source: palm/trunk/SOURCE/time_integration.f90 @ 3742

Last change on this file since 3742 was 3742, checked in by dom_dwd_user, 5 years ago

biometeorology_mod.f90:
(C) Allocation of the input _av grids was moved to the "sum" section of bio_3d_data_averaging to make sure averaging is only done once!
(B) Moved call of bio_calculate_thermal_index_maps from biometeorology module to time_integration (ll 1712) to make sure averaged input is updated before calculating.

time_integration.f90:
(B) Moved call of bio_calculate_thermal_index_maps from biometeorology module to time_integration (ll 1712) to make sure averaged input is updated before calculating.

  • Property svn:keywords set to Id
File size: 72.7 KB
RevLine 
[1682]1!> @file time_integration.f90
[2000]2!------------------------------------------------------------------------------!
[2696]3! This file is part of the PALM model system.
[1036]4!
[2000]5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
[1036]9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
[3647]17! Copyright 1997-2019 Leibniz Universitaet Hannover
[2000]18!------------------------------------------------------------------------------!
[1036]19!
[484]20! Current revisions:
[1092]21! ------------------
[1928]22!
[3705]23!
[1366]24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3742 2019-02-14 11:25:22Z dom_dwd_user $
[3742]27! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
28! time_integration to make sure averaged input is updated before calculating.
29!
30! 3739 2019-02-13 08:05:17Z dom_dwd_user
[3739]31! Removed everything related to "time_bio_results" as this is never used.
32!
33! 3724 2019-02-06 16:28:23Z kanani
[3724]34! Correct double-used log_point_s unit
35!
36! 3719 2019-02-06 13:10:18Z kanani
[3719]37! - removed wind_turbine cpu measurement, since same time is measured inside
38!   wtm_forces subroutine as special measures
39! - moved the numerous vnest cpulog to special measures
40! - extended radiation cpulog over entire radiation part,
41!   moved radiation_interactions cpulog to special measures
42! - moved some cpu_log calls to this routine for better overview
43!
44! 3705 2019-01-29 19:56:39Z suehring
[3705]45! Data output for virtual measurements added
46!
47! 3704 2019-01-29 19:51:41Z suehring
[3648]48! Rename subroutines for surface-data output
49!
50! 3647 2019-01-02 14:10:44Z kanani
[3647]51! Bugfix: add time_since_reference_point to IF clause for data_output calls
52! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
53! Clean up indoor_model and biometeorology model call.
54!
55! 3646 2018-12-28 17:58:49Z kanani
[3646]56! Bugfix: use time_since_reference_point instead of simulated_time where
57! required (relevant when using wall/soil spinup)
58!
59! 3634 2018-12-18 12:31:28Z knoop
[3634]60! OpenACC port for SPEC
61!
62! 3597 2018-12-04 08:40:18Z maronga
[3597]63! Removed call to calculation of near air (10 cm) potential temperature (now in
64! surface layer fluxes)
65!
66! 3589 2018-11-30 15:09:51Z suehring
[3589]67! Move the control parameter "salsa" from salsa_mod to control_parameters
68! (M. Kurppa)
69!
70! 3582 2018-11-29 19:16:36Z suehring
[3569]71! dom_dwd_user, Schrempf:
72! Changes due to merge of uv exposure model into biometeorology_mod.
73!
74! 3525 2018-11-14 16:06:14Z kanani
[3525]75! Changes related to clean-up of biometeorology (dom_dwd_user)
76!
77! 3524 2018-11-14 13:36:44Z raasch
[3524]78! unused variables removed
79!
80! 3484 2018-11-02 14:41:25Z hellstea
[3484]81! pmci_ensure_nest_mass_conservation is premanently removed
82!
83! 3473 2018-10-30 20:50:15Z suehring
[3473]84! new module for virtual measurements introduced
85!
86! 3472 2018-10-30 20:43:50Z suehring
[3469]87! Add indoor model (kanani, srissman, tlang)
88!
89! 3467 2018-10-30 19:05:21Z suehring
[3467]90! Implementation of a new aerosol module salsa.
91!
92! 3448 2018-10-29 18:14:31Z kanani
[3448]93! Add biometeorology
94!
95! 3421 2018-10-24 18:39:32Z gronemeier
[3421]96! Surface data output
97!
98! 3418 2018-10-24 16:07:39Z kanani
[3418]99! call to material_heat_model now with check if spinup runs (rvtils)
100!
101! 3378 2018-10-19 12:34:59Z kanani
[3378]102! merge from radiation branch (r3362) into trunk
103! (moh.hefny):
104! Bugfix in the if statement to call radiation_interaction
105!
106! 3347 2018-10-15 14:21:08Z suehring
[3347]107! - offline nesting separated from large-scale forcing module
108! - changes for synthetic turbulence generator
109!
110! 3343 2018-10-15 10:38:52Z suehring
[3298]111! - Formatting, clean-up, comments (kanani)
112! - Added CALL to chem_emissions_setup (Russo)
113! - Code added for decycling chemistry (basit)
114!
115! 3294 2018-10-01 02:37:10Z raasch
[3294]116! changes concerning modularization of ocean option
117!
118! 3274 2018-09-24 15:42:55Z knoop
[3274]119! Modularization of all bulk cloud physics code components
120!
121! 3241 2018-09-12 15:02:00Z raasch
[3241]122! unused variables removed
123!
124! 3198 2018-08-15 09:23:10Z sward
[3198]125! Added multi_agent_system_end; defined start time for MAS relative to
126! time_since_reference_point
127!
128! 3183 2018-07-27 14:25:55Z suehring
[3183]129! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
130! Rename subroutines and variables in COSMO nesting mode
131!
132! 3182 2018-07-27 13:36:03Z suehring
[3159]133! Added multi agent system
134!
135! 3042 2018-05-25 10:44:37Z schwenkel
[3042]136! Changed the name specific humidity to mixing ratio
137!
138! 3040 2018-05-25 10:22:08Z schwenkel
[3014]139! Fixed bug in IF statement
140! Ensure that the time when calling the radiation to be the time step of the
141! pre-calculated time when first calculate the positions of the sun
142!
143! 3004 2018-04-27 12:33:25Z Giersch
[3004]144! First call of flow_statistics has been removed. It is already called in
145! run_control itself
146!
147! 2984 2018-04-18 11:51:30Z hellstea
[2984]148! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
149! as seemingly unnecessary.
[2977]150!
151! 2941 2018-04-03 11:54:58Z kanani
[2941]152! Deduct spinup_time from RUN_CONTROL output of main 3d run
153! (use time_since_reference_point instead of simulated_time)
154!
155! 2938 2018-03-27 15:52:42Z suehring
[2938]156! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
157!
158! 2936 2018-03-27 14:49:27Z suehring
[2934]159! Little formatting adjustment.
160!
161! 2817 2018-02-19 16:32:21Z knoop
[2817]162! Preliminary gust module interface implemented
163!
164! 2801 2018-02-14 16:01:55Z thiele
[2801]165! Changed lpm from subroutine to module.
166! Introduce particle transfer in nested models.
167!
168! 2776 2018-01-31 10:44:42Z Giersch
[2776]169! Variable use_synthetic_turbulence_generator has been abbreviated
170!
171! 2773 2018-01-30 14:12:54Z suehring
[2773]172! - Nesting for chemical species
173!
174! 2766 2018-01-22 17:17:47Z kanani
[2766]175! Removed preprocessor directive __chem
176!
177! 2718 2018-01-02 08:49:38Z maronga
[2716]178! Corrected "Former revisions" section
179!
180! 2696 2017-12-14 17:12:51Z kanani
181! - Change in file header (GPL part)
[2696]182! - Implementation of uv exposure model (FK)
183! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
184! - renamed diffusivities to tcm_diffusivities (TG)
185! - implement prognostic equation for diss (TG)
186! - Moved/commented CALL to chem_emissions (FK)
187! - Added CALL to chem_emissions (FK)
188! - Implementation of chemistry module (FK)
189! - Calls for setting boundary conditions in USM and LSM (MS)
190! - Large-scale forcing with larger-scale models implemented (MS)
191! - Rename usm_radiation into radiation_interactions; merge with branch
192!   radiation (MS)
193! - added call for usm_green_heat_model for green building surfaces (RvT)
194! - added call for usm_temperature_near_surface for use in indoor model (RvT)
195!
196! 2617 2017-11-16 12:47:24Z suehring
[2617]197! Bugfix, assure that the reference state does not become zero.
198!
