[1850] | 1 | !> @file surface_layer_fluxes_mod.f90 |
---|
[4562] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1691] | 4 | ! |
---|
[4562] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1691] | 8 | ! |
---|
[4562] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1691] | 12 | ! |
---|
[4562] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1691] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4562] | 17 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 18 | ! |
---|
[2696] | 19 | ! |
---|
[1691] | 20 | ! Current revisions: |
---|
[4562] | 21 | ! ----------------- |
---|
[1758] | 22 | ! |
---|
[3745] | 23 | ! |
---|
[1692] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: surface_layer_fluxes_mod.f90 4562 2020-06-12 08:38:47Z pavelkrc $ |
---|
[4562] | 27 | ! File re-formatted to follow the PALM coding standard |
---|
| 28 | ! |
---|
| 29 | ! 4519 2020-05-05 17:33:30Z suehring |
---|
[4519] | 30 | ! Add missing computation of passive scalar scaling parameter |
---|
[4562] | 31 | ! |
---|
[4519] | 32 | ! 4370 2020-01-10 14:00:44Z raasch |
---|
[4562] | 33 | ! Bugfix: openacc porting for vector version of OL calculation added |
---|
| 34 | ! |
---|
[4370] | 35 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4562] | 36 | ! Vector version for calculation of Obukhov length via Newton iteration added |
---|
| 37 | ! |
---|
[4366] | 38 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4562] | 39 | ! Calculation of diagnostic-only 2-m potential temperature moved to diagnostic_output_quantities. |
---|
| 40 | ! |
---|
[4331] | 41 | ! 4298 2019-11-21 15:59:16Z suehring |
---|
[4562] | 42 | ! Calculation of 2-m temperature adjusted to the case the 2-m level is above the first grid point. |
---|
| 43 | ! |
---|
[4298] | 44 | ! 4258 2019-10-07 13:29:08Z suehring |
---|
[4258] | 45 | ! Initialization of Obukhov lenght also at vertical surfaces (if allocated). |
---|
[4562] | 46 | ! |
---|
[4258] | 47 | ! 4237 2019-09-25 11:33:42Z knoop |
---|
[4237] | 48 | ! Added missing OpenMP directives |
---|
[4562] | 49 | ! |
---|
[4237] | 50 | ! 4186 2019-08-23 16:06:14Z suehring |
---|
[4562] | 51 | ! - To enable limitation of Obukhov length, move it before exit-cycle construct. |
---|
| 52 | ! Further, change the limit to 10E-5 in order to get rid-off unrealistic peaks in the heat fluxes |
---|
| 53 | ! during nighttime |
---|
[4186] | 54 | ! - Unused variable removed |
---|
[4562] | 55 | ! |
---|
[4186] | 56 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 57 | ! Corrected "Former revisions" section |
---|
[4562] | 58 | ! |
---|
[4182] | 59 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
[3987] | 60 | ! Introduce alternative switch for debug output during timestepping |
---|
[4562] | 61 | ! |
---|
[3987] | 62 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[4562] | 63 | ! Changes related to global restructuring of location messages and introduction of additional debug |
---|
| 64 | ! messages |
---|
| 65 | ! |
---|
[3885] | 66 | ! 3881 2019-04-10 09:31:22Z suehring |
---|
[3881] | 67 | ! Assure that Obukhov length does not become zero |
---|
[4562] | 68 | ! |
---|
[3881] | 69 | ! 3834 2019-03-28 15:40:15Z forkel |
---|
[4562] | 70 | ! Added USE chem_gasphase_mod |
---|
| 71 | ! |
---|
[3833] | 72 | ! 3787 2019-03-07 08:43:54Z raasch |
---|
[4562] | 73 | ! Unused variables removed |
---|
| 74 | ! |
---|
[3787] | 75 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
[4562] | 76 | ! Bugfix, missing calculation of 10cm temperature at vertical building walls, required for indoor |
---|
| 77 | ! model |
---|
| 78 | ! |
---|
[3745] | 79 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
[3685] | 80 | ! Some interface calls moved to module_interface + cleanup |
---|
[4562] | 81 | ! |
---|
[3685] | 82 | ! 3668 2019-01-14 12:49:24Z maronga |
---|
[3668] | 83 | ! Removed methods "circular" and "lookup" |
---|
[4562] | 84 | ! |
---|
[3668] | 85 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 86 | ! OpenACC port for SPEC |
---|
[1692] | 87 | ! |
---|
[4182] | 88 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 89 | ! Initial revision |
---|
| 90 | ! |
---|
| 91 | ! |
---|
[1691] | 92 | ! Description: |
---|
| 93 | ! ------------ |
---|
[4562] | 94 | !> Diagnostic computation of vertical fluxes in the constant flux layer from the values of the |
---|
| 95 | !> variables at grid point k=1 based on Newton iteration. |
---|
[1691] | 96 | !> |
---|
[4562] | 97 | !> @todo (Re)move large_scale_forcing actions |
---|
| 98 | !> @todo Check/optimize OpenMP directives |
---|
| 99 | !> @todo Simplify if conditions (which flux need to be computed in which case) |
---|
| 100 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 101 | MODULE surface_layer_fluxes_mod |
---|
| 102 | |
---|
[4562] | 103 | USE arrays_3d, & |
---|
| 104 | ONLY: d_exner, & |
---|
| 105 | drho_air_zw, & |
---|
| 106 | e, & |
---|
| 107 | kh, & |
---|
| 108 | nc, & |
---|
| 109 | nr, & |
---|
| 110 | pt, & |
---|
| 111 | q, & |
---|
| 112 | ql, & |
---|
| 113 | qc, & |
---|
| 114 | qr, & |
---|
| 115 | s, & |
---|
| 116 | u, & |
---|
| 117 | v, & |
---|
| 118 | vpt, & |
---|
| 119 | w, & |
---|
| 120 | zu, & |
---|
| 121 | zw, & |
---|
| 122 | rho_air_zw |
---|
[1691] | 123 | |
---|
[3274] | 124 | |
---|
[4562] | 125 | USE basic_constants_and_equations_mod, & |
---|
| 126 | ONLY: g, & |
---|
| 127 | kappa, & |
---|
| 128 | lv_d_cp, & |
---|
| 129 | pi, & |
---|
| 130 | rd_d_rv |
---|
| 131 | |
---|
| 132 | USE chem_gasphase_mod, & |
---|
[3833] | 133 | ONLY: nvar |
---|
| 134 | |
---|
[4562] | 135 | USE chem_modules, & |
---|
[3834] | 136 | ONLY: constant_csflux |
---|
[2696] | 137 | |
---|
[1691] | 138 | USE cpulog |
---|
| 139 | |
---|
[4562] | 140 | USE control_parameters, & |
---|
| 141 | ONLY: air_chemistry, & |
---|
| 142 | cloud_droplets, & |
---|
| 143 | constant_heatflux, & |
---|
| 144 | constant_scalarflux, & |
---|
| 145 | constant_waterflux, & |
---|
| 146 | coupling_mode, & |
---|
| 147 | debug_output_timestep, & |
---|
| 148 | humidity, & |
---|
| 149 | ibc_e_b, & |
---|
| 150 | ibc_pt_b, & |
---|
| 151 | indoor_model, & |
---|
| 152 | land_surface, & |
---|
| 153 | large_scale_forcing, & |
---|
| 154 | loop_optimization, & |
---|
| 155 | lsf_surf, & |
---|
| 156 | message_string, & |
---|
| 157 | neutral, & |
---|
| 158 | passive_scalar, & |
---|
| 159 | pt_surface, & |
---|
| 160 | q_surface, & |
---|
| 161 | run_coupled, & |
---|
| 162 | surface_pressure, & |
---|
| 163 | simulated_time, & |
---|
| 164 | time_since_reference_point, & |
---|
| 165 | urban_surface, & |
---|
| 166 | use_free_convection_scaling, & |
---|
| 167 | zeta_max, & |
---|
| 168 | zeta_min |
---|
[1691] | 169 | |
---|
[4562] | 170 | USE grid_variables, & |
---|
| 171 | ONLY: dx, & |
---|
| 172 | dy |
---|
[2232] | 173 | |
---|
[4562] | 174 | USE indices, & |
---|
[4298] | 175 | ONLY: nzt |
---|
[1691] | 176 | |
---|
| 177 | USE kinds |
---|
| 178 | |
---|
[4562] | 179 | USE bulk_cloud_model_mod, & |
---|
| 180 | ONLY: bulk_cloud_model, & |
---|
| 181 | microphysics_morrison, & |
---|
| 182 | microphysics_seifert |
---|
[3274] | 183 | |
---|
[1691] | 184 | USE pegrid |
---|
| 185 | |
---|
[4562] | 186 | USE land_surface_model_mod, & |
---|
| 187 | ONLY: aero_resist_kray, & |
---|
| 188 | skip_time_do_lsm |
---|
[2011] | 189 | |
---|
[4562] | 190 | USE surface_mod, & |
---|
| 191 | ONLY : surf_def_h, & |
---|
| 192 | surf_def_v, & |
---|
| 193 | surf_lsm_h, & |
---|
| 194 | surf_lsm_v, & |
---|
| 195 | surf_type, & |
---|
| 196 | surf_usm_h, & |
---|
| 197 | surf_usm_v |
---|
[1691] | 198 | |
---|
[4562] | 199 | |
---|
[1691] | 200 | IMPLICIT NONE |
---|
| 201 | |
---|
[4562] | 202 | INTEGER(iwp) :: i !< loop index x direction |
---|
| 203 | INTEGER(iwp) :: j !< loop index y direction |
---|
| 204 | INTEGER(iwp) :: k !< loop index z direction |
---|
| 205 | INTEGER(iwp) :: l !< loop index for surf type |
---|
[1691] | 206 | |
---|
[4562] | 207 | LOGICAL :: coupled_run !< Flag for coupled atmosphere-ocean runs |
---|
| 208 | LOGICAL :: downward = .FALSE. !< Flag indicating downward-facing horizontal surface |
---|
| 209 | LOGICAL :: mom_uv = .FALSE. !< Flag indicating calculation of usvs and vsus at vertical surfaces |
---|
| 210 | LOGICAL :: mom_w = .FALSE. !< Flag indicating calculation of wsus and wsvs at vertical surfaces |
---|
| 211 | LOGICAL :: mom_tke = .FALSE. !< Flag indicating calculation of momentum fluxes at vertical surfaces used for TKE production |
---|
| 212 | LOGICAL :: surf_vertical !< Flag indicating vertical surfaces |
---|
[1691] | 213 | |
---|
[4562] | 214 | REAL(wp) :: e_s !< Saturation water vapor pressure |
---|
| 215 | REAL(wp) :: ol_max = 1.0E6_wp !< Maximum Obukhov length |
---|
| 216 | REAL(wp) :: z_mo !< Height of the constant flux layer where MOST is assumed |
---|
[1691] | 217 | |
---|
[4562] | 218 | TYPE(surf_type), POINTER :: surf !< surf-type array, used to generalize subroutines |
---|
[1691] | 219 | |
---|
[2232] | 220 | |
---|
[1691] | 221 | SAVE |
---|
| 222 | |
---|
| 223 | PRIVATE |
---|
| 224 | |
---|
[4562] | 225 | PUBLIC init_surface_layer_fluxes, & |
---|
| 226 | phi_m, & |
---|
| 227 | psi_h, & |
---|
| 228 | psi_m, & |
---|
[4331] | 229 | surface_layer_fluxes |
---|
[1691] | 230 | |
---|
| 231 | INTERFACE init_surface_layer_fluxes |
---|
| 232 | MODULE PROCEDURE init_surface_layer_fluxes |
---|
| 233 | END INTERFACE init_surface_layer_fluxes |
---|
| 234 | |
---|
[3130] | 235 | INTERFACE phi_m |
---|
| 236 | MODULE PROCEDURE phi_m |
---|
| 237 | END INTERFACE phi_m |
---|
| 238 | |
---|
[4331] | 239 | INTERFACE psi_h |
---|
| 240 | MODULE PROCEDURE psi_h |
---|
| 241 | END INTERFACE psi_h |
---|
| 242 | |
---|
| 243 | INTERFACE psi_m |
---|
| 244 | MODULE PROCEDURE psi_m |
---|
| 245 | END INTERFACE psi_m |
---|
| 246 | |
---|
[1691] | 247 | INTERFACE surface_layer_fluxes |
---|
| 248 | MODULE PROCEDURE surface_layer_fluxes |
---|
| 249 | END INTERFACE surface_layer_fluxes |
---|
| 250 | |
---|
| 251 | |
---|
| 252 | CONTAINS |
---|
| 253 | |
---|
| 254 | |
---|
[4562] | 255 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 256 | ! Description: |
---|
| 257 | ! ------------ |
---|
[4562] | 258 | !> Main routine to compute the surface fluxes. |
---|
| 259 | !--------------------------------------------------------------------------------------------------! |
---|
| 260 | SUBROUTINE surface_layer_fluxes |
---|
[1691] | 261 | |
---|
[4562] | 262 | IMPLICIT NONE |
---|
[1691] | 263 | |
---|
[3885] | 264 | |
---|
[4562] | 265 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'start' ) |
---|
[3885] | 266 | |
---|
[4562] | 267 | surf_vertical = .FALSE. !< flag indicating vertically orientated surface elements |
---|
| 268 | downward = .FALSE. !< flag indicating downward-facing surface elements |
---|
[1691] | 269 | ! |
---|
[4562] | 270 | !-- Derive potential temperature and specific humidity at first grid level from the fields pt and q |
---|
[2232] | 271 | ! |
---|
[4562] | 272 | !-- First call for horizontal default-type surfaces (l=0 - upward facing, l=1 - downward facing) |
---|
| 273 | DO l = 0, 1 |
---|
| 274 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
| 275 | surf => surf_def_h(l) |
---|
| 276 | CALL calc_pt_q |
---|
| 277 | IF ( .NOT. neutral ) THEN |
---|
| 278 | CALL calc_pt_surface |
---|
| 279 | IF ( humidity ) THEN |
---|
| 280 | CALL calc_q_surface |
---|
| 281 | CALL calc_vpt_surface |
---|
[3146] | 282 | ENDIF |
---|
[2696] | 283 | ENDIF |
---|
[4562] | 284 | ENDIF |
---|
| 285 | ENDDO |
---|
[2232] | 286 | ! |
