1 | !> @file salsa_mod.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM-4U. |
---|
4 | ! |
---|
5 | ! PALM-4U is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM-4U is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 2018-2018 University of Helsinki |
---|
18 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
19 | !--------------------------------------------------------------------------------! |
---|
20 | ! |
---|
21 | ! Current revisions: |
---|
22 | ! ----------------- |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! Former revisions: |
---|
26 | ! ----------------- |
---|
27 | ! $Id: salsa_mod.f90 3871 2019-04-08 14:38:39Z knoop $ |
---|
28 | ! Major changes in formatting, performance and data input structure (see branch |
---|
29 | ! the history for details) |
---|
30 | ! - Time-dependent emissions enabled: lod=1 for yearly PM emissions that are |
---|
31 | ! normalised depending on the time, and lod=2 for preprocessed emissions |
---|
32 | ! (similar to the chemistry module). |
---|
33 | ! - Additionally, 'uniform' emissions allowed. This emission is set constant on |
---|
34 | ! all horisontal upward facing surfaces and it is created based on parameters |
---|
35 | ! surface_aerosol_flux, aerosol_flux_dpg/sigmag/mass_fracs_a/mass_fracs_b. |
---|
36 | ! - All emissions are now implemented as surface fluxes! No 3D sources anymore. |
---|
37 | ! - Update the emission information by calling salsa_emission_update if |
---|
38 | ! skip_time_do_salsa >= time_since_reference_point and |
---|
39 | ! next_aero_emission_update <= time_since_reference_point |
---|
40 | ! - Aerosol background concentrations read from PIDS_DYNAMIC. The vertical grid |
---|
41 | ! must match the one applied in the model. |
---|
42 | ! - Gas emissions and background concentrations can be also read in in salsa_mod |
---|
43 | ! if the chemistry module is not applied. |
---|
44 | ! - In deposition, information on the land use type can be now imported from |
---|
45 | ! the land use model |
---|
46 | ! - Use SI units in PARIN, i.e. n_lognorm given in #/m3 and dpg in metres. |
---|
47 | ! - Apply 100 character line limit |
---|
48 | ! - Change all variable names from capital to lowercase letter |
---|
49 | ! - Change real exponents to integer if possible. If not, precalculate the value |
---|
50 | ! value of exponent |
---|
51 | ! - Rename in1a to start_subrange_1a, fn2a to end_subrange_1a etc. |
---|
52 | ! - Rename nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and ngast --> |
---|
53 | ! ngases_salsa |
---|
54 | ! - Rename ibc to index_bc, idu to index_du etc. |
---|
55 | ! - Renamed loop indices b, c and sg to ib, ic and ig |
---|
56 | ! - run_salsa subroutine removed |
---|
57 | ! - Corrected a bud in salsa_driver: falsely applied ino instead of inh |
---|
58 | ! - Call salsa_tendency within salsa_prognostic_equations which is called in |
---|
59 | ! module_interface_mod instead of prognostic_equations_mod |
---|
60 | ! - Removed tailing white spaces and unused variables |
---|
61 | ! - Change error message to start by PA instead of SA |
---|
62 | ! |
---|
63 | ! 3833 2019-03-28 15:04:04Z forkel |
---|
64 | ! added USE chem_gasphase_mod for nvar, nspec and spc_names |
---|
65 | ! |
---|
66 | ! 3787 2019-03-07 08:43:54Z raasch |
---|
67 | ! unused variables removed |
---|
68 | ! |
---|
69 | ! 3780 2019-03-05 11:19:45Z forkel |
---|
70 | ! unused variable for file index removed from rrd-subroutines parameter list |
---|
71 | ! |
---|
72 | ! 3685 2019-01-21 01:02:11Z knoop |
---|
73 | ! Some interface calls moved to module_interface + cleanup |
---|
74 | ! |
---|
75 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
76 | ! Implementation of the PALM module interface |
---|
77 | ! |
---|
78 | ! 3636 2018-12-19 13:48:34Z raasch |
---|
79 | ! nopointer option removed |
---|
80 | ! |
---|
81 | ! 3630 2018-12-17 11:04:17Z knoop |
---|
82 | ! - Moved the control parameter "salsa" from salsa_mod.f90 to control_parameters |
---|
83 | ! - Updated salsa_rrd_local and salsa_wrd_local |
---|
84 | ! - Add target attribute |
---|
85 | ! - Revise initialization in case of restarts |
---|
86 | ! - Revise masked data output |
---|
87 | ! |
---|
88 | ! 3582 2018-11-29 19:16:36Z suehring |
---|
89 | ! missing comma separator inserted |
---|
90 | ! |
---|
91 | ! 3483 2018-11-02 14:19:26Z raasch |
---|
92 | ! bugfix: directives added to allow compilation without netCDF |
---|
93 | ! |
---|
94 | ! 3481 2018-11-02 09:14:13Z raasch |
---|
95 | ! temporary variable cc introduced to circumvent a possible Intel18 compiler bug |
---|
96 | ! related to contiguous/non-contguous pointer/target attributes |
---|
97 | ! |
---|
98 | ! 3473 2018-10-30 20:50:15Z suehring |
---|
99 | ! NetCDF input routine renamed |
---|
100 | ! |
---|
101 | ! 3467 2018-10-30 19:05:21Z suehring |
---|
102 | ! Initial revision |
---|
103 | ! |
---|
104 | ! 3412 2018-10-24 07:25:57Z monakurppa |
---|
105 | ! |
---|
106 | ! Authors: |
---|
107 | ! -------- |
---|
108 | ! @author Mona Kurppa (University of Helsinki) |
---|
109 | ! |
---|
110 | ! |
---|
111 | ! Description: |
---|
112 | ! ------------ |
---|
113 | !> Sectional aerosol module for large scale applications SALSA |
---|
114 | !> (Kokkola et al., 2008, ACP 8, 2469-2483). Solves the aerosol number and mass |
---|
115 | !> concentration as well as chemical composition. Includes aerosol dynamic |
---|
116 | !> processes: nucleation, condensation/evaporation of vapours, coagulation and |
---|
117 | !> deposition on tree leaves, ground and roofs. |
---|
118 | !> Implementation is based on formulations implemented in UCLALES-SALSA except |
---|
119 | !> for deposition which is based on parametrisations by Zhang et al. (2001, |
---|
120 | !> Atmos. Environ. 35, 549-560) or Petroff&Zhang (2010, Geosci. Model Dev. 3, |
---|
121 | !> 753-769) |
---|
122 | !> |
---|
123 | !> @todo Apply information from emission_stack_height to lift emission sources |
---|
124 | !> @todo emission mode "parameterized", i.e. based on street type |
---|
125 | !------------------------------------------------------------------------------! |
---|
126 | MODULE salsa_mod |
---|
127 | |
---|
128 | USE basic_constants_and_equations_mod, & |
---|
129 | ONLY: c_p, g, p_0, pi, r_d |
---|
130 | |
---|
131 | USE chem_gasphase_mod, & |
---|
132 | ONLY: nspec, nvar, spc_names |
---|
133 | |
---|
134 | USE chemistry_model_mod, & |
---|
135 | ONLY: chem_species |
---|
136 | |
---|
137 | USE chem_modules, & |
---|
138 | ONLY: call_chem_at_all_substeps, chem_gasphase_on |
---|
139 | |
---|
140 | USE control_parameters |
---|
141 | |
---|
142 | USE indices, & |
---|
143 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, & |
---|
144 | nzb_s_inner, nz, nzt, wall_flags_0 |
---|
145 | |
---|
146 | USE kinds |
---|
147 | |
---|
148 | USE pegrid |
---|
149 | |
---|
150 | USE salsa_util_mod |
---|
151 | |
---|
152 | USE statistics, & |
---|
153 | ONLY: sums_salsa_ws_l |
---|
154 | |
---|
155 | IMPLICIT NONE |
---|
156 | ! |
---|
157 | !-- SALSA constants: |
---|
158 | ! |
---|
159 | !-- Local constants: |
---|
160 | INTEGER(iwp), PARAMETER :: luc_urban = 8 !< default landuse type for urban: use desert! |
---|
161 | INTEGER(iwp), PARAMETER :: ngases_salsa = 5 !< total number of gaseous tracers: |
---|
162 | !< 1 = H2SO4, 2 = HNO3, 3 = NH3, 4 = OCNV |
---|
163 | !< (non-volatile OC), 5 = OCSV (semi-volatile) |
---|
164 | INTEGER(iwp), PARAMETER :: nmod = 7 !< number of modes for initialising the aerosol size |
---|
165 | !< distribution |
---|
166 | INTEGER(iwp), PARAMETER :: nreg = 2 !< Number of main size subranges |
---|
167 | INTEGER(iwp), PARAMETER :: maxspec = 7 !< Max. number of aerosol species |
---|
168 | INTEGER(iwp), PARAMETER :: season = 1 !< For dry depostion by Zhang et al.: 1 = summer, |
---|
169 | !< 2 = autumn (no harvest yet), 3 = late autumn |
---|
170 | !< (already frost), 4 = winter, 5 = transitional spring |
---|
171 | ! |
---|
172 | !-- Universal constants |
---|
173 | REAL(wp), PARAMETER :: abo = 1.380662E-23_wp !< Boltzmann constant (J/K) |
---|
174 | REAL(wp), PARAMETER :: alv = 2.260E+6_wp !< latent heat for H2O |
---|
175 | !< vaporisation (J/kg) |
---|
176 | REAL(wp), PARAMETER :: alv_d_rv = 4896.96865_wp !< alv / rv |
---|
177 | REAL(wp), PARAMETER :: am_airmol = 4.8096E-26_wp !< Average mass of one air |
---|
178 | !< molecule (Jacobson, |
---|
179 | !< 2005, Eq. 2.3) |
---|
180 | REAL(wp), PARAMETER :: api6 = 0.5235988_wp !< pi / 6 |
---|
181 | REAL(wp), PARAMETER :: argas = 8.314409_wp !< Gas constant (J/(mol K)) |
---|
182 | REAL(wp), PARAMETER :: argas_d_cpd = 8.281283865E-3_wp !< argas per cpd |
---|
183 | REAL(wp), PARAMETER :: avo = 6.02214E+23_wp !< Avogadro constant (1/mol) |
---|
184 | REAL(wp), PARAMETER :: d_sa = 5.539376964394570E-10_wp !< diameter of condensing sulphuric |
---|
185 | !< acid molecule (m) |
---|
186 | REAL(wp), PARAMETER :: for_ppm_to_nconc = 7.243016311E+16_wp !< ppm * avo / R (K/(Pa*m3)) |
---|
187 | REAL(wp), PARAMETER :: epsoc = 0.15_wp !< water uptake of organic |
---|
188 | !< material |
---|
189 | REAL(wp), PARAMETER :: mclim = 1.0E-23_wp !< mass concentration min limit (kg/m3) |
---|
190 | REAL(wp), PARAMETER :: n3 = 158.79_wp !< Number of H2SO4 molecules in 3 nm cluster |
---|
191 | !< if d_sa=5.54e-10m |
---|
192 | REAL(wp), PARAMETER :: nclim = 1.0_wp !< number concentration min limit (#/m3) |
---|
193 | REAL(wp), PARAMETER :: surfw0 = 0.073_wp !< surface tension of water at 293 K (J/m2) |
---|
194 | ! |
---|
195 | !-- Molar masses in kg/mol |
---|
196 | REAL(wp), PARAMETER :: ambc = 12.0E-3_wp !< black carbon (BC) |
---|
197 | REAL(wp), PARAMETER :: amdair = 28.970E-3_wp !< dry air |
---|
198 | REAL(wp), PARAMETER :: amdu = 100.E-3_wp !< mineral dust |
---|
199 | REAL(wp), PARAMETER :: amh2o = 18.0154E-3_wp !< H2O |
---|
200 | REAL(wp), PARAMETER :: amh2so4 = 98.06E-3_wp !< H2SO4 |
---|
201 | REAL(wp), PARAMETER :: amhno3 = 63.01E-3_wp !< HNO3 |
---|
202 | REAL(wp), PARAMETER :: amn2o = 44.013E-3_wp !< N2O |
---|
203 | REAL(wp), PARAMETER :: amnh3 = 17.031E-3_wp !< NH3 |
---|
204 | REAL(wp), PARAMETER :: amo2 = 31.9988E-3_wp !< O2 |
---|
205 | REAL(wp), PARAMETER :: amo3 = 47.998E-3_wp !< O3 |
---|
206 | REAL(wp), PARAMETER :: amoc = 150.E-3_wp !< organic carbon (OC) |
---|
207 | REAL(wp), PARAMETER :: amss = 58.44E-3_wp !< sea salt (NaCl) |
---|
208 | ! |
---|
209 | !-- Densities in kg/m3 |
---|
210 | REAL(wp), PARAMETER :: arhobc = 2000.0_wp !< black carbon |
---|
211 | REAL(wp), PARAMETER :: arhodu = 2650.0_wp !< mineral dust |
---|
212 | REAL(wp), PARAMETER :: arhoh2o = 1000.0_wp !< H2O |
---|
213 | REAL(wp), PARAMETER :: arhoh2so4 = 1830.0_wp !< SO4 |
---|
214 | REAL(wp), PARAMETER :: arhohno3 = 1479.0_wp !< HNO3 |
---|
215 | REAL(wp), PARAMETER :: arhonh3 = 1530.0_wp !< NH3 |
---|
216 | REAL(wp), PARAMETER :: arhooc = 2000.0_wp !< organic carbon |
---|
217 | REAL(wp), PARAMETER :: arhoss = 2165.0_wp !< sea salt (NaCl) |
---|
218 | ! |
---|
219 | !-- Volume of molecule in m3/# |
---|
220 | REAL(wp), PARAMETER :: amvh2o = amh2o /avo / arhoh2o !< H2O |
---|
221 | REAL(wp), PARAMETER :: amvh2so4 = amh2so4 / avo / arhoh2so4 !< SO4 |
---|
222 | REAL(wp), PARAMETER :: amvhno3 = amhno3 / avo / arhohno3 !< HNO3 |
---|
223 | REAL(wp), PARAMETER :: amvnh3 = amnh3 / avo / arhonh3 !< NH3 |
---|
224 | REAL(wp), PARAMETER :: amvoc = amoc / avo / arhooc !< OC |
---|
225 | REAL(wp), PARAMETER :: amvss = amss / avo / arhoss !< sea salt |
---|
226 | ! |
---|
227 | !-- Constants for the dry deposition model by Petroff and Zhang (2010): |
---|
228 | !-- obstacle characteristic dimension "L" (cm) (plane obstacle by default) and empirical constants |
---|
229 | !-- C_B, C_IN, C_IM, beta_IM and C_IT for each land use category (15, as in Zhang et al. (2001)) |
---|
230 | REAL(wp), DIMENSION(1:15), PARAMETER :: l_p10 = & |
---|
231 | (/0.15, 4.0, 0.15, 3.0, 3.0, 0.5, 3.0, -99., 0.5, 2.0, 1.0, -99., -99., -99., 3.0/) |
---|
232 | REAL(wp), DIMENSION(1:15), PARAMETER :: c_b_p10 = & |
---|
233 | (/0.887, 1.262, 0.887, 1.262, 1.262, 0.996, 0.996, -99., 0.7, 0.93, 0.996, -99., -99., -99., 1.262/) |
---|
234 | REAL(wp), DIMENSION(1:15), PARAMETER :: c_in_p10 = & |
---|
235 | (/0.81, 0.216, 0.81, 0.216, 0.216, 0.191, 0.162, -99., 0.7, 0.14, 0.162, -99., -99., -99., 0.216/) |
---|
236 | REAL(wp), DIMENSION(1:15), PARAMETER :: c_im_p10 = & |
---|
237 | (/0.162, 0.13, 0.162, 0.13, 0.13, 0.191, 0.081, -99., 0.191, 0.086, 0.081, -99., -99., -99., 0.13/) |
---|
238 | REAL(wp), DIMENSION(1:15), PARAMETER :: beta_im_p10 = & |
---|
239 | (/0.6, 0.47, 0.6, 0.47, 0.47, 0.47, 0.47, -99., 0.6, 0.47, 0.47, -99., -99., -99., 0.47/) |
---|
240 | REAL(wp), DIMENSION(1:15), PARAMETER :: c_it_p10 = & |
---|
241 | (/0.0, 0.056, 0.0, 0.056, 0.056, 0.042, 0.056, -99., 0.042, 0.014, 0.056, -99., -99., -99., 0.056/) |
---|
242 | ! |
---|
243 | !-- Constants for the dry deposition model by Zhang et al. (2001): |
---|
244 | !-- empirical constants "alpha" and "gamma" and characteristic radius "A" for |
---|
245 | !-- each land use category (15) and season (5) |
---|
246 | REAL(wp), DIMENSION(1:15), PARAMETER :: alpha_z01 = & |
---|
247 | (/1.0, 0.6, 1.1, 0.8, 0.8, 1.2, 1.2, 50.0, 50.0, 1.3, 2.0, 50.0, 100.0, 100.0, 1.5/) |
---|
248 | REAL(wp), DIMENSION(1:15), PARAMETER :: gamma_z01 = & |
---|
249 | (/0.56, 0.58, 0.56, 0.56, 0.56, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.54, 0.50, 0.50, 0.56/) |
---|
250 | REAL(wp), DIMENSION(1:15,1:5), PARAMETER :: A_z01 = RESHAPE( (/& |
---|
251 | 2.0, 5.0, 2.0, 5.0, 5.0, 2.0, 2.0, -99., -99., 10.0, 10.0, -99., -99., -99., 10.0,& ! SC1 |
---|
252 | 2.0, 5.0, 2.0, 5.0, 5.0, 2.0, 2.0, -99., -99., 10.0, 10.0, -99., -99., -99., 10.0,& ! SC2 |
---|
253 | 2.0, 5.0, 5.0, 10.0, 5.0, 5.0, 5.0, -99., -99., 10.0, 10.0, -99., -99., -99., 10.0,& ! SC3 |
---|
254 | 2.0, 5.0, 5.0, 10.0, 5.0, 5.0, 5.0, -99., -99., 10.0, 10.0, -99., -99., -99., 10.0,& ! SC4 |
---|
255 | 2.0, 5.0, 2.0, 5.0, 5.0, 2.0, 2.0, -99., -99., 10.0, 10.0, -99., -99., -99., 10.0 & ! SC5 |
---|
256 | /), (/ 15, 5 /) ) |
---|
257 | !-- Land use categories (based on Z01 but the same applies here also for P10): |
---|
258 | !-- 1 = evergreen needleleaf trees, |
---|
259 | !-- 2 = evergreen broadleaf trees, |
---|
260 | !-- 3 = deciduous needleleaf trees, |
---|
261 | !-- 4 = deciduous broadleaf trees, |
---|
262 | !-- 5 = mixed broadleaf and needleleaf trees (deciduous broadleaf trees for P10), |
---|
263 | !-- 6 = grass (short grass for P10), |
---|
264 | !-- 7 = crops, mixed farming, |
---|
265 | !-- 8 = desert, |
---|
266 | !-- 9 = tundra, |
---|
267 | !-- 10 = shrubs and interrupted woodlands (thorn shrubs for P10), |
---|
268 | !-- 11 = wetland with plants (long grass for P10) |
---|
269 | !-- 12 = ice cap and glacier, |
---|
270 | !-- 13 = inland water (inland lake for P10) |
---|
271 | !-- 14 = ocean (water for P10), |
---|
272 | !-- 15 = urban |
---|
273 | ! |
---|
274 | !-- SALSA variables: |
---|
275 | CHARACTER(LEN=20) :: bc_salsa_b = 'neumann' !< bottom boundary condition |
---|
276 | CHARACTER(LEN=20) :: bc_salsa_t = 'neumann' !< top boundary condition |
---|
277 | CHARACTER(LEN=20) :: depo_pcm_par = 'zhang2001' !< or 'petroff2010' |
---|
278 | CHARACTER(LEN=20) :: depo_pcm_type = 'deciduous_broadleaf' !< leaf type |
---|
279 | CHARACTER(LEN=20) :: depo_surf_par = 'zhang2001' !< or 'petroff2010' |
---|
280 | CHARACTER(LEN=100) :: input_file_dynamic = 'PIDS_DYNAMIC' !< file name for dynamic input |
---|
281 | CHARACTER(LEN=100) :: input_file_salsa = 'PIDS_SALSA' !< file name for emission data |
---|
282 | CHARACTER(LEN=20) :: salsa_emission_mode = 'no_emission' !< 'no_emission', 'uniform', |
---|
283 | !< 'parameterized', 'read_from_file' |
---|
284 | |
---|
285 | CHARACTER(LEN=20), DIMENSION(4) :: decycle_method = & |
---|
286 | (/'dirichlet','dirichlet','dirichlet','dirichlet'/) |
---|
287 | !< Decycling method at horizontal boundaries |
---|
288 | !< 1=left, 2=right, 3=south, 4=north |
---|
289 | !< dirichlet = initial profiles for the ghost and first 3 layers |
---|
290 | !< neumann = zero gradient |
---|
291 | |
---|
292 | CHARACTER(LEN=3), DIMENSION(maxspec) :: listspec = & !< Active aerosols |
---|
293 | (/'SO4',' ',' ',' ',' ',' ',' '/) |
---|
294 | |
---|
295 | INTEGER(iwp) :: depo_pcm_type_num = 0 !< index for the dry deposition type on the plant canopy |
---|
296 | INTEGER(iwp) :: dots_salsa = 0 !< starting index for salsa-timeseries |
---|
297 | INTEGER(iwp) :: end_subrange_1a = 1 !< last index for bin subrange 1a |
---|
298 | INTEGER(iwp) :: end_subrange_2a = 1 !< last index for bin subrange 2a |
---|
299 | INTEGER(iwp) :: end_subrange_2b = 1 !< last index for bin subrange 2b |
---|
300 | INTEGER(iwp) :: ibc_salsa_b !< index for the bottom boundary condition |
---|
301 | INTEGER(iwp) :: ibc_salsa_t !< index for the top boundary condition |
---|
302 | INTEGER(iwp) :: index_bc = -1 !< index for black carbon (BC) |
---|
303 | INTEGER(iwp) :: index_du = -1 !< index for dust |
---|
304 | INTEGER(iwp) :: igctyp = 0 !< Initial gas concentration type |
---|
305 | !< 0 = uniform (read from PARIN) |
---|
306 | !< 1 = read vertical profile from an input file |
---|
307 | INTEGER(iwp) :: index_nh = -1 !< index for NH3 |
---|
308 | INTEGER(iwp) :: index_no = -1 !< index for HNO3 |
---|
309 | INTEGER(iwp) :: index_oc = -1 !< index for organic carbon (OC) |
---|
310 | INTEGER(iwp) :: isdtyp = 0 !< Initial size distribution type |
---|
311 | !< 0 = uniform (read from PARIN) |
---|
312 | !< 1 = read vertical profile of the mode number |
---|
313 | !< concentration from an input file |
---|
314 | INTEGER(iwp) :: index_so4 = -1 !< index for SO4 or H2SO4 |
---|
315 | INTEGER(iwp) :: index_ss = -1 !< index for sea salt |
---|
316 | INTEGER(iwp) :: lod_gas_emissions = 0 !< level of detail of the gaseous emission data |
---|
317 | INTEGER(iwp) :: nbins_aerosol = 1 !< total number of size bins |
---|
318 | INTEGER(iwp) :: ncc = 1 !< number of chemical components used |
---|
319 | INTEGER(iwp) :: ncomponents_mass = 1 !< total number of chemical compounds (ncc+1) |
---|
320 | !< if particle water is advected) |
---|
321 | INTEGER(iwp) :: nj3 = 1 !< J3 parametrization (nucleation) |
---|
322 | !< 1 = condensational sink (Kerminen&Kulmala, 2002) |
---|
323 | !< 2 = coagulational sink (Lehtinen et al. 2007) |
---|
324 | !< 3 = coagS+self-coagulation (Anttila et al. 2010) |
---|
325 | INTEGER(iwp) :: nsnucl = 0 !< Choice of the nucleation scheme: |
---|
326 | !< 0 = off |
---|
327 | !< 1 = binary nucleation |
---|
328 | !< 2 = activation type nucleation |
---|
329 | !< 3 = kinetic nucleation |
---|
330 | !< 4 = ternary nucleation |
---|
331 | !< 5 = nucleation with ORGANICs |
---|
332 | !< 6 = activation type of nucleation with H2SO4+ORG |
---|
333 | !< 7 = heteromolecular nucleation with H2SO4*ORG |
---|
334 | !< 8 = homomolecular nucleation of H2SO4 |
---|
335 | !< + heteromolecular nucleation with H2SO4*ORG |
---|
336 | !< 9 = homomolecular nucleation of H2SO4 and ORG |
---|
337 | !< + heteromolecular nucleation with H2SO4*ORG |
---|
338 | INTEGER(iwp) :: start_subrange_1a = 1 !< start index for bin subranges: subrange 1a |
---|
339 | INTEGER(iwp) :: start_subrange_2a = 1 !< subrange 2a |
---|
340 | INTEGER(iwp) :: start_subrange_2b = 1 !< subrange 2b |
---|
341 | |
---|
342 | INTEGER(iwp), DIMENSION(nreg) :: nbin = (/ 3, 7/) !< Number of size bins per subrange: 1 & 2 |
---|
343 | |
---|
344 | INTEGER(iwp), DIMENSION(ngases_salsa) :: gas_index_chem = & |
---|
345 | (/ 1, 1, 1, 1, 1/) !< gas indices in chemistry_model_mod |
---|
346 | !< 1 = H2SO4, 2 = HNO3, 3 = NH3, 4 = OCNV, 5 = OCSV |
---|
347 | INTEGER(iwp), DIMENSION(ngases_salsa) :: emission_index_chem !< gas indices in the gas emission file |
---|
348 | |
---|
349 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: k_topo_top !< vertical index of the topography top |
---|
350 | ! |
---|
351 | !-- SALSA switches: |
---|
352 | LOGICAL :: advect_particle_water = .TRUE. !< advect water concentration of particles |
---|
353 | LOGICAL :: decycle_lr = .FALSE. !< Undo cyclic boundary conditions: left and right |
---|
354 | LOGICAL :: decycle_ns = .FALSE. !< north and south boundaries |
---|
355 | LOGICAL :: feedback_to_palm = .FALSE. !< allow feedback due to condensation of H2O |
---|
356 | LOGICAL :: nest_salsa = .FALSE. !< apply nesting for salsa |
---|
357 | LOGICAL :: no_insoluble = .FALSE. !< Switch to exclude insoluble chemical components |
---|
358 | LOGICAL :: read_restart_data_salsa = .FALSE. !< read restart data for salsa |
---|
359 | LOGICAL :: salsa_gases_from_chem = .FALSE. !< Transfer the gaseous components to SALSA from |
---|
360 | !< from chemistry model |
---|
361 | LOGICAL :: van_der_waals_coagc = .FALSE. !< Enhancement of coagulation kernel by van der |
---|
362 | !< Waals and viscous forces |
---|
363 | LOGICAL :: write_binary_salsa = .FALSE. !< read binary for salsa |
---|
364 | ! |
---|
365 | !-- Process switches: nl* is read from the NAMELIST and is NOT changed. |
---|
366 | !-- ls* is the switch used and will get the value of nl* |
---|
367 | !-- except for special circumstances (spinup period etc.) |
---|
368 | LOGICAL :: nlcoag = .FALSE. !< Coagulation master switch |
---|
369 | LOGICAL :: lscoag = .FALSE. !< |
---|
370 | LOGICAL :: nlcnd = .FALSE. !< Condensation master switch |
---|
371 | LOGICAL :: lscnd = .FALSE. !< |
---|
372 | LOGICAL :: nlcndgas = .FALSE. !< Condensation of precursor gases |
---|
373 | LOGICAL :: lscndgas = .FALSE. !< |
---|
374 | LOGICAL :: nlcndh2oae = .FALSE. !< Condensation of H2O on aerosol |
---|
375 | LOGICAL :: lscndh2oae = .FALSE. !< particles (FALSE -> equilibrium calc.) |
---|
376 | LOGICAL :: nldepo = .FALSE. !< Deposition master switch |
---|
377 | LOGICAL :: lsdepo = .FALSE. !< |
---|
378 | LOGICAL :: nldepo_surf = .FALSE. !< Deposition on vegetation master switch |
---|
379 | LOGICAL :: lsdepo_surf = .FALSE. !< |
---|
380 | LOGICAL :: nldepo_pcm = .FALSE. !< Deposition on walls master switch |
---|
381 | LOGICAL :: lsdepo_pcm = .FALSE. !< |
---|
382 | LOGICAL :: nldistupdate = .TRUE. !< Size distribution update master switch |
---|
383 | LOGICAL :: lsdistupdate = .FALSE. !< |
---|
384 | LOGICAL :: lspartition = .FALSE. !< Partition of HNO3 and NH3 |
---|
385 | |
---|
386 | REAL(wp) :: act_coeff = 1.0E-7_wp !< Activation coefficient |
---|
387 | REAL(wp) :: dt_salsa = 0.00001_wp !< Time step of SALSA |
---|
388 | REAL(wp) :: h2so4_init = nclim !< Init value for sulphuric acid gas |
---|
389 | REAL(wp) :: hno3_init = nclim !< Init value for nitric acid gas |
---|
390 | REAL(wp) :: last_salsa_time = 0.0_wp !< previous salsa call |
---|
391 | REAL(wp) :: next_aero_emission_update = 0.0_wp !< previous emission update |
---|
392 | REAL(wp) :: next_gas_emission_update = 0.0_wp !< previous emission update |
---|
393 | REAL(wp) :: nf2a = 1.0_wp !< Number fraction allocated to 2a-bins |
---|
394 | REAL(wp) :: nh3_init = nclim !< Init value for ammonia gas |
---|
395 | REAL(wp) :: ocnv_init = nclim !< Init value for non-volatile organic gases |
---|
396 | REAL(wp) :: ocsv_init = nclim !< Init value for semi-volatile organic gases |
---|
397 | REAL(wp) :: rhlim = 1.20_wp !< RH limit in %/100. Prevents unrealistical RH |
---|
398 | REAL(wp) :: skip_time_do_salsa = 0.0_wp !< Starting time of SALSA (s) |
---|
399 | ! |
---|
400 | !-- Initial log-normal size distribution: mode diameter (dpg, metres), |
---|
401 | !-- standard deviation (sigmag) and concentration (n_lognorm, #/m3) |
---|
402 | REAL(wp), DIMENSION(nmod) :: dpg = & |
---|
403 | (/0.013_wp, 0.054_wp, 0.86_wp, 0.2_wp, 0.2_wp, 0.2_wp, 0.2_wp/) |
---|
404 | REAL(wp), DIMENSION(nmod) :: sigmag = & |
---|
405 | (/1.8_wp, 2.16_wp, 2.21_wp, 2.0_wp, 2.0_wp, 2.0_wp, 2.0_wp/) |
---|
406 | REAL(wp), DIMENSION(nmod) :: n_lognorm = & |
---|
407 | (/1.04e+11_wp, 3.23E+10_wp, 5.4E+6_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp/) |
