renamed diffusivities to tcm_diffusivities (TG)
228! - implement prognostic equation for diss (TG)
229! - Moved/commented CALL to chem_emissions (FK)
230! - Added CALL to chem_emissions (FK)
231! - Implementation of chemistry module (FK)
232! - Calls for setting boundary conditions in USM and LSM (MS)
233! - Large-scale forcing with larger-scale models implemented (MS)
234! - Rename usm_radiation into radiation_interactions; merge with branch
235!   radiation (MS)
236! - added call for usm_green_heat_model for green building surfaces (RvT)
237! - added call for usm_temperature_near_surface for use in indoor model (RvT)
238!
239! 2617 2017-11-16 12:47:24Z suehring
[2617]240! Bugfix, assure that the reference state does not become zero.
241!
242! 2563 2017-10-19 15:36:10Z Giersch
[2563]243! Variable wind_turbine moved to module control_parameters
244!
245! 2365 2017-08-21 14:59:59Z kanani
[2365]246! Vertical grid nesting implemented (SadiqHuq)
247!
248! 2320 2017-07-21 12:47:43Z suehring
[2311]249! Set bottom boundary conditions after nesting interpolation and anterpolation
250!
251! 2299 2017-06-29 10:14:38Z maronga
[2299]252! Call of soil model adjusted
253!
254! 2292 2017-06-20 09:51:42Z schwenkel
[2292]255! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
256! includes two more prognostic equations for cloud drop concentration (nc) 
257! and cloud water content (qc).
258!
259! 2271 2017-06-09 12:34:55Z sward
[2271]260! Start timestep message changed
261!
262! 2259 2017-06-08 09:09:11Z gronemeier
[2259]263! Implemented synthetic turbulence generator
[1366]264!
[2259]265! 2233 2017-05-30 18:08:54Z suehring
266!
[2233]267! 2232 2017-05-30 17:47:52Z suehring
268! Adjustments to new topography and surface concept
269! Modify passed parameters for disturb_field
270!
[2179]271! 2178 2017-03-17 11:07:39Z hellstea
272! Setting perturbations at all times near inflow boundary is removed
273! in case of nested boundaries
274!
[2175]275! 2174 2017-03-13 08:18:57Z maronga
276! Added support for nesting with cloud microphysics
277!
[2119]278! 2118 2017-01-17 16:38:49Z raasch
279! OpenACC directives and related code removed
280!
[2051]281! 2050 2016-11-08 15:00:55Z gronemeier
282! Implement turbulent outflow condition
283!
[2032]284! 2031 2016-10-21 15:11:58Z knoop
285! renamed variable rho to rho_ocean
286!
[2012]287! 2011 2016-09-19 17:29:57Z kanani
288! Flag urban_surface is now defined in module control_parameters,
289! removed commented CALLs of global_min_max.
290!
[2008]291! 2007 2016-08-24 15:47:17Z kanani
292! Added CALLs for new urban surface model
293!
[2001]294! 2000 2016-08-20 18:09:15Z knoop
295! Forced header and separation lines into 80 columns
296!
[1977]297! 1976 2016-07-27 13:28:04Z maronga
298! Simplified calls to radiation model
299!
[1961]300! 1960 2016-07-12 16:34:24Z suehring
301! Separate humidity and passive scalar
302!
[1958]303! 1957 2016-07-07 10:43:48Z suehring
304! flight module added
305!
[1933]306! 1919 2016-05-27 14:51:23Z raasch
307! Initial version of purely vertical nesting introduced.
[1928]308!
[1919]309! 1918 2016-05-27 14:35:57Z raasch
310! determination of time step moved to the end of the time step loop,
311! the first time step is now always calculated before the time step loop (i.e.
312! also in case of restart runs)
313!
[1917]314! 1914 2016-05-26 14:44:07Z witha
315! Added call for wind turbine model
316!
[1879]317! 1878 2016-04-19 12:30:36Z hellstea
318! Synchronization for nested runs rewritten
319!
[1854]320! 1853 2016-04-11 09:00:35Z maronga
321! Adjusted for use with radiation_scheme = constant
322!
[1851]323! 1849 2016-04-08 11:33:18Z hoffmann
324! Adapted for modularization of microphysics
325!
[1834]326! 1833 2016-04-07 14:23:03Z raasch
327! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
328!
[1832]329! 1831 2016-04-07 13:15:51Z hoffmann
330! turbulence renamed collision_turbulence
331!
[1823]332! 1822 2016-04-07 07:49:42Z hoffmann
333! icloud_scheme replaced by microphysics_*
334!
[1809]335! 1808 2016-04-05 19:44:00Z raasch
336! output message in case unscheduled radiation calls removed
337!
[1798]338! 1797 2016-03-21 16:50:28Z raasch
339! introduction of different datatransfer modes
340!
[1792]341! 1791 2016-03-11 10:41:25Z raasch
342! call of pmci_update_new removed
343!
[1787]344! 1786 2016-03-08 05:49:27Z raasch
345! +module spectrum
346!
[1784]347! 1783 2016-03-06 18:36:17Z raasch
348! switch back of netcdf data format for mask output moved to the mask output
349! routine
350!
[1782]351! 1781 2016-03-03 15:12:23Z raasch
352! some pmc calls removed at the beginning (before timeloop),
353! pmc initialization moved to the main program
354!
[1765]355! 1764 2016-02-28 12:45:19Z raasch
356! PMC_ACTIVE flags removed,
357! bugfix: nest synchronization after first call of timestep
358!
[1763]359! 1762 2016-02-25 12:31:13Z hellstea
360! Introduction of nested domain feature
361!
[1737]362! 1736 2015-12-04 08:56:33Z raasch
363! no perturbations added to total domain if energy limit has been set zero
364!
[1692]365! 1691 2015-10-26 16:17:44Z maronga
366! Added option for spin-ups without land surface and radiation models. Moved calls
367! for radiation and lan surface schemes.
368!
[1683]369! 1682 2015-10-07 23:56:08Z knoop
370! Code annotations made doxygen readable
371!
[1672]372! 1671 2015-09-25 03:29:37Z raasch
373! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
374! for particles
375!
[1586]376! 1585 2015-04-30 07:05:52Z maronga
377! Moved call of radiation scheme. Added support for RRTM
378!
[1552]379! 1551 2015-03-03 14:18:16Z maronga
380! Added interface for different radiation schemes.
381!
[1497]382! 1496 2014-12-02 17:25:50Z maronga
383! Added calls for the land surface model and radiation scheme
384!
[1403]385! 1402 2014-05-09 14:25:13Z raasch
386! location messages modified
387!
[1385]388! 1384 2014-05-02 14:31:06Z raasch
389! location messages added
390!
[1381]391! 1380 2014-04-28 12:40:45Z heinze
392! CALL of nudge_ref added
393! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
394!
[1366]395! 1365 2014-04-22 15:03:56Z boeske
[1365]396! Reset sums_ls_l to zero at each timestep
397! +sums_ls_l
398! Calculation of reference state (previously in subroutine calc_mean_profile)
399
[1343]400! 1342 2014-03-26 17:04:47Z kanani
401! REAL constants defined as wp-kind
402!
