source: palm/trunk/SOURCE/time_integration.f90 @ 1103

Last change on this file since 1103 was 1093, checked in by raasch, 12 years ago

last commit documented

  • Property svn:keywords set to Id
File size: 22.4 KB
RevLine 
[1]1 SUBROUTINE time_integration
2
[1036]3!--------------------------------------------------------------------------------!
4! This file is part of PALM.
5!
6! PALM is free software: you can redistribute it and/or modify it under the terms
7! of the GNU General Public License as published by the Free Software Foundation,
8! either version 3 of the License, or (at your option) any later version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2012  Leibniz University Hannover
18!--------------------------------------------------------------------------------!
19!
[484]20! Current revisions:
[1092]21! ------------------
[1093]22!
[392]23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 1093 2013-02-02 12:58:49Z raasch $
27!
[1093]28! 1092 2013-02-02 11:24:22Z raasch
29! unused variables removed
30!
[1066]31! 1065 2012-11-22 17:42:36Z hoffmann
32! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
33!
[1054]34! 1053 2012-11-13 17:11:03Z hoffmann
35! exchange of ghost points for nr, qr added
36!
[1037]37! 1036 2012-10-22 13:43:42Z raasch
38! code put under GPL (PALM 3.9)
39!
[1020]40! 1019 2012-09-28 06:46:45Z raasch
41! non-optimized version of prognostic_equations removed
42!
[1017]43! 1015 2012-09-27 09:23:24Z raasch
44! +call of prognostic_equations_acc
45!
[1002]46! 1001 2012-09-13 14:08:46Z raasch
47! all actions concerning leapfrog- and upstream-spline-scheme removed
48!
[850]49! 849 2012-03-15 10:35:09Z raasch
50! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
51!
[826]52! 825 2012-02-19 03:03:44Z raasch
53! wang_collision_kernel renamed wang_kernel
54!
[791]55! 790 2011-11-29 03:11:20Z raasch
56! exchange of ghostpoints for array diss
57!
[708]58! 707 2011-03-29 11:39:40Z raasch
59! bc_lr/ns replaced by bc_lr/ns_cyc, calls of exchange_horiz are modified,
60! adaption to sloping surface
61!
[668]62! 667  2010-12-23 12:06:00Z suehring/gryschka
63! Calls of exchange_horiz are modified.
64! Adaption to slooping surface.
65!
[482]66! 449 2010-02-02 11:23:59Z raasch
67! Bugfix: exchange of ghost points for prho included
68!
[449]69! 410 2009-12-04 17:05:40Z letzel
70! masked data output
71!
[392]72! 388 2009-09-23 09:40:33Z raasch
[388]73! Using prho instead of rho in diffusvities.
[291]74! Coupling with independent precursor runs.
75! Bugfix: output of particle time series only if particle advection is switched
[253]76!         on
[110]77!
[198]78! 151 2008-03-07 13:42:18Z raasch
79! inflow turbulence is imposed by calling new routine inflow_turbulence
80!
[110]81! 108 2007-08-24 15:10:38Z letzel
[106]82! Call of new routine surface_coupler,
83! presure solver is called after the first Runge-Kutta substep instead of the
84! last in case that call_psolver_at_all_substeps = .F.; for this case, the
85! random perturbation has to be added to the velocity fields also after the
86! first substep
[77]87!
[98]88! 97 2007-06-21 08:23:15Z raasch
89! diffusivities is called with argument rho in case of ocean runs,
90! new argument pt_/prho_reference in calls of diffusivities,
91! ghostpoint exchange for salinity and density
92!
[90]93! 87 2007-05-22 15:46:47Z raasch
94! var_hom renamed pr_palm
95!
[77]96! 75 2007-03-22 09:54:05Z raasch
[46]97! Move call of user_actions( 'after_integration' ) below increment of times
[63]98! and counters,
99! calls of prognostic_equations_.. changed to .._noopt, .._cache, and
[75]100! .._vector, these calls are now controlled by switch loop_optimization,
101! uxrp, vynp eliminated, 2nd+3rd argument removed from exchange horiz,
102! moisture renamed humidity
[1]103!
[3]104! RCS Log replace by Id keyword, revision history cleaned up
105!
[1]106! Revision 1.8  2006/08/22 14:16:05  raasch
107! Disturbances are imposed only for the last Runge-Kutta-substep
108!
109! Revision 1.2  2004/04/30 13:03:40  raasch
110! decalpha-specific warning removed, routine name changed to time_integration,
111! particle advection is carried out only once during the intermediate steps,
112! impulse_advec renamed momentum_advec
113!
