source: palm/trunk/SOURCE/time_integration.f90 @ 108

Last change on this file since 108 was 108, checked in by letzel, 17 years ago
  • Improved coupler: evaporation - salinity-flux coupling for humidity = .T.,

avoid MPI hangs when coupled runs terminate, add DOC/app/chapter_3.8;

  • Optional calculation of km and kh from initial TKE e_init;
  • Default initialization of km,kh = 0.00001 for ocean = .T.;
  • Allow data_output_pr= q, wq, w"q", w*q* for humidity = .T.;
  • Bugfix: Rayleigh damping for ocean fixed.
  • Property svn:keywords set to Id
File size: 18.4 KB
RevLine 
[1]1 SUBROUTINE time_integration
2
3!------------------------------------------------------------------------------!
4! Actual revisions:
5! -----------------
[106]6! Call of new routine surface_coupler,
7! presure solver is called after the first Runge-Kutta substep instead of the
8! last in case that call_psolver_at_all_substeps = .F.; for this case, the
9! random perturbation has to be added to the velocity fields also after the
10! first substep
[108]11! modifications to terminate coupled runs
12!
[77]13!
14! Former revisions:
15! -----------------
16! $Id: time_integration.f90 108 2007-08-24 15:10:38Z letzel $
17!
[98]18! 97 2007-06-21 08:23:15Z raasch
19! diffusivities is called with argument rho in case of ocean runs,
20! new argument pt_/prho_reference in calls of diffusivities,
21! ghostpoint exchange for salinity and density
22!
[90]23! 87 2007-05-22 15:46:47Z raasch
24! var_hom renamed pr_palm
25!
[77]26! 75 2007-03-22 09:54:05Z raasch
[46]27! Move call of user_actions( 'after_integration' ) below increment of times
[63]28! and counters,
29! calls of prognostic_equations_.. changed to .._noopt, .._cache, and
[75]30! .._vector, these calls are now controlled by switch loop_optimization,
31! uxrp, vynp eliminated, 2nd+3rd argument removed from exchange horiz,
32! moisture renamed humidity
[1]33!
[3]34! RCS Log replace by Id keyword, revision history cleaned up
35!
[1]36! Revision 1.8  2006/08/22 14:16:05  raasch
37! Disturbances are imposed only for the last Runge-Kutta-substep
38!
39! Revision 1.2  2004/04/30 13:03:40  raasch
40! decalpha-specific warning removed, routine name changed to time_integration,
41! particle advection is carried out only once during the intermediate steps,
42! impulse_advec renamed momentum_advec
43!
44! Revision 1.1  1997/08/11 06:19:04  raasch
45! Initial revision
46!
47!
48! Description:
49! ------------
50! Integration in time of the model equations, statistical analysis and graphic
51! output
52!------------------------------------------------------------------------------!
53
54    USE arrays_3d
55    USE averaging
56    USE control_parameters
57    USE cpulog
58#if defined( __dvrp_graphics )
59    USE DVRP
60#endif
61    USE grid_variables
62    USE indices
63    USE interaction_droplets_ptq_mod
64    USE interfaces
65    USE particle_attributes
66    USE pegrid
67    USE prognostic_equations_mod
68    USE statistics
69    USE user_actions_mod
70
71    IMPLICIT NONE
72
73    CHARACTER (LEN=9) ::  time_to_string
74    INTEGER ::  i, j, k
75
76!
77!-- At the beginning of a simulation determine the time step as well as
78!-- determine and print out the run control parameters
79    IF ( simulated_time == 0.0 )  CALL timestep
80    CALL run_control
81
[108]82!
83!-- Data exchange between coupled models in case that a call has been omitted
84!-- at the end of the previous run of a job chain.
85    IF ( coupling_mode /= 'uncoupled' )  THEN
86!
87!--    In case of model termination initiated by the local model the coupler
88!--    must not be called because this would again cause an MPI hang.
89       DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
90          CALL surface_coupler
91          time_coupling = time_coupling - dt_coupling
92       ENDDO
93    ENDIF
94
95
[1]96#if defined( __dvrp_graphics )
97!
98!-- Time measurement with dvrp software 
99    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
100#endif
101
102!
103!-- Start of the time loop
104    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
105                .NOT. terminate_run )
106
107       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
108
109!
110!--    Determine size of next time step
111       IF ( simulated_time /= 0.0 )  CALL timestep
112
113!
114!--    Execute the user-defined actions
115       CALL user_actions( 'before_timestep' )
116
117!
118!--    Start of intermediate step loop
119       intermediate_timestep_count = 0
120       DO  WHILE ( intermediate_timestep_count < &
121                   intermediate_timestep_count_max )
122
123          intermediate_timestep_count = intermediate_timestep_count + 1
124
125!