[1321]403! 1320 2014-03-20 08:40:49Z raasch
[1320]404! ONLY-attribute added to USE-statements,
405! kind-parameters added to all INTEGER and REAL declaration statements,
406! kinds are defined in new module kinds,
407! old module precision_kind is removed,
408! revision history before 2012 removed,
409! comment fields (!:) to be used for variable explanations added to
410! all variable declaration statements
[1319]411! 1318 2014-03-17 13:35:16Z raasch
412! module interfaces removed
413!
[1309]414! 1308 2014-03-13 14:58:42Z fricke
415! +netcdf_data_format_save
416! For masked data, parallel netcdf output is not tested so far, hence
417! netcdf_data_format is switched back to non-paralell output.
418!
[1277]419! 1276 2014-01-15 13:40:41Z heinze
420! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
421!
[1258]422! 1257 2013-11-08 15:18:40Z raasch
423! acc-update-host directive for timestep removed
424!
[1242]425! 1241 2013-10-30 11:36:58Z heinze
426! Generalize calc_mean_profile for wider use
427! Determine shf and qsws in dependence on data from LSF_DATA
428! Determine ug and vg in dependence on data from LSF_DATA
[1222]429! 1221 2013-09-10 08:59:13Z raasch
430! host update of arrays before timestep is called
431!
[1182]432! 1179 2013-06-14 05:57:58Z raasch
433! mean profiles for reference state are only calculated if required,
434! small bugfix for background communication
435!
[1172]436! 1171 2013-05-30 11:27:45Z raasch
437! split of prognostic_equations deactivated (comment lines), for the time being
438!
[1132]439! 1128 2013-04-12 06:19:32Z raasch
[1128]440! asynchronous transfer of ghost point data realized for acc-optimized version:
441! prognostic_equations are first called two times for those points required for
442! the left-right and north-south exchange, respectively, and then for the
443! remaining points,
444! those parts requiring global communication moved from prognostic_equations to
445! here
[392]446!
[1116]447! 1115 2013-03-26 18:16:16Z hoffmann
448! calculation of qr and nr is restricted to precipitation
449!
[1114]450! 1113 2013-03-10 02:48:14Z raasch
451! GPU-porting of boundary conditions,
452! openACC directives updated
453! formal parameter removed from routine boundary_conds
454!
[1112]455! 1111 2013-03-08 23:54:10Z raasch
456! +internal timestep counter for cpu statistics added,
457! openACC directives updated
458!
[1093]459! 1092 2013-02-02 11:24:22Z raasch
460! unused variables removed
461!
[1066]462! 1065 2012-11-22 17:42:36Z hoffmann
463! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
464!
[1054]465! 1053 2012-11-13 17:11:03Z hoffmann
466! exchange of ghost points for nr, qr added
467!
[1037]468! 1036 2012-10-22 13:43:42Z raasch
469! code put under GPL (PALM 3.9)
470!
[1020]471! 1019 2012-09-28 06:46:45Z raasch
472! non-optimized version of prognostic_equations removed
473!
[1017]474! 1015 2012-09-27 09:23:24Z raasch
475! +call of prognostic_equations_acc
476!
[1002]477! 1001 2012-09-13 14:08:46Z raasch
478! all actions concerning leapfrog- and upstream-spline-scheme removed
479!
[850]480! 849 2012-03-15 10:35:09Z raasch
481! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
482!
[826]483! 825 2012-02-19 03:03:44Z raasch
484! wang_collision_kernel renamed wang_kernel
485!
[1]486! Revision 1.1  1997/08/11 06:19:04  raasch
487! Initial revision
488!
489!
490! Description:
491! ------------
[1682]492!> Integration in time of the model equations, statistical analysis and graphic
493!> output
[1]494!------------------------------------------------------------------------------!
[1682]495 SUBROUTINE time_integration
496 
[1]497
[3761]498    USE advec_ws,                                                                                  &
[1320]499        ONLY:  ws_statistics
500
[3761]501    USE arrays_3d,                                                                                 &
502        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
503               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
504               tend, u, u_p, v, vpt, v_p, w, w_p
[1320]505
[3761]506    USE biometeorology_mod,                                                                        &
507        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
[3448]508
[3761]509    USE bulk_cloud_model_mod,                                                                      &
510        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
511              microphysics_morrison, microphysics_seifert
[3294]512
[3761]513    USE calc_mean_profile_mod,                                                                     &
[1320]514        ONLY:  calc_mean_profile
515
[3761]516    USE chem_emissions_mod,                                                                        &
[3298]517        ONLY:  chem_emissions_setup
[2696]518
[3833]519    USE chem_gasphase_mod,                                                                         &
[3929]520        ONLY:  nvar
[3833]521
[3761]522    USE chem_modules,                                                                              &
[3968]523        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
[2696]524
[3761]525    USE chemistry_model_mod,                                                                       &
[3929]526        ONLY:  chem_boundary_conds
[3298]527
[3761]528    USE control_parameters,                                                                        &
529        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
530               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
531               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
532               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
533               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
534               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
535               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
536               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
537               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,     &
538               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
539               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
540               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
541               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
542               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
543               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
544               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
545               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
546               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
547               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
548               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
549               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
550               time_do_sla, time_disturb, time_dvrp, time_run_control, time_since_reference_point, &
551               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
552               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
[3875]553               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca
[1320]554
[3761]555    USE cpulog,                                                                                    &
[1320]556        ONLY:  cpu_log, log_point, log_point_s
557
[3761]558    USE date_and_time_mod,                                                                         &
[3298]559        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
560
[3761]561    USE flight_mod,                                                                                &
[1957]562        ONLY:  flight_measurement
563
[3761]564    USE indices,                                                                                   &
565        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
[1320]566
[3761]567    USE indoor_model_mod,                                                                          &
568        ONLY:  dt_indoor, im_main_heatcool, time_indoor
[3469]569
[3761]570    USE interaction_droplets_ptq_mod,                                                              &
[1320]571        ONLY:  interaction_droplets_ptq
572
[1918]573    USE interfaces
574
[1320]575    USE kinds
576
[3761]577    USE land_surface_model_mod,                                                                    &
578        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
[1496]579
[3761]580    USE lpm_mod,                                                                                   &
581        ONLY:  lpm
582
583    USE lsf_nudging_mod,                                                                           &
[3347]584        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
[1320]585
[3761]586    USE module_interface,                                                                          &
[3684]587        ONLY:  module_interface_actions
588
[3761]589    USE multi_agent_system_mod,                                                                    &
[3198]590        ONLY:  agents_active, multi_agent_system
[3448]591
[3761]592    USE nesting_offl_mod,                                                                          &
[3347]593        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
[3864]594
[3761]595    USE netcdf_data_input_mod,                                                                     &
596        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
[3298]597
[3761]598    USE ocean_mod,                                                                                 &
[3294]599        ONLY:  prho_reference
600
[3761]601    USE particle_attributes,                                                                       &
602        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
[1320]603
[1]604    USE pegrid
605
[3761]606    USE pmc_interface,                                                                             &
607        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize
[1762]608
[3761]609    USE progress_bar,                                                                              &
[1402]610        ONLY:  finish_progress_bar, output_progress_bar
611
[3761]612    USE prognostic_equations_mod,                                                                  &
[2118]613        ONLY:  prognostic_equations_cache, prognostic_equations_vector
[1320]614
[3761]615    USE radiation_model_mod,                                                                       &
616        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
617              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
[3864]618
[3761]619    USE salsa_mod,                                                                                 &
[3864]620        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
621              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
622              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