114! Revision 1.1  1997/08/11 06:19:04  raasch
115! Initial revision
116!
117!
118! Description:
119! ------------
120! Integration in time of the model equations, statistical analysis and graphic
121! output
122!------------------------------------------------------------------------------!
123
124    USE arrays_3d
125    USE averaging
126    USE control_parameters
127    USE cpulog
128#if defined( __dvrp_graphics )
129    USE DVRP
130#endif
131    USE grid_variables
132    USE indices
133    USE interaction_droplets_ptq_mod
134    USE interfaces
135    USE particle_attributes
136    USE pegrid
137    USE prognostic_equations_mod
138    USE statistics
139    USE user_actions_mod
140
141    IMPLICIT NONE
142
143    CHARACTER (LEN=9) ::  time_to_string
144
145!
146!-- At the beginning of a simulation determine the time step as well as
147!-- determine and print out the run control parameters
148    IF ( simulated_time == 0.0 )  CALL timestep
[667]149
[1]150    CALL run_control
151
[667]152
[108]153!
154!-- Data exchange between coupled models in case that a call has been omitted
155!-- at the end of the previous run of a job chain.
[291]156    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
[108]157!
158!--    In case of model termination initiated by the local model the coupler
159!--    must not be called because this would again cause an MPI hang.
160       DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
161          CALL surface_coupler
162          time_coupling = time_coupling - dt_coupling
163       ENDDO
[348]164       IF (time_coupling == 0.0 .AND. time_since_reference_point < dt_coupling)&
165       THEN
166          time_coupling = time_since_reference_point
167       ENDIF
[108]168    ENDIF
169
170
[1]171#if defined( __dvrp_graphics )
172!
173!-- Time measurement with dvrp software 
174    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
175#endif
176
177!
178!-- Start of the time loop
179    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
180                .NOT. terminate_run )
181
182       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
183!
184!--    Determine size of next time step
185       IF ( simulated_time /= 0.0 )  CALL timestep
186!
187!--    Execute the user-defined actions
188       CALL user_actions( 'before_timestep' )
189
190!
191!--    Start of intermediate step loop
192       intermediate_timestep_count = 0
193       DO  WHILE ( intermediate_timestep_count < &
194                   intermediate_timestep_count_max )
195
196          intermediate_timestep_count = intermediate_timestep_count + 1
197
198!
199!--       Set the steering factors for the prognostic equations which depend
200!--       on the timestep scheme
201          CALL timestep_scheme_steering
202
203!
204!--       Solve the prognostic equations. A fast cache optimized version with
205!--       only one single loop is used in case of Piascek-Williams advection
206!--       scheme. NEC vector machines use a different version, because
207!--       in the other versions a good vectorization is prohibited due to
208!--       inlining problems.
[1019]209          IF ( loop_optimization == 'cache' )  THEN
210             CALL prognostic_equations_cache
211          ELSEIF ( loop_optimization == 'vector' )  THEN
[63]212             CALL prognostic_equations_vector
[1015]213          ELSEIF ( loop_optimization == 'acc' )  THEN
214             CALL prognostic_equations_acc
[1]215          ENDIF
216
217!
[849]218!--       Particle transport/physics with the Lagrangian particle model
219!--       (only once during intermediate steps, because it uses an Euler-step)
[63]220          IF ( particle_advection  .AND.                         &
221               simulated_time >= particle_advection_start  .AND. &
[1]222               intermediate_timestep_count == 1 )  THEN
[849]223             CALL lpm
224             first_call_lpm = .FALSE.
[1]225          ENDIF
226
227!
228!--       Interaction of droplets with temperature and specific humidity.
229!--       Droplet condensation and evaporation is calculated within
230!--       advec_particles.
231          IF ( cloud_droplets  .AND.  &
232               intermediate_timestep_count == intermediate_timestep_count_max )&
233          THEN
234             CALL interaction_droplets_ptq
235          ENDIF
236
237!
