!> @file subsidence_mod.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2019 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: subsidence_mod.f90 4182 2019-08-22 15:20:23Z oliver.maas $ ! Corrected "Former revisions" section ! ! 3655 2019-01-07 16:51:22Z knoop ! add subroutine and variable description ! ! Revision 3.7 2009-12-11 14:15:58Z heinze ! Initial revision ! ! Description: ! ------------ !> Impact of large-scale subsidence or ascent as tendency term for use !> in the prognostic equation of potential temperature. This enables the !> construction of a constant boundary layer height z_i with time. !-----------------------------------------------------------------------------! MODULE subsidence_mod IMPLICIT NONE PRIVATE PUBLIC init_w_subsidence, subsidence INTERFACE init_w_subsidence MODULE PROCEDURE init_w_subsidence END INTERFACE init_w_subsidence INTERFACE subsidence MODULE PROCEDURE subsidence MODULE PROCEDURE subsidence_ij END INTERFACE subsidence CONTAINS !------------------------------------------------------------------------------! ! Description: ! ------------ !> Initialize vertical subsidence velocity w_subs. !------------------------------------------------------------------------------! SUBROUTINE init_w_subsidence USE arrays_3d, & ONLY: dzu, w_subs, zu USE control_parameters, & ONLY: message_string, ocean_mode, subs_vertical_gradient, & subs_vertical_gradient_level, subs_vertical_gradient_level_i USE indices, & ONLY: nzb, nzt USE kinds IMPLICIT NONE INTEGER(iwp) :: i !< loop index INTEGER(iwp) :: k !< loop index REAL(wp) :: gradient !< vertical gradient of subsidence velocity REAL(wp) :: ws_surface !< subsidence velocity at the surface IF ( .NOT. ALLOCATED( w_subs ) ) THEN ALLOCATE( w_subs(nzb:nzt+1) ) w_subs = 0.0_wp ENDIF IF ( ocean_mode ) THEN message_string = 'applying large scale vertical motion is not ' // & 'allowed for ocean mode' CALL message( 'init_w_subsidence', 'PA0324', 2, 2, 0, 6, 0 ) ENDIF ! !-- Compute the profile of the subsidence/ascent velocity !-- using the given gradients i = 1 gradient = 0.0_wp ws_surface = 0.0_wp subs_vertical_gradient_level_i(1) = 0 DO k = 1, nzt+1 IF ( i < 11 ) THEN IF ( subs_vertical_gradient_level(i) < zu(k) .AND. & subs_vertical_gradient_level(i) >= 0.0_wp ) THEN gradient = subs_vertical_gradient(i) / 100.0_wp subs_vertical_gradient_level_i(i) = k - 1 i = i + 1 ENDIF ENDIF IF ( gradient /= 0.0_wp ) THEN IF ( k /= 1 ) THEN w_subs(k) = w_subs(k-1) + dzu(k) * gradient ELSE w_subs(k) = ws_surface + 0.5_wp * dzu(k) * gradient ENDIF ELSE w_subs(k) = w_subs(k-1) ENDIF ENDDO ! !-- In case of no given gradients for the subsidence/ascent velocity, !-- choose zero gradient IF ( subs_vertical_gradient_level(1) == -9999999.9_wp ) THEN subs_vertical_gradient_level(1) = 0.0_wp ENDIF END SUBROUTINE init_w_subsidence !------------------------------------------------------------------------------! ! Description: ! ------------ !> Add effect of large-scale subsidence to variable. !------------------------------------------------------------------------------! SUBROUTINE subsidence( tendency, var, var_init, ls_index ) USE arrays_3d, & ONLY: ddzu, w_subs USE control_parameters, & ONLY: dt_3d, intermediate_timestep_count, large_scale_forcing, & scalar_rayleigh_damping USE indices, & ONLY: nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, & wall_flags_0 USE kinds USE statistics, & ONLY: sums_ls_l, weight_substep IMPLICIT NONE INTEGER(iwp) :: i !< loop index INTEGER(iwp) :: j !< loop index INTEGER(iwp) :: k !< loop index INTEGER(iwp) :: ls_index !< index of large-scale subsidence in sums_ls_l REAL(wp) :: tmp_tend !< temporary tendency REAL(wp) :: tmp_grad !< temporary gradient REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: var !< variable where to add subsidence REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: tendency !< tendency of var REAL(wp), DIMENSION(nzb:nzt+1) :: var_init !< initialization profile of var REAL(wp), DIMENSION(nzb:nzt+1) :: var_mod !< modified profile of var var_mod = var_init ! !-- Influence of w_subsidence on the current tendency term DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt IF ( w_subs(k) < 0.0_wp ) THEN ! large-scale subsidence tmp_tend = - w_subs(k) * & ( var(k+1,j,i) - var(k,j,i) ) * ddzu(k+1) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ELSE ! large-scale ascent tmp_tend = - w_subs(k) * & ( var(k,j,i) - var(k-1,j,i) ) * ddzu(k) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDIF tendency(k,j,i) = tendency(k,j,i) + tmp_tend IF ( large_scale_forcing ) THEN sums_ls_l(k,ls_index) = sums_ls_l(k,ls_index) + tmp_tend & * weight_substep(intermediate_timestep_count) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDIF ENDDO IF ( large_scale_forcing ) THEN sums_ls_l(nzt+1,ls_index) = sums_ls_l(nzt,ls_index) ENDIF ENDDO ENDDO ! !