!> @file singleton_mod.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 1997-2021 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------------------------! ! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: singleton_mod.f90 4828 2021-01-05 11:21:41Z forkel $ ! File re-formatted to follow the PALM coding standard ! ! ! 4182 2019-08-22 15:20:23Z scharf ! Corrected "Former revisions" section ! ! 3761 2019-02-25 15:31:42Z raasch ! Statement added to prevent compiler warning about unused variables ! ! Revision 1.1 2002/05/02 18:56:59 raasch ! Initial revision ! ! !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Multivariate Fast Fourier Transform !> !> Fortran 90 Implementation of Singleton's mixed-radix algorithm, RC Singleton, Stanford Research !> Institute, Sept. 1968. !> !> Adapted from fftn.c, translated from Fortran 66 to C by Mark Olesen and John Beale. !> !> Fourier transforms can be computed either in place, using assumed size arguments, or by generic !> function, using assumed shape arguments. !> !> Public: !> !> fftkind kind parameter of complex arguments and function results. !> !> fft(array, dim, inv, stat) generic transform function !> COMPLEX(fftkind), DIMENSION(:,...,:), INTENT(IN) :: array !> INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim !> LOGICAL, INTENT(IN), OPTIONAL:: inv !> INTEGER, INTENT(OUT), OPTIONAL:: stat !> !> fftn(array, shape, dim, inv, stat) in place transform subroutine !> COMPLEX(fftkind), DIMENSION(*), INTENT(INOUT) :: array !> INTEGER, DIMENSION(:), INTENT(IN) :: shape !> INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim !> LOGICAL, INTENT(IN), OPTIONAL:: inv !> INTEGER, INTENT(OUT), OPTIONAL:: stat !> !> !> Formal Parameters: !> !> array The complex array to be transformed. Array can be of arbitrary rank (i.e. up to seven). !> !> shape With subroutine fftn, the shape of the array to be transformed has to be passed !> separately, since fftradix - the internal transformation routine - will always treat !> array as one dimensional. The product of elements in shape must be the number of !> elements in array. !> Although passing array with assumed shape would have been nicer, I prefered assumed !> size in order to prevent the compiler from using a copy-in-copy-out mechanism. That !> would generally be necessary with fftn passing array to fftradix and with fftn being !> prepared for accepting non consecutive array sections. Using assumed size, it's up to !> the user to pass an array argument, that can be addressed as continous one dimensional !> array without copying. Otherwise, transformation will not really be performed in place. !> On the other hand, since the rank of array and the size of shape needn't match, fftn !> is appropriate for handling more than seven dimensions. As far as function fft is !> concerned all this doesn't matter, because the argument will be copied anyway. Thus no !> extra shape argument is needed for fft. !> !> Optional Parameters: !> !> dim One dimensional integer array, containing the dimensions to be transformed. Default !> is (/1,...,N/) with N being the rank of array, i.e. complete transform. dim can !> restrict transformation to a subset of available dimensions. Its size must not exceed !> the rank of array or the size of shape respectivly. !> !> inv If .true., inverse transformation will be performed. Default is .false., i.e. forward !