199! 2563 2017-10-19 15:36:10Z Giersch
[2563]200! Variable wind_turbine moved to module control_parameters
201!
202! 2365 2017-08-21 14:59:59Z kanani
[2365]203! Vertical grid nesting implemented (SadiqHuq)
204!
205! 2320 2017-07-21 12:47:43Z suehring
[2311]206! Set bottom boundary conditions after nesting interpolation and anterpolation
207!
208! 2299 2017-06-29 10:14:38Z maronga
[2299]209! Call of soil model adjusted
210!
211! 2292 2017-06-20 09:51:42Z schwenkel
[2292]212! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
213! includes two more prognostic equations for cloud drop concentration (nc) 
214! and cloud water content (qc).
215!
216! 2271 2017-06-09 12:34:55Z sward
[2271]217! Start timestep message changed
218!
219! 2259 2017-06-08 09:09:11Z gronemeier
[2259]220! Implemented synthetic turbulence generator
[1366]221!
[2259]222! 2233 2017-05-30 18:08:54Z suehring
223!
[2233]224! 2232 2017-05-30 17:47:52Z suehring
225! Adjustments to new topography and surface concept
226! Modify passed parameters for disturb_field
227!
[2179]228! 2178 2017-03-17 11:07:39Z hellstea
229! Setting perturbations at all times near inflow boundary is removed
230! in case of nested boundaries
231!
[2175]232! 2174 2017-03-13 08:18:57Z maronga
233! Added support for nesting with cloud microphysics
234!
[2119]235! 2118 2017-01-17 16:38:49Z raasch
236! OpenACC directives and related code removed
237!
[2051]238! 2050 2016-11-08 15:00:55Z gronemeier
239! Implement turbulent outflow condition
240!
[2032]241! 2031 2016-10-21 15:11:58Z knoop
242! renamed variable rho to rho_ocean
243!
[2012]244! 2011 2016-09-19 17:29:57Z kanani
245! Flag urban_surface is now defined in module control_parameters,
246! removed commented CALLs of global_min_max.
247!
[2008]248! 2007 2016-08-24 15:47:17Z kanani
249! Added CALLs for new urban surface model
250!
[2001]251! 2000 2016-08-20 18:09:15Z knoop
252! Forced header and separation lines into 80 columns
253!
[1977]254! 1976 2016-07-27 13:28:04Z maronga
255! Simplified calls to radiation model
256!
[1961]257! 1960 2016-07-12 16:34:24Z suehring
258! Separate humidity and passive scalar
259!
[1958]260! 1957 2016-07-07 10:43:48Z suehring
261! flight module added
262!
[1933]263! 1919 2016-05-27 14:51:23Z raasch
264! Initial version of purely vertical nesting introduced.
[1928]265!
[1919]266! 1918 2016-05-27 14:35:57Z raasch
267! determination of time step moved to the end of the time step loop,
268! the first time step is now always calculated before the time step loop (i.e.
269! also in case of restart runs)
270!
[1917]271! 1914 2016-05-26 14:44:07Z witha
272! Added call for wind turbine model
273!
[1879]274! 1878 2016-04-19 12:30:36Z hellstea
275! Synchronization for nested runs rewritten
276!
[1854]277! 1853 2016-04-11 09:00:35Z maronga
278! Adjusted for use with radiation_scheme = constant
279!
[1851]280! 1849 2016-04-08 11:33:18Z hoffmann
281! Adapted for modularization of microphysics
282!
[1834]283! 1833 2016-04-07 14:23:03Z raasch
284! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
285!
[1832]286! 1831 2016-04-07 13:15:51Z hoffmann
287! turbulence renamed collision_turbulence
288!
[1823]289! 1822 2016-04-07 07:49:42Z hoffmann
290! icloud_scheme replaced by microphysics_*
291!
[1809]292! 1808 2016-04-05 19:44:00Z raasch
293! output message in case unscheduled radiation calls removed
294!
[1798]295! 1797 2016-03-21 16:50:28Z raasch
296! introduction of different datatransfer modes
297!
[1792]298! 1791 2016-03-11 10:41:25Z raasch
299! call of pmci_update_new removed
300!
[1787]301! 1786 2016-03-08 05:49:27Z raasch
302! +module spectrum
303!
[1784]304! 1783 2016-03-06 18:36:17Z raasch
305! switch back of netcdf data format for mask output moved to the mask output
306! routine
307!
[1782]308! 1781 2016-03-03 15:12:23Z raasch
309! some pmc calls removed at the beginning (before timeloop),
310! pmc initialization moved to the main program
311!
[1765]312! 1764 2016-02-28 12:45:19Z raasch
313! PMC_ACTIVE flags removed,
314! bugfix: nest synchronization after first call of timestep
315!
[1763]316! 1762 2016-02-25 12:31:13Z hellstea
317! Introduction of nested domain feature
318!
[1737]319! 1736 2015-12-04 08:56:33Z raasch
320! no perturbations added to total domain if energy limit has been set zero
321!
[1692]322! 1691 2015-10-26 16:17:44Z maronga
323! Added option for spin-ups without land surface and radiation models. Moved calls
324! for radiation and lan surface schemes.
325!
[1683]326! 1682 2015-10-07 23:56:08Z knoop
327! Code annotations made doxygen readable
328!
[1672]329! 1671 2015-09-25 03:29:37Z raasch
330! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
331! for particles
332!
[1586]333! 1585 2015-04-30 07:05:52Z maronga
334! Moved call of radiation scheme. Added support for RRTM
335!
[1552]336! 1551 2015-03-03 14:18:16Z maronga
337! Added interface for different radiation schemes.
338!
[1497]339! 1496 2014-12-02 17:25:50Z maronga
340! Added calls for the land surface model and radiation scheme
341!
[1403]342! 1402 2014-05-09 14:25:13Z raasch
343! location messages modified
344!
[1385]345! 1384 2014-05-02 14:31:06Z raasch
346! location messages added
347!
[1381]348! 1380 2014-04-28 12:40:45Z heinze
349! CALL of nudge_ref added
350! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
351!
[1366]352! 1365 2014-04-22 15:03:56Z boeske
[1365]353! Reset sums_ls_l to zero at each timestep
354! +sums_ls_l
355! Calculation of reference state (previously in subroutine calc_mean_profile)
356
[1343]357! 1342 2014-03-26 17:04:47Z kanani
358! REAL constants defined as wp-kind
359!
[1321]360! 1320 2014-03-20 08:40:49Z raasch
[1320]361! ONLY-attribute added to USE-statements,
362! kind-parameters added to all INTEGER and REAL declaration statements,
363! kinds are defined in new module kinds,
364! old module precision_kind is removed,
365! revision history before 2012 removed,
366! comment fields (!:) to be used for variable explanations added to
367! all variable declaration statements
[1319]368! 1318 2014-03-17 13:35:16Z raasch
369! module interfaces removed
370!
[1309]371! 1308 2014-03-13 14:58:42Z fricke
372! +netcdf_data_format_save
373! For masked data, parallel netcdf output is not tested so far, hence
374! netcdf_data_format is switched back to non-paralell output.
375!
[1277]376! 1276 2014-01-15 13:40:41Z heinze
377! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
378!
[1258]379! 1257 2013-11-08 15:18:40Z raasch
380! acc-update-host directive for timestep removed
381!
[1242]382! 1241 2013-10-30 11:36:58Z heinze
383! Generalize calc_mean_profile for wider use
384! Determine shf and qsws in dependence on data from LSF_DATA
385! Determine ug and vg in dependence on data from LSF_DATA
[1222]386! 1221 2013-09-10 08:59:13Z raasch
387! host update of arrays before timestep is called
388!
[1182]389! 1179 2013-06-14 05:57:58Z raasch
390! mean profiles for reference state are only calculated if required,
391! small bugfix for background communication
392!
[1172]393! 1171 2013-05-30 11:27:45Z raasch
394! split of prognostic_equations deactivated (comment lines), for the time being
395!
[1132]396! 1128 2013-04-12 06:19:32Z raasch
[1128]397! asynchronous transfer of ghost point data realized for acc-optimized version:
398! prognostic_equations are first called two times for those points required for
399! the left-right and north-south exchange, respectively, and then for the
400! remaining points,
401! those parts requiring global communication moved from prognostic_equations to
402! here
[392]403!
[1116]404! 1115 2013-03-26 18:16:16Z hoffmann
405! calculation of qr and nr is restricted to precipitation
406!
[1114]407! 1113 2013-03-10 02:48:14Z raasch
408! GPU-porting of boundary conditions,
409! openACC directives updated
410! formal parameter removed from routine boundary_conds
411!
