!> @file sum_up_3d_data.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2020 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: sum_up_3d_data.f90 4442 2020-03-04 19:21:13Z monakurppa $ ! Change order of dimension in surface array %frac to allow for better ! vectorization. ! ! 4441 2020-03-04 19:20:35Z suehring ! Move 2-m potential temperature output to diagnostic_output_quantities ! ! 4182 2019-08-22 15:20:23Z scharf ! Corrected "Former revisions" section ! ! 4048 2019-06-21 21:00:21Z knoop ! Moved tcm_3d_data_averaging to module_interface ! ! 4039 2019-06-18 10:32:41Z suehring ! Modularize diagnostic output ! ! 3994 2019-05-22 18:08:09Z suehring ! output of turbulence intensity added ! ! 3943 2019-05-02 09:50:41Z maronga ! Added output of qsws_av for green roofs. ! ! 3933 2019-04-25 12:33:20Z kanani ! Formatting ! ! 3773 2019-03-01 08:56:57Z maronga ! Added output of theta_2m*_xy_av ! ! 3761 2019-02-25 15:31:42Z raasch ! unused variables removed ! ! 3655 2019-01-07 16:51:22Z knoop ! Implementation of the PALM module interface ! ! Revision 1.1 2006/02/23 12:55:23 raasch ! Initial revision ! ! ! Description: ! ------------ !> Sum-up the values of 3d-arrays. The real averaging is later done in routine !> average_3d_data. !------------------------------------------------------------------------------! SUBROUTINE sum_up_3d_data USE arrays_3d, & ONLY: dzw, d_exner, e, heatflux_output_conversion, p, & pt, q, ql, ql_c, ql_v, s, u, v, vpt, w, & waterflux_output_conversion USE averaging, & ONLY: e_av, ghf_av, lpt_av, lwp_av, ol_av, p_av, pc_av, pr_av, pt_av, & q_av, ql_av, ql_c_av, ql_v_av, ql_vp_av, qsws_av, & qv_av, r_a_av, s_av, shf_av, ssws_av, ts_av, tsurf_av, u_av, & us_av, v_av, vpt_av, w_av, z0_av, z0h_av, z0q_av USE basic_constants_and_equations_mod, & ONLY: c_p, lv_d_cp, l_v USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model USE control_parameters, & ONLY: average_count_3d, doav, doav_n, rho_surface, urban_surface, & varnamelength USE cpulog, & ONLY: cpu_log, log_point USE indices, & ONLY: nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt USE kinds USE module_interface, & ONLY: module_interface_3d_data_averaging USE particle_attributes, & ONLY: grid_particles, number_of_particles, particles, prt_count USE surface_mod, & ONLY: ind_pav_green, ind_veg_wall, ind_wat_win, & surf_def_h, surf_lsm_h, surf_usm_h USE urban_surface_mod, & ONLY: usm_3d_data_averaging IMPLICIT NONE LOGICAL :: match_def !< flag indicating default-type surface LOGICAL :: match_lsm !< flag indicating natural-type surface LOGICAL :: match_usm !< flag indicating urban-type surface INTEGER(iwp) :: i !< grid index x direction INTEGER(iwp) :: ii !< running index INTEGER(iwp) :: j !< grid index y direction INTEGER(iwp) :: k !< grid index x direction INTEGER(iwp) :: m !< running index over surfacle elements INTEGER(iwp) :: n !< running index over number of particles per grid box REAL(wp) :: mean_r !< mean-particle radius witin grid box REAL(wp) :: s_r2 !< mean-particle radius witin grid box to the power of two REAL(wp) :: s_r3 !< mean-particle radius witin grid box to the power of three CHARACTER (LEN=varnamelength) :: trimvar !< TRIM of output-variable string CALL cpu_log (log_point(34),'sum_up_3d_data','start') ! !-- Allocate and initialize the summation arrays if called for the very first !