> transformation. !> !> stat If present, a system dependent nonzero status value will be returned in stat, if !> allocation of temporary storage failed. !> !> !> Scaling: !> !> Transformation results will always be scaled by the square root of the product of sizes of each !> dimension in dim. (See examples below) !> !> !> Examples: !> !> Let A be a L*M*N three dimensional complex array. Then !> !> result = fft(A) !> !> will produce a three dimensional transform, scaled by sqrt(L*M*N), while !> !> call fftn(A, SHAPE(A)) !> !> will do the same in place. !> !> result = fft(A, dim=(/1,3/)) !> !> will transform with respect to the first and the third dimension, scaled by sqrt(L*N). !> !> result = fft(fft(A), inv=.true.) !> !> should (approximately) reproduce A. !> With B having the same shape as A !> !> result = fft(fft(A) * CONJG(fft(B)), inv=.true.) !> !> will correlate A and B. !> !> !> Remarks: !> !> Following changes have been introduced with respect to fftn.c: !> - Complex arguments and results are of type complex, rather than real an imaginary part !> separately. !> - Increment parameter (magnitude of isign) has been dropped, inc is always one, direction of !> transform is given by inv. !> - maxf and maxp have been dropped. The amount of temporary storage needed is determined by the !> fftradix routine. Both fftn and fft can handle any size of array. (Maybe they take a lot of !> time and memory, but they will do it) !> !> Redesigning fftradix in a way, that it handles assumed shape arrays would have been desirable. !> However, I found it rather hard to do this in an efficient way. Problems were: !> - To prevent stride multiplications when indexing arrays. At least our compiler was not clever !> enough to discover that in fact additions would do the job as well. On the other hand, I !> haven't been clever enough to find an implementation using array operations. !> - fftradix is rather large and different versions would be necessaray for each possible rank of !> array. !> Consequently, in place transformation still needs the argument stored in a consecutive bunch of !> memory and can't be performed on array sections like A(100:199:-3, 50:1020). Calling fftn with !> such sections will most probably imply copy-in-copy-out. However, the function fft works with !> everything it gets and should be convenient to use. !> !> Michael Steffens, 09.12.96, !> Restructured fftradix for better optimization. M. Steffens, 4 June 1997 !--------------------------------------------------------------------------------------------------! MODULE singleton USE kinds IMPLICIT NONE PRIVATE PUBLIC :: fft !< PUBLIC :: fftn !< REAL(wp), PARAMETER :: cos72 = 0.30901699437494742_wp !< REAL(wp), PARAMETER :: pi = 3.14159265358979323_wp !< REAL(wp), PARAMETER :: sin60 = 0.86602540378443865_wp !< REAL(wp), PARAMETER :: sin72 = 0.95105651629515357_wp !< INTERFACE fft MODULE PROCEDURE fft1d MODULE PROCEDURE fft2d MODULE PROCEDURE fft3d MODULE PROCEDURE fft4d MODULE PROCEDURE fft5d MODULE PROCEDURE fft6d MODULE PROCEDURE fft7d END INTERFACE CONTAINS !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing function description. !--------------------------------------------------------------------------------------------------! FUNCTION fft1d( array, dim, inv, stat ) RESULT( ft ) ! !