---|
408 | ! |
---|
409 | !-- Initial mass fractions / chemical composition of the size distribution |
---|
410 | REAL(wp), DIMENSION(maxspec) :: mass_fracs_a = & !< mass fractions between |
---|
411 | (/1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0/) !< aerosol species for A bins |
---|
412 | REAL(wp), DIMENSION(maxspec) :: mass_fracs_b = & !< mass fractions between |
---|
413 | (/0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0/) !< aerosol species for B bins |
---|
414 | REAL(wp), DIMENSION(nreg+1) :: reglim = & !< Min&max diameters of size subranges |
---|
415 | (/ 3.0E-9_wp, 5.0E-8_wp, 1.0E-5_wp/) |
---|
416 | ! |
---|
417 | !-- Initial log-normal size distribution: mode diameter (dpg, metres), standard deviation (sigmag) |
---|
418 | !-- concentration (n_lognorm, #/m3) and mass fractions of all chemical components (listed in |
---|
419 | !-- listspec) for both a (soluble) and b (insoluble) bins. |
---|
420 | REAL(wp), DIMENSION(nmod) :: aerosol_flux_dpg = & |
---|
421 | (/0.013_wp, 0.054_wp, 0.86_wp, 0.2_wp, 0.2_wp, 0.2_wp, 0.2_wp/) |
---|
422 | REAL(wp), DIMENSION(nmod) :: aerosol_flux_sigmag = & |
---|
423 | (/1.8_wp, 2.16_wp, 2.21_wp, 2.0_wp, 2.0_wp, 2.0_wp, 2.0_wp/) |
---|
424 | REAL(wp), DIMENSION(nmod) :: surface_aerosol_flux = & |
---|
425 | (/1.04e+11_wp, 3.23E+10_wp, 5.4E+6_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp/) |
---|
426 | REAL(wp), DIMENSION(maxspec) :: aerosol_flux_mass_fracs_a = & |
---|
427 | (/1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0/) |
---|
428 | REAL(wp), DIMENSION(maxspec) :: aerosol_flux_mass_fracs_b = & |
---|
429 | (/0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0/) |
---|
430 | |
---|
431 | REAL(wp), DIMENSION(:), ALLOCATABLE :: bin_low_limits !< to deliver information about |
---|
432 | !< the lower diameters per bin |
---|
433 | REAL(wp), DIMENSION(:), ALLOCATABLE :: bc_am_t_val !< vertical gradient of: aerosol mass |
---|
434 | REAL(wp), DIMENSION(:), ALLOCATABLE :: bc_an_t_val !< of: aerosol number |
---|
435 | REAL(wp), DIMENSION(:), ALLOCATABLE :: bc_gt_t_val !< salsa gases near domain top |
---|
436 | REAL(wp), DIMENSION(:), ALLOCATABLE :: gas_emission_time !< Time array in gas emission data (s) |
---|
437 | REAL(wp), DIMENSION(:), ALLOCATABLE :: nsect !< Background number concentrations |
---|
438 | REAL(wp), DIMENSION(:), ALLOCATABLE :: massacc !< Mass accomodation coefficients |
---|
439 | ! |
---|
440 | !-- SALSA derived datatypes: |
---|
441 | ! |
---|
442 | !-- For matching LSM and the deposition module surface types |
---|
443 | TYPE match_lsm_depo |
---|
444 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: match |
---|
445 | END TYPE match_lsm_depo |
---|
446 | ! |
---|
447 | !-- Aerosol emission data attributes |
---|
448 | TYPE salsa_emission_attribute_type |
---|
449 | |
---|
450 | CHARACTER(LEN=25) :: units |
---|
451 | |
---|
452 | CHARACTER(LEN=25), DIMENSION(:), ALLOCATABLE :: cat_name !< |
---|
453 | CHARACTER(LEN=25), DIMENSION(:), ALLOCATABLE :: cc_name !< |
---|
454 | CHARACTER(LEN=25), DIMENSION(:), ALLOCATABLE :: unit_time !< |
---|
455 | CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names !< |
---|
456 | |
---|
457 | INTEGER(iwp) :: lod = 0 !< level of detail |
---|
458 | INTEGER(iwp) :: nbins = 10 !< number of aerosol size bins |
---|
459 | INTEGER(iwp) :: ncat = 0 !< number of emission categories |
---|
460 | INTEGER(iwp) :: ncc = 7 !< number of aerosol chemical components |
---|
461 | INTEGER(iwp) :: nhoursyear = 0 !< number of hours: HOURLY mode |
---|
462 | INTEGER(iwp) :: nmonthdayhour = 0 !< number of month days and hours: MDH mode |
---|
463 | INTEGER(iwp) :: num_vars !< number of variables |
---|
464 | INTEGER(iwp) :: nt = 0 !< number of time steps |
---|
465 | INTEGER(iwp) :: nz = 0 !< number of vertical levels |
---|
466 | INTEGER(iwp) :: tind !< time index for reference time in salsa emission data |
---|
467 | |
---|
468 | INTEGER(iwp), DIMENSION(maxspec) :: cc_input_to_model !< |
---|
469 | |
---|
470 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: cat_index !< Index of emission categories |
---|
471 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: cc_index !< Index of chemical components |
---|
472 | |
---|
473 | REAL(wp) :: conversion_factor !< unit conversion factor for aerosol emissions |
---|
474 | |
---|
475 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dmid !< mean diameters of size bins (m) |
---|
476 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rho !< average density (kg/m3) |
---|
477 | REAL(wp), DIMENSION(:), ALLOCATABLE :: time !< time (s) |
---|
478 | REAL(wp), DIMENSION(:), ALLOCATABLE :: time_factor !< emission time factor |
---|
479 | REAL(wp), DIMENSION(:), ALLOCATABLE :: z !< height (m) |
---|
480 | |
---|
481 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: etf !< emission time factor |
---|
482 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: stack_height |
---|
483 | |
---|
484 | END TYPE salsa_emission_attribute_type |
---|
485 | ! |
---|
486 | !-- The default size distribution and mass composition per emission category: |
---|
487 | !-- 1 = traffic, 2 = road dust, 3 = wood combustion, 4 = other |
---|
488 | !-- Mass fractions: H2SO4, OC, BC, DU, SS, HNO3, NH3 |
---|
489 | TYPE salsa_emission_mode_type |
---|
490 | |
---|
491 | INTEGER(iwp) :: ndm = 3 !< number of default modes |
---|
492 | INTEGER(iwp) :: ndc = 4 !< number of default categories |
---|
493 | |
---|
494 | CHARACTER(LEN=25), DIMENSION(1:4) :: cat_name_table = (/'traffic exhaust', & |
---|
495 | 'road dust ', & |
---|
496 | 'wood combustion', & |
---|
497 | 'other '/) |
---|
498 | |
---|
499 | INTEGER(iwp), DIMENSION(1:4) :: cat_input_to_model !< |
---|
500 | |
---|
501 | REAL(wp), DIMENSION(1:3) :: dpg_table = (/ 13.5E-9_wp, 1.4E-6_wp, 5.4E-8_wp/) !< |
---|
502 | REAL(wp), DIMENSION(1:3) :: ntot_table !< |
---|
503 | REAL(wp), DIMENSION(1:3) :: sigmag_table = (/ 1.6_wp, 1.4_wp, 1.7_wp /) !< |
---|
504 | |
---|
505 | REAL(wp), DIMENSION(1:maxspec,1:4) :: mass_frac_table = & !< |
---|
506 | RESHAPE( (/ 0.04_wp, 0.48_wp, 0.48_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
507 | 0.0_wp, 0.05_wp, 0.0_wp, 0.95_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
508 | 0.0_wp, 0.5_wp, 0.5_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
509 | 0.0_wp, 0.5_wp, 0.5_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp & |
---|
510 | /), (/maxspec,4/) ) |
---|
511 | |
---|
512 | REAL(wp), DIMENSION(1:3,1:4) :: pm_frac_table = & !< rel. mass |
---|
513 | RESHAPE( (/ 0.016_wp, 0.000_wp, 0.984_wp, & |
---|
514 | 0.000_wp, 1.000_wp, 0.000_wp, & |
---|
515 | 0.000_wp, 0.000_wp, 1.000_wp, & |
---|
516 | 1.000_wp, 0.000_wp, 1.000_wp & |
---|
517 | /), (/3,4/) ) |
---|
518 | |
---|
519 | END TYPE salsa_emission_mode_type |
---|
520 | ! |
---|
521 | !-- Aerosol emission data values |
---|
522 | TYPE salsa_emission_value_type |
---|
523 | |
---|
524 | REAL(wp) :: fill !< fill value |
---|
525 | |
---|
526 | REAL(wp), DIMENSION(:), ALLOCATABLE :: preproc_mass_fracs !< mass fractions |
---|
527 | |
---|
528 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: def_mass_fracs !< mass fractions per emis. category |
---|
529 | |
---|
530 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: def_data !< surface emission values in PM |
---|
531 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: preproc_data !< surface emission values per bin |
---|
532 | |
---|
533 | END TYPE salsa_emission_value_type |
---|
534 | ! |
---|
535 | !-- Prognostic variable: Aerosol size bin information (number (#/m3) and mass (kg/m3) concentration) |
---|
536 | !-- and the concentration of gaseous tracers (#/m3). Gas tracers are contained sequentially in |
---|
537 | !-- dimension 4 as: |
---|
538 | !-- 1. H2SO4, 2. HNO3, 3. NH3, 4. OCNV (non-volatile organics), 5. OCSV (semi-volatile) |
---|
539 | TYPE salsa_variable |
---|
540 | |
---|
541 | REAL(wp), ALLOCATABLE, DIMENSION(:) :: init !< |
---|
542 | |
---|
543 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: diss_s !< |
---|
544 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: flux_s !< |
---|
545 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: source !< |
---|
546 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: sums_ws_l !< |
---|
547 | |
---|
548 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: diss_l !< |
---|
549 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: flux_l !< |
---|
550 | |
---|
551 | REAL(wp), POINTER, DIMENSION(:,:,:), CONTIGUOUS :: conc !< |
---|
552 | REAL(wp), POINTER, DIMENSION(:,:,:), CONTIGUOUS :: conc_p !< |
---|
553 | REAL(wp), POINTER, DIMENSION(:,:,:), CONTIGUOUS :: tconc_m !< |
---|
554 | |
---|
555 | END TYPE salsa_variable |
---|
556 | ! |
---|
557 | !-- Datatype used to store information about the binned size distributions of aerosols |
---|
558 | TYPE t_section |
---|
559 | |
---|
560 | REAL(wp) :: dmid !< bin middle diameter (m) |
---|
561 | REAL(wp) :: vhilim !< bin volume at the high limit |
---|
562 | REAL(wp) :: vlolim !< bin volume at the low limit |
---|
563 | REAL(wp) :: vratiohi !< volume ratio between the center and high limit |
---|
564 | REAL(wp) :: vratiolo !< volume ratio between the center and low limit |
---|
565 | !****************************************************** |
---|
566 | ! ^ Do NOT change the stuff above after initialization ! |
---|
567 | !****************************************************** |
---|
568 | REAL(wp) :: core !< Volume of dry particle |
---|
569 | REAL(wp) :: dwet !< Wet diameter or mean droplet diameter (m) |
---|
570 | REAL(wp) :: numc !< Number concentration of particles/droplets (#/m3) |
---|
571 | REAL(wp) :: veqh2o !< Equilibrium H2O concentration for each particle |
---|
572 | |
---|
573 | REAL(wp), DIMENSION(maxspec+1) :: volc !< Volume concentrations (m^3/m^3) of aerosols + |
---|
574 | !< water. Since most of the stuff in SALSA is hard |
---|
575 | !< coded, these *have to be* in the order |
---|
576 | !< 1:SO4, 2:OC, 3:BC, 4:DU, 5:SS, 6:NO, 7:NH, 8:H2O |
---|
577 | END TYPE t_section |
---|
578 | |
---|
579 | TYPE(salsa_emission_attribute_type) :: aero_emission_att !< emission attributes |
---|
580 | TYPE(salsa_emission_value_type) :: aero_emission !< emission values |
---|
581 | TYPE(salsa_emission_mode_type) :: def_modes !< default emission modes |
---|
582 | |
---|
583 | TYPE(t_section), DIMENSION(:), ALLOCATABLE :: aero !< local aerosol properties |
---|
584 | |
---|
585 | TYPE(match_lsm_depo) :: lsm_to_depo_h |
---|
586 | |
---|
587 | TYPE(match_lsm_depo), DIMENSION(0:3) :: lsm_to_depo_v |
---|
588 | ! |
---|
589 | !-- SALSA variables: as x = x(k,j,i,bin). |
---|
590 | !-- The 4th dimension contains all the size bins sequentially for each aerosol species + water. |
---|
591 | ! |
---|
592 | !-- Prognostic variables: |
---|
593 | ! |
---|
594 | !-- Number concentration (#/m3) |
---|
595 | TYPE(salsa_variable), ALLOCATABLE, DIMENSION(:), TARGET :: aerosol_number !< |
---|
596 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: nconc_1 !< |
---|
597 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: nconc_2 !< |
---|
598 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: nconc_3 !< |
---|
599 | ! |
---|
600 | !-- Mass concentration (kg/m3) |
---|
601 | TYPE(salsa_variable), ALLOCATABLE, DIMENSION(:), TARGET :: aerosol_mass !< |
---|
602 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: mconc_1 !< |
---|
603 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: mconc_2 !< |
---|
604 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: mconc_3 !< |
---|
605 | ! |
---|
606 | !-- Gaseous concentrations (#/m3) |
---|
607 | TYPE(salsa_variable), ALLOCATABLE, DIMENSION(:), TARGET :: salsa_gas !< |
---|
608 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: gconc_1 !< |
---|
609 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: gconc_2 !< |
---|
610 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: gconc_3 !< |
---|
611 | ! |
---|
612 | !-- Diagnostic tracers |
---|
613 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: sedim_vd !< sedimentation velocity per bin (m/s) |
---|
614 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: ra_dry !< aerosol dry radius (m) |
---|
615 | |
---|
616 | !-- Particle component index tables |
---|
617 | TYPE(component_index) :: prtcl !< Contains "getIndex" which gives the index for a given aerosol |
---|
618 | !< component name: 1:SO4, 2:OC, 3:BC, 4:DU, 5:SS, 6:NO, 7:NH, 8:H2O |
---|
619 | ! |
---|
620 | !-- Data output arrays: |
---|
621 | ! |
---|
622 | !-- Gases: |
---|
623 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_h2so4_av !< H2SO4 |
---|
624 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_hno3_av !< HNO3 |
---|
625 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_nh3_av !< NH3 |
---|
626 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_ocnv_av !< non-volatile OC |
---|
627 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_ocsv_av !< semi-volatile OC |
---|
628 | ! |
---|
629 | !-- Integrated: |
---|
630 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: ldsa_av !< lung-deposited surface area |
---|
631 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: ntot_av !< total number concentration |
---|
632 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: pm25_av !< PM2.5 |
---|
633 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: pm10_av !< PM10 |
---|
634 | ! |
---|
635 | !-- In the particle phase: |
---|
636 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_bc_av !< black carbon |
---|
637 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_du_av !< dust |
---|
638 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_h2o_av !< liquid water |
---|
639 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_nh_av !< ammonia |
---|
640 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_no_av !< nitrates |
---|
641 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_oc_av !< org. carbon |
---|
642 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_so4_av !< sulphates |
---|
643 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_ss_av !< sea salt |
---|
644 | ! |
---|
645 | !-- Bin specific mass and number concentrations: |
---|
646 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: mbins_av !< bin mas |
---|
647 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: nbins_av !< bin number |
---|
648 | |
---|
649 | ! |
---|
650 | !-- PALM interfaces: |
---|
651 | ! |
---|
652 | !-- Boundary conditions: |
---|
653 | INTERFACE salsa_boundary_conds |
---|
654 | MODULE PROCEDURE salsa_boundary_conds |
---|
655 | MODULE PROCEDURE salsa_boundary_conds_decycle |
---|
656 | END INTERFACE salsa_boundary_conds |
---|
657 | ! |
---|
658 | !-- Data output checks for 2D/3D data to be done in check_parameters |
---|
659 | INTERFACE salsa_check_data_output |
---|
660 | MODULE PROCEDURE salsa_check_data_output |
---|
661 | END INTERFACE salsa_check_data_output |
---|
662 | ! |
---|
663 | !-- Input parameter checks to be done in check_parameters |
---|
664 | INTERFACE salsa_check_parameters |
---|
665 | MODULE PROCEDURE salsa_check_parameters |
---|
666 | END INTERFACE salsa_check_parameters |
---|
667 | ! |
---|
668 | !-- Averaging of 3D data for output |
---|
669 | INTERFACE salsa_3d_data_averaging |
---|
670 | MODULE PROCEDURE salsa_3d_data_averaging |
---|
671 | END INTERFACE salsa_3d_data_averaging |
---|
672 | ! |
---|
673 | !-- Data output of 2D quantities |
---|
674 | INTERFACE salsa_data_output_2d |
---|
675 | MODULE PROCEDURE salsa_data_output_2d |
---|
676 | END INTERFACE salsa_data_output_2d |
---|
677 | ! |
---|
678 | !-- Data output of 3D data |
---|
679 | INTERFACE salsa_data_output_3d |
---|
680 | MODULE PROCEDURE salsa_data_output_3d |
---|
681 | END INTERFACE salsa_data_output_3d |
---|
682 | ! |
---|
683 | !-- Data output of 3D data |
---|
684 | INTERFACE salsa_data_output_mask |
---|
685 | MODULE PROCEDURE salsa_data_output_mask |
---|
686 | END INTERFACE salsa_data_output_mask |
---|
687 | ! |
---|
688 | !-- Definition of data output quantities |
---|
689 | INTERFACE salsa_define_netcdf_grid |
---|
690 | MODULE PROCEDURE salsa_define_netcdf_grid |
---|
691 | END INTERFACE salsa_define_netcdf_grid |
---|
692 | ! |
---|
693 | !-- Output of information to the header file |
---|
694 | INTERFACE salsa_header |
---|
695 | MODULE PROCEDURE salsa_header |
---|
696 | END INTERFACE salsa_header |
---|
697 | ! |
---|
698 | !-- Initialization actions |
---|
699 | INTERFACE salsa_init |
---|
700 | MODULE PROCEDURE salsa_init |
---|
701 | END INTERFACE salsa_init |
---|
702 | ! |
---|
703 | !-- Initialization of arrays |
---|
704 | INTERFACE salsa_init_arrays |
---|
705 | MODULE PROCEDURE salsa_init_arrays |
---|
706 | END INTERFACE salsa_init_arrays |
---|
707 | ! |
---|
708 | !-- Writing of binary output for restart runs !!! renaming?! |
---|
709 | INTERFACE salsa_wrd_local |
---|
710 | MODULE PROCEDURE salsa_wrd_local |
---|
711 | END INTERFACE salsa_wrd_local |
---|
712 | ! |
---|
713 | !-- Reading of NAMELIST parameters |
---|
714 | INTERFACE salsa_parin |
---|
715 | MODULE PROCEDURE salsa_parin |
---|
716 | END INTERFACE salsa_parin |
---|
717 | ! |
---|
718 | !-- Reading of parameters for restart runs |
---|
719 | INTERFACE salsa_rrd_local |
---|
720 | MODULE PROCEDURE salsa_rrd_local |
---|
721 | END INTERFACE salsa_rrd_local |
---|
722 | ! |
---|
723 | !-- Swapping of time levels (required for prognostic variables) |
---|
724 | INTERFACE salsa_swap_timelevel |
---|
725 | MODULE PROCEDURE salsa_swap_timelevel |
---|
726 | END INTERFACE salsa_swap_timelevel |
---|
727 | ! |
---|
728 | !-- Interface between PALM and salsa |
---|
729 | INTERFACE salsa_driver |
---|
730 | MODULE PROCEDURE salsa_driver |
---|
731 | END INTERFACE salsa_driver |
---|
732 | |
---|
733 | !-- Actions salsa variables |
---|
734 | INTERFACE salsa_actions |
---|
735 | MODULE PROCEDURE salsa_actions |
---|
736 | MODULE PROCEDURE salsa_actions_ij |
---|
737 | END INTERFACE salsa_actions |
---|
738 | ! |
---|
739 | !-- Prognostics equations for salsa variables |
---|
740 | INTERFACE salsa_prognostic_equations |
---|
741 | MODULE PROCEDURE salsa_prognostic_equations |
---|
742 | MODULE PROCEDURE salsa_prognostic_equations_ij |
---|
743 | END INTERFACE salsa_prognostic_equations |
---|
744 | ! |
---|
745 | !-- Tendency salsa variables |
---|
746 | INTERFACE salsa_tendency |
---|
747 | MODULE PROCEDURE salsa_tendency |
---|
748 | MODULE PROCEDURE salsa_tendency_ij |
---|
749 | END INTERFACE salsa_tendency |
---|
750 | |
---|
751 | |
---|
752 | SAVE |
---|
753 | |
---|
754 | PRIVATE |
---|
755 | ! |
---|
756 | !-- Public functions: |
---|
757 | PUBLIC salsa_boundary_conds, salsa_check_data_output, salsa_check_parameters, & |
---|
758 | salsa_3d_data_averaging, salsa_data_output_2d, salsa_data_output_3d, & |
---|
759 | salsa_data_output_mask, salsa_define_netcdf_grid, salsa_diagnostics, salsa_driver, & |
---|
760 | salsa_emission_update, salsa_header, salsa_init, salsa_init_arrays, salsa_parin, & |
---|
761 | salsa_rrd_local, salsa_swap_timelevel, salsa_prognostic_equations, salsa_wrd_local, & |
---|
762 | salsa_actions |
---|
763 | ! |
---|
764 | !-- Public parameters, constants and initial values |
---|
765 | PUBLIC bc_am_t_val, bc_an_t_val, bc_gt_t_val, dots_salsa, dt_salsa, & |
---|
766 | ibc_salsa_b, last_salsa_time, lsdepo, nest_salsa, salsa, salsa_gases_from_chem, & |
---|
767 | skip_time_do_salsa |
---|
768 | ! |
---|
769 | !-- Public prognostic variables |
---|
770 | PUBLIC aerosol_mass, aerosol_number, gconc_2, mconc_2, nbins_aerosol, ncc, ncomponents_mass, & |
---|
771 | nclim, nconc_2, ngases_salsa, prtcl, ra_dry, salsa_gas, sedim_vd |
---|
772 | |
---|
773 | |
---|
774 | CONTAINS |
---|
775 | |
---|
776 | !------------------------------------------------------------------------------! |
---|
777 | ! Description: |
---|
778 | ! ------------ |
---|
779 | !> Parin for &salsa_par for new modules |
---|
780 | !------------------------------------------------------------------------------! |
---|
781 | SUBROUTINE salsa_parin |
---|
782 | |
---|
783 | IMPLICIT NONE |
---|
784 | |
---|
785 | CHARACTER(LEN=80) :: line !< dummy string that contains the current line |
---|
786 | !< of the parameter file |
---|
787 | |
---|
788 | NAMELIST /salsa_parameters/ aerosol_flux_dpg, aerosol_flux_mass_fracs_a, & |
---|
789 | aerosol_flux_mass_fracs_b, aerosol_flux_sigmag, & |
---|
790 | advect_particle_water, bc_salsa_b, bc_salsa_t, decycle_lr, & |
---|
791 | decycle_method, decycle_ns, depo_pcm_par, depo_pcm_type, & |
---|
792 | depo_surf_par, dpg, dt_salsa, feedback_to_palm, h2so4_init, & |
---|
793 | hno3_init, igctyp, isdtyp, listspec, mass_fracs_a, & |
---|
794 | mass_fracs_b, n_lognorm, nbin, nest_salsa, nf2a, nh3_init, & |
---|
795 | nj3, nlcnd, nlcndgas, nlcndh2oae, nlcoag, nldepo, nldepo_pcm, & |
---|
796 | nldepo_surf, nldistupdate, nsnucl, ocnv_init, ocsv_init, & |
---|
797 | read_restart_data_salsa, reglim, salsa, salsa_emission_mode, & |
---|
798 | sigmag, skip_time_do_salsa, surface_aerosol_flux, & |
---|
799 | van_der_waals_coagc, write_binary_salsa |
---|
800 | |
---|
801 | line = ' ' |
---|
802 | ! |
---|
803 | !-- Try to find salsa package |
---|
804 | REWIND ( 11 ) |
---|
805 | line = ' ' |
---|
806 | DO WHILE ( INDEX( line, '&salsa_parameters' ) == 0 ) |
---|
807 | READ ( 11, '(A)', END=10 ) line |
---|
808 | ENDDO |
---|
809 | BACKSPACE ( 11 ) |
---|
810 | ! |
---|
811 | !-- Read user-defined namelist |
---|
812 | READ ( 11, salsa_parameters ) |
---|
813 | ! |
---|
814 | !-- Enable salsa (salsa switch in modules.f90) |
---|
815 | salsa = .TRUE. |
---|
816 | |
---|
817 | 10 CONTINUE |
---|
818 | |
---|
819 | END SUBROUTINE salsa_parin |
---|
820 | |
---|
821 | !------------------------------------------------------------------------------! |
---|
822 | ! Description: |
---|
823 | ! ------------ |
---|
824 | !> Check parameters routine for salsa. |
---|
825 | !------------------------------------------------------------------------------! |
---|
826 | SUBROUTINE salsa_check_parameters |
---|
827 | |
---|
828 | USE control_parameters, & |
---|
829 | ONLY: message_string |
---|
830 | |
---|
831 | IMPLICIT NONE |
---|
832 | |
---|
833 | ! |
---|
834 | !-- Checks go here (cf. check_parameters.f90). |
---|
835 | IF ( salsa .AND. .NOT. humidity ) THEN |
---|
836 | WRITE( message_string, * ) 'salsa = ', salsa, ' is not allowed with humidity = ', humidity |
---|
837 | CALL message( 'salsa_check_parameters', 'PA0594', 1, 2, 0, 6, 0 ) |
---|
838 | ENDIF |
---|
839 | |
---|
840 | IF ( bc_salsa_b == 'dirichlet' ) THEN |
---|
841 | ibc_salsa_b = 0 |
---|
842 | ELSEIF ( bc_salsa_b == 'neumann' ) THEN |
---|
843 | ibc_salsa_b = 1 |
---|
844 | ELSE |
---|
845 | message_string = 'unknown boundary condition: bc_salsa_b = "' // TRIM( bc_salsa_t ) // '"' |
---|
846 | CALL message( 'salsa_check_parameters', 'PA0595', 1, 2, 0, 6, 0 ) |
---|
847 | ENDIF |
---|
848 | |
---|
849 | IF ( bc_salsa_t == 'dirichlet' ) THEN |
---|
850 | ibc_salsa_t = 0 |
---|
851 | ELSEIF ( bc_salsa_t == 'neumann' ) THEN |
---|
852 | ibc_salsa_t = 1 |
---|
853 | ELSEIF ( bc_salsa_t == 'nested' ) THEN |
---|
854 | ibc_salsa_t = 2 |
---|
855 | ELSE |
---|
856 | message_string = 'unknown boundary condition: bc_salsa_t = "' // TRIM( bc_salsa_t ) // '"' |
---|
857 | CALL message( 'salsa_check_parameters', 'PA0596', 1, 2, 0, 6, 0 ) |
---|
858 | ENDIF |
---|
859 | |
---|
860 | IF ( nj3 < 1 .OR. nj3 > 3 ) THEN |
---|
861 | message_string = 'unknown nj3 (must be 1-3)' |
---|
862 | CALL message( 'salsa_check_parameters', 'PA0597', 1, 2, 0, 6, 0 ) |
---|
863 | ENDIF |
---|
864 | |
---|
865 | IF ( salsa_emission_mode == 'read_from_file' .AND. ibc_salsa_b == 0 ) THEN |
---|
866 | message_string = 'salsa_emission_mode == read_from_file requires bc_salsa_b = "Neumann"' |
---|