---|
[4562] | 287 | !-- Call for natural-type horizontal surfaces |
---|
| 288 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 289 | surf => surf_lsm_h |
---|
| 290 | CALL calc_pt_q |
---|
| 291 | ENDIF |
---|
| 292 | |
---|
| 293 | ! |
---|
| 294 | !-- Call for urban-type horizontal surfaces |
---|
| 295 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 296 | surf => surf_usm_h |
---|
| 297 | CALL calc_pt_q |
---|
| 298 | ENDIF |
---|
| 299 | |
---|
| 300 | ! |
---|
| 301 | !-- Call for natural-type vertical surfaces |
---|
| 302 | DO l = 0, 3 |
---|
| 303 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 304 | surf => surf_lsm_v(l) |
---|
[2696] | 305 | CALL calc_pt_q |
---|
| 306 | ENDIF |
---|
| 307 | |
---|
[4562] | 308 | !-- Call for urban-type vertical surfaces |
---|
| 309 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 310 | surf => surf_usm_v(l) |
---|
[2696] | 311 | CALL calc_pt_q |
---|
| 312 | ENDIF |
---|
[4562] | 313 | ENDDO |
---|
[2696] | 314 | |
---|
| 315 | ! |
---|
[4562] | 316 | !-- First, calculate the new Obukhov length, then new friction velocity, followed by the new scaling |
---|
| 317 | !-- parameters (th*, q*, etc.), and the new surface fluxes, if required. Note, each routine is called |
---|
| 318 | !-- for different surface types. First call for default-type horizontal surfaces, for natural- and |
---|
| 319 | !-- urban-type surfaces. Note, here only upward-facing horizontal surfaces are treated. |
---|
[2696] | 320 | |
---|
[1691] | 321 | ! |
---|
[4562] | 322 | !-- Default-type upward-facing horizontal surfaces |
---|
| 323 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 324 | surf => surf_def_h(0) |
---|
| 325 | CALL calc_uvw_abs |
---|
| 326 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 327 | CALL calc_us |
---|
| 328 | CALL calc_scaling_parameters |
---|
| 329 | CALL calc_surface_fluxes |
---|
| 330 | ENDIF |
---|
| 331 | ! |
---|
| 332 | !-- Natural-type horizontal surfaces |
---|
| 333 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 334 | surf => surf_lsm_h |
---|
| 335 | CALL calc_uvw_abs |
---|
| 336 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 337 | CALL calc_us |
---|
| 338 | CALL calc_scaling_parameters |
---|
| 339 | CALL calc_surface_fluxes |
---|
| 340 | ENDIF |
---|
| 341 | ! |
---|
| 342 | !-- Urban-type horizontal surfaces |
---|
| 343 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 344 | surf => surf_usm_h |
---|
| 345 | CALL calc_uvw_abs |
---|
| 346 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 347 | CALL calc_us |
---|
| 348 | CALL calc_scaling_parameters |
---|
| 349 | CALL calc_surface_fluxes |
---|
| 350 | ! |
---|
| 351 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 352 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
| 353 | ENDIF |
---|
[3668] | 354 | |
---|
[2232] | 355 | ! |
---|
[4562] | 356 | !-- Treat downward-facing horizontal surfaces. Note, so far, these are always default type. |
---|
| 357 | !-- Stratification is not considered in this case, hence, no further distinction between different |
---|
| 358 | !-- most_method is required. |
---|
| 359 | IF ( surf_def_h(1)%ns >= 1 ) THEN |
---|
| 360 | downward = .TRUE. |
---|
| 361 | surf => surf_def_h(1) |
---|
| 362 | CALL calc_uvw_abs |
---|
| 363 | CALL calc_us |
---|
| 364 | CALL calc_surface_fluxes |
---|
| 365 | downward = .FALSE. |
---|
| 366 | ENDIF |
---|
[1691] | 367 | ! |
---|
[4562] | 368 | !-- Calculate surfaces fluxes at vertical surfaces for momentum and subgrid-scale TKE. No stability |
---|
| 369 | !-- is considered. Therefore, scaling parameters and Obukhov length do not need to be calculated and |
---|
| 370 | !-- no distinction in 'circular', 'Newton' or 'lookup' is necessary so far. Note, this will change |
---|
| 371 | !-- if stability is once considered. |
---|
| 372 | surf_vertical = .TRUE. |
---|
[2232] | 373 | ! |
---|
[4562] | 374 | !-- Calculate horizontal momentum fluxes at north- and south-facing surfaces(usvs). |
---|
| 375 | !-- For default-type surfaces |
---|
| 376 | mom_uv = .TRUE. |
---|
| 377 | DO l = 0, 1 |
---|
| 378 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 379 | surf => surf_def_v(l) |
---|
[3744] | 380 | ! |
---|
[4562] | 381 | !-- Compute surface-parallel velocity |
---|
| 382 | CALL calc_uvw_abs_v_ugrid |
---|
[2232] | 383 | ! |
---|
[4562] | 384 | !-- Compute respective friction velocity on staggered grid |
---|
[1691] | 385 | CALL calc_us |
---|
[4562] | 386 | ! |
---|
| 387 | !-- Compute respective surface fluxes for momentum and TKE |
---|
[1691] | 388 | CALL calc_surface_fluxes |
---|
| 389 | ENDIF |
---|
[4562] | 390 | ENDDO |
---|
[2232] | 391 | ! |
---|
[4562] | 392 | !-- For natural-type surfaces. Please note, even though stability is not considered for the |
---|
| 393 | !-- calculation of momentum fluxes at vertical surfaces, scaling parameters and Obukhov length are |
---|
| 394 | !-- calculated nevertheless in this case. This is due to the requirement of ts in parameterization |
---|
| 395 | !-- of heat flux in land-surface model in case that aero_resist_kray is not true. |
---|
| 396 | IF ( .NOT. aero_resist_kray ) THEN |
---|
| 397 | DO l = 0, 1 |
---|
| 398 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 399 | surf => surf_lsm_v(l) |
---|
[2232] | 400 | ! |
---|
[4562] | 401 | !-- Compute surface-parallel velocity |
---|
| 402 | CALL calc_uvw_abs_v_ugrid |
---|
| 403 | ! |
---|
| 404 | !-- Compute Obukhov length |
---|
| 405 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 406 | ! |
---|
| 407 | !-- Compute respective friction velocity on staggered grid |
---|
| 408 | CALL calc_us |
---|
| 409 | ! |
---|
| 410 | !-- Compute scaling parameters |
---|
| 411 | CALL calc_scaling_parameters |
---|
| 412 | ! |
---|
| 413 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 414 | CALL calc_surface_fluxes |
---|
| 415 | ENDIF |
---|
| 416 | ENDDO |
---|
| 417 | ! |
---|
| 418 | !-- No ts is required, so scaling parameters and Obukhov length do not need to be computed. |
---|
| 419 | ELSE |
---|
[2232] | 420 | DO l = 0, 1 |
---|
[4562] | 421 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 422 | surf => surf_lsm_v(l) |
---|
[2232] | 423 | ! |
---|
| 424 | !-- Compute surface-parallel velocity |
---|
| 425 | CALL calc_uvw_abs_v_ugrid |
---|
| 426 | ! |
---|
| 427 | !-- Compute respective friction velocity on staggered grid |
---|
| 428 | CALL calc_us |
---|
| 429 | ! |
---|
| 430 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 431 | CALL calc_surface_fluxes |
---|
| 432 | ENDIF |
---|
| 433 | ENDDO |
---|
[4562] | 434 | ENDIF |
---|
[2232] | 435 | ! |
---|
[4562] | 436 | !-- For urban-type surfaces |
---|
| 437 | DO l = 0, 1 |
---|
| 438 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 439 | surf => surf_usm_v(l) |
---|
[2232] | 440 | ! |
---|
[4562] | 441 | !-- Compute surface-parallel velocity |
---|
| 442 | CALL calc_uvw_abs_v_ugrid |
---|
[2232] | 443 | ! |
---|
[4562] | 444 | !-- Compute respective friction velocity on staggered grid |
---|
| 445 | CALL calc_us |
---|
[2232] | 446 | ! |
---|
[4562] | 447 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 448 | CALL calc_surface_fluxes |
---|
[2232] | 449 | ! |
---|
[4562] | 450 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 451 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
| 452 | ENDIF |
---|
| 453 | ENDDO |
---|
[2232] | 454 | ! |
---|
[4562] | 455 | !-- Calculate horizontal momentum fluxes at east- and west-facing surfaces (vsus). |
---|
| 456 | !-- For default-type surfaces |
---|
| 457 | DO l = 2, 3 |
---|
| 458 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 459 | surf => surf_def_v(l) |
---|
[2232] | 460 | ! |
---|
[4562] | 461 | !-- Compute surface-parallel velocity |
---|
| 462 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 463 | ! |
---|
[4562] | 464 | !-- Compute respective friction velocity on staggered grid |
---|
| 465 | CALL calc_us |
---|
[2232] | 466 | ! |
---|
[4562] | 467 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 468 | CALL calc_surface_fluxes |
---|
[2232] | 469 | ENDIF |
---|
[4562] | 470 | ENDDO |
---|
[2232] | 471 | ! |
---|
[4562] | 472 | !-- For natural-type surfaces. Please note, even though stability is not considered for the |
---|
| 473 | !-- calculation of momentum fluxes at vertical surfaces, scaling parameters and Obukov length are |
---|
| 474 | !-- calculated nevertheless in this case. This is due to the requirement of ts in parameterization |
---|
| 475 | !-- of heat flux in land-surface model in case that aero_resist_kray is not true. |
---|
| 476 | IF ( .NOT. aero_resist_kray ) THEN |
---|
| 477 | DO l = 2, 3 |
---|
| 478 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 479 | surf => surf_lsm_v(l) |
---|
[2232] | 480 | ! |
---|
| 481 | !-- Compute surface-parallel velocity |
---|
[4562] | 482 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 483 | ! |
---|
[4562] | 484 | !-- Compute Obukhov length |
---|
| 485 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 486 | ! |
---|
[2232] | 487 | !-- Compute respective friction velocity on staggered grid |
---|
| 488 | CALL calc_us |
---|
| 489 | ! |
---|
[4562] | 490 | !-- Compute scaling parameters |
---|
| 491 | CALL calc_scaling_parameters |
---|
| 492 | ! |
---|
[2232] | 493 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 494 | CALL calc_surface_fluxes |
---|
| 495 | ENDIF |
---|
| 496 | ENDDO |
---|
[4562] | 497 | ELSE |
---|
[2232] | 498 | DO l = 2, 3 |
---|
[4562] | 499 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 500 | surf => surf_lsm_v(l) |
---|
[2232] | 501 | ! |
---|
| 502 | !-- Compute surface-parallel velocity |
---|
| 503 | CALL calc_uvw_abs_v_vgrid |
---|
| 504 | ! |
---|
| 505 | !-- Compute respective friction velocity on staggered grid |
---|
| 506 | CALL calc_us |
---|
| 507 | ! |
---|
| 508 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 509 | CALL calc_surface_fluxes |
---|
| 510 | ENDIF |
---|
| 511 | ENDDO |
---|
[4562] | 512 | ENDIF |
---|
[2232] | 513 | ! |
---|
[4562] | 514 | !-- For urban-type surfaces |
---|
| 515 | DO l = 2, 3 |
---|
| 516 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 517 | surf => surf_usm_v(l) |
---|
[2232] | 518 | ! |
---|
[4562] | 519 | !-- Compute surface-parallel velocity |
---|
| 520 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 521 | ! |
---|
[4562] | 522 | !-- Compute respective friction velocity on staggered grid |
---|
| 523 | CALL calc_us |
---|
[2232] | 524 | ! |
---|
[4562] | 525 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 526 | CALL calc_surface_fluxes |
---|
[2232] | 527 | ! |
---|
[4562] | 528 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 529 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
| 530 | ENDIF |
---|
| 531 | ENDDO |
---|
| 532 | mom_uv = .FALSE. |
---|
[2232] | 533 | ! |
---|
[4562] | 534 | !-- Calculate horizontal momentum fluxes of w (wsus and wsvs) at vertial surfaces. |
---|
| 535 | mom_w = .TRUE. |
---|
[2232] | 536 | ! |
---|
[4562] | 537 | !-- Default-type surfaces |
---|
| 538 | DO l = 0, 3 |
---|
| 539 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 540 | surf => surf_def_v(l) |
---|
| 541 | CALL calc_uvw_abs_v_wgrid |
---|
| 542 | CALL calc_us |
---|
| 543 | CALL calc_surface_fluxes |
---|
| 544 | ENDIF |
---|
| 545 | ENDDO |
---|
[2232] | 546 | ! |
---|
[4562] | 547 | !-- Natural-type surfaces |
---|
| 548 | DO l = 0, 3 |
---|
| 549 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 550 | surf => surf_lsm_v(l) |
---|
| 551 | CALL calc_uvw_abs_v_wgrid |