[1112]412! 1111 2013-03-08 23:54:10Z raasch
413! +internal timestep counter for cpu statistics added,
414! openACC directives updated
415!
[1093]416! 1092 2013-02-02 11:24:22Z raasch
417! unused variables removed
418!
[1066]419! 1065 2012-11-22 17:42:36Z hoffmann
420! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
421!
[1054]422! 1053 2012-11-13 17:11:03Z hoffmann
423! exchange of ghost points for nr, qr added
424!
[1037]425! 1036 2012-10-22 13:43:42Z raasch
426! code put under GPL (PALM 3.9)
427!
[1020]428! 1019 2012-09-28 06:46:45Z raasch
429! non-optimized version of prognostic_equations removed
430!
[1017]431! 1015 2012-09-27 09:23:24Z raasch
432! +call of prognostic_equations_acc
433!
[1002]434! 1001 2012-09-13 14:08:46Z raasch
435! all actions concerning leapfrog- and upstream-spline-scheme removed
436!
[850]437! 849 2012-03-15 10:35:09Z raasch
438! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
439!
[826]440! 825 2012-02-19 03:03:44Z raasch
441! wang_collision_kernel renamed wang_kernel
442!
[1]443! Revision 1.1  1997/08/11 06:19:04  raasch
444! Initial revision
445!
446!
447! Description:
448! ------------
[1682]449!> Integration in time of the model equations, statistical analysis and graphic
450!> output
[1]451!------------------------------------------------------------------------------!
[1682]452 SUBROUTINE time_integration
453 
[1]454
[1320]455    USE advec_ws,                                                              &
456        ONLY:  ws_statistics
457
458    USE arrays_3d,                                                             &
[3634]459        ONLY:  d, diss, diss_p, ddzu, dd2zu, ddzw, drho_air, drho_air_zw, dzu, &
460               dzw, e, e_p, kh, km, nc, nc_p, nr, nr_p, p, prho, pt, pt_p,     &
461               pt_init, ptdf_x, ptdf_y, q_init, q, qc, qc_p, ql, ql_c, ql_v,   &
462               ql_vp, qr, qr_p, q_p, rdf, rdf_sc, ref_state, rho_air,          &
463               rho_air_zw, rho_ocean, s, s_p, sa_p, te_m, tend, tpt_m, tu_m,   &
464               tv_m, tw_m, u, ug, u_init, u_p, u_stokes_zu, v, vg, v_init, vpt,&
[3658]465               v_p, v_stokes_zu, w, w_p, zu, heatflux_output_conversion,       &
466               momentumflux_output_conversion
[1320]467
[3448]468    USE biometeorology_mod,                                                    &
[3739]469        ONLY:  bio_calculate_thermal_index_maps,                               &
[3569]470               thermal_comfort, uvem_calc_exposure, uv_exposure
[3448]471
[3294]472    USE bulk_cloud_model_mod,                                                  &
473        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
474              collision_turbulence, microphysics_morrison, microphysics_seifert
475
[1365]476    USE calc_mean_profile_mod,                                                 &
[1320]477        ONLY:  calc_mean_profile
478
[3298]479    USE chem_emissions_mod,                                                    &
480        ONLY:  chem_emissions_setup
[2696]481
482    USE chem_modules,                                                          &
[3524]483        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
[2696]484
[3298]485    USE chemistry_model_mod,                                                   &
486        ONLY:  chem_boundary_conds, chem_species
487
[1320]488    USE control_parameters,                                                    &
[2696]489        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
490               average_count_3d, averaging_interval, averaging_interval_pr,    &
[3448]491               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
[3182]492               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
[3274]493               constant_flux_layer, constant_heatflux,                         &
[1691]494               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
495               coupling_start_time, current_timestep_number,                   &
496               disturbance_created, disturbance_energy_limit, dist_range,      &
497               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
498               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
499               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
[2696]500               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
[3182]501               first_call_lpm, first_call_mas, galilei_transformation,         &
[3469]502               humidity, indoor_model, intermediate_timestep_count,            &
[3182]503               intermediate_timestep_count_max,                                &
504               land_surface, large_scale_forcing,                              &
[3274]505               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
[3198]506               multi_agent_system_end, multi_agent_system_start,               &
[3182]507               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
[3294]508               ocean_mode, passive_scalar, pt_reference,                       &
[2938]509               pt_slope_offset, random_heatflux, rans_mode,                    &
[3582]510               rans_tke_e, run_coupled, salsa,                                 &
511               simulated_time, simulated_time_chr,                             &
[1320]512               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
513               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
[3421]514               skip_time_data_output_av, sloping_surface, stop_dt,             &
[3648]515               surface_output, terminate_coupled, terminate_run,               &
[3421]516               timestep_scheme,                                                &
[1320]517               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
518               time_do3d, time_domask, time_dopr, time_dopr_av,                &
519               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
520               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
[3634]521               time_run_control, time_since_reference_point, tsc,              &
[2050]522               turbulent_inflow, turbulent_outflow, urban_surface,             &
[2011]523               use_initial_profile_as_reference,                               &
[3569]524               use_single_reference_value, u_gtrans, v_gtrans,                 &
[3472]525               virtual_flight, virtual_measurement, wind_turbine,              &
[3582]526               ws_scheme_mom, ws_scheme_sca 
[1320]527
528    USE cpulog,                                                                &
529        ONLY:  cpu_log, log_point, log_point_s
530
[3298]531    USE date_and_time_mod,                                                     &
532        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
533
[1957]534    USE flight_mod,                                                            &
535        ONLY:  flight_measurement
536
[1320]537    USE indices,                                                               &
[3634]538        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, &
539               nz, nzb_max, advc_flags_1, advc_flags_2, wall_flags_0
[1320]540
[3469]541    USE indoor_model_mod,                                                      &
542        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
543
[1320]544    USE interaction_droplets_ptq_mod,                                          &
545        ONLY:  interaction_droplets_ptq
546
[1918]547    USE interfaces
548
[1320]549    USE kinds
550
[1496]551    USE land_surface_model_mod,                                                &
[2696]552        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
[1691]553               skip_time_do_lsm
[1496]554
[2320]555    USE lsf_nudging_mod,                                                       &
[3347]556        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
[1320]557
[3684]558    USE module_interface,                                                      &
559        ONLY:  module_interface_actions
560
[3159]561    USE multi_agent_system_mod,                                                &
[3198]562        ONLY:  agents_active, multi_agent_system
[3448]563
[3347]564    USE nesting_offl_mod,                                                      &
565        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
566       
[3298]567    USE netcdf_data_input_mod,                                                 &
[3347]568        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
569               netcdf_data_input_offline_nesting
[3298]570
[3294]571    USE ocean_mod,                                                             &
572        ONLY:  prho_reference
573
[1320]574    USE particle_attributes,                                                   &
[1671]575        ONLY:  particle_advection, particle_advection_start,                   &
576               use_sgs_for_particles, wang_kernel
[1320]577
[1]578    USE pegrid
579
[1762]580    USE pmc_interface,                                                         &
[2311]581        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
[3484]582               pmci_synchronize
[1762]583
[1402]584    USE progress_bar,                                                          &
585        ONLY:  finish_progress_bar, output_progress_bar
586
[1320]587    USE prognostic_equations_mod,                                              &
[2118]588        ONLY:  prognostic_equations_cache, prognostic_equations_vector
[1320]589
[1496]590    USE radiation_model_mod,                                                   &
[1976]591        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
[2696]592              radiation_interaction, radiation_interactions,                   &
[1976]593              skip_time_do_radiation, time_radiation
[3582]594         
595    USE salsa_mod,                                                             &
596        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast,             &
597              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
598              skip_time_do_salsa                     
[3634]599   
600    USE salsa_util_mod,                                                        &
601           ONLY:  sums_salsa_ws_l     
[1496]602
[1833]603    USE spectra_mod,                                                           &
604        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
605              skip_time_dosp
[1786]606
[1320]607    USE statistics,                                                            &
[3634]608        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l,                &
[3658]609               rmask, statistic_regions, weight_substep, sums_l, sums_l_l,     &
[3634]610               sums_us2_ws_l, sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l,   &
611               sums_ws2_ws_l, sums_wspts_ws_l, sums_wsqs_ws_l, sums_wssas_ws_l,&
612               sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l,              &
613               sums_wsnrs_ws_l, sums_wsss_ws_l
[1320]614
[1691]615    USE surface_layer_fluxes_mod,                                              &
616        ONLY:  surface_layer_fluxes
617
[2232]618    USE surface_mod,                                                           &
[3634]619        ONLY:  bc_h, surf_def_h, surf_lsm_h, surf_usm_h,                       &
620               enter_surface_arrays, exit_surface_arrays
[3448]621
[3648]622    USE surface_data_output_mod,                                               &
[3421]623        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
[3648]624               dt_dosurf_av, surface_data_output,                              &
625               surface_data_output_averaging, skip_time_dosurf,                &