-- Formal parameters COMPLEX(wp), DIMENSION(:), INTENT(IN) :: array !< INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< LOGICAL, INTENT(IN), OPTIONAL :: inv !< ! !-- Function result COMPLEX(wp), DIMENSION(SIZE(array, 1)) :: ft !< INTEGER(iwp) :: idum !< INTEGER(iwp) :: ishape(1) !< ! !-- Intrinsics used INTRINSIC SIZE, SHAPE ft = array ishape = SHAPE( array ) CALL fftn( ft, ishape, inv = inv, stat = stat ) ! !-- Next statement to prevent compiler warning about unused variable IF ( PRESENT( dim ) ) idum = 1 END FUNCTION fft1d !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing function description. !--------------------------------------------------------------------------------------------------! FUNCTION fft2d( array, dim, inv, stat ) RESULT( ft ) ! !-- Formal parameters COMPLEX(wp), DIMENSION(:,:), INTENT(IN) :: array !< INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< LOGICAL, INTENT(IN), OPTIONAL :: inv !< ! !-- Function result COMPLEX(wp), DIMENSION(SIZE(array, 1), SIZE(array, 2)) :: ft !< INTEGER(iwp) :: ishape(2) !< ! !-- Intrinsics used INTRINSIC SIZE, SHAPE ft = array ishape = SHAPE( array ) CALL fftn( ft, ishape, dim, inv, stat ) END FUNCTION fft2d !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing function description. !--------------------------------------------------------------------------------------------------! FUNCTION fft3d( array, dim, inv, stat ) RESULT( ft ) ! !-- Formal parameters COMPLEX(wp), DIMENSION(:,:,:), INTENT(IN) :: array !< INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< LOGICAL, INTENT(IN), OPTIONAL :: inv !< ! !-- Function result COMPLEX(wp), DIMENSION(SIZE(array, 1), SIZE(array, 2), SIZE(array, 3)) :: ft !< INTEGER(iwp) :: ishape(3) !< ! !-- Intrinsics used INTRINSIC SIZE, SHAPE ft = array ishape = SHAPE( array) CALL fftn(ft, ishape, dim, inv, stat) END FUNCTION fft3d !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing function description. !--------------------------------------------------------------------------------------------------! FUNCTION fft4d( array, dim, inv, stat ) RESULT( ft ) ! !-- Formal parameters COMPLEX(wp), DIMENSION(:,:,:,:), INTENT(IN) :: array !< INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< LOGICAL, INTENT(IN), OPTIONAL :: inv !< ! !-- Function result COMPLEX(wp), DIMENSION(SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4)) :: ft !< INTEGER(iwp) :: ishape(4) !< ! !-- Intrinsics used INTRINSIC SIZE, SHAPE ft = array ishape = SHAPE( array ) CALL fftn(ft, ishape, dim, inv, stat) END FUNCTION fft4d !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing function description. !--------------------------------------------------------------------------------------------------! FUNCTION fft5d( array, dim, inv, stat ) RESULT( ft ) ! !-- Formal parameters COMPLEX(wp), DIMENSION(:,:,:,:,:), INTENT(IN) :: array !< INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< LOGICAL, INTENT(IN), OPTIONAL :: inv !< ! !-- Function result COMPLEX(wp), DIMENSION(SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4), SIZE(array, 5)) :: ft !< INTEGER(iwp) :: ishape(5) !< ! !-- Intrinsics used INTRINSIC SIZE, SHAPE ft = array ishape = SHAPE( array ) CALL fftn(ft, ishape, dim, inv, stat) END FUNCTION fft5d !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing function description. !