867 | CALL message( 'salsa_check_parameters','PA0598', 1, 2, 0, 6, 0 ) |
---|
868 | ENDIF |
---|
869 | |
---|
870 | END SUBROUTINE salsa_check_parameters |
---|
871 | |
---|
872 | !------------------------------------------------------------------------------! |
---|
873 | ! |
---|
874 | ! Description: |
---|
875 | ! ------------ |
---|
876 | !> Subroutine defining appropriate grid for netcdf variables. |
---|
877 | !> It is called out from subroutine netcdf. |
---|
878 | !> Same grid as for other scalars (see netcdf_interface_mod.f90) |
---|
879 | !------------------------------------------------------------------------------! |
---|
880 | SUBROUTINE salsa_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
881 | |
---|
882 | IMPLICIT NONE |
---|
883 | |
---|
884 | CHARACTER(LEN=*), INTENT(OUT) :: grid_x !< |
---|
885 | CHARACTER(LEN=*), INTENT(OUT) :: grid_y !< |
---|
886 | CHARACTER(LEN=*), INTENT(OUT) :: grid_z !< |
---|
887 | CHARACTER(LEN=*), INTENT(IN) :: var !< |
---|
888 | |
---|
889 | LOGICAL, INTENT(OUT) :: found !< |
---|
890 | |
---|
891 | found = .TRUE. |
---|
892 | ! |
---|
893 | !-- Check for the grid |
---|
894 | |
---|
895 | IF ( var(1:2) == 'g_' ) THEN |
---|
896 | grid_x = 'x' |
---|
897 | grid_y = 'y' |
---|
898 | grid_z = 'zu' |
---|
899 | ELSEIF ( var(1:4) == 'LDSA' ) THEN |
---|
900 | grid_x = 'x' |
---|
901 | grid_y = 'y' |
---|
902 | grid_z = 'zu' |
---|
903 | ELSEIF ( var(1:5) == 'm_bin' ) THEN |
---|
904 | grid_x = 'x' |
---|
905 | grid_y = 'y' |
---|
906 | grid_z = 'zu' |
---|
907 | ELSEIF ( var(1:5) == 'N_bin' ) THEN |
---|
908 | grid_x = 'x' |
---|
909 | grid_y = 'y' |
---|
910 | grid_z = 'zu' |
---|
911 | ELSEIF ( var(1:4) == 'Ntot' ) THEN |
---|
912 | grid_x = 'x' |
---|
913 | grid_y = 'y' |
---|
914 | grid_z = 'zu' |
---|
915 | ELSEIF ( var(1:2) == 'PM' ) THEN |
---|
916 | grid_x = 'x' |
---|
917 | grid_y = 'y' |
---|
918 | grid_z = 'zu' |
---|
919 | ELSEIF ( var(1:2) == 's_' ) THEN |
---|
920 | grid_x = 'x' |
---|
921 | grid_y = 'y' |
---|
922 | grid_z = 'zu' |
---|
923 | ELSE |
---|
924 | found = .FALSE. |
---|
925 | grid_x = 'none' |
---|
926 | grid_y = 'none' |
---|
927 | grid_z = 'none' |
---|
928 | ENDIF |
---|
929 | |
---|
930 | END SUBROUTINE salsa_define_netcdf_grid |
---|
931 | |
---|
932 | !------------------------------------------------------------------------------! |
---|
933 | ! Description: |
---|
934 | ! ------------ |
---|
935 | !> Header output for new module |
---|
936 | !------------------------------------------------------------------------------! |
---|
937 | SUBROUTINE salsa_header( io ) |
---|
938 | |
---|
939 | IMPLICIT NONE |
---|
940 | |
---|
941 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
942 | ! |
---|
943 | !-- Write SALSA header |
---|
944 | WRITE( io, 1 ) |
---|
945 | WRITE( io, 2 ) skip_time_do_salsa |
---|
946 | WRITE( io, 3 ) dt_salsa |
---|
947 | WRITE( io, 4 ) SHAPE( aerosol_number(1)%conc ), nbins_aerosol |
---|
948 | IF ( advect_particle_water ) THEN |
---|
949 | WRITE( io, 5 ) SHAPE( aerosol_mass(1)%conc ), ncomponents_mass*nbins_aerosol, & |
---|
950 | advect_particle_water |
---|
951 | ELSE |
---|
952 | WRITE( io, 5 ) SHAPE( aerosol_mass(1)%conc ), ncc*nbins_aerosol, advect_particle_water |
---|
953 | ENDIF |
---|
954 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
955 | WRITE( io, 6 ) SHAPE( aerosol_mass(1)%conc ), ngases_salsa, salsa_gases_from_chem |
---|
956 | ENDIF |
---|
957 | WRITE( io, 7 ) |
---|
958 | IF ( nsnucl > 0 ) THEN |
---|
959 | WRITE( io, 8 ) nsnucl, nj3 |
---|
960 | ENDIF |
---|
961 | IF ( nlcoag ) THEN |
---|
962 | WRITE( io, 9 ) |
---|
963 | ENDIF |
---|
964 | IF ( nlcnd ) THEN |
---|
965 | WRITE( io, 10 ) nlcndgas, nlcndh2oae |
---|
966 | ENDIF |
---|
967 | IF ( lspartition ) THEN |
---|
968 | WRITE( io, 11 ) |
---|
969 | ENDIF |
---|
970 | IF ( nldepo ) THEN |
---|
971 | WRITE( io, 12 ) nldepo_pcm, nldepo_surf |
---|
972 | ENDIF |
---|
973 | WRITE( io, 13 ) reglim, nbin, bin_low_limits |
---|
974 | IF ( isdtyp == 0 ) WRITE( io, 14 ) nsect |
---|
975 | WRITE( io, 15 ) ncc, listspec, mass_fracs_a, mass_fracs_b |
---|
976 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
977 | WRITE( io, 16 ) ngases_salsa, h2so4_init, hno3_init, nh3_init, ocnv_init, ocsv_init |
---|
978 | ENDIF |
---|
979 | WRITE( io, 17 ) isdtyp, igctyp |
---|
980 | IF ( isdtyp == 0 ) THEN |
---|
981 | WRITE( io, 18 ) dpg, sigmag, n_lognorm |
---|
982 | ELSE |
---|
983 | WRITE( io, 19 ) |
---|
984 | ENDIF |
---|
985 | IF ( nest_salsa ) WRITE( io, 20 ) nest_salsa |
---|
986 | WRITE( io, 21 ) salsa_emission_mode |
---|
987 | |
---|
988 | |
---|
989 | 1 FORMAT (//' SALSA information:'/ & |
---|
990 | ' ------------------------------'/) |
---|
991 | 2 FORMAT (' Starts at: skip_time_do_salsa = ', F10.2, ' s') |
---|
992 | 3 FORMAT (/' Timestep: dt_salsa = ', F6.2, ' s') |
---|
993 | 4 FORMAT (/' Array shape (z,y,x,bins):'/ & |
---|
994 | ' aerosol_number: ', 4(I3)) |
---|
995 | 5 FORMAT (/' aerosol_mass: ', 4(I3),/ & |
---|
996 | ' (advect_particle_water = ', L1, ')') |
---|
997 | 6 FORMAT (' salsa_gas: ', 4(I3),/ & |
---|
998 | ' (salsa_gases_from_chem = ', L1, ')') |
---|
999 | 7 FORMAT (/' Aerosol dynamic processes included: ') |
---|
1000 | 8 FORMAT (/' nucleation (scheme = ', I1, ' and J3 parametrization = ', I1, ')') |
---|
1001 | 9 FORMAT (/' coagulation') |
---|
1002 | 10 FORMAT (/' condensation (of precursor gases = ', L1, ' and water vapour = ', L1, ')' ) |
---|
1003 | 11 FORMAT (/' dissolutional growth by HNO3 and NH3') |
---|
1004 | 12 FORMAT (/' dry deposition (on vegetation = ', L1, ' and on topography = ', L1, ')') |
---|
1005 | 13 FORMAT (/' Aerosol bin subrange limits (in metres): ', 3(ES10.2E3), / & |
---|
1006 | ' Number of size bins for each aerosol subrange: ', 2I3,/ & |
---|
1007 | ' Aerosol bin limits (in metres): ', 9(ES10.2E3)) |
---|
1008 | 14 FORMAT (' Initial number concentration in bins at the lowest level (#/m**3):', 9(ES10.2E3)) |
---|
1009 | 15 FORMAT (/' Number of chemical components used: ', I1,/ & |
---|
1010 | ' Species: ',7(A6),/ & |
---|
1011 | ' Initial relative contribution of each species to particle volume in:',/ & |
---|
1012 | ' a-bins: ', 7(F6.3),/ & |
---|
1013 | ' b-bins: ', 7(F6.3)) |
---|
1014 | 16 FORMAT (/' Number of gaseous tracers used: ', I1,/ & |
---|
1015 | ' Initial gas concentrations:',/ & |
---|
1016 | ' H2SO4: ',ES12.4E3, ' #/m**3',/ & |
---|
1017 | ' HNO3: ',ES12.4E3, ' #/m**3',/ & |
---|
1018 | ' NH3: ',ES12.4E3, ' #/m**3',/ & |
---|
1019 | ' OCNV: ',ES12.4E3, ' #/m**3',/ & |
---|
1020 | ' OCSV: ',ES12.4E3, ' #/m**3') |
---|
1021 | 17 FORMAT (/' Initialising concentrations: ', / & |
---|
1022 | ' Aerosol size distribution: isdtyp = ', I1,/ & |
---|
1023 | ' Gas concentrations: igctyp = ', I1 ) |
---|
1024 | 18 FORMAT ( ' Mode diametres: dpg(nmod) = ', 7(F7.3), ' (m)', / & |
---|
1025 | ' Standard deviation: sigmag(nmod) = ', 7(F7.2),/ & |
---|
1026 | ' Number concentration: n_lognorm(nmod) = ', 7(ES12.4E3), ' (#/m3)' ) |
---|
1027 | 19 FORMAT (/' Size distribution read from a file.') |
---|
1028 | 20 FORMAT (/' Nesting for salsa variables: ', L1 ) |
---|
1029 | 21 FORMAT (/' Emissions: salsa_emission_mode = ', A ) |
---|
1030 | |
---|
1031 | END SUBROUTINE salsa_header |
---|
1032 | |
---|
1033 | !------------------------------------------------------------------------------! |
---|
1034 | ! Description: |
---|
1035 | ! ------------ |
---|
1036 | !> Allocate SALSA arrays and define pointers if required |
---|
1037 | !------------------------------------------------------------------------------! |
---|
1038 | SUBROUTINE salsa_init_arrays |
---|
1039 | |
---|
1040 | USE chem_gasphase_mod, & |
---|
1041 | ONLY: nvar |
---|
1042 | |
---|
1043 | USE surface_mod, & |
---|
1044 | ONLY: surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, surf_usm_v |
---|
1045 | |
---|
1046 | IMPLICIT NONE |
---|
1047 | |
---|
1048 | INTEGER(iwp) :: gases_available !< Number of available gas components in the chemistry model |
---|
1049 | INTEGER(iwp) :: i !< loop index for allocating |
---|
1050 | INTEGER(iwp) :: l !< loop index for allocating: surfaces |
---|
1051 | INTEGER(iwp) :: lsp !< loop index for chem species in the chemistry model |
---|
1052 | |
---|
1053 | gases_available = 0 |
---|
1054 | ! |
---|
1055 | !-- Allocate prognostic variables (see salsa_swap_timelevel) |
---|
1056 | ! |
---|
1057 | !-- Set derived indices: |
---|
1058 | !-- (This does the same as the subroutine salsa_initialize in SALSA/UCLALES-SALSA) |
---|
1059 | start_subrange_1a = 1 ! 1st index of subrange 1a |
---|
1060 | start_subrange_2a = start_subrange_1a + nbin(1) ! 1st index of subrange 2a |
---|
1061 | end_subrange_1a = start_subrange_2a - 1 ! last index of subrange 1a |
---|
1062 | end_subrange_2a = end_subrange_1a + nbin(2) ! last index of subrange 2a |
---|
1063 | |
---|
1064 | ! |
---|
1065 | !-- If the fraction of insoluble aerosols in subrange 2 is zero: do not allocate arrays for them |
---|
1066 | IF ( nf2a > 0.999999_wp .AND. SUM( mass_fracs_b ) < 0.00001_wp ) THEN |
---|
1067 | no_insoluble = .TRUE. |
---|
1068 | start_subrange_2b = end_subrange_2a+1 ! 1st index of subrange 2b |
---|
1069 | end_subrange_2b = end_subrange_2a ! last index of subrange 2b |
---|
1070 | ELSE |
---|
1071 | start_subrange_2b = start_subrange_2a + nbin(2) ! 1st index of subrange 2b |
---|
1072 | end_subrange_2b = end_subrange_2a + nbin(2) ! last index of subrange 2b |
---|
1073 | ENDIF |
---|
1074 | |
---|
1075 | nbins_aerosol = end_subrange_2b ! total number of aerosol size bins |
---|
1076 | ! |
---|
1077 | !-- Create index tables for different aerosol components |
---|
1078 | CALL component_index_constructor( prtcl, ncc, maxspec, listspec ) |
---|
1079 | |
---|
1080 | ncomponents_mass = ncc |
---|
1081 | IF ( advect_particle_water ) ncomponents_mass = ncc + 1 ! Add water |
---|
1082 | |
---|
1083 | ! |
---|
1084 | !-- Allocate: |
---|
1085 | ALLOCATE( aero(nbins_aerosol), bc_am_t_val(nbins_aerosol*ncomponents_mass), & |
---|
1086 | bc_an_t_val(ngases_salsa), bc_gt_t_val(nbins_aerosol), bin_low_limits(nbins_aerosol),& |
---|
1087 | nsect(nbins_aerosol), massacc(nbins_aerosol) ) |
---|
1088 | ALLOCATE( k_topo_top(nysg:nyng,nxlg:nxrg) ) |
---|
1089 | IF ( nldepo ) ALLOCATE( sedim_vd(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins_aerosol) ) |
---|
1090 | ALLOCATE( ra_dry(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins_aerosol) ) |
---|
1091 | |
---|
1092 | ! |
---|
1093 | !-- Aerosol number concentration |
---|
1094 | ALLOCATE( aerosol_number(nbins_aerosol) ) |
---|
1095 | ALLOCATE( nconc_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins_aerosol), & |
---|
1096 | nconc_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins_aerosol), & |
---|
1097 | nconc_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins_aerosol) ) |
---|
1098 | nconc_1 = 0.0_wp |
---|
1099 | nconc_2 = 0.0_wp |
---|
1100 | nconc_3 = 0.0_wp |
---|
1101 | |
---|
1102 | DO i = 1, nbins_aerosol |
---|
1103 | aerosol_number(i)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => nconc_1(:,:,:,i) |
---|
1104 | aerosol_number(i)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => nconc_2(:,:,:,i) |
---|
1105 | aerosol_number(i)%tconc_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => nconc_3(:,:,:,i) |
---|
1106 | ALLOCATE( aerosol_number(i)%flux_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1107 | aerosol_number(i)%diss_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1108 | aerosol_number(i)%flux_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
1109 | aerosol_number(i)%diss_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
1110 | aerosol_number(i)%init(nzb:nzt+1), & |
---|
1111 | aerosol_number(i)%sums_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
1112 | ENDDO |
---|
1113 | |
---|
1114 | ! |
---|
1115 | !-- Aerosol mass concentration |
---|
1116 | ALLOCATE( aerosol_mass(ncomponents_mass*nbins_aerosol) ) |
---|
1117 | ALLOCATE( mconc_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ncomponents_mass*nbins_aerosol), & |
---|
1118 | mconc_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ncomponents_mass*nbins_aerosol), & |
---|
1119 | mconc_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ncomponents_mass*nbins_aerosol) ) |
---|
1120 | mconc_1 = 0.0_wp |
---|
1121 | mconc_2 = 0.0_wp |
---|
1122 | mconc_3 = 0.0_wp |
---|
1123 | |
---|
1124 | DO i = 1, ncomponents_mass*nbins_aerosol |
---|
1125 | aerosol_mass(i)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => mconc_1(:,:,:,i) |
---|
1126 | aerosol_mass(i)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => mconc_2(:,:,:,i) |
---|
1127 | aerosol_mass(i)%tconc_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => mconc_3(:,:,:,i) |
---|
1128 | ALLOCATE( aerosol_mass(i)%flux_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1129 | aerosol_mass(i)%diss_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1130 | aerosol_mass(i)%flux_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
1131 | aerosol_mass(i)%diss_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1), & |
---|
1132 | aerosol_mass(i)%init(nzb:nzt+1), & |
---|
1133 | aerosol_mass(i)%sums_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
1134 | ENDDO |
---|
1135 | |
---|
1136 | ! |
---|
1137 | !-- Surface fluxes: answs = aerosol number, amsws = aerosol mass |
---|
1138 | ! |
---|
1139 | !-- Horizontal surfaces: default type |
---|
1140 | DO l = 0, 2 ! upward (l=0), downward (l=1) and model top (l=2) |
---|
1141 | ALLOCATE( surf_def_h(l)%answs( 1:surf_def_h(l)%ns, nbins_aerosol ) ) |
---|
1142 | ALLOCATE( surf_def_h(l)%amsws( 1:surf_def_h(l)%ns, nbins_aerosol*ncomponents_mass ) ) |
---|
1143 | surf_def_h(l)%answs = 0.0_wp |
---|
1144 | surf_def_h(l)%amsws = 0.0_wp |
---|
1145 | ENDDO |
---|
1146 | ! |
---|
1147 | !-- Horizontal surfaces: natural type |
---|
1148 | ALLOCATE( surf_lsm_h%answs( 1:surf_lsm_h%ns, nbins_aerosol ) ) |
---|
1149 | ALLOCATE( surf_lsm_h%amsws( 1:surf_lsm_h%ns, nbins_aerosol*ncomponents_mass ) ) |
---|
1150 | surf_lsm_h%answs = 0.0_wp |
---|
1151 | surf_lsm_h%amsws = 0.0_wp |
---|
1152 | ! |
---|
1153 | !-- Horizontal surfaces: urban type |
---|
1154 | ALLOCATE( surf_usm_h%answs( 1:surf_usm_h%ns, nbins_aerosol ) ) |
---|
1155 | ALLOCATE( surf_usm_h%amsws( 1:surf_usm_h%ns, nbins_aerosol*ncomponents_mass ) ) |
---|
1156 | surf_usm_h%answs = 0.0_wp |
---|
1157 | surf_usm_h%amsws = 0.0_wp |
---|
1158 | |
---|
1159 | ! |
---|
1160 | !-- Vertical surfaces: northward (l=0), southward (l=1), eastward (l=2) and westward (l=3) facing |
---|
1161 | DO l = 0, 3 |
---|
1162 | ALLOCATE( surf_def_v(l)%answs( 1:surf_def_v(l)%ns, nbins_aerosol ) ) |
---|
1163 | surf_def_v(l)%answs = 0.0_wp |
---|
1164 | ALLOCATE( surf_def_v(l)%amsws( 1:surf_def_v(l)%ns, nbins_aerosol*ncomponents_mass ) ) |
---|
1165 | surf_def_v(l)%amsws = 0.0_wp |
---|
1166 | |
---|
1167 | ALLOCATE( surf_lsm_v(l)%answs( 1:surf_lsm_v(l)%ns, nbins_aerosol ) ) |
---|
1168 | surf_lsm_v(l)%answs = 0.0_wp |
---|
1169 | ALLOCATE( surf_lsm_v(l)%amsws( 1:surf_lsm_v(l)%ns, nbins_aerosol*ncomponents_mass ) ) |
---|
1170 | surf_lsm_v(l)%amsws = 0.0_wp |
---|
1171 | |
---|
1172 | ALLOCATE( surf_usm_v(l)%answs( 1:surf_usm_v(l)%ns, nbins_aerosol ) ) |
---|
1173 | surf_usm_v(l)%answs = 0.0_wp |
---|
1174 | ALLOCATE( surf_usm_v(l)%amsws( 1:surf_usm_v(l)%ns, nbins_aerosol*ncomponents_mass ) ) |
---|
1175 | surf_usm_v(l)%amsws = 0.0_wp |
---|
1176 | |
---|
1177 | ENDDO |
---|
1178 | |
---|
1179 | ! |
---|
1180 | !-- Concentration of gaseous tracers (1. SO4, 2. HNO3, 3. NH3, 4. OCNV, 5. OCSV) |
---|
1181 | !-- (number concentration (#/m3) ) |
---|
1182 | ! |
---|
1183 | !-- If chemistry is on, read gas phase concentrations from there. Otherwise, |
---|
1184 | !-- allocate salsa_gas array. |
---|
1185 | |
---|
1186 | IF ( air_chemistry ) THEN |
---|
1187 | DO lsp = 1, nvar |
---|
1188 | SELECT CASE ( TRIM( chem_species(lsp)%name ) ) |
---|
1189 | CASE ( 'H2SO4', 'h2so4' ) |
---|
1190 | gases_available = gases_available + 1 |
---|
1191 | gas_index_chem(1) = lsp |
---|
1192 | CASE ( 'HNO3', 'hno3' ) |
---|
1193 | gases_available = gases_available + 1 |
---|
1194 | gas_index_chem(2) = lsp |
---|
1195 | CASE ( 'NH3', 'nh3' ) |
---|
1196 | gases_available = gases_available + 1 |
---|
1197 | gas_index_chem(3) = lsp |
---|
1198 | CASE ( 'OCNV', 'ocnv' ) |
---|
1199 | gases_available = gases_available + 1 |
---|
1200 | gas_index_chem(4) = lsp |
---|
1201 | CASE ( 'OCSV', 'ocsv' ) |
---|
1202 | gases_available = gases_available + 1 |
---|
1203 | gas_index_chem(5) = lsp |
---|
1204 | END SELECT |
---|
1205 | ENDDO |
---|
1206 | |
---|
1207 | IF ( gases_available == ngases_salsa ) THEN |
---|
1208 | salsa_gases_from_chem = .TRUE. |
---|
1209 | ELSE |
---|
1210 | WRITE( message_string, * ) 'SALSA is run together with chemistry but not all gaseous '// & |
---|
1211 | 'components are provided by kpp (H2SO4, HNO3, NH3, OCNV, OCSV)' |
---|
1212 | CALL message( 'check_parameters', 'PA0599', 1, 2, 0, 6, 0 ) |
---|
1213 | ENDIF |
---|
1214 | |
---|
1215 | ELSE |
---|
1216 | |
---|
1217 | ALLOCATE( salsa_gas(ngases_salsa) ) |
---|
1218 | ALLOCATE( gconc_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ngases_salsa), & |
---|
1219 | gconc_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ngases_salsa), & |
---|
1220 | gconc_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ngases_salsa) ) |
---|
1221 | gconc_1 = 0.0_wp |
---|
1222 | gconc_2 = 0.0_wp |
---|
1223 | gconc_3 = 0.0_wp |
---|
1224 | |
---|
1225 | DO i = 1, ngases_salsa |
---|
1226 | salsa_gas(i)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => gconc_1(:,:,:,i) |
---|
1227 | salsa_gas(i)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => gconc_2(:,:,:,i) |
---|
1228 | salsa_gas(i)%tconc_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => gconc_3(:,:,:,i) |
---|
1229 | ALLOCATE( salsa_gas(i)%flux_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1230 | salsa_gas(i)%diss_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1231 | salsa_gas(i)%flux_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
1232 | salsa_gas(i)%diss_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
1233 | salsa_gas(i)%init(nzb:nzt+1), & |
---|
1234 | salsa_gas(i)%sums_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
1235 | ENDDO |
---|
1236 | ! |
---|
1237 | !-- Surface fluxes: gtsws = gaseous tracer flux |
---|
1238 | ! |
---|
1239 | !-- Horizontal surfaces: default type |
---|
1240 | DO l = 0, 2 ! upward (l=0), downward (l=1) and model top (l=2) |
---|
1241 | ALLOCATE( surf_def_h(l)%gtsws( 1:surf_def_h(l)%ns, ngases_salsa ) ) |
---|
1242 | surf_def_h(l)%gtsws = 0.0_wp |
---|
1243 | ENDDO |
---|
1244 | !-- Horizontal surfaces: natural type |
---|
1245 | ALLOCATE( surf_lsm_h%gtsws( 1:surf_lsm_h%ns, ngases_salsa ) ) |
---|
1246 | surf_lsm_h%gtsws = 0.0_wp |
---|
1247 | !-- Horizontal surfaces: urban type |
---|
1248 | ALLOCATE( surf_usm_h%gtsws( 1:surf_usm_h%ns, ngases_salsa ) ) |
---|
1249 | surf_usm_h%gtsws = 0.0_wp |
---|
1250 | ! |
---|
1251 | !-- Vertical surfaces: northward (l=0), southward (l=1), eastward (l=2) and |
---|
1252 | !-- westward (l=3) facing |
---|
1253 | DO l = 0, 3 |
---|
1254 | ALLOCATE( surf_def_v(l)%gtsws( 1:surf_def_v(l)%ns, ngases_salsa ) ) |
---|
1255 | surf_def_v(l)%gtsws = 0.0_wp |
---|
1256 | ALLOCATE( surf_lsm_v(l)%gtsws( 1:surf_lsm_v(l)%ns, ngases_salsa ) ) |
---|
1257 | surf_lsm_v(l)%gtsws = 0.0_wp |
---|
1258 | ALLOCATE( surf_usm_v(l)%gtsws( 1:surf_usm_v(l)%ns, ngases_salsa ) ) |
---|
1259 | surf_usm_v(l)%gtsws = 0.0_wp |
---|
1260 | ENDDO |
---|
1261 | ENDIF |
---|
1262 | |
---|
1263 | IF ( ws_scheme_sca ) THEN |
---|
1264 | |
---|
1265 | IF ( salsa ) THEN |
---|
1266 | ALLOCATE( sums_salsa_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
1267 | sums_salsa_ws_l = 0.0_wp |
---|
1268 | ENDIF |
---|
1269 | |
---|
1270 | ENDIF |
---|
1271 | |
---|
1272 | END SUBROUTINE salsa_init_arrays |
---|
1273 | |
---|
1274 | !------------------------------------------------------------------------------! |
---|
1275 | ! Description: |
---|
1276 | ! ------------ |
---|
1277 | !> Initialization of SALSA. Based on salsa_initialize in UCLALES-SALSA. |
---|
1278 | !> Subroutines salsa_initialize, SALSAinit and DiagInitAero in UCLALES-SALSA are |
---|
1279 | !> also merged here. |
---|
1280 | !------------------------------------------------------------------------------! |
---|
1281 | SUBROUTINE salsa_init |
---|
1282 | |
---|
1283 | IMPLICIT NONE |
---|
1284 | |
---|
1285 | INTEGER(iwp) :: i !< |
---|
1286 | INTEGER(iwp) :: ib !< loop index for aerosol number bins |
---|
1287 | INTEGER(iwp) :: ic !< loop index for aerosol mass bins |
---|
1288 | INTEGER(iwp) :: ig !< loop index for gases |
---|
1289 | INTEGER(iwp) :: ii !< index for indexing |
---|
1290 | INTEGER(iwp) :: j !< |
---|
1291 | |
---|
1292 | CALL location_message( 'initializing salsa (sectional aerosol module )', .TRUE. ) |
---|
1293 | |
---|
1294 | bin_low_limits = 0.0_wp |
---|
1295 | k_topo_top = 0 |
---|
1296 | nsect = 0.0_wp |
---|
1297 | massacc = 1.0_wp |
---|
1298 | |
---|
1299 | ! |
---|
1300 | !-- Indices for chemical components used (-1 = not used) |
---|
1301 | ii = 0 |
---|
1302 | IF ( is_used( prtcl, 'SO4' ) ) THEN |
---|
1303 | index_so4 = get_index( prtcl,'SO4' ) |
---|
1304 | ii = ii + 1 |
---|
1305 | ENDIF |
---|
1306 | IF ( is_used( prtcl,'OC' ) ) THEN |
---|
1307 | index_oc = get_index(prtcl, 'OC') |
---|
1308 | ii = ii + 1 |
---|
1309 | ENDIF |
---|
1310 | IF ( is_used( prtcl, 'BC' ) ) THEN |
---|
1311 | index_bc = get_index( prtcl, 'BC' ) |
---|
1312 | ii = ii + 1 |
---|
1313 | ENDIF |
---|
1314 | IF ( is_used( prtcl, 'DU' ) ) THEN |
---|
1315 | index_du = get_index( prtcl, 'DU' ) |
---|
1316 | ii = ii + 1 |
---|
1317 | ENDIF |
---|
1318 | IF ( is_used( prtcl, 'SS' ) ) THEN |
---|
1319 | index_ss = get_index( prtcl, 'SS' ) |
---|
1320 | ii = ii + 1 |
---|
1321 | ENDIF |
---|
1322 | IF ( is_used( prtcl, 'NO' ) ) THEN |
---|
1323 | index_no = get_index( prtcl, 'NO' ) |
---|
1324 | ii = ii + 1 |
---|
1325 | ENDIF |
---|
1326 | IF ( is_used( prtcl, 'NH' ) ) THEN |
---|
1327 | index_nh = get_index( prtcl, 'NH' ) |
---|
1328 | ii = ii + 1 |
---|
1329 | ENDIF |
---|
1330 | ! |
---|
1331 | !-- All species must be known |
---|
1332 | IF ( ii /= ncc ) THEN |
---|
1333 | message_string = 'Unknown aerosol species/component(s) given in the initialization' |
---|
1334 | CALL message( 'salsa_mod: salsa_init', 'PA0600', 1, 2, 0, 6, 0 ) |
---|
1335 | ENDIF |
---|
1336 | ! |
---|
1337 | !-- Partition and dissolutional growth by gaseous HNO3 and NH3 |
---|
1338 | IF ( index_no > 0 .AND. index_nh > 0 .AND. index_so4 > 0 ) lspartition = .TRUE. |
---|
1339 | ! |
---|
1340 | !-- Initialise |
---|
1341 | ! |
---|
1342 | !-- Aerosol size distribution (TYPE t_section) |
---|
1343 | aero(:)%dwet = 1.0E-10_wp |
---|
1344 | aero(:)%veqh2o = 1.0E-10_wp |
---|
1345 | aero(:)%numc = nclim |
---|
1346 | aero(:)%core = 1.0E-10_wp |
---|
1347 | DO ic = 1, maxspec+1 ! 1:SO4, 2:OC, 3:BC, 4:DU, 5:SS, 6:NO, 7:NH, 8:H2O |
---|
1348 | aero(:)%volc(ic) = 0.0_wp |
---|
1349 | ENDDO |
---|
1350 | |
---|
1351 | IF ( nldepo ) sedim_vd = 0.0_wp |
---|
1352 | |
---|
1353 | DO ib = 1, nbins_aerosol |
---|
1354 | IF ( .NOT. read_restart_data_salsa ) aerosol_number(ib)%conc = nclim |
---|
1355 | aerosol_number(ib)%conc_p = 0.0_wp |
---|
1356 | aerosol_number(ib)%tconc_m = 0.0_wp |
---|
1357 | aerosol_number(ib)%flux_s = 0.0_wp |
---|
1358 | aerosol_number(ib)%diss_s = 0.0_wp |
---|
1359 | aerosol_number(ib)%flux_l = 0.0_wp |
---|
1360 | aerosol_number(ib)%diss_l = 0.0_wp |
---|
1361 | aerosol_number(ib)%init = nclim |
---|
1362 | aerosol_number(ib)%sums_ws_l = 0.0_wp |
---|
1363 | ENDDO |
---|
1364 | DO ic = 1, ncomponents_mass*nbins_aerosol |
---|
1365 | IF ( .NOT. read_restart_data_salsa ) aerosol_mass(ic)%conc = mclim |
---|