[1496]623
[3761]624    USE spectra_mod,                                                                               &
625        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
[1786]626
[3761]627    USE statistics,                                                                                &
628        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
[1320]629
[3761]630
631    USE surface_layer_fluxes_mod,                                                                  &
[1691]632        ONLY:  surface_layer_fluxes
633
[3761]634    USE surface_data_output_mod,                                                                   &
635        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
636               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
[3648]637               skip_time_dosurf_av, time_dosurf, time_dosurf_av
[2232]638
[3761]639    USE surface_mod,                                                                               &
640        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
641
642    USE synthetic_turbulence_generator_mod,                                                        &
643        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
644               time_stg_adjust, time_stg_call, use_syn_turb_gen
645
646    USE turbulence_closure_mod,                                                                    &
[2696]647        ONLY:  tcm_diffusivities, production_e_init
648
[3761]649    USE urban_surface_mod,                                                                         &
650        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
[3597]651               usm_surface_energy_balance, usm_green_heat_model
[2007]652
[3761]653    USE vertical_nesting_mod,                                                                      &
654        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
655               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
656               vnest_start_time
[3864]657
[3761]658    USE virtual_measurement_mod,                                                                   &
659        ONLY:  vm_data_output, vm_sampling, vm_time_start
[2259]660
[1914]661
[3761]662#if defined( _OPENACC )
663    USE arrays_3d,                                                             &
664        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
665               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
666               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
667               v_stokes_zu, zu
[2365]668
[3761]669    USE control_parameters,                                                                        &
670        ONLY:  tsc
671
672    USE indices,                                                                                   &
673        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
674
675    USE statistics,                                                                                &
676        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
677               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
678               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
[3872]679               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
[3761]680
681    USE surface_mod,                                                                               &
682        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
683#endif
684
685
[1]686    IMPLICIT NONE
687
[3298]688    CHARACTER (LEN=9) ::  time_to_string   !<
[3864]689
690    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
691    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
692    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
693    INTEGER(iwp)      ::  ig        !< index for salsa gases
[3929]694    INTEGER(iwp)      ::  lsp
695    INTEGER(iwp)      ::  lsp_usr   !<
[3298]696    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
[3014]697
[1918]698    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
699                            !< steering of run control output interval
[3241]700    REAL(wp) ::  time_since_reference_point_save  !< original value of
701                                                  !< time_since_reference_point
702
[3634]703
[3761]704!
705!-- Copy data from arrays_3d
[3634]706!$ACC DATA &
707!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
708!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
709!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
710!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
711!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
712!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
713!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
714!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
715!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
716
717!$ACC DATA &
718!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
719!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
720!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
721!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
722!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
723!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
724!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
725!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
726!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
727!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
728!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
729
730!$ACC DATA &
731!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
732!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
733!$ACC COPYIN(zu(nzb:nzt+1)) &
734!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
735!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
736!$ACC COPYIN(ddzw(1:nzt+1)) &
[3658]737!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
738!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
[3634]739!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
740!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
741!$ACC COPYIN(ref_state(0:nz+1)) &
742!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
743!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
744!$ACC COPYIN(pt_init(0:nz+1)) &
745!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
746
[3761]747!
748!-- Copy data from control_parameters
[3634]749!$ACC DATA &
750!$ACC COPYIN(tsc(1:5))
751
[3761]752!
753!-- Copy data from indices
[3634]754!$ACC DATA &
755!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
756!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
757!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
758
[3761]759!
760!-- Copy data from surface_mod
[3634]761!$ACC DATA &
762!$ACC COPYIN(bc_h(0:1)) &
763!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
764!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
765!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
766!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
767!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
768!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
769
[3761]770!
771!-- Copy data from statistics
[3634]772!$ACC DATA &
[3658]773!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
[3634]774!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
775!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
[3658]776!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
[3634]777!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
778!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
779!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
780!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
781!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
782!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
783!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
784!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
785!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
786!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
787!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
788!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
789!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
790!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
791!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
792
[3761]793#if defined( _OPENACC )
[3658]794    CALL enter_surface_arrays
795#endif
796
[1]797!
[1918]798!-- At beginning determine the first time step
799    CALL timestep
[1764]800!
801!-- Synchronize the timestep in case of nested run.
802    IF ( nested_run )  THEN
[1878]803!
804!--    Synchronization by unifying the time step.
805!--    Global minimum of all time-steps is used for all.
806       CALL pmci_synchronize
[1764]807    ENDIF
808
[1918]809!
810!-- Determine and print out the run control quantities before the first time
811!-- step of this run. For the initial run, some statistics (e.g. divergence)
[3004]812!-- need to be determined first --> CALL flow_statistics at the beginning of
813!-- run_control
[1]814    CALL run_control
[108]815!
816!-- Data exchange between coupled models in case that a call has been omitted
817!-- at the end of the previous run of a job chain.
[3761]818    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
[108]819!
820!--    In case of model termination initiated by the local model the coupler
821!--    must not be called because this would again cause an MPI hang.
[1918]822       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[108]823          CALL surface_coupler
824          time_coupling = time_coupling - dt_coupling
825       ENDDO
[3761]826       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
[348]827          time_coupling = time_since_reference_point
828       ENDIF
[108]829    ENDIF
830
[1]831#if defined( __dvrp_graphics )
832!
833!-- Time measurement with dvrp software 
834    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
835#endif
836
[3885]837    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
[3761]838
[1]839!
840!-- Start of the time loop
[3761]841    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
[1]842
843       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
844!
[2365]845!--    Vertical nesting: initialize fine grid
846       IF ( vnested ) THEN
847          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
[3719]848             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
[2365]849             CALL vnest_init_fine
850             vnest_init = .TRUE.
[3719]851             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
[2365]852          ENDIF
853       ENDIF
854!
[1241]855!--    Determine ug, vg and w_subs in dependence on data from external file
856!--    LSF_DATA
[1365]857       IF ( large_scale_forcing .AND. lsf_vert )  THEN
[1241]858           CALL ls_forcing_vert ( simulated_time )
[1365]859           sums_ls_l = 0.0_wp
[1241]860       ENDIF
861
862!
[1380]863!--    Set pt_init and q_init to the current profiles taken from
864!--    NUDGING_DATA
865       IF ( nudging )  THEN
866           CALL nudge_ref ( simulated_time )
867!
