1 | !> @file salsa_mod.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM-4U. |
---|
4 | ! |
---|
5 | ! PALM-4U is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM-4U is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 2018-2018 University of Helsinki |
---|
18 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
19 | !--------------------------------------------------------------------------------! |
---|
20 | ! |
---|
21 | ! Current revisions: |
---|
22 | ! ----------------- |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! Former revisions: |
---|
26 | ! ----------------- |
---|
27 | ! $Id: salsa_mod.f90 3636 2018-12-19 13:48:34Z raasch $ |
---|
28 | ! nopointer option removed |
---|
29 | ! |
---|
30 | ! 3630 2018-12-17 11:04:17Z knoop |
---|
31 | ! - Moved the control parameter "salsa" from salsa_mod.f90 to control_parameters |
---|
32 | ! - Updated salsa_rrd_local and salsa_wrd_local |
---|
33 | ! - Add target attribute |
---|
34 | ! - Revise initialization in case of restarts |
---|
35 | ! - Revise masked data output |
---|
36 | ! |
---|
37 | ! 3582 2018-11-29 19:16:36Z suehring |
---|
38 | ! missing comma separator inserted |
---|
39 | ! |
---|
40 | ! 3483 2018-11-02 14:19:26Z raasch |
---|
41 | ! bugfix: directives added to allow compilation without netCDF |
---|
42 | ! |
---|
43 | ! 3481 2018-11-02 09:14:13Z raasch |
---|
44 | ! temporary variable cc introduced to circumvent a possible Intel18 compiler bug |
---|
45 | ! related to contiguous/non-contguous pointer/target attributes |
---|
46 | ! |
---|
47 | ! 3473 2018-10-30 20:50:15Z suehring |
---|
48 | ! NetCDF input routine renamed |
---|
49 | ! |
---|
50 | ! 3467 2018-10-30 19:05:21Z suehring |
---|
51 | ! Initial revision |
---|
52 | ! |
---|
53 | ! 3412 2018-10-24 07:25:57Z monakurppa |
---|
54 | ! |
---|
55 | ! Authors: |
---|
56 | ! -------- |
---|
57 | ! @author Mona Kurppa (University of Helsinki) |
---|
58 | ! |
---|
59 | ! |
---|
60 | ! Description: |
---|
61 | ! ------------ |
---|
62 | !> Sectional aerosol module for large scale applications SALSA |
---|
63 | !> (Kokkola et al., 2008, ACP 8, 2469-2483). Solves the aerosol number and mass |
---|
64 | !> concentration as well as chemical composition. Includes aerosol dynamic |
---|
65 | !> processes: nucleation, condensation/evaporation of vapours, coagulation and |
---|
66 | !> deposition on tree leaves, ground and roofs. |
---|
67 | !> Implementation is based on formulations implemented in UCLALES-SALSA except |
---|
68 | !> for deposition which is based on parametrisations by Zhang et al. (2001, |
---|
69 | !> Atmos. Environ. 35, 549-560) or Petroff&Zhang (2010, Geosci. Model Dev. 3, |
---|
70 | !> 753-769) |
---|
71 | !> |
---|
72 | !> @todo Implement turbulent inflow of aerosols in inflow_turbulence. |
---|
73 | !> @todo Deposition on subgrid scale vegetation |
---|
74 | !> @todo Deposition on vegetation calculated by default for deciduous broadleaf |
---|
75 | !> trees |
---|
76 | !> @todo Revise masked data output. There is a potential bug in case of |
---|
77 | !> terrain-following masked output, according to data_output_mask. |
---|
78 | !> @todo There are now improved interfaces for NetCDF data input which can be |
---|
79 | !> used instead of get variable etc. |
---|
80 | !------------------------------------------------------------------------------! |
---|
81 | MODULE salsa_mod |
---|
82 | |
---|
83 | USE basic_constants_and_equations_mod, & |
---|
84 | ONLY: c_p, g, p_0, pi, r_d |
---|
85 | |
---|
86 | USE chemistry_model_mod, & |
---|
87 | ONLY: chem_species, nspec, nvar, spc_names |
---|
88 | |
---|
89 | USE chem_modules, & |
---|
90 | ONLY: call_chem_at_all_substeps, chem_gasphase_on |
---|
91 | |
---|
92 | USE control_parameters |
---|
93 | |
---|
94 | USE indices, & |
---|
95 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, & |
---|
96 | nzb_s_inner, nz, nzt, wall_flags_0 |
---|
97 | |
---|
98 | USE kinds |
---|
99 | |
---|
100 | USE pegrid |
---|
101 | |
---|
102 | USE salsa_util_mod |
---|
103 | |
---|
104 | IMPLICIT NONE |
---|
105 | ! |
---|
106 | !-- SALSA constants: |
---|
107 | ! |
---|
108 | !-- Local constants: |
---|