1366 | aerosol_mass(ic)%conc_p = 0.0_wp |
---|
1367 | aerosol_mass(ic)%tconc_m = 0.0_wp |
---|
1368 | aerosol_mass(ic)%flux_s = 0.0_wp |
---|
1369 | aerosol_mass(ic)%diss_s = 0.0_wp |
---|
1370 | aerosol_mass(ic)%flux_l = 0.0_wp |
---|
1371 | aerosol_mass(ic)%diss_l = 0.0_wp |
---|
1372 | aerosol_mass(ic)%init = mclim |
---|
1373 | aerosol_mass(ic)%sums_ws_l = 0.0_wp |
---|
1374 | ENDDO |
---|
1375 | |
---|
1376 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
1377 | DO ig = 1, ngases_salsa |
---|
1378 | salsa_gas(ig)%conc_p = 0.0_wp |
---|
1379 | salsa_gas(ig)%tconc_m = 0.0_wp |
---|
1380 | salsa_gas(ig)%flux_s = 0.0_wp |
---|
1381 | salsa_gas(ig)%diss_s = 0.0_wp |
---|
1382 | salsa_gas(ig)%flux_l = 0.0_wp |
---|
1383 | salsa_gas(ig)%diss_l = 0.0_wp |
---|
1384 | salsa_gas(ig)%sums_ws_l = 0.0_wp |
---|
1385 | ENDDO |
---|
1386 | IF ( .NOT. read_restart_data_salsa ) THEN |
---|
1387 | salsa_gas(1)%conc = h2so4_init |
---|
1388 | salsa_gas(2)%conc = hno3_init |
---|
1389 | salsa_gas(3)%conc = nh3_init |
---|
1390 | salsa_gas(4)%conc = ocnv_init |
---|
1391 | salsa_gas(5)%conc = ocsv_init |
---|
1392 | ENDIF |
---|
1393 | ! |
---|
1394 | !-- Set initial value for gas compound tracers and initial values |
---|
1395 | salsa_gas(1)%init = h2so4_init |
---|
1396 | salsa_gas(2)%init = hno3_init |
---|
1397 | salsa_gas(3)%init = nh3_init |
---|
1398 | salsa_gas(4)%init = ocnv_init |
---|
1399 | salsa_gas(5)%init = ocsv_init |
---|
1400 | ENDIF |
---|
1401 | ! |
---|
1402 | !-- Aerosol radius in each bin: dry and wet (m) |
---|
1403 | ra_dry = 1.0E-10_wp |
---|
1404 | ! |
---|
1405 | !-- Initialise aerosol tracers |
---|
1406 | aero(:)%vhilim = 0.0_wp |
---|
1407 | aero(:)%vlolim = 0.0_wp |
---|
1408 | aero(:)%vratiohi = 0.0_wp |
---|
1409 | aero(:)%vratiolo = 0.0_wp |
---|
1410 | aero(:)%dmid = 0.0_wp |
---|
1411 | ! |
---|
1412 | !-- Initialise the sectional particle size distribution |
---|
1413 | CALL set_sizebins |
---|
1414 | ! |
---|
1415 | !-- Initialise location-dependent aerosol size distributions and chemical compositions: |
---|
1416 | CALL aerosol_init |
---|
1417 | ! |
---|
1418 | !-- Initalisation run of SALSA + calculate the vertical top index of the topography |
---|
1419 | DO i = nxl, nxr |
---|
1420 | DO j = nys, nyn |
---|
1421 | |
---|
1422 | k_topo_top(j,i) = MAXLOC( MERGE( 1, 0, BTEST( wall_flags_0(:,j,i), 12 ) ), DIM = 1 ) - 1 |
---|
1423 | |
---|
1424 | CALL salsa_driver( i, j, 1 ) |
---|
1425 | CALL salsa_diagnostics( i, j ) |
---|
1426 | ENDDO |
---|
1427 | ENDDO |
---|
1428 | ! |
---|
1429 | !-- Initialise the deposition scheme and surface types |
---|
1430 | IF ( nldepo ) CALL init_deposition |
---|
1431 | |
---|
1432 | IF ( salsa_emission_mode /= 'no_emission' ) THEN |
---|
1433 | ! |
---|
1434 | !-- Read in and initialize emissions |
---|
1435 | CALL salsa_emission_setup( .TRUE. ) |
---|
1436 | IF ( .NOT. salsa_gases_from_chem .AND. salsa_emission_mode == 'read_from_file' ) THEN |
---|
1437 | CALL salsa_gas_emission_setup( .TRUE. ) |
---|
1438 | ENDIF |
---|
1439 | ENDIF |
---|
1440 | |
---|
1441 | CALL location_message( 'finished', .TRUE. ) |
---|
1442 | |
---|
1443 | END SUBROUTINE salsa_init |
---|
1444 | |
---|
1445 | !------------------------------------------------------------------------------! |
---|
1446 | ! Description: |
---|
1447 | ! ------------ |
---|
1448 | !> Initializes particle size distribution grid by calculating size bin limits |
---|
1449 | !> and mid-size for *dry* particles in each bin. Called from salsa_initialize |
---|
1450 | !> (only at the beginning of simulation). |
---|
1451 | !> Size distribution described using: |
---|
1452 | !> 1) moving center method (subranges 1 and 2) |
---|
1453 | !> (Jacobson, Atmos. Env., 31, 131-144, 1997) |
---|
1454 | !> 2) fixed sectional method (subrange 3) |
---|
1455 | !> Size bins in each subrange are spaced logarithmically |
---|
1456 | !> based on given subrange size limits and bin number. |
---|
1457 | ! |
---|
1458 | !> Mona changed 06/2017: Use geometric mean diameter to describe the mean |
---|
1459 | !> particle diameter in a size bin, not the arithmeric mean which clearly |
---|
1460 | !> overestimates the total particle volume concentration. |
---|
1461 | ! |
---|
1462 | !> Coded by: |
---|
1463 | !> Hannele Korhonen (FMI) 2005 |
---|
1464 | !> Harri Kokkola (FMI) 2006 |
---|
1465 | ! |
---|
1466 | !> Bug fixes for box model + updated for the new aerosol datatype: |
---|
1467 | !> Juha Tonttila (FMI) 2014 |
---|
1468 | !------------------------------------------------------------------------------! |
---|
1469 | SUBROUTINE set_sizebins |
---|
1470 | |
---|
1471 | IMPLICIT NONE |
---|
1472 | |
---|
1473 | INTEGER(iwp) :: cc !< running index |
---|
1474 | INTEGER(iwp) :: dd !< running index |
---|
1475 | |
---|
1476 | REAL(wp) :: ratio_d !< ratio of the upper and lower diameter of subranges |
---|
1477 | ! |
---|
1478 | !-- vlolim&vhilim: min & max *dry* volumes [fxm] |
---|
1479 | !-- dmid: bin mid *dry* diameter (m) |
---|
1480 | !-- vratiolo&vratiohi: volume ratio between the center and low/high limit |
---|
1481 | ! |
---|
1482 | !-- 1) Size subrange 1: |
---|
1483 | ratio_d = reglim(2) / reglim(1) ! section spacing (m) |
---|
1484 | DO cc = start_subrange_1a, end_subrange_1a |
---|
1485 | aero(cc)%vlolim = api6 * ( reglim(1) * ratio_d**( REAL( cc-1 ) / nbin(1) ) )**3 |
---|
1486 | aero(cc)%vhilim = api6 * ( reglim(1) * ratio_d**( REAL( cc ) / nbin(1) ) )**3 |
---|
1487 | aero(cc)%dmid = SQRT( ( aero(cc)%vhilim / api6 )**0.33333333_wp * & |
---|
1488 | ( aero(cc)%vlolim / api6 )**0.33333333_wp ) |
---|
1489 | aero(cc)%vratiohi = aero(cc)%vhilim / ( api6 * aero(cc)%dmid**3 ) |
---|
1490 | aero(cc)%vratiolo = aero(cc)%vlolim / ( api6 * aero(cc)%dmid**3 ) |
---|
1491 | ENDDO |
---|
1492 | ! |
---|
1493 | !-- 2) Size subrange 2: |
---|
1494 | !-- 2.1) Sub-subrange 2a: high hygroscopicity |
---|
1495 | ratio_d = reglim(3) / reglim(2) ! section spacing |
---|
1496 | DO dd = start_subrange_2a, end_subrange_2a |
---|
1497 | cc = dd - start_subrange_2a |
---|
1498 | aero(dd)%vlolim = api6 * ( reglim(2) * ratio_d**( REAL( cc ) / nbin(2) ) )**3 |
---|
1499 | aero(dd)%vhilim = api6 * ( reglim(2) * ratio_d**( REAL( cc+1 ) / nbin(2) ) )**3 |
---|
1500 | aero(dd)%dmid = SQRT( ( aero(dd)%vhilim / api6 )**0.33333333_wp * & |
---|
1501 | ( aero(dd)%vlolim / api6 )**0.33333333_wp ) |
---|
1502 | aero(dd)%vratiohi = aero(dd)%vhilim / ( api6 * aero(dd)%dmid**3 ) |
---|
1503 | aero(dd)%vratiolo = aero(dd)%vlolim / ( api6 * aero(dd)%dmid**3 ) |
---|
1504 | ENDDO |
---|
1505 | ! |
---|
1506 | !-- 2.2) Sub-subrange 2b: low hygroscopicity |
---|
1507 | IF ( .NOT. no_insoluble ) THEN |
---|
1508 | aero(start_subrange_2b:end_subrange_2b)%vlolim = aero(start_subrange_2a:end_subrange_2a)%vlolim |
---|
1509 | aero(start_subrange_2b:end_subrange_2b)%vhilim = aero(start_subrange_2a:end_subrange_2a)%vhilim |
---|
1510 | aero(start_subrange_2b:end_subrange_2b)%dmid = aero(start_subrange_2a:end_subrange_2a)%dmid |
---|
1511 | aero(start_subrange_2b:end_subrange_2b)%vratiohi = aero(start_subrange_2a:end_subrange_2a)%vratiohi |
---|
1512 | aero(start_subrange_2b:end_subrange_2b)%vratiolo = aero(start_subrange_2a:end_subrange_2a)%vratiolo |
---|
1513 | ENDIF |
---|
1514 | ! |
---|
1515 | !-- Initialize the wet diameter with the bin dry diameter to avoid numerical problems later |
---|
1516 | aero(:)%dwet = aero(:)%dmid |
---|
1517 | ! |
---|
1518 | !-- Save bin limits (lower diameter) to be delivered to PALM if needed |
---|
1519 | DO cc = 1, nbins_aerosol |
---|
1520 | bin_low_limits(cc) = ( aero(cc)%vlolim / api6 )**0.33333333_wp |
---|
1521 | ENDDO |
---|
1522 | |
---|
1523 | END SUBROUTINE set_sizebins |
---|
1524 | |
---|
1525 | !------------------------------------------------------------------------------! |
---|
1526 | ! Description: |
---|
1527 | ! ------------ |
---|
1528 | !> Initilize altitude-dependent aerosol size distributions and compositions. |
---|
1529 | !> |
---|
1530 | !> Mona added 06/2017: Correct the number and mass concentrations by normalizing |
---|
1531 | !< by the given total number and mass concentration. |
---|
1532 | !> |
---|
1533 | !> Tomi Raatikainen, FMI, 29.2.2016 |
---|
1534 | !------------------------------------------------------------------------------! |
---|
1535 | SUBROUTINE aerosol_init |
---|
1536 | |
---|
1537 | USE netcdf_data_input_mod, & |
---|
1538 | ONLY: get_attribute, get_variable, netcdf_data_input_get_dimension_length, open_read_file |
---|
1539 | |
---|
1540 | IMPLICIT NONE |
---|
1541 | |
---|
1542 | CHARACTER(LEN=25), DIMENSION(:), ALLOCATABLE :: cc_name !< chemical component name |
---|
1543 | |
---|
1544 | INTEGER(iwp) :: ee !< index: end |
---|
1545 | INTEGER(iwp) :: i !< loop index: x-direction |
---|
1546 | INTEGER(iwp) :: ib !< loop index: size bins |
---|
1547 | INTEGER(iwp) :: ic !< loop index: chemical components |
---|
1548 | INTEGER(iwp) :: id_dyn !< NetCDF id of PIDS_DYNAMIC_SALSA |
---|
1549 | INTEGER(iwp) :: ig !< loop index: gases |
---|
1550 | INTEGER(iwp) :: j !< loop index: y-direction |
---|
1551 | INTEGER(iwp) :: k !< loop index: z-direction |
---|
1552 | INTEGER(iwp) :: lod_aero !< level of detail of inital aerosol concentrations |
---|
1553 | INTEGER(iwp) :: pr_nbins !< Number of aerosol size bins in file |
---|
1554 | INTEGER(iwp) :: pr_ncc !< Number of aerosol chemical components in file |
---|
1555 | INTEGER(iwp) :: pr_nz !< Number of vertical grid-points in file |
---|
1556 | INTEGER(iwp) :: prunmode !< running mode of SALSA |
---|
1557 | INTEGER(iwp) :: ss !< index: start |
---|
1558 | |
---|
1559 | INTEGER(iwp), DIMENSION(maxspec) :: cc_input_to_model |
---|
1560 | |
---|
1561 | LOGICAL :: netcdf_extend = .FALSE. !< Flag: netcdf file exists |
---|
1562 | |
---|
1563 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
1564 | |
---|
1565 | REAL(wp), DIMENSION(nbins_aerosol) :: core !< size of the bin mid aerosol particle |
---|
1566 | REAL(wp), DIMENSION(nbins_aerosol) :: nsect !< size distribution (#/m3) |
---|
1567 | |
---|
1568 | REAL(wp), DIMENSION(0:nz+1) :: pnf2a !< number fraction in 2a |
---|
1569 | REAL(wp), DIMENSION(0:nz+1) :: pmfoc1a !< mass fraction of OC in 1a |
---|
1570 | |
---|
1571 | REAL(wp), DIMENSION(0:nz+1,nbins_aerosol) :: pndist !< size dist as a function of height (#/m3) |
---|
1572 | REAL(wp), DIMENSION(0:nz+1,maxspec) :: pmf2a !< mass distributions in subrange 2a |
---|
1573 | REAL(wp), DIMENSION(0:nz+1,maxspec) :: pmf2b !< mass distributions in subrange 2b |
---|
1574 | |
---|
1575 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pr_dmid !< vertical profile of aerosol bin diameters |
---|
1576 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pr_z !< z levels of profiles |
---|
1577 | |
---|
1578 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pr_mass_fracs_a !< mass fraction: a |
---|
1579 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pr_mass_fracs_b !< and b |
---|
1580 | |
---|
1581 | cc_input_to_model = 0 |
---|
1582 | prunmode = 1 |
---|
1583 | ! |
---|
1584 | !-- Bin mean aerosol particle volume (m3) |
---|
1585 | core(:) = 0.0_wp |
---|
1586 | core(1:nbins_aerosol) = api6 * aero(1:nbins_aerosol)%dmid**3 |
---|
1587 | ! |
---|
1588 | !-- Set concentrations to zero |
---|
1589 | nsect(:) = 0.0_wp |
---|
1590 | pndist(:,:) = 0.0_wp |
---|
1591 | pnf2a(:) = nf2a |
---|
1592 | pmf2a(:,:) = 0.0_wp |
---|
1593 | pmf2b(:,:) = 0.0_wp |
---|
1594 | pmfoc1a(:) = 0.0_wp |
---|
1595 | |
---|
1596 | IF ( isdtyp == 1 ) THEN |
---|
1597 | ! |
---|
1598 | !-- Read input profiles from PIDS_DYNAMIC_SALSA |
---|
1599 | #if defined( __netcdf ) |
---|
1600 | ! |
---|
1601 | !-- Location-dependent size distributions and compositions. |
---|
1602 | INQUIRE( FILE = TRIM( input_file_dynamic ) // TRIM( coupling_char ), EXIST = netcdf_extend ) |
---|
1603 | IF ( netcdf_extend ) THEN |
---|
1604 | ! |
---|
1605 | !-- Open file in read-only mode |
---|
1606 | CALL open_read_file( input_file_dynamic // TRIM( coupling_char ), id_dyn ) |
---|
1607 | ! |
---|
1608 | !-- Inquire dimensions: |
---|
1609 | CALL netcdf_data_input_get_dimension_length( id_dyn, pr_nz, 'z' ) |
---|
1610 | IF ( pr_nz /= nz ) THEN |
---|
1611 | WRITE( message_string, * ) 'Number of inifor horizontal grid points does not match '//& |
---|
1612 | 'the number of numeric grid points.' |
---|
1613 | CALL message( 'aerosol_init', 'PA0601', 1, 2, 0, 6, 0 ) |
---|
1614 | ENDIF |
---|
1615 | CALL netcdf_data_input_get_dimension_length( id_dyn, pr_ncc, 'composition_index' ) |
---|
1616 | ! |
---|
1617 | !-- Allocate memory |
---|
1618 | ALLOCATE( pr_z(1:pr_nz), pr_mass_fracs_a(nzb:nzt+1,pr_ncc), & |
---|
1619 | pr_mass_fracs_b(nzb:nzt+1,pr_ncc) ) |
---|
1620 | pr_mass_fracs_a = 0.0_wp |
---|
1621 | pr_mass_fracs_b = 0.0_wp |
---|
1622 | ! |
---|
1623 | !-- Read vertical levels |
---|
1624 | CALL get_variable( id_dyn, 'z', pr_z ) |
---|
1625 | ! |
---|
1626 | !-- Read name and index of chemical components |
---|
1627 | CALL get_variable( id_dyn, 'composition_name', cc_name, pr_ncc ) |
---|
1628 | DO ic = 1, pr_ncc |
---|
1629 | SELECT CASE ( TRIM( cc_name(ic) ) ) |
---|
1630 | CASE ( 'H2SO4', 'SO4', 'h2so4', 'so4' ) |
---|
1631 | cc_input_to_model(1) = ic |
---|
1632 | CASE ( 'OC', 'oc' ) |
---|
1633 | cc_input_to_model(2) = ic |
---|
1634 | CASE ( 'BC', 'bc' ) |
---|
1635 | cc_input_to_model(3) = ic |
---|
1636 | CASE ( 'DU', 'du' ) |
---|
1637 | cc_input_to_model(4) = ic |
---|
1638 | CASE ( 'SS', 'ss' ) |
---|
1639 | cc_input_to_model(5) = ic |
---|
1640 | CASE ( 'HNO3', 'hno3', 'NO', 'no' ) |
---|
1641 | cc_input_to_model(6) = ic |
---|
1642 | CASE ( 'NH3', 'nh3', 'NH', 'nh' ) |
---|
1643 | cc_input_to_model(7) = ic |
---|
1644 | END SELECT |
---|
1645 | ENDDO |
---|
1646 | |
---|
1647 | IF ( SUM( cc_input_to_model ) == 0 ) THEN |
---|
1648 | message_string = 'None of the aerosol chemical components in ' // TRIM( & |
---|
1649 | input_file_dynamic ) // ' correspond to ones applied in SALSA.' |
---|
1650 | CALL message( 'salsa_mod: aerosol_init', 'PA0602', 2, 2, 0, 6, 0 ) |
---|
1651 | ENDIF |
---|
1652 | ! |
---|
1653 | !-- Vertical profiles of mass fractions of different chemical components: |
---|
1654 | CALL get_variable( id_dyn, 'init_atmosphere_mass_fracs_a', pr_mass_fracs_a, & |
---|
1655 | 0, pr_ncc-1, 0, pr_nz-1 ) |
---|
1656 | CALL get_variable( id_dyn, 'init_atmosphere_mass_fracs_b', pr_mass_fracs_b, & |
---|
1657 | 0, pr_ncc-1, 0, pr_nz-1 ) |
---|
1658 | ! |
---|
1659 | !-- Match the input data with the chemical composition applied in the model |
---|
1660 | DO ic = 1, maxspec |
---|
1661 | ss = cc_input_to_model(ic) |
---|
1662 | IF ( ss == 0 ) CYCLE |
---|
1663 | pmf2a(nzb+1:nzt+1,ic) = pr_mass_fracs_a(nzb:nzt,ss) |
---|
1664 | pmf2b(nzb+1:nzt+1,ic) = pr_mass_fracs_b(nzb:nzt,ss) |
---|
1665 | ENDDO |
---|
1666 | ! |
---|
1667 | !-- Aerosol concentrations: lod=1 (total PM) or lod=2 (sectional number size distribution) |
---|
1668 | CALL get_attribute( id_dyn, 'lod', lod_aero, .FALSE., 'init_atmosphere_aerosol' ) |
---|
1669 | IF ( lod_aero /= 2 ) THEN |
---|
1670 | message_string = 'Currently only lod=2 accepted for init_atmosphere_aerosol' |
---|
1671 | CALL message( 'salsa_mod: aerosol_init', 'PA0603', 2, 2, 0, 6, 0 ) |
---|
1672 | ELSE |
---|
1673 | ! |
---|
1674 | !-- Bin mean diameters in the input file |
---|
1675 | CALL netcdf_data_input_get_dimension_length( id_dyn, pr_nbins, 'Dmid') |
---|
1676 | IF ( pr_nbins /= nbins_aerosol ) THEN |
---|
1677 | message_string = 'Number of size bins in init_atmosphere_aerosol does not match ' & |
---|
1678 | // 'with that applied in the model' |
---|
1679 | CALL message( 'salsa_mod: aerosol_init', 'PA0604', 2, 2, 0, 6, 0 ) |
---|
1680 | ENDIF |
---|
1681 | |
---|
1682 | ALLOCATE( pr_dmid(pr_nbins) ) |
---|
1683 | pr_dmid = 0.0_wp |
---|
1684 | |
---|
1685 | CALL get_variable( id_dyn, 'Dmid', pr_dmid ) |
---|
1686 | ! |
---|
1687 | !-- Check whether the sectional representation conform to the one |
---|
1688 | !-- applied in the model |
---|
1689 | IF ( ANY( ABS( ( aero(1:nbins_aerosol)%dmid - pr_dmid ) / & |
---|
1690 | aero(1:nbins_aerosol)%dmid ) > 0.1_wp ) ) THEN |
---|
1691 | message_string = 'Mean diameters of the aerosol size bins ' // TRIM( & |
---|
1692 | input_file_dynamic ) // ' in do not conform to the sectional '// & |
---|
1693 | 'representation of the model.' |
---|
1694 | CALL message( 'salsa_mod: aerosol_init', 'PA0605', 2, 2, 0, 6, 0 ) |
---|
1695 | ENDIF |
---|
1696 | ! |
---|
1697 | !-- Inital aerosol concentrations |
---|
1698 | CALL get_variable( id_dyn, 'init_atmosphere_aerosol', pndist(nzb+1:nzt,:), & |
---|
1699 | 0, pr_nbins-1, 0, pr_nz-1 ) |
---|
1700 | ENDIF |
---|
1701 | ! |
---|
1702 | !-- Set bottom and top boundary condition (Neumann) |
---|
1703 | pmf2a(nzb,:) = pmf2a(nzb+1,:) |
---|
1704 | pmf2a(nzt+1,:) = pmf2a(nzt,:) |
---|
1705 | pmf2b(nzb,:) = pmf2b(nzb+1,:) |
---|
1706 | pmf2b(nzt+1,:) = pmf2b(nzt,:) |
---|
1707 | pndist(nzb,:) = pndist(nzb+1,:) |
---|
1708 | pndist(nzt+1,:) = pndist(nzt,:) |
---|
1709 | |
---|
1710 | IF ( index_so4 < 0 ) THEN |
---|
1711 | pmf2a(:,1) = 0.0_wp |
---|
1712 | pmf2b(:,1) = 0.0_wp |
---|
1713 | ENDIF |
---|
1714 | IF ( index_oc < 0 ) THEN |
---|
1715 | pmf2a(:,2) = 0.0_wp |
---|
1716 | pmf2b(:,2) = 0.0_wp |
---|
1717 | ENDIF |
---|
1718 | IF ( index_bc < 0 ) THEN |
---|
1719 | pmf2a(:,3) = 0.0_wp |
---|
1720 | pmf2b(:,3) = 0.0_wp |
---|
1721 | ENDIF |
---|
1722 | IF ( index_du < 0 ) THEN |
---|
1723 | pmf2a(:,4) = 0.0_wp |
---|
1724 | pmf2b(:,4) = 0.0_wp |
---|
1725 | ENDIF |
---|
1726 | IF ( index_ss < 0 ) THEN |
---|
1727 | pmf2a(:,5) = 0.0_wp |
---|
1728 | pmf2b(:,5) = 0.0_wp |
---|
1729 | ENDIF |
---|
1730 | IF ( index_no < 0 ) THEN |
---|
1731 | pmf2a(:,6) = 0.0_wp |
---|
1732 | pmf2b(:,6) = 0.0_wp |
---|
1733 | ENDIF |
---|
1734 | IF ( index_nh < 0 ) THEN |
---|
1735 | pmf2a(:,7) = 0.0_wp |
---|
1736 | pmf2b(:,7) = 0.0_wp |
---|
1737 | ENDIF |
---|
1738 | |
---|
1739 | IF ( SUM( pmf2a ) < 0.00001_wp .AND. SUM( pmf2b ) < 0.00001_wp ) THEN |
---|
1740 | message_string = 'Error in initialising mass fractions of chemical components. ' // & |
---|
1741 | 'Check that all chemical components are included in parameter file!' |
---|
1742 | CALL message( 'salsa_mod: aerosol_init', 'PA0606', 2, 2, 0, 6, 0 ) |
---|
1743 | ENDIF |
---|
1744 | ! |
---|
1745 | !-- Then normalise the mass fraction so that SUM = 1 |
---|
1746 | DO k = nzb, nzt+1 |
---|
1747 | pmf2a(k,:) = pmf2a(k,:) / SUM( pmf2a(k,:) ) |
---|
1748 | IF ( SUM( pmf2b(k,:) ) > 0.0_wp ) pmf2b(k,:) = pmf2b(k,:) / SUM( pmf2b(k,:) ) |
---|
1749 | ENDDO |
---|
1750 | |
---|
1751 | DEALLOCATE( pr_z, pr_mass_fracs_a, pr_mass_fracs_b ) |
---|
1752 | |
---|
1753 | ELSE |
---|
1754 | message_string = 'Input file '// TRIM( input_file_dynamic ) // TRIM( coupling_char ) // & |
---|
1755 | ' for SALSA missing!' |
---|
1756 | CALL message( 'salsa_mod: aerosol_init', 'PA0607', 1, 2, 0, 6, 0 ) |
---|
1757 | |
---|
1758 | ENDIF ! netcdf_extend |
---|
1759 | |
---|
1760 | #else |
---|
1761 | message_string = 'isdtyp = 1 but preprocessor directive __netcdf is not used in compiling!' |
---|
1762 | CALL message( 'salsa_mod: aerosol_init', 'PA0608', 1, 2, 0, 6, 0 ) |
---|
1763 | |
---|
1764 | #endif |
---|
1765 | |
---|
1766 | ELSEIF ( isdtyp == 0 ) THEN |
---|
1767 | ! |
---|
1768 | !-- Mass fractions for species in a and b-bins |
---|
1769 | IF ( index_so4 > 0 ) THEN |
---|
1770 | pmf2a(:,1) = mass_fracs_a(index_so4) |
---|
1771 | pmf2b(:,1) = mass_fracs_b(index_so4) |
---|
1772 | ENDIF |
---|
1773 | IF ( index_oc > 0 ) THEN |
---|
1774 | pmf2a(:,2) = mass_fracs_a(index_oc) |
---|
1775 | pmf2b(:,2) = mass_fracs_b(index_oc) |
---|
1776 | ENDIF |
---|
1777 | IF ( index_bc > 0 ) THEN |
---|
1778 | pmf2a(:,3) = mass_fracs_a(index_bc) |
---|
1779 | pmf2b(:,3) = mass_fracs_b(index_bc) |
---|
1780 | ENDIF |
---|
1781 | IF ( index_du > 0 ) THEN |
---|
1782 | pmf2a(:,4) = mass_fracs_a(index_du) |
---|
1783 | pmf2b(:,4) = mass_fracs_b(index_du) |
---|
1784 | ENDIF |
---|
1785 | IF ( index_ss > 0 ) THEN |
---|
1786 | pmf2a(:,5) = mass_fracs_a(index_ss) |
---|
1787 | pmf2b(:,5) = mass_fracs_b(index_ss) |
---|
1788 | ENDIF |
---|
1789 | IF ( index_no > 0 ) THEN |
---|
1790 | pmf2a(:,6) = mass_fracs_a(index_no) |
---|
1791 | pmf2b(:,6) = mass_fracs_b(index_no) |
---|
1792 | ENDIF |
---|
1793 | IF ( index_nh > 0 ) THEN |
---|
1794 | pmf2a(:,7) = mass_fracs_a(index_nh) |
---|
1795 | pmf2b(:,7) = mass_fracs_b(index_nh) |
---|
1796 | ENDIF |
---|
1797 | DO k = nzb, nzt+1 |
---|
1798 | pmf2a(k,:) = pmf2a(k,:) / SUM( pmf2a(k,:) ) |
---|
1799 | IF ( SUM( pmf2b(k,:) ) > 0.0_wp ) pmf2b(k,:) = pmf2b(k,:) / SUM( pmf2b(k,:) ) |
---|
1800 | ENDDO |
---|
1801 | |
---|
1802 | CALL size_distribution( n_lognorm, dpg, sigmag, nsect ) |
---|
1803 | ! |
---|
1804 | !-- Normalize by the given total number concentration |
---|
1805 | nsect = nsect * SUM( n_lognorm ) / SUM( nsect ) |
---|
1806 | DO ib = start_subrange_1a, end_subrange_2b |
---|
1807 | pndist(:,ib) = nsect(ib) |
---|
1808 | ENDDO |
---|
1809 | ENDIF |
---|
1810 | |
---|
1811 | IF ( igctyp == 1 ) THEN |
---|
1812 | ! |
---|
1813 | !-- Read input profiles from PIDS_CHEM |
---|
1814 | #if defined( __netcdf ) |
---|
1815 | ! |
---|
1816 | !-- Location-dependent size distributions and compositions. |
---|
1817 | INQUIRE( FILE = TRIM( input_file_dynamic ) // TRIM( coupling_char ), EXIST = netcdf_extend ) |
---|
1818 | IF ( netcdf_extend .AND. .NOT. salsa_gases_from_chem ) THEN |
---|
1819 | ! |
---|
1820 | !-- Open file in read-only mode |
---|
1821 | CALL open_read_file( input_file_dynamic // TRIM( coupling_char ), id_dyn ) |
---|
1822 | ! |
---|
1823 | !-- Inquire dimensions: |
---|
1824 | CALL netcdf_data_input_get_dimension_length( id_dyn, pr_nz, 'z' ) |
---|
1825 | IF ( pr_nz /= nz ) THEN |
---|
1826 | WRITE( message_string, * ) 'Number of inifor horizontal grid points does not match '//& |
---|
1827 | 'the number of numeric grid points.' |
---|
1828 | CALL message( 'aerosol_init', 'PA0609', 1, 2, 0, 6, 0 ) |
---|
1829 | ENDIF |
---|
1830 | ! |
---|
1831 | !-- Read vertical profiles of gases: |
---|
1832 | CALL get_variable( id_dyn, 'init_atmosphere_h2so4', salsa_gas(1)%init(nzb+1:nzt) ) |
---|
1833 | CALL get_variable( id_dyn, 'init_atmosphere_hno3', salsa_gas(2)%init(nzb+1:nzt) ) |
---|
1834 | CALL get_variable( id_dyn, 'init_atmosphere_nh3', salsa_gas(3)%init(nzb+1:nzt) ) |
---|
1835 | CALL get_variable( id_dyn, 'init_atmosphere_ocnv', salsa_gas(4)%init(nzb+1:nzt) ) |
---|
1836 | CALL get_variable( id_dyn, 'init_atmosphere_ocsv', salsa_gas(5)%init(nzb+1:nzt) ) |
---|
1837 | ! |
---|
1838 | !-- Set Neumann top and surface boundary condition for initial + initialise concentrations |
---|
1839 | DO ig = 1, ngases_salsa |
---|
1840 | salsa_gas(ig)%init(nzb) = salsa_gas(ig)%init(nzb+1) |
---|
1841 | salsa_gas(ig)%init(nzt+1) = salsa_gas(ig)%init(nzt) |
---|
1842 | DO k = nzb, nzt+1 |
---|
1843 | salsa_gas(ig)%conc(k,:,:) = salsa_gas(ig)%init(k) |
---|
1844 | ENDDO |
---|
1845 | ENDDO |
---|
1846 | |
---|
1847 | ELSEIF ( .NOT. netcdf_extend .AND. .NOT. salsa_gases_from_chem ) THEN |
---|
1848 | message_string = 'Input file '// TRIM( input_file_dynamic ) // TRIM( coupling_char ) // & |
---|
1849 | ' for SALSA missing!' |
---|
1850 | CALL message( 'salsa_mod: aerosol_init', 'PA0610', 1, 2, 0, 6, 0 ) |
---|
1851 | ENDIF ! netcdf_extend |
---|
1852 | #else |
---|
1853 | message_string = 'igctyp = 1 but preprocessor directive __netcdf is not used in compiling!' |
---|
1854 | CALL message( 'salsa_mod: aerosol_init', 'PA0611', 1, 2, 0, 6, 0 ) |
---|
1855 | |
---|
1856 | #endif |
---|
1857 | |
---|
1858 | ENDIF |
---|
1859 | ! |
---|
1860 | !-- Both SO4 and OC are included, so use the given mass fractions |
---|
1861 | IF ( index_oc > 0 .AND. index_so4 > 0 ) THEN |
---|
1862 | pmfoc1a(:) = pmf2a(:,2) / ( pmf2a(:,2) + pmf2a(:,1) ) ! Normalize |