868!--        Store temperature gradient at the top boundary for possible Neumann
869!--        boundary condition
870           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
871           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
[3298]872           IF ( air_chemistry )  THEN
[3929]873              DO  lsp = 1, nvar
874                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
875                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
[3298]876                               / dzu(nzt+1)
877              ENDDO
878           ENDIF
[3864]879           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
880              DO  ib = 1, nbins_aerosol
881                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
882                               dzu(nzt+1)
883                 DO  ic = 1, ncomponents_mass
884                    icc = ( ic - 1 ) * nbins_aerosol + ib
885                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
886                                  dzu(nzt+1)
887                 ENDDO
888              ENDDO
889              IF ( .NOT. salsa_gases_from_chem )  THEN
890                 DO  ig = 1, ngases_salsa
891                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
892                                  dzu(nzt+1)
893                 ENDDO
894              ENDIF
895           ENDIF
[1380]896       ENDIF
[2696]897!
898!--    If forcing by larger-scale models is applied, check if new data
899!--    at domain boundaries need to be read.
[3774]900       IF ( nesting_offline ) THEN
901          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
902               CALL netcdf_data_input_offline_nesting
[2696]903       ENDIF
[1380]904
905!
[3876]906!--    Execute all other module actions routunes
[3684]907       CALL module_interface_actions( 'before_timestep' )
[1914]908       
909!
[1]910!--    Start of intermediate step loop
911       intermediate_timestep_count = 0
[3761]912       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
[1]913
914          intermediate_timestep_count = intermediate_timestep_count + 1
915
916!
917!--       Set the steering factors for the prognostic equations which depend
918!--       on the timestep scheme
919          CALL timestep_scheme_steering
920
921!
[1128]922!--       Calculate those variables needed in the tendency terms which need
923!--       global communication
[3761]924          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
925          THEN
[1179]926!
927!--          Horizontally averaged profiles to be used as reference state in
928!--          buoyancy terms (WARNING: only the respective last call of
929!--          calc_mean_profile defines the reference state!)
[1365]930             IF ( .NOT. neutral )  THEN
931                CALL calc_mean_profile( pt, 4 )
932                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
933             ENDIF
[3294]934             IF ( ocean_mode )  THEN
[2031]935                CALL calc_mean_profile( rho_ocean, 64 )
[1365]936                ref_state(:)  = hom(:,1,64,0)
937             ENDIF
938             IF ( humidity )  THEN
939                CALL calc_mean_profile( vpt, 44 )
940                ref_state(:)  = hom(:,1,44,0)
941             ENDIF
[2617]942!
943!--          Assure that ref_state does not become zero at any level
944!--          ( might be the case if a vertical level is completely occupied
945!--            with topography ).
[3761]946             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
[1179]947          ENDIF
948
[1128]949          IF ( .NOT. constant_diffusion )  CALL production_e_init
[3761]950          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
951          THEN
952             CALL ws_statistics
953          ENDIF
[1365]954!
955!--       In case of nudging calculate current nudging time scale and horizontal
[1380]956!--       means of u, v, pt and q
[1365]957          IF ( nudging )  THEN
958             CALL calc_tnudge( simulated_time )
959             CALL calc_mean_profile( u, 1 )
960             CALL calc_mean_profile( v, 2 )
961             CALL calc_mean_profile( pt, 4 )
962             CALL calc_mean_profile( q, 41 )
963          ENDIF
[1128]964!
[3876]965!--       Execute all other module actions routunes
966          CALL module_interface_actions( 'before_prognostic_equations' )
967!
[1]968!--       Solve the prognostic equations. A fast cache optimized version with
969!--       only one single loop is used in case of Piascek-Williams advection
970!--       scheme. NEC vector machines use a different version, because
971!--       in the other versions a good vectorization is prohibited due to
972!--       inlining problems.
[1019]973          IF ( loop_optimization == 'cache' )  THEN
974             CALL prognostic_equations_cache
975          ELSEIF ( loop_optimization == 'vector' )  THEN
[63]976             CALL prognostic_equations_vector
[1]977          ENDIF
978
979!
[849]980!--       Particle transport/physics with the Lagrangian particle model
981!--       (only once during intermediate steps, because it uses an Euler-step)
[1128]982!--       ### particle model should be moved before prognostic_equations, in order
983!--       to regard droplet interactions directly
[3761]984          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
985               .AND.  intermediate_timestep_count == 1 )                                           &
986          THEN
[849]987             CALL lpm
988             first_call_lpm = .FALSE.
[1]989          ENDIF
990
991!
[3040]992!--       Interaction of droplets with temperature and mixing ratio.
[1]993!--       Droplet condensation and evaporation is calculated within
994!--       advec_particles.
[3761]995          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
[1]996          THEN
997             CALL interaction_droplets_ptq
998          ENDIF
999
1000!
[3159]1001!--       Movement of agents in multi agent system
[3761]1002          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1003               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1004               intermediate_timestep_count == 1 )                                                  &
1005          THEN
[3159]1006             CALL multi_agent_system
1007             first_call_mas = .FALSE.
1008          ENDIF
1009
1010!
[1]1011!--       Exchange of ghost points (lateral boundary conditions)
[2118]1012          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
[1113]1013
[2118]1014          CALL exchange_horiz( u_p, nbgp )
1015          CALL exchange_horiz( v_p, nbgp )
1016          CALL exchange_horiz( w_p, nbgp )
1017          CALL exchange_horiz( pt_p, nbgp )
1018          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
[3761]1019          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
[2696]1020               .OR.  use_sgs_for_particles )  THEN
1021             IF ( rans_tke_e )  THEN
1022                CALL exchange_horiz( diss_p, nbgp )
1023             ELSE
1024                CALL exchange_horiz( diss, nbgp )
1025             ENDIF
1026          ENDIF
[3294]1027          IF ( ocean_mode )  THEN
[2118]1028             CALL exchange_horiz( sa_p, nbgp )
1029             CALL exchange_horiz( rho_ocean, nbgp )
1030             CALL exchange_horiz( prho, nbgp )
1031          ENDIF
1032          IF ( humidity )  THEN
1033             CALL exchange_horiz( q_p, nbgp )
[3274]1034             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
[2292]1035                CALL exchange_horiz( qc_p, nbgp )
1036                CALL exchange_horiz( nc_p, nbgp )
1037             ENDIF
[3274]1038             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
[2118]1039                CALL exchange_horiz( qr_p, nbgp )
1040                CALL exchange_horiz( nr_p, nbgp )
[1053]1041             ENDIF
[2118]1042          ENDIF
1043          IF ( cloud_droplets )  THEN
1044             CALL exchange_horiz( ql, nbgp )
1045             CALL exchange_horiz( ql_c, nbgp )
1046             CALL exchange_horiz( ql_v, nbgp )
1047             CALL exchange_horiz( ql_vp, nbgp )
1048          ENDIF
[2696]1049          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
[3929]1050          IF ( air_chemistry )  THEN
1051             DO  lsp = 1, nvar
1052                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1053!