109 | INTEGER(iwp), PARAMETER :: ngast = 5 !< total number of gaseous tracers: |
---|
110 | !< 1 = H2SO4, 2 = HNO3, 3 = NH3, |
---|
111 | !< 4 = OCNV (non-volatile OC), |
---|
112 | !< 5 = OCSV (semi-volatile) |
---|
113 | INTEGER(iwp), PARAMETER :: nmod = 7 !< number of modes for initialising |
---|
114 | !< the aerosol size distribution |
---|
115 | INTEGER(iwp), PARAMETER :: nreg = 2 !< Number of main size subranges |
---|
116 | INTEGER(iwp), PARAMETER :: maxspec = 7 !< Max. number of aerosol species |
---|
117 | ! |
---|
118 | !-- Universal constants |
---|
119 | REAL(wp), PARAMETER :: abo = 1.380662E-23_wp !< Boltzmann constant (J/K) |
---|
120 | REAL(wp), PARAMETER :: alv = 2.260E+6_wp !< latent heat for H2O |
---|
121 | !< vaporisation (J/kg) |
---|
122 | REAL(wp), PARAMETER :: alv_d_rv = 4896.96865_wp !< alv / rv |
---|
123 | REAL(wp), PARAMETER :: am_airmol = 4.8096E-26_wp !< Average mass of one air |
---|
124 | !< molecule (Jacobson, |
---|
125 | !< 2005, Eq. 2.3) |
---|
126 | REAL(wp), PARAMETER :: api6 = 0.5235988_wp !< pi / 6 |
---|
127 | REAL(wp), PARAMETER :: argas = 8.314409_wp !< Gas constant (J/(mol K)) |
---|
128 | REAL(wp), PARAMETER :: argas_d_cpd = 8.281283865E-3_wp !< argas per cpd |
---|
129 | REAL(wp), PARAMETER :: avo = 6.02214E+23_wp !< Avogadro constant (1/mol) |
---|
130 | REAL(wp), PARAMETER :: d_sa = 5.539376964394570E-10_wp !< diameter of |
---|
131 | !< condensing sulphuric |
---|
132 | !< acid molecule (m) |
---|
133 | REAL(wp), PARAMETER :: for_ppm_to_nconc = 7.243016311E+16_wp !< |
---|
134 | !< ppm * avo / R (K/(Pa*m3)) |
---|
135 | REAL(wp), PARAMETER :: epsoc = 0.15_wp !< water uptake of organic |
---|
136 | !< material |
---|
137 | REAL(wp), PARAMETER :: mclim = 1.0E-23_wp !< mass concentration min |
---|
138 | !< limit for aerosols (kg/m3) |
---|
139 | REAL(wp), PARAMETER :: n3 = 158.79_wp !< Number of H2SO4 molecules in |
---|
140 | !< 3 nm cluster if d_sa=5.54e-10m |
---|
141 | REAL(wp), PARAMETER :: nclim = 1.0_wp !< number concentration min limit |
---|
142 | !< for aerosols and gases (#/m3) |
---|
143 | REAL(wp), PARAMETER :: surfw0 = 0.073_wp !< surface tension of pure water |
---|
144 | !< at ~ 293 K (J/m2) |
---|
145 | REAL(wp), PARAMETER :: vclim = 1.0E-24_wp !< volume concentration min |
---|
146 | !< limit for aerosols (m3/m3) |
---|
147 | !-- Molar masses in kg/mol |
---|
148 | REAL(wp), PARAMETER :: ambc = 12.0E-3_wp !< black carbon (BC) |
---|
149 | REAL(wp), PARAMETER :: amdair = 28.970E-3_wp !< dry air |
---|
150 | REAL(wp), PARAMETER :: amdu = 100.E-3_wp !< mineral dust |
---|
151 | REAL(wp), PARAMETER :: amh2o = 18.0154E-3_wp !< H2O |
---|
152 | REAL(wp), PARAMETER :: amh2so4 = 98.06E-3_wp !< H2SO4 |
---|
153 | REAL(wp), PARAMETER :: amhno3 = 63.01E-3_wp !< HNO3 |
---|
154 | REAL(wp), PARAMETER :: amn2o = 44.013E-3_wp !< N2O |
---|
155 | REAL(wp), PARAMETER :: amnh3 = 17.031E-3_wp !< NH3 |
---|
156 | REAL(wp), PARAMETER :: amo2 = 31.9988E-3_wp !< O2 |
---|
157 | REAL(wp), PARAMETER :: amo3 = 47.998E-3_wp !< O3 |
---|
158 | REAL(wp), PARAMETER :: amoc = 150.E-3_wp !< organic carbon (OC) |
---|
159 | REAL(wp), PARAMETER :: amss = 58.44E-3_wp !< sea salt (NaCl) |
---|
160 | !-- Densities in kg/m3 |
---|
161 | REAL(wp), PARAMETER :: arhobc = 2000.0_wp !< black carbon |
---|
162 | REAL(wp), PARAMETER :: arhodu = 2650.0_wp !< mineral dust |
---|
163 | REAL(wp), PARAMETER :: arhoh2o = 1000.0_wp !< H2O |
---|
164 | REAL(wp), PARAMETER :: arhoh2so4 = 1830.0_wp !< SO4 |
---|
165 | REAL(wp), PARAMETER :: arhohno3 = 1479.0_wp !< HNO3 |
---|
166 | REAL(wp), PARAMETER :: arhonh3 = 1530.0_wp !< NH3 |
---|
167 | REAL(wp), PARAMETER :: arhooc = 2000.0_wp !< organic carbon |
---|
168 | REAL(wp), PARAMETER :: arhoss = 2165.0_wp !< sea salt (NaCl) |
---|
169 | !-- Volume of molecule in m3/# |
---|
170 | REAL(wp), PARAMETER :: amvh2o = amh2o /avo / arhoh2o !< H2O |
---|
171 | REAL(wp), PARAMETER :: amvh2so4 = amh2so4 / avo / arhoh2so4 !< SO4 |
---|
172 | REAL(wp), PARAMETER :: amvhno3 = amhno3 / avo / arhohno3 !< HNO3 |
---|
173 | REAL(wp), PARAMETER :: amvnh3 = amnh3 / avo / arhonh3 !< NH3 |
---|
174 | REAL(wp), PARAMETER :: amvoc = amoc / avo / arhooc !< OC |
---|