---|
| 552 | CALL calc_us |
---|
| 553 | CALL calc_surface_fluxes |
---|
[2232] | 554 | ENDIF |
---|
[4562] | 555 | ENDDO |
---|
[2232] | 556 | ! |
---|
[4562] | 557 | !-- Urban-type surfaces |
---|
| 558 | DO l = 0, 3 |
---|
| 559 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 560 | surf => surf_usm_v(l) |
---|
| 561 | CALL calc_uvw_abs_v_wgrid |
---|
| 562 | CALL calc_us |
---|
| 563 | CALL calc_surface_fluxes |
---|
| 564 | ENDIF |
---|
| 565 | ENDDO |
---|
| 566 | mom_w = .FALSE. |
---|
[2232] | 567 | ! |
---|
[4562] | 568 | !-- Calculate momentum fluxes usvs, vsus, wsus and wsvs at vertical surfaces for TKE production. |
---|
| 569 | !-- Note, here, momentum fluxes are defined at grid center and are not staggered as before. |
---|
| 570 | mom_tke = .TRUE. |
---|
[2232] | 571 | ! |
---|
[4562] | 572 | !-- Default-type surfaces |
---|
| 573 | DO l = 0, 3 |
---|
| 574 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 575 | surf => surf_def_v(l) |
---|
| 576 | CALL calc_uvw_abs_v_sgrid |
---|
| 577 | CALL calc_us |
---|
| 578 | CALL calc_surface_fluxes |
---|
| 579 | ENDIF |
---|
| 580 | ENDDO |
---|
[2232] | 581 | ! |
---|
[4562] | 582 | !-- Natural-type surfaces |
---|
| 583 | DO l = 0, 3 |
---|
| 584 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 585 | surf => surf_lsm_v(l) |
---|
| 586 | CALL calc_uvw_abs_v_sgrid |
---|
| 587 | CALL calc_us |
---|
| 588 | CALL calc_surface_fluxes |
---|
| 589 | ENDIF |
---|
| 590 | ENDDO |
---|
[3744] | 591 | ! |
---|
[4562] | 592 | !-- Urban-type surfaces |
---|
| 593 | DO l = 0, 3 |
---|
| 594 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 595 | surf => surf_usm_v(l) |
---|
| 596 | CALL calc_uvw_abs_v_sgrid |
---|
| 597 | CALL calc_us |
---|
| 598 | CALL calc_surface_fluxes |
---|
| 599 | ENDIF |
---|
| 600 | ENDDO |
---|
| 601 | mom_tke = .FALSE. |
---|
[1691] | 602 | |
---|
[4562] | 603 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'end' ) |
---|
[3885] | 604 | |
---|
[4562] | 605 | END SUBROUTINE surface_layer_fluxes |
---|
[1691] | 606 | |
---|
| 607 | |
---|
[4562] | 608 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 609 | ! Description: |
---|
| 610 | ! ------------ |
---|
[4258] | 611 | !> Initializing actions for the surface layer routine. |
---|
[4562] | 612 | !--------------------------------------------------------------------------------------------------! |
---|
| 613 | SUBROUTINE init_surface_layer_fluxes |
---|
[1691] | 614 | |
---|
[4562] | 615 | IMPLICIT NONE |
---|
[1691] | 616 | |
---|
[4562] | 617 | INTEGER(iwp) :: l !< running index for vertical surface orientation |
---|
[1691] | 618 | |
---|
[4562] | 619 | CALL location_message( 'initializing surface layer', 'start' ) |
---|
[1709] | 620 | |
---|
| 621 | ! |
---|
[4562] | 622 | !-- In case of runs with neutral statification, set Obukhov length to a large value |
---|
| 623 | IF ( neutral ) THEN |
---|
| 624 | IF ( surf_def_h(0)%ns >= 1 ) surf_def_h(0)%ol = 1.0E10_wp |
---|
| 625 | IF ( surf_lsm_h%ns >= 1 ) surf_lsm_h%ol = 1.0E10_wp |
---|
| 626 | IF ( surf_usm_h%ns >= 1 ) surf_usm_h%ol = 1.0E10_wp |
---|
[1709] | 627 | |
---|
[4562] | 628 | DO l = 0, 3 |
---|
| 629 | IF ( surf_def_v(l)%ns >= 1 .AND. & |
---|
| 630 | ALLOCATED( surf_def_v(l)%ol ) ) surf_def_v(l)%ol = 1.0E10_wp |
---|
| 631 | IF ( surf_lsm_v(l)%ns >= 1 .AND. & |
---|
| 632 | ALLOCATED( surf_lsm_v(l)%ol ) ) surf_lsm_v(l)%ol = 1.0E10_wp |
---|
| 633 | IF ( surf_usm_v(l)%ns >= 1 .AND. & |
---|
| 634 | ALLOCATED( surf_usm_v(l)%ol ) ) surf_usm_v(l)%ol = 1.0E10_wp |
---|
| 635 | ENDDO |
---|
[3685] | 636 | |
---|
[4562] | 637 | ENDIF |
---|
[1691] | 638 | |
---|
[4562] | 639 | CALL location_message( 'initializing surface layer', 'finished' ) |
---|
[1691] | 640 | |
---|
[4562] | 641 | END SUBROUTINE init_surface_layer_fluxes |
---|
| 642 | |
---|
| 643 | |
---|
| 644 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 645 | ! Description: |
---|
| 646 | ! ------------ |
---|
[4562] | 647 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 648 | !> surface elements. This is required by all methods. |
---|
| 649 | !--------------------------------------------------------------------------------------------------! |
---|
| 650 | SUBROUTINE calc_uvw_abs |
---|
[1691] | 651 | |
---|
[4562] | 652 | IMPLICIT NONE |
---|
[1691] | 653 | |
---|
[4562] | 654 | INTEGER(iwp) :: i !< running index x direction |
---|
| 655 | INTEGER(iwp) :: ibit !< flag to mask computation of relative velocity in case of downward-facing surfaces |
---|
| 656 | INTEGER(iwp) :: j !< running index y direction |
---|
| 657 | INTEGER(iwp) :: k !< running index z direction |
---|
| 658 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 659 | |
---|
| 660 | REAL(wp) :: w_lfc !< local free convection velocity scale |
---|
[2232] | 661 | ! |
---|
[4562] | 662 | !-- ibit is 1 for upward-facing surfaces, zero for downward-facing surfaces. |
---|
| 663 | ibit = MERGE( 1, 0, .NOT. downward ) |
---|
[1691] | 664 | |
---|
[4562] | 665 | !$OMP PARALLEL DO PRIVATE(i, j, k, w_lfc) |
---|
| 666 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, w_lfc) & |
---|
| 667 | !$ACC PRESENT(surf, u, v) |
---|
| 668 | DO m = 1, surf%ns |
---|
| 669 | i = surf%i(m) |
---|
| 670 | j = surf%j(m) |
---|
| 671 | k = surf%k(m) |
---|
[1691] | 672 | |
---|
| 673 | ! |
---|
[4562] | 674 | !-- Calculate free convection velocity scale w_lfc is use_free_convection_scaling = .T.. This |
---|
| 675 | !-- will maintain a horizontal velocity even for very weak wind convective conditions. SIGN is |
---|
| 676 | !-- used to set w_lfc to zero under stable conditions. |
---|
| 677 | IF ( use_free_convection_scaling ) THEN |
---|
| 678 | w_lfc = ABS(g / surf%pt1(m) * surf%z_mo(m) * surf%shf(m)) |
---|
| 679 | w_lfc = ( 0.5_wp * ( w_lfc + SIGN(w_lfc,surf%shf(m)) ) )**(0.33333_wp) |
---|
| 680 | ELSE |
---|
| 681 | w_lfc = 0.0_wp |
---|
| 682 | ENDIF |
---|
[3157] | 683 | |
---|
| 684 | ! |
---|
[4562] | 685 | !-- Compute the absolute value of the horizontal velocity. (relative to the surface in case the |
---|
| 686 | !-- lower surface is the ocean). Please note, in new surface modelling concept the index values |
---|
| 687 | !-- changed, i.e. the reference grid point is not the surface-grid point itself but the first |
---|
| 688 | !-- grid point outside of the topography. Note, in case of coupled ocean-atmosphere simulations |
---|
| 689 | !-- relative velocity with respect to the ocean surface is used, hence, (k-1,j,i) values are used |
---|
| 690 | !-- to calculate the absolute velocity. However, this does not apply for downward-facing walls. |
---|
| 691 | !-- To mask this, use ibit, which checks for upward/downward-facing surfaces. |
---|
| 692 | surf%uvw_abs(m) = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) - ( u(k-1,j,i) + u(k-1,j,i+1) ) & |
---|
| 693 | * ibit ) )**2 & |
---|
| 694 | + ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
| 695 | ) * ibit ) & |
---|
| 696 | )**2 + w_lfc**2 ) |
---|
| 697 | ENDDO |
---|
[2232] | 698 | |
---|
[4562] | 699 | END SUBROUTINE calc_uvw_abs |
---|
[3148] | 700 | |
---|
[1691] | 701 | |
---|
[4562] | 702 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 703 | ! Description: |
---|
| 704 | ! ------------ |
---|
[4562] | 705 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 706 | !> surface elements. This is required by all methods. |
---|
| 707 | !--------------------------------------------------------------------------------------------------! |
---|
| 708 | SUBROUTINE calc_uvw_abs_v_ugrid |
---|
[2232] | 709 | |
---|
[4562] | 710 | IMPLICIT NONE |
---|
[2232] | 711 | |
---|
[4562] | 712 | INTEGER(iwp) :: i !< running index x direction |
---|
| 713 | INTEGER(iwp) :: j !< running index y direction |
---|
| 714 | INTEGER(iwp) :: k !< running index z direction |
---|
| 715 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 716 | |
---|
[4562] | 717 | REAL(wp) :: u_i !< u-component on xu-grid |
---|
| 718 | REAL(wp) :: w_i !< w-component on xu-grid |
---|
[2232] | 719 | |
---|
| 720 | |
---|
[4562] | 721 | DO m = 1, surf%ns |
---|
| 722 | i = surf%i(m) |
---|
| 723 | j = surf%j(m) |
---|
| 724 | k = surf%k(m) |
---|
[1691] | 725 | ! |
---|
[4562] | 726 | !-- Compute the absolute value of the surface parallel velocity on u-grid. |
---|
| 727 | u_i = u(k,j,i) |
---|
| 728 | w_i = 0.25_wp * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) |
---|
[1691] | 729 | |
---|
[4562] | 730 | surf%uvw_abs(m) = SQRT( u_i**2 + w_i**2 ) |
---|
| 731 | ENDDO |
---|
[1709] | 732 | |
---|
[4562] | 733 | END SUBROUTINE calc_uvw_abs_v_ugrid |
---|
[1709] | 734 | |
---|
[4562] | 735 | !--------------------------------------------------------------------------------------------------! |
---|
[1709] | 736 | ! Description: |
---|
| 737 | ! ------------ |
---|
[4562] | 738 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 739 | !> surface elements. This is required by all methods. |
---|
| 740 | !--------------------------------------------------------------------------------------------------! |
---|
| 741 | SUBROUTINE calc_uvw_abs_v_vgrid |
---|
[2232] | 742 | |
---|
[4562] | 743 | IMPLICIT NONE |
---|
[2232] | 744 | |
---|
[4562] | 745 | INTEGER(iwp) :: i !< running index x direction |
---|
| 746 | INTEGER(iwp) :: j !< running index y direction |
---|
| 747 | INTEGER(iwp) :: k !< running index z direction |
---|
| 748 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 749 | |
---|
[4562] | 750 | REAL(wp) :: v_i !< v-component on yv-grid |
---|
| 751 | REAL(wp) :: w_i !< w-component on yv-grid |
---|
[2232] | 752 | |
---|
| 753 | |
---|
[4562] | 754 | DO m = 1, surf%ns |
---|
| 755 | i = surf%i(m) |
---|
| 756 | j = surf%j(m) |
---|
| 757 | k = surf%k(m) |
---|
[2232] | 758 | |
---|
[4562] | 759 | v_i = u(k,j,i) |
---|
| 760 | w_i = 0.25_wp * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) |
---|
[2232] | 761 | |
---|
[4562] | 762 | surf%uvw_abs(m) = SQRT( v_i**2 + w_i**2 ) |
---|
| 763 | ENDDO |
---|
[2232] | 764 | |
---|
[4562] | 765 | END SUBROUTINE calc_uvw_abs_v_vgrid |
---|
[2232] | 766 | |
---|
[4562] | 767 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 768 | ! Description: |
---|
| 769 | ! ------------ |
---|
[4562] | 770 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 771 | !> surface elements. This is required by all methods. |
---|
| 772 | !--------------------------------------------------------------------------------------------------! |
---|
| 773 | SUBROUTINE calc_uvw_abs_v_wgrid |
---|
[2232] | 774 | |
---|
[4562] | 775 | IMPLICIT NONE |
---|
[2232] | 776 | |
---|
[4562] | 777 | INTEGER(iwp) :: i !< running index x direction |
---|
| 778 | INTEGER(iwp) :: j !< running index y direction |
---|
| 779 | INTEGER(iwp) :: k !< running index z direction |
---|
| 780 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 781 | |
---|
[4562] | 782 | REAL(wp) :: u_i !< u-component on x-zw-grid |
---|
| 783 | REAL(wp) :: v_i !< v-component on y-zw-grid |
---|
| 784 | REAL(wp) :: w_i !< w-component on zw-grid |
---|
[2232] | 785 | ! |
---|
[4562] | 786 | !-- North- (l=0) and south-facing (l=1) surfaces |
---|
| 787 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 788 | DO m = 1, surf%ns |
---|
| 789 | i = surf%i(m) |
---|
| 790 | j = surf%j(m) |
---|
| 791 | k = surf%k(m) |
---|
[2232] | 792 | |
---|
[4562] | 793 | u_i = 0.25_wp * ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
| 794 | v_i = 0.0_wp |
---|
| 795 | w_i = w(k,j,i) |
---|
[2232] | 796 | |
---|
[4562] | 797 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 798 | ENDDO |