238!--       Exchange of ghost points (lateral boundary conditions)
239          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
[667]240          CALL exchange_horiz( u_p, nbgp )
241          CALL exchange_horiz( v_p, nbgp )
242          CALL exchange_horiz( w_p, nbgp )
243          CALL exchange_horiz( pt_p, nbgp )
244          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
[95]245          IF ( ocean )  THEN
[667]246             CALL exchange_horiz( sa_p, nbgp )
247             CALL exchange_horiz( rho, nbgp )
248             CALL exchange_horiz( prho, nbgp )
[95]249          ENDIF
[1053]250          IF (humidity  .OR.  passive_scalar)  THEN
251             CALL exchange_horiz( q_p, nbgp )
252             IF ( cloud_physics .AND. icloud_scheme == 0 )  THEN
253                CALL exchange_horiz( qr_p, nbgp )
254                CALL exchange_horiz( nr_p, nbgp )
255             ENDIF
256          ENDIF
[1]257          IF ( cloud_droplets )  THEN
[667]258             CALL exchange_horiz( ql, nbgp )
259             CALL exchange_horiz( ql_c, nbgp )
260             CALL exchange_horiz( ql_v, nbgp )
261             CALL exchange_horiz( ql_vp, nbgp )
[1]262          ENDIF
[1065]263          IF ( wang_kernel  .OR.  turbulence )  CALL exchange_horiz( diss, nbgp )
[1]264
265          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
266
267!
268!--       Boundary conditions for the prognostic quantities (except of the
269!--       velocities at the outflow in case of a non-cyclic lateral wall)
270          CALL boundary_conds( 'main' )
271
272!
[73]273!--       Swap the time levels in preparation for the next time step.
274          CALL swap_timelevel
275
276!
[1]277!--       Temperature offset must be imposed at cyclic boundaries in x-direction
278!--       when a sloping surface is used
279          IF ( sloping_surface )  THEN
[707]280             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
281                                                    pt_slope_offset
282             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
283                                                    pt_slope_offset
[1]284          ENDIF
285
286!
[151]287!--       Impose a turbulent inflow using the recycling method
288          IF ( turbulent_inflow )  CALL  inflow_turbulence
289
290!
[1]291!--       Impose a random perturbation on the horizontal velocity field
[106]292          IF ( create_disturbances  .AND.                                      &
293               ( call_psolver_at_all_substeps  .AND.                           &
[1]294               intermediate_timestep_count == intermediate_timestep_count_max )&
[106]295          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
296               intermediate_timestep_count == 1 ) )                            &
[1]297          THEN
298             time_disturb = time_disturb + dt_3d
299             IF ( time_disturb >= dt_disturb )  THEN
[87]300                IF ( hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
[75]301                   CALL disturb_field( nzb_u_inner, tend, u )
302                   CALL disturb_field( nzb_v_inner, tend, v )
[707]303                ELSEIF ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )  THEN
[1]304!
305!--                Runs with a non-cyclic lateral wall need perturbations
306!--                near the inflow throughout the whole simulation
307                   dist_range = 1
[75]308                   CALL disturb_field( nzb_u_inner, tend, u )
309                   CALL disturb_field( nzb_v_inner, tend, v )
[1]310                   dist_range = 0
311                ENDIF
312                time_disturb = time_disturb - dt_disturb
313             ENDIF
314          ENDIF
315
316!
317!--       Reduce the velocity divergence via the equation for perturbation
318!--       pressure.
[106]319          IF ( intermediate_timestep_count == 1  .OR. &
320                call_psolver_at_all_substeps )  THEN
[1]321             CALL pres
322          ENDIF
[1015]323!
324!--       Update device memory for calculating diffusion quantities and for next
325!--       timestep
326          !$acc update device( e, pt, u, v, w )
327          !$acc update device( q )  if ( allocated( q ) )
[1]328
329!
330!--       If required, compute virtuell potential temperature
[1015]331          IF ( humidity )  THEN
332             CALL compute_vpt
333             !$acc update device( vpt )
334          ENDIF
[1]335
336!
337!--       If required, compute liquid water content
[1015]338          IF ( cloud_physics )  THEN
339             CALL calc_liquid_water_content
340             !$acc update device( ql )
341          ENDIF
[1]342
343!
344!--       Compute the diffusion quantities
345          IF ( .NOT. constant_diffusion )  THEN
346
347!
348!--          First the vertical fluxes in the Prandtl layer are being computed
349             IF ( prandtl_layer )  THEN
350                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'start' )
351                CALL prandtl_fluxes
352                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'stop' )
[1015]353!
354!++             Statistics still require updates on host
355                !$acc update host( qs, qsws, rif, shf, ts )
[1]356             ENDIF
357
358!
359!--          Compute the diffusion coefficients
360             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
[75]361             IF ( .NOT. humidity ) THEN
[97]362                IF ( ocean )  THEN
[388]363                   CALL diffusivities( prho, prho_reference )
[97]364                ELSE
365                   CALL diffusivities( pt, pt_reference )
366                ENDIF
[1]367             ELSE
[97]368                CALL diffusivities( vpt, pt_reference )
[1]369             ENDIF
370             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
[1015]371!