175 | REAL(wp), PARAMETER :: amvss = amss / avo / arhoss !< sea salt |
---|
176 | |
---|
177 | ! |
---|
178 | !-- SALSA switches: |
---|
179 | INTEGER(iwp) :: nj3 = 1 !< J3 parametrization (nucleation) |
---|
180 | !< 1 = condensational sink (Kerminen&Kulmala, 2002) |
---|
181 | !< 2 = coagulational sink (Lehtinen et al. 2007) |
---|
182 | !< 3 = coagS+self-coagulation (Anttila et al. 2010) |
---|
183 | INTEGER(iwp) :: nsnucl = 0 !< Choice of the nucleation scheme: |
---|
184 | !< 0 = off |
---|
185 | !< 1 = binary nucleation |
---|
186 | !< 2 = activation type nucleation |
---|
187 | !< 3 = kinetic nucleation |
---|
188 | !< 4 = ternary nucleation |
---|
189 | !< 5 = nucleation with ORGANICs |
---|
190 | !< 6 = activation type of nucleation with |
---|
191 | !< H2SO4+ORG |
---|
192 | !< 7 = heteromolecular nucleation with H2SO4*ORG |
---|
193 | !< 8 = homomolecular nucleation of H2SO4 + |
---|
194 | !< heteromolecular nucleation with H2SO4*ORG |
---|
195 | !< 9 = homomolecular nucleation of H2SO4 and ORG |
---|
196 | !< +heteromolecular nucleation with H2SO4*ORG |
---|
197 | LOGICAL :: advect_particle_water = .TRUE. !< advect water concentration of |
---|
198 | !< particles |
---|
199 | LOGICAL :: decycle_lr = .FALSE. !< Undo cyclic boundary |
---|
200 | !< conditions: left and right |
---|
201 | LOGICAL :: decycle_ns = .FALSE. !< north and south boundaries |
---|
202 | LOGICAL :: feedback_to_palm = .FALSE. !< allow feedback due to |
---|
203 | !< hydration and/or condensation |
---|
204 | !< of H20 |
---|
205 | LOGICAL :: no_insoluble = .FALSE. !< Switch to exclude insoluble |
---|
206 | !< chemical components |
---|
207 | LOGICAL :: read_restart_data_salsa = .FALSE. !< read restart data for salsa |
---|
208 | LOGICAL :: salsa_gases_from_chem = .FALSE. !< Transfer the gaseous |
---|
209 | !< components to SALSA from |
---|
210 | !< from chemistry model |
---|
211 | LOGICAL :: van_der_waals_coagc = .FALSE. !< Enhancement of coagulation |
---|
212 | !< kernel by van der Waals and |
---|
213 | !< viscous forces |
---|
214 | LOGICAL :: write_binary_salsa = .FALSE. !< read binary for salsa |
---|
215 | !-- Process switches: nl* is read from the NAMELIST and is NOT changed. |
---|
216 | !-- ls* is the switch used and will get the value of nl* |
---|
217 | !-- except for special circumstances (spinup period etc.) |
---|
218 | LOGICAL :: nlcoag = .FALSE. !< Coagulation master switch |
---|
219 | LOGICAL :: lscoag = .FALSE. !< |
---|
220 | LOGICAL :: nlcnd = .FALSE. !< Condensation master switch |
---|
221 | LOGICAL :: lscnd = .FALSE. !< |
---|
222 | LOGICAL :: nlcndgas = .FALSE. !< Condensation of precursor gases |
---|
223 | LOGICAL :: lscndgas = .FALSE. !< |
---|
224 | LOGICAL :: nlcndh2oae = .FALSE. !< Condensation of H2O on aerosol |
---|
225 | LOGICAL :: lscndh2oae = .FALSE. !< particles (FALSE -> equilibrium calc.) |
---|
226 | LOGICAL :: nldepo = .FALSE. !< Deposition master switch |
---|
227 | LOGICAL :: lsdepo = .FALSE. !< |
---|
228 | LOGICAL :: nldepo_topo = .FALSE. !< Deposition on vegetation master switch |
---|
229 | LOGICAL :: lsdepo_topo = .FALSE. !< |
---|
230 | LOGICAL :: nldepo_vege = .FALSE. !< Deposition on walls master switch |
---|
231 | LOGICAL :: lsdepo_vege = .FALSE. !< |
---|
232 | LOGICAL :: nldistupdate = .TRUE. !< Size distribution update master switch |
---|
233 | LOGICAL :: lsdistupdate = .FALSE. !< |
---|
234 | ! |
---|
235 | !-- SALSA variables: |
---|
236 | CHARACTER (LEN=20) :: bc_salsa_b = 'neumann' !< bottom boundary condition |
---|
237 | CHARACTER (LEN=20) :: bc_salsa_t = 'neumann' !< top boundary condition |
---|
238 | CHARACTER (LEN=20) :: depo_vege_type = 'zhang2001' !< or 'petroff2010' |
---|
239 | CHARACTER (LEN=20) :: depo_topo_type = 'zhang2001' !< or 'petroff2010' |
---|
240 | CHARACTER (LEN=20), DIMENSION(4) :: decycle_method = & |
---|
241 | (/'dirichlet','dirichlet','dirichlet','dirichlet'/) |
---|
242 | !< Decycling method at horizontal boundaries, |
---|
243 | !< 1=left, 2=right, 3=south, 4=north |
---|
244 | !< dirichlet = initial size distribution and |
---|
245 | !< chemical composition set for the ghost and |
---|
246 | !< first three layers |
---|
247 | !< neumann = zero gradient |