--------------------------------------------------------------------------------------------------! FUNCTION fft6d( array, dim, inv, stat ) RESULT( ft ) ! !-- Formal parameters COMPLEX(wp), DIMENSION(:,:,:,:,:,:), INTENT(IN) :: array !< INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< LOGICAL, INTENT(IN), OPTIONAL :: inv !< ! !-- Function result COMPLEX(wp), DIMENSION( SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4), & SIZE(array, 5), SIZE(array, 6)) :: ft !< INTEGER(iwp) :: ishape(6) !< ! !-- Intrinsics used INTRINSIC SIZE, SHAPE ft = array ishape = SHAPE( array ) CALL fftn(ft, ishape, dim, inv, stat) END FUNCTION fft6d !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing function description. !--------------------------------------------------------------------------------------------------! FUNCTION fft7d( array, dim, inv, stat ) RESULT( ft ) ! !-- Formal parameters COMPLEX(wp), DIMENSION(:,:,:,:,:,:,:), INTENT(IN) :: array !< INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< LOGICAL, INTENT(IN), OPTIONAL :: inv !< ! !-- Function result COMPLEX(wp), DIMENSION( SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4), & SIZE(array, 5), SIZE(array, 6), SIZE(array, 7)) :: ft !< INTEGER(iwp) :: ishape(7) !< ! !-- Intrinsics used INTRINSIC SIZE, SHAPE ft = array ishape = SHAPE( array ) CALL fftn(ft, ishape, dim, inv, stat) END FUNCTION fft7d !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !--------------------------------------------------------------------------------------------------! SUBROUTINE fftn( array, shape, dim, inv, stat ) ! !-- Formal parameters COMPLEX(wp), DIMENSION(*), INTENT(INOUT) :: array !< INTEGER(iwp), DIMENSION(:), INTENT(IN) :: shape !< INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< LOGICAL, INTENT(IN), OPTIONAL :: inv !< ! !-- Local arrays INTEGER(iwp), DIMENSION(SIZE(shape)) :: d !< ! !-- Local scalars LOGICAL :: inverse !< INTEGER(iwp) :: i, ndim, ntotal !< REAL(wp) :: scale !< ! !-- Intrinsics used INTRINSIC PRESENT, MIN, PRODUCT, SIZE, SQRT ! !-- Optional parameter settings IF ( PRESENT( inv ) ) THEN inverse = inv ELSE inverse = .FALSE. END IF IF ( PRESENT( dim ) ) THEN ndim = MIN( SIZE( dim ), SIZE( d ) ) d(1:ndim) = DIM( 1:ndim ) ELSE ndim = SIZE( d ) d = (/( i, i = 1, SIZE( d ) )/) END IF ntotal = PRODUCT( shape ) scale = SQRT( 1.0_wp / PRODUCT( shape( d(1:ndim) ) ) ) DO i = 1, ntotal array(i) = CMPLX( REAL( array(i) ) * scale, AIMAG( array(i) ) * scale, KIND = wp ) END DO DO i = 1, ndim CALL fftradix( array, ntotal, shape( d(i) ), PRODUCT( shape( 1:d(i) ) ), inverse, stat ) IF ( PRESENT( stat ) ) THEN IF ( stat /= 0 ) RETURN END IF END DO END SUBROUTINE fftn !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !--------------------------------------------------------------------------------------------------! SUBROUTINE fftradix( array, ntotal, npass, nspan, inv, stat ) ! !-- Formal parameters COMPLEX(wp), DIMENSION(*), INTENT(INOUT) :: array !< INTEGER(iwp), INTENT(IN) :: ntotal, npass, nspan !< INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< LOGICAL, INTENT(IN) :: inv !< ! !-- Local arrays COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: ctmp !< INTEGER(iwp), DIMENSION(BIT_SIZE(0)) :: factor !< INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: perm !< REAL(wp), DIMENSION(:), ALLOCATABLE :: sine, cosine !< ! !