---|
[2232] | 799 | ! |
---|
[4562] | 800 | !-- East- (l=2) and west-facing (l=3) surfaces |
---|
| 801 | ELSE |
---|
| 802 | DO m = 1, surf%ns |
---|
| 803 | i = surf%i(m) |
---|
| 804 | j = surf%j(m) |
---|
| 805 | k = surf%k(m) |
---|
[2232] | 806 | |
---|
[4562] | 807 | u_i = 0.0_wp |
---|
| 808 | v_i = 0.25_wp * ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
| 809 | w_i = w(k,j,i) |
---|
[2232] | 810 | |
---|
[4562] | 811 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 812 | ENDDO |
---|
| 813 | ENDIF |
---|
[2232] | 814 | |
---|
[4562] | 815 | END SUBROUTINE calc_uvw_abs_v_wgrid |
---|
[2232] | 816 | |
---|
[4562] | 817 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 818 | ! Description: |
---|
| 819 | ! ------------ |
---|
[4562] | 820 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 821 | !> surface elements. This is required by all methods. |
---|
| 822 | !--------------------------------------------------------------------------------------------------! |
---|
| 823 | SUBROUTINE calc_uvw_abs_v_sgrid |
---|
[2232] | 824 | |
---|
[4562] | 825 | IMPLICIT NONE |
---|
[2232] | 826 | |
---|
[4562] | 827 | INTEGER(iwp) :: i !< running index x direction |
---|
| 828 | INTEGER(iwp) :: j !< running index y direction |
---|
| 829 | INTEGER(iwp) :: k !< running index z direction |
---|
| 830 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 831 | |
---|
[4562] | 832 | REAL(wp) :: u_i !< u-component on scalar grid |
---|
| 833 | REAL(wp) :: v_i !< v-component on scalar grid |
---|
| 834 | REAL(wp) :: w_i !< w-component on scalar grid |
---|
[2232] | 835 | |
---|
| 836 | ! |
---|
[4562] | 837 | !-- North- (l=0) and south-facing (l=1) walls |
---|
| 838 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 839 | DO m = 1, surf%ns |
---|
| 840 | i = surf%i(m) |
---|
| 841 | j = surf%j(m) |
---|
| 842 | k = surf%k(m) |
---|
[2232] | 843 | |
---|
[4562] | 844 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 845 | v_i = 0.0_wp |
---|
| 846 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[2232] | 847 | |
---|
[4562] | 848 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 849 | ENDDO |
---|
[2232] | 850 | ! |
---|
[4562] | 851 | !-- East- (l=2) and west-facing (l=3) walls |
---|
| 852 | ELSE |
---|
| 853 | DO m = 1, surf%ns |
---|
| 854 | i = surf%i(m) |
---|
| 855 | j = surf%j(m) |
---|
| 856 | k = surf%k(m) |
---|
[2232] | 857 | |
---|
[4562] | 858 | u_i = 0.0_wp |
---|
| 859 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 860 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[2232] | 861 | |
---|
[4562] | 862 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 863 | ENDDO |
---|
| 864 | ENDIF |
---|
[2232] | 865 | |
---|
[4562] | 866 | END SUBROUTINE calc_uvw_abs_v_sgrid |
---|
[2232] | 867 | |
---|
| 868 | |
---|
[4562] | 869 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 870 | ! Description: |
---|
| 871 | ! ------------ |
---|
[1709] | 872 | !> Calculate the Obukhov length (L) and Richardson flux number (z/L) |
---|
[4562] | 873 | !--------------------------------------------------------------------------------------------------! |
---|
| 874 | SUBROUTINE calc_ol |
---|
[1709] | 875 | |
---|
[4562] | 876 | IMPLICIT NONE |
---|
[1709] | 877 | |
---|
[4562] | 878 | INTEGER(iwp) :: iter !< Newton iteration step |
---|
| 879 | INTEGER(iwp) :: m !< loop variable over all horizontal wall elements |
---|
[1709] | 880 | |
---|
[4562] | 881 | LOGICAL, DIMENSION(surf%ns) :: convergence_reached !< convergence switch for vectorization |
---|
| 882 | !$ACC DECLARE CREATE( convergence_reached ) |
---|
[4366] | 883 | |
---|
[4562] | 884 | REAL(wp) :: f !< Function for Newton iteration: f = Ri - [...]/[...]^2 = 0 |
---|
| 885 | REAL(wp) :: f_d_ol !< Derivative of f |
---|
| 886 | REAL(wp) :: ol_l !< Lower bound of L for Newton iteration |
---|
| 887 | REAL(wp) :: ol_m !< Previous value of L for Newton iteration |
---|
| 888 | REAL(wp) :: ol_old !< Previous time step value of L |
---|
| 889 | REAL(wp) :: ol_u !< Upper bound of L for Newton iteration |
---|
[1709] | 890 | |
---|
[4562] | 891 | REAL(wp), DIMENSION(surf%ns) :: ol_old_vec !< temporary array required for vectorization |
---|
| 892 | REAL(wp), DIMENSION(surf%ns) :: z_mo_vec !< temporary array required for vectorization |
---|
| 893 | !$ACC DECLARE CREATE( ol_old_vec, z_mo_vec ) |
---|
[4366] | 894 | |
---|
[2232] | 895 | ! |
---|
[4562] | 896 | !-- Evaluate bulk Richardson number (calculation depends on definition based on setting of boundary |
---|
| 897 | !-- conditions) |
---|
| 898 | IF ( ibc_pt_b /= 1 ) THEN |
---|
| 899 | IF ( humidity ) THEN |
---|
| 900 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 901 | DO m = 1, surf%ns |
---|
| 902 | z_mo = surf%z_mo(m) |
---|
| 903 | surf%rib(m) = g * z_mo * ( surf%vpt1(m) - surf%vpt_surface(m) ) / & |
---|
| 904 | ( surf%uvw_abs(m)**2 * surf%vpt1(m) + 1.0E-20_wp ) |
---|
| 905 | ENDDO |
---|
[3668] | 906 | ELSE |
---|
[4562] | 907 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 908 | DO m = 1, surf%ns |
---|
| 909 | z_mo = surf%z_mo(m) |
---|
| 910 | surf%rib(m) = g * z_mo * ( surf%pt1(m) - surf%pt_surface(m) ) / & |
---|
| 911 | ( surf%uvw_abs(m)**2 * surf%pt1(m) + 1.0E-20_wp ) |
---|
| 912 | ENDDO |
---|
| 913 | ENDIF |
---|
| 914 | ELSE |
---|
| 915 | IF ( humidity ) THEN |
---|
| 916 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 917 | DO m = 1, surf%ns |
---|
| 918 | k = surf%k(m) |
---|
| 919 | z_mo = surf%z_mo(m) |
---|
| 920 | surf%rib(m) = - g * z_mo * ( ( 1.0_wp + 0.61_wp * surf%qv1(m) ) * & |
---|
| 921 | surf%shf(m) + 0.61_wp * surf%pt1(m) * surf%qsws(m) ) * & |
---|
| 922 | drho_air_zw(k-1) / ( surf%uvw_abs(m)**3 * surf%vpt1(m) * kappa**2 & |
---|
[1709] | 923 | + 1.0E-20_wp ) |
---|
[4562] | 924 | ENDDO |
---|
| 925 | ELSE |
---|
| 926 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 927 | !$ACC PARALLEL LOOP PRIVATE(k, z_mo) & |
---|
| 928 | !$ACC PRESENT(surf, drho_air_zw) |
---|
| 929 | DO m = 1, surf%ns |
---|
| 930 | k = surf%k(m) |
---|
| 931 | z_mo = surf%z_mo(m) |
---|
| 932 | surf%rib(m) = - g * z_mo * surf%shf(m) * drho_air_zw(k-1) / & |
---|
| 933 | ( surf%uvw_abs(m)**3 * surf%pt1(m) * kappa**2 + 1.0E-20_wp ) |
---|
| 934 | ENDDO |
---|
[1691] | 935 | ENDIF |
---|
[4562] | 936 | ENDIF |
---|
[1691] | 937 | |
---|
[4562] | 938 | IF ( loop_optimization == 'cache' ) THEN |
---|
[1691] | 939 | ! |
---|
[4562] | 940 | !-- Calculate the Obukhov length using Newton iteration |
---|
| 941 | !$OMP PARALLEL DO PRIVATE(i, j, z_mo) & |
---|
| 942 | !$OMP PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) |
---|
| 943 | !$ACC PARALLEL LOOP PRIVATE(i, j, z_mo) & |
---|
| 944 | !$ACC PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
| 945 | !$ACC PRESENT(surf) |
---|
| 946 | DO m = 1, surf%ns |
---|
| 947 | i = surf%i(m) |
---|
| 948 | j = surf%j(m) |
---|
[1691] | 949 | |
---|
[4562] | 950 | z_mo = surf%z_mo(m) |
---|
[1691] | 951 | |
---|
| 952 | ! |
---|
[4562] | 953 | !-- Store current value in case the Newton iteration fails |
---|
| 954 | ol_old = surf%ol(m) |
---|
[1691] | 955 | |
---|
| 956 | ! |
---|
[4562] | 957 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign |
---|
| 958 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 959 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 960 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 961 | ENDIF |
---|
[1691] | 962 | ! |
---|
[4562] | 963 | !-- Iteration to find Obukhov length |
---|
| 964 | iter = 0 |
---|
| 965 | DO |
---|
| 966 | iter = iter + 1 |
---|
[4366] | 967 | ! |
---|
[4562] | 968 | !-- In case of divergence, use the value of the previous time step |
---|
| 969 | IF ( iter > 1000 ) THEN |
---|
| 970 | surf%ol(m) = ol_old |
---|
| 971 | EXIT |
---|
| 972 | ENDIF |
---|
[4366] | 973 | |
---|
[4562] | 974 | ol_m = surf%ol(m) |
---|
| 975 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 976 | ol_u = ol_m + 0.001_wp * ol_m |
---|
[4366] | 977 | |
---|
| 978 | |
---|
[4562] | 979 | IF ( ibc_pt_b /= 1 ) THEN |
---|
[4366] | 980 | ! |
---|
[4562] | 981 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
| 982 | f = surf%rib(m) - ( z_mo / ol_m ) * ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 983 | - psi_h( z_mo / ol_m ) & |
---|
| 984 | + psi_h( surf%z0h(m) / ol_m ) ) / & |
---|
| 985 | ( LOG( z_mo / surf%z0(m) ) - psi_m( z_mo / ol_m ) & |
---|
| 986 | + psi_m( surf%z0(m) / ol_m ) )**2 |
---|
[4366] | 987 | |
---|
| 988 | ! |
---|
[4562] | 989 | !-- Calculate df/dL |
---|
| 990 | f_d_ol = ( - ( z_mo / ol_u ) * ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 991 | - psi_h( z_mo / ol_u ) & |
---|
| 992 | + psi_h( surf%z0h(m) / ol_u ) ) / & |
---|
| 993 | ( LOG( z_mo / surf%z0(m) ) - psi_m( z_mo / ol_u ) & |
---|
| 994 | + psi_m( surf%z0(m) / ol_u ) )**2 & |
---|
| 995 | + ( z_mo / ol_l ) * ( LOG( z_mo / surf%z0h(m) ) - psi_h( z_mo / ol_l ) & |
---|
| 996 | + psi_h( surf%z0h(m) / ol_l ) ) / & |
---|
| 997 | ( LOG( z_mo / surf%z0(m) ) - psi_m( z_mo / ol_l ) & |
---|
| 998 | + psi_m( surf%z0(m) / ol_l ) )**2 ) / ( ol_u - ol_l ) |
---|
| 999 | ELSE |
---|
[4366] | 1000 | ! |
---|
[4562] | 1001 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
| 1002 | f = surf%rib(m) - ( z_mo / ol_m ) / & |
---|
| 1003 | ( LOG( z_mo / surf%z0(m) ) - psi_m( z_mo / ol_m ) + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1004 | )**3 |
---|
[4366] | 1005 | |
---|
| 1006 | ! |
---|
[4562] | 1007 | !-- Calculate df/dL |
---|
| 1008 | f_d_ol = ( - ( z_mo / ol_u ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1009 | - psi_m( z_mo / ol_u ) & |
---|
| 1010 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1011 | )**3 & |
---|
| 1012 | + ( z_mo / ol_l ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1013 | - psi_m( z_mo / ol_l ) & |
---|
| 1014 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1015 | )**3 & |
---|
| 1016 | ) / ( ol_u - ol_l ) |
---|
| 1017 | ENDIF |
---|
[4366] | 1018 | ! |
---|
[4562] | 1019 | !-- Calculate new L |
---|
| 1020 | surf%ol(m) = ol_m - f / f_d_ol |
---|
[4366] | 1021 | |
---|
| 1022 | ! |
---|
[4562] | 1023 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign and |
---|
| 1024 | !-- ensure convergence. |
---|
| 1025 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
[4366] | 1026 | ! |
---|
[4562] | 1027 | !-- If unrealistic value occurs, set L to the maximum value that is allowed |
---|
| 1028 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1029 | surf%ol(m) = ol_max |
---|
| 1030 | EXIT |
---|
| 1031 | ENDIF |
---|
[4366] | 1032 | ! |
---|
[4562] | 1033 | !-- Assure that Obukhov length does not become zero. If the limit is reached, exit the loop. |
---|
| 1034 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
| 1035 | surf%ol(m) = SIGN( 1E-5_wp, surf%ol(m) ) |
---|
| 1036 | EXIT |
---|
| 1037 | ENDIF |
---|
[4366] | 1038 | ! |
---|
[4562] | 1039 | !-- Check for convergence |
---|
| 1040 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) EXIT |
---|
[4366] | 1041 | ENDDO |
---|
[4562] | 1042 | ENDDO |
---|
[4366] | 1043 | |
---|
| 1044 | ! |
---|
[4562] | 1045 | !-- Vector Version |
---|
| 1046 | ELSE |
---|
[4366] | 1047 | ! |
---|
[4562] | 1048 | !-- Calculate the Obukhov length using Newton iteration |
---|
| 1049 | !-- First set arrays required for vectorization |
---|
| 1050 | !$ACC PARALLEL LOOP & |
---|
| 1051 | !$ACC PRESENT(surf) |
---|
| 1052 | DO m = 1, surf%ns |
---|
| 1053 | z_mo_vec(m) = surf%z_mo(m) |
---|
[4366] | 1054 | ! |
---|
[4562] | 1055 | !-- Store current value in case the Newton iteration fails |