1054!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1055                lsp_usr = 1
1056                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1057                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1058                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1059                                                chem_species(lsp)%conc_pr_init )
1060                   ENDIF
1061                   lsp_usr = lsp_usr + 1
1062                ENDDO
1063             ENDDO
1064          ENDIF
[2766]1065
[3864]1066          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1067!
1068!--          Exchange ghost points and decycle boundary concentrations if needed
1069             DO  ib = 1, nbins_aerosol
1070                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1071                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1072                DO  ic = 1, ncomponents_mass
1073                   icc = ( ic - 1 ) * nbins_aerosol + ib
1074                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1075                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
[3467]1076                ENDDO
1077             ENDDO
1078             IF ( .NOT. salsa_gases_from_chem )  THEN
[3864]1079                DO  ig = 1, ngases_salsa
1080                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1081                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1082                ENDDO
[3467]1083             ENDIF
[3864]1084          ENDIF
[2118]1085          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
[1128]1086
[1]1087!
1088!--       Boundary conditions for the prognostic quantities (except of the
1089!--       velocities at the outflow in case of a non-cyclic lateral wall)
[1113]1090          CALL boundary_conds
[1]1091!
[73]1092!--       Swap the time levels in preparation for the next time step.
1093          CALL swap_timelevel
1094
[2365]1095!
1096!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1097          IF ( vnest_init ) THEN
[3719]1098             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
[2365]1099             CALL vnest_anterpolate
[3719]1100             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
[2365]1101          ENDIF
1102
[1764]1103          IF ( nested_run )  THEN
[1797]1104
[1764]1105             CALL cpu_log( log_point(60), 'nesting', 'start' )
[1762]1106!
[1933]1107!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1108!--          and pmci_child_datatrans are called inside the wrapper
[1797]1109!--          subroutine pmci_datatrans according to the control parameters
1110!--          nesting_mode and nesting_datatransfer_mode.
1111!--          TO_DO: why is nesting_mode given as a parameter here?
1112             CALL pmci_datatrans( nesting_mode )
[1762]1113
[3761]1114             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
[1762]1115!
[1933]1116!--             Exchange_horiz is needed for all parent-domains after the
[1764]1117!--             anterpolation
1118                CALL exchange_horiz( u, nbgp )
1119                CALL exchange_horiz( v, nbgp )
1120                CALL exchange_horiz( w, nbgp )
[2174]1121                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1122
1123                IF ( humidity )  THEN
1124
1125                   CALL exchange_horiz( q, nbgp )
1126
[3274]1127                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
[2292]1128                       CALL exchange_horiz( qc, nbgp )
1129                       CALL exchange_horiz( nc, nbgp )
1130                   ENDIF
[3274]1131                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
[2174]1132                       CALL exchange_horiz( qr, nbgp )
1133                       CALL exchange_horiz( nr, nbgp )
1134                   ENDIF
1135
1136                ENDIF
1137
[3467]1138                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
[3864]1139
[2174]1140                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
[2773]1141
[3761]1142                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
[2938]1143                   CALL exchange_horiz( diss, nbgp )
[3761]1144                ENDIF
[2938]1145
[2773]1146                IF ( air_chemistry )  THEN
[3929]1147                   DO  n = 1, nvar
[2773]1148                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1149                   ENDDO
1150                ENDIF
1151
[3864]1152                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1153                   DO  ib = 1, nbins_aerosol
1154                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1155                      CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1156                      DO  ic = 1, ncomponents_mass
1157                         icc = ( ic - 1 ) * nbins_aerosol + ib
1158                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1159                         CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1160                      ENDDO
1161                   ENDDO
1162                   IF ( .NOT. salsa_gases_from_chem )  THEN
1163                      DO  ig = 1, ngases_salsa
1164                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1165                         CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1166                      ENDDO
1167                   ENDIF
1168                ENDIF
1169                CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1170
[1762]1171             ENDIF
1172!
[2311]1173!--          Set boundary conditions again after interpolation and anterpolation.
1174             CALL pmci_boundary_conds
[1764]1175
1176             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1177
[1762]1178          ENDIF
1179
1180!
[1]1181!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1182!--       when a sloping surface is used
1183          IF ( sloping_surface )  THEN
[3761]1184             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1185             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
[1]1186          ENDIF
1187
1188!
[151]1189!--       Impose a turbulent inflow using the recycling method
[3719]1190          IF ( turbulent_inflow )  CALL inflow_turbulence
[151]1191
1192!
[2050]1193!--       Set values at outflow boundary using the special outflow condition
[3719]1194          IF ( turbulent_outflow )  CALL outflow_turbulence
[2050]1195
1196!
[1]1197!--       Impose a random perturbation on the horizontal velocity field
[3761]1198          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1199               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1200               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
[1]1201          THEN
1202             time_disturb = time_disturb + dt_3d
1203             IF ( time_disturb >= dt_disturb )  THEN
[3761]1204                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
[1736]1205                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
[2232]1206                   CALL disturb_field( 'u', tend, u )
1207                   CALL disturb_field( 'v', tend, v )
[3761]1208                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1209                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
[3182]1210                THEN
[1]1211!
1212!--                Runs with a non-cyclic lateral wall need perturbations
1213!--                near the inflow throughout the whole simulation
1214                   dist_range = 1
[2232]1215                   CALL disturb_field( 'u', tend, u )
1216                   CALL disturb_field( 'v', tend, v )
[1]1217                   dist_range = 0
1218                ENDIF
1219                time_disturb = time_disturb - dt_disturb
1220             ENDIF
1221          ENDIF
1222
1223!
[2696]1224!--       Map forcing data derived from larger scale model onto domain
1225!--       boundaries.
[3761]1226          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1227                                       intermediate_timestep_count_max  )                          &
[3347]1228             CALL nesting_offl_bc
[2938]1229!
[3347]1230!--       Impose a turbulent inflow using synthetic generated turbulence,
1231!--       only once per time step.
[3761]1232          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
[3719]1233             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1234             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
[3347]1235             CALL stg_main
[3719]1236             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
[2696]1237          ENDIF
1238!
[3347]1239!--       Ensure mass conservation. This need to be done after imposing
1240!--       synthetic turbulence and top boundary condition for pressure is set to
1241!--       Neumann conditions.
1242!--       Is this also required in case of Dirichlet?
1243          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1244!
[1]1245!--       Reduce the velocity divergence via the equation for perturbation
1246!--       pressure.
[106]1247          IF ( intermediate_timestep_count == 1  .OR. &
1248                call_psolver_at_all_substeps )  THEN
[2365]1249
1250             IF (  vnest_init ) THEN
1251!