---|
248 | CHARACTER (LEN=3), DIMENSION(maxspec) :: listspec = & !< Active aerosols |
---|
249 | (/'SO4',' ',' ',' ',' ',' ',' '/) |
---|
250 | CHARACTER (LEN=20) :: salsa_source_mode = 'no_source' |
---|
251 | !< 'read_from_file', |
---|
252 | !< 'constant' or 'no_source' |
---|
253 | INTEGER(iwp) :: dots_salsa = 0 !< starting index for salsa-timeseries |
---|
254 | INTEGER(iwp) :: fn1a = 1 !< last index for bin subranges: subrange 1a |
---|
255 | INTEGER(iwp) :: fn2a = 1 !< subrange 2a |
---|
256 | INTEGER(iwp) :: fn2b = 1 !< subrange 2b |
---|
257 | INTEGER(iwp), DIMENSION(ngast) :: gas_index_chem = (/ 1, 1, 1, 1, 1/) !< |
---|
258 | !< Index of gaseous compounds in the chemistry |
---|
259 | !< model. In SALSA, 1 = H2SO4, 2 = HNO3, |
---|
260 | !< 3 = NH3, 4 = OCNV, 5 = OCSV |
---|
261 | INTEGER(iwp) :: ibc_salsa_b !< |
---|
262 | INTEGER(iwp) :: ibc_salsa_t !< |
---|
263 | INTEGER(iwp) :: igctyp = 0 !< Initial gas concentration type |
---|
264 | !< 0 = uniform (use H2SO4_init, HNO3_init, |
---|
265 | !< NH3_init, OCNV_init and OCSV_init) |
---|
266 | !< 1 = read vertical profile from an input file |
---|
267 | INTEGER(iwp) :: in1a = 1 !< start index for bin subranges: subrange 1a |
---|
268 | INTEGER(iwp) :: in2a = 1 !< subrange 2a |
---|
269 | INTEGER(iwp) :: in2b = 1 !< subrange 2b |
---|
270 | INTEGER(iwp) :: isdtyp = 0 !< Initial size distribution type |
---|
271 | !< 0 = uniform |
---|
272 | !< 1 = read vertical profile of the mode number |
---|
273 | !< concentration from an input file |
---|
274 | INTEGER(iwp) :: ibc = -1 !< Indice for: black carbon (BC) |
---|
275 | INTEGER(iwp) :: idu = -1 !< dust |
---|
276 | INTEGER(iwp) :: inh = -1 !< NH3 |
---|
277 | INTEGER(iwp) :: ino = -1 !< HNO3 |
---|
278 | INTEGER(iwp) :: ioc = -1 !< organic carbon (OC) |
---|
279 | INTEGER(iwp) :: iso4 = -1 !< SO4 or H2SO4 |
---|
280 | INTEGER(iwp) :: iss = -1 !< sea salt |
---|
281 | INTEGER(iwp) :: lod_aero = 0 !< level of detail for aerosol emissions |
---|
282 | INTEGER(iwp) :: lod_gases = 0 !< level of detail for gaseous emissions |
---|
283 | INTEGER(iwp), DIMENSION(nreg) :: nbin = (/ 3, 7/) !< Number of size bins |
---|
284 | !< for each aerosol size subrange |
---|
285 | INTEGER(iwp) :: nbins = 1 !< total number of size bins |
---|
286 | INTEGER(iwp) :: ncc = 1 !< number of chemical components used |
---|
287 | INTEGER(iwp) :: ncc_tot = 1!< total number of chemical compounds (ncc+1 |
---|
288 | !< if particle water is advected) |
---|
289 | REAL(wp) :: act_coeff = 1.0E-7_wp !< Activation coefficient |
---|
290 | REAL(wp) :: aerosol_source = 0.0_wp !< Constant aerosol flux (#/(m3*s)) |
---|
291 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: emission_mass_fracs !< array for |
---|
292 | !< aerosol composition per emission category |
---|
293 | !< 1:SO4 2:OC 3:BC 4:DU 5:SS 6:NO 7:NH |
---|
294 | REAL(wp) :: dt_salsa = 0.00001_wp !< Time step of SALSA |
---|
295 | REAL(wp) :: H2SO4_init = nclim !< Init value for sulphuric acid gas |
---|
296 | REAL(wp) :: HNO3_init = nclim !< Init value for nitric acid gas |
---|
297 | REAL(wp) :: last_salsa_time = 0.0_wp !< time of the previous salsa |
---|
298 | !< timestep |
---|
299 | REAL(wp) :: nf2a = 1.0_wp !< Number fraction allocated to a- |
---|
300 | !< bins in subrange 2 |
---|
301 | !< (b-bins will get 1-nf2a) |
---|
302 | REAL(wp) :: NH3_init = nclim !< Init value for ammonia gas |
---|
303 | REAL(wp) :: OCNV_init = nclim !< Init value for non-volatile |
---|
304 | !< organic gases |
---|
305 | REAL(wp) :: OCSV_init = nclim !< Init value for semi-volatile |
---|
306 | !< organic gases |
---|
307 | REAL(wp), DIMENSION(nreg+1) :: reglim = & !< Min&max diameters of size subranges |
---|
308 | (/ 3.0E-9_wp, 5.0E-8_wp, 1.0E-5_wp/) |
---|
309 | REAL(wp) :: rhlim = 1.20_wp !< RH limit in %/100. Prevents |
---|
310 | !< unrealistically high RH in condensation |
---|
311 | REAL(wp) :: skip_time_do_salsa = 0.0_wp !< Starting time of SALSA (s) |
---|
312 | !-- Initial log-normal size distribution: mode diameter (dpg, micrometres), |
---|
313 | !-- standard deviation (sigmag) and concentration (n_lognorm, #/cm3) |
---|
314 | REAL(wp), DIMENSION(nmod) :: dpg = (/0.013_wp, 0.054_wp, 0.86_wp, & |