626               skip_time_dosurf_av, time_dosurf, time_dosurf_av
[2232]627
[2696]628    USE turbulence_closure_mod,                                                &
629        ONLY:  tcm_diffusivities, production_e_init
630
[2007]631    USE urban_surface_mod,                                                     &
[2696]632        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
633               usm_material_model,                                             &
[3597]634               usm_surface_energy_balance, usm_green_heat_model
[2007]635
[2259]636    USE synthetic_turbulence_generator_mod,                                    &
[3347]637        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
638               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
[3684]639               use_syn_turb_gen
[2259]640
[1320]641
[1914]642    USE wind_turbine_model_mod,                                                &
[2563]643        ONLY:  wtm_forces
[1914]644
[2801]645    USE lpm_mod,                                                               &
646        ONLY:  lpm
647
[2365]648    USE vertical_nesting_mod,                                                  &
649        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
650               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
651               vnest_deallocate, vnest_init, vnest_init_fine,                  &
652               vnest_start_time
[3472]653               
654    USE virtual_measurement_mod,                                               &
[3704]655        ONLY:  vm_data_output, vm_sampling, vm_time_start
[2365]656
[1]657    IMPLICIT NONE
658
[3298]659    CHARACTER (LEN=9) ::  time_to_string   !<
[3467]660   
661    INTEGER(iwp)      ::  b !< index for aerosol size bins   
662    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
663    INTEGER(iwp)      ::  g !< index for gaseous compounds
664    INTEGER(iwp)      ::  lsp
[3298]665    INTEGER(iwp)      ::  lsp_usr   !<
666    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
[3014]667
[1918]668    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
669                            !< steering of run control output interval
[3241]670    REAL(wp) ::  time_since_reference_point_save  !< original value of
671                                                  !< time_since_reference_point
672
[3634]673
674! Copy data from arrays_3d
675!$ACC DATA &
676!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
677!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
678!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
679!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
680!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
681!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
682!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
683!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
684!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
685
686!$ACC DATA &
687!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
688!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
689!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
690!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
691!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
692!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
693!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
694!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
695!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
696!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
697!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
698
699!$ACC DATA &
700!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
701!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
702!$ACC COPYIN(zu(nzb:nzt+1)) &
703!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
704!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
705!$ACC COPYIN(ddzw(1:nzt+1)) &
[3658]706!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
707!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
[3634]708!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
709!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
710!$ACC COPYIN(ref_state(0:nz+1)) &
711!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
712!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
713!$ACC COPYIN(pt_init(0:nz+1)) &
714!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
715
716! Copy data from control_parameters
717!$ACC DATA &
718!$ACC COPYIN(tsc(1:5))
719
720! Copy data from indices
721!$ACC DATA &
722!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
723!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
724!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
725
726! Copy data from surface_mod
727!$ACC DATA &
728!$ACC COPYIN(bc_h(0:1)) &
729!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
730!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
731!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
732!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
733!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
734!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
735
736! Copy data from statistics
737!$ACC DATA &
[3658]738!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
[3634]739!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
740!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
[3658]741!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
[3634]742!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
743!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
744!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
745!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
746!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
747!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
748!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
749!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
750!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
751!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
752!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
753!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
754!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
755!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
756!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
757
[3658]758#ifdef _OPENACC
759    CALL enter_surface_arrays
760#endif
761
[1]762!
[1918]763!-- At beginning determine the first time step
764    CALL timestep
[1764]765!
766!-- Synchronize the timestep in case of nested run.
767    IF ( nested_run )  THEN
[1878]768!
769!--    Synchronization by unifying the time step.
770!--    Global minimum of all time-steps is used for all.
771       CALL pmci_synchronize
[1764]772    ENDIF
773
[1918]774!
775!-- Determine and print out the run control quantities before the first time
776!-- step of this run. For the initial run, some statistics (e.g. divergence)
[3004]777!-- need to be determined first --> CALL flow_statistics at the beginning of
778!-- run_control
[1]779    CALL run_control
[108]780!
781!-- Data exchange between coupled models in case that a call has been omitted
782!-- at the end of the previous run of a job chain.
[2365]783    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
[108]784!
785!--    In case of model termination initiated by the local model the coupler
786!--    must not be called because this would again cause an MPI hang.
[1918]787       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[108]788          CALL surface_coupler
789          time_coupling = time_coupling - dt_coupling
790       ENDDO
[1918]791       IF (time_coupling == 0.0_wp  .AND.                                      &
792           time_since_reference_point < dt_coupling )                          &
[348]793       THEN
794          time_coupling = time_since_reference_point
795       ENDIF
[108]796    ENDIF
797
[1]798#if defined( __dvrp_graphics )
799!
800!-- Time measurement with dvrp software 
801    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
802#endif
803
[2271]804    CALL location_message( 'starting timestep-sequence', .TRUE. )
[1]805!
806!-- Start of the time loop
807    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
808                .NOT. terminate_run )
809
810       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
811!
[2365]812!--    Vertical nesting: initialize fine grid
813       IF ( vnested ) THEN
814          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
[3719]815             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
[2365]816             CALL vnest_init_fine
817             vnest_init = .TRUE.
[3719]818             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
[2365]819          ENDIF
820       ENDIF
821!
[1241]822!--    Determine ug, vg and w_subs in dependence on data from external file
823!--    LSF_DATA
[1365]824       IF ( large_scale_forcing .AND. lsf_vert )  THEN
[1241]825           CALL ls_forcing_vert ( simulated_time )
[1365]826           sums_ls_l = 0.0_wp
[1241]827       ENDIF
828
829!
[1380]830!--    Set pt_init and q_init to the current profiles taken from
831!--    NUDGING_DATA
832       IF ( nudging )  THEN
833           CALL nudge_ref ( simulated_time )
834!
835!--        Store temperature gradient at the top boundary for possible Neumann
836!--        boundary condition
837           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
838           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
[3298]839           IF ( air_chemistry )  THEN
840              DO  lsp = 1, nspec
841                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
842                                - chem_species(lsp)%conc_pr_init(nzt) )       &
843                               / dzu(nzt+1)
844              ENDDO
845           ENDIF
[1380]846       ENDIF
[2696]847!
848!--    If forcing by larger-scale models is applied, check if new data
849!--    at domain boundaries need to be read.
[3182]850       IF ( nesting_offline )  THEN
851          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
[3347]852             CALL netcdf_data_input_offline_nesting
[2696]853       ENDIF
[1380]854
855!
[3684]856!--    Execute alle other module actions routunes
857       CALL module_interface_actions( 'before_timestep' )
[2817]858
859!
[1914]860!--    Calculate forces by wind turbines
[3719]861       IF ( wind_turbine )  CALL wtm_forces 
[1914]862       
863!
[1]864!--    Start of intermediate step loop
865       intermediate_timestep_count = 0
866       DO  WHILE ( intermediate_timestep_count < &
867                   intermediate_timestep_count_max )
868
869          intermediate_timestep_count = intermediate_timestep_count + 1
870
871!
872!--       Set the steering factors for the prognostic equations which depend
873!--       on the timestep scheme
874          CALL timestep_scheme_steering
875
876!
[1128]877!--       Calculate those variables needed in the tendency terms which need
878!--       global communication
[1179]879          IF ( .NOT. use_single_reference_value  .AND. &
880               .NOT. use_initial_profile_as_reference )  THEN
881!
882!--          Horizontally averaged profiles to be used as reference state in
883!--          buoyancy terms (WARNING: only the respective last call of
884!--          calc_mean_profile defines the reference state!)
[1365]885             IF ( .NOT. neutral )  THEN
886                CALL calc_mean_profile( pt, 4 )
887                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
888             ENDIF
[3294]889             IF ( ocean_mode )  THEN
[2031]890                CALL calc_mean_profile( rho_ocean, 64 )
[1365]891                ref_state(:)  = hom(:,1,64,0)
892             ENDIF
893             IF ( humidity )  THEN
894                CALL calc_mean_profile( vpt, 44 )
895                ref_state(:)  = hom(:,1,44,0)
896             ENDIF
[2617]897!