---|
1863 | ! |
---|
1864 | !-- Pure organic carbon |
---|
1865 | ELSEIF ( index_oc > 0 ) THEN |
---|
1866 | pmfoc1a(:) = 1.0_wp |
---|
1867 | ! |
---|
1868 | !-- Pure SO4 |
---|
1869 | ELSEIF ( index_so4 > 0 ) THEN |
---|
1870 | pmfoc1a(:) = 0.0_wp |
---|
1871 | |
---|
1872 | ELSE |
---|
1873 | message_string = 'Either OC or SO4 must be active for aerosol region 1a!' |
---|
1874 | CALL message( 'salsa_mod: aerosol_init', 'PA0612', 1, 2, 0, 6, 0 ) |
---|
1875 | ENDIF |
---|
1876 | |
---|
1877 | ! |
---|
1878 | !-- Initialize concentrations |
---|
1879 | DO i = nxlg, nxrg |
---|
1880 | DO j = nysg, nyng |
---|
1881 | DO k = nzb, nzt+1 |
---|
1882 | ! |
---|
1883 | !-- Predetermine flag to mask topography |
---|
1884 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1885 | ! |
---|
1886 | !-- a) Number concentrations |
---|
1887 | !-- Region 1: |
---|
1888 | DO ib = start_subrange_1a, end_subrange_1a |
---|
1889 | aerosol_number(ib)%conc(k,j,i) = pndist(k,ib) * flag |
---|
1890 | IF ( prunmode == 1 ) THEN |
---|
1891 | aerosol_number(ib)%init = pndist(:,ib) |
---|
1892 | ENDIF |
---|
1893 | ENDDO |
---|
1894 | ! |
---|
1895 | !-- Region 2: |
---|
1896 | IF ( nreg > 1 ) THEN |
---|
1897 | DO ib = start_subrange_2a, end_subrange_2a |
---|
1898 | aerosol_number(ib)%conc(k,j,i) = MAX( 0.0_wp, pnf2a(k) ) * pndist(k,ib) * flag |
---|
1899 | IF ( prunmode == 1 ) THEN |
---|
1900 | aerosol_number(ib)%init = MAX( 0.0_wp, nf2a ) * pndist(:,ib) |
---|
1901 | ENDIF |
---|
1902 | ENDDO |
---|
1903 | IF ( .NOT. no_insoluble ) THEN |
---|
1904 | DO ib = start_subrange_2b, end_subrange_2b |
---|
1905 | IF ( pnf2a(k) < 1.0_wp ) THEN |
---|
1906 | aerosol_number(ib)%conc(k,j,i) = MAX( 0.0_wp, 1.0_wp - pnf2a(k) ) * & |
---|
1907 | pndist(k,ib) * flag |
---|
1908 | IF ( prunmode == 1 ) THEN |
---|
1909 | aerosol_number(ib)%init = MAX( 0.0_wp, 1.0_wp - nf2a ) * pndist(:,ib) |
---|
1910 | ENDIF |
---|
1911 | ENDIF |
---|
1912 | ENDDO |
---|
1913 | ENDIF |
---|
1914 | ENDIF |
---|
1915 | ! |
---|
1916 | !-- b) Aerosol mass concentrations |
---|
1917 | !-- bin subrange 1: done here separately due to the SO4/OC convention |
---|
1918 | ! |
---|
1919 | !-- SO4: |
---|
1920 | IF ( index_so4 > 0 ) THEN |
---|
1921 | ss = ( index_so4 - 1 ) * nbins_aerosol + start_subrange_1a !< start |
---|
1922 | ee = ( index_so4 - 1 ) * nbins_aerosol + end_subrange_1a !< end |
---|
1923 | ib = start_subrange_1a |
---|
1924 | DO ic = ss, ee |
---|
1925 | aerosol_mass(ic)%conc(k,j,i) = MAX( 0.0_wp, 1.0_wp - pmfoc1a(k) ) * pndist(k,ib)& |
---|
1926 | * core(ib) * arhoh2so4 * flag |
---|
1927 | IF ( prunmode == 1 ) THEN |
---|
1928 | aerosol_mass(ic)%init(k) = MAX( 0.0_wp, 1.0_wp - pmfoc1a(k) ) * pndist(k,ib) & |
---|
1929 | * core(ib) * arhoh2so4 |
---|
1930 | ENDIF |
---|
1931 | ib = ib+1 |
---|
1932 | ENDDO |
---|
1933 | ENDIF |
---|
1934 | ! |
---|
1935 | !-- OC: |
---|
1936 | IF ( index_oc > 0 ) THEN |
---|
1937 | ss = ( index_oc - 1 ) * nbins_aerosol + start_subrange_1a !< start |
---|
1938 | ee = ( index_oc - 1 ) * nbins_aerosol + end_subrange_1a !< end |
---|
1939 | ib = start_subrange_1a |
---|
1940 | DO ic = ss, ee |
---|
1941 | aerosol_mass(ic)%conc(k,j,i) = MAX( 0.0_wp, pmfoc1a(k) ) * pndist(k,ib) * & |
---|
1942 | core(ib) * arhooc * flag |
---|
1943 | IF ( prunmode == 1 ) THEN |
---|
1944 | aerosol_mass(ic)%init(k) = MAX( 0.0_wp, pmfoc1a(k) ) * pndist(k,ib) * & |
---|
1945 | core(ib) * arhooc |
---|
1946 | ENDIF |
---|
1947 | ib = ib+1 |
---|
1948 | ENDDO |
---|
1949 | ENDIF |
---|
1950 | ENDDO !< k |
---|
1951 | |
---|
1952 | prunmode = 3 ! Init only once |
---|
1953 | |
---|
1954 | ENDDO !< j |
---|
1955 | ENDDO !< i |
---|
1956 | |
---|
1957 | ! |
---|
1958 | !-- c) Aerosol mass concentrations |
---|
1959 | !-- bin subrange 2: |
---|
1960 | IF ( nreg > 1 ) THEN |
---|
1961 | |
---|
1962 | IF ( index_so4 > 0 ) THEN |
---|
1963 | CALL set_aero_mass( index_so4, pmf2a(:,1), pmf2b(:,1), pnf2a, pndist, core, arhoh2so4 ) |
---|
1964 | ENDIF |
---|
1965 | IF ( index_oc > 0 ) THEN |
---|
1966 | CALL set_aero_mass( index_oc, pmf2a(:,2), pmf2b(:,2), pnf2a, pndist, core, arhooc ) |
---|
1967 | ENDIF |
---|
1968 | IF ( index_bc > 0 ) THEN |
---|
1969 | CALL set_aero_mass( index_bc, pmf2a(:,3), pmf2b(:,3), pnf2a, pndist, core, arhobc ) |
---|
1970 | ENDIF |
---|
1971 | IF ( index_du > 0 ) THEN |
---|
1972 | CALL set_aero_mass( index_du, pmf2a(:,4), pmf2b(:,4), pnf2a, pndist, core, arhodu ) |
---|
1973 | ENDIF |
---|
1974 | IF ( index_ss > 0 ) THEN |
---|
1975 | CALL set_aero_mass( index_ss, pmf2a(:,5), pmf2b(:,5), pnf2a, pndist, core, arhoss ) |
---|
1976 | ENDIF |
---|
1977 | IF ( index_no > 0 ) THEN |
---|
1978 | CALL set_aero_mass( index_no, pmf2a(:,6), pmf2b(:,6), pnf2a, pndist, core, arhohno3 ) |
---|
1979 | ENDIF |
---|
1980 | IF ( index_nh > 0 ) THEN |
---|
1981 | CALL set_aero_mass( index_nh, pmf2a(:,7), pmf2b(:,7), pnf2a, pndist, core, arhonh3 ) |
---|
1982 | ENDIF |
---|
1983 | |
---|
1984 | ENDIF |
---|
1985 | |
---|
1986 | END SUBROUTINE aerosol_init |
---|
1987 | |
---|
1988 | !------------------------------------------------------------------------------! |
---|
1989 | ! Description: |
---|
1990 | ! ------------ |
---|
1991 | !> Create a lognormal size distribution and discretise to a sectional |
---|
1992 | !> representation. |
---|
1993 | !------------------------------------------------------------------------------! |
---|
1994 | SUBROUTINE size_distribution( in_ntot, in_dpg, in_sigma, psd_sect ) |
---|
1995 | |
---|
1996 | IMPLICIT NONE |
---|
1997 | |
---|
1998 | INTEGER(iwp) :: ib !< running index: bin |
---|
1999 | INTEGER(iwp) :: iteration !< running index: iteration |
---|
2000 | |
---|
2001 | REAL(wp) :: d1 !< particle diameter (m, dummy) |
---|
2002 | REAL(wp) :: d2 !< particle diameter (m, dummy) |
---|
2003 | REAL(wp) :: delta_d !< (d2-d1)/10 |
---|
2004 | REAL(wp) :: deltadp !< bin width |
---|
2005 | REAL(wp) :: dmidi !< ( d1 + d2 ) / 2 |
---|
2006 | |
---|
2007 | REAL(wp), DIMENSION(:), INTENT(in) :: in_dpg !< geometric mean diameter (m) |
---|
2008 | REAL(wp), DIMENSION(:), INTENT(in) :: in_ntot !< number conc. (#/m3) |
---|
2009 | REAL(wp), DIMENSION(:), INTENT(in) :: in_sigma !< standard deviation |
---|
2010 | |
---|
2011 | REAL(wp), DIMENSION(:), INTENT(inout) :: psd_sect !< sectional size distribution |
---|
2012 | |
---|
2013 | DO ib = start_subrange_1a, end_subrange_2b |
---|
2014 | psd_sect(ib) = 0.0_wp |
---|
2015 | ! |
---|
2016 | !-- Particle diameter at the low limit (largest in the bin) (m) |
---|
2017 | d1 = ( aero(ib)%vlolim / api6 )**0.33333333_wp |
---|
2018 | ! |
---|
2019 | !-- Particle diameter at the high limit (smallest in the bin) (m) |
---|
2020 | d2 = ( aero(ib)%vhilim / api6 )**0.33333333_wp |
---|
2021 | ! |
---|
2022 | !-- Span of particle diameter in a bin (m) |
---|
2023 | delta_d = 0.1_wp * ( d2 - d1 ) |
---|
2024 | ! |
---|
2025 | !-- Iterate: |
---|
2026 | DO iteration = 1, 10 |
---|
2027 | d1 = ( aero(ib)%vlolim / api6 )**0.33333333_wp + ( ib - 1) * delta_d |
---|
2028 | d2 = d1 + delta_d |
---|
2029 | dmidi = 0.5_wp * ( d1 + d2 ) |
---|
2030 | deltadp = LOG10( d2 / d1 ) |
---|
2031 | ! |
---|
2032 | !-- Size distribution |
---|
2033 | !-- in_ntot = total number, total area, or total volume concentration |
---|
2034 | !-- in_dpg = geometric-mean number, area, or volume diameter |
---|
2035 | !-- n(k) = number, area, or volume concentration in a bin |
---|
2036 | psd_sect(ib) = psd_sect(ib) + SUM( in_ntot * deltadp / ( SQRT( 2.0_wp * pi ) * & |
---|
2037 | LOG10( in_sigma ) ) * EXP( -LOG10( dmidi / in_dpg )**2.0_wp / & |
---|
2038 | ( 2.0_wp * LOG10( in_sigma ) ** 2.0_wp ) ) ) |
---|
2039 | |
---|
2040 | ENDDO |
---|
2041 | ENDDO |
---|
2042 | |
---|
2043 | END SUBROUTINE size_distribution |
---|
2044 | |
---|
2045 | !------------------------------------------------------------------------------! |
---|
2046 | ! Description: |
---|
2047 | ! ------------ |
---|
2048 | !> Sets the mass concentrations to aerosol arrays in 2a and 2b. |
---|
2049 | !> |
---|
2050 | !> Tomi Raatikainen, FMI, 29.2.2016 |
---|
2051 | !------------------------------------------------------------------------------! |
---|
2052 | SUBROUTINE set_aero_mass( ispec, pmf2a, pmf2b, pnf2a, pndist, pcore, prho ) |
---|
2053 | |
---|
2054 | IMPLICIT NONE |
---|
2055 | |
---|
2056 | INTEGER(iwp) :: ee !< index: end |
---|
2057 | INTEGER(iwp) :: i !< loop index |
---|
2058 | INTEGER(iwp) :: ib !< loop index |
---|
2059 | INTEGER(iwp) :: ic !< loop index |
---|
2060 | INTEGER(iwp) :: j !< loop index |
---|
2061 | INTEGER(iwp) :: k !< loop index |
---|
2062 | INTEGER(iwp) :: prunmode !< 1 = initialise |
---|
2063 | INTEGER(iwp) :: ss !< index: start |
---|
2064 | |
---|
2065 | INTEGER(iwp), INTENT(in) :: ispec !< Aerosol species index |
---|
2066 | |
---|
2067 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
2068 | |
---|
2069 | REAL(wp), INTENT(in) :: prho !< Aerosol density |
---|
2070 | |
---|
2071 | REAL(wp), DIMENSION(nbins_aerosol), INTENT(in) :: pcore !< Aerosol bin mid core volume |
---|
2072 | REAL(wp), DIMENSION(0:nz+1), INTENT(in) :: pnf2a !< Number fraction for 2a |
---|
2073 | REAL(wp), DIMENSION(0:nz+1), INTENT(in) :: pmf2a !< Mass distributions for a |
---|
2074 | REAL(wp), DIMENSION(0:nz+1), INTENT(in) :: pmf2b !< and b bins |
---|
2075 | |
---|
2076 | REAL(wp), DIMENSION(0:nz+1,nbins_aerosol), INTENT(in) :: pndist !< Aerosol size distribution |
---|
2077 | |
---|
2078 | prunmode = 1 |
---|
2079 | |
---|
2080 | DO i = nxlg, nxrg |
---|
2081 | DO j = nysg, nyng |
---|
2082 | DO k = nzb, nzt+1 |
---|
2083 | ! |
---|
2084 | !-- Predetermine flag to mask topography |
---|
2085 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2086 | ! |
---|
2087 | !-- Regime 2a: |
---|
2088 | ss = ( ispec - 1 ) * nbins_aerosol + start_subrange_2a |
---|
2089 | ee = ( ispec - 1 ) * nbins_aerosol + end_subrange_2a |
---|
2090 | ib = start_subrange_2a |
---|
2091 | DO ic = ss, ee |
---|
2092 | aerosol_mass(ic)%conc(k,j,i) = MAX( 0.0_wp, pmf2a(k) ) * pnf2a(k) * pndist(k,ib) * & |
---|
2093 | pcore(ib) * prho * flag |
---|
2094 | IF ( prunmode == 1 ) THEN |
---|
2095 | aerosol_mass(ic)%init(k) = MAX( 0.0_wp, pmf2a(k) ) * pnf2a(k) * pndist(k,ib) * & |
---|
2096 | pcore(ib) * prho |
---|
2097 | ENDIF |
---|
2098 | ib = ib + 1 |
---|
2099 | ENDDO |
---|
2100 | ! |
---|
2101 | !-- Regime 2b: |
---|
2102 | IF ( .NOT. no_insoluble ) THEN |
---|
2103 | ss = ( ispec - 1 ) * nbins_aerosol + start_subrange_2b |
---|
2104 | ee = ( ispec - 1 ) * nbins_aerosol + end_subrange_2b |
---|
2105 | ib = start_subrange_2a |
---|
2106 | DO ic = ss, ee |
---|
2107 | aerosol_mass(ic)%conc(k,j,i) = MAX( 0.0_wp, pmf2b(k) ) * ( 1.0_wp - pnf2a(k) ) *& |
---|
2108 | pndist(k,ib) * pcore(ib) * prho * flag |
---|
2109 | IF ( prunmode == 1 ) THEN |
---|
2110 | aerosol_mass(ic)%init(k) = MAX( 0.0_wp, pmf2b(k) ) * ( 1.0_wp - pnf2a(k) ) * & |
---|
2111 | pndist(k,ib) * pcore(ib) * prho |
---|
2112 | ENDIF |
---|
2113 | ib = ib + 1 |
---|
2114 | ENDDO ! c |
---|
2115 | |
---|
2116 | ENDIF |
---|
2117 | ENDDO ! k |
---|
2118 | |
---|
2119 | prunmode = 3 ! Init only once |
---|
2120 | |
---|
2121 | ENDDO ! j |
---|
2122 | ENDDO ! i |
---|
2123 | |
---|
2124 | END SUBROUTINE set_aero_mass |
---|
2125 | |
---|
2126 | !------------------------------------------------------------------------------! |
---|
2127 | ! Description: |
---|
2128 | ! ------------ |
---|
2129 | !> Initialise the matching between surface types in LSM and deposition models. |
---|
2130 | !> Do the matching based on Zhang et al. (2001). Atmos. Environ. 35, 549-560 |
---|
2131 | !> (here referred as Z01). |
---|
2132 | !------------------------------------------------------------------------------! |
---|
2133 | SUBROUTINE init_deposition |
---|
2134 | |
---|
2135 | USE surface_mod, & |
---|
2136 | ONLY: surf_lsm_h, surf_lsm_v |
---|
2137 | |
---|
2138 | IMPLICIT NONE |
---|
2139 | |
---|
2140 | INTEGER(iwp) :: l !< loop index for vertical surfaces |
---|
2141 | |
---|
2142 | IF ( nldepo_surf .AND. land_surface ) THEN |
---|
2143 | |
---|
2144 | ALLOCATE( lsm_to_depo_h%match(1:surf_lsm_h%ns) ) |
---|
2145 | lsm_to_depo_h%match = 0 |
---|
2146 | CALL match_lsm_zhang( surf_lsm_h, lsm_to_depo_h%match ) |
---|
2147 | |
---|
2148 | DO l = 0, 3 |
---|
2149 | ALLOCATE( lsm_to_depo_v(l)%match(1:surf_lsm_v(l)%ns) ) |
---|
2150 | lsm_to_depo_v(l)%match = 0 |
---|
2151 | CALL match_lsm_zhang( surf_lsm_v(l), lsm_to_depo_v(l)%match ) |
---|
2152 | ENDDO |
---|
2153 | ENDIF |
---|
2154 | |
---|
2155 | IF ( nldepo_pcm ) THEN |
---|
2156 | SELECT CASE ( depo_pcm_type ) |
---|
2157 | CASE ( 'evergreen_needleleaf' ) |
---|
2158 | depo_pcm_type_num = 1 |
---|
2159 | CASE ( 'evergreen_broadleaf' ) |
---|
2160 | depo_pcm_type_num = 2 |
---|
2161 | CASE ( 'deciduous_needleleaf' ) |
---|
2162 | depo_pcm_type_num = 3 |
---|
2163 | CASE ( 'deciduous_broadleaf' ) |
---|
2164 | depo_pcm_type_num = 4 |
---|
2165 | CASE DEFAULT |
---|
2166 | message_string = 'depo_pcm_type not set correctly.' |
---|
2167 | CALL message( 'salsa_mod: init_deposition', 'PA0613', 1, 2, 0, 6, 0 ) |
---|
2168 | END SELECT |
---|
2169 | ENDIF |
---|
2170 | |
---|
2171 | END SUBROUTINE init_deposition |
---|
2172 | |
---|
2173 | !------------------------------------------------------------------------------! |
---|
2174 | ! Description: |
---|
2175 | ! ------------ |
---|
2176 | !> Match the surface types in PALM and Zhang et al. 2001 deposition module |
---|
2177 | !------------------------------------------------------------------------------! |
---|
2178 | SUBROUTINE match_lsm_zhang( surf, match_array ) |
---|
2179 | |
---|
2180 | USE surface_mod, & |
---|
2181 | ONLY: ind_pav_green, ind_veg_wall, ind_wat_win, surf_type |
---|
2182 | |
---|
2183 | IMPLICIT NONE |
---|
2184 | |
---|
2185 | INTEGER(iwp) :: m !< index for surface elements |
---|
2186 | INTEGER(iwp) :: pav_type_palm !< pavement type in PALM |
---|
2187 | INTEGER(iwp) :: vege_type_palm !< vegetation type in PALM |
---|
2188 | INTEGER(iwp) :: water_type_palm !< water type in PALM |
---|
2189 | |
---|
2190 | INTEGER(iwp), DIMENSION(:), INTENT(inout) :: match_array !< array matching |
---|
2191 | !< the surface types |
---|
2192 | TYPE(surf_type), INTENT(in) :: surf !< respective surface type |
---|
2193 | |
---|
2194 | DO m = 1, surf%ns |
---|
2195 | |
---|
2196 | IF ( surf%frac(ind_veg_wall,m) > 0 ) THEN |
---|
2197 | vege_type_palm = surf%vegetation_type(m) |
---|
2198 | SELECT CASE ( vege_type_palm ) |
---|
2199 | CASE ( 0 ) |
---|
2200 | message_string = 'No vegetation type defined.' |
---|
2201 | CALL message( 'salsa_mod: init_depo_surfaces', 'PA0614', 1, 2, 0, 6, 0 ) |
---|
2202 | CASE ( 1 ) ! bare soil |
---|
2203 | match_array(m) = 6 ! grass in Z01 |
---|
2204 | CASE ( 2 ) ! crops, mixed farming |
---|
2205 | match_array(m) = 7 ! crops, mixed farming Z01 |
---|
2206 | CASE ( 3 ) ! short grass |
---|
2207 | match_array(m) = 6 ! grass in Z01 |
---|
2208 | CASE ( 4 ) ! evergreen needleleaf trees |
---|
2209 | match_array(m) = 1 ! evergreen needleleaf trees in Z01 |
---|
2210 | CASE ( 5 ) ! deciduous needleleaf trees |
---|
2211 | match_array(m) = 3 ! deciduous needleleaf trees in Z01 |
---|
2212 | CASE ( 6 ) ! evergreen broadleaf trees |
---|
2213 | match_array(m) = 2 ! evergreen broadleaf trees in Z01 |
---|
2214 | CASE ( 7 ) ! deciduous broadleaf trees |
---|
2215 | match_array(m) = 4 ! deciduous broadleaf trees in Z01 |
---|
2216 | CASE ( 8 ) ! tall grass |
---|
2217 | match_array(m) = 6 ! grass in Z01 |
---|
2218 | CASE ( 9 ) ! desert |
---|
2219 | match_array(m) = 8 ! desert in Z01 |
---|
2220 | CASE ( 10 ) ! tundra |
---|
2221 | match_array(m) = 9 ! tundra in Z01 |
---|
2222 | CASE ( 11 ) ! irrigated crops |
---|
2223 | match_array(m) = 7 ! crops, mixed farming Z01 |
---|
2224 | CASE ( 12 ) ! semidesert |
---|
2225 | match_array(m) = 8 ! desert in Z01 |
---|
2226 | CASE ( 13 ) ! ice caps and glaciers |
---|
2227 | match_array(m) = 12 ! ice cap and glacier in Z01 |
---|
2228 | CASE ( 14 ) ! bogs and marshes |
---|
2229 | match_array(m) = 11 ! wetland with plants in Z01 |
---|
2230 | CASE ( 15 ) ! evergreen shrubs |
---|
2231 | match_array(m) = 10 ! shrubs and interrupted woodlands in Z01 |
---|
2232 | CASE ( 16 ) ! deciduous shrubs |
---|
2233 | match_array(m) = 10 ! shrubs and interrupted woodlands in Z01 |
---|
2234 | CASE ( 17 ) ! mixed forest/woodland |
---|
2235 | match_array(m) = 5 ! mixed broadleaf and needleleaf trees in Z01 |
---|
2236 | CASE ( 18 ) ! interrupted forest |
---|
2237 | match_array(m) = 10 ! shrubs and interrupted woodlands in Z01 |
---|
2238 | END SELECT |
---|
2239 | ENDIF |
---|
2240 | |
---|
2241 | IF ( surf%frac(ind_pav_green,m) > 0 ) THEN |
---|
2242 | pav_type_palm = surf%pavement_type(m) |
---|
2243 | IF ( pav_type_palm == 0 ) THEN ! error |
---|
2244 | message_string = 'No pavement type defined.' |
---|
2245 | CALL message( 'salsa_mod: match_lsm_zhang', 'PA0615', 1, 2, 0, 6, 0 ) |
---|
2246 | ELSEIF ( pav_type_palm > 0 .AND. pav_type_palm <= 15 ) THEN |
---|
2247 | match_array(m) = 15 ! urban in Z01 |
---|
2248 | ENDIF |
---|
2249 | ENDIF |
---|
2250 | |
---|
2251 | IF ( surf%frac(ind_wat_win,m) > 0 ) THEN |
---|
2252 | water_type_palm = surf%water_type(m) |
---|
2253 | IF ( water_type_palm == 0 ) THEN ! error |
---|
2254 | message_string = 'No water type defined.' |
---|
2255 | CALL message( 'salsa_mod: match_lsm_zhang', 'PA0616', 1, 2, 0, 6, 0 ) |
---|
2256 | ELSEIF ( water_type_palm == 3 ) THEN |
---|
2257 | match_array(m) = 14 ! ocean in Z01 |
---|
2258 | ELSEIF ( water_type_palm == 1 .OR. water_type_palm == 2 .OR. water_type_palm == 4 & |
---|
2259 | .OR. water_type_palm == 5 ) THEN |
---|
2260 | match_array(m) = 13 ! inland water in Z01 |
---|
2261 | ENDIF |
---|
2262 | ENDIF |
---|
2263 | |
---|
2264 | ENDDO |
---|
2265 | |
---|
2266 | END SUBROUTINE match_lsm_zhang |
---|
2267 | |
---|
2268 | !------------------------------------------------------------------------------! |
---|
2269 | ! Description: |
---|
2270 | ! ------------ |
---|
2271 | !> Swapping of timelevels |
---|
2272 | !------------------------------------------------------------------------------! |
---|
2273 | SUBROUTINE salsa_swap_timelevel( mod_count ) |
---|
2274 | |
---|
2275 | IMPLICIT NONE |
---|
2276 | |
---|
2277 | INTEGER(iwp) :: ib !< |
---|
2278 | INTEGER(iwp) :: ic !< |
---|
2279 | INTEGER(iwp) :: icc !< |
---|
2280 | INTEGER(iwp) :: ig !< |
---|
2281 | |
---|
2282 | INTEGER(iwp), INTENT(IN) :: mod_count !< |
---|
2283 | |
---|
2284 | IF ( time_since_reference_point >= skip_time_do_salsa ) THEN |
---|
2285 | |
---|
2286 | SELECT CASE ( mod_count ) |
---|
2287 | |
---|
2288 | CASE ( 0 ) |
---|
2289 | |
---|
2290 | DO ib = 1, nbins_aerosol |
---|
2291 | aerosol_number(ib)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => nconc_1(:,:,:,ib) |
---|
2292 | aerosol_number(ib)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => nconc_2(:,:,:,ib) |
---|
2293 | |
---|
2294 | DO ic = 1, ncomponents_mass |
---|
2295 | icc = ( ic-1 ) * nbins_aerosol + ib |
---|
2296 | aerosol_mass(icc)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => mconc_1(:,:,:,icc) |
---|
2297 | aerosol_mass(icc)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => mconc_2(:,:,:,icc) |
---|
2298 | ENDDO |
---|
2299 | ENDDO |
---|
2300 | |
---|
2301 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
2302 | DO ig = 1, ngases_salsa |
---|
2303 | salsa_gas(ig)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => gconc_1(:,:,:,ig) |
---|
2304 | salsa_gas(ig)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => gconc_2(:,:,:,ig) |
---|
2305 | ENDDO |
---|
2306 | ENDIF |
---|
2307 | |
---|
2308 | CASE ( 1 ) |
---|
2309 | |
---|
2310 | DO ib = 1, nbins_aerosol |
---|
2311 | aerosol_number(ib)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => nconc_2(:,:,:,ib) |
---|
2312 | aerosol_number(ib)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => nconc_1(:,:,:,ib) |
---|
2313 | DO ic = 1, ncomponents_mass |
---|
2314 | icc = ( ic-1 ) * nbins_aerosol + ib |
---|
2315 | aerosol_mass(icc)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => mconc_2(:,:,:,icc) |
---|
2316 | aerosol_mass(icc)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => mconc_1(:,:,:,icc) |
---|
2317 | ENDDO |
---|
2318 | ENDDO |
---|
2319 | |
---|
2320 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
2321 | DO ig = 1, ngases_salsa |
---|
2322 | salsa_gas(ig)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => gconc_2(:,:,:,ig) |
---|
2323 | salsa_gas(ig)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => gconc_1(:,:,:,ig) |
---|
2324 | ENDDO |
---|
2325 | ENDIF |
---|
2326 | |
---|
2327 | END SELECT |
---|
2328 | |
---|
2329 | ENDIF |
---|
2330 | |
---|
2331 | END SUBROUTINE salsa_swap_timelevel |
---|
2332 | |
---|
2333 | |
---|
2334 | !------------------------------------------------------------------------------! |
---|
2335 | ! Description: |
---|
2336 | ! ------------ |
---|
2337 | !> This routine reads the respective restart data. |
---|
2338 | !------------------------------------------------------------------------------! |
---|
2339 | SUBROUTINE salsa_rrd_local( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, nxr_on_file, nynf, nync, & |
---|
2340 | nyn_on_file, nysf, nysc, nys_on_file, tmp_3d, found ) |
---|
2341 | |
---|
2342 | IMPLICIT NONE |
---|
2343 | |
---|
2344 | INTEGER(iwp) :: ib !< |
---|
2345 | INTEGER(iwp) :: ic !< |
---|
2346 | INTEGER(iwp) :: ig !< |
---|
2347 | INTEGER(iwp) :: k !< |
---|
2348 | INTEGER(iwp) :: nxlc !< |
---|
2349 | INTEGER(iwp) :: nxlf !< |
---|
2350 | INTEGER(iwp) :: nxl_on_file !< |
---|
2351 | INTEGER(iwp) :: nxrc !< |
---|
2352 | INTEGER(iwp) :: nxrf !< |
---|
2353 | INTEGER(iwp) :: nxr_on_file !< |
---|
2354 | INTEGER(iwp) :: nync !< |
---|
2355 | INTEGER(iwp) :: nynf !< |
---|
2356 | INTEGER(iwp) :: nyn_on_file !< |
---|
2357 | INTEGER(iwp) :: nysc !< |
---|
2358 | INTEGER(iwp) :: nysf !< |
---|
2359 | INTEGER(iwp) :: nys_on_file !< |
---|
2360 | |
---|
2361 | LOGICAL, INTENT(OUT) :: found !< |
---|
2362 | |
---|
2363 | REAL(wp), & |
---|
2364 | DIMENSION(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d !< |
---|
2365 | |
---|
2366 | found = .FALSE. |
---|
2367 | |
---|
2368 | IF ( read_restart_data_salsa ) THEN |
---|
2369 | |
---|
2370 | SELECT CASE ( restart_string(1:length) ) |
---|
2371 | |
---|
2372 | CASE ( 'aerosol_number' ) |
---|
2373 | DO ib = 1, nbins_aerosol |
---|
2374 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
2375 | aerosol_number(ib)%conc(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
2376 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
2377 | found = .TRUE. |
---|
2378 | ENDDO |
---|
2379 | |
---|
2380 | CASE ( 'aerosol_mass' ) |
---|
2381 | DO ic = 1, ncomponents_mass * nbins_aerosol |
---|
2382 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
2383 | aerosol_mass(ic)%conc(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
2384 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
2385 | found = .TRUE. |
---|
2386 | ENDDO |
---|
2387 | |
---|
2388 | CASE ( 'salsa_gas' ) |
---|
2389 | DO ig = 1, ngases_salsa |
---|
2390 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
2391 | salsa_gas(ig)%conc(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
2392 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
2393 | found = .TRUE. |
---|
2394 | ENDDO |
---|
2395 | |
---|
2396 | CASE DEFAULT |
---|
2397 | found = .FALSE. |
---|
2398 | |
---|
2399 | END SELECT |
---|
2400 | ENDIF |
---|
2401 | |
---|
2402 | END SUBROUTINE salsa_rrd_local |
---|
2403 | |
---|
2404 | !------------------------------------------------------------------------------! |
---|
2405 | ! Description: |
---|
2406 | ! ------------ |
---|
2407 | !> This routine writes the respective restart data. |
---|
2408 | !> Note that the following input variables in PARIN have to be equal between |