---|
315 | 0.2_wp, 0.2_wp, 0.2_wp, 0.2_wp/) |
---|
316 | REAL(wp), DIMENSION(nmod) :: sigmag = (/1.8_wp, 2.16_wp, 2.21_wp, & |
---|
317 | 2.0_wp, 2.0_wp, 2.0_wp, 2.0_wp/) |
---|
318 | REAL(wp), DIMENSION(nmod) :: n_lognorm = (/1.04e+5_wp, 3.23E+4_wp, 5.4_wp,& |
---|
319 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp/) |
---|
320 | !-- Initial mass fractions / chemical composition of the size distribution |
---|
321 | REAL(wp), DIMENSION(maxspec) :: mass_fracs_a = & !< mass fractions between |
---|
322 | (/1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0/) !< aerosol species for A bins |
---|
323 | REAL(wp), DIMENSION(maxspec) :: mass_fracs_b = & !< mass fractions between |
---|
324 | (/0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0/) !< aerosol species for B bins |
---|
325 | |
---|
326 | REAL(wp), ALLOCATABLE, DIMENSION(:) :: bin_low_limits !< to deliver |
---|
327 | !< information about |
---|
328 | !< the lower |
---|
329 | !< diameters per bin |
---|
330 | REAL(wp), ALLOCATABLE, DIMENSION(:) :: nsect !< Background number |
---|
331 | !< concentration per bin |
---|
332 | REAL(wp), ALLOCATABLE, DIMENSION(:) :: massacc !< Mass accomodation |
---|
333 | !< coefficients per bin |
---|
334 | ! |
---|
335 | !-- SALSA derived datatypes: |
---|
336 | ! |
---|
337 | !-- Prognostic variable: Aerosol size bin information (number (#/m3) and |
---|
338 | !-- mass (kg/m3) concentration) and the concentration of gaseous tracers (#/m3). |
---|
339 | !-- Gas tracers are contained sequentially in dimension 4 as: |
---|
340 | !-- 1. H2SO4, 2. HNO3, 3. NH3, 4. OCNV (non-volatile organics), |
---|
341 | !-- 5. OCSV (semi-volatile) |
---|
342 | TYPE salsa_variable |
---|
343 | REAL(wp), POINTER, DIMENSION(:,:,:), CONTIGUOUS :: conc |
---|
344 | REAL(wp), POINTER, DIMENSION(:,:,:), CONTIGUOUS :: conc_p |
---|
345 | REAL(wp), POINTER, DIMENSION(:,:,:), CONTIGUOUS :: tconc_m |
---|
346 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: flux_s, diss_s |
---|
347 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: flux_l, diss_l |
---|
348 | REAL(wp), ALLOCATABLE, DIMENSION(:) :: init |
---|
349 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: source |
---|
350 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: sums_ws_l |
---|
351 | END TYPE salsa_variable |
---|
352 | |
---|
353 | !-- Map bin indices between parallel size distributions |
---|
354 | TYPE t_parallelbin |
---|
355 | INTEGER(iwp) :: cur ! Index for current distribution |
---|
356 | INTEGER(iwp) :: par ! Index for corresponding parallel distribution |
---|
357 | END TYPE t_parallelbin |
---|
358 | |
---|
359 | !-- Datatype used to store information about the binned size distributions of |
---|
360 | !-- aerosols |
---|
361 | TYPE t_section |
---|
362 | REAL(wp) :: vhilim !< bin volume at the high limit |
---|
363 | REAL(wp) :: vlolim !< bin volume at the low limit |
---|
364 | REAL(wp) :: vratiohi !< volume ratio between the center and high limit |
---|
365 | REAL(wp) :: vratiolo !< volume ratio between the center and low limit |
---|
366 | REAL(wp) :: dmid !< bin middle diameter (m) |
---|
367 | !****************************************************** |
---|
368 | ! ^ Do NOT change the stuff above after initialization ! |
---|
369 | !****************************************************** |
---|
370 | REAL(wp) :: dwet !< Wet diameter or mean droplet diameter (m) |
---|
371 | REAL(wp), DIMENSION(maxspec+1) :: volc !< Volume concentrations |
---|
372 | !< (m^3/m^3) of aerosols + water. Since most of |
---|
373 | !< the stuff in SALSA is hard coded, these *have to |
---|
374 | !< be* in the order |
---|
375 | !< 1:SO4, 2:OC, 3:BC, 4:DU, 5:SS, 6:NO, 7:NH, 8:H2O |
---|
376 | REAL(wp) :: veqh2o !< Equilibrium H2O concentration for each particle |
---|
377 | REAL(wp) :: numc !< Number concentration of particles/droplets (#/m3) |
---|
378 | REAL(wp) :: core !< Volume of dry particle |
---|
379 | END TYPE t_section |
---|
380 | ! |
---|
381 | !-- Local aerosol properties in SALSA |
---|
382 | TYPE(t_section), ALLOCATABLE :: aero(:) |
---|
383 | ! |
---|
384 | !-- SALSA tracers: |
---|