898!--          Assure that ref_state does not become zero at any level
899!--          ( might be the case if a vertical level is completely occupied
900!--            with topography ).
901             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
902                                ref_state == 0.0_wp )
[1179]903          ENDIF
904
[1128]905          IF ( .NOT. constant_diffusion )  CALL production_e_init
906          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
907               intermediate_timestep_count == 1 )  CALL ws_statistics
[1365]908!
909!--       In case of nudging calculate current nudging time scale and horizontal
[1380]910!--       means of u, v, pt and q
[1365]911          IF ( nudging )  THEN
912             CALL calc_tnudge( simulated_time )
913             CALL calc_mean_profile( u, 1 )
914             CALL calc_mean_profile( v, 2 )
915             CALL calc_mean_profile( pt, 4 )
916             CALL calc_mean_profile( q, 41 )
917          ENDIF
[1128]918
919!
[1]920!--       Solve the prognostic equations. A fast cache optimized version with
921!--       only one single loop is used in case of Piascek-Williams advection
922!--       scheme. NEC vector machines use a different version, because
923!--       in the other versions a good vectorization is prohibited due to
924!--       inlining problems.
[1019]925          IF ( loop_optimization == 'cache' )  THEN
926             CALL prognostic_equations_cache
927          ELSEIF ( loop_optimization == 'vector' )  THEN
[63]928             CALL prognostic_equations_vector
[1]929          ENDIF
930
931!
[849]932!--       Particle transport/physics with the Lagrangian particle model
933!--       (only once during intermediate steps, because it uses an Euler-step)
[1128]934!--       ### particle model should be moved before prognostic_equations, in order
935!--       to regard droplet interactions directly
[63]936          IF ( particle_advection  .AND.                         &
[3646]937               time_since_reference_point >= particle_advection_start  .AND. &
[1]938               intermediate_timestep_count == 1 )  THEN
[849]939             CALL lpm
940             first_call_lpm = .FALSE.
[1]941          ENDIF
942
943!
[3040]944!--       Interaction of droplets with temperature and mixing ratio.
[1]945!--       Droplet condensation and evaporation is calculated within
946!--       advec_particles.
947          IF ( cloud_droplets  .AND.  &
948               intermediate_timestep_count == intermediate_timestep_count_max )&
949          THEN
950             CALL interaction_droplets_ptq
951          ENDIF
952
953!
[3159]954!--       Movement of agents in multi agent system
955          IF ( agents_active  .AND.                                            &
[3198]956               time_since_reference_point >= multi_agent_system_start  .AND.   &
957               time_since_reference_point <= multi_agent_system_end    .AND.   &
[3159]958               intermediate_timestep_count == 1 )  THEN
959             CALL multi_agent_system
960             first_call_mas = .FALSE.
961          ENDIF
962
963!
[1]964!--       Exchange of ghost points (lateral boundary conditions)
[2118]965          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
[1113]966
[2118]967          CALL exchange_horiz( u_p, nbgp )
968          CALL exchange_horiz( v_p, nbgp )
969          CALL exchange_horiz( w_p, nbgp )
970          CALL exchange_horiz( pt_p, nbgp )
971          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
[2696]972          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
973               .OR.  use_sgs_for_particles )  THEN
974             IF ( rans_tke_e )  THEN
975                CALL exchange_horiz( diss_p, nbgp )
976             ELSE
977                CALL exchange_horiz( diss, nbgp )
978             ENDIF
979          ENDIF
[3294]980          IF ( ocean_mode )  THEN
[2118]981             CALL exchange_horiz( sa_p, nbgp )
982             CALL exchange_horiz( rho_ocean, nbgp )
983             CALL exchange_horiz( prho, nbgp )
984          ENDIF
985          IF ( humidity )  THEN
986             CALL exchange_horiz( q_p, nbgp )
[3274]987             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
[2292]988                CALL exchange_horiz( qc_p, nbgp )
989                CALL exchange_horiz( nc_p, nbgp )
990             ENDIF
[3274]991             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
[2118]992                CALL exchange_horiz( qr_p, nbgp )
993                CALL exchange_horiz( nr_p, nbgp )
[1053]994             ENDIF
[2118]995          ENDIF
996          IF ( cloud_droplets )  THEN
997             CALL exchange_horiz( ql, nbgp )
998             CALL exchange_horiz( ql_c, nbgp )
999             CALL exchange_horiz( ql_v, nbgp )
1000             CALL exchange_horiz( ql_vp, nbgp )
1001          ENDIF
[2696]1002          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1003          IF ( air_chemistry )  THEN
[3298]1004             DO  lsp = 1, nspec
1005                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1006!
1007!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1008                lsp_usr = 1
1009                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1010                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1011                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
1012                                                chem_species(lsp)%conc_pr_init )
1013                   ENDIF
1014                   lsp_usr = lsp_usr + 1
1015                ENDDO
[2696]1016             ENDDO
[2118]1017          ENDIF
[2766]1018
[3467]1019          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1020          THEN
1021             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1022             DO  b = 1, nbins
1023                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1024                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1025                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
1026                                           aerosol_number(b)%init )
1027                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1028                DO  c = 1, ncc_tot
1029                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
1030                                        nbgp )
1031                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1032                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
1033                                              aerosol_mass((c-1)*nbins+b)%init )
1034                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1035                ENDDO
1036             ENDDO
1037             IF ( .NOT. salsa_gases_from_chem )  THEN
1038                DO  g = 1, ngast
1039                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1040                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1041                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
1042                                              salsa_gas(g)%init )
1043                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1044             ENDDO
1045             ENDIF
1046             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1047          ENDIF         
[2118]1048          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
[1128]1049
[1]1050!
1051!--       Boundary conditions for the prognostic quantities (except of the
1052!--       velocities at the outflow in case of a non-cyclic lateral wall)
[1113]1053          CALL boundary_conds
[1]1054!
[73]1055!--       Swap the time levels in preparation for the next time step.
1056          CALL swap_timelevel
1057
[2365]1058!
1059!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1060          IF ( vnest_init ) THEN
[3719]1061             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
[2365]1062             CALL vnest_anterpolate
[3719]1063             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
[2365]1064          ENDIF
1065
[1764]1066          IF ( nested_run )  THEN
[1797]1067
[1764]1068             CALL cpu_log( log_point(60), 'nesting', 'start' )
[1762]1069!
[1933]1070!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1071!--          and pmci_child_datatrans are called inside the wrapper
[1797]1072!--          subroutine pmci_datatrans according to the control parameters
1073!--          nesting_mode and nesting_datatransfer_mode.
1074!--          TO_DO: why is nesting_mode given as a parameter here?
1075             CALL pmci_datatrans( nesting_mode )
[1762]1076
[2174]1077             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
[1933]1078                  nesting_mode == 'vertical' )  THEN
[1762]1079!
[1933]1080!--             Exchange_horiz is needed for all parent-domains after the
[1764]1081!--             anterpolation
1082                CALL exchange_horiz( u, nbgp )
1083                CALL exchange_horiz( v, nbgp )
1084                CALL exchange_horiz( w, nbgp )
[2174]1085                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1086
1087                IF ( humidity )  THEN
1088
1089                   CALL exchange_horiz( q, nbgp )
1090
[3274]1091                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
[2292]1092                       CALL exchange_horiz( qc, nbgp )
1093                       CALL exchange_horiz( nc, nbgp )
1094                   ENDIF
[3274]1095                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
[2174]1096                       CALL exchange_horiz( qr, nbgp )
1097                       CALL exchange_horiz( nr, nbgp )
1098                   ENDIF
1099
1100                ENDIF
1101
[3467]1102                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1103               
[2174]1104                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
[2773]1105
[2938]1106                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
1107                                                      rans_tke_e )             &
1108                   CALL exchange_horiz( diss, nbgp )
1109
[2773]1110                IF ( air_chemistry )  THEN
1111                   DO  n = 1, nspec     
1112                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1113                   ENDDO
1114                ENDIF
1115
[1762]1116             ENDIF
1117!
[2311]1118!--          Set boundary conditions again after interpolation and anterpolation.
1119             CALL pmci_boundary_conds
[1764]1120
1121             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1122
[1762]1123          ENDIF
1124
1125!
[1]1126!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1127!--       when a sloping surface is used
1128          IF ( sloping_surface )  THEN
[707]1129             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
1130                                                    pt_slope_offset
1131             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1132                                                    pt_slope_offset
[1]1133          ENDIF
1134
1135!