---|
| 1056 | ol_old_vec(m) = surf%ol(m) |
---|
[4366] | 1057 | ! |
---|
[4562] | 1058 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign |
---|
| 1059 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 1060 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 1061 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 1062 | ENDIF |
---|
[4370] | 1063 | ! |
---|
[4562] | 1064 | !-- Initialize convergence flag |
---|
| 1065 | convergence_reached(m) = .FALSE. |
---|
| 1066 | ENDDO |
---|
[4366] | 1067 | |
---|
| 1068 | ! |
---|
[4562] | 1069 | !-- Iteration to find Obukhov length |
---|
| 1070 | iter = 0 |
---|
| 1071 | DO |
---|
| 1072 | iter = iter + 1 |
---|
[1691] | 1073 | ! |
---|
[4562] | 1074 | !-- In case of divergence, use the value(s) of the previous time step |
---|
| 1075 | IF ( iter > 1000 ) THEN |
---|
| 1076 | !$ACC PARALLEL LOOP & |
---|
[4370] | 1077 | !$ACC PRESENT(surf) |
---|
[4366] | 1078 | DO m = 1, surf%ns |
---|
[4562] | 1079 | IF ( .NOT. convergence_reached(m) ) surf%ol(m) = ol_old_vec(m) |
---|
| 1080 | ENDDO |
---|
| 1081 | EXIT |
---|
| 1082 | ENDIF |
---|
[1691] | 1083 | |
---|
[4562] | 1084 | !$ACC PARALLEL LOOP PRIVATE(ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
| 1085 | !$ACC PRESENT(surf) |
---|
| 1086 | DO m = 1, surf%ns |
---|
| 1087 | IF ( convergence_reached(m) ) CYCLE |
---|
[4366] | 1088 | |
---|
[4562] | 1089 | ol_m = surf%ol(m) |
---|
| 1090 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 1091 | ol_u = ol_m + 0.001_wp * ol_m |
---|
[4366] | 1092 | |
---|
| 1093 | |
---|
[4562] | 1094 | IF ( ibc_pt_b /= 1 ) THEN |
---|
[1691] | 1095 | ! |
---|
[4562] | 1096 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
| 1097 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) * ( LOG( z_mo_vec(m) / surf%z0h(m) ) & |
---|
| 1098 | - psi_h( z_mo_vec(m) / ol_m ) & |
---|
| 1099 | + psi_h( surf%z0h(m) / ol_m ) & |
---|
| 1100 | ) / & |
---|
| 1101 | ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
| 1102 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
| 1103 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1104 | )**2 |
---|
[1691] | 1105 | |
---|
| 1106 | ! |
---|
[4562] | 1107 | !-- Calculate df/dL |
---|
| 1108 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) * ( LOG( z_mo_vec(m) / surf%z0h(m) ) & |
---|
| 1109 | - psi_h( z_mo_vec(m) / ol_u ) & |
---|
| 1110 | + psi_h( surf%z0h(m) / ol_u ) & |
---|
| 1111 | ) / & |
---|
| 1112 | ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
| 1113 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
| 1114 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1115 | )**2 & |
---|
| 1116 | + ( z_mo_vec(m) / ol_l ) * ( LOG( z_mo_vec(m) / surf%z0h(m) ) & |
---|
| 1117 | - psi_h( z_mo_vec(m) / ol_l ) & |
---|
| 1118 | + psi_h( surf%z0h(m) / ol_l ) & |
---|
| 1119 | ) / & |
---|
| 1120 | ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
| 1121 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
| 1122 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1123 | )**2 & |
---|
| 1124 | ) / ( ol_u - ol_l ) |
---|
| 1125 | ELSE |
---|
[1691] | 1126 | ! |
---|
[4562] | 1127 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
| 1128 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) / ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
| 1129 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
| 1130 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1131 | )**3 |
---|
[1691] | 1132 | |
---|
| 1133 | ! |
---|
[4562] | 1134 | !-- Calculate df/dL |
---|
| 1135 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) / ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
| 1136 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
| 1137 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1138 | )**3 & |
---|
| 1139 | + ( z_mo_vec(m) / ol_l ) / ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
| 1140 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
| 1141 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1142 | )**3 & |
---|
| 1143 | ) / ( ol_u - ol_l ) |
---|
| 1144 | ENDIF |
---|
[1691] | 1145 | ! |
---|
[4562] | 1146 | !-- Calculate new L |
---|
| 1147 | surf%ol(m) = ol_m - f / f_d_ol |
---|
[1691] | 1148 | |
---|
| 1149 | ! |
---|
[4562] | 1150 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign and |
---|
| 1151 | !-- ensure convergence. |
---|
| 1152 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
[4366] | 1153 | |
---|
[1691] | 1154 | ! |
---|
[4562] | 1155 | !-- Check for convergence |
---|
| 1156 | !-- This check does not modify surf%ol, therefore this is done first |
---|
| 1157 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) THEN |
---|
| 1158 | convergence_reached(m) = .TRUE. |
---|
| 1159 | ENDIF |
---|
[1691] | 1160 | ! |
---|
[4562] | 1161 | !-- If unrealistic value occurs, set L to the maximum allowed value |
---|
| 1162 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1163 | surf%ol(m) = ol_max |
---|
| 1164 | convergence_reached(m) = .TRUE. |
---|
| 1165 | ENDIF |
---|
| 1166 | ENDDO |
---|
[4186] | 1167 | ! |
---|
[4562] | 1168 | !-- Assure that Obukhov length does not become zero |
---|
| 1169 | !$ACC PARALLEL LOOP & |
---|
| 1170 | !$ACC PRESENT(surf) |
---|
| 1171 | DO m = 1, surf%ns |
---|
| 1172 | IF ( convergence_reached(m) ) CYCLE |
---|
| 1173 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
| 1174 | surf%ol(m) = SIGN( 10E-6_wp, surf%ol(m) ) |
---|
| 1175 | convergence_reached(m) = .TRUE. |
---|
| 1176 | ENDIF |
---|
| 1177 | ENDDO |
---|
[1691] | 1178 | |
---|
[4562] | 1179 | IF ( ALL( convergence_reached ) ) EXIT |
---|
[1691] | 1180 | |
---|
[4562] | 1181 | ENDDO ! End of iteration loop |
---|
[4366] | 1182 | |
---|
[4562] | 1183 | ENDIF ! End of vector branch |
---|
[4366] | 1184 | |
---|
[4562] | 1185 | END SUBROUTINE calc_ol |
---|
[1691] | 1186 | |
---|
| 1187 | |
---|
[4562] | 1188 | !--------------------------------------------------------------------------------------------------! |
---|
| 1189 | ! Description: |
---|
| 1190 | ! ------------ |
---|
| 1191 | !> Calculate friction velocity u*. |
---|
| 1192 | !--------------------------------------------------------------------------------------------------! |
---|
| 1193 | SUBROUTINE calc_us |
---|
[1691] | 1194 | |
---|
[4562] | 1195 | IMPLICIT NONE |
---|
[1691] | 1196 | |
---|
[4562] | 1197 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1198 | |
---|
| 1199 | ! |
---|
[4562] | 1200 | !-- Compute u* at horizontal surfaces at the scalars' grid points |
---|
| 1201 | IF ( .NOT. surf_vertical ) THEN |
---|
[2232] | 1202 | ! |
---|
[4562] | 1203 | !-- Compute u* at upward-facing surfaces |
---|
| 1204 | IF ( .NOT. downward ) THEN |
---|
| 1205 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1206 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1207 | !$ACC PRESENT(surf) |
---|
| 1208 | DO m = 1, surf%ns |
---|
| 1209 | z_mo = surf%z_mo(m) |
---|
[2232] | 1210 | ! |
---|
[4562] | 1211 | !-- Compute u* at the scalars' grid points |
---|
| 1212 | surf%us(m) = kappa * surf%uvw_abs(m) / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1213 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1214 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 1215 | ENDDO |
---|
[2232] | 1216 | ! |
---|
[4562] | 1217 | !-- Compute u* at downward-facing surfaces. This case, do not consider any stability. |
---|
[2232] | 1218 | ELSE |
---|
[4562] | 1219 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[3634] | 1220 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1221 | !$ACC PRESENT(surf) |
---|
[2232] | 1222 | DO m = 1, surf%ns |
---|
| 1223 | z_mo = surf%z_mo(m) |
---|
[4562] | 1224 | ! |
---|
| 1225 | !-- Compute u* at the scalars' grid points |
---|
[2232] | 1226 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 1227 | ENDDO |
---|
[2232] | 1228 | ENDIF |
---|
[4562] | 1229 | ! |
---|
| 1230 | !-- Compute u* at vertical surfaces at the u/v/v grid, respectively. |
---|
| 1231 | !-- No stability is considered in this case. |
---|
| 1232 | ELSE |
---|
| 1233 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1234 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1235 | !$ACC PRESENT(surf) |
---|
| 1236 | DO m = 1, surf%ns |
---|
| 1237 | z_mo = surf%z_mo(m) |
---|
| 1238 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
| 1239 | ENDDO |
---|
| 1240 | ENDIF |
---|
[1691] | 1241 | |
---|
[4562] | 1242 | END SUBROUTINE calc_us |
---|
[1691] | 1243 | |
---|
[4562] | 1244 | !--------------------------------------------------------------------------------------------------! |
---|
| 1245 | ! Description: |
---|
| 1246 | ! ------------ |
---|
| 1247 | !> Calculate potential temperature, specific humidity, and virtual potential temperature at first |
---|
| 1248 | !> grid level. |
---|
| 1249 | !--------------------------------------------------------------------------------------------------! |
---|
| 1250 | SUBROUTINE calc_pt_q |
---|
[1691] | 1251 | |
---|
[4562] | 1252 | IMPLICIT NONE |
---|
[1691] | 1253 | |
---|
[4562] | 1254 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[2232] | 1255 | |
---|
[4562] | 1256 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1257 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1258 | !$ACC PRESENT(surf, pt) |
---|
| 1259 | DO m = 1, surf%ns |
---|
| 1260 | i = surf%i(m) |
---|
| 1261 | j = surf%j(m) |
---|
| 1262 | k = surf%k(m) |
---|
[2232] | 1263 | |
---|
[3634] | 1264 | #ifndef _OPENACC |
---|
[4562] | 1265 | IF ( bulk_cloud_model ) THEN |
---|
| 1266 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
| 1267 | surf%qv1(m) = q(k,j,i) - ql(k,j,i) |
---|
| 1268 | ELSEIF( cloud_droplets ) THEN |
---|
| 1269 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
| 1270 | surf%qv1(m) = q(k,j,i) |
---|
| 1271 | ELSE |
---|
[3634] | 1272 | #endif |
---|
[4562] | 1273 | surf%pt1(m) = pt(k,j,i) |
---|
[3634] | 1274 | #ifndef _OPENACC |
---|
[4562] | 1275 | IF ( humidity ) THEN |
---|
| 1276 | surf%qv1(m) = q(k,j,i) |
---|
| 1277 | ELSE |
---|
[3634] | 1278 | #endif |
---|
[4562] | 1279 | surf%qv1(m) = 0.0_wp |
---|
[3634] | 1280 | #ifndef _OPENACC |
---|
[4562] | 1281 | ENDIF |
---|
| 1282 | ENDIF |
---|
[2232] | 1283 | |
---|
[4562] | 1284 | IF ( humidity ) THEN |
---|
| 1285 | surf%vpt1(m) = pt(k,j,i) * ( 1.0_wp + 0.61_wp * q(k,j,i) ) |
---|
| 1286 | ENDIF |
---|
[3634] | 1287 | #endif |
---|
[4562] | 1288 | ENDDO |
---|
[1691] | 1289 | |
---|
[4562] | 1290 | END SUBROUTINE calc_pt_q |
---|
[1691] | 1291 | |
---|
[2696] | 1292 | |
---|
[4562] | 1293 | !--------------------------------------------------------------------------------------------------! |
---|
| 1294 | ! Description: |
---|
| 1295 | ! ------------ |
---|
| 1296 | !> Set potential temperature at surface grid level( only for upward-facing surfs ). |
---|
| 1297 | !--------------------------------------------------------------------------------------------------! |
---|
| 1298 | SUBROUTINE calc_pt_surface |
---|
[2696] | 1299 | |
---|
[4562] | 1300 | IMPLICIT NONE |
---|
[2696] | 1301 | |
---|
[4562] | 1302 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1303 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[2696] | 1304 | |
---|
[4562] | 1305 | k_off = surf%koff |
---|
| 1306 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1307 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1308 | !$ACC PRESENT(surf, pt) |
---|
| 1309 | DO m = 1, surf%ns |
---|
| 1310 | i = surf%i(m) |
---|
| 1311 | j = surf%j(m) |
---|
| 1312 | k = surf%k(m) |
---|
| 1313 | surf%pt_surface(m) = pt(k+k_off,j,i) |