385 | !-- Tracers as x = x(k,j,i,bin). The 4th dimension contains all the size bins |
---|
386 | !-- sequentially for each aerosol species + water. |
---|
387 | ! |
---|
388 | !-- Prognostic tracers: |
---|
389 | ! |
---|
390 | !-- Number concentration (#/m3) |
---|
391 | TYPE(salsa_variable), ALLOCATABLE, DIMENSION(:), TARGET :: aerosol_number |
---|
392 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: nconc_1 |
---|
393 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: nconc_2 |
---|
394 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: nconc_3 |
---|
395 | ! |
---|
396 | !-- Mass concentration (kg/m3) |
---|
397 | TYPE(salsa_variable), ALLOCATABLE, DIMENSION(:), TARGET :: aerosol_mass |
---|
398 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: mconc_1 |
---|
399 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: mconc_2 |
---|
400 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: mconc_3 |
---|
401 | ! |
---|
402 | !-- Gaseous tracers (#/m3) |
---|
403 | TYPE(salsa_variable), ALLOCATABLE, DIMENSION(:), TARGET :: salsa_gas |
---|
404 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: gconc_1 |
---|
405 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: gconc_2 |
---|
406 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: gconc_3 |
---|
407 | ! |
---|
408 | !-- Diagnostic tracers |
---|
409 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: sedim_vd !< sedimentation |
---|
410 | !< velocity per size |
---|
411 | !< bin (m/s) |
---|
412 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: Ra_dry !< dry radius (m) |
---|
413 | |
---|
414 | !-- Particle component index tables |
---|
415 | TYPE(component_index) :: prtcl !< Contains "getIndex" which gives the index |
---|
416 | !< for a given aerosol component name, i.e. |
---|
417 | !< 1:SO4, 2:OC, 3:BC, 4:DU, |
---|
418 | !< 5:SS, 6:NO, 7:NH, 8:H2O |
---|
419 | ! |
---|
420 | !-- Data output arrays: |
---|
421 | !-- Gases: |
---|
422 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_H2SO4_av !< H2SO4 |
---|
423 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_HNO3_av !< HNO3 |
---|
424 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_NH3_av !< NH3 |
---|
425 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_OCNV_av !< non-vola- |
---|
426 | !< tile OC |
---|
427 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_OCSV_av !< semi-vol. |
---|
428 | !< OC |
---|
429 | !-- Integrated: |
---|
430 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: LDSA_av !< lung- |
---|
431 | !< deposited |
---|
432 | !< surface area |
---|
433 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: Ntot_av !< total number |
---|
434 | !< conc. |
---|
435 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: PM25_av !< PM2.5 |
---|
436 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: PM10_av !< PM10 |
---|
437 | !-- In the particle phase: |
---|
438 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_BC_av !< black carbon |
---|
439 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_DU_av !< dust |
---|
440 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_H2O_av !< liquid water |
---|
441 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_NH_av !< ammonia |
---|
442 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_NO_av !< nitrates |
---|
443 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_OC_av !< org. carbon |
---|
444 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_SO4_av !< sulphates |
---|
445 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_SS_av !< sea salt |
---|
446 | !-- Bins: |
---|
447 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: mbins_av !< bin mass |
---|
448 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: Nbins_av !< bin number |
---|
449 | |
---|
450 | |
---|
451 | ! |
---|
452 | !-- PALM interfaces: |
---|
453 | ! |
---|
454 | !-- Boundary conditions: |
---|
455 | INTERFACE salsa_boundary_conds |
---|
456 | MODULE PROCEDURE salsa_boundary_conds |
---|
457 | MODULE PROCEDURE salsa_boundary_conds_decycle |
---|
458 | END INTERFACE salsa_boundary_conds |
---|
459 | ! |
---|
460 | !-- Data output checks for 2D/3D data to be done in check_parameters |
---|