[151]1136!--       Impose a turbulent inflow using the recycling method
[3719]1137          IF ( turbulent_inflow )  CALL inflow_turbulence
[151]1138
1139!
[2050]1140!--       Set values at outflow boundary using the special outflow condition
[3719]1141          IF ( turbulent_outflow )  CALL outflow_turbulence
[2050]1142
1143!
[1]1144!--       Impose a random perturbation on the horizontal velocity field
[106]1145          IF ( create_disturbances  .AND.                                      &
1146               ( call_psolver_at_all_substeps  .AND.                           &
[1]1147               intermediate_timestep_count == intermediate_timestep_count_max )&
[106]1148          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1149               intermediate_timestep_count == 1 ) )                            &
[1]1150          THEN
1151             time_disturb = time_disturb + dt_3d
1152             IF ( time_disturb >= dt_disturb )  THEN
[1736]1153                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1154                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
[2232]1155                   CALL disturb_field( 'u', tend, u )
1156                   CALL disturb_field( 'v', tend, v )
[2178]1157                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
[3182]1158                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1159                THEN
[1]1160!
1161!--                Runs with a non-cyclic lateral wall need perturbations
1162!--                near the inflow throughout the whole simulation
1163                   dist_range = 1
[2232]1164                   CALL disturb_field( 'u', tend, u )
1165                   CALL disturb_field( 'v', tend, v )
[1]1166                   dist_range = 0
1167                ENDIF
1168                time_disturb = time_disturb - dt_disturb
1169             ENDIF
1170          ENDIF
1171
1172!
[2696]1173!--       Map forcing data derived from larger scale model onto domain
1174!--       boundaries.
[3182]1175          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
[3347]1176                                       intermediate_timestep_count_max  )      &
1177             CALL nesting_offl_bc
[2938]1178!
[3347]1179!--       Impose a turbulent inflow using synthetic generated turbulence,
1180!--       only once per time step.
1181          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
[3719]1182             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1183             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
[3347]1184             CALL stg_main
[3719]1185             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
[2696]1186          ENDIF
1187!
[3347]1188!--       Ensure mass conservation. This need to be done after imposing
1189!--       synthetic turbulence and top boundary condition for pressure is set to
1190!--       Neumann conditions.
1191!--       Is this also required in case of Dirichlet?
1192          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1193!
[1]1194!--       Reduce the velocity divergence via the equation for perturbation
1195!--       pressure.
[106]1196          IF ( intermediate_timestep_count == 1  .OR. &
1197                call_psolver_at_all_substeps )  THEN
[2365]1198
1199             IF (  vnest_init ) THEN
1200!
1201!--             Compute pressure in the CG, interpolate top boundary conditions
1202!--             to the FG and then compute pressure in the FG
1203                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1204
[3719]1205                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
[2365]1206                CALL vnest_boundary_conds
[3719]1207                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
[2365]1208 
1209                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1210
1211!--             Anterpolate TKE, satisfy Germano Identity
[3719]1212                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
[2365]1213                CALL vnest_anterpolate_e
[3719]1214                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
[2365]1215
1216             ELSE
1217
1218                CALL pres
1219
1220             ENDIF
1221
[1]1222          ENDIF
1223
1224!
1225!--       If required, compute liquid water content
[3274]1226          IF ( bulk_cloud_model )  THEN
[1015]1227             CALL calc_liquid_water_content
1228          ENDIF
[2174]1229!
[1115]1230!--       If required, compute virtual potential temperature
1231          IF ( humidity )  THEN
1232             CALL compute_vpt 
1233          ENDIF 
[1585]1234
[1]1235!
1236!--       Compute the diffusion quantities
1237          IF ( .NOT. constant_diffusion )  THEN
1238
1239!
[1276]1240!--          Determine surface fluxes shf and qsws and surface values
1241!--          pt_surface and q_surface in dependence on data from external
1242!--          file LSF_DATA respectively
1243             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1244                 intermediate_timestep_count == intermediate_timestep_count_max )&
1245             THEN
[2320]1246                CALL ls_forcing_surf( simulated_time )
[1276]1247             ENDIF
1248
1249!
[2232]1250!--          First the vertical (and horizontal) fluxes in the surface
1251!--          (constant flux) layer are computed
[1691]1252             IF ( constant_flux_layer )  THEN
1253                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1254                CALL surface_layer_fluxes
1255                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
[1]1256             ENDIF
1257!
[1691]1258!--          If required, solve the energy balance for the surface and run soil
[2232]1259!--          model. Call for horizontal as well as vertical surfaces
[2696]1260             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
[1691]1261
1262                CALL cpu_log( log_point(54), 'land_surface', 'start' )
[2232]1263!
1264!--             Call for horizontal upward-facing surfaces
1265                CALL lsm_energy_balance( .TRUE., -1 )
[2299]1266                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
[2232]1267!
1268!--             Call for northward-facing surfaces
1269                CALL lsm_energy_balance( .FALSE., 0 )
[2299]1270                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
[2232]1271!
1272!--             Call for southward-facing surfaces
1273                CALL lsm_energy_balance( .FALSE., 1 )
[2299]1274                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
[2232]1275!
1276!--             Call for eastward-facing surfaces
1277                CALL lsm_energy_balance( .FALSE., 2 )
[2299]1278                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
[2232]1279!
1280!--             Call for westward-facing surfaces
1281                CALL lsm_energy_balance( .FALSE., 3 )
[2299]1282                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
[3597]1283               
[2696]1284!
1285!--             At the end, set boundary conditons for potential temperature
1286!--             and humidity after running the land-surface model. This
1287!--             might be important for the nesting, where arrays are transfered.
1288                CALL lsm_boundary_condition
[2232]1289
[3597]1290               
[1691]1291                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1292             ENDIF
1293!
[2007]1294!--          If required, solve the energy balance for urban surfaces and run
1295!--          the material heat model
1296             IF (urban_surface) THEN
1297                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
[3176]1298               
[3418]1299                CALL usm_surface_energy_balance( .FALSE. )
[2007]1300                IF ( usm_material_model )  THEN
[2696]1301                   CALL usm_green_heat_model
[3418]1302                   CALL usm_material_heat_model ( .FALSE. )
[2007]1303                ENDIF
[2696]1304
1305!
1306!--             At the end, set boundary conditons for potential temperature
1307!--             and humidity after running the urban-surface model. This
1308!--             might be important for the nesting, where arrays are transfered.
1309                CALL usm_boundary_condition
1310
[2007]1311                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1312             ENDIF
1313!
[1]1314!--          Compute the diffusion coefficients
1315             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
[75]1316             IF ( .NOT. humidity ) THEN
[3294]1317                IF ( ocean_mode )  THEN
[2696]1318                   CALL tcm_diffusivities( prho, prho_reference )
[97]1319                ELSE
[2696]1320                   CALL tcm_diffusivities( pt, pt_reference )
[97]1321                ENDIF
[1]1322             ELSE
[2696]1323                CALL tcm_diffusivities( vpt, pt_reference )
[1]1324             ENDIF
1325             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
[2696]1326!
1327!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1328             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
[1]1329
1330          ENDIF
1331
[1691]1332!
1333!--       If required, calculate radiative fluxes and heating rates
1334          IF ( radiation .AND. intermediate_timestep_count                     &
[2299]1335               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
[1691]1336               skip_time_do_radiation )  THEN
1337
1338               time_radiation = time_radiation + dt_3d
1339
1340             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1341             THEN
1342
1343                CALL cpu_log( log_point(50), 'radiation', 'start' )
1344
1345                IF ( .NOT. force_radiation_call )  THEN
1346                   time_radiation = time_radiation - dt_radiation
1347                ENDIF
1348
[3014]1349!
[3241]1350!--             Adjust the current time to the time step of the radiation model.
[3014]1351!--             Needed since radiation is pre-calculated and stored only on apparent
1352!--             solar positions
[3241]1353                time_since_reference_point_save = time_since_reference_point
1354                time_since_reference_point =                                   &
1355                                    REAL( FLOOR( time_since_reference_point /  &
1356                                                 dt_radiation), wp )           &
1357                                             * dt_radiation
[3014]1358
[1976]1359                CALL radiation_control
[1691]1360
[3378]1361                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
[2696]1362                     radiation_interactions )  THEN
[3724]1363                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
[2696]1364                   CALL radiation_interaction
[3724]1365                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
[2007]1366                ENDIF
[3014]1367   
1368!