126!--       Set the steering factors for the prognostic equations which depend
127!--       on the timestep scheme
128          CALL timestep_scheme_steering
129
130!
131!--       Solve the prognostic equations. A fast cache optimized version with
132!--       only one single loop is used in case of Piascek-Williams advection
133!--       scheme. NEC vector machines use a different version, because
134!--       in the other versions a good vectorization is prohibited due to
135!--       inlining problems.
[63]136          IF ( loop_optimization == 'vector' )  THEN
137             CALL prognostic_equations_vector
[1]138          ELSE
139             IF ( momentum_advec == 'ups-scheme'  .OR.  &
140                  scalar_advec == 'ups-scheme'   .OR.  &
141                  scalar_advec == 'bc-scheme' )        &
142             THEN
[63]143                CALL prognostic_equations_noopt
[1]144             ELSE
[63]145                CALL prognostic_equations_cache
[1]146             ENDIF
147          ENDIF
148
149!
150!--       Particle advection (only once during intermediate steps, because
151!--       it uses an Euler-step)
[63]152          IF ( particle_advection  .AND.                         &
153               simulated_time >= particle_advection_start  .AND. &
[1]154               intermediate_timestep_count == 1 )  THEN
155             CALL advec_particles
156             first_call_advec_particles = .FALSE.
157          ENDIF
158
159!
160!--       Interaction of droplets with temperature and specific humidity.
161!--       Droplet condensation and evaporation is calculated within
162!--       advec_particles.
163          IF ( cloud_droplets  .AND.  &
164               intermediate_timestep_count == intermediate_timestep_count_max )&
165          THEN
166             CALL interaction_droplets_ptq
167          ENDIF
168
169!
170!--       Exchange of ghost points (lateral boundary conditions)
171          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
[75]172          CALL exchange_horiz( u_p )
173          CALL exchange_horiz( v_p )
174          CALL exchange_horiz( w_p )
175          CALL exchange_horiz( pt_p )
176          IF ( .NOT. constant_diffusion       )  CALL exchange_horiz( e_p )
[95]177          IF ( ocean )  THEN
178             CALL exchange_horiz( sa_p )
179             CALL exchange_horiz( rho )
180          ENDIF
[75]181          IF ( humidity  .OR.  passive_scalar )  CALL exchange_horiz( q_p )
[1]182          IF ( cloud_droplets )  THEN
[75]183             CALL exchange_horiz( ql )
184             CALL exchange_horiz( ql_c )
185             CALL exchange_horiz( ql_v )
186             CALL exchange_horiz( ql_vp )
[1]187          ENDIF
188
189          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
190
191!
192!--       Apply time filter in case of leap-frog timestep
193          IF ( tsc(2) == 2.0  .AND.  timestep_scheme(1:8) == 'leapfrog' )  THEN
194             CALL asselin_filter
195          ENDIF
196
197!
198!--       Boundary conditions for the prognostic quantities (except of the
199!--       velocities at the outflow in case of a non-cyclic lateral wall)
200          CALL boundary_conds( 'main' )
201
202!
[73]203!--       Swap the time levels in preparation for the next time step.
204          CALL swap_timelevel
205
206!
[1]207!--       Temperature offset must be imposed at cyclic boundaries in x-direction
208!--       when a sloping surface is used
209          IF ( sloping_surface )  THEN
210             IF ( nxl ==  0 )  pt(:,:,nxl-1) = pt(:,:,nxl-1) - pt_slope_offset
211             IF ( nxr == nx )  pt(:,:,nxr+1) = pt(:,:,nxr+1) + pt_slope_offset
212          ENDIF
213
214!
215!--       Impose a random perturbation on the horizontal velocity field
[106]216          IF ( create_disturbances  .AND.                                      &
217               ( call_psolver_at_all_substeps  .AND.                           &
[1]218               intermediate_timestep_count == intermediate_timestep_count_max )&
[106]219          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
220               intermediate_timestep_count == 1 ) )                            &
[1]221          THEN
222             time_disturb = time_disturb + dt_3d
223             IF ( time_disturb >= dt_disturb )  THEN
[87]224                IF ( hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
[75]225                   CALL disturb_field( nzb_u_inner, tend, u )
226                   CALL disturb_field( nzb_v_inner, tend, v )
[1]227                ELSEIF ( bc_lr /= 'cyclic'  .OR.  bc_ns /= 'cyclic' )  THEN
228!
229!--                Runs with a non-cyclic lateral wall need perturbations
230!--                near the inflow throughout the whole simulation
231                   dist_range = 1
[75]232                   CALL disturb_field( nzb_u_inner, tend, u )
233                   CALL disturb_field( nzb_v_inner, tend, v )
[1]234                   dist_range = 0
235                ENDIF
236                time_disturb = time_disturb - dt_disturb
237             ENDIF
238          ENDIF
239
240!