-- Local scalars INTEGER(iwp) :: maxfactor, nfactor, nsquare, nperm !< ! !-- Intrinsics used INTRINSIC MAXVAL, MOD, PRESENT, ISHFT, BIT_SIZE, SIN, COS, CMPLX, REAL, AIMAG IF ( npass <= 1 ) RETURN CALL factorize( npass, factor, nfactor, nsquare ) maxfactor = MAXVAL( factor(:nfactor) ) IF ( nfactor - ISHFT( nsquare, 1 ) > 0 ) THEN nperm = MAX( nfactor + 1, PRODUCT( factor(nsquare+1: nfactor-nsquare) ) - 1 ) ELSE nperm = nfactor + 1 END IF IF ( PRESENT( stat ) ) THEN ALLOCATE( ctmp(maxfactor), sine(maxfactor), cosine(maxfactor), STAT = stat ) IF ( stat /= 0 ) RETURN CALL transform( array, ntotal, npass, nspan, factor, nfactor, ctmp, sine, cosine, inv ) DEALLOCATE( sine, cosine, STAT = stat ) IF ( stat /= 0 ) RETURN ALLOCATE( perm(nperm), STAT = stat ) IF ( stat /= 0 ) RETURN CALL permute( array, ntotal, npass, nspan, factor, nfactor, nsquare, maxfactor, ctmp, perm ) DEALLOCATE( perm, ctmp, STAT = stat ) IF ( stat /= 0 ) RETURN ELSE ALLOCATE( ctmp(maxfactor), sine(maxfactor), cosine(maxfactor) ) CALL transform( array, ntotal, npass, nspan, factor, nfactor, ctmp, sine, cosine, inv ) DEALLOCATE( sine, cosine ) ALLOCATE( perm(nperm) ) CALL permute( array, ntotal, npass, nspan, factor, nfactor, nsquare, maxfactor, ctmp, perm ) DEALLOCATE( perm, ctmp ) END IF CONTAINS !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !--------------------------------------------------------------------------------------------------! SUBROUTINE factorize( npass, factor, nfactor, nsquare ) ! !-- Formal parameters INTEGER(iwp), INTENT(IN) :: npass !< INTEGER(iwp), INTENT(OUT) :: nfactor, nsquare !< INTEGER(iwp), DIMENSION(*), INTENT(OUT) :: factor !< ! !-- Local scalars INTEGER(iwp) :: j, jj, k !< nfactor = 0 k = npass DO WHILE ( MOD( k, 16 ) == 0 ) nfactor = nfactor + 1 factor(nfactor) = 4 k = k / 16 END DO j = 3 jj = 9 DO DO WHILE ( MOD( k, jj ) == 0 ) nfactor = nfactor + 1 factor(nfactor) = j k = k / jj END DO j = j + 2 jj = j * j IF ( jj > k ) EXIT END DO IF ( k <= 4 ) THEN nsquare = nfactor factor(nfactor + 1) = k IF ( k /= 1 ) nfactor = nfactor + 1 ELSE IF ( k - ISHFT( k / 4, 2 ) == 0 ) THEN nfactor = nfactor + 1 factor(nfactor) = 2 k = k / 4 END IF nsquare = nfactor j = 2 DO IF ( MOD(k, j) == 0 ) THEN nfactor = nfactor + 1 factor(nfactor) = j k = k / j END IF j = ISHFT( (j + 1) / 2, 1 ) + 1 IF ( j > k ) EXIT END DO END IF IF ( nsquare > 0 ) THEN j = nsquare DO nfactor = nfactor + 1 factor(nfactor) = factor(j) j = j - 1 IF ( j == 0 ) EXIT END DO END IF END SUBROUTINE factorize !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !--------------------------------------------------------------------------------------------------! SUBROUTINE transform( array, ntotal, npass, nspan, factor, nfactor, ctmp, sine, cosine, inv ) !-- Compute fourier transform ! !-- Formal parameters COMPLEX(wp), DIMENSION(*), INTENT(IN OUT) :: array !< COMPLEX(wp), DIMENSION(*), INTENT(OUT) :: ctmp !< INTEGER(iwp), INTENT(IN) :: ntotal, npass, nspan !< INTEGER(iwp), DIMENSION(*), INTENT(IN) :: factor !< INTEGER(iwp), INTENT(IN) :: nfactor !< LOGICAL, INTENT(IN) :: inv !< REAL(wp), DIMENSION(*), INTENT(OUT) :: sine, cosine !< ! !-- Local scalars COMPLEX(wp) :: cc, cj, ck, cjp, cjm, ckp, ckm !< INTEGER(iwp) :: ii, ispan !< INTEGER(iwp) :: j, jc, jf, jj !< INTEGER(iwp) :: k, kk, kspan, k1, k2, k3, k4 !< INTEGER(iwp) :: nn, nt !< REAL(wp) :: s60, c72, s72, pi2, radf !