---|
2409 | !> restart runs: |
---|
2410 | !> listspec, nbin, nbin2, nf2a, ncc, mass_fracs_a, mass_fracs_b |
---|
2411 | !------------------------------------------------------------------------------! |
---|
2412 | SUBROUTINE salsa_wrd_local |
---|
2413 | |
---|
2414 | IMPLICIT NONE |
---|
2415 | |
---|
2416 | INTEGER(iwp) :: ib !< |
---|
2417 | INTEGER(iwp) :: ic !< |
---|
2418 | INTEGER(iwp) :: ig !< |
---|
2419 | |
---|
2420 | IF ( write_binary .AND. write_binary_salsa ) THEN |
---|
2421 | |
---|
2422 | CALL wrd_write_string( 'aerosol_number' ) |
---|
2423 | DO ib = 1, nbins_aerosol |
---|
2424 | WRITE ( 14 ) aerosol_number(ib)%conc |
---|
2425 | ENDDO |
---|
2426 | |
---|
2427 | CALL wrd_write_string( 'aerosol_mass' ) |
---|
2428 | DO ic = 1, nbins_aerosol * ncomponents_mass |
---|
2429 | WRITE ( 14 ) aerosol_mass(ic)%conc |
---|
2430 | ENDDO |
---|
2431 | |
---|
2432 | CALL wrd_write_string( 'salsa_gas' ) |
---|
2433 | DO ig = 1, ngases_salsa |
---|
2434 | WRITE ( 14 ) salsa_gas(ig)%conc |
---|
2435 | ENDDO |
---|
2436 | |
---|
2437 | ENDIF |
---|
2438 | |
---|
2439 | END SUBROUTINE salsa_wrd_local |
---|
2440 | |
---|
2441 | !------------------------------------------------------------------------------! |
---|
2442 | ! Description: |
---|
2443 | ! ------------ |
---|
2444 | !> Performs necessary unit and dimension conversion between the host model and |
---|
2445 | !> SALSA module, and calls the main SALSA routine. |
---|
2446 | !> Partially adobted form the original SALSA boxmodel version. |
---|
2447 | !> Now takes masses in as kg/kg from LES!! Converted to m3/m3 for SALSA |
---|
2448 | !> 05/2016 Juha: This routine is still pretty much in its original shape. |
---|
2449 | !> It's dumb as a mule and twice as ugly, so implementation of |
---|
2450 | !> an improved solution is necessary sooner or later. |
---|
2451 | !> Juha Tonttila, FMI, 2014 |
---|
2452 | !> Jaakko Ahola, FMI, 2016 |
---|
2453 | !> Only aerosol processes included, Mona Kurppa, UHel, 2017 |
---|
2454 | !------------------------------------------------------------------------------! |
---|
2455 | SUBROUTINE salsa_driver( i, j, prunmode ) |
---|
2456 | |
---|
2457 | USE arrays_3d, & |
---|
2458 | ONLY: pt_p, q_p, u, v, w |
---|
2459 | |
---|
2460 | USE plant_canopy_model_mod, & |
---|
2461 | ONLY: lad_s |
---|
2462 | |
---|
2463 | USE surface_mod, & |
---|
2464 | ONLY: surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, surf_usm_v |
---|
2465 | |
---|
2466 | IMPLICIT NONE |
---|
2467 | |
---|
2468 | INTEGER(iwp) :: endi !< end index |
---|
2469 | INTEGER(iwp) :: ib !< loop index |
---|
2470 | INTEGER(iwp) :: ic !< loop index |
---|
2471 | INTEGER(iwp) :: ig !< loop index |
---|
2472 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
2473 | INTEGER(iwp) :: k !< loop index |
---|
2474 | INTEGER(iwp) :: l !< loop index |
---|
2475 | INTEGER(iwp) :: nc_h2o !< index of H2O in the prtcl index table |
---|
2476 | INTEGER(iwp) :: ss !< loop index |
---|
2477 | INTEGER(iwp) :: str !< start index |
---|
2478 | INTEGER(iwp) :: vc !< default index in prtcl |
---|
2479 | |
---|
2480 | INTEGER(iwp), INTENT(in) :: i !< loop index |
---|
2481 | INTEGER(iwp), INTENT(in) :: j !< loop index |
---|
2482 | INTEGER(iwp), INTENT(in) :: prunmode !< 1: Initialization, 2: Spinup, 3: Regular runtime |
---|
2483 | |
---|
2484 | REAL(wp) :: cw_old !< previous H2O mixing ratio |
---|
2485 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
2486 | REAL(wp) :: in_lad !< leaf area density (m2/m3) |
---|
2487 | REAL(wp) :: in_rh !< relative humidity |
---|
2488 | REAL(wp) :: zgso4 !< SO4 |
---|
2489 | REAL(wp) :: zghno3 !< HNO3 |
---|
2490 | REAL(wp) :: zgnh3 !< NH3 |
---|
2491 | REAL(wp) :: zgocnv !< non-volatile OC |
---|
2492 | REAL(wp) :: zgocsv !< semi-volatile OC |
---|
2493 | |
---|
2494 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_adn !< air density (kg/m3) |
---|
2495 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_cs !< H2O sat. vapour conc. |
---|
2496 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_cw !< H2O vapour concentration |
---|
2497 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_p !< pressure (Pa) |
---|
2498 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_t !< temperature (K) |
---|
2499 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_u !< wind magnitude (m/s) |
---|
2500 | REAL(wp), DIMENSION(nzb:nzt+1) :: kvis !< kinematic viscosity of air(m2/s) |
---|
2501 | REAL(wp), DIMENSION(nzb:nzt+1) :: ppm_to_nconc !< Conversion factor from ppm to #/m3 |
---|
2502 | |
---|
2503 | REAL(wp), DIMENSION(nzb:nzt+1,nbins_aerosol) :: schmidt_num !< particle Schmidt number |
---|
2504 | REAL(wp), DIMENSION(nzb:nzt+1,nbins_aerosol) :: vd !< particle fall seed (m/s) |
---|
2505 | |
---|
2506 | TYPE(t_section), DIMENSION(nbins_aerosol) :: aero_old !< helper array |
---|
2507 | |
---|
2508 | aero_old(:)%numc = 0.0_wp |
---|
2509 | in_lad = 0.0_wp |
---|
2510 | in_u = 0.0_wp |
---|
2511 | kvis = 0.0_wp |
---|
2512 | schmidt_num = 0.0_wp |
---|
2513 | vd = 0.0_wp |
---|
2514 | zgso4 = nclim |
---|
2515 | zghno3 = nclim |
---|
2516 | zgnh3 = nclim |
---|
2517 | zgocnv = nclim |
---|
2518 | zgocsv = nclim |
---|
2519 | ! |
---|
2520 | !-- Aerosol number is always set, but mass can be uninitialized |
---|
2521 | DO ib = 1, nbins_aerosol |
---|
2522 | aero(ib)%volc(:) = 0.0_wp |
---|
2523 | aero_old(ib)%volc(:) = 0.0_wp |
---|
2524 | ENDDO |
---|
2525 | ! |
---|
2526 | !-- Set the salsa runtime config (How to make this more efficient?) |
---|
2527 | CALL set_salsa_runtime( prunmode ) |
---|
2528 | ! |
---|
2529 | !-- Calculate thermodynamic quantities needed in SALSA |
---|
2530 | CALL salsa_thrm_ij( i, j, p_ij=in_p, temp_ij=in_t, cw_ij=in_cw, cs_ij=in_cs, adn_ij=in_adn ) |
---|
2531 | ! |
---|
2532 | !-- Magnitude of wind: needed for deposition |
---|
2533 | IF ( lsdepo ) THEN |
---|
2534 | in_u(nzb+1:nzt) = SQRT( ( 0.5_wp * ( u(nzb+1:nzt,j,i) + u(nzb+1:nzt,j,i+1) ) )**2 + & |
---|
2535 | ( 0.5_wp * ( v(nzb+1:nzt,j,i) + v(nzb+1:nzt,j+1,i) ) )**2 + & |
---|
2536 | ( 0.5_wp * ( w(nzb:nzt-1,j,i) + w(nzb+1:nzt,j, i) ) )**2 ) |
---|
2537 | ENDIF |
---|
2538 | ! |
---|
2539 | !-- Calculate conversion factors for gas concentrations |
---|
2540 | ppm_to_nconc(:) = for_ppm_to_nconc * in_p(:) / in_t(:) |
---|
2541 | ! |
---|
2542 | !-- Determine topography-top index on scalar grid |
---|
2543 | k_wall = k_topo_top(j,i) |
---|
2544 | |
---|
2545 | DO k = nzb+1, nzt |
---|
2546 | ! |
---|
2547 | !-- Predetermine flag to mask topography |
---|
2548 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2549 | ! |
---|
2550 | !-- Wind velocity for dry depositon on vegetation |
---|
2551 | IF ( lsdepo_pcm .AND. plant_canopy ) THEN |
---|
2552 | in_lad = lad_s( MAX( k-k_wall,0 ),j,i) |
---|
2553 | ENDIF |
---|
2554 | ! |
---|
2555 | !-- For initialization and spinup, limit the RH with the parameter rhlim |
---|
2556 | IF ( prunmode < 3 ) THEN |
---|
2557 | in_cw(k) = MIN( in_cw(k), in_cs(k) * rhlim ) |
---|
2558 | ELSE |
---|
2559 | in_cw(k) = in_cw(k) |
---|
2560 | ENDIF |
---|
2561 | cw_old = in_cw(k) !* in_adn(k) |
---|
2562 | ! |
---|
2563 | !-- Set volume concentrations: |
---|
2564 | !-- Sulphate (SO4) or sulphuric acid H2SO4 |
---|
2565 | IF ( index_so4 > 0 ) THEN |
---|
2566 | vc = 1 |
---|
2567 | str = ( index_so4-1 ) * nbins_aerosol + 1 ! start index |
---|
2568 | endi = index_so4 * nbins_aerosol ! end index |
---|
2569 | ic = 1 |
---|
2570 | DO ss = str, endi |
---|
2571 | aero(ic)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhoh2so4 |
---|
2572 | ic = ic+1 |
---|
2573 | ENDDO |
---|
2574 | aero_old(1:nbins_aerosol)%volc(vc) = aero(1:nbins_aerosol)%volc(vc) |
---|
2575 | ENDIF |
---|
2576 | ! |
---|
2577 | !-- Organic carbon (OC) compounds |
---|
2578 | IF ( index_oc > 0 ) THEN |
---|
2579 | vc = 2 |
---|
2580 | str = ( index_oc-1 ) * nbins_aerosol + 1 |
---|
2581 | endi = index_oc * nbins_aerosol |
---|
2582 | ic = 1 |
---|
2583 | DO ss = str, endi |
---|
2584 | aero(ic)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhooc |
---|
2585 | ic = ic+1 |
---|
2586 | ENDDO |
---|
2587 | aero_old(1:nbins_aerosol)%volc(vc) = aero(1:nbins_aerosol)%volc(vc) |
---|
2588 | ENDIF |
---|
2589 | ! |
---|
2590 | !-- Black carbon (BC) |
---|
2591 | IF ( index_bc > 0 ) THEN |
---|
2592 | vc = 3 |
---|
2593 | str = ( index_bc-1 ) * nbins_aerosol + 1 + end_subrange_1a |
---|
2594 | endi = index_bc * nbins_aerosol |
---|
2595 | ic = 1 + end_subrange_1a |
---|
2596 | DO ss = str, endi |
---|
2597 | aero(ic)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhobc |
---|
2598 | ic = ic+1 |
---|
2599 | ENDDO |
---|
2600 | aero_old(1:nbins_aerosol)%volc(vc) = aero(1:nbins_aerosol)%volc(vc) |
---|
2601 | ENDIF |
---|
2602 | ! |
---|
2603 | !-- Dust (DU) |
---|
2604 | IF ( index_du > 0 ) THEN |
---|
2605 | vc = 4 |
---|
2606 | str = ( index_du-1 ) * nbins_aerosol + 1 + end_subrange_1a |
---|
2607 | endi = index_du * nbins_aerosol |
---|
2608 | ic = 1 + end_subrange_1a |
---|
2609 | DO ss = str, endi |
---|
2610 | aero(ic)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhodu |
---|
2611 | ic = ic+1 |
---|
2612 | ENDDO |
---|
2613 | aero_old(1:nbins_aerosol)%volc(vc) = aero(1:nbins_aerosol)%volc(vc) |
---|
2614 | ENDIF |
---|
2615 | ! |
---|
2616 | !-- Sea salt (SS) |
---|
2617 | IF ( index_ss > 0 ) THEN |
---|
2618 | vc = 5 |
---|
2619 | str = ( index_ss-1 ) * nbins_aerosol + 1 + end_subrange_1a |
---|
2620 | endi = index_ss * nbins_aerosol |
---|
2621 | ic = 1 + end_subrange_1a |
---|
2622 | DO ss = str, endi |
---|
2623 | aero(ic)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhoss |
---|
2624 | ic = ic+1 |
---|
2625 | ENDDO |
---|
2626 | aero_old(1:nbins_aerosol)%volc(vc) = aero(1:nbins_aerosol)%volc(vc) |
---|
2627 | ENDIF |
---|
2628 | ! |
---|
2629 | !-- Nitrate (NO(3-)) or nitric acid HNO3 |
---|
2630 | IF ( index_no > 0 ) THEN |
---|
2631 | vc = 6 |
---|
2632 | str = ( index_no-1 ) * nbins_aerosol + 1 |
---|
2633 | endi = index_no * nbins_aerosol |
---|
2634 | ic = 1 |
---|
2635 | DO ss = str, endi |
---|
2636 | aero(ic)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhohno3 |
---|
2637 | ic = ic+1 |
---|
2638 | ENDDO |
---|
2639 | aero_old(1:nbins_aerosol)%volc(vc) = aero(1:nbins_aerosol)%volc(vc) |
---|
2640 | ENDIF |
---|
2641 | ! |
---|
2642 | !-- Ammonium (NH(4+)) or ammonia NH3 |
---|
2643 | IF ( index_nh > 0 ) THEN |
---|
2644 | vc = 7 |
---|
2645 | str = ( index_nh-1 ) * nbins_aerosol + 1 |
---|
2646 | endi = index_nh * nbins_aerosol |
---|
2647 | ic = 1 |
---|
2648 | DO ss = str, endi |
---|
2649 | aero(ic)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhonh3 |
---|
2650 | ic = ic+1 |
---|
2651 | ENDDO |
---|
2652 | aero_old(1:nbins_aerosol)%volc(vc) = aero(1:nbins_aerosol)%volc(vc) |
---|
2653 | ENDIF |
---|
2654 | ! |
---|
2655 | !-- Water (always used) |
---|
2656 | nc_h2o = get_index( prtcl,'H2O' ) |
---|
2657 | vc = 8 |
---|
2658 | str = ( nc_h2o-1 ) * nbins_aerosol + 1 |
---|
2659 | endi = nc_h2o * nbins_aerosol |
---|
2660 | ic = 1 |
---|
2661 | IF ( advect_particle_water ) THEN |
---|
2662 | DO ss = str, endi |
---|
2663 | aero(ic)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhoh2o |
---|
2664 | ic = ic+1 |
---|
2665 | ENDDO |
---|
2666 | ELSE |
---|
2667 | aero(1:nbins_aerosol)%volc(vc) = mclim |
---|
2668 | ENDIF |
---|
2669 | aero_old(1:nbins_aerosol)%volc(vc) = aero(1:nbins_aerosol)%volc(vc) |
---|
2670 | ! |
---|
2671 | !-- Number concentrations (numc) and particle sizes |
---|
2672 | !-- (dwet = wet diameter, core = dry volume) |
---|
2673 | DO ib = 1, nbins_aerosol |
---|
2674 | aero(ib)%numc = aerosol_number(ib)%conc(k,j,i) |
---|
2675 | aero_old(ib)%numc = aero(ib)%numc |
---|
2676 | IF ( aero(ib)%numc > nclim ) THEN |
---|
2677 | aero(ib)%dwet = ( SUM( aero(ib)%volc(:) ) / aero(ib)%numc / api6 )**0.33333333_wp |
---|
2678 | aero(ib)%core = SUM( aero(ib)%volc(1:7) ) / aero(ib)%numc |
---|
2679 | ELSE |
---|
2680 | aero(ib)%dwet = aero(ib)%dmid |
---|
2681 | aero(ib)%core = api6 * ( aero(ib)%dwet )**3 |
---|
2682 | ENDIF |
---|
2683 | ENDDO |
---|
2684 | ! |
---|
2685 | !-- On EACH call of salsa_driver, calculate the ambient sizes of |
---|
2686 | !-- particles by equilibrating soluble fraction of particles with water |
---|
2687 | !-- using the ZSR method. |
---|
2688 | in_rh = in_cw(k) / in_cs(k) |
---|
2689 | IF ( prunmode==1 .OR. .NOT. advect_particle_water ) THEN |
---|
2690 | CALL equilibration( in_rh, in_t(k), aero, .TRUE. ) |
---|
2691 | ENDIF |
---|
2692 | ! |
---|
2693 | !-- Gaseous tracer concentrations in #/m3 |
---|
2694 | IF ( salsa_gases_from_chem ) THEN |
---|
2695 | ! |
---|
2696 | !-- Convert concentrations in ppm to #/m3 |
---|
2697 | zgso4 = chem_species(gas_index_chem(1))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2698 | zghno3 = chem_species(gas_index_chem(2))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2699 | zgnh3 = chem_species(gas_index_chem(3))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2700 | zgocnv = chem_species(gas_index_chem(4))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2701 | zgocsv = chem_species(gas_index_chem(5))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2702 | ELSE |
---|
2703 | zgso4 = salsa_gas(1)%conc(k,j,i) |
---|
2704 | zghno3 = salsa_gas(2)%conc(k,j,i) |
---|
2705 | zgnh3 = salsa_gas(3)%conc(k,j,i) |
---|
2706 | zgocnv = salsa_gas(4)%conc(k,j,i) |
---|
2707 | zgocsv = salsa_gas(5)%conc(k,j,i) |
---|
2708 | ENDIF |
---|
2709 | ! |
---|
2710 | !-- Calculate aerosol processes: |
---|
2711 | !-- ********************************************************************************************* |
---|
2712 | ! |
---|
2713 | !-- Coagulation |
---|
2714 | IF ( lscoag ) THEN |
---|
2715 | CALL coagulation( aero, dt_salsa, in_t(k), in_p(k) ) |
---|
2716 | ENDIF |
---|
2717 | ! |
---|
2718 | !-- Condensation |
---|
2719 | IF ( lscnd ) THEN |
---|
2720 | CALL condensation( aero, zgso4, zgocnv, zgocsv, zghno3, zgnh3, in_cw(k), in_cs(k), & |
---|
2721 | in_t(k), in_p(k), dt_salsa, prtcl ) |
---|
2722 | ENDIF |
---|
2723 | ! |
---|
2724 | !-- Deposition |
---|
2725 | IF ( lsdepo ) THEN |
---|
2726 | CALL deposition( aero, in_t(k), in_adn(k), in_u(k), in_lad, kvis(k), schmidt_num(k,:), & |
---|
2727 | vd(k,:) ) |
---|
2728 | ENDIF |
---|
2729 | ! |
---|
2730 | !-- Size distribution bin update |
---|
2731 | IF ( lsdistupdate ) THEN |
---|
2732 | CALL distr_update( aero ) |
---|
2733 | ENDIF |
---|
2734 | !-- ********************************************************************************************* |
---|
2735 | |
---|
2736 | IF ( lsdepo ) sedim_vd(k,j,i,:) = vd(k,:) |
---|
2737 | ! |
---|
2738 | !-- Calculate changes in concentrations |
---|
2739 | DO ib = 1, nbins_aerosol |
---|
2740 | aerosol_number(ib)%conc(k,j,i) = aerosol_number(ib)%conc(k,j,i) + ( aero(ib)%numc - & |
---|
2741 | aero_old(ib)%numc ) * flag |
---|
2742 | ENDDO |
---|
2743 | |
---|
2744 | IF ( index_so4 > 0 ) THEN |
---|
2745 | vc = 1 |
---|
2746 | str = ( index_so4-1 ) * nbins_aerosol + 1 |
---|
2747 | endi = index_so4 * nbins_aerosol |
---|
2748 | ic = 1 |
---|
2749 | DO ss = str, endi |
---|
2750 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) + ( aero(ic)%volc(vc) - & |
---|
2751 | aero_old(ic)%volc(vc) ) * arhoh2so4 * flag |
---|
2752 | ic = ic+1 |
---|
2753 | ENDDO |
---|
2754 | ENDIF |
---|
2755 | |
---|
2756 | IF ( index_oc > 0 ) THEN |
---|
2757 | vc = 2 |
---|
2758 | str = ( index_oc-1 ) * nbins_aerosol + 1 |
---|
2759 | endi = index_oc * nbins_aerosol |
---|
2760 | ic = 1 |
---|
2761 | DO ss = str, endi |
---|
2762 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) + ( aero(ic)%volc(vc) - & |
---|
2763 | aero_old(ic)%volc(vc) ) * arhooc * flag |
---|
2764 | ic = ic+1 |
---|
2765 | ENDDO |
---|
2766 | ENDIF |
---|
2767 | |
---|
2768 | IF ( index_bc > 0 ) THEN |
---|
2769 | vc = 3 |
---|
2770 | str = ( index_bc-1 ) * nbins_aerosol + 1 + end_subrange_1a |
---|
2771 | endi = index_bc * nbins_aerosol |
---|
2772 | ic = 1 + end_subrange_1a |
---|
2773 | DO ss = str, endi |
---|
2774 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) + ( aero(ic)%volc(vc) - & |
---|
2775 | aero_old(ic)%volc(vc) ) * arhobc * flag |
---|
2776 | ic = ic+1 |
---|
2777 | ENDDO |
---|
2778 | ENDIF |
---|
2779 | |
---|
2780 | IF ( index_du > 0 ) THEN |
---|
2781 | vc = 4 |
---|
2782 | str = ( index_du-1 ) * nbins_aerosol + 1 + end_subrange_1a |
---|
2783 | endi = index_du * nbins_aerosol |
---|
2784 | ic = 1 + end_subrange_1a |
---|
2785 | DO ss = str, endi |
---|
2786 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) + ( aero(ic)%volc(vc) - & |
---|
2787 | aero_old(ic)%volc(vc) ) * arhodu * flag |
---|
2788 | ic = ic+1 |
---|
2789 | ENDDO |
---|
2790 | ENDIF |
---|
2791 | |
---|
2792 | IF ( index_ss > 0 ) THEN |
---|
2793 | vc = 5 |
---|
2794 | str = ( index_ss-1 ) * nbins_aerosol + 1 + end_subrange_1a |
---|
2795 | endi = index_ss * nbins_aerosol |
---|
2796 | ic = 1 + end_subrange_1a |
---|
2797 | DO ss = str, endi |
---|
2798 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) + ( aero(ic)%volc(vc) - & |
---|
2799 | aero_old(ic)%volc(vc) ) * arhoss * flag |
---|
2800 | ic = ic+1 |
---|
2801 | ENDDO |
---|
2802 | ENDIF |
---|
2803 | |
---|
2804 | IF ( index_no > 0 ) THEN |
---|
2805 | vc = 6 |
---|
2806 | str = ( index_no-1 ) * nbins_aerosol + 1 |
---|
2807 | endi = index_no * nbins_aerosol |
---|
2808 | ic = 1 |
---|
2809 | DO ss = str, endi |
---|
2810 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) + ( aero(ic)%volc(vc) - & |
---|
2811 | aero_old(ic)%volc(vc) ) * arhohno3 * flag |
---|
2812 | ic = ic+1 |
---|
2813 | ENDDO |
---|
2814 | ENDIF |
---|
2815 | |
---|
2816 | IF ( index_nh > 0 ) THEN |
---|
2817 | vc = 7 |
---|
2818 | str = ( index_nh-1 ) * nbins_aerosol + 1 |
---|
2819 | endi = index_nh * nbins_aerosol |
---|
2820 | ic = 1 |
---|
2821 | DO ss = str, endi |
---|
2822 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) + ( aero(ic)%volc(vc) - & |
---|
2823 | aero_old(ic)%volc(vc) ) * arhonh3 * flag |
---|
2824 | ic = ic+1 |
---|
2825 | ENDDO |
---|
2826 | ENDIF |
---|
2827 | |
---|
2828 | IF ( advect_particle_water ) THEN |
---|
2829 | nc_h2o = get_index( prtcl,'H2O' ) |
---|
2830 | vc = 8 |
---|
2831 | str = ( nc_h2o-1 ) * nbins_aerosol + 1 |
---|
2832 | endi = nc_h2o * nbins_aerosol |
---|
2833 | ic = 1 |
---|
2834 | DO ss = str, endi |
---|
2835 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) + ( aero(ic)%volc(vc) - & |
---|
2836 | aero_old(ic)%volc(vc) ) * arhoh2o * flag |
---|
2837 | IF ( prunmode == 1 ) THEN |
---|
2838 | aerosol_mass(ss)%init(k) = MAX( aerosol_mass(ss)%init(k), & |
---|
2839 | aerosol_mass(ss)%conc(k,j,i) ) |
---|
2840 | IF ( k == nzb+1 ) THEN |
---|
2841 | aerosol_mass(ss)%init(k-1) = 0.0_wp |
---|
2842 | ELSEIF ( k == nzt ) THEN |
---|
2843 | aerosol_mass(ss)%init(k+1) = aerosol_mass(ss)%init(k) |
---|
2844 | ENDIF |
---|
2845 | ENDIF |
---|
2846 | ic = ic+1 |
---|
2847 | ENDDO |
---|
2848 | ENDIF |
---|
2849 | ! |
---|
2850 | !-- Condensation of precursor gases |
---|
2851 | IF ( lscndgas ) THEN |
---|
2852 | IF ( salsa_gases_from_chem ) THEN |
---|
2853 | ! |
---|
2854 | !-- SO4 (or H2SO4) |
---|
2855 | ig = gas_index_chem(1) |
---|
2856 | chem_species(ig)%conc(k,j,i) = chem_species(ig)%conc(k,j,i) + ( zgso4 / & |
---|
2857 | ppm_to_nconc(k) - chem_species(ig)%conc(k,j,i) ) * flag |
---|
2858 | ! |
---|
2859 | !-- HNO3 |
---|
2860 | ig = gas_index_chem(2) |
---|
2861 | chem_species(ig)%conc(k,j,i) = chem_species(ig)%conc(k,j,i) + ( zghno3 / & |
---|
2862 | ppm_to_nconc(k) - chem_species(ig)%conc(k,j,i) ) * flag |
---|
2863 | ! |
---|
2864 | !-- NH3 |
---|
2865 | ig = gas_index_chem(3) |
---|
2866 | chem_species(ig)%conc(k,j,i) = chem_species(ig)%conc(k,j,i) + ( zgnh3 / & |
---|
2867 | ppm_to_nconc(k) - chem_species(ig)%conc(k,j,i) ) * flag |
---|
2868 | ! |
---|
2869 | !-- non-volatile OC |
---|
2870 | ig = gas_index_chem(4) |
---|
2871 | chem_species(ig)%conc(k,j,i) = chem_species(ig)%conc(k,j,i) + ( zgocnv / & |
---|
2872 | ppm_to_nconc(k) - chem_species(ig)%conc(k,j,i) ) * flag |
---|
2873 | ! |
---|
2874 | !-- semi-volatile OC |
---|
2875 | ig = gas_index_chem(5) |
---|
2876 | chem_species(ig)%conc(k,j,i) = chem_species(ig)%conc(k,j,i) + ( zgocsv / & |
---|
2877 | ppm_to_nconc(k) - chem_species(ig)%conc(k,j,i) ) * flag |
---|
2878 | |
---|
2879 | ELSE |
---|
2880 | ! |
---|
2881 | !-- SO4 (or H2SO4) |
---|
2882 | salsa_gas(1)%conc(k,j,i) = salsa_gas(1)%conc(k,j,i) + ( zgso4 - & |
---|
2883 | salsa_gas(1)%conc(k,j,i) ) * flag |
---|
2884 | ! |
---|
2885 | !-- HNO3 |
---|
2886 | salsa_gas(2)%conc(k,j,i) = salsa_gas(2)%conc(k,j,i) + ( zghno3 - & |
---|
2887 | salsa_gas(2)%conc(k,j,i) ) * flag |
---|
2888 | ! |
---|
2889 | !-- NH3 |
---|
2890 | salsa_gas(3)%conc(k,j,i) = salsa_gas(3)%conc(k,j,i) + ( zgnh3 - & |
---|
2891 | salsa_gas(3)%conc(k,j,i) ) * flag |
---|
2892 | ! |
---|
2893 | !-- non-volatile OC |
---|
2894 | salsa_gas(4)%conc(k,j,i) = salsa_gas(4)%conc(k,j,i) + ( zgocnv - & |
---|
2895 | salsa_gas(4)%conc(k,j,i) ) * flag |
---|
2896 | ! |
---|
2897 | !-- semi-volatile OC |
---|
2898 | salsa_gas(5)%conc(k,j,i) = salsa_gas(5)%conc(k,j,i) + ( zgocsv - & |
---|
2899 | salsa_gas(5)%conc(k,j,i) ) * flag |
---|
2900 | ENDIF |
---|
2901 | ENDIF |
---|
2902 | ! |
---|
2903 | !-- Tendency of water vapour mixing ratio is obtained from the |
---|
2904 | !-- change in RH during SALSA run. This releases heat and changes pt. |
---|
2905 | !-- Assumes no temperature change during SALSA run. |
---|
2906 | !-- q = r / (1+r), Euler method for integration |
---|
2907 | ! |
---|
2908 | IF ( feedback_to_palm ) THEN |
---|
2909 | q_p(k,j,i) = q_p(k,j,i) + 1.0_wp / ( in_cw(k) * in_adn(k) + 1.0_wp )**2 * & |
---|
2910 | ( in_cw(k) - cw_old ) * in_adn(k) * flag |
---|
2911 | pt_p(k,j,i) = pt_p(k,j,i) + alv / c_p * ( in_cw(k) - cw_old ) * in_adn(k) / ( in_cw(k) / & |
---|
2912 | in_adn(k) + 1.0_wp )**2 * pt_p(k,j,i) / in_t(k) * flag |
---|
2913 | ENDIF |
---|
2914 | |
---|
2915 | ENDDO ! k |
---|
2916 | ! |
---|
2917 | !-- Set surfaces and wall fluxes due to deposition |
---|
2918 | IF ( lsdepo .AND. lsdepo_surf .AND. prunmode == 3 ) THEN |
---|
2919 | IF ( .NOT. land_surface .AND. .NOT. urban_surface ) THEN |
---|
2920 | CALL depo_surf( i, j, surf_def_h(0), vd, schmidt_num, kvis, in_u, .TRUE. ) |
---|
2921 | DO l = 0, 3 |
---|
2922 | CALL depo_surf( i, j, surf_def_v(l), vd, schmidt_num, kvis, in_u, .FALSE., l ) |
---|
2923 | ENDDO |
---|
2924 | ELSE |
---|
2925 | CALL depo_surf( i, j, surf_usm_h, vd, schmidt_num, kvis, in_u, .TRUE. ) |
---|
2926 | DO l = 0, 3 |
---|
2927 | CALL depo_surf( i, j, surf_usm_v(l), vd, schmidt_num, kvis, in_u, .FALSE., l ) |
---|
2928 | ENDDO |
---|
2929 | CALL depo_surf( i, j, surf_lsm_h, vd, schmidt_num, kvis, in_u, .TRUE. ) |
---|
2930 | DO l = 0, 3 |
---|
2931 | CALL depo_surf( i, j, surf_lsm_v(l), vd, schmidt_num, kvis, in_u, .FALSE., l ) |
---|
2932 | ENDDO |
---|
2933 | ENDIF |
---|
2934 | ENDIF |
---|
2935 | |
---|
2936 | END SUBROUTINE salsa_driver |
---|
2937 | |
---|
2938 | !------------------------------------------------------------------------------! |
---|
2939 | ! Description: |
---|
2940 | ! ------------ |
---|
2941 | !> Set logical switches according to the host model state and user-specified |
---|
2942 | !> NAMELIST options. |
---|
2943 | !> Juha Tonttila, FMI, 2014 |
---|
2944 | !> Only aerosol processes included, Mona Kurppa, UHel, 2017 |
---|
2945 | !------------------------------------------------------------------------------! |
---|
2946 | SUBROUTINE set_salsa_runtime( prunmode ) |
---|
2947 | |
---|
2948 | IMPLICIT NONE |
---|
2949 | |
---|
2950 | INTEGER(iwp), INTENT(in) :: prunmode |
---|
2951 | |
---|
2952 | SELECT CASE(prunmode) |
---|
2953 | |
---|
2954 | CASE(1) !< Initialization |
---|
2955 | lscoag = .FALSE. |
---|
2956 | lscnd = .FALSE. |
---|