1252!--             Compute pressure in the CG, interpolate top boundary conditions
1253!--             to the FG and then compute pressure in the FG
1254                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1255
[3719]1256                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
[2365]1257                CALL vnest_boundary_conds
[3719]1258                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
[2365]1259 
1260                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1261
1262!--             Anterpolate TKE, satisfy Germano Identity
[3719]1263                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
[2365]1264                CALL vnest_anterpolate_e
[3719]1265                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
[2365]1266
1267             ELSE
1268
1269                CALL pres
1270
1271             ENDIF
1272
[1]1273          ENDIF
1274
1275!
1276!--       If required, compute liquid water content
[3274]1277          IF ( bulk_cloud_model )  THEN
[1015]1278             CALL calc_liquid_water_content
1279          ENDIF
[2174]1280!
[1115]1281!--       If required, compute virtual potential temperature
1282          IF ( humidity )  THEN
1283             CALL compute_vpt 
1284          ENDIF 
[1585]1285
[1]1286!
1287!--       Compute the diffusion quantities
1288          IF ( .NOT. constant_diffusion )  THEN
1289
1290!
[1276]1291!--          Determine surface fluxes shf and qsws and surface values
1292!--          pt_surface and q_surface in dependence on data from external
1293!--          file LSF_DATA respectively
[3761]1294             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1295                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
[1276]1296             THEN
[2320]1297                CALL ls_forcing_surf( simulated_time )
[1276]1298             ENDIF
1299
1300!
[2232]1301!--          First the vertical (and horizontal) fluxes in the surface
1302!--          (constant flux) layer are computed
[1691]1303             IF ( constant_flux_layer )  THEN
1304                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1305                CALL surface_layer_fluxes
1306                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
[1]1307             ENDIF
1308!
[1691]1309!--          If required, solve the energy balance for the surface and run soil
[2232]1310!--          model. Call for horizontal as well as vertical surfaces
[2696]1311             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
[1691]1312
1313                CALL cpu_log( log_point(54), 'land_surface', 'start' )
[2232]1314!
1315!--             Call for horizontal upward-facing surfaces
1316                CALL lsm_energy_balance( .TRUE., -1 )
[2299]1317                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
[2232]1318!
1319!--             Call for northward-facing surfaces
1320                CALL lsm_energy_balance( .FALSE., 0 )
[2299]1321                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
[2232]1322!
1323!--             Call for southward-facing surfaces
1324                CALL lsm_energy_balance( .FALSE., 1 )
[2299]1325                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
[2232]1326!
1327!--             Call for eastward-facing surfaces
1328                CALL lsm_energy_balance( .FALSE., 2 )
[2299]1329                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
[2232]1330!
1331!--             Call for westward-facing surfaces
1332                CALL lsm_energy_balance( .FALSE., 3 )
[2299]1333                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
[3597]1334               
[2696]1335!
1336!--             At the end, set boundary conditons for potential temperature
1337!--             and humidity after running the land-surface model. This
1338!--             might be important for the nesting, where arrays are transfered.
1339                CALL lsm_boundary_condition
[2232]1340
[3597]1341               
[1691]1342                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1343             ENDIF
1344!
[2007]1345!--          If required, solve the energy balance for urban surfaces and run
1346!--          the material heat model
1347             IF (urban_surface) THEN
1348                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
[3176]1349               
[3418]1350                CALL usm_surface_energy_balance( .FALSE. )
[2007]1351                IF ( usm_material_model )  THEN
[2696]1352                   CALL usm_green_heat_model
[3418]1353                   CALL usm_material_heat_model ( .FALSE. )
[2007]1354                ENDIF
[2696]1355
1356!
1357!--             At the end, set boundary conditons for potential temperature
1358!--             and humidity after running the urban-surface model. This
1359!--             might be important for the nesting, where arrays are transfered.
1360                CALL usm_boundary_condition
1361
[2007]1362                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1363             ENDIF
1364!
[1]1365!--          Compute the diffusion coefficients
1366             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
[75]1367             IF ( .NOT. humidity ) THEN
[3294]1368                IF ( ocean_mode )  THEN
[2696]1369                   CALL tcm_diffusivities( prho, prho_reference )
[97]1370                ELSE
[2696]1371                   CALL tcm_diffusivities( pt, pt_reference )
[97]1372                ENDIF
[1]1373             ELSE
[2696]1374                CALL tcm_diffusivities( vpt, pt_reference )
[1]1375             ENDIF
1376             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
[2696]1377!
1378!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1379             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
[1]1380
1381          ENDIF
1382
[1691]1383!
1384!--       If required, calculate radiative fluxes and heating rates
[3761]1385          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1386               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
[1691]1387
1388               time_radiation = time_radiation + dt_3d
1389
[3761]1390             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
[1691]1391
1392                CALL cpu_log( log_point(50), 'radiation', 'start' )
1393
1394                IF ( .NOT. force_radiation_call )  THEN
1395                   time_radiation = time_radiation - dt_radiation
1396                ENDIF
1397
[3014]1398!
[3241]1399!--             Adjust the current time to the time step of the radiation model.
[3014]1400!--             Needed since radiation is pre-calculated and stored only on apparent
1401!--             solar positions
[3241]1402                time_since_reference_point_save = time_since_reference_point
[3761]1403                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1404                                                          dt_radiation), wp ) * dt_radiation
[3014]1405
[1976]1406                CALL radiation_control
[1691]1407
[3761]1408                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
[3724]1409                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
[2696]1410                   CALL radiation_interaction
[3724]1411                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
[2007]1412                ENDIF
[3014]1413   
1414!
1415!--             Return the current time to its original value
[3241]1416                time_since_reference_point = time_since_reference_point_save
[2007]1417
[3719]1418                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1419
[1691]1420             ENDIF
1421          ENDIF
1422
[1]1423       ENDDO   ! Intermediate step loop
[3634]1424
[1]1425!
[3634]1426!--    Will be used at some point by flow_statistics.
[3658]1427       !$ACC UPDATE &
[3634]1428       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1429       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1430       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1431       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1432       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1433       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1434       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1435       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1436       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1437       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1438       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1439       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1440       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1441       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1442       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1443
1444!
[2766]1445!--    If required, consider chemical emissions
[3820]1446       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
[3298]1447!
1448!--       Update the time --> kanani: revise location of this CALL
1449          CALL calc_date_and_time
1450!
1451!--       Call emission routine only once an hour
1452          IF (hour_of_year  .GT.  hour_call_emis )  THEN
[3968]1453             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
[3298]1454             hour_call_emis = hour_of_year
1455          ENDIF
[2766]1456       ENDIF
[3864]1457!
1458!--    If required, consider aerosol emissions for the salsa model
1459       IF ( salsa )  THEN
1460!
1461!--       Call emission routine to update emissions if needed
1462          CALL salsa_emission_update
[3569]1463
[3864]1464       ENDIF
[2696]1465!
[3469]1466!--    If required, calculate indoor temperature, waste heat, heat flux
1467!--    through wall, etc.
[3744]1468!--    dt_indoor steers the frequency of the indoor model calculations.
1469!--    Note, at first timestep indoor model is called, in order to provide
1470!--    a waste heat flux.