-- Shifting of the initial profile is especially necessary with Rayleigh !-- damping switched on IF ( scalar_rayleigh_damping .AND. & intermediate_timestep_count == 1 ) THEN DO k = nzb, nzt IF ( w_subs(k) < 0.0_wp ) THEN ! large-scale subsidence var_mod(k) = var_init(k) - dt_3d * w_subs(k) * & ( var_init(k+1) - var_init(k) ) * ddzu(k+1) ENDIF ENDDO ! !-- At the upper boundary, the initial profile is shifted with aid of !-- the gradient tmp_grad. (This is ok if the gradients are linear.) IF ( w_subs(nzt) < 0.0_wp ) THEN tmp_grad = ( var_init(nzt+1) - var_init(nzt) ) * ddzu(nzt+1) var_mod(nzt+1) = var_init(nzt+1) - & dt_3d * w_subs(nzt+1) * tmp_grad ENDIF DO k = nzt+1, nzb+1, -1 IF ( w_subs(k) >= 0.0_wp ) THEN ! large-scale ascent var_mod(k) = var_init(k) - dt_3d * w_subs(k) * & ( var_init(k) - var_init(k-1) ) * ddzu(k) ENDIF ENDDO ! !-- At the lower boundary shifting is not necessary because the !-- subsidence velocity w_subs(nzb) vanishes. IF ( w_subs(nzb+1) >= 0.0_wp ) THEN var_mod(nzb) = var_init(nzb) ENDIF var_init = var_mod ENDIF END SUBROUTINE subsidence !------------------------------------------------------------------------------! ! Description: ! ------------ !> Add effect of large-scale subsidence to variable. !------------------------------------------------------------------------------! SUBROUTINE subsidence_ij( i, j, tendency, var, var_init, ls_index ) USE arrays_3d, & ONLY: ddzu, w_subs USE control_parameters, & ONLY: dt_3d, intermediate_timestep_count, large_scale_forcing, & scalar_rayleigh_damping USE indices, & ONLY: nxl, nxlg, nxrg, nyng, nys, nysg, nzb, nzt, wall_flags_0 USE kinds USE statistics, & ONLY: sums_ls_l, weight_substep IMPLICIT NONE INTEGER(iwp) :: i !< loop variable INTEGER(iwp) :: j !< loop variable INTEGER(iwp) :: k !< loop variable INTEGER(iwp) :: ls_index !< index of large-scale subsidence in sums_ls_l REAL(wp) :: tmp_tend !< temporary tendency REAL(wp) :: tmp_grad !< temporary gradient REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: var !< variable where to add subsidence REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: tendency !< tendency of var REAL(wp), DIMENSION(nzb:nzt+1) :: var_init !< initialization profile of var REAL(wp), DIMENSION(nzb:nzt+1) :: var_mod !< modified profile of var var_mod = var_init ! !-- Influence of w_subsidence on the current tendency term DO k = nzb+1, nzt IF ( w_subs(k) < 0.0_wp ) THEN ! large-scale subsidence tmp_tend = - w_subs(k) * ( var(k+1,j,i) - var(k,j,i) ) & * ddzu(k+1) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ELSE ! large-scale ascent tmp_tend = - w_subs(k) * ( var(k,j,i) - var(k-1,j,i) ) * ddzu(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDIF tendency(k,j,i) = tendency(k,j,i) + tmp_tend IF ( large_scale_forcing ) THEN sums_ls_l(k,ls_index) = sums_ls_l(k,ls_index) + tmp_tend & * weight_substep(intermediate_timestep_count)& * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDIF ENDDO IF ( large_scale_forcing ) THEN sums_ls_l(nzt+1,ls_index) = sums_ls_l(nzt,ls_index) ENDIF ! !-- Shifting of the initial profile is especially necessary with Rayleigh !-- damping switched on IF ( scalar_rayleigh_damping .AND. & intermediate_timestep_count == 1 ) THEN IF ( i == nxl .AND. j == nys ) THEN ! shifting only once per PE DO k = nzb, nzt IF ( w_subs(k) < 0.0_wp ) THEN ! large-scale subsidence var_mod(k) = var_init(k) - dt_3d * w_subs(k) * & ( var_init(k+1) - var_init(k) ) * ddzu(k+1) ENDIF ENDDO ! !-- At the upper boundary, the initial profile is shifted with aid of !-- the gradient tmp_grad. (This is ok if the gradients are linear.) IF ( w_subs(nzt) < 0.0_wp ) THEN tmp_grad = ( var_init(nzt+1) - var_init(nzt) ) * ddzu(nzt+1) var_mod(nzt+1) = var_init(nzt+1) - & dt_3d * w_subs(nzt+1) * tmp_grad ENDIF DO k = nzt+1, nzb+1, -1 IF ( w_subs(k) >= 0.0_wp ) THEN ! large-scale ascent var_mod(k) = var_init(k) - dt_3d * w_subs(k) * & ( var_init(k) - var_init(k-1) ) * ddzu(k) ENDIF ENDDO ! !-- At the lower boundary shifting is not necessary because the !-- subsidence velocity w_subs(nzb) vanishes. IF ( w_subs(nzb+1) >= 0.0_wp ) THEN var_mod(nzb) = var_init(nzb) ENDIF var_init = var_mod ENDIF ENDIF END SUBROUTINE subsidence_ij END MODULE subsidence_mod