< REAL(wp) :: c1, s1, c2, s2, c3, s3, cd, sd, ak !< c72 = cos72 IF ( inv ) THEN s72 = sin72 s60 = sin60 pi2 = pi ELSE s72 = - sin72 s60 = - sin60 pi2 = - pi END IF nt = ntotal nn = nt - 1 kspan = nspan jc = nspan / npass radf = pi2 * jc pi2 = pi2 * 2.0_wp !-- Use 2 PI from here on ii = 0 jf = 0 DO sd = radf / kspan cd = SIN( sd ) cd = 2.0_wp * cd * cd sd = SIN( sd + sd ) kk = 1 ii = ii + 1 SELECT CASE ( factor(ii) ) CASE ( 2 ) ! !-- Transform for factor of 2 (including rotation factor) kspan = kspan / 2 k1 = kspan + 2 DO DO k2 = kk + kspan ck = array(k2) array(k2) = array(kk) - ck array(kk) = array(kk) + ck kk = k2 + kspan IF ( kk > nn ) EXIT END DO kk = kk - nn IF ( kk > jc ) EXIT END DO IF ( kk > kspan ) RETURN DO c1 = 1.0_wp - cd s1 = sd DO DO DO k2 = kk + kspan ck = array(kk) - array(k2) array(kk) = array(kk) + array(k2) array(k2) = ck * CMPLX( c1, s1, KIND = wp ) kk = k2 + kspan IF ( kk >= nt ) EXIT END DO k2 = kk - nt c1 = - c1 kk = k1 - k2 IF ( kk <= k2 ) EXIT END DO ak = c1 - (cd * c1 + sd * s1) s1 = sd * c1 - cd * s1 + s1 c1 = 2.0_wp - ( ak * ak + s1 * s1 ) s1 = s1 * c1 c1 = c1 * ak kk = kk + jc IF ( kk >= k2 ) EXIT END DO k1 = k1 + 1 + 1 kk = ( k1 - kspan ) / 2 + jc IF ( kk > jc + jc ) EXIT END DO ! !-- Transform for factor of 4 CASE ( 4 ) ispan = kspan kspan = kspan / 4 DO c1 = 1.0_wp s1 = 0.0_wp DO DO k1 = kk + kspan k2 = k1 + kspan k3 = k2 + kspan ckp = array(kk) + array(k2) ckm = array(kk) - array(k2) cjp = array(k1) + array(k3) cjm = array(k1) - array(k3) array(kk) = ckp + cjp cjp = ckp - cjp IF ( inv ) THEN ckp = ckm + CMPLX( - AIMAG( cjm ), REAL( cjm ), KIND = wp ) ckm = ckm + CMPLX( AIMAG( cjm ), - REAL( cjm ), KIND = wp ) ELSE ckp = ckm + CMPLX( AIMAG( cjm ), - REAL( cjm ), KIND = wp ) ckm = ckm + CMPLX( - AIMAG( cjm ), REAL( cjm ), KIND = wp ) END IF ! !-- Avoid useless multiplies IF ( s1 == 0.0_wp ) THEN array(k1) = ckp array(k2) = cjp array(k3) = ckm ELSE array(k1) = ckp * CMPLX( c1, s1, KIND = wp ) array(k2) = cjp * CMPLX( c2, s2, KIND = wp ) array(k3) = ckm * CMPLX( c3, s3, KIND = wp ) END IF kk = k3 + kspan IF ( kk > nt ) EXIT END DO c2 = c1 - ( cd * c1 + sd * s1 ) s1 = sd * c1 - cd * s1 + s1 c1 = 2.0_wp - ( c2 * c2 + s1 * s1 ) s1 = s1 * c1 c1 = c1 * c2 ! !-- Values of c2, c3, s2, s3 that will get used next time c2 = c1 * c1 - s1 * s1 s2 = 2.0_wp * c1 * s1 c3 = c2 * c1 - s2 * s1 s3 = c2 * s1 + s2 * c1 kk = kk - nt + jc IF ( kk > kspan ) EXIT END DO kk = kk - kspan + 1 IF ( kk > jc ) EXIT END DO IF ( kspan == jc ) RETURN CASE default ! !-- Transform for odd factors k = factor(ii) ispan = kspan kspan = kspan / k SELECT CASE ( k ) ! !-- Transform for factor of 3 (optional code) CASE ( 3 ) DO DO k1 = kk + kspan k2 = k1 + kspan ck = array(kk) cj = array(k1) + array(k2) array(kk) = ck + cj ck = ck - CMPLX( 0.5_wp * REAL( cj ), 0.5_wp * AIMAG( cj ), KIND = wp ) cj = CMPLX( ( REAL( array(k1) ) - REAL( array(k2) ) ) * s60, & ( AIMAG( array(k1) ) - AIMAG( array(k2) ) ) * s60, KIND = wp ) array(k1) = ck + CMPLX( - AIMAG( cj ), REAL( cj ), KIND = wp ) array(k2) = ck + CMPLX( AIMAG( cj ), - REAL( cj ), KIND = wp ) kk = k2 + kspan IF ( kk >= nn ) EXIT END DO kk = kk - nn IF ( kk > kspan ) EXIT END DO ! !