---|
| 1314 | ENDDO |
---|
[2696] | 1315 | |
---|
[4562] | 1316 | END SUBROUTINE calc_pt_surface |
---|
[2696] | 1317 | |
---|
| 1318 | ! |
---|
[3152] | 1319 | !-- Set mixing ratio at surface grid level. ( Only for upward-facing surfs. ) |
---|
[4562] | 1320 | SUBROUTINE calc_q_surface |
---|
[3152] | 1321 | |
---|
[4562] | 1322 | IMPLICIT NONE |
---|
[3152] | 1323 | |
---|
[4562] | 1324 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1325 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[3152] | 1326 | |
---|
[4562] | 1327 | k_off = surf%koff |
---|
| 1328 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1329 | DO m = 1, surf%ns |
---|
| 1330 | i = surf%i(m) |
---|
| 1331 | j = surf%j(m) |
---|
| 1332 | k = surf%k(m) |
---|
| 1333 | surf%q_surface(m) = q(k+k_off,j,i) |
---|
| 1334 | ENDDO |
---|
[3152] | 1335 | |
---|
[4562] | 1336 | END SUBROUTINE calc_q_surface |
---|
[3152] | 1337 | |
---|
[4562] | 1338 | !--------------------------------------------------------------------------------------------------! |
---|
| 1339 | ! Description: |
---|
| 1340 | ! ------------ |
---|
| 1341 | !> Set virtual potential temperature at surface grid level ( only for upward-facing surfs ). |
---|
| 1342 | !--------------------------------------------------------------------------------------------------! |
---|
| 1343 | SUBROUTINE calc_vpt_surface |
---|
[3152] | 1344 | |
---|
[4562] | 1345 | IMPLICIT NONE |
---|
[3146] | 1346 | |
---|
[4562] | 1347 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1348 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[3146] | 1349 | |
---|
[4562] | 1350 | k_off = surf%koff |
---|
| 1351 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1352 | DO m = 1, surf%ns |
---|
| 1353 | i = surf%i(m) |
---|
| 1354 | j = surf%j(m) |
---|
| 1355 | k = surf%k(m) |
---|
| 1356 | surf%vpt_surface(m) = vpt(k+k_off,j,i) |
---|
[3146] | 1357 | |
---|
[4562] | 1358 | ENDDO |
---|
[3146] | 1359 | |
---|
[4562] | 1360 | END SUBROUTINE calc_vpt_surface |
---|
[3146] | 1361 | |
---|
[4562] | 1362 | !--------------------------------------------------------------------------------------------------! |
---|
| 1363 | ! Description: |
---|
| 1364 | ! ------------ |
---|
| 1365 | !> Calculate the other MOST scaling parameters theta*, q*, (qc*, qr*, nc*, nr*) |
---|
| 1366 | !--------------------------------------------------------------------------------------------------! |
---|
| 1367 | SUBROUTINE calc_scaling_parameters |
---|
[3146] | 1368 | |
---|
[4562] | 1369 | IMPLICIT NONE |
---|
[1691] | 1370 | |
---|
| 1371 | |
---|
[4562] | 1372 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
| 1373 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1374 | ! |
---|
| 1375 | !-- Compute theta* at horizontal surfaces |
---|
| 1376 | IF ( constant_heatflux .AND. .NOT. surf_vertical ) THEN |
---|
| 1377 | ! |
---|
| 1378 | !-- For a given heat flux in the surface layer: |
---|
[2232] | 1379 | |
---|
[4562] | 1380 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1381 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1382 | !$ACC PRESENT(surf, drho_air_zw) |
---|
| 1383 | DO m = 1, surf%ns |
---|
| 1384 | i = surf%i(m) |
---|
| 1385 | j = surf%j(m) |
---|
| 1386 | k = surf%k(m) |
---|
| 1387 | surf%ts(m) = -surf%shf(m) * drho_air_zw(k-1) / ( surf%us(m) + 1E-30_wp ) |
---|
[1691] | 1388 | ! |
---|
[4562] | 1389 | !-- ts must be limited, because otherwise overflow may occur in case of us=0 when computing |
---|
| 1390 | !-- ol further below |
---|
| 1391 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1392 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1393 | ENDDO |
---|
[2232] | 1394 | |
---|
[4562] | 1395 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
| 1396 | ! |
---|
| 1397 | !-- For a given surface temperature: |
---|
| 1398 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 1399 | |
---|
[2232] | 1400 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1401 | DO m = 1, surf%ns |
---|
| 1402 | i = surf%i(m) |
---|
[2232] | 1403 | j = surf%j(m) |
---|
| 1404 | k = surf%k(m) |
---|
[4562] | 1405 | pt(k-1,j,i) = pt_surface |
---|
| 1406 | ENDDO |
---|
| 1407 | ENDIF |
---|
[2232] | 1408 | |
---|
[4562] | 1409 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1410 | DO m = 1, surf%ns |
---|
| 1411 | z_mo = surf%z_mo(m) |
---|
| 1412 | surf%ts(m) = kappa * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
| 1413 | / ( LOG( z_mo / surf%z0h(m) ) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1414 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
| 1415 | ENDDO |
---|
[2232] | 1416 | |
---|
[4562] | 1417 | ENDIF |
---|
[1691] | 1418 | ! |
---|
[4562] | 1419 | !-- Compute theta* at vertical surfaces. This is only required in case of land-surface model, in |
---|
| 1420 | !-- order to compute aerodynamical resistance. |
---|
| 1421 | IF ( surf_vertical ) THEN |
---|
| 1422 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1423 | DO m = 1, surf%ns |
---|
| 1424 | i = surf%i(m) |
---|
| 1425 | j = surf%j(m) |
---|
| 1426 | surf%ts(m) = -surf%shf(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1427 | ! |
---|
| 1428 | !-- ts must be limited, because otherwise overflow may occur in case of us=0 when computing ol |
---|
| 1429 | !-- further below |
---|
| 1430 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1431 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1432 | ENDDO |
---|
| 1433 | ENDIF |
---|
[2232] | 1434 | |
---|
[4562] | 1435 | ! |
---|
| 1436 | !-- If required compute q* at horizontal surfaces |
---|
| 1437 | IF ( humidity ) THEN |
---|
| 1438 | IF ( constant_waterflux .AND. .NOT. surf_vertical ) THEN |
---|
| 1439 | ! |
---|
| 1440 | !-- For a given water flux in the surface layer |
---|
| 1441 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1442 | DO m = 1, surf%ns |
---|
| 1443 | i = surf%i(m) |
---|
| 1444 | j = surf%j(m) |
---|
| 1445 | k = surf%k(m) |
---|
| 1446 | surf%qs(m) = -surf%qsws(m) * drho_air_zw(k-1) / ( surf%us(m) + 1E-30_wp ) |
---|
[1691] | 1447 | ENDDO |
---|
| 1448 | |
---|
[4562] | 1449 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
| 1450 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. run_coupled ) |
---|
| 1451 | |
---|
[1788] | 1452 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[4562] | 1453 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1454 | DO m = 1, surf%ns |
---|
| 1455 | i = surf%i(m) |
---|
| 1456 | j = surf%j(m) |
---|
| 1457 | k = surf%k(m) |
---|
| 1458 | q(k-1,j,i) = q_surface |
---|
[2232] | 1459 | |
---|
[4562] | 1460 | ENDDO |
---|
| 1461 | ENDIF |
---|
| 1462 | |
---|
| 1463 | ! |
---|
| 1464 | !-- Assume saturation for atmosphere coupled to ocean (but not in case of precursor runs) |
---|
| 1465 | IF ( coupled_run ) THEN |
---|
| 1466 | !$OMP PARALLEL DO PRIVATE( i, j, k, e_s ) |
---|
| 1467 | DO m = 1, surf%ns |
---|
| 1468 | i = surf%i(m) |
---|
[2232] | 1469 | j = surf%j(m) |
---|
| 1470 | k = surf%k(m) |
---|
[4562] | 1471 | e_s = 6.1_wp * EXP( 0.07_wp * ( MIN( pt(k-1,j,i), pt(k,j,i) ) - 273.15_wp ) ) |
---|
| 1472 | q(k-1,j,i) = rd_d_rv * e_s / ( surface_pressure - e_s ) |
---|
| 1473 | ENDDO |
---|
| 1474 | ENDIF |
---|
[2232] | 1475 | |
---|
[4562] | 1476 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
| 1477 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1478 | DO m = 1, surf%ns |
---|
| 1479 | i = surf%i(m) |
---|
| 1480 | j = surf%j(m) |
---|
| 1481 | k = surf%k(m) |
---|
| 1482 | z_mo = surf%z_mo(m) |
---|
| 1483 | surf%qs(m) = kappa * ( surf%qv1(m) - surf%q_surface(m) ) & |
---|
| 1484 | / ( LOG( z_mo / surf%z0q(m) ) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1485 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1486 | ENDDO |
---|
[4562] | 1487 | ELSE |
---|
| 1488 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1489 | DO m = 1, surf%ns |
---|
| 1490 | i = surf%i(m) |
---|
| 1491 | j = surf%j(m) |
---|
| 1492 | k = surf%k(m) |
---|
| 1493 | z_mo = surf%z_mo(m) |
---|
| 1494 | surf%qs(m) = kappa * ( q(k,j,i) - q(k-1,j,i) ) & |
---|
| 1495 | / ( LOG( z_mo / surf%z0q(m) ) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1496 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
| 1497 | ENDDO |
---|
[1691] | 1498 | ENDIF |
---|
[2232] | 1499 | ENDIF |
---|
[4562] | 1500 | ! |
---|
| 1501 | !-- Compute q* at vertical surfaces |
---|
[2232] | 1502 | IF ( surf_vertical ) THEN |
---|
[2281] | 1503 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[4562] | 1504 | DO m = 1, surf%ns |
---|
[2232] | 1505 | |
---|
[4562] | 1506 | i = surf%i(m) |
---|
| 1507 | j = surf%j(m) |
---|
| 1508 | surf%qs(m) = -surf%qsws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
[2232] | 1509 | |
---|
[1691] | 1510 | ENDDO |
---|
| 1511 | ENDIF |
---|
[4562] | 1512 | ENDIF |
---|
[1691] | 1513 | |
---|
| 1514 | ! |
---|
[4562] | 1515 | !-- If required compute s* |
---|
| 1516 | IF ( passive_scalar ) THEN |
---|
[1691] | 1517 | ! |
---|
[4562] | 1518 | !-- At horizontal surfaces |
---|
| 1519 | IF ( constant_scalarflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1520 | ! |
---|
[4562] | 1521 | !-- For a given scalar flux in the surface layer |
---|
| 1522 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1523 | DO m = 1, surf%ns |
---|
| 1524 | i = surf%i(m) |
---|
| 1525 | j = surf%j(m) |
---|
| 1526 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1527 | ENDDO |
---|
| 1528 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1691] | 1529 | |
---|
[4562] | 1530 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1531 | DO m = 1, surf%ns |
---|
| 1532 | i = surf%i(m) |
---|
| 1533 | j = surf%j(m) |
---|
| 1534 | k = surf%k(m) |
---|
| 1535 | z_mo = surf%z_mo(m) |
---|
[1691] | 1536 | |
---|
[4562] | 1537 | surf%ss(m) = kappa * ( s(k,j,i) - s(k-1,j,i) ) & |
---|
| 1538 | / ( LOG( z_mo / surf%z0h(m) ) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1539 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
| 1540 | ENDDO |
---|
[1691] | 1541 | ENDIF |
---|
[1960] | 1542 | ! |
---|
[4562] | 1543 | !-- At vertical surfaces |
---|
| 1544 | IF ( surf_vertical ) THEN |
---|
| 1545 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1546 | DO m = 1, surf%ns |
---|
| 1547 | i = surf%i(m) |
---|
| 1548 | j = surf%j(m) |
---|
| 1549 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1550 | ENDDO |
---|
| 1551 | ENDIF |
---|
| 1552 | ENDIF |
---|
| 1553 | |
---|
[1960] | 1554 | ! |
---|
[4562] | 1555 | !-- If required compute cs* (chemical species) |
---|
| 1556 | IF ( air_chemistry ) THEN |
---|
[2232] | 1557 | ! |
---|
[4562] | 1558 | !-- At horizontal surfaces |
---|
| 1559 | DO lsp = 1, nvar |
---|
| 1560 | IF ( constant_csflux(lsp) .AND. .NOT. surf_vertical ) THEN |
---|
| 1561 | !-- For a given chemical species' flux in the surface layer |
---|
[2281] | 1562 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[4562] | 1563 | DO m = 1, surf%ns |
---|
| 1564 | i = surf%i(m) |
---|
| 1565 | j = surf%j(m) |
---|
| 1566 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
[1960] | 1567 | ENDDO |
---|
| 1568 | ENDIF |
---|
[4562] | 1569 | ENDDO |
---|
[2232] | 1570 | ! |
---|
[4562] | 1571 | !-- At vertical surfaces |
---|
| 1572 | IF ( surf_vertical ) THEN |
---|
| 1573 | DO lsp = 1, nvar |
---|
[2281] | 1574 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[4562] | 1575 | DO m = 1, surf%ns |
---|
| 1576 | i = surf%i(m) |
---|
| 1577 | j = surf%j(m) |
---|
| 1578 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
[2232] | 1579 | ENDDO |
---|
[2696] | 1580 | ENDDO |