[3647]1471       IF ( indoor_model )  THEN
[3469]1472
1473          time_indoor = time_indoor + dt_3d
1474
[3761]1475          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
[3469]1476
1477             time_indoor = time_indoor - dt_indoor
1478
1479             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1480             CALL im_main_heatcool
1481             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1482
1483          ENDIF
1484       ENDIF
1485!
[1]1486!--    Increase simulation time and output times
[1111]1487       nr_timesteps_this_run      = nr_timesteps_this_run + 1
[291]1488       current_timestep_number    = current_timestep_number + 1
1489       simulated_time             = simulated_time   + dt_3d
1490       time_since_reference_point = simulated_time - coupling_start_time
[2941]1491       simulated_time_chr         = time_to_string( time_since_reference_point )
[291]1492
[1957]1493
1494
[2941]1495
[3646]1496       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1497          time_do_av         = time_do_av       + dt_3d
1498       ENDIF
[3646]1499       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
[1]1500          time_do2d_xy       = time_do2d_xy     + dt_3d
1501       ENDIF
[3646]1502       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
[1]1503          time_do2d_xz       = time_do2d_xz     + dt_3d
1504       ENDIF
[3646]1505       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
[1]1506          time_do2d_yz       = time_do2d_yz     + dt_3d
1507       ENDIF
[3646]1508       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
[1]1509          time_do3d          = time_do3d        + dt_3d
1510       ENDIF
[410]1511       DO  mid = 1, masks
[3646]1512          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
[410]1513             time_domask(mid)= time_domask(mid) + dt_3d
1514          ENDIF
1515       ENDDO
[1]1516       time_dvrp          = time_dvrp        + dt_3d
[3646]1517       IF ( time_since_reference_point >= skip_time_dosp )  THEN
[1]1518          time_dosp       = time_dosp        + dt_3d
1519       ENDIF
1520       time_dots          = time_dots        + dt_3d
[849]1521       IF ( .NOT. first_call_lpm )  THEN
[1]1522          time_dopts      = time_dopts       + dt_3d
1523       ENDIF
[3646]1524       IF ( time_since_reference_point >= skip_time_dopr )  THEN
[1]1525          time_dopr       = time_dopr        + dt_3d
1526       ENDIF
[3467]1527       time_dopr_listing  = time_dopr_listing + dt_3d
[1]1528       time_run_control   = time_run_control + dt_3d
[3347]1529!
[3421]1530!--    Increment time-counter for surface output
[3648]1531       IF ( surface_output )  THEN
[3646]1532          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
[3421]1533             time_dosurf    = time_dosurf + dt_3d
1534          ENDIF
[3646]1535          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1536             time_dosurf_av = time_dosurf_av + dt_3d
1537          ENDIF
1538       ENDIF
1539!
[3347]1540!--    In case of synthetic turbulence generation and parametrized turbulence
1541!--    information, update the time counter and if required, adjust the
1542!--    STG to new atmospheric conditions.
1543       IF ( use_syn_turb_gen  )  THEN
1544          IF ( parametrize_inflow_turbulence )  THEN
1545             time_stg_adjust = time_stg_adjust + dt_3d
[3719]1546             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1547                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1548                CALL stg_adjust
1549                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1550             ENDIF
[3347]1551          ENDIF
1552          time_stg_call = time_stg_call + dt_3d
1553       ENDIF
[1]1554
1555!
[102]1556!--    Data exchange between coupled models
[3761]1557       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
[102]1558          time_coupling = time_coupling + dt_3d
[343]1559
[108]1560!
1561!--       In case of model termination initiated by the local model
1562!--       (terminate_coupled > 0), the coupler must be skipped because it would
1563!--       cause an MPI intercomminucation hang.
1564!--       If necessary, the coupler will be called at the beginning of the
1565!--       next restart run.
[3761]1566          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[102]1567             CALL surface_coupler
1568             time_coupling = time_coupling - dt_coupling
1569          ENDDO
1570       ENDIF
1571
1572!
[3448]1573!--    Biometeorology calculation of stationary thermal indices
[3647]1574!--    Todo (kanani): biometeorology needs own time_... treatment.
1575!--                   It might be that time_do2d_xy differs from time_do3d,
1576!--                   and then we might get trouble with the biomet output,
1577!--                   because we can have 2d and/or 3d biomet output!!
[3761]1578       IF ( biometeorology                                                                         &
1579            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1580                  .OR.                                                                             &
1581            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
[3647]1582                    ) )  THEN
[3569]1583!
1584!--       If required, do thermal comfort calculations
1585          IF ( thermal_comfort )  THEN
1586             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1587          ENDIF
1588!
1589!--       If required, do UV exposure calculations
1590          IF ( uv_exposure )  THEN
1591             CALL uvem_calc_exposure
1592          ENDIF
[3448]1593       ENDIF
1594
1595!
[3684]1596!--    Execute alle other module actions routunes
1597       CALL module_interface_actions( 'after_integration' )
[2817]1598
1599!
[1]1600!--    If Galilei transformation is used, determine the distance that the
1601!--    model has moved so far
1602       IF ( galilei_transformation )  THEN
1603          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1604          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1605       ENDIF
1606
1607!
1608!--    Check, if restart is necessary (because cpu-time is expiring or
1609!--    because it is forced by user) and set stop flag
[108]1610!--    This call is skipped if the remote model has already initiated a restart.
1611       IF ( .NOT. terminate_run )  CALL check_for_restart
[1]1612
1613!
1614!--    Carry out statistical analysis and output at the requested output times.
1615!--    The MOD function is used for calculating the output time counters (like
1616!--    time_dopr) in order to regard a possible decrease of the output time
1617!--    interval in case of restart runs
1618
1619!
1620!--    Set a flag indicating that so far no statistics have been created
1621!--    for this time step
1622       flow_statistics_called = .FALSE.
1623
1624!
1625!--    If required, call flow_statistics for averaging in time
[3761]1626       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1627            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
[3646]1628            time_since_reference_point >= skip_time_dopr )  THEN
[1]1629          time_dopr_av = time_dopr_av + dt_3d
1630          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1631             do_sum = .TRUE.
[3761]1632             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
[1]1633          ENDIF
1634       ENDIF
1635       IF ( do_sum )  CALL flow_statistics
1636
1637!
[410]1638!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
[3761]1639       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1640            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1641            time_since_reference_point >= skip_time_data_output_av )                               &
[1]1642       THEN
1643          time_do_sla = time_do_sla + dt_3d
1644          IF ( time_do_sla >= dt_averaging_input )  THEN
1645             CALL sum_up_3d_data
1646             average_count_3d = average_count_3d + 1
1647             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1648          ENDIF
1649       ENDIF
[3421]1650!
1651!--    Average surface data
[3648]1652       IF ( surface_output )  THEN
[3761]1653          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1654                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
[3647]1655                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1656             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
[3648]1657                CALL surface_data_output_averaging
[3421]1658                average_count_surf = average_count_surf + 1
1659             ENDIF
1660          ENDIF
1661       ENDIF
[1]1662
1663!