-- time or the first time after average_3d_data has been called !-- (some or all of the arrays may have been already allocated !-- in rrd_local) IF ( average_count_3d == 0 ) THEN DO ii = 1, doav_n trimvar = TRIM( doav(ii) ) SELECT CASE ( trimvar ) CASE ( 'ghf*' ) IF ( .NOT. ALLOCATED( ghf_av ) ) THEN ALLOCATE( ghf_av(nysg:nyng,nxlg:nxrg) ) ENDIF ghf_av = 0.0_wp CASE ( 'e' ) IF ( .NOT. ALLOCATED( e_av ) ) THEN ALLOCATE( e_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF e_av = 0.0_wp CASE ( 'thetal' ) IF ( .NOT. ALLOCATED( lpt_av ) ) THEN ALLOCATE( lpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF lpt_av = 0.0_wp CASE ( 'lwp*' ) IF ( .NOT. ALLOCATED( lwp_av ) ) THEN ALLOCATE( lwp_av(nysg:nyng,nxlg:nxrg) ) ENDIF lwp_av = 0.0_wp CASE ( 'ol*' ) IF ( .NOT. ALLOCATED( ol_av ) ) THEN ALLOCATE( ol_av(nysg:nyng,nxlg:nxrg) ) ENDIF ol_av = 0.0_wp CASE ( 'p' ) IF ( .NOT. ALLOCATED( p_av ) ) THEN ALLOCATE( p_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF p_av = 0.0_wp CASE ( 'pc' ) IF ( .NOT. ALLOCATED( pc_av ) ) THEN ALLOCATE( pc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF pc_av = 0.0_wp CASE ( 'pr' ) IF ( .NOT. ALLOCATED( pr_av ) ) THEN ALLOCATE( pr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF pr_av = 0.0_wp CASE ( 'theta' ) IF ( .NOT. ALLOCATED( pt_av ) ) THEN ALLOCATE( pt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF pt_av = 0.0_wp CASE ( 'q' ) IF ( .NOT. ALLOCATED( q_av ) ) THEN ALLOCATE( q_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF q_av = 0.0_wp CASE ( 'ql' ) IF ( .NOT. ALLOCATED( ql_av ) ) THEN ALLOCATE( ql_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ql_av = 0.0_wp CASE ( 'ql_c' ) IF ( .NOT. ALLOCATED( ql_c_av ) ) THEN ALLOCATE( ql_c_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ql_c_av = 0.0_wp CASE ( 'ql_v' ) IF ( .NOT. ALLOCATED( ql_v_av ) ) THEN ALLOCATE( ql_v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ql_v_av = 0.0_wp CASE ( 'ql_vp' ) IF ( .NOT. ALLOCATED( ql_vp_av ) ) THEN ALLOCATE( ql_vp_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ql_vp_av = 0.0_wp CASE ( 'qsws*' ) IF ( .NOT. ALLOCATED( qsws_av ) ) THEN ALLOCATE( qsws_av(nysg:nyng,nxlg:nxrg) ) ENDIF qsws_av = 0.0_wp CASE ( 'qv' ) IF ( .NOT. ALLOCATED( qv_av ) ) THEN ALLOCATE( qv_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF qv_av = 0.0_wp CASE ( 'r_a*' ) IF ( .NOT. ALLOCATED( r_a_av ) ) THEN ALLOCATE( r_a_av(nysg:nyng,nxlg:nxrg) ) ENDIF r_a_av = 0.0_wp CASE ( 's' ) IF ( .NOT. ALLOCATED( s_av ) ) THEN ALLOCATE( s_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF s_av = 0.0_wp CASE ( 'shf*' ) IF ( .NOT. ALLOCATED( shf_av ) ) THEN ALLOCATE( shf_av(nysg:nyng,nxlg:nxrg) ) ENDIF shf_av = 0.0_wp CASE ( 'ssws*' ) IF ( .NOT. ALLOCATED( ssws_av ) ) THEN ALLOCATE( ssws_av(nysg:nyng,nxlg:nxrg) ) ENDIF ssws_av = 0.0_wp CASE ( 't*' ) IF ( .NOT. ALLOCATED( ts_av ) ) THEN ALLOCATE( ts_av(nysg:nyng,nxlg:nxrg) ) ENDIF ts_av = 0.0_wp CASE ( 'tsurf*' ) IF ( .NOT. ALLOCATED( tsurf_av ) ) THEN ALLOCATE( tsurf_av(nysg:nyng,nxlg:nxrg) ) ENDIF tsurf_av = 0.0_wp CASE ( 'u' ) IF ( .NOT. ALLOCATED( u_av ) ) THEN ALLOCATE( u_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF u_av = 0.0_wp CASE ( 'us*' ) IF ( .NOT. ALLOCATED( us_av ) ) THEN ALLOCATE( us_av(nysg:nyng,nxlg:nxrg) ) ENDIF us_av = 0.0_wp CASE ( 'v' ) IF ( .NOT. ALLOCATED( v_av ) ) THEN