461 | INTERFACE salsa_check_data_output |
---|
462 | MODULE PROCEDURE salsa_check_data_output |
---|
463 | END INTERFACE salsa_check_data_output |
---|
464 | |
---|
465 | ! |
---|
466 | !-- Input parameter checks to be done in check_parameters |
---|
467 | INTERFACE salsa_check_parameters |
---|
468 | MODULE PROCEDURE salsa_check_parameters |
---|
469 | END INTERFACE salsa_check_parameters |
---|
470 | |
---|
471 | ! |
---|
472 | !-- Averaging of 3D data for output |
---|
473 | INTERFACE salsa_3d_data_averaging |
---|
474 | MODULE PROCEDURE salsa_3d_data_averaging |
---|
475 | END INTERFACE salsa_3d_data_averaging |
---|
476 | |
---|
477 | ! |
---|
478 | !-- Data output of 2D quantities |
---|
479 | INTERFACE salsa_data_output_2d |
---|
480 | MODULE PROCEDURE salsa_data_output_2d |
---|
481 | END INTERFACE salsa_data_output_2d |
---|
482 | |
---|
483 | ! |
---|
484 | !-- Data output of 3D data |
---|
485 | INTERFACE salsa_data_output_3d |
---|
486 | MODULE PROCEDURE salsa_data_output_3d |
---|
487 | END INTERFACE salsa_data_output_3d |
---|
488 | |
---|
489 | ! |
---|
490 | !-- Data output of 3D data |
---|
491 | INTERFACE salsa_data_output_mask |
---|
492 | MODULE PROCEDURE salsa_data_output_mask |
---|
493 | END INTERFACE salsa_data_output_mask |
---|
494 | |
---|
495 | ! |
---|
496 | !-- Definition of data output quantities |
---|
497 | INTERFACE salsa_define_netcdf_grid |
---|
498 | MODULE PROCEDURE salsa_define_netcdf_grid |
---|
499 | END INTERFACE salsa_define_netcdf_grid |
---|
500 | |
---|
501 | ! |
---|
502 | !-- Output of information to the header file |
---|
503 | INTERFACE salsa_header |
---|
504 | MODULE PROCEDURE salsa_header |
---|
505 | END INTERFACE salsa_header |
---|
506 | |
---|
507 | ! |
---|
508 | !-- Initialization actions |
---|
509 | INTERFACE salsa_init |
---|
510 | MODULE PROCEDURE salsa_init |
---|
511 | END INTERFACE salsa_init |
---|
512 | |
---|
513 | ! |
---|
514 | !-- Initialization of arrays |
---|
515 | INTERFACE salsa_init_arrays |
---|
516 | MODULE PROCEDURE salsa_init_arrays |
---|
517 | END INTERFACE salsa_init_arrays |
---|
518 | |
---|
519 | ! |
---|
520 | !-- Writing of binary output for restart runs !!! renaming?! |
---|
521 | INTERFACE salsa_wrd_local |
---|
522 | MODULE PROCEDURE salsa_wrd_local |
---|
523 | END INTERFACE salsa_wrd_local |
---|
524 | |
---|
525 | ! |
---|
526 | !-- Reading of NAMELIST parameters |
---|
527 | INTERFACE salsa_parin |
---|
528 | MODULE PROCEDURE salsa_parin |
---|
529 | END INTERFACE salsa_parin |
---|
530 | |
---|
531 | ! |
---|
532 | !-- Reading of parameters for restart runs |
---|
533 | INTERFACE salsa_rrd_local |
---|
534 | MODULE PROCEDURE salsa_rrd_local |
---|
535 | END INTERFACE salsa_rrd_local |
---|
536 | |
---|
537 | ! |
---|
538 | !-- Swapping of time levels (required for prognostic variables) |
---|
539 | INTERFACE salsa_swap_timelevel |
---|
540 | MODULE PROCEDURE salsa_swap_timelevel |
---|
541 | END INTERFACE salsa_swap_timelevel |
---|
542 | |
---|
543 | INTERFACE salsa_driver |
---|
544 | MODULE PROCEDURE salsa_driver |
---|
545 | END INTERFACE salsa_driver |
---|
546 | |
---|
547 | INTERFACE salsa_tendency |
---|
548 | MODULE PROCEDURE salsa_tendency |
---|
549 | MODULE PROCEDURE salsa_tendency_ij |
---|
550 | END INTERFACE salsa_tendency |
---|
551 | |
---|
552 | |
---|
553 | |
---|
554 | SAVE |
---|
555 | |
---|
556 | PRIVATE |
---|
557 | ! |
---|
558 | !-- Public functions: |
---|
559 | PUBLIC salsa_boundary_conds, salsa_check_data_output, & |
---|
560 | salsa_check_parameters, salsa_3d_data_averaging, & |
---|
561 | salsa_data_output_2d, salsa_data_output_3d, salsa_data_output_mask, & |
---|
562 | salsa_define_netcdf_grid, salsa_diagnostics, salsa_driver, & |
---|
563 | salsa_header, salsa_init, salsa_init_arrays, salsa_parin, & |
---|
564 | salsa_rrd_local, salsa_swap_timelevel, salsa_tendency, & |
---|
565 | salsa_wrd_local |
---|
566 | ! |
---|
567 | !-- Public parameters, constants and initial values |
---|
568 | PUBLIC dots_salsa, dt_salsa, last_salsa_time, lsdepo, salsa, & |
---|
569 | salsa_gases_from_chem, skip_time_do_salsa |
---|
570 | ! |
---|
571 | !-- Public prognostic variables |
---|