-- Transform for factor of 5 (optional code) CASE ( 5 ) c2 = c72 * c72 - s72 * s72 s2 = 2.0_wp * c72 * s72 DO DO k1 = kk + kspan k2 = k1 + kspan k3 = k2 + kspan k4 = k3 + kspan ckp = array(k1) + array(k4) ckm = array(k1) - array(k4) cjp = array(k2) + array(k3) cjm = array(k2) - array(k3) cc = array(kk) array(kk) = cc + ckp + cjp ck = CMPLX( REAL( ckp ) * c72, AIMAG( ckp ) * c72, KIND = wp ) + & CMPLX( REAL( cjp ) * c2, AIMAG( cjp ) * c2, KIND = wp ) + cc cj = CMPLX( REAL( ckm ) * s72, AIMAG( ckm ) * s72, KIND = wp) + & CMPLX( REAL( cjm ) * s2, AIMAG( cjm ) * s2, KIND = wp ) array(k1) = ck + CMPLX( - AIMAG( cj ), REAL( cj ), KIND = wp ) array(k4) = ck + CMPLX( AIMAG( cj ), - REAL( cj ), KIND = wp ) ck = CMPLX( REAL( ckp ) * c2, AIMAG( ckp ) * c2, KIND = wp ) + & CMPLX( REAL( cjp ) * c72, AIMAG( cjp ) * c72, KIND = wp ) + cc cj = CMPLX( REAL( ckm ) * s2, AIMAG( ckm ) * s2, KIND = wp ) - & CMPLX( REAL( cjm ) * s72, AIMAG( cjm ) * s72, KIND = wp ) array(k2) = ck + CMPLX( -AIMAG( cj ), REAL( cj ), KIND = wp ) array(k3) = ck + CMPLX( AIMAG( cj ), - REAL( cj ), KIND = wp ) kk = k4 + kspan IF ( kk >= nn ) EXIT END DO kk = kk - nn IF ( kk > kspan ) EXIT END DO CASE default IF ( k /= jf ) THEN jf = k s1 = pi2 / k c1 = COS( s1 ) s1 = SIN( s1 ) cosine(jf) = 1.0_wp sine(jf) = 0.0_wp j = 1 DO cosine(j) = cosine(k) * c1 + sine(k) * s1 sine(j) = cosine(k) * s1 - sine(k) * c1 k = k - 1 cosine(k) = cosine(j) sine(k) = - sine(j) j = j + 1 IF ( j >= k ) EXIT END DO END IF DO DO k1 = kk k2 = kk + ispan cc = array(kk) ck = cc j = 1 k1 = k1 + kspan DO k2 = k2 - kspan j = j + 1 ctmp(j) = array(k1) + array(k2) ck = ck + ctmp(j) j = j + 1 ctmp(j) = array(k1) - array(k2) k1 = k1 + kspan IF ( k1 >= k2 ) EXIT END DO array(kk) = ck k1 = kk k2 = kk + ispan j = 1 DO k1 = k1 + kspan k2 = k2 - kspan jj = j ck = cc cj = ( 0.0_wp, 0.0_wp ) k = 1 DO k = k + 1 ck = ck + CMPLX( REAL( ctmp(k) ) * cosine(jj), AIMAG( ctmp(k) ) * & cosine(jj), KIND = wp ) k = k + 1 cj = cj + CMPLX( REAL( ctmp(k) ) * sine(jj), AIMAG( ctmp(k) ) * sine(jj), & KIND = wp ) jj = jj + j IF ( jj > jf ) jj = jj - jf IF ( k >= jf ) EXIT END DO k = jf - j array(k1) = ck + CMPLX( - AIMAG( cj ), REAL( cj ), KIND = wp ) array(k2) = ck + CMPLX( AIMAG( cj ), -REAL( cj ), KIND = wp ) j = j + 1 IF ( j >= k ) EXIT END DO kk = kk + ispan IF ( kk > nn ) EXIT END DO kk = kk - nn IF ( kk > kspan ) EXIT END DO END SELECT ! !-- Multiply by rotation factor (except for factors of 2 and 4) IF ( ii == nfactor ) RETURN kk = jc + 1 DO c2 = 1.0_wp - cd s1 = sd DO c1 = c2 s2 = s1 kk = kk + kspan DO DO array(kk) = CMPLX( c2, s2, KIND = wp ) * array(kk) kk = kk + ispan IF ( kk > nt ) EXIT END DO ak = s1 * s2 s2 = s1 * c2 + c1 * s2 c2 = c1 * c2 - ak kk = kk - nt + kspan IF ( kk > ispan ) EXIT END DO c2 = c1 - ( cd * c1 + sd * s1 ) s1 = s1 + sd * c1 - cd * s1 c1 = 2.0_wp - ( c2 * c2 + s1 * s1 ) s1 = s1 * c1 c2 = c2 * c1 kk = kk - ispan + jc IF ( kk > kspan ) EXIT END DO kk = kk - kspan + jc + 1 IF ( kk > jc + jc ) EXIT END DO END SELECT END DO END SUBROUTINE transform !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !--------------------------------------------------------------------------------------------------! SUBROUTINE permute( array, ntotal, npass, nspan, factor, nfactor, nsquare, maxfactor, ctmp, perm ) ! !-- Formal parameters COMPLEX(wp), DIMENSION(*), INTENT(IN OUT) :: array !< COMPLEX(wp), DIMENSION(*), INTENT(OUT) :: ctmp !< INTEGER(iwp), INTENT(IN) :: ntotal, npass, nspan !< INTEGER(iwp), INTENT(IN) :: nfactor, nsquare !< INTEGER(iwp), INTENT(IN) :: maxfactor !