---|
| 1581 | ENDIF |
---|
[4562] | 1582 | ENDIF |
---|
[2696] | 1583 | |
---|
| 1584 | ! |
---|
[4562] | 1585 | !-- If required compute qc* and nc* |
---|
| 1586 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. .NOT. surf_vertical ) THEN |
---|
| 1587 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1588 | DO m = 1, surf%ns |
---|
| 1589 | i = surf%i(m) |
---|
| 1590 | j = surf%j(m) |
---|
| 1591 | k = surf%k(m) |
---|
[1691] | 1592 | |
---|
[4562] | 1593 | z_mo = surf%z_mo(m) |
---|
[2292] | 1594 | |
---|
[4562] | 1595 | surf%qcs(m) = kappa * ( qc(k,j,i) - qc(k-1,j,i) ) & |
---|
| 1596 | / ( LOG( z_mo / surf%z0q(m) ) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1597 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[2292] | 1598 | |
---|
[4562] | 1599 | surf%ncs(m) = kappa * ( nc(k,j,i) - nc(k-1,j,i) ) & |
---|
| 1600 | / ( LOG( z_mo / surf%z0q(m) ) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1601 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
| 1602 | ENDDO |
---|
[2292] | 1603 | |
---|
[4562] | 1604 | ENDIF |
---|
[2292] | 1605 | |
---|
[1691] | 1606 | ! |
---|
[4562] | 1607 | !-- If required compute qr* and nr* |
---|
| 1608 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. .NOT. surf_vertical ) THEN |
---|
| 1609 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1610 | DO m = 1, surf%ns |
---|
| 1611 | i = surf%i(m) |
---|
| 1612 | j = surf%j(m) |
---|
| 1613 | k = surf%k(m) |
---|
[1691] | 1614 | |
---|
[4562] | 1615 | z_mo = surf%z_mo(m) |
---|
[1691] | 1616 | |
---|
[4562] | 1617 | surf%qrs(m) = kappa * ( qr(k,j,i) - qr(k-1,j,i) ) & |
---|
| 1618 | / ( LOG( z_mo / surf%z0q(m) ) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1619 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1620 | |
---|
[4562] | 1621 | surf%nrs(m) = kappa * ( nr(k,j,i) - nr(k-1,j,i) ) & |
---|
| 1622 | / ( LOG( z_mo / surf%z0q(m) ) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1623 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
| 1624 | ENDDO |
---|
[1691] | 1625 | |
---|
[4562] | 1626 | ENDIF |
---|
[1691] | 1627 | |
---|
[4562] | 1628 | END SUBROUTINE calc_scaling_parameters |
---|
[1691] | 1629 | |
---|
| 1630 | |
---|
| 1631 | |
---|
[4562] | 1632 | !--------------------------------------------------------------------------------------------------! |
---|
| 1633 | ! Description: |
---|
| 1634 | ! ------------ |
---|
| 1635 | !> Calculate surface fluxes usws, vsws, shf, qsws, (qcsws, qrsws, ncsws, nrsws) |
---|
| 1636 | !--------------------------------------------------------------------------------------------------! |
---|
| 1637 | SUBROUTINE calc_surface_fluxes |
---|
[1691] | 1638 | |
---|
[4562] | 1639 | IMPLICIT NONE |
---|
[1691] | 1640 | |
---|
[4562] | 1641 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
| 1642 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1643 | |
---|
[4562] | 1644 | REAL(wp) :: dum !< dummy to precalculate logarithm |
---|
| 1645 | REAL(wp) :: flag_u !< flag indicating u-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1646 | REAL(wp) :: flag_v !< flag indicating v-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
[1691] | 1647 | |
---|
[4562] | 1648 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u_i !< u-component interpolated onto scalar grid point, required for momentum fluxes |
---|
| 1649 | !< at vertical surfaces |
---|
| 1650 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v_i !< v-component interpolated onto scalar grid point, required for momentum fluxes |
---|
| 1651 | !< at vertical surfaces |
---|
| 1652 | REAL(wp), DIMENSION(:), ALLOCATABLE :: w_i !< w-component interpolated onto scalar grid point, required for momentum fluxes |
---|
| 1653 | !< at vertical surfaces |
---|
[1691] | 1654 | |
---|
| 1655 | ! |
---|
[4562] | 1656 | !-- Calcuate surface fluxes at horizontal walls |
---|
| 1657 | IF ( .NOT. surf_vertical ) THEN |
---|
[2232] | 1658 | ! |
---|
[4562] | 1659 | !-- Compute u'w' for the total model domain at upward-facing surfaces. First compute the |
---|
| 1660 | !-- corresponding component of u* and square it. |
---|
| 1661 | IF ( .NOT. downward ) THEN |
---|
| 1662 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1663 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1664 | !$ACC PRESENT(surf, u, rho_air_zw) |
---|
| 1665 | DO m = 1, surf%ns |
---|
| 1666 | i = surf%i(m) |
---|
| 1667 | j = surf%j(m) |
---|
| 1668 | k = surf%k(m) |
---|
[1691] | 1669 | |
---|
[4562] | 1670 | z_mo = surf%z_mo(m) |
---|
[1691] | 1671 | |
---|
[4562] | 1672 | surf%usws(m) = kappa * ( u(k,j,i) - u(k-1,j,i) ) & |
---|
| 1673 | / ( LOG( z_mo / surf%z0(m) ) - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1674 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
[2232] | 1675 | ! |
---|
[4562] | 1676 | !-- Please note, the computation of usws is not fully accurate. Actually a further |
---|
| 1677 | !-- interpolation of us onto the u-grid, where usws is defined, is required. However, this |
---|
| 1678 | !-- is not done as this would require several data transfers between 2D-grid and the |
---|
| 1679 | !-- surf-type. The impact of the missing interpolation is negligible as several tests have |
---|
| 1680 | !-- shown. Same also for ol. |
---|
| 1681 | surf%usws(m) = -surf%usws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1682 | ENDDO |
---|
[1691] | 1683 | ! |
---|
[4562] | 1684 | !-- At downward-facing surfaces |
---|
| 1685 | ELSE |
---|
| 1686 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1687 | DO m = 1, surf%ns |
---|
| 1688 | i = surf%i(m) |
---|
| 1689 | j = surf%j(m) |
---|
| 1690 | k = surf%k(m) |
---|
[1691] | 1691 | |
---|
[4562] | 1692 | z_mo = surf%z_mo(m) |
---|
[2232] | 1693 | |
---|
[4562] | 1694 | surf%usws(m) = kappa * u(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 1695 | surf%usws(m) = surf%usws(m) * surf%us(m) * rho_air_zw(k) |
---|
| 1696 | ENDDO |
---|
| 1697 | ENDIF |
---|
[1691] | 1698 | |
---|
[2232] | 1699 | ! |
---|
[4562] | 1700 | !-- Compute v'w' for the total model domain. First compute the corresponding component of u* and |
---|
| 1701 | !-- square it. |
---|
| 1702 | !-- Upward-facing surfaces |
---|
| 1703 | IF ( .NOT. downward ) THEN |
---|
| 1704 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1705 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1706 | !$ACC PRESENT(surf, v, rho_air_zw) |
---|
| 1707 | DO m = 1, surf%ns |
---|
| 1708 | i = surf%i(m) |
---|
| 1709 | j = surf%j(m) |
---|
| 1710 | k = surf%k(m) |
---|
[1691] | 1711 | |
---|
[4562] | 1712 | z_mo = surf%z_mo(m) |
---|
[1691] | 1713 | |
---|
[4562] | 1714 | surf%vsws(m) = kappa * ( v(k,j,i) - v(k-1,j,i) ) & |
---|
| 1715 | / ( LOG( z_mo / surf%z0(m) ) - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1716 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
[1691] | 1717 | ! |
---|
[4562] | 1718 | !-- Please note, the computation of vsws is not fully accurate. Actually a further |
---|
| 1719 | !-- interpolation of us onto the v-grid, where vsws is defined, is required. However, this |
---|
| 1720 | !-- is not done as this would require several data transfers between 2D-grid and the |
---|
| 1721 | !-- surf-type. The impact of the missing interpolation is negligible as several tests have |
---|
| 1722 | !-- shown. Same also for ol. |
---|
| 1723 | surf%vsws(m) = -surf%vsws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1724 | ENDDO |
---|
[2232] | 1725 | ! |
---|
[4562] | 1726 | !-- Downward-facing surfaces |
---|
| 1727 | ELSE |
---|
| 1728 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1729 | DO m = 1, surf%ns |
---|
| 1730 | i = surf%i(m) |
---|
| 1731 | j = surf%j(m) |
---|
| 1732 | k = surf%k(m) |
---|
[1691] | 1733 | |
---|
[4562] | 1734 | z_mo = surf%z_mo(m) |
---|
[2232] | 1735 | |
---|
[4562] | 1736 | surf%vsws(m) = kappa * v(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 1737 | surf%vsws(m) = surf%vsws(m) * surf%us(m) * rho_air_zw(k) |
---|
| 1738 | ENDDO |
---|
| 1739 | ENDIF |
---|
[1691] | 1740 | ! |
---|
[4562] | 1741 | !-- Compute the vertical kinematic heat flux |
---|
| 1742 | IF ( .NOT. constant_heatflux .AND. ( ( time_since_reference_point <= skip_time_do_lsm & |
---|
| 1743 | .AND. simulated_time > 0.0_wp ) .OR. .NOT. land_surface ) .AND. & |
---|
| 1744 | .NOT. urban_surface .AND. .NOT. downward ) THEN |
---|
| 1745 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1746 | DO m = 1, surf%ns |
---|
| 1747 | i = surf%i(m) |
---|
| 1748 | j = surf%j(m) |
---|
| 1749 | k = surf%k(m) |
---|
| 1750 | surf%shf(m) = -surf%ts(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1751 | ENDDO |
---|
| 1752 | ENDIF |
---|
[2232] | 1753 | ! |
---|
[4562] | 1754 | !-- Compute the vertical water flux |
---|
| 1755 | IF ( .NOT. constant_waterflux .AND. humidity .AND. & |
---|
| 1756 | ( ( time_since_reference_point <= skip_time_do_lsm .AND. simulated_time > 0.0_wp ) & |
---|
| 1757 | .OR. .NOT. land_surface ) .AND. .NOT. urban_surface .AND. .NOT. downward ) & |
---|
| 1758 | THEN |
---|
| 1759 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1760 | DO m = 1, surf%ns |
---|
| 1761 | i = surf%i(m) |
---|
| 1762 | j = surf%j(m) |
---|
| 1763 | k = surf%k(m) |
---|
| 1764 | surf%qsws(m) = -surf%qs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1765 | ENDDO |
---|
| 1766 | ENDIF |
---|
| 1767 | ! |
---|
| 1768 | !-- Compute the vertical scalar flux |
---|
| 1769 | IF ( .NOT. constant_scalarflux .AND. passive_scalar .AND. .NOT. downward ) THEN |
---|
| 1770 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1771 | DO m = 1, surf%ns |
---|
| 1772 | i = surf%i(m) |
---|
| 1773 | j = surf%j(m) |
---|
| 1774 | surf%ssws(m) = -surf%ss(m) * surf%us(m) |
---|
| 1775 | ENDDO |
---|
| 1776 | ENDIF |
---|
| 1777 | ! |
---|
| 1778 | !-- Compute the vertical chemical species' flux |
---|
| 1779 | DO lsp = 1, nvar |
---|
| 1780 | IF ( .NOT. constant_csflux(lsp) .AND. air_chemistry .AND. .NOT. downward ) THEN |
---|
| 1781 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1782 | DO m = 1, surf%ns |
---|
| 1783 | i = surf%i(m) |
---|
| 1784 | j = surf%j(m) |
---|
| 1785 | surf%cssws(lsp,m) = -surf%css(lsp,m) * surf%us(m) |
---|
[2232] | 1786 | ENDDO |
---|
| 1787 | ENDIF |
---|
[4562] | 1788 | ENDDO |
---|
| 1789 | |
---|
[2232] | 1790 | ! |
---|
[4562] | 1791 | !-- Compute (turbulent) fluxes of cloud water content and cloud drop conc. |
---|
| 1792 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. .NOT. downward) THEN |
---|
| 1793 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1794 | DO m = 1, surf%ns |
---|
| 1795 | i = surf%i(m) |
---|
| 1796 | j = surf%j(m) |
---|
[1691] | 1797 | |
---|
[4562] | 1798 | surf%qcsws(m) = -surf%qcs(m) * surf%us(m) |
---|
| 1799 | surf%ncsws(m) = -surf%ncs(m) * surf%us(m) |
---|
| 1800 | ENDDO |
---|
| 1801 | ENDIF |
---|
| 1802 | ! |
---|
| 1803 | !-- Compute (turbulent) fluxes of rain water content and rain drop conc. |
---|
| 1804 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. .NOT. downward) THEN |
---|
| 1805 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1806 | DO m = 1, surf%ns |
---|
| 1807 | i = surf%i(m) |
---|
| 1808 | j = surf%j(m) |
---|
[1691] | 1809 | |
---|
[4562] | 1810 | surf%qrsws(m) = -surf%qrs(m) * surf%us(m) |
---|
| 1811 | surf%nrsws(m) = -surf%nrs(m) * surf%us(m) |
---|
[2696] | 1812 | ENDDO |
---|
[4562] | 1813 | ENDIF |
---|
[2696] | 1814 | |
---|
| 1815 | ! |
---|
[4562] | 1816 | !-- Bottom boundary condition for the TKE. |
---|
| 1817 | IF ( ibc_e_b == 2 ) THEN |
---|