1664!--    Calculate spectra for time averaging
[3761]1665       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1666            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1667          time_dosp_av = time_dosp_av + dt_3d
1668          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1669             CALL calc_spectra
[3761]1670             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
[1]1671          ENDIF
1672       ENDIF
1673
1674!
[1957]1675!--    Call flight module and output data
1676       IF ( virtual_flight )  THEN
1677          CALL flight_measurement
1678          CALL data_output_flight
1679       ENDIF
[3472]1680!
1681!--    Take virtual measurements
[3761]1682       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
[3704]1683          CALL vm_sampling
1684          CALL vm_data_output
1685       ENDIF
[1957]1686
1687!
[1]1688!--    Profile output (ASCII) on file
1689       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1690          CALL print_1d
[3761]1691          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
[1]1692       ENDIF
1693
1694!
1695!--    Graphic output for PROFIL
[3761]1696       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
[1]1697          IF ( dopr_n /= 0 )  CALL data_output_profiles
1698          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
[1342]1699          time_dopr_av = 0.0_wp    ! due to averaging (see above)
[1]1700       ENDIF
1701
1702!
1703!--    Graphic output for time series
1704       IF ( time_dots >= dt_dots )  THEN
[48]1705          CALL data_output_tseries
[1]1706          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1707       ENDIF
1708
1709!
1710!--    Output of spectra (formatted for use with PROFIL), in case of no
1711!--    time averaging, spectra has to be calculated before
[3761]1712       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1713          IF ( average_count_sp == 0 )  CALL calc_spectra
1714          CALL data_output_spectra
1715          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1716       ENDIF
1717
1718!
1719!--    2d-data output (cross-sections)
[3761]1720       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
[1]1721          CALL data_output_2d( 'xy', 0 )
1722          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1723       ENDIF
[3761]1724       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
[1]1725          CALL data_output_2d( 'xz', 0 )
1726          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1727       ENDIF
[3761]1728       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
[1]1729          CALL data_output_2d( 'yz', 0 )
1730          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1731       ENDIF
1732
1733!
1734!--    3d-data output (volume data)
[3761]1735       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
[1]1736          CALL data_output_3d( 0 )
1737          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1738       ENDIF
1739
1740!
[1783]1741!--    Masked data output
[410]1742       DO  mid = 1, masks
[3761]1743          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1744               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
[410]1745             CALL data_output_mask( 0 )
[3761]1746             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
[410]1747          ENDIF
1748       ENDDO
1749
1750!
1751!--    Output of time-averaged 2d/3d/masked data
[3761]1752       IF ( time_do_av >= dt_data_output_av                                                        &
1753            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1754          CALL average_3d_data
[3742]1755!
1756!--       Udate thermal comfort indices based on updated averaged input
1757          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1758             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1759          ENDIF
[1]1760          CALL data_output_2d( 'xy', 1 )
1761          CALL data_output_2d( 'xz', 1 )
1762          CALL data_output_2d( 'yz', 1 )
1763          CALL data_output_3d( 1 )
[410]1764          DO  mid = 1, masks
1765             CALL data_output_mask( 1 )
1766          ENDDO
[1]1767          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1768       ENDIF
[3421]1769!
1770!--    Output of surface data, instantaneous and averaged data
[3648]1771       IF ( surface_output )  THEN
[3761]1772          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
[3648]1773             CALL surface_data_output( 0 )
[3421]1774             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1775          ENDIF
[3761]1776          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3648]1777             CALL surface_data_output( 1 )
[3421]1778             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1779          ENDIF
1780       ENDIF
[1]1781
1782!
1783!--    Output of particle time series
[253]1784       IF ( particle_advection )  THEN
[3761]1785          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1786               ( time_since_reference_point >= particle_advection_start  .AND.                     &
[849]1787                 first_call_lpm ) )  THEN
[253]1788             CALL data_output_ptseries
1789             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1790          ENDIF
[1]1791       ENDIF
1792
1793!
1794!--    Output of dvrp-graphics (isosurface, particles, slicer)
1795#if defined( __dvrp_graphics )
1796       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1797#endif
1798       IF ( time_dvrp >= dt_dvrp )  THEN
1799          CALL data_output_dvrp
1800          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1801       ENDIF
1802#if defined( __dvrp_graphics )
1803       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1804#endif
1805
1806!
[3719]1807!--    If required, set the heat flux for the next time step to a random value
[2232]1808       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
[3719]1809          IF ( surf_def_h(0)%ns >= 1 )  THEN
1810             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1811             CALL disturb_heatflux( surf_def_h(0) )
1812             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1813          ENDIF
1814          IF ( surf_lsm_h%ns    >= 1 )  THEN
1815             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1816             CALL disturb_heatflux( surf_lsm_h    )
1817             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1818          ENDIF
1819          IF ( surf_usm_h%ns    >= 1 )  THEN
1820             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1821             CALL disturb_heatflux( surf_usm_h    )
1822             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1823          ENDIF
[2232]1824       ENDIF
[1]1825
1826!
[3684]1827!--    Execute alle other module actions routunes
1828       CALL module_interface_actions( 'after_timestep' )
[2817]1829
1830!
[1918]1831!--    Determine size of next time step. Save timestep dt_3d because it is
1832!--    newly calculated in routine timestep, but required further below for
1833!--    steering the run control output interval
1834       dt_3d_old = dt_3d
1835       CALL timestep
1836
1837!
[1925]1838!--    Synchronize the timestep in case of nested run.
1839       IF ( nested_run )  THEN
1840!
1841!--       Synchronize by unifying the time step.
1842!--       Global minimum of all time-steps is used for all.
1843          CALL pmci_synchronize
1844       ENDIF
1845
1846!
[1918]1847!--    Computation and output of run control parameters.
1848!--    This is also done whenever perturbations have been imposed
[3761]1849       IF ( time_run_control >= dt_run_control  .OR.                                               &
1850            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
[1918]1851       THEN
1852          CALL run_control
1853          IF ( time_run_control >= dt_run_control )  THEN
[3761]1854             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
[1918]1855          ENDIF
1856       ENDIF
1857
1858!
[1402]1859!--    Output elapsed simulated time in form of a progress bar on stdout
1860       IF ( myid == 0 )  CALL output_progress_bar
1861
[1]1862       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1863
[667]1864
[1]1865    ENDDO   ! time loop
[3448]1866
[3761]1867#if defined( _OPENACC )
[3658]1868    CALL exit_surface_arrays
1869#endif
[3634]1870!$ACC END DATA
1871!$ACC END DATA
1872!$ACC END DATA
1873!$ACC END DATA
1874!$ACC END DATA
1875!$ACC END DATA
1876!$ACC END DATA
1877
[3347]1878!
[2365]1879!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1880    IF ( vnest_init )  CALL vnest_deallocate
1881
[1402]1882    IF ( myid == 0 )  CALL finish_progress_bar
1883
[1]1884#if defined( __dvrp_graphics )
1885    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1886#endif
1887
[3885]1888    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
[1384]1889
[1]1890 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.