372!++          Statistics still require update of diffusivities on host
373             !$acc update host( kh, km )
[1]374
375          ENDIF
376
377       ENDDO   ! Intermediate step loop
378
379!
380!--    Increase simulation time and output times
[291]381       current_timestep_number    = current_timestep_number + 1
382       simulated_time             = simulated_time   + dt_3d
383       simulated_time_chr         = time_to_string( simulated_time )
384       time_since_reference_point = simulated_time - coupling_start_time
385
[1]386       IF ( simulated_time >= skip_time_data_output_av )  THEN
387          time_do_av         = time_do_av       + dt_3d
388       ENDIF
389       IF ( simulated_time >= skip_time_do2d_xy )  THEN
390          time_do2d_xy       = time_do2d_xy     + dt_3d
391       ENDIF
392       IF ( simulated_time >= skip_time_do2d_xz )  THEN
393          time_do2d_xz       = time_do2d_xz     + dt_3d
394       ENDIF
395       IF ( simulated_time >= skip_time_do2d_yz )  THEN
396          time_do2d_yz       = time_do2d_yz     + dt_3d
397       ENDIF
398       IF ( simulated_time >= skip_time_do3d    )  THEN
399          time_do3d          = time_do3d        + dt_3d
400       ENDIF
[410]401       DO  mid = 1, masks
402          IF ( simulated_time >= skip_time_domask(mid) )  THEN
403             time_domask(mid)= time_domask(mid) + dt_3d
404          ENDIF
405       ENDDO
[1]406       time_dvrp          = time_dvrp        + dt_3d
407       IF ( simulated_time >= skip_time_dosp )  THEN
408          time_dosp       = time_dosp        + dt_3d
409       ENDIF
410       time_dots          = time_dots        + dt_3d
[849]411       IF ( .NOT. first_call_lpm )  THEN
[1]412          time_dopts      = time_dopts       + dt_3d
413       ENDIF
414       IF ( simulated_time >= skip_time_dopr )  THEN
415          time_dopr       = time_dopr        + dt_3d
416       ENDIF
417       time_dopr_listing          = time_dopr_listing        + dt_3d
418       time_run_control   = time_run_control + dt_3d
419
420!
[102]421!--    Data exchange between coupled models
[291]422       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
[102]423          time_coupling = time_coupling + dt_3d
[343]424
[108]425!
426!--       In case of model termination initiated by the local model
427!--       (terminate_coupled > 0), the coupler must be skipped because it would
428!--       cause an MPI intercomminucation hang.
429!--       If necessary, the coupler will be called at the beginning of the
430!--       next restart run.
431          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
[102]432             CALL surface_coupler
433             time_coupling = time_coupling - dt_coupling
434          ENDDO
435       ENDIF
436
437!
[46]438!--    Execute user-defined actions
439       CALL user_actions( 'after_integration' )
440
441!
[1]442!--    If Galilei transformation is used, determine the distance that the
443!--    model has moved so far
444       IF ( galilei_transformation )  THEN
445          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
446          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
447       ENDIF
448
449!
450!--    Check, if restart is necessary (because cpu-time is expiring or
451!--    because it is forced by user) and set stop flag
[108]452!--    This call is skipped if the remote model has already initiated a restart.
453       IF ( .NOT. terminate_run )  CALL check_for_restart
[1]454
455!
456!--    Carry out statistical analysis and output at the requested output times.
457!--    The MOD function is used for calculating the output time counters (like
458!--    time_dopr) in order to regard a possible decrease of the output time
459!--    interval in case of restart runs
460
461!
462!--    Set a flag indicating that so far no statistics have been created
463!--    for this time step
464       flow_statistics_called = .FALSE.
465
466!
467!--    If required, call flow_statistics for averaging in time
468       IF ( averaging_interval_pr /= 0.0  .AND.  &
469            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
470            simulated_time >= skip_time_dopr )  THEN
471          time_dopr_av = time_dopr_av + dt_3d
472          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
473             do_sum = .TRUE.
474             time_dopr_av = MOD( time_dopr_av, &
475                                    MAX( dt_averaging_input_pr, dt_3d ) )
476          ENDIF
477       ENDIF
478       IF ( do_sum )  CALL flow_statistics
479
480!
[410]481!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
[1]482       IF ( averaging_interval /= 0.0  .AND.                                &
483            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
484            simulated_time >= skip_time_data_output_av )                    &
485       THEN
486          time_do_sla = time_do_sla + dt_3d
487          IF ( time_do_sla >= dt_averaging_input )  THEN
488             CALL sum_up_3d_data
489             average_count_3d = average_count_3d + 1
490             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
491          ENDIF
492       ENDIF
493
494!