2957 | lscndgas = .FALSE. |
---|
2958 | lscndh2oae = .FALSE. |
---|
2959 | lsdepo = .FALSE. |
---|
2960 | lsdepo_pcm = .FALSE. |
---|
2961 | lsdepo_surf = .FALSE. |
---|
2962 | lsdistupdate = .TRUE. |
---|
2963 | lspartition = .FALSE. |
---|
2964 | |
---|
2965 | CASE(2) !< Spinup period |
---|
2966 | lscoag = ( .FALSE. .AND. nlcoag ) |
---|
2967 | lscnd = ( .TRUE. .AND. nlcnd ) |
---|
2968 | lscndgas = ( .TRUE. .AND. nlcndgas ) |
---|
2969 | lscndh2oae = ( .TRUE. .AND. nlcndh2oae ) |
---|
2970 | |
---|
2971 | CASE(3) !< Run |
---|
2972 | lscoag = nlcoag |
---|
2973 | lscnd = nlcnd |
---|
2974 | lscndgas = nlcndgas |
---|
2975 | lscndh2oae = nlcndh2oae |
---|
2976 | lsdepo = nldepo |
---|
2977 | lsdepo_pcm = nldepo_pcm |
---|
2978 | lsdepo_surf = nldepo_surf |
---|
2979 | lsdistupdate = nldistupdate |
---|
2980 | END SELECT |
---|
2981 | |
---|
2982 | |
---|
2983 | END SUBROUTINE set_salsa_runtime |
---|
2984 | |
---|
2985 | !------------------------------------------------------------------------------! |
---|
2986 | ! Description: |
---|
2987 | ! ------------ |
---|
2988 | !> Calculates the absolute temperature (using hydrostatic pressure), saturation |
---|
2989 | !> vapour pressure and mixing ratio over water, relative humidity and air |
---|
2990 | !> density needed in the SALSA model. |
---|
2991 | !> NOTE, no saturation adjustment takes place -> the resulting water vapour |
---|
2992 | !> mixing ratio can be supersaturated, allowing the microphysical calculations |
---|
2993 | !> in SALSA. |
---|
2994 | ! |
---|
2995 | !> Juha Tonttila, FMI, 2014 (original SALSAthrm) |
---|
2996 | !> Mona Kurppa, UHel, 2017 (adjustment for PALM and only aerosol processes) |
---|
2997 | !------------------------------------------------------------------------------! |
---|
2998 | SUBROUTINE salsa_thrm_ij( i, j, p_ij, temp_ij, cw_ij, cs_ij, adn_ij ) |
---|
2999 | |
---|
3000 | USE arrays_3d, & |
---|
3001 | ONLY: pt, q, zu |
---|
3002 | |
---|
3003 | USE basic_constants_and_equations_mod, & |
---|
3004 | ONLY: barometric_formula, exner_function, ideal_gas_law_rho, magnus |
---|
3005 | |
---|
3006 | USE control_parameters, & |
---|
3007 | ONLY: pt_surface, surface_pressure |
---|
3008 | |
---|
3009 | IMPLICIT NONE |
---|
3010 | |
---|
3011 | INTEGER(iwp), INTENT(in) :: i !< |
---|
3012 | INTEGER(iwp), INTENT(in) :: j !< |
---|
3013 | |
---|
3014 | REAL(wp) :: t_surface !< absolute surface temperature (K) |
---|
3015 | |
---|
3016 | REAL(wp), DIMENSION(nzb:nzt+1) :: e_s !< saturation vapour pressure over water (Pa) |
---|
3017 | |
---|
3018 | REAL(wp), DIMENSION(:), INTENT(inout) :: adn_ij !< air density (kg/m3) |
---|
3019 | REAL(wp), DIMENSION(:), INTENT(inout) :: p_ij !< air pressure (Pa) |
---|
3020 | REAL(wp), DIMENSION(:), INTENT(inout) :: temp_ij !< air temperature (K) |
---|
3021 | |
---|
3022 | REAL(wp), DIMENSION(:), INTENT(inout), OPTIONAL :: cw_ij !< water vapour concentration (kg/m3) |
---|
3023 | REAL(wp), DIMENSION(:), INTENT(inout), OPTIONAL :: cs_ij !< saturation water vap. conc.(kg/m3) |
---|
3024 | ! |
---|
3025 | !-- Pressure p_ijk (Pa) = hydrostatic pressure |
---|
3026 | t_surface = pt_surface * exner_function( surface_pressure * 100.0_wp ) |
---|
3027 | p_ij(:) = barometric_formula( zu, t_surface, surface_pressure * 100.0_wp ) |
---|
3028 | ! |
---|
3029 | !-- Absolute ambient temperature (K) |
---|
3030 | temp_ij(:) = pt(:,j,i) * exner_function( p_ij(:) ) |
---|
3031 | ! |
---|
3032 | !-- Air density |
---|
3033 | adn_ij(:) = ideal_gas_law_rho( p_ij(:), temp_ij(:) ) |
---|
3034 | ! |
---|
3035 | !-- Water vapour concentration r_v (kg/m3) |
---|
3036 | IF ( PRESENT( cw_ij ) ) THEN |
---|
3037 | cw_ij(:) = ( q(:,j,i) / ( 1.0_wp - q(:,j,i) ) ) * adn_ij(:) |
---|
3038 | ENDIF |
---|
3039 | ! |
---|
3040 | !-- Saturation mixing ratio r_s (kg/kg) from vapour pressure at temp (Pa) |
---|
3041 | IF ( PRESENT( cs_ij ) ) THEN |
---|
3042 | e_s(:) = 611.0_wp * EXP( alv_d_rv * ( 3.6609E-3_wp - 1.0_wp / & |
---|
3043 | temp_ij(:) ) )! magnus( temp_ij(:) ) |
---|
3044 | cs_ij(:) = ( 0.622_wp * e_s / ( p_ij(:) - e_s(:) ) ) * adn_ij(:) |
---|
3045 | ENDIF |
---|
3046 | |
---|
3047 | END SUBROUTINE salsa_thrm_ij |
---|
3048 | |
---|
3049 | !------------------------------------------------------------------------------! |
---|
3050 | ! Description: |
---|
3051 | ! ------------ |
---|
3052 | !> Calculates ambient sizes of particles by equilibrating soluble fraction of |
---|
3053 | !> particles with water using the ZSR method (Stokes and Robinson, 1966). |
---|
3054 | !> Method: |
---|
3055 | !> Following chemical components are assumed water-soluble |
---|
3056 | !> - (ammonium) sulphate (100%) |
---|
3057 | !> - sea salt (100 %) |
---|
3058 | !> - organic carbon (epsoc * 100%) |
---|
3059 | !> Exact thermodynamic considerations neglected. |
---|
3060 | !> - If particles contain no sea salt, calculation according to sulphate |
---|
3061 | !> properties |
---|
3062 | !> - If contain sea salt but no sulphate, calculation according to sea salt |
---|
3063 | !> properties |
---|
3064 | !> - If contain both sulphate and sea salt -> the molar fraction of these |
---|
3065 | !> compounds determines which one of them is used as the basis of calculation. |
---|
3066 | !> If sulphate and sea salt coexist in a particle, it is assumed that the Cl is |
---|
3067 | !> replaced by sulphate; thus only either sulphate + organics or sea salt + |
---|
3068 | !> organics is included in the calculation of soluble fraction. |
---|
3069 | !> Molality parameterizations taken from Table 1 of Tang: Thermodynamic and |
---|
3070 | !> optical properties of mixed-salt aerosols of atmospheric importance, |
---|
3071 | !> J. Geophys. Res., 102 (D2), 1883-1893 (1997) |
---|
3072 | ! |
---|
3073 | !> Coded by: |
---|
3074 | !> Hannele Korhonen (FMI) 2005 |
---|
3075 | !> Harri Kokkola (FMI) 2006 |
---|
3076 | !> Matti Niskanen(FMI) 2012 |
---|
3077 | !> Anton Laakso (FMI) 2013 |
---|
3078 | !> Modified for the new aerosol datatype, Juha Tonttila (FMI) 2014 |
---|
3079 | ! |
---|
3080 | !> fxm: should sea salt form a solid particle when prh is very low (even though |
---|
3081 | !> it could be mixed with e.g. sulphate)? |
---|
3082 | !> fxm: crashes if no sulphate or sea salt |
---|
3083 | !> fxm: do we really need to consider Kelvin effect for subrange 2 |
---|
3084 | !------------------------------------------------------------------------------! |
---|
3085 | SUBROUTINE equilibration( prh, ptemp, paero, init ) |
---|
3086 | |
---|
3087 | IMPLICIT NONE |
---|
3088 | |
---|
3089 | INTEGER(iwp) :: ib !< loop index |
---|
3090 | INTEGER(iwp) :: counti !< loop index |
---|
3091 | |
---|
3092 | LOGICAL, INTENT(in) :: init !< TRUE: Initialization, FALSE: Normal runtime: update water |
---|
3093 | !< content only for 1a |
---|
3094 | |
---|
3095 | REAL(wp) :: zaw !< water activity [0-1] |
---|
3096 | REAL(wp) :: zcore !< Volume of dry particle |
---|
3097 | REAL(wp) :: zdold !< Old diameter |
---|
3098 | REAL(wp) :: zdwet !< Wet diameter or mean droplet diameter |
---|
3099 | REAL(wp) :: zke !< Kelvin term in the Köhler equation |
---|
3100 | REAL(wp) :: zlwc !< liquid water content [kg/m3-air] |
---|
3101 | REAL(wp) :: zrh !< Relative humidity |
---|
3102 | |
---|
3103 | REAL(wp), DIMENSION(maxspec) :: zbinmol !< binary molality of each components (mol/kg) |
---|
3104 | REAL(wp), DIMENSION(maxspec) :: zvpart !< volume of chem. compounds in one particle |
---|
3105 | |
---|
3106 | REAL(wp), INTENT(in) :: prh !< relative humidity [0-1] |
---|
3107 | REAL(wp), INTENT(in) :: ptemp !< temperature (K) |
---|
3108 | |
---|
3109 | TYPE(t_section), DIMENSION(nbins_aerosol), INTENT(inout) :: paero !< aerosol properties |
---|
3110 | |
---|
3111 | zaw = 0.0_wp |
---|
3112 | zlwc = 0.0_wp |
---|
3113 | ! |
---|
3114 | !-- Relative humidity: |
---|
3115 | zrh = prh |
---|
3116 | zrh = MAX( zrh, 0.05_wp ) |
---|
3117 | zrh = MIN( zrh, 0.98_wp) |
---|
3118 | ! |
---|
3119 | !-- 1) Regime 1: sulphate and partly water-soluble OC. Done for every CALL |
---|
3120 | DO ib = start_subrange_1a, end_subrange_1a ! size bin |
---|
3121 | |
---|
3122 | zbinmol = 0.0_wp |
---|
3123 | zdold = 1.0_wp |
---|
3124 | zke = 1.02_wp |
---|
3125 | |
---|
3126 | IF ( paero(ib)%numc > nclim ) THEN |
---|
3127 | ! |
---|
3128 | !-- Volume in one particle |
---|
3129 | zvpart = 0.0_wp |
---|
3130 | zvpart(1:2) = paero(ib)%volc(1:2) / paero(ib)%numc |
---|
3131 | zvpart(6:7) = paero(ib)%volc(6:7) / paero(ib)%numc |
---|
3132 | ! |
---|
3133 | !-- Total volume and wet diameter of one dry particle |
---|
3134 | zcore = SUM( zvpart(1:2) ) |
---|
3135 | zdwet = paero(ib)%dwet |
---|
3136 | |
---|
3137 | counti = 0 |
---|
3138 | DO WHILE ( ABS( zdwet / zdold - 1.0_wp ) > 1.0E-2_wp ) |
---|
3139 | |
---|
3140 | zdold = MAX( zdwet, 1.0E-20_wp ) |
---|
3141 | zaw = MAX( 1.0E-3_wp, zrh / zke ) ! To avoid underflow |
---|
3142 | ! |
---|
3143 | !-- Binary molalities (mol/kg): |
---|
3144 | !-- Sulphate |
---|
3145 | zbinmol(1) = 1.1065495E+2_wp - 3.6759197E+2_wp * zaw + 5.0462934E+2_wp * zaw**2 - & |
---|
3146 | 3.1543839E+2_wp * zaw**3 + 6.770824E+1_wp * zaw**4 |
---|
3147 | !-- Organic carbon |
---|
3148 | zbinmol(2) = 1.0_wp / ( zaw * amh2o ) - 1.0_wp / amh2o |
---|
3149 | !-- Nitric acid |
---|
3150 | zbinmol(6) = 2.306844303E+1_wp - 3.563608869E+1_wp * zaw - 6.210577919E+1_wp * zaw**2 & |
---|
3151 | + 5.510176187E+2_wp * zaw**3 - 1.460055286E+3_wp * zaw**4 & |
---|
3152 | + 1.894467542E+3_wp * zaw**5 - 1.220611402E+3_wp * zaw**6 & |
---|
3153 | + 3.098597737E+2_wp * zaw**7 |
---|
3154 | ! |
---|
3155 | !-- Calculate the liquid water content (kg/m3-air) using ZSR (see e.g. Eq. 10.98 in |
---|
3156 | !-- Seinfeld and Pandis (2006)) |
---|
3157 | zlwc = ( paero(ib)%volc(1) * ( arhoh2so4 / amh2so4 ) ) / zbinmol(1) + & |
---|
3158 | epsoc * paero(ib)%volc(2) * ( arhooc / amoc ) / zbinmol(2) + & |
---|
3159 | ( paero(ib)%volc(6) * ( arhohno3/amhno3 ) ) / zbinmol(6) |
---|
3160 | ! |
---|
3161 | !-- Particle wet diameter (m) |
---|
3162 | zdwet = ( zlwc / paero(ib)%numc / arhoh2o / api6 + ( SUM( zvpart(6:7) ) / api6 ) + & |
---|
3163 | zcore / api6 )**0.33333333_wp |
---|
3164 | ! |
---|
3165 | !-- Kelvin effect (Eq. 10.85 in in Seinfeld and Pandis (2006)). Avoid |
---|
3166 | !-- overflow. |
---|
3167 | zke = EXP( MIN( 50.0_wp, 4.0_wp * surfw0 * amvh2so4 / ( abo * ptemp * zdwet ) ) ) |
---|
3168 | |
---|
3169 | counti = counti + 1 |
---|
3170 | IF ( counti > 1000 ) THEN |
---|
3171 | message_string = 'Subrange 1: no convergence!' |
---|
3172 | CALL message( 'salsa_mod: equilibration', 'PA0617', 1, 2, 0, 6, 0 ) |
---|
3173 | ENDIF |
---|
3174 | ENDDO |
---|
3175 | ! |
---|
3176 | !-- Instead of lwc, use the volume concentration of water from now on |
---|
3177 | !-- (easy to convert...) |
---|
3178 | paero(ib)%volc(8) = zlwc / arhoh2o |
---|
3179 | ! |
---|
3180 | !-- If this is initialization, update the core and wet diameter |
---|
3181 | IF ( init ) THEN |
---|
3182 | paero(ib)%dwet = zdwet |
---|
3183 | paero(ib)%core = zcore |
---|
3184 | ENDIF |
---|
3185 | |
---|
3186 | ELSE |
---|
3187 | !-- If initialization |
---|
3188 | !-- 1.2) empty bins given bin average values |
---|
3189 | IF ( init ) THEN |
---|
3190 | paero(ib)%dwet = paero(ib)%dmid |
---|
3191 | paero(ib)%core = api6 * paero(ib)%dmid**3 |
---|
3192 | ENDIF |
---|
3193 | |
---|
3194 | ENDIF |
---|
3195 | |
---|
3196 | ENDDO ! ib |
---|
3197 | ! |
---|
3198 | !-- 2) Regime 2a: sulphate, OC, BC and sea salt |
---|
3199 | !-- This is done only for initialization call, otherwise the water contents |
---|
3200 | !-- are computed via condensation |
---|
3201 | IF ( init ) THEN |
---|
3202 | DO ib = start_subrange_2a, end_subrange_2b |
---|
3203 | ! |
---|
3204 | !-- Initialize |
---|
3205 | zke = 1.02_wp |
---|
3206 | zbinmol = 0.0_wp |
---|
3207 | zdold = 1.0_wp |
---|
3208 | ! |
---|
3209 | !-- 1) Particle properties calculated for non-empty bins |
---|
3210 | IF ( paero(ib)%numc > nclim ) THEN |
---|
3211 | ! |
---|
3212 | !-- Volume in one particle [fxm] |
---|
3213 | zvpart = 0.0_wp |
---|
3214 | zvpart(1:7) = paero(ib)%volc(1:7) / paero(ib)%numc |
---|
3215 | ! |
---|
3216 | !-- Total volume and wet diameter of one dry particle [fxm] |
---|
3217 | zcore = SUM( zvpart(1:5) ) |
---|
3218 | zdwet = paero(ib)%dwet |
---|
3219 | |
---|
3220 | counti = 0 |
---|
3221 | DO WHILE ( ABS( zdwet / zdold - 1.0_wp ) > 1.0E-12_wp ) |
---|
3222 | |
---|
3223 | zdold = MAX( zdwet, 1.0E-20_wp ) |
---|
3224 | zaw = zrh / zke |
---|
3225 | ! |
---|
3226 | !-- Binary molalities (mol/kg): |
---|
3227 | !-- Sulphate |
---|
3228 | zbinmol(1) = 1.1065495E+2_wp - 3.6759197E+2_wp * zaw + 5.0462934E+2_wp * zaw**2 - & |
---|
3229 | 3.1543839E+2_wp * zaw**3 + 6.770824E+1_wp * zaw**4 |
---|
3230 | !-- Organic carbon |
---|
3231 | zbinmol(2) = 1.0_wp / ( zaw * amh2o ) - 1.0_wp / amh2o |
---|
3232 | !-- Nitric acid |
---|
3233 | zbinmol(6) = 2.306844303E+1_wp - 3.563608869E+1_wp * zaw - & |
---|
3234 | 6.210577919E+1_wp * zaw**2 + 5.510176187E+2_wp * zaw**3 - & |
---|
3235 | 1.460055286E+3_wp * zaw**4 + 1.894467542E+3_wp * zaw**5 - & |
---|
3236 | 1.220611402E+3_wp * zaw**6 + 3.098597737E+2_wp * zaw**7 |
---|
3237 | !-- Sea salt (natrium chloride) |
---|
3238 | zbinmol(5) = 5.875248E+1_wp - 1.8781997E+2_wp * zaw + 2.7211377E+2_wp * zaw**2 - & |
---|
3239 | 1.8458287E+2_wp * zaw**3 + 4.153689E+1_wp * zaw**4 |
---|
3240 | ! |
---|
3241 | !-- Calculate the liquid water content (kg/m3-air) |
---|
3242 | zlwc = ( paero(ib)%volc(1) * ( arhoh2so4 / amh2so4 ) ) / zbinmol(1) + & |
---|
3243 | epsoc * ( paero(ib)%volc(2) * ( arhooc / amoc ) ) / zbinmol(2) + & |
---|
3244 | ( paero(ib)%volc(6) * ( arhohno3 / amhno3 ) ) / zbinmol(6) + & |
---|
3245 | ( paero(ib)%volc(5) * ( arhoss / amss ) ) / zbinmol(5) |
---|
3246 | |
---|
3247 | !-- Particle wet radius (m) |
---|
3248 | zdwet = ( zlwc / paero(ib)%numc / arhoh2o / api6 + ( SUM( zvpart(6:7) ) / api6 ) + & |
---|
3249 | zcore / api6 )**0.33333333_wp |
---|
3250 | ! |
---|
3251 | !-- Kelvin effect (Eq. 10.85 in Seinfeld and Pandis (2006)) |
---|
3252 | zke = EXP( MIN( 50.0_wp, 4.0_wp * surfw0 * amvh2so4 / ( abo * zdwet * ptemp ) ) ) |
---|
3253 | |
---|
3254 | counti = counti + 1 |
---|
3255 | IF ( counti > 1000 ) THEN |
---|
3256 | message_string = 'Subrange 2: no convergence!' |
---|
3257 | CALL message( 'salsa_mod: equilibration', 'PA0618', 1, 2, 0, 6, 0 ) |
---|
3258 | ENDIF |
---|
3259 | ENDDO |
---|
3260 | ! |
---|
3261 | !-- Liquid water content; instead of LWC use the volume concentration |
---|
3262 | paero(ib)%volc(8) = zlwc / arhoh2o |
---|
3263 | paero(ib)%dwet = zdwet |
---|
3264 | paero(ib)%core = zcore |
---|
3265 | |
---|
3266 | ELSE |
---|
3267 | !-- 2.2) empty bins given bin average values |
---|
3268 | paero(ib)%dwet = paero(ib)%dmid |
---|
3269 | paero(ib)%core = api6 * paero(ib)%dmid**3 |
---|
3270 | ENDIF |
---|
3271 | |
---|
3272 | ENDDO ! ib |
---|
3273 | ENDIF |
---|
3274 | |
---|
3275 | END SUBROUTINE equilibration |
---|
3276 | |
---|
3277 | !------------------------------------------------------------------------------! |
---|
3278 | !> Description: |
---|
3279 | !> ------------ |
---|
3280 | !> Calculation of the settling velocity vc (m/s) per aerosol size bin and |
---|
3281 | !> deposition on plant canopy (lsdepo_pcm). |
---|
3282 | ! |
---|
3283 | !> Deposition is based on either the scheme presented in: |
---|
3284 | !> Zhang et al. (2001), Atmos. Environ. 35, 549-560 (includes collection due to |
---|
3285 | !> Brownian diffusion, impaction, interception and sedimentation; hereafter ZO1) |
---|
3286 | !> OR |
---|
3287 | !> Petroff & Zhang (2010), Geosci. Model Dev. 3, 753-769 (includes also |
---|
3288 | !> collection due to turbulent impaction, hereafter P10) |
---|
3289 | ! |
---|
3290 | !> Equation numbers refer to equation in Jacobson (2005): Fundamentals of |
---|
3291 | !> Atmospheric Modeling, 2nd Edition. |
---|
3292 | ! |
---|
3293 | !> Subroutine follows closely sedim_SALSA in UCLALES-SALSA written by Juha |
---|
3294 | !> Tonttila (KIT/FMI) and Zubair Maalick (UEF). |
---|
3295 | !> Rewritten to PALM by Mona Kurppa (UH), 2017. |
---|
3296 | ! |
---|
3297 | !> Call for grid point i,j,k |
---|
3298 | !------------------------------------------------------------------------------! |
---|
3299 | |
---|
3300 | SUBROUTINE deposition( paero, tk, adn, mag_u, lad, kvis, schmidt_num, vc ) |
---|
3301 | |
---|
3302 | USE plant_canopy_model_mod, & |
---|
3303 | ONLY: cdc |
---|
3304 | |
---|
3305 | IMPLICIT NONE |
---|
3306 | |
---|
3307 | INTEGER(iwp) :: ib !< loop index |
---|
3308 | |
---|
3309 | REAL(wp) :: avis !< molecular viscocity of air (kg/(m*s)) |
---|
3310 | REAL(wp) :: Cc !< Cunningham slip-flow correction factor |
---|
3311 | REAL(wp) :: Kn !< Knudsen number |
---|
3312 | REAL(wp) :: lambda !< molecular mean free path (m) |
---|
3313 | REAL(wp) :: mdiff !< particle diffusivity coefficient |
---|
3314 | REAL(wp) :: pdn !< particle density (kg/m3) |
---|
3315 | REAL(wp) :: ustar !< friction velocity (m/s) |
---|
3316 | REAL(wp) :: va !< thermal speed of an air molecule (m/s) |
---|
3317 | REAL(wp) :: zdwet !< wet diameter (m) |
---|
3318 | |
---|
3319 | REAL(wp), INTENT(in) :: adn !< air density (kg/m3) |
---|
3320 | REAL(wp), INTENT(in) :: lad !< leaf area density (m2/m3) |
---|
3321 | REAL(wp), INTENT(in) :: mag_u !< wind velocity (m/s) |
---|
3322 | REAL(wp), INTENT(in) :: tk !< abs.temperature (K) |
---|
3323 | |
---|
3324 | REAL(wp), INTENT(inout) :: kvis !< kinematic viscosity of air (m2/s) |
---|
3325 | |
---|
3326 | REAL(wp), DIMENSION(:), INTENT(inout) :: schmidt_num !< particle Schmidt number |
---|
3327 | REAL(wp), DIMENSION(:), INTENT(inout) :: vc !< critical fall speed i.e. settling velocity of |
---|
3328 | !< an aerosol particle (m/s) |
---|
3329 | |
---|
3330 | TYPE(t_section), DIMENSION(nbins_aerosol), INTENT(inout) :: paero !< aerosol properties |
---|
3331 | ! |
---|
3332 | !-- Initialise |
---|
3333 | pdn = 1500.0_wp ! default value |
---|
3334 | ustar = 0.0_wp |
---|
3335 | ! |
---|
3336 | !-- Molecular viscosity of air (Eq. 4.54) |
---|
3337 | avis = 1.8325E-5_wp * ( 416.16_wp / ( tk + 120.0_wp ) ) * ( tk / 296.16_wp )**1.5_wp |
---|
3338 | ! |
---|
3339 | !-- Kinematic viscosity (Eq. 4.55) |
---|
3340 | kvis = avis / adn |
---|
3341 | ! |
---|
3342 | !-- Thermal velocity of an air molecule (Eq. 15.32) |
---|
3343 | va = SQRT( 8.0_wp * abo * tk / ( pi * am_airmol ) ) |
---|
3344 | ! |
---|
3345 | !-- Mean free path (m) (Eq. 15.24) |
---|
3346 | lambda = 2.0_wp * avis / ( adn * va ) |
---|
3347 | |
---|
3348 | DO ib = 1, nbins_aerosol |
---|
3349 | |
---|
3350 | IF ( paero(ib)%numc < nclim ) CYCLE |
---|
3351 | zdwet = paero(ib)%dwet |
---|
3352 | ! |
---|
3353 | !-- Knudsen number (Eq. 15.23) |
---|
3354 | Kn = MAX( 1.0E-2_wp, lambda / ( zdwet * 0.5_wp ) ) ! To avoid underflow |
---|
3355 | ! |
---|
3356 | !-- Cunningham slip-flow correction (Eq. 15.30) |
---|
3357 | Cc = 1.0_wp + Kn * ( 1.249_wp + 0.42_wp * EXP( -0.87_wp / Kn ) ) |
---|
3358 | |
---|
3359 | !-- Particle diffusivity coefficient (Eq. 15.29) |
---|
3360 | mdiff = ( abo * tk * Cc ) / ( 3.0_wp * pi * avis * zdwet ) |
---|
3361 | ! |
---|
3362 | !-- Particle Schmidt number (Eq. 15.36) |
---|
3363 | schmidt_num(ib) = kvis / mdiff |
---|
3364 | ! |
---|
3365 | !-- Critical fall speed i.e. settling velocity (Eq. 20.4) |
---|
3366 | vc(ib) = MIN( 1.0_wp, terminal_vel( 0.5_wp * zdwet, pdn, adn, avis, Cc) ) |
---|
3367 | ! |
---|
3368 | !-- Friction velocity for deposition on vegetation. Calculated following Prandtl (1925): |
---|
3369 | IF ( lsdepo_pcm .AND. plant_canopy .AND. lad > 0.0_wp ) THEN |
---|
3370 | ustar = SQRT( cdc ) * mag_u |
---|
3371 | CALL depo_pcm( paero, ib, vc(ib), mag_u, ustar, kvis, schmidt_num(ib), lad ) |
---|
3372 | ENDIF |
---|
3373 | ENDDO |
---|
3374 | |
---|
3375 | END SUBROUTINE deposition |
---|
3376 | |
---|
3377 | !------------------------------------------------------------------------------! |
---|
3378 | ! Description: |
---|
3379 | ! ------------ |
---|
3380 | !> Calculate change in number and volume concentrations due to deposition on |
---|
3381 | !> plant canopy. |
---|
3382 | !------------------------------------------------------------------------------! |
---|
3383 | SUBROUTINE depo_pcm( paero, ib, vc, mag_u, ustar, kvis_a, schmidt_num, lad ) |
---|
3384 | |
---|
3385 | IMPLICIT NONE |
---|
3386 | |
---|
3387 | INTEGER(iwp) :: ic !< loop index |
---|
3388 | |
---|
3389 | INTEGER(iwp), INTENT(in) :: ib !< loop index |
---|
3390 | |
---|
3391 | REAL(wp) :: alpha !< parameter, Table 3 in Z01 |
---|
3392 | REAL(wp) :: beta_im !< parameter for turbulent impaction |
---|
3393 | REAL(wp) :: depo !< deposition efficiency |
---|
3394 | REAL(wp) :: c_brownian_diff !< coefficient for Brownian diffusion |
---|
3395 | REAL(wp) :: c_impaction !< coefficient for inertial impaction |
---|
3396 | REAL(wp) :: c_interception !< coefficient for interception |
---|
3397 | REAL(wp) :: c_turb_impaction !< coefficient for turbulent impaction |
---|
3398 | REAL(wp) :: gamma !< parameter, Table 3 in Z01 |
---|
3399 | REAL(wp) :: par_a !< parameter A for the characteristic radius of collectors, |
---|
3400 | !< Table 3 in Z01 |
---|
3401 | REAL(wp) :: par_l !< obstacle characteristic dimension in P10 |
---|
3402 | REAL(wp) :: rs !< overall quasi-laminar resistance for particles |
---|
3403 | REAL(wp) :: stokes_num !< Stokes number for smooth or bluff surfaces |
---|
3404 | REAL(wp) :: tau_plus !< dimensionless particle relaxation time |
---|
3405 | REAL(wp) :: v_bd !< deposition velocity due to Brownian diffusion |
---|
3406 | REAL(wp) :: v_im !< deposition velocity due to impaction |
---|
3407 | REAL(wp) :: v_in !< deposition velocity due to interception |
---|
3408 | REAL(wp) :: v_it !< deposition velocity due to turbulent impaction |
---|
3409 | |
---|
3410 | REAL(wp), INTENT(in) :: kvis_a !< kinematic viscosity of air (m2/s) |
---|
3411 | REAL(wp), INTENT(in) :: lad !< leaf area density (m2/m3) |
---|
3412 | REAL(wp), INTENT(in) :: mag_u !< wind velocity (m/s) |
---|
3413 | REAL(wp), INTENT(in) :: schmidt_num !< particle Schmidt number |
---|
3414 | REAL(wp), INTENT(in) :: ustar !< friction velocity (m/s) |
---|
3415 | REAL(wp), INTENT(in) :: vc !< terminal velocity (m/s) |
---|
3416 | |
---|
3417 | TYPE(t_section), DIMENSION(nbins_aerosol), INTENT(inout) :: paero !< aerosol properties |
---|
3418 | ! |
---|
3419 | !-- Initialise |
---|
3420 | rs = 0.0_wp |
---|
3421 | tau_plus = 0.0_wp |
---|
3422 | v_bd = 0.0_wp |
---|
3423 | v_im = 0.0_wp |
---|
3424 | v_in = 0.0_wp |
---|
3425 | v_it = 0.0_wp |
---|
3426 | |
---|
3427 | IF ( depo_pcm_par == 'zhang2001' ) THEN |
---|
3428 | ! |
---|
3429 | !-- Parameters for the land use category 'deciduous broadleaf trees'(Table 3) |
---|
3430 | alpha = alpha_z01(depo_pcm_type_num) |
---|
3431 | gamma = gamma_z01(depo_pcm_type_num) |
---|
3432 | par_a = A_z01(depo_pcm_type_num, season) * 1.0E-3_wp |
---|
3433 | ! |
---|
3434 | !-- Stokes number for vegetated surfaces (Seinfeld & Pandis (2006): Eq.19.24) |
---|
3435 | stokes_num = vc * ustar / ( g * par_a ) |
---|
3436 | ! |
---|
3437 | !-- The overall quasi-laminar resistance for particles (Zhang et al., Eq. 5) |
---|
3438 | rs = MAX( EPSILON( 1.0_wp ), ( 3.0_wp * ustar * EXP( -stokes_num**0.5_wp ) * & |
---|
3439 | ( schmidt_num**( -gamma ) + ( stokes_num / ( alpha + stokes_num ) )**2 + & |
---|
3440 | 0.5_wp * ( paero(ib)%dwet / par_a )**2 ) ) ) |
---|
3441 | |
---|
3442 | depo = ( rs + vc ) * lad |
---|
3443 | |
---|
3444 | ELSEIF ( depo_pcm_par == 'petroff2010' ) THEN |
---|
3445 | ! |
---|
3446 | !-- vd = v_BD + v_IN + v_IM + v_IT + vc |
---|
3447 | !-- Deposition efficiencies from Table 1. Constants from Table 2. |
---|
3448 | par_l = l_p10(depo_pcm_type_num) * 0.01_wp |
---|
3449 | c_brownian_diff = c_b_p10(depo_pcm_type_num) |
---|