1369!--             Return the current time to its original value
[3241]1370                time_since_reference_point = time_since_reference_point_save
[2007]1371
[3719]1372                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1373
[1691]1374             ENDIF
1375          ENDIF
1376
[1]1377       ENDDO   ! Intermediate step loop
[3634]1378
[1]1379!
[3634]1380!--    Will be used at some point by flow_statistics.
[3658]1381       !$ACC UPDATE &
[3634]1382       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1383       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1384       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1385       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1386       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1387       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1388       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1389       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1390       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1391       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1392       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1393       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1394       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1395       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1396       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1397
1398!
[2766]1399!--    If required, consider chemical emissions
[3298]1400       IF ( air_chemistry  .AND.  do_emis )  THEN
1401!
1402!--       Update the time --> kanani: revise location of this CALL
1403          CALL calc_date_and_time
1404!
1405!--       Call emission routine only once an hour
1406          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1407             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1408             hour_call_emis = hour_of_year
1409          ENDIF
[2766]1410       ENDIF
[3569]1411
[2696]1412!
[3469]1413!--    If required, calculate indoor temperature, waste heat, heat flux
1414!--    through wall, etc.
1415!--    dt_indoor steers the frequency of the indoor model calculations
[3647]1416       IF ( indoor_model )  THEN
[3469]1417
1418          time_indoor = time_indoor + dt_3d
1419
1420          IF ( time_indoor >= dt_indoor )  THEN
1421
1422             time_indoor = time_indoor - dt_indoor
1423
1424             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1425             CALL im_main_heatcool
1426             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1427
1428          ENDIF
1429       ENDIF
1430!
[1]1431!--    Increase simulation time and output times
[1111]1432       nr_timesteps_this_run      = nr_timesteps_this_run + 1
[291]1433       current_timestep_number    = current_timestep_number + 1
1434       simulated_time             = simulated_time   + dt_3d
1435       time_since_reference_point = simulated_time - coupling_start_time
[2941]1436       simulated_time_chr         = time_to_string( time_since_reference_point )
[291]1437
[1957]1438
1439
[2941]1440
[3646]1441       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1442          time_do_av         = time_do_av       + dt_3d
1443       ENDIF
[3646]1444       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
[1]1445          time_do2d_xy       = time_do2d_xy     + dt_3d
1446       ENDIF
[3646]1447       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
[1]1448          time_do2d_xz       = time_do2d_xz     + dt_3d
1449       ENDIF
[3646]1450       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
[1]1451          time_do2d_yz       = time_do2d_yz     + dt_3d
1452       ENDIF
[3646]1453       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
[1]1454          time_do3d          = time_do3d        + dt_3d
1455       ENDIF
[410]1456       DO  mid = 1, masks
[3646]1457          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
[410]1458             time_domask(mid)= time_domask(mid) + dt_3d
1459          ENDIF
1460       ENDDO
[1]1461       time_dvrp          = time_dvrp        + dt_3d
[3646]1462       IF ( time_since_reference_point >= skip_time_dosp )  THEN
[1]1463          time_dosp       = time_dosp        + dt_3d
1464       ENDIF
1465       time_dots          = time_dots        + dt_3d
[849]1466       IF ( .NOT. first_call_lpm )  THEN
[1]1467          time_dopts      = time_dopts       + dt_3d
1468       ENDIF
[3646]1469       IF ( time_since_reference_point >= skip_time_dopr )  THEN
[1]1470          time_dopr       = time_dopr        + dt_3d
1471       ENDIF
[3467]1472       time_dopr_listing  = time_dopr_listing + dt_3d
[1]1473       time_run_control   = time_run_control + dt_3d
[3347]1474!
[3421]1475!--    Increment time-counter for surface output
[3648]1476       IF ( surface_output )  THEN
[3646]1477          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
[3421]1478             time_dosurf    = time_dosurf + dt_3d
1479          ENDIF
[3646]1480          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1481             time_dosurf_av = time_dosurf_av + dt_3d
1482          ENDIF
1483       ENDIF
1484!
[3347]1485!--    In case of synthetic turbulence generation and parametrized turbulence
1486!--    information, update the time counter and if required, adjust the
1487!--    STG to new atmospheric conditions.
1488       IF ( use_syn_turb_gen  )  THEN
1489          IF ( parametrize_inflow_turbulence )  THEN
1490             time_stg_adjust = time_stg_adjust + dt_3d
[3719]1491             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1492                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1493                CALL stg_adjust
1494                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1495             ENDIF
[3347]1496          ENDIF
1497          time_stg_call = time_stg_call + dt_3d
1498       ENDIF
[1]1499
1500!
[102]1501!--    Data exchange between coupled models
[2365]1502       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1503                                          .AND. .NOT. vnested )  THEN
[102]1504          time_coupling = time_coupling + dt_3d
[343]1505
[108]1506!
1507!--       In case of model termination initiated by the local model
1508!--       (terminate_coupled > 0), the coupler must be skipped because it would
1509!--       cause an MPI intercomminucation hang.
1510!--       If necessary, the coupler will be called at the beginning of the
1511!--       next restart run.
1512          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
[102]1513             CALL surface_coupler
1514             time_coupling = time_coupling - dt_coupling
1515          ENDDO
1516       ENDIF
1517
1518!
[3448]1519!--    Biometeorology calculation of stationary thermal indices
[3647]1520!--    Todo (kanani): biometeorology needs own time_... treatment.
1521!--                   It might be that time_do2d_xy differs from time_do3d,
1522!--                   and then we might get trouble with the biomet output,
1523!--                   because we can have 2d and/or 3d biomet output!!
1524       IF (         biometeorology  &
1525             .AND.  ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )          &
1526                      .OR.                                                                                   &
1527                      ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1528                    ) )  THEN
[3569]1529!
1530!--       If required, do thermal comfort calculations
1531          IF ( thermal_comfort )  THEN
1532             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1533          ENDIF
1534!
1535!--       If required, do UV exposure calculations
1536          IF ( uv_exposure )  THEN
1537             CALL uvem_calc_exposure
1538          ENDIF
[3448]1539       ENDIF
1540
1541!
[3684]1542!--    Execute alle other module actions routunes
1543       CALL module_interface_actions( 'after_integration' )
[2817]1544
1545!
[1]1546!--    If Galilei transformation is used, determine the distance that the
1547!--    model has moved so far
1548       IF ( galilei_transformation )  THEN
1549          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1550          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1551       ENDIF
1552
1553!
1554!--    Check, if restart is necessary (because cpu-time is expiring or
1555!--    because it is forced by user) and set stop flag
[108]1556!--    This call is skipped if the remote model has already initiated a restart.
1557       IF ( .NOT. terminate_run )  CALL check_for_restart
[1]1558
1559!
1560!--    Carry out statistical analysis and output at the requested output times.
1561!--    The MOD function is used for calculating the output time counters (like
1562!--    time_dopr) in order to regard a possible decrease of the output time
1563!--    interval in case of restart runs
1564
1565!
1566!--    Set a flag indicating that so far no statistics have been created
1567!--    for this time step
1568       flow_statistics_called = .FALSE.
1569
1570!
1571!--    If required, call flow_statistics for averaging in time
[1342]1572       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
[1]1573            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
[3646]1574            time_since_reference_point >= skip_time_dopr )  THEN
[1]1575          time_dopr_av = time_dopr_av + dt_3d
1576          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1577             do_sum = .TRUE.
1578             time_dopr_av = MOD( time_dopr_av, &
1579                                    MAX( dt_averaging_input_pr, dt_3d ) )
1580          ENDIF
1581       ENDIF
1582       IF ( do_sum )  CALL flow_statistics
1583
1584!
[410]1585!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
[1342]1586       IF ( averaging_interval /= 0.0_wp  .AND.                                &
[3647]1587            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.    &
1588            time_since_reference_point >= skip_time_data_output_av )           &
[1]1589       THEN
1590          time_do_sla = time_do_sla + dt_3d
1591          IF ( time_do_sla >= dt_averaging_input )  THEN
1592             CALL sum_up_3d_data
1593             average_count_3d = average_count_3d + 1
1594             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1595          ENDIF
1596       ENDIF
[3421]1597!
1598!--    Average surface data
[3648]1599       IF ( surface_output )  THEN
[3647]1600          IF (         averaging_interval_surf /= 0.0_wp                               &
1601                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1602                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3421]1603             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
[3648]1604                CALL surface_data_output_averaging
[3421]1605                average_count_surf = average_count_surf + 1
1606             ENDIF
1607          ENDIF
1608       ENDIF
[1]1609
1610!