495!--    Calculate spectra for time averaging
496       IF ( averaging_interval_sp /= 0.0  .AND.  &
497            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
498            simulated_time >= skip_time_dosp )  THEN
499          time_dosp_av = time_dosp_av + dt_3d
500          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
501             CALL calc_spectra
502             time_dosp_av = MOD( time_dosp_av, &
503                                 MAX( dt_averaging_input_pr, dt_3d ) )
504          ENDIF
505       ENDIF
506
507!
508!--    Computation and output of run control parameters.
[1001]509!--    This is also done whenever perturbations have been imposed
[1]510       IF ( time_run_control >= dt_run_control  .OR.                     &
[1001]511            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
[1]512       THEN
513          CALL run_control
514          IF ( time_run_control >= dt_run_control )  THEN
515             time_run_control = MOD( time_run_control, &
516                                     MAX( dt_run_control, dt_3d ) )
517          ENDIF
518       ENDIF
519
520!
521!--    Profile output (ASCII) on file
522       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
523          CALL print_1d
524          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
525                                                           dt_3d ) )
526       ENDIF
527
528!
529!--    Graphic output for PROFIL
530       IF ( time_dopr >= dt_dopr )  THEN
531          IF ( dopr_n /= 0 )  CALL data_output_profiles
532          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
533          time_dopr_av = 0.0    ! due to averaging (see above)
534       ENDIF
535
536!
537!--    Graphic output for time series
538       IF ( time_dots >= dt_dots )  THEN
[48]539          CALL data_output_tseries
[1]540          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
541       ENDIF
542
543!
544!--    Output of spectra (formatted for use with PROFIL), in case of no
545!--    time averaging, spectra has to be calculated before
546       IF ( time_dosp >= dt_dosp )  THEN
547          IF ( average_count_sp == 0 )  CALL calc_spectra
548          CALL data_output_spectra
549          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
550       ENDIF
551
552!
553!--    2d-data output (cross-sections)
554       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
555          CALL data_output_2d( 'xy', 0 )
556          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
557       ENDIF
558       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
559          CALL data_output_2d( 'xz', 0 )
560          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
561       ENDIF
562       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
563          CALL data_output_2d( 'yz', 0 )
564          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
565       ENDIF
566
567!
568!--    3d-data output (volume data)
569       IF ( time_do3d >= dt_do3d )  THEN
570          CALL data_output_3d( 0 )
571          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
572       ENDIF
573
574!
[410]575!--    masked data output
576       DO  mid = 1, masks
577          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
578             CALL data_output_mask( 0 )
579             time_domask(mid) = MOD( time_domask(mid),  &
580                                     MAX( dt_domask(mid), dt_3d ) )
581          ENDIF
582       ENDDO
583
584!
585!--    Output of time-averaged 2d/3d/masked data
[1]586       IF ( time_do_av >= dt_data_output_av )  THEN
587          CALL average_3d_data
588          CALL data_output_2d( 'xy', 1 )
589          CALL data_output_2d( 'xz', 1 )
590          CALL data_output_2d( 'yz', 1 )
591          CALL data_output_3d( 1 )
[410]592          DO  mid = 1, masks
593             CALL data_output_mask( 1 )
594          ENDDO
[1]595          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
596       ENDIF
597
598!
599!--    Output of particle time series
[253]600       IF ( particle_advection )  THEN
601          IF ( time_dopts >= dt_dopts  .OR. &
602               ( simulated_time >= particle_advection_start  .AND. &
[849]603                 first_call_lpm ) )  THEN
[253]604             CALL data_output_ptseries
605             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
606          ENDIF
[1]607       ENDIF
608
609!
610!--    Output of dvrp-graphics (isosurface, particles, slicer)
611#if defined( __dvrp_graphics )
612       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
613#endif
614       IF ( time_dvrp >= dt_dvrp )  THEN
615          CALL data_output_dvrp
616          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
617       ENDIF
618#if defined( __dvrp_graphics )
619       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
620#endif
621
622!
623!--    If required, set the heat flux for the next time step at a random value
624       IF ( constant_heatflux  .AND.  random_heatflux )  CALL disturb_heatflux
625
626!
627!--    Execute user-defined actions
628       CALL user_actions( 'after_timestep' )
629
630       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
631
[667]632
[1]633    ENDDO   ! time loop
634
635#if defined( __dvrp_graphics )
636    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
637#endif
638
639 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.