| 1818 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1819 | DO m = 1, surf%ns |
---|
| 1820 | i = surf%i(m) |
---|
| 1821 | j = surf%j(m) |
---|
| 1822 | k = surf%k(m) |
---|
[2292] | 1823 | |
---|
[4562] | 1824 | e(k,j,i) = ( surf%us(m) / 0.1_wp )**2 |
---|
| 1825 | ! |
---|
| 1826 | !-- As a test: cm = 0.4 |
---|
| 1827 | ! e(k,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
| 1828 | e(k-1,j,i) = e(k,j,i) |
---|
[2292] | 1829 | |
---|
[4562] | 1830 | ENDDO |
---|
| 1831 | ENDIF |
---|
[2292] | 1832 | ! |
---|
[4562] | 1833 | !-- Calcuate surface fluxes at vertical surfaces. No stability is considered. |
---|
| 1834 | ELSE |
---|
| 1835 | ! |
---|
| 1836 | !-- Compute usvs l={0,1} and vsus l={2,3} |
---|
| 1837 | IF ( mom_uv ) THEN |
---|
| 1838 | ! |
---|
| 1839 | !-- Generalize computation by introducing flags. At north- and south-facing surfaces |
---|
| 1840 | !-- u-component is used, at east- and west-facing surfaces v-component is used. |
---|
| 1841 | flag_u = MERGE( 1.0_wp, 0.0_wp, l == 0 .OR. l == 1 ) |
---|
| 1842 | flag_v = MERGE( 1.0_wp, 0.0_wp, l == 2 .OR. l == 3 ) |
---|
| 1843 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1844 | DO m = 1, surf%ns |
---|
| 1845 | i = surf%i(m) |
---|
| 1846 | j = surf%j(m) |
---|
| 1847 | k = surf%k(m) |
---|
[2232] | 1848 | |
---|
[4562] | 1849 | z_mo = surf%z_mo(m) |
---|
[2232] | 1850 | |
---|
[4562] | 1851 | surf%mom_flux_uv(m) = kappa * ( flag_u * u(k,j,i) + flag_v * v(k,j,i) ) / & |
---|
| 1852 | LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 1853 | |
---|
[4562] | 1854 | surf%mom_flux_uv(m) = - surf%mom_flux_uv(m) * surf%us(m) |
---|
| 1855 | ENDDO |
---|
| 1856 | ENDIF |
---|
[1960] | 1857 | ! |
---|
[4562] | 1858 | !-- Compute wsus l={0,1} and wsvs l={2,3} |
---|
| 1859 | IF ( mom_w ) THEN |
---|
| 1860 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1861 | DO m = 1, surf%ns |
---|
| 1862 | i = surf%i(m) |
---|
| 1863 | j = surf%j(m) |
---|
| 1864 | k = surf%k(m) |
---|
[2232] | 1865 | |
---|
[4562] | 1866 | z_mo = surf%z_mo(m) |
---|
[2232] | 1867 | |
---|
[4562] | 1868 | surf%mom_flux_w(m) = kappa * w(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
[2232] | 1869 | |
---|
[4562] | 1870 | surf%mom_flux_w(m) = - surf%mom_flux_w(m) * surf%us(m) |
---|
| 1871 | ENDDO |
---|
| 1872 | ENDIF |
---|
[2232] | 1873 | ! |
---|
[4562] | 1874 | !-- Compute momentum fluxes used for subgrid-scale TKE production at vertical surfaces. In |
---|
| 1875 | !-- constrast to the calculated momentum fluxes at vertical surfaces before, which are defined on |
---|
| 1876 | !-- the u/v/w-grid, respectively), the TKE fluxes are defined at the scalar grid. |
---|
| 1877 | !-- |
---|
| 1878 | IF ( mom_tke ) THEN |
---|
[2232] | 1879 | ! |
---|
[4562] | 1880 | !-- Precalculate velocity components at scalar grid point. |
---|
| 1881 | ALLOCATE( u_i(1:surf%ns) ) |
---|
| 1882 | ALLOCATE( v_i(1:surf%ns) ) |
---|
| 1883 | ALLOCATE( w_i(1:surf%ns) ) |
---|
| 1884 | |
---|
| 1885 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 1886 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1887 | DO m = 1, surf%ns |
---|
| 1888 | i = surf%i(m) |
---|
[2232] | 1889 | j = surf%j(m) |
---|
| 1890 | k = surf%k(m) |
---|
[1691] | 1891 | |
---|
[4562] | 1892 | u_i(m) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 1893 | v_i(m) = 0.0_wp |
---|
| 1894 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[2232] | 1895 | ENDDO |
---|
[4562] | 1896 | ELSE |
---|
| 1897 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1898 | DO m = 1, surf%ns |
---|
| 1899 | i = surf%i(m) |
---|
[2232] | 1900 | j = surf%j(m) |
---|
| 1901 | k = surf%k(m) |
---|
| 1902 | |
---|
[4562] | 1903 | u_i(m) = 0.0_wp |
---|
| 1904 | v_i(m) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 1905 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[1691] | 1906 | ENDDO |
---|
[2232] | 1907 | ENDIF |
---|
[1691] | 1908 | |
---|
[4562] | 1909 | !$OMP PARALLEL DO PRIVATE( i, j, dum, z_mo ) |
---|
| 1910 | DO m = 1, surf%ns |
---|
| 1911 | i = surf%i(m) |
---|
| 1912 | j = surf%j(m) |
---|
[2232] | 1913 | |
---|
[4562] | 1914 | z_mo = surf%z_mo(m) |
---|
[2232] | 1915 | |
---|
[4562] | 1916 | dum = kappa / LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 1917 | ! |
---|
[4562] | 1918 | !-- usvs (l=0,1) and vsus (l=2,3) |
---|
| 1919 | surf%mom_flux_tke(0,m) = dum * ( u_i(m) + v_i(m) ) |
---|
[1691] | 1920 | ! |
---|
[4562] | 1921 | !-- wsvs (l=0,1) and wsus (l=2,3) |
---|
| 1922 | surf%mom_flux_tke(1,m) = dum * w_i(m) |
---|
[2232] | 1923 | |
---|
[4562] | 1924 | surf%mom_flux_tke(0:1,m) = - surf%mom_flux_tke(0:1,m) * surf%us(m) |
---|
| 1925 | ENDDO |
---|
[2232] | 1926 | ! |
---|
[4562] | 1927 | !-- Deallocate temporary arrays |
---|
| 1928 | DEALLOCATE( u_i ) |
---|
| 1929 | DEALLOCATE( v_i ) |
---|
| 1930 | DEALLOCATE( w_i ) |
---|
[1691] | 1931 | ENDIF |
---|
[4562] | 1932 | ENDIF |
---|
[1691] | 1933 | |
---|
[4562] | 1934 | END SUBROUTINE calc_surface_fluxes |
---|
[1691] | 1935 | |
---|
[4562] | 1936 | |
---|
| 1937 | !--------------------------------------------------------------------------------------------------! |
---|
[3597] | 1938 | ! Description: |
---|
| 1939 | ! ------------ |
---|
[4562] | 1940 | !> Calculates temperature near surface (10 cm) for indoor model or 2 m temperature for output. |
---|
| 1941 | !--------------------------------------------------------------------------------------------------! |
---|
| 1942 | SUBROUTINE calc_pt_near_surface ( z_char ) |
---|
[1691] | 1943 | |
---|
[4562] | 1944 | IMPLICIT NONE |
---|
[3597] | 1945 | |
---|
[4562] | 1946 | CHARACTER(LEN = *), INTENT(IN) :: z_char !< string identifier to identify z level |
---|
[3597] | 1947 | |
---|
[4562] | 1948 | INTEGER(iwp) :: i !< grid index x-dimension |
---|
| 1949 | INTEGER(iwp) :: j !< grid index y-dimension |
---|
| 1950 | INTEGER(iwp) :: k !< grid index z-dimension |
---|
| 1951 | INTEGER(iwp) :: m !< running index for surface elements |
---|
[3597] | 1952 | |
---|
| 1953 | |
---|
[4562] | 1954 | SELECT CASE ( z_char) |
---|
[3597] | 1955 | |
---|
[4562] | 1956 | CASE ( '10cm' ) |
---|
[4331] | 1957 | |
---|
[4562] | 1958 | DO m = 1, surf%ns |
---|
[3597] | 1959 | |
---|
[4562] | 1960 | i = surf%i(m) |
---|
| 1961 | j = surf%j(m) |
---|
| 1962 | k = surf%k(m) |
---|
[3597] | 1963 | |
---|
[4562] | 1964 | surf%pt_10cm(m) = surf%pt_surface(m) + surf%ts(m) / kappa & |
---|
| 1965 | * ( LOG( 0.1_wp / surf%z0h(m) ) - psi_h( 0.1_wp / surf%ol(m) ) & |
---|
| 1966 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
| 1967 | ENDDO |
---|
[3597] | 1968 | |
---|
[4562] | 1969 | END SELECT |
---|
[1691] | 1970 | |
---|
[4562] | 1971 | END SUBROUTINE calc_pt_near_surface |
---|
[1691] | 1972 | |
---|
| 1973 | |
---|
[4562] | 1974 | !--------------------------------------------------------------------------------------------------! |
---|
| 1975 | ! Description: |
---|
| 1976 | ! ------------ |
---|
| 1977 | !> Integrated stability function for momentum. |
---|
| 1978 | !--------------------------------------------------------------------------------------------------! |
---|
| 1979 | FUNCTION psi_m( zeta ) |
---|
| 1980 | !$ACC ROUTINE SEQ |
---|
[1691] | 1981 | |
---|
[4562] | 1982 | USE kinds |
---|
[1691] | 1983 | |
---|
[4562] | 1984 | IMPLICIT NONE |
---|
[1691] | 1985 | |
---|
[4562] | 1986 | REAL(wp) :: psi_m !< Integrated similarity function result |
---|
| 1987 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 1988 | REAL(wp) :: x !< dummy variable |
---|
[1691] | 1989 | |
---|
[4562] | 1990 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 1991 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 1992 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 1993 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 1994 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 1995 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
[1691] | 1996 | |
---|
| 1997 | |
---|
[4562] | 1998 | IF ( zeta < 0.0_wp ) THEN |
---|
| 1999 | x = SQRT( SQRT( 1.0_wp - 16.0_wp * zeta ) ) |
---|
| 2000 | psi_m = pi * 0.5_wp - 2.0_wp * ATAN( x ) + LOG( ( 1.0_wp + x )**2 & |
---|
| 2001 | * ( 1.0_wp + x**2 ) * 0.125_wp ) |
---|
| 2002 | ELSE |
---|
[1691] | 2003 | |
---|
[4562] | 2004 | psi_m = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - a * zeta - bc_d_d |
---|
[1691] | 2005 | ! |
---|
[4562] | 2006 | !-- Old version for stable conditions (only valid for z/L < 0.5) psi_m = - 5.0_wp * zeta |
---|
[1691] | 2007 | |
---|
[4562] | 2008 | ENDIF |
---|
[1691] | 2009 | |
---|
[4562] | 2010 | END FUNCTION psi_m |
---|
[1691] | 2011 | |
---|
| 2012 | |
---|
[4562] | 2013 | !--------------------------------------------------------------------------------------------------! |
---|
| 2014 | ! Description: |
---|
| 2015 | !------------ |
---|
| 2016 | !> Integrated stability function for heat and moisture. |
---|
| 2017 | !--------------------------------------------------------------------------------------------------! |
---|
| 2018 | FUNCTION psi_h( zeta ) |
---|
| 2019 | !$ACC ROUTINE SEQ |
---|
[1691] | 2020 | |
---|
[4562] | 2021 | USE kinds |
---|
| 2022 | |
---|
| 2023 | IMPLICIT NONE |
---|
| 2024 | |
---|
| 2025 | REAL(wp) :: psi_h !< Integrated similarity function result |
---|
| 2026 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2027 | REAL(wp) :: x !< dummy variable |
---|
| 2028 | |
---|
| 2029 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 2030 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 2031 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2032 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 2033 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 2034 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 2035 | |
---|
| 2036 | |
---|
| 2037 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2038 | x = SQRT( 1.0_wp - 16.0_wp * zeta ) |
---|
| 2039 | psi_h = 2.0_wp * LOG( (1.0_wp + x ) / 2.0_wp ) |
---|
| 2040 | ELSE |
---|
| 2041 | psi_h = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - (1.0_wp & |
---|
| 2042 | + 0.66666666666_wp * a * zeta )**1.5_wp - bc_d_d + 1.0_wp |
---|
[1691] | 2043 | ! |
---|
[4562] | 2044 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 2045 | !-- psi_h = - 5.0_wp * zeta |
---|
| 2046 | ENDIF |
---|
[1691] | 2047 | |
---|
[4562] | 2048 | END FUNCTION psi_h |
---|
[1691] | 2049 | |
---|
[3130] | 2050 | |
---|
[4562] | 2051 | !--------------------------------------------------------------------------------------------------! |
---|
[3130] | 2052 | ! Description: |
---|
| 2053 | ! ------------ |
---|
| 2054 | !> Calculates stability function for momentum |
---|
| 2055 | !> |
---|
| 2056 | !> @author Hauke Wurps |
---|
[4562] | 2057 | !--------------------------------------------------------------------------------------------------! |
---|
| 2058 | FUNCTION phi_m( zeta ) |
---|
| 2059 | !$ACC ROUTINE SEQ |
---|
[3130] | 2060 | |
---|
[4562] | 2061 | IMPLICIT NONE |
---|
| 2062 | |
---|
| 2063 | REAL(wp) :: phi_m !< Value of the function |
---|
| 2064 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2065 | |
---|
| 2066 | REAL(wp), PARAMETER :: a = 16.0_wp !< constant |
---|
| 2067 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2068 | |
---|
| 2069 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2070 | phi_m = 1.0_wp / SQRT( SQRT( 1.0_wp - a * zeta ) ) |
---|
| 2071 | ELSE |
---|
| 2072 | phi_m = 1.0_wp + c * zeta |
---|
| 2073 | ENDIF |
---|
| 2074 | |
---|
| 2075 | END FUNCTION phi_m |
---|
| 2076 | |
---|
[1697] | 2077 | END MODULE surface_layer_fluxes_mod |
---|