241!--       Reduce the velocity divergence via the equation for perturbation
242!--       pressure.
[106]243          IF ( intermediate_timestep_count == 1  .OR. &
244                call_psolver_at_all_substeps )  THEN
[1]245             CALL pres
246          ENDIF
247
248!
249!--       If required, compute virtuell potential temperature
[75]250          IF ( humidity ) CALL compute_vpt
[1]251
252!
253!--       If required, compute liquid water content
254          IF ( cloud_physics ) CALL calc_liquid_water_content
255
256!
257!--       Compute the diffusion quantities
258          IF ( .NOT. constant_diffusion )  THEN
259
260!
261!--          First the vertical fluxes in the Prandtl layer are being computed
262             IF ( prandtl_layer )  THEN
263                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'start' )
264                CALL prandtl_fluxes
265                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'stop' )
266             ENDIF
267
268!
269!--          Compute the diffusion coefficients
270             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
[75]271             IF ( .NOT. humidity ) THEN
[97]272                IF ( ocean )  THEN
273                   CALL diffusivities( rho, prho_reference )
274                ELSE
275                   CALL diffusivities( pt, pt_reference )
276                ENDIF
[1]277             ELSE
[97]278                CALL diffusivities( vpt, pt_reference )
[1]279             ENDIF
280             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
281
282          ENDIF
283
284       ENDDO   ! Intermediate step loop
285
286!
287!--    Increase simulation time and output times
288       current_timestep_number = current_timestep_number + 1
289       simulated_time     = simulated_time   + dt_3d
290       simulated_time_chr = time_to_string( simulated_time )
291       IF ( simulated_time >= skip_time_data_output_av )  THEN
292          time_do_av         = time_do_av       + dt_3d
293       ENDIF
294       IF ( simulated_time >= skip_time_do2d_xy )  THEN
295          time_do2d_xy       = time_do2d_xy     + dt_3d
296       ENDIF
297       IF ( simulated_time >= skip_time_do2d_xz )  THEN
298          time_do2d_xz       = time_do2d_xz     + dt_3d
299       ENDIF
300       IF ( simulated_time >= skip_time_do2d_yz )  THEN
301          time_do2d_yz       = time_do2d_yz     + dt_3d
302       ENDIF
303       IF ( simulated_time >= skip_time_do3d    )  THEN
304          time_do3d          = time_do3d        + dt_3d
305       ENDIF
306       time_dvrp          = time_dvrp        + dt_3d
307       IF ( simulated_time >= skip_time_dosp )  THEN
308          time_dosp       = time_dosp        + dt_3d
309       ENDIF
310       time_dots          = time_dots        + dt_3d
311       IF ( .NOT. first_call_advec_particles )  THEN
312          time_dopts      = time_dopts       + dt_3d
313       ENDIF
314       IF ( simulated_time >= skip_time_dopr )  THEN
315          time_dopr       = time_dopr        + dt_3d
316       ENDIF
317       time_dopr_listing          = time_dopr_listing        + dt_3d
318       time_run_control   = time_run_control + dt_3d
319
320!
[102]321!--    Data exchange between coupled models
322       IF ( coupling_mode /= 'uncoupled' )  THEN
323          time_coupling = time_coupling + dt_3d
[108]324!
325!--       In case of model termination initiated by the local model
326!--       (terminate_coupled > 0), the coupler must be skipped because it would
327!--       cause an MPI intercomminucation hang.
328!--       If necessary, the coupler will be called at the beginning of the
329!--       next restart run.
330          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
[102]331             CALL surface_coupler
332             time_coupling = time_coupling - dt_coupling
333          ENDDO
334       ENDIF
335
336!
[46]337!--    Execute user-defined actions
338       CALL user_actions( 'after_integration' )
339
340!
[1]341!--    If Galilei transformation is used, determine the distance that the
342!--    model has moved so far
343       IF ( galilei_transformation )  THEN
344          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
345          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
346       ENDIF
347
348!
349!--    Check, if restart is necessary (because cpu-time is expiring or
350!--    because it is forced by user) and set stop flag
[108]351!--    This call is skipped if the remote model has already initiated a restart.
352       IF ( .NOT. terminate_run )  CALL check_for_restart
[1]353
354!
355!--    Carry out statistical analysis and output at the requested output times.
356!--    The MOD function is used for calculating the output time counters (like
357!--    time_dopr) in order to regard a possible decrease of the output time
358!--    interval in case of restart runs
359
360!
361!--    Set a flag indicating that so far no statistics have been created
362!--    for this time step
363       flow_statistics_called = .FALSE.
364
365!
366!--    If required, call flow_statistics for averaging in time
367       IF ( averaging_interval_pr /= 0.0  .AND.  &
368            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
369            simulated_time >= skip_time_dopr )  THEN
370          time_dopr_av = time_dopr_av + dt_3d
371          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
372             do_sum = .TRUE.