3450 | c_interception = c_in_p10(depo_pcm_type_num) |
---|
3451 | c_impaction = c_im_p10(depo_pcm_type_num) |
---|
3452 | beta_im = beta_im_p10(depo_pcm_type_num) |
---|
3453 | c_turb_impaction = c_it_p10(depo_pcm_type_num) |
---|
3454 | ! |
---|
3455 | !-- Stokes number for vegetated surfaces (Seinfeld & Pandis (2006): Eq.19.24) |
---|
3456 | stokes_num = vc * ustar / ( g * par_l ) |
---|
3457 | ! |
---|
3458 | !-- Non-dimensional relexation time of the particle on top of canopy |
---|
3459 | tau_plus = vc * ustar**2 / ( kvis_a * g ) |
---|
3460 | ! |
---|
3461 | !-- Brownian diffusion |
---|
3462 | v_bd = mag_u * c_brownian_diff * schmidt_num**( -0.66666666_wp ) * & |
---|
3463 | ( mag_u * par_l / kvis_a )**( -0.5_wp ) |
---|
3464 | ! |
---|
3465 | !-- Interception |
---|
3466 | v_in = mag_u * c_interception * paero(ib)%dwet / par_l * ( 2.0_wp + LOG( 2.0_wp * par_l / & |
---|
3467 | paero(ib)%dwet ) ) |
---|
3468 | ! |
---|
3469 | !-- Impaction: Petroff (2009) Eq. 18 |
---|
3470 | v_im = mag_u * c_impaction * ( stokes_num / ( stokes_num + beta_im ) )**2 |
---|
3471 | ! |
---|
3472 | !-- Turbulent impaction |
---|
3473 | IF ( tau_plus < 20.0_wp ) THEN |
---|
3474 | v_it = 2.5E-3_wp * c_turb_impaction * tau_plus**2 |
---|
3475 | ELSE |
---|
3476 | v_it = c_turb_impaction |
---|
3477 | ENDIF |
---|
3478 | |
---|
3479 | depo = ( v_bd + v_in + v_im + v_it + vc ) * lad |
---|
3480 | |
---|
3481 | ENDIF |
---|
3482 | ! |
---|
3483 | !-- Calculate the change in concentrations |
---|
3484 | paero(ib)%numc = paero(ib)%numc - depo * paero(ib)%numc * dt_salsa |
---|
3485 | DO ic = 1, maxspec+1 |
---|
3486 | paero(ib)%volc(ic) = paero(ib)%volc(ic) - depo * paero(ib)%volc(ic) * dt_salsa |
---|
3487 | ENDDO |
---|
3488 | |
---|
3489 | END SUBROUTINE depo_pcm |
---|
3490 | |
---|
3491 | !------------------------------------------------------------------------------! |
---|
3492 | ! Description: |
---|
3493 | ! ------------ |
---|
3494 | !> Calculate the dry deposition on horizontal and vertical surfaces. Implement |
---|
3495 | !> as a surface flux. |
---|
3496 | !> @todo aerodynamic resistance ignored for now (not important for |
---|
3497 | ! high-resolution simulations) |
---|
3498 | !------------------------------------------------------------------------------! |
---|
3499 | SUBROUTINE depo_surf( i, j, surf, vc, schmidt_num, kvis, mag_u, norm, l ) |
---|
3500 | |
---|
3501 | USE arrays_3d, & |
---|
3502 | ONLY: rho_air_zw |
---|
3503 | |
---|
3504 | USE surface_mod, & |
---|
3505 | ONLY: surf_type |
---|
3506 | |
---|
3507 | IMPLICIT NONE |
---|
3508 | |
---|
3509 | INTEGER(iwp) :: ib !< loop index |
---|
3510 | INTEGER(iwp) :: ic !< loop index |
---|
3511 | INTEGER(iwp) :: icc !< additional loop index |
---|
3512 | INTEGER(iwp) :: k !< loop index |
---|
3513 | INTEGER(iwp) :: m !< loop index |
---|
3514 | INTEGER(iwp) :: surf_e !< End index of surface elements at (j,i)-gridpoint |
---|
3515 | INTEGER(iwp) :: surf_s !< Start index of surface elements at (j,i)-gridpoint |
---|
3516 | |
---|
3517 | INTEGER(iwp), INTENT(in) :: i !< loop index |
---|
3518 | INTEGER(iwp), INTENT(in) :: j !< loop index |
---|
3519 | |
---|
3520 | INTEGER(iwp), INTENT(in), OPTIONAL :: l !< index variable for surface facing |
---|
3521 | |
---|
3522 | LOGICAL, INTENT(in) :: norm !< to normalise or not |
---|
3523 | |
---|
3524 | REAL(wp) :: alpha !< parameter, Table 3 in Z01 |
---|
3525 | REAL(wp) :: beta_im !< parameter for turbulent impaction |
---|
3526 | REAL(wp) :: c_brownian_diff !< coefficient for Brownian diffusion |
---|
3527 | REAL(wp) :: c_impaction !< coefficient for inertial impaction |
---|
3528 | REAL(wp) :: c_interception !< coefficient for interception |
---|
3529 | REAL(wp) :: c_turb_impaction !< coefficient for turbulent impaction |
---|
3530 | REAL(wp) :: depo !< deposition efficiency |
---|
3531 | REAL(wp) :: gamma !< parameter, Table 3 in Z01 |
---|
3532 | REAL(wp) :: norm_fac !< normalisation factor (usually air density) |
---|
3533 | REAL(wp) :: par_a !< parameter A for the characteristic radius of collectors, |
---|
3534 | !< Table 3 in Z01 |
---|
3535 | REAL(wp) :: par_l !< obstacle characteristic dimension in P10 |
---|
3536 | REAL(wp) :: rs !< the overall quasi-laminar resistance for particles |
---|
3537 | REAL(wp) :: stokes_num !< Stokes number for bluff surface elements |
---|
3538 | REAL(wp) :: tau_plus !< dimensionless particle relaxation time |
---|
3539 | REAL(wp) :: v_bd !< deposition velocity due to Brownian diffusion |
---|
3540 | REAL(wp) :: v_im !< deposition velocity due to impaction |
---|
3541 | REAL(wp) :: v_in !< deposition velocity due to interception |
---|
3542 | REAL(wp) :: v_it !< deposition velocity due to turbulent impaction |
---|
3543 | |
---|
3544 | REAL(wp), DIMENSION(:), INTENT(in) :: kvis !< kinematic viscosity of air (m2/s) |
---|
3545 | REAL(wp), DIMENSION(:), INTENT(in) :: mag_u !< wind velocity (m/s) |
---|
3546 | |
---|
3547 | REAL(wp), DIMENSION(:,:), INTENT(in) :: schmidt_num !< particle Schmidt number |
---|
3548 | REAL(wp), DIMENSION(:,:), INTENT(in) :: vc !< terminal velocity (m/s) |
---|
3549 | |
---|
3550 | TYPE(surf_type), INTENT(inout) :: surf !< respective surface type |
---|
3551 | ! |
---|
3552 | !-- Initialise |
---|
3553 | rs = 0.0_wp |
---|
3554 | surf_s = surf%start_index(j,i) |
---|
3555 | surf_e = surf%end_index(j,i) |
---|
3556 | tau_plus = 0.0_wp |
---|
3557 | v_bd = 0.0_wp |
---|
3558 | v_im = 0.0_wp |
---|
3559 | v_in = 0.0_wp |
---|
3560 | v_it = 0.0_wp |
---|
3561 | ! |
---|
3562 | !-- Model parameters for the land use category. If LSM is applied, import |
---|
3563 | !-- characteristics. Otherwise, apply surface type "urban". |
---|
3564 | alpha = alpha_z01(luc_urban) |
---|
3565 | gamma = gamma_z01(luc_urban) |
---|
3566 | par_a = A_z01(luc_urban, season) * 1.0E-3_wp |
---|
3567 | |
---|
3568 | par_l = l_p10(luc_urban) * 0.01_wp |
---|
3569 | c_brownian_diff = c_b_p10(luc_urban) |
---|
3570 | c_interception = c_in_p10(luc_urban) |
---|
3571 | c_impaction = c_im_p10(luc_urban) |
---|
3572 | beta_im = beta_im_p10(luc_urban) |
---|
3573 | c_turb_impaction = c_it_p10(luc_urban) |
---|
3574 | |
---|
3575 | DO m = surf_s, surf_e |
---|
3576 | k = surf%k(m) |
---|
3577 | |
---|
3578 | IF ( norm ) THEN |
---|
3579 | norm_fac = rho_air_zw(k) |
---|
3580 | IF ( land_surface ) THEN |
---|
3581 | alpha = alpha_z01( lsm_to_depo_h%match(m) ) |
---|
3582 | beta_im = beta_im_p10( lsm_to_depo_h%match(m) ) |
---|
3583 | c_brownian_diff = c_b_p10( lsm_to_depo_h%match(m) ) |
---|
3584 | c_impaction = c_im_p10( lsm_to_depo_h%match(m) ) |
---|
3585 | c_interception = c_in_p10( lsm_to_depo_h%match(m) ) |
---|
3586 | c_turb_impaction = c_it_p10( lsm_to_depo_h%match(m) ) |
---|
3587 | gamma = gamma_z01( lsm_to_depo_h%match(m) ) |
---|
3588 | par_a = A_z01( lsm_to_depo_h%match(m), season ) * 1.0E-3_wp |
---|
3589 | par_l = l_p10( lsm_to_depo_h%match(m) ) * 0.01_wp |
---|
3590 | ENDIF |
---|
3591 | ELSE |
---|
3592 | norm_fac = 0.0_wp |
---|
3593 | IF ( land_surface ) THEN |
---|
3594 | alpha = alpha_z01( lsm_to_depo_v(l)%match(m) ) |
---|
3595 | beta_im = beta_im_p10( lsm_to_depo_v(l)%match(m) ) |
---|
3596 | c_brownian_diff = c_b_p10( lsm_to_depo_v(l)%match(m) ) |
---|
3597 | c_impaction = c_im_p10( lsm_to_depo_v(l)%match(m) ) |
---|
3598 | c_interception = c_in_p10( lsm_to_depo_v(l)%match(m) ) |
---|
3599 | c_turb_impaction = c_it_p10( lsm_to_depo_v(l)%match(m) ) |
---|
3600 | gamma = gamma_z01( lsm_to_depo_v(l)%match(m) ) |
---|
3601 | par_a = A_z01( lsm_to_depo_v(l)%match(m), season ) * 1.0E-3_wp |
---|
3602 | par_l = l_p10( lsm_to_depo_v(l)%match(m) ) * 0.01_wp |
---|
3603 | ENDIF |
---|
3604 | ENDIF |
---|
3605 | |
---|
3606 | DO ib = 1, nbins_aerosol |
---|
3607 | IF ( aerosol_number(ib)%conc(k,j,i) <= nclim .OR. schmidt_num(k+1,ib) < 1.0_wp ) CYCLE |
---|
3608 | |
---|
3609 | IF ( depo_surf_par == 'zhang2001' ) THEN |
---|
3610 | ! |
---|
3611 | !-- Stokes number for smooth surfaces or surfaces with bluff roughness |
---|
3612 | !-- elements (Seinfeld and Pandis, 2nd edition (2006): Eq. 19.23) |
---|
3613 | stokes_num = MAX( 0.01_wp, vc(k+1,ib) * surf%us(m)**2 / ( g * kvis(k+1) ) ) |
---|
3614 | ! |
---|
3615 | !-- The overall quasi-laminar resistance for particles (Eq. 5) |
---|
3616 | rs = MAX( EPSILON( 1.0_wp ), ( 3.0_wp * surf%us(m) * ( schmidt_num(k+1,ib)**( -gamma )& |
---|
3617 | + ( stokes_num / ( alpha + stokes_num ) )**2 + 0.5_wp * ( ra_dry(k,j,i,ib) /& |
---|
3618 | par_a )**2 ) * EXP( -stokes_num**0.5_wp ) ) ) |
---|
3619 | depo = vc(k+1,ib) + rs |
---|
3620 | |
---|
3621 | ELSEIF ( depo_surf_par == 'petroff2010' ) THEN |
---|
3622 | ! |
---|
3623 | !-- vd = v_BD + v_IN + v_IM + v_IT + vc |
---|
3624 | ! |
---|
3625 | !-- Stokes number for smooth surfaces or surfaces with bluff roughness |
---|
3626 | !-- elements (Seinfeld and Pandis, 2nd edition (2006): Eq. 19.23) |
---|
3627 | stokes_num = MAX( 0.01_wp, vc(k+1,ib) * surf%us(m)**2 / ( g * kvis(k+1) ) ) |
---|
3628 | ! |
---|
3629 | !-- Non-dimensional relexation time of the particle on top of canopy |
---|
3630 | tau_plus = vc(k+1,ib) * surf%us(m)**2 / ( kvis(k+1) * g ) |
---|
3631 | ! |
---|
3632 | !-- Brownian diffusion |
---|
3633 | v_bd = mag_u(k+1) * c_brownian_diff * schmidt_num(k+1,ib)**( -0.666666_wp ) * & |
---|
3634 | ( mag_u(k+1) * par_l / kvis(k+1) )**( -0.5_wp ) |
---|
3635 | ! |
---|
3636 | !-- Interception |
---|
3637 | v_in = mag_u(k+1) * c_interception * ra_dry(k,j,i,ib)/ par_l * & |
---|
3638 | ( 2.0_wp + LOG( 2.0_wp * par_l / ra_dry(k,j,i,ib) ) ) |
---|
3639 | ! |
---|
3640 | !-- Impaction: Petroff (2009) Eq. 18 |
---|
3641 | v_im = mag_u(k+1) * c_impaction * ( stokes_num / ( stokes_num + beta_im ) )**2 |
---|
3642 | |
---|
3643 | IF ( tau_plus < 20.0_wp ) THEN |
---|
3644 | v_it = 2.5E-3_wp * c_turb_impaction * tau_plus**2 |
---|
3645 | ELSE |
---|
3646 | v_it = c_turb_impaction |
---|
3647 | ENDIF |
---|
3648 | depo = v_bd + v_in + v_im + v_it + vc(k+1,ib) |
---|
3649 | |
---|
3650 | ENDIF |
---|
3651 | ! |
---|
3652 | !-- Calculate changes in surface fluxes due to dry deposition |
---|
3653 | IF ( aero_emission_att%lod == 2 .OR. salsa_emission_mode == 'no_emission' ) THEN |
---|
3654 | surf%answs(m,ib) = -depo * norm_fac * aerosol_number(ib)%conc(k,j,i) |
---|
3655 | DO ic = 1, ncomponents_mass |
---|
3656 | icc = ( ic - 1 ) * nbins_aerosol + ib |
---|
3657 | surf%amsws(m,icc) = -depo * norm_fac * aerosol_mass(icc)%conc(k,j,i) |
---|
3658 | ENDDO ! ic |
---|
3659 | ELSE |
---|
3660 | surf%answs(m,ib) = aerosol_number(ib)%source(j,i) - & |
---|
3661 | MAX( 0.0_wp, depo * norm_fac * aerosol_number(ib)%conc(k,j,i) ) |
---|
3662 | DO ic = 1, ncomponents_mass |
---|
3663 | icc = ( ic - 1 ) * nbins_aerosol + ib |
---|
3664 | surf%amsws(m,icc) = aerosol_mass(icc)%source(j,i) - & |
---|
3665 | MAX( 0.0_wp, depo * norm_fac * aerosol_mass(icc)%conc(k,j,i) ) |
---|
3666 | ENDDO ! ic |
---|
3667 | ENDIF |
---|
3668 | ENDDO ! ib |
---|
3669 | ENDDO ! m |
---|
3670 | |
---|
3671 | END SUBROUTINE depo_surf |
---|
3672 | |
---|
3673 | !------------------------------------------------------------------------------! |
---|
3674 | ! Description: |
---|
3675 | ! ------------ |
---|
3676 | ! Function for calculating terminal velocities for different particles sizes. |
---|
3677 | !------------------------------------------------------------------------------! |
---|
3678 | REAL(wp) FUNCTION terminal_vel( radius, rhop, rhoa, visc, beta ) |
---|
3679 | |
---|
3680 | IMPLICIT NONE |
---|
3681 | |
---|
3682 | REAL(wp), INTENT(in) :: beta !< Cunningham correction factor |
---|
3683 | REAL(wp), INTENT(in) :: radius !< particle radius (m) |
---|
3684 | REAL(wp), INTENT(in) :: rhop !< particle density (kg/m3) |
---|
3685 | REAL(wp), INTENT(in) :: rhoa !< air density (kg/m3) |
---|
3686 | REAL(wp), INTENT(in) :: visc !< molecular viscosity of air (kg/(m*s)) |
---|
3687 | |
---|
3688 | ! |
---|
3689 | !-- Stokes law with Cunningham slip correction factor |
---|
3690 | terminal_vel = 4.0_wp * radius**2 * ( rhop - rhoa ) * g * beta / ( 18.0_wp * visc ) ! (m/s) |
---|
3691 | |
---|
3692 | END FUNCTION terminal_vel |
---|
3693 | |
---|
3694 | !------------------------------------------------------------------------------! |
---|
3695 | ! Description: |
---|
3696 | ! ------------ |
---|
3697 | !> Calculates particle loss and change in size distribution due to (Brownian) |
---|
3698 | !> coagulation. Only for particles with dwet < 30 micrometres. |
---|
3699 | ! |
---|
3700 | !> Method: |
---|
3701 | !> Semi-implicit, non-iterative method: (Jacobson, 1994) |
---|
3702 | !> Volume concentrations of the smaller colliding particles added to the bin of |
---|
3703 | !> the larger colliding particles. Start from first bin and use the updated |
---|
3704 | !> number and volume for calculation of following bins. NB! Our bin numbering |
---|
3705 | !> does not follow particle size in subrange 2. |
---|
3706 | ! |
---|
3707 | !> Schematic for bin numbers in different subranges: |
---|
3708 | !> 1 2 |
---|
3709 | !> +-------------------------------------------+ |
---|
3710 | !> a | 1 | 2 | 3 || 4 | 5 | 6 | 7 | 8 | 9 | 10|| |
---|
3711 | !> b | ||11 |12 |13 |14 | 15 | 16 | 17|| |
---|
3712 | !> +-------------------------------------------+ |
---|
3713 | ! |
---|
3714 | !> Exact coagulation coefficients for each pressure level are scaled according |
---|
3715 | !> to current particle wet size (linear scaling). |
---|
3716 | !> Bins are organized in terms of the dry size of the condensation nucleus, |
---|
3717 | !> while coagulation kernell is calculated with the actual hydrometeor |
---|
3718 | !> size. |
---|
3719 | ! |
---|
3720 | !> Called from salsa_driver |
---|
3721 | !> fxm: Process selection should be made smarter - now just lots of IFs inside |
---|
3722 | !> loops |
---|
3723 | ! |
---|
3724 | !> Coded by: |
---|
3725 | !> Hannele Korhonen (FMI) 2005 |
---|
3726 | !> Harri Kokkola (FMI) 2006 |
---|
3727 | !> Tommi Bergman (FMI) 2012 |
---|
3728 | !> Matti Niskanen(FMI) 2012 |
---|
3729 | !> Anton Laakso (FMI) 2013 |
---|
3730 | !> Juha Tonttila (FMI) 2014 |
---|
3731 | !------------------------------------------------------------------------------! |
---|
3732 | SUBROUTINE coagulation( paero, ptstep, ptemp, ppres ) |
---|
3733 | |
---|
3734 | IMPLICIT NONE |
---|
3735 | |
---|
3736 | INTEGER(iwp) :: index_2a !< corresponding bin in subrange 2a |
---|
3737 | INTEGER(iwp) :: index_2b !< corresponding bin in subrange 2b |
---|
3738 | INTEGER(iwp) :: ib !< loop index |
---|
3739 | INTEGER(iwp) :: ll !< loop index |
---|
3740 | INTEGER(iwp) :: mm !< loop index |
---|
3741 | INTEGER(iwp) :: nn !< loop index |
---|
3742 | |
---|
3743 | REAL(wp) :: pressi !< pressure |
---|
3744 | REAL(wp) :: temppi !< temperature |
---|
3745 | REAL(wp) :: zdpart_mm !< diameter of particle (m) |
---|
3746 | REAL(wp) :: zdpart_nn !< diameter of particle (m) |
---|
3747 | REAL(wp) :: zminusterm !< coagulation loss in a bin (1/s) |
---|
3748 | |
---|
3749 | REAL(wp), INTENT(in) :: ppres !< ambient pressure (Pa) |
---|
3750 | REAL(wp), INTENT(in) :: ptemp !< ambient temperature (K) |
---|
3751 | REAL(wp), INTENT(in) :: ptstep !< time step (s) |
---|
3752 | |
---|
3753 | REAL(wp), DIMENSION(nbins_aerosol) :: zmpart !< approximate mass of particles (kg) |
---|
3754 | REAL(wp), DIMENSION(maxspec+1) :: zplusterm !< coagulation gain in a bin (for each |
---|
3755 | !< chemical compound) |
---|
3756 | REAL(wp), DIMENSION(nbins_aerosol,nbins_aerosol) :: zcc !< updated coagulation coefficients (m3/s) |
---|
3757 | |
---|
3758 | TYPE(t_section), DIMENSION(nbins_aerosol), INTENT(inout) :: paero !< Aerosol properties |
---|
3759 | |
---|
3760 | zdpart_mm = 0.0_wp |
---|
3761 | zdpart_nn = 0.0_wp |
---|
3762 | ! |
---|
3763 | !-- 1) Coagulation to coarse mode calculated in a simplified way: |
---|
3764 | !-- CoagSink ~ Dp in continuum subrange, thus we calculate 'effective' |
---|
3765 | !-- number concentration of coarse particles |
---|
3766 | |
---|
3767 | !-- 2) Updating coagulation coefficients |
---|
3768 | ! |
---|
3769 | !-- Aerosol mass (kg). Density of 1500 kg/m3 assumed |
---|
3770 | zmpart(1:end_subrange_2b) = api6 * ( MIN( paero(1:end_subrange_2b)%dwet, 30.0E-6_wp )**3 ) & |
---|
3771 | * 1500.0_wp |
---|
3772 | temppi = ptemp |
---|
3773 | pressi = ppres |
---|
3774 | zcc = 0.0_wp |
---|
3775 | ! |
---|
3776 | !-- Aero-aero coagulation |
---|
3777 | DO mm = 1, end_subrange_2b ! smaller colliding particle |
---|
3778 | IF ( paero(mm)%numc < nclim ) CYCLE |
---|
3779 | DO nn = mm, end_subrange_2b ! larger colliding particle |
---|
3780 | IF ( paero(nn)%numc < nclim ) CYCLE |
---|
3781 | |
---|
3782 | zdpart_mm = MIN( paero(mm)%dwet, 30.0E-6_wp ) ! Limit to 30 um |
---|
3783 | zdpart_nn = MIN( paero(nn)%dwet, 30.0E-6_wp ) ! Limit to 30 um |
---|
3784 | ! |
---|
3785 | !-- Coagulation coefficient of particles (m3/s) |
---|
3786 | zcc(mm,nn) = coagc( zdpart_mm, zdpart_nn, zmpart(mm), zmpart(nn), temppi, pressi ) |
---|
3787 | zcc(nn,mm) = zcc(mm,nn) |
---|
3788 | ENDDO |
---|
3789 | ENDDO |
---|
3790 | |
---|
3791 | ! |
---|
3792 | !-- 3) New particle and volume concentrations after coagulation: |
---|
3793 | !-- Calculated according to Jacobson (2005) eq. 15.9 |
---|
3794 | ! |
---|
3795 | !-- Aerosols in subrange 1a: |
---|
3796 | DO ib = start_subrange_1a, end_subrange_1a |
---|
3797 | IF ( paero(ib)%numc < nclim ) CYCLE |
---|
3798 | zminusterm = 0.0_wp |
---|
3799 | zplusterm(:) = 0.0_wp |
---|
3800 | ! |
---|
3801 | !-- Particles lost by coagulation with larger aerosols |
---|
3802 | DO ll = ib+1, end_subrange_2b |
---|
3803 | zminusterm = zminusterm + zcc(ib,ll) * paero(ll)%numc |
---|
3804 | ENDDO |
---|
3805 | ! |
---|
3806 | !-- Coagulation gain in a bin: change in volume conc. (cm3/cm3): |
---|
3807 | DO ll = start_subrange_1a, ib - 1 |
---|
3808 | zplusterm(1:2) = zplusterm(1:2) + zcc(ll,ib) * paero(ll)%volc(1:2) |
---|
3809 | zplusterm(6:7) = zplusterm(6:7) + zcc(ll,ib) * paero(ll)%volc(6:7) |
---|
3810 | zplusterm(8) = zplusterm(8) + zcc(ll,ib) * paero(ll)%volc(8) |
---|
3811 | ENDDO |
---|
3812 | ! |
---|
3813 | !-- Volume and number concentrations after coagulation update [fxm] |
---|
3814 | paero(ib)%volc(1:2) = ( paero(ib)%volc(1:2) + ptstep * zplusterm(1:2) * paero(ib)%numc ) / & |
---|
3815 | ( 1.0_wp + ptstep * zminusterm ) |
---|
3816 | paero(ib)%volc(6:8) = ( paero(ib)%volc(6:8) + ptstep * zplusterm(6:8) * paero(ib)%numc ) / & |
---|
3817 | ( 1.0_wp + ptstep * zminusterm ) |
---|
3818 | paero(ib)%numc = paero(ib)%numc / ( 1.0_wp + ptstep * zminusterm + 0.5_wp * ptstep * & |
---|
3819 | zcc(ib,ib) * paero(ib)%numc ) |
---|
3820 | ENDDO |
---|
3821 | ! |
---|
3822 | !-- Aerosols in subrange 2a: |
---|
3823 | DO ib = start_subrange_2a, end_subrange_2a |
---|
3824 | IF ( paero(ib)%numc < nclim ) CYCLE |
---|
3825 | zminusterm = 0.0_wp |
---|
3826 | zplusterm(:) = 0.0_wp |
---|
3827 | ! |
---|
3828 | !-- Find corresponding size bin in subrange 2b |
---|
3829 | index_2b = ib - start_subrange_2a + start_subrange_2b |
---|
3830 | ! |
---|
3831 | !-- Particles lost by larger particles in 2a |
---|
3832 | DO ll = ib+1, end_subrange_2a |
---|
3833 | zminusterm = zminusterm + zcc(ib,ll) * paero(ll)%numc |
---|
3834 | ENDDO |
---|
3835 | ! |
---|
3836 | !-- Particles lost by larger particles in 2b |
---|
3837 | IF ( .NOT. no_insoluble ) THEN |
---|
3838 | DO ll = index_2b+1, end_subrange_2b |
---|
3839 | zminusterm = zminusterm + zcc(ib,ll) * paero(ll)%numc |
---|
3840 | ENDDO |
---|
3841 | ENDIF |
---|
3842 | ! |
---|
3843 | !-- Particle volume gained from smaller particles in subranges 1, 2a and 2b |
---|
3844 | DO ll = start_subrange_1a, ib-1 |
---|
3845 | zplusterm(1:2) = zplusterm(1:2) + zcc(ll,ib) * paero(ll)%volc(1:2) |
---|
3846 | zplusterm(6:8) = zplusterm(6:8) + zcc(ll,ib) * paero(ll)%volc(6:8) |
---|
3847 | ENDDO |
---|
3848 | ! |
---|
3849 | !-- Particle volume gained from smaller particles in 2a |
---|
3850 | !-- (Note, for components not included in the previous loop!) |
---|
3851 | DO ll = start_subrange_2a, ib-1 |
---|
3852 | zplusterm(3:5) = zplusterm(3:5) + zcc(ll,ib)*paero(ll)%volc(3:5) |
---|
3853 | ENDDO |
---|
3854 | ! |
---|
3855 | !-- Particle volume gained from smaller (and equal) particles in 2b |
---|
3856 | IF ( .NOT. no_insoluble ) THEN |
---|
3857 | DO ll = start_subrange_2b, index_2b |
---|
3858 | zplusterm(1:8) = zplusterm(1:8) + zcc(ll,ib) * paero(ll)%volc(1:8) |
---|
3859 | ENDDO |
---|
3860 | ENDIF |
---|
3861 | ! |
---|
3862 | !-- Volume and number concentrations after coagulation update [fxm] |
---|
3863 | paero(ib)%volc(1:8) = ( paero(ib)%volc(1:8) + ptstep * zplusterm(1:8) * paero(ib)%numc ) / & |
---|
3864 | ( 1.0_wp + ptstep * zminusterm ) |
---|
3865 | paero(ib)%numc = paero(ib)%numc / ( 1.0_wp + ptstep * zminusterm + 0.5_wp * ptstep * & |
---|
3866 | zcc(ib,ib) * paero(ib)%numc ) |
---|
3867 | ENDDO |
---|
3868 | ! |
---|
3869 | !-- Aerosols in subrange 2b: |
---|
3870 | IF ( .NOT. no_insoluble ) THEN |
---|
3871 | DO ib = start_subrange_2b, end_subrange_2b |
---|
3872 | IF ( paero(ib)%numc < nclim ) CYCLE |
---|
3873 | zminusterm = 0.0_wp |
---|
3874 | zplusterm(:) = 0.0_wp |
---|
3875 | ! |
---|
3876 | !-- Find corresponding size bin in subsubrange 2a |
---|
3877 | index_2a = ib - start_subrange_2b + start_subrange_2a |
---|
3878 | ! |
---|
3879 | !-- Particles lost to larger particles in subranges 2b |
---|
3880 | DO ll = ib + 1, end_subrange_2b |
---|
3881 | zminusterm = zminusterm + zcc(ib,ll) * paero(ll)%numc |
---|
3882 | ENDDO |
---|
3883 | ! |
---|
3884 | !-- Particles lost to larger and equal particles in 2a |
---|
3885 | DO ll = index_2a, end_subrange_2a |
---|
3886 | zminusterm = zminusterm + zcc(ib,ll) * paero(ll)%numc |
---|
3887 | ENDDO |
---|
3888 | ! |
---|
3889 | !-- Particle volume gained from smaller particles in subranges 1 & 2a |
---|
3890 | DO ll = start_subrange_1a, index_2a - 1 |
---|
3891 | zplusterm(1:8) = zplusterm(1:8) + zcc(ll,ib) * paero(ll)%volc(1:8) |
---|
3892 | ENDDO |
---|
3893 | ! |
---|
3894 | !-- Particle volume gained from smaller particles in 2b |
---|
3895 | DO ll = start_subrange_2b, ib - 1 |
---|
3896 | zplusterm(1:8) = zplusterm(1:8) + zcc(ll,ib) * paero(ll)%volc(1:8) |
---|
3897 | ENDDO |
---|
3898 | ! |
---|
3899 | !-- Volume and number concentrations after coagulation update [fxm] |
---|
3900 | paero(ib)%volc(1:8) = ( paero(ib)%volc(1:8) + ptstep * zplusterm(1:8) * paero(ib)%numc ) & |
---|
3901 | / ( 1.0_wp + ptstep * zminusterm ) |
---|
3902 | paero(ib)%numc = paero(ib)%numc / ( 1.0_wp + ptstep * zminusterm + 0.5_wp * ptstep * & |
---|
3903 | zcc(ib,ib) * paero(ib)%numc ) |
---|
3904 | ENDDO |
---|
3905 | ENDIF |
---|
3906 | |
---|
3907 | END SUBROUTINE coagulation |
---|
3908 | |
---|
3909 | !------------------------------------------------------------------------------! |
---|
3910 | ! Description: |
---|
3911 | ! ------------ |
---|
3912 | !> Calculation of coagulation coefficients. Extended version of the function |
---|
3913 | !> originally found in mo_salsa_init. |
---|
3914 | ! |
---|
3915 | !> J. Tonttila, FMI, 05/2014 |
---|
3916 | !------------------------------------------------------------------------------! |
---|
3917 | REAL(wp) FUNCTION coagc( diam1, diam2, mass1, mass2, temp, pres ) |
---|
3918 | |
---|
3919 | IMPLICIT NONE |
---|
3920 | |
---|
3921 | REAL(wp) :: fmdist !< distance of flux matching (m) |
---|
3922 | REAL(wp) :: knud_p !< particle Knudsen number |
---|
3923 | REAL(wp) :: mdiam !< mean diameter of colliding particles (m) |
---|
3924 | REAL(wp) :: mfp !< mean free path of air molecules (m) |
---|
3925 | REAL(wp) :: visc !< viscosity of air (kg/(m s)) |
---|
3926 | |
---|
3927 | REAL(wp), INTENT(in) :: diam1 !< diameter of colliding particle 1 (m) |
---|
3928 | REAL(wp), INTENT(in) :: diam2 !< diameter of colliding particle 2 (m) |
---|
3929 | REAL(wp), INTENT(in) :: mass1 |
---|