ALLOCATE( v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF v_av = 0.0_wp CASE ( 'thetav' ) IF ( .NOT. ALLOCATED( vpt_av ) ) THEN ALLOCATE( vpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF vpt_av = 0.0_wp CASE ( 'w' ) IF ( .NOT. ALLOCATED( w_av ) ) THEN ALLOCATE( w_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF w_av = 0.0_wp CASE ( 'z0*' ) IF ( .NOT. ALLOCATED( z0_av ) ) THEN ALLOCATE( z0_av(nysg:nyng,nxlg:nxrg) ) ENDIF z0_av = 0.0_wp CASE ( 'z0h*' ) IF ( .NOT. ALLOCATED( z0h_av ) ) THEN ALLOCATE( z0h_av(nysg:nyng,nxlg:nxrg) ) ENDIF z0h_av = 0.0_wp CASE ( 'z0q*' ) IF ( .NOT. ALLOCATED( z0q_av ) ) THEN ALLOCATE( z0q_av(nysg:nyng,nxlg:nxrg) ) ENDIF z0q_av = 0.0_wp CASE DEFAULT ! !-- Allocating and initializing data arrays for all other modules CALL module_interface_3d_data_averaging( 'allocate', trimvar ) END SELECT ENDDO ENDIF ! !-- Loop of all variables to be averaged. DO ii = 1, doav_n trimvar = TRIM( doav(ii) ) ! !-- Store the array chosen on the temporary array. SELECT CASE ( trimvar ) CASE ( 'ghf*' ) IF ( ALLOCATED( ghf_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn ! !-- Check whether grid point is a natural- or urban-type !-- surface. match_lsm = surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) ! !-- In order to avoid double-counting of surface properties, !-- always assume that natural-type surfaces are below urban- !-- type surfaces, e.g. in case of bridges. !-- Further, take only the last suface element, i.e. the !-- uppermost surface which would be visible from above IF ( match_lsm .AND. .NOT. match_usm ) THEN m = surf_lsm_h%end_index(j,i) ghf_av(j,i) = ghf_av(j,i) + & surf_lsm_h%ghf(m) ELSEIF ( match_usm ) THEN m = surf_usm_h%end_index(j,i) ghf_av(j,i) = ghf_av(j,i) + & surf_usm_h%frac(m,ind_veg_wall) * & surf_usm_h%wghf_eb(m) + & surf_usm_h%frac(m,ind_pav_green) * & surf_usm_h%wghf_eb_green(m) + & surf_usm_h%frac(m,ind_wat_win) * & surf_usm_h%wghf_eb_window(m) ENDIF ENDDO ENDDO ENDIF CASE ( 'e' ) IF ( ALLOCATED( e_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 e_av(k,j,i) = e_av(k,j,i) + e(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'thetal' ) IF ( ALLOCATED( lpt_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 lpt_av(k,j,i) = lpt_av(k,j,i) + pt(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'lwp*' ) IF ( ALLOCATED( lwp_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng lwp_av(j,i) = lwp_av(j,i) + SUM( ql(nzb:nzt,j,i) & * dzw(1:nzt+1) ) * rho_surface ENDDO ENDDO ENDIF CASE ( 'ol*' ) IF ( ALLOCATED( ol_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn match_def = surf_def_h(0)%start_index(j,i) <= & surf_def_h(0)%end_index(j,i) match_lsm = surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) IF ( match_def ) THEN m = surf_def_h(0)%end_index(j,i) ol_av(j,i) = ol_av(j,i) + & surf_def_h(0)%ol(m) ELSEIF ( match_lsm .AND. .NOT. match_usm ) THEN m = surf_lsm_h%end_index(j,i) ol_av(j,i) = ol_av(j,i) + & surf_lsm_h%ol(m) ELSEIF ( match_usm ) THEN m = surf_usm_h%end_index(j,i) ol_av(j,i) = ol_av(j,i) + & surf_usm_h%ol(m) ENDIF ENDDO ENDDO ENDIF CASE ( 'p' ) IF ( ALLOCATED( p_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 p_av(k,j,i) = p_av(k,j,i) + p(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'pc' ) IF ( ALLOCATED( pc_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 pc_av(k,j,i) = pc_av(k,j,i) + prt_count(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'pr' ) IF ( ALLOCATED( pr_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 number_of_particles = prt_count(k,j,i) IF ( number_of_particles <= 0 ) CYCLE particles => & grid_particles(k,j,i)%particles(1:number_of_particles) s_r2 = 0.0_wp s_r3 = 0.0_wp DO n = 1, number_of_particles IF ( particles(n)%particle_mask ) THEN s_r2 = s_r2 + particles(n)%radius**2 * & particles(n)%weight_factor s_r3 = s_r3 + particles(n)%radius**3 * & particles(n)%weight_factor ENDIF ENDDO IF ( s_r2 > 0.0_wp ) THEN mean_r = s_r3 / s_r2 ELSE mean_r = 0.0_wp ENDIF pr_av(k,j,i) = pr_av(k,j,i) + mean_r ENDDO ENDDO ENDDO ENDIF CASE ( 'theta' ) IF ( ALLOCATED( pt_av ) ) THEN IF ( .NOT. bulk_cloud_model ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 pt_av(k,j,i) = pt_av(k,j,i) + pt(k,j,i) ENDDO ENDDO ENDDO ELSE DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 pt_av(k,j,i) = pt_av(k,j,i) + pt(k,j,i) + lv_d_cp * & d_exner(k) * ql(k,j,i) ENDDO ENDDO ENDDO ENDIF ENDIF CASE ( 'q' ) IF ( ALLOCATED( q_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 q_av(k,j,i) = q_av(k,j,i) + q(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'ql' ) IF ( ALLOCATED( ql_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 ql_av(k,j,i) = ql_av(k,j,i) + ql(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'ql_c' ) IF ( ALLOCATED( ql_c_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 ql_c_av(k,j,i) = ql_c_av(k,j,i) + ql_c(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'ql_v' ) IF ( ALLOCATED( ql_v_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 ql_v_av(k,j,i) = ql_v_av(k,j,i) + ql_v(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'ql_vp' ) IF ( ALLOCATED( ql_vp_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 number_of_particles = prt_count(k,j,i) IF ( number_of_particles <= 0 ) CYCLE particles => & grid_particles(k,j,i)%particles(1:number_of_particles) DO n = 1, number_of_particles IF ( particles(n)%particle_mask ) THEN ql_vp_av(k,j,i) = ql_vp_av(k,j,i) + & particles(n)%weight_factor / & number_of_particles ENDIF ENDDO ENDDO ENDDO ENDDO ENDIF CASE ( 'qsws*' ) ! !-- In case of default surfaces, clean-up flux by density. !-- In case of land- and urban-surfaces, convert fluxes into !-- dynamic units. !-- Question (maronga): are the .NOT. statements really required? IF ( ALLOCATED( qsws_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn match_def = surf_def_h(0)%start_index(j,i) <= & surf_def_h(0)%end_index(j,i) match_lsm = surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) IF ( match_def ) THEN m = surf_def_h(0)%end_index(j,i) qsws_av(j,i) = qsws_av(j,i) + & surf_def_h(0)%qsws(m) * & waterflux_output_conversion(nzb) ELSEIF ( match_lsm .AND. .NOT. match_usm ) THEN m = surf_lsm_h%end_index(j,i) qsws_av(j,i) = qsws_av(j,i) + & surf_lsm_h%qsws(m) * l_v ELSEIF ( match_usm .AND. .NOT. match_lsm ) THEN m = surf_usm_h%end_index(j,i) qsws_av(j,i) = qsws_av(j,i) + & surf_usm_h%qsws(m) * l_v ENDIF ENDDO ENDDO ENDIF CASE ( 'qv' ) IF ( ALLOCATED( qv_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 qv_av(k,j,i) = qv_av(k,j,i) + q(k,j,i) - ql(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'r_a*' ) IF ( ALLOCATED( r_a_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn match_lsm = surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) IF ( match_lsm .AND. .NOT. match_usm ) THEN m = surf_lsm_h%end_index(j,i) r_a_av(j,i) = r_a_av(j,i) + & surf_lsm_h%r_a(m) ELSEIF ( match_usm ) THEN m = surf_usm_h%end_index(j,i) r_a_av(j,i) = r_a_av(j,i) + & surf_usm_h%frac(m,ind_veg_wall) * & surf_usm_h%r_a(m) + & surf_usm_h%frac(m,ind_pav_green) * & surf_usm_h%r_a_green(m) + & surf_usm_h%frac(m,ind_wat_win) * & surf_usm_h%r_a_window(m) ENDIF ENDDO ENDDO ENDIF CASE ( 's' ) IF ( ALLOCATED( s_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 s_av(k,j,i) = s_av(k,j,i) + s(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'shf*' ) ! !-- In case of default surfaces, clean-up flux by density. !-- In case of land- and urban-surfaces, convert fluxes into !-- dynamic units. IF ( ALLOCATED( shf_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn match_def = surf_def_h(0)%start_index(j,i) <= & surf_def_h(0)%end_index(j,i) match_lsm = surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) IF ( match_def ) THEN m = surf_def_h(0)%end_index(j,i) shf_av(j,i) = shf_av(j,i) + & surf_def_h(0)%shf(m) * & heatflux_output_conversion(nzb) ELSEIF ( match_lsm .AND. .NOT. match_usm ) THEN m = surf_lsm_h%end_index(j,i) shf_av(j,i) = shf_av(j,i) + & surf_lsm_h%shf(m) * c_p ELSEIF ( match_usm ) THEN m = surf_usm_h%end_index(j,i) shf_av(j,i) = shf_av(j,i) + & surf_usm_h%shf(m) * c_p ENDIF ENDDO ENDDO ENDIF CASE ( 'ssws*' ) IF ( ALLOCATED( ssws_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn match_def = surf_def_h(0)%start_index(j,i) <= & surf_def_h(0)%end_index(j,i) match_lsm = surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) IF ( match_def ) THEN m = surf_def_h(0)%end_index(j,i) ssws_av(j,i) = ssws_av(j,i) + & surf_def_h(0)%ssws(m) ELSEIF ( match_lsm .AND. .NOT. match_usm ) THEN m = surf_lsm_h%end_index(j,i) ssws_av(j,i) = ssws_av(j,i) + & surf_lsm_h%ssws(m) ELSEIF ( match_usm ) THEN m = surf_usm_h%end_index(j,i) ssws_av(j,i) = ssws_av(j,i) + & surf_usm_h%ssws(m) ENDIF ENDDO ENDDO ENDIF CASE ( 't*' ) IF ( ALLOCATED( ts_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn match_def = surf_def_h(0)%start_index(j,i) <= & surf_def_h(0)%end_index(j,i) match_lsm = surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) IF ( match_def ) THEN m = surf_def_h(0)%end_index(j,i) ts_av(j,i) = ts_av(j,i) + & surf_def_h(0)%ts(m) ELSEIF ( match_lsm .AND. .NOT. match_usm ) THEN m = surf_lsm_h%end_index(j,i) ts_av(j,i) = ts_av(j,i) + & surf_lsm_h%ts(m) ELSEIF ( match_usm ) THEN m = surf_usm_h%end_index(j,i) ts_av(j,i) = ts_av(j,i) + & surf_usm_h%ts(m) ENDIF ENDDO ENDDO ENDIF CASE ( 'tsurf*' ) IF ( ALLOCATED( tsurf_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn match_def = surf_def_h(0)%start_index(j,i) <= & surf_def_h(0)%end_index(j,i) match_lsm = surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) IF ( match_def ) THEN m = surf_def_h(0)%end_index(j,i) tsurf_av(j,i) = tsurf_av(j,i) + & surf_def_h(0)%pt_surface(m) ELSEIF ( match_lsm .AND. .NOT. match_usm ) THEN m = surf_lsm_h%end_index(j,i) tsurf_av(j,i) = tsurf_av(j,i) + & surf_lsm_h%pt_surface(m) ELSEIF ( match_usm ) THEN m = surf_usm_h%end_index(j,i) tsurf_av(j,i) = tsurf_av(j,i) + & surf_usm_h%pt_surface(m) ENDIF ENDDO ENDDO ENDIF CASE ( 'u' ) IF ( ALLOCATED( u_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 u_av(k,j,i) = u_av(k,j,i) + u(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'us*' ) IF ( ALLOCATED( us_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn match_def = surf_def_h(0)%start_index(j,i) <= & surf_def_h(0)%end_index(j,i) match_lsm = surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) IF ( match_def ) THEN m = surf_def_h(0)%end_index(j,i) us_av(j,i) = us_av(j,i) + & surf_def_h(0)%us(m) ELSEIF ( match_lsm .AND. .NOT. match_usm ) THEN m = surf_lsm_h%end_index(j,i) us_av(j,i) = us_av(j,i) + & surf_lsm_h%us(m) ELSEIF ( match_usm ) THEN m = surf_usm_h%end_index(j,i) us_av(j,i) = us_av(j,i) + & surf_usm_h%us(m) ENDIF ENDDO ENDDO ENDIF CASE ( 'v' ) IF ( ALLOCATED( v_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 v_av(k,j,i) = v_av(k,j,i) + v(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'thetav' ) IF ( ALLOCATED( vpt_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 vpt_av(k,j,i) = vpt_av(k,j,i) + vpt(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'w' ) IF ( ALLOCATED( w_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 w_av(k,j,i) = w_av(k,j,i) + w(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'z0*' ) IF ( ALLOCATED( z0_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn match_def = surf_def_h(0)%start_index(j,i) <= & surf_def_h(0)%end_index(j,i) match_lsm = surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) IF ( match_def ) THEN m = surf_def_h(0)%end_index(j,i) z0_av(j,i) = z0_av(j,i) + & surf_def_h(0)%z0(m) ELSEIF ( match_lsm .AND. .NOT. match_usm ) THEN m = surf_lsm_h%end_index(j,i) z0_av(j,i) = z0_av(j,i) + & surf_lsm_h%z0(m) ELSEIF ( match_usm ) THEN m = surf_usm_h%end_index(j,i) z0_av(j,i) = z0_av(j,i) + & surf_usm_h%z0(m) ENDIF ENDDO ENDDO ENDIF CASE ( 'z0h*' ) IF ( ALLOCATED( z0h_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn match_def = surf_def_h(0)%start_index(j,i) <= & surf_def_h(0)%end_index(j,i) match_lsm = surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) IF ( match_def ) THEN m = surf_def_h(0)%end_index(j,i) z0h_av(j,i) = z0h_av(j,i) + & surf_def_h(0)%z0h(m) ELSEIF ( match_lsm .AND. .NOT. match_usm ) THEN m = surf_lsm_h%end_index(j,i) z0h_av(j,i) = z0h_av(j,i) + & surf_lsm_h%z0h(m) ELSEIF ( match_usm ) THEN m = surf_usm_h%end_index(j,i) z0h_av(j,i) = z0h_av(j,i) + & surf_usm_h%z0h(m) ENDIF ENDDO ENDDO ENDIF CASE ( 'z0q*' ) IF ( ALLOCATED( z0q_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn match_def = surf_def_h(0)%start_index(j,i) <= & surf_def_h(0)%end_index(j,i) match_lsm = surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) IF ( match_def ) THEN m = surf_def_h(0)%end_index(j,i) z0q_av(j,i) = z0q_av(j,i) + & surf_def_h(0)%z0q(m) ELSEIF ( match_lsm .AND. .NOT. match_usm ) THEN m = surf_lsm_h%end_index(j,i) z0q_av(j,i) = z0q_av(j,i) + & surf_lsm_h%z0q(m) ELSEIF ( match_usm ) THEN m = surf_usm_h%end_index(j,i) z0q_av(j,i) = z0q_av(j,i) + & surf_usm_h%z0q(m) ENDIF ENDDO ENDDO ENDIF CASE DEFAULT !-- In case of urban surface variables it should be always checked !-- if respective arrays are allocated, at least in case of a restart !-- run, as averaged usm arrays are not read from file at the moment. IF ( urban_surface ) THEN CALL usm_3d_data_averaging( 'allocate', trimvar ) ENDIF ! !-- Summing up data from all other modules CALL module_interface_3d_data_averaging( 'sum', trimvar ) END SELECT ENDDO CALL cpu_log( log_point(34), 'sum_up_3d_data', 'stop' ) END SUBROUTINE sum_up_3d_data