373             time_dopr_av = MOD( time_dopr_av, &
374                                    MAX( dt_averaging_input_pr, dt_3d ) )
375          ENDIF
376       ENDIF
377       IF ( do_sum )  CALL flow_statistics
378
379!
380!--    Sum-up 3d-arrays for later output of time-averaged data
381       IF ( averaging_interval /= 0.0  .AND.                                &
382            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
383            simulated_time >= skip_time_data_output_av )                    &
384       THEN
385          time_do_sla = time_do_sla + dt_3d
386          IF ( time_do_sla >= dt_averaging_input )  THEN
387             CALL sum_up_3d_data
388             average_count_3d = average_count_3d + 1
389             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
390          ENDIF
391       ENDIF
392
393!
394!--    Calculate spectra for time averaging
395       IF ( averaging_interval_sp /= 0.0  .AND.  &
396            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
397            simulated_time >= skip_time_dosp )  THEN
398          time_dosp_av = time_dosp_av + dt_3d
399          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
400             CALL calc_spectra
401             time_dosp_av = MOD( time_dosp_av, &
402                                 MAX( dt_averaging_input_pr, dt_3d ) )
403          ENDIF
404       ENDIF
405
406!
407!--    Computation and output of run control parameters.
408!--    This is also done whenever the time step has changed or perturbations
409!--    have been imposed
410       IF ( time_run_control >= dt_run_control  .OR.                     &
411            ( dt_changed  .AND.  timestep_scheme(1:5) /= 'runge' )  .OR. &
412            disturbance_created )                                        &
413       THEN
414          CALL run_control
415          IF ( time_run_control >= dt_run_control )  THEN
416             time_run_control = MOD( time_run_control, &
417                                     MAX( dt_run_control, dt_3d ) )
418          ENDIF
419       ENDIF
420
421!
422!--    Profile output (ASCII) on file
423       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
424          CALL print_1d
425          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
426                                                           dt_3d ) )
427       ENDIF
428
429!
430!--    Graphic output for PROFIL
431       IF ( time_dopr >= dt_dopr )  THEN
432          IF ( dopr_n /= 0 )  CALL data_output_profiles
433          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
434          time_dopr_av = 0.0    ! due to averaging (see above)
435       ENDIF
436
437!
438!--    Graphic output for time series
439       IF ( time_dots >= dt_dots )  THEN
[48]440          CALL data_output_tseries
[1]441          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
442       ENDIF
443
444!
445!--    Output of spectra (formatted for use with PROFIL), in case of no
446!--    time averaging, spectra has to be calculated before
447       IF ( time_dosp >= dt_dosp )  THEN
448          IF ( average_count_sp == 0 )  CALL calc_spectra
449          CALL data_output_spectra
450          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
451       ENDIF
452
453!
454!--    2d-data output (cross-sections)
455       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
456          CALL data_output_2d( 'xy', 0 )
457          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
458       ENDIF
459       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
460          CALL data_output_2d( 'xz', 0 )
461          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
462       ENDIF
463       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
464          CALL data_output_2d( 'yz', 0 )
465          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
466       ENDIF
467
468!
469!--    3d-data output (volume data)
470       IF ( time_do3d >= dt_do3d )  THEN
471          CALL data_output_3d( 0 )
472          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
473       ENDIF
474
475!
476!--    Output of time-averaged 2d/3d-data
477       IF ( time_do_av >= dt_data_output_av )  THEN
478          CALL average_3d_data
479          CALL data_output_2d( 'xy', 1 )
480          CALL data_output_2d( 'xz', 1 )
481          CALL data_output_2d( 'yz', 1 )
482          CALL data_output_3d( 1 )
483          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
484       ENDIF
485
486!
487!--    Output of particle time series
488       IF ( time_dopts >= dt_dopts  .OR. &
489            ( simulated_time >= particle_advection_start  .AND. &
490              first_call_advec_particles ) )  THEN
491          CALL data_output_ptseries
492          time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
493       ENDIF
494
495!
496!--    Output of dvrp-graphics (isosurface, particles, slicer)
497#if defined( __dvrp_graphics )
498       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
499#endif
500       IF ( time_dvrp >= dt_dvrp )  THEN
501          CALL data_output_dvrp
502          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
503       ENDIF
504#if defined( __dvrp_graphics )
505       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
506#endif
507
508!
509!--    If required, set the heat flux for the next time step at a random value
510       IF ( constant_heatflux  .AND.  random_heatflux )  CALL disturb_heatflux
511
512!
513!--    Execute user-defined actions
514       CALL user_actions( 'after_timestep' )
515
516       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
517
518    ENDDO   ! time loop
519
520#if defined( __dvrp_graphics )
521    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
522#endif
523
524 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.