< INTEGER(iwp), DIMENSION(*), INTENT(IN OUT) :: factor !< INTEGER(iwp), DIMENSION(*), INTENT(OUT) :: perm !< ! !-- Local scalars COMPLEX(wp) :: ck !< INTEGER(iwp) :: ii, ispan !< INTEGER(iwp) :: j, jc, jj !< INTEGER(iwp) :: k, kk, kspan, kt, k1, k2, k3 !< INTEGER(iwp) :: nn, nt !< ! !-- Permute the results to normal order---done in two stages !-- Permutation for square factors of n nt = ntotal nn = nt - 1 kt = nsquare kspan = nspan jc = nspan / npass perm (1) = nspan IF ( kt > 0 ) THEN k = kt + kt + 1 IF ( nfactor < k ) k = k - 1 j = 1 perm(k + 1) = jc DO perm(j + 1) = perm(j) / factor(j) perm(k) = perm(k + 1) * factor(j) j = j + 1 k = k - 1 IF ( j >= k ) EXIT END DO k3 = perm(k + 1) kspan = perm(2) kk = jc + 1 k2 = kspan + 1 j = 1 IF ( npass /= ntotal ) THEN permute_multi: DO DO DO k = kk + jc DO ! !-- Swap array(kk) <> array(k2) ck = array(kk) array(kk) = array(k2) array(k2) = ck kk = kk + 1 k2 = k2 + 1 IF ( kk >= k ) EXIT END DO kk = kk + nspan - jc k2 = k2 + nspan - jc IF ( kk >= nt ) EXIT END DO kk = kk - nt + jc k2 = k2 - nt + kspan IF ( k2 >= nspan ) EXIT END DO DO DO k2 = k2 - perm(j) j = j + 1 k2 = perm(j + 1) + k2 IF ( k2 <= perm(j) ) EXIT END DO j = 1 DO IF ( kk < k2 ) CYCLE permute_multi kk = kk + jc k2 = k2 + kspan IF ( k2 >= nspan ) EXIT END DO IF ( kk >= nspan ) EXIT END DO EXIT END DO permute_multi ELSE permute_single: DO DO ! !-- Swap array(kk) <> array(k2) ck = array(kk) array(kk) = array(k2) array(k2) = ck kk = kk + 1 k2 = k2 + kspan IF ( k2 >= nspan ) EXIT END DO DO DO k2 = k2 - perm(j) j = j + 1 k2 = perm(j + 1) + k2 IF ( k2 <= perm(j) ) EXIT END DO j = 1 DO IF ( kk < k2 ) CYCLE permute_single kk = kk + 1 k2 = k2 + kspan IF ( k2 >= nspan ) EXIT END DO IF ( kk >= nspan ) EXIT END DO EXIT END DO permute_single END IF jc = k3 END IF IF ( ISHFT( kt, 1 ) + 1 >= nfactor ) RETURN ispan = perm(kt + 1) ! !-- Permutation for square-free factors of n j = nfactor - kt factor( j + 1 ) = 1 DO factor(j) = factor(j) * factor(j+1) j = j - 1 IF ( j == kt ) EXIT END DO kt = kt + 1 nn = factor( kt ) - 1 j = 0 jj = 0 DO k = kt + 1 k2 = factor(kt) kk = factor(k) j = j + 1 IF ( j > nn ) EXIT !-- Exit infinite loop jj = jj + kk DO WHILE ( jj >= k2 ) jj = jj - k2 k2 = kk k = k + 1 kk = factor(k) jj = jj + kk END DO perm(j) = jj END DO ! !-- Determine the permutation cycles of length greater than 1 j = 0 DO DO j = j + 1 kk = perm(j) IF ( kk >= 0 ) EXIT END DO IF ( kk /= j ) THEN DO k = kk kk = perm(k) perm(k) = - kk IF ( kk == j ) EXIT END DO k3 = kk ELSE perm(j) = - j IF ( j == nn ) EXIT !-- Exit infinite loop END IF END DO ! !-- Reorder a and b, following the permutation cycles DO j = k3 + 1 nt = nt - ispan ii = nt - 1 + 1 IF ( nt < 0 ) EXIT !-- Exit infinite loop DO DO j = j - 1 IF ( perm(j) >= 0 ) EXIT END DO jj = jc DO kspan = jj IF ( jj > maxfactor ) kspan = maxfactor jj = jj - kspan k = perm(j) kk = jc * k + ii + jj k1 = kk + kspan k2 = 0 DO k2 = k2 + 1 ctmp(k2) = array(k1) k1 = k1 - 1 IF ( k1 == kk ) EXIT END DO DO k1 = kk + kspan k2 = k1 - jc * ( k + perm(k) ) k = - perm(k) DO array(k1) = array(k2) k1 = k1 - 1 k2 = k2 - 1 IF ( k1 == kk ) EXIT END DO kk = k2 IF ( k == j ) EXIT END DO k1 = kk + kspan k2 = 0 DO k2 = k2 + 1 array(k1) = ctmp(k2) k1 = k1 - 1 IF ( k1 == kk ) EXIT END DO IF ( jj == 0 ) EXIT END DO IF ( j == 1 ) EXIT END DO END DO END SUBROUTINE permute END SUBROUTINE fftradix END MODULE singleton