1611!--    Calculate spectra for time averaging
[1342]1612       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
[1]1613            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
[3646]1614            time_since_reference_point >= skip_time_dosp )  THEN
[1]1615          time_dosp_av = time_dosp_av + dt_3d
1616          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1617             CALL calc_spectra
1618             time_dosp_av = MOD( time_dosp_av, &
1619                                 MAX( dt_averaging_input_pr, dt_3d ) )
1620          ENDIF
1621       ENDIF
1622
1623!
[1957]1624!--    Call flight module and output data
1625       IF ( virtual_flight )  THEN
1626          CALL flight_measurement
1627          CALL data_output_flight
1628       ENDIF
[3472]1629!
1630!--    Take virtual measurements
1631       IF ( virtual_measurement  .AND.                                         &
[3704]1632            vm_time_start <= time_since_reference_point )  THEN
1633          CALL vm_sampling
1634          CALL vm_data_output
1635       ENDIF
[1957]1636
1637!
[1]1638!--    Profile output (ASCII) on file
1639       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1640          CALL print_1d
[3742]1641          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing,    &
[1]1642                                                           dt_3d ) )
1643       ENDIF
1644
1645!
1646!--    Graphic output for PROFIL
[3742]1647       IF (        time_dopr >= dt_dopr                                        &
[3647]1648            .AND.  time_since_reference_point >= skip_time_dopr )  THEN
[1]1649          IF ( dopr_n /= 0 )  CALL data_output_profiles
1650          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
[1342]1651          time_dopr_av = 0.0_wp    ! due to averaging (see above)
[1]1652       ENDIF
1653
1654!
1655!--    Graphic output for time series
1656       IF ( time_dots >= dt_dots )  THEN
[48]1657          CALL data_output_tseries
[1]1658          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1659       ENDIF
1660
1661!
1662!--    Output of spectra (formatted for use with PROFIL), in case of no
1663!--    time averaging, spectra has to be calculated before
[3742]1664       IF (         time_dosp >= dt_dosp                                       &
[3647]1665             .AND.  time_since_reference_point >= skip_time_dosp )  THEN
[1]1666          IF ( average_count_sp == 0 )  CALL calc_spectra
1667          CALL data_output_spectra
1668          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1669       ENDIF
1670
1671!
1672!--    2d-data output (cross-sections)
[3742]1673       IF (         time_do2d_xy >= dt_do2d_xy                                 &
[3647]1674             .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
[1]1675          CALL data_output_2d( 'xy', 0 )
1676          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1677       ENDIF
[3742]1678       IF (         time_do2d_xz >= dt_do2d_xz                                 &
[3647]1679             .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
[1]1680          CALL data_output_2d( 'xz', 0 )
1681          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1682       ENDIF
[3742]1683       IF (         time_do2d_yz >= dt_do2d_yz                                 &
[3647]1684             .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
[1]1685          CALL data_output_2d( 'yz', 0 )
1686          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1687       ENDIF
1688
1689!
1690!--    3d-data output (volume data)
[3742]1691       IF (         time_do3d >= dt_do3d                                       &
[3647]1692             .AND.  time_since_reference_point >= skip_time_do3d )  THEN
[1]1693          CALL data_output_3d( 0 )
1694          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1695       ENDIF
1696
1697!
[1783]1698!--    Masked data output
[410]1699       DO  mid = 1, masks
[3742]1700          IF (         time_domask(mid) >= dt_domask(mid)                      &
[3647]1701                .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
[410]1702             CALL data_output_mask( 0 )
[3742]1703             time_domask(mid) = MOD( time_domask(mid),                         &
[410]1704                                     MAX( dt_domask(mid), dt_3d ) )
1705          ENDIF
1706       ENDDO
1707
1708!
1709!--    Output of time-averaged 2d/3d/masked data
[3742]1710       IF (         time_do_av >= dt_data_output_av                            &
[3647]1711             .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
[1]1712          CALL average_3d_data
[3742]1713!
1714!--       Udate thermal comfort indices based on updated averaged input
1715          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1716             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1717          ENDIF
[1]1718          CALL data_output_2d( 'xy', 1 )
1719          CALL data_output_2d( 'xz', 1 )
1720          CALL data_output_2d( 'yz', 1 )
1721          CALL data_output_3d( 1 )
[410]1722          DO  mid = 1, masks
1723             CALL data_output_mask( 1 )
1724          ENDDO
[1]1725          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1726       ENDIF
[3421]1727!
1728!--    Output of surface data, instantaneous and averaged data
[3648]1729       IF ( surface_output )  THEN
[3742]1730          IF (         time_dosurf >= dt_dosurf                                &
[3647]1731                .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
[3648]1732             CALL surface_data_output( 0 )
[3421]1733             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1734          ENDIF
[3742]1735          IF (         time_dosurf_av >= dt_dosurf_av                          &
[3647]1736                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
[3648]1737             CALL surface_data_output( 1 )
[3421]1738             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1739          ENDIF
1740       ENDIF
[1]1741
1742!
1743!--    Output of particle time series
[253]1744       IF ( particle_advection )  THEN
[3647]1745          IF ( time_dopts >= dt_dopts  .OR.                                    &
[3646]1746               ( time_since_reference_point >= particle_advection_start  .AND. &
[849]1747                 first_call_lpm ) )  THEN
[253]1748             CALL data_output_ptseries
1749             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1750          ENDIF
[1]1751       ENDIF
1752
1753!
1754!--    Output of dvrp-graphics (isosurface, particles, slicer)
1755#if defined( __dvrp_graphics )
1756       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1757#endif
1758       IF ( time_dvrp >= dt_dvrp )  THEN
1759          CALL data_output_dvrp
1760          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1761       ENDIF
1762#if defined( __dvrp_graphics )
1763       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1764#endif
1765
1766!
[3719]1767!--    If required, set the heat flux for the next time step to a random value
[2232]1768       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
[3719]1769          IF ( surf_def_h(0)%ns >= 1 )  THEN
1770             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1771             CALL disturb_heatflux( surf_def_h(0) )
1772             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1773          ENDIF
1774          IF ( surf_lsm_h%ns    >= 1 )  THEN
1775             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1776             CALL disturb_heatflux( surf_lsm_h    )
1777             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1778          ENDIF
1779          IF ( surf_usm_h%ns    >= 1 )  THEN
1780             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1781             CALL disturb_heatflux( surf_usm_h    )
1782             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1783          ENDIF
[2232]1784       ENDIF
[1]1785
1786!
[3684]1787!--    Execute alle other module actions routunes
1788       CALL module_interface_actions( 'after_timestep' )
[2817]1789
1790!
[1918]1791!--    Determine size of next time step. Save timestep dt_3d because it is
1792!--    newly calculated in routine timestep, but required further below for
1793!--    steering the run control output interval
1794       dt_3d_old = dt_3d
1795       CALL timestep
1796
1797!
[1925]1798!--    Synchronize the timestep in case of nested run.
1799       IF ( nested_run )  THEN
1800!
1801!--       Synchronize by unifying the time step.
1802!--       Global minimum of all time-steps is used for all.
1803          CALL pmci_synchronize
1804       ENDIF
1805
1806!
[1918]1807!--    Computation and output of run control parameters.
1808!--    This is also done whenever perturbations have been imposed
1809       IF ( time_run_control >= dt_run_control  .OR.                     &
1810            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1811       THEN
1812          CALL run_control
1813          IF ( time_run_control >= dt_run_control )  THEN
1814             time_run_control = MOD( time_run_control, &
1815                                     MAX( dt_run_control, dt_3d_old ) )
1816          ENDIF
1817       ENDIF
1818
1819!
[1402]1820!--    Output elapsed simulated time in form of a progress bar on stdout
1821       IF ( myid == 0 )  CALL output_progress_bar
1822
[1]1823       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1824
[667]1825
[1]1826    ENDDO   ! time loop
[3448]1827
[3658]1828#ifdef _OPENACC
1829    CALL exit_surface_arrays
1830#endif
[3634]1831!$ACC END DATA
1832!$ACC END DATA
1833!$ACC END DATA
1834!$ACC END DATA
1835!$ACC END DATA
1836!$ACC END DATA
1837!$ACC END DATA
1838
[3347]1839!
[2365]1840!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1841    IF ( vnest_init )  CALL vnest_deallocate
1842
[1402]1843    IF ( myid == 0 )  CALL finish_progress_bar
1844
[1]1845#if defined( __dvrp_graphics )
1846    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1847#endif
1848
[1402]1849    CALL location_message( 'finished time-stepping', .TRUE. )
[1384]1850
[1]1851 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.