572 | PUBLIC aerosol_mass, aerosol_number, fn2a, fn2b, gconc_2, in1a, in2b, & |
---|
573 | mconc_2, nbins, ncc, ncc_tot, nclim, nconc_2, ngast, prtcl, Ra_dry, & |
---|
574 | salsa_gas, sedim_vd |
---|
575 | |
---|
576 | |
---|
577 | CONTAINS |
---|
578 | |
---|
579 | !------------------------------------------------------------------------------! |
---|
580 | ! Description: |
---|
581 | ! ------------ |
---|
582 | !> Parin for &salsa_par for new modules |
---|
583 | !------------------------------------------------------------------------------! |
---|
584 | SUBROUTINE salsa_parin |
---|
585 | |
---|
586 | IMPLICIT NONE |
---|
587 | |
---|
588 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line |
---|
589 | !< of the parameter file |
---|
590 | |
---|
591 | NAMELIST /salsa_parameters/ & |
---|
592 | advect_particle_water, & ! Switch for advecting |
---|
593 | ! particle water. If .FALSE., |
---|
594 | ! equilibration is called at |
---|
595 | ! each time step. |
---|
596 | bc_salsa_b, & ! bottom boundary condition |
---|
597 | bc_salsa_t, & ! top boundary condition |
---|
598 | decycle_lr, & ! decycle SALSA components |
---|
599 | decycle_method, & ! decycle method applied: |
---|
600 | ! 1=left 2=right 3=south 4=north |
---|
601 | decycle_ns, & ! decycle SALSA components |
---|
602 | depo_vege_type, & ! Parametrisation type |
---|
603 | depo_topo_type, & ! Parametrisation type |
---|
604 | dpg, & ! Mean diameter for the initial |
---|
605 | ! log-normal modes |
---|
606 | dt_salsa, & ! SALSA timestep in seconds |
---|
607 | feedback_to_palm, & ! allow feedback due to |
---|
608 | ! hydration / condensation |
---|
609 | H2SO4_init, & ! Init value for sulphuric acid |
---|
610 | HNO3_init, & ! Init value for nitric acid |
---|
611 | igctyp, & ! Initial gas concentration type |
---|
612 | isdtyp, & ! Initial size distribution type |
---|
613 | listspec, & ! List of actived aerosols |
---|
614 | ! (string list) |
---|
615 | mass_fracs_a, & ! Initial relative contribution |
---|
616 | ! of each species to particle |
---|
617 | ! volume in a-bins, 0 for unused |
---|
618 | mass_fracs_b, & ! Initial relative contribution |
---|
619 | ! of each species to particle |
---|
620 | ! volume in b-bins, 0 for unused |
---|
621 | n_lognorm, & ! Number concentration for the |
---|
622 | ! log-normal modes |
---|
623 | nbin, & ! Number of size bins for |
---|
624 | ! aerosol size subranges 1 & 2 |
---|
625 | nf2a, & ! Number fraction of particles |
---|
626 | ! allocated to a-bins in |
---|
627 | ! subrange 2 b-bins will get |
---|
628 | ! 1-nf2a |
---|
629 | NH3_init, & ! Init value for ammonia |
---|
630 | nj3, & ! J3 parametrization |
---|
631 | ! 1 = condensational sink |
---|
632 | ! (Kerminen&Kulmala, 2002) |
---|
633 | ! 2 = coagulational sink |
---|
634 | ! (Lehtinen et al. 2007) |
---|
635 | ! 3 = coagS+self-coagulation |
---|
636 | ! (Anttila et al. 2010) |
---|
637 | nlcnd, & ! Condensation master switch |
---|
638 | nlcndgas, & ! Condensation of gases |
---|
639 | nlcndh2oae, & ! Condensation of H2O |
---|
640 | nlcoag, & ! Coagulation master switch |
---|
641 | nldepo, & ! Deposition master switch |
---|
642 | nldepo_vege, & ! Deposition on vegetation |
---|
643 | ! master switch |
---|
644 | nldepo_topo, & ! Deposition on topo master |
---|
645 | ! switch |
---|
646 | nldistupdate, & ! Size distribution update |
---|
647 | ! master switch |
---|
648 | nsnucl, & ! Nucleation scheme: |
---|
649 | ! 0 = off, |
---|
650 | ! 1 = binary nucleation |
---|
651 | ! 2 = activation type nucleation |
---|
652 | ! 3 = kinetic nucleation |
---|
653 | ! 4 = ternary nucleation |
---|
654 | ! 5 = nucleation with organics |
---|
655 | ! 6 = activation type of |
---|
656 | ! nucleation with H2SO4+ORG |
---|
657 | ! 7 = heteromolecular nucleation |
---|
658 | ! with H2SO4*ORG |
---|
659 | ! 8 = homomolecular nucleation |
---|
660 | ! of H2SO4 + heteromolecular |
---|
661 | ! nucleation with H2SO4*ORG |
---|
662 | ! 9 = homomolecular nucleation |
---|
663 | ! of H2SO4 and ORG + hetero- |
---|
664 | ! molecular nucleation with |
---|
665 | ! H2SO4*ORG |
---|
666 | OCNV_init, & ! Init value for non-volatile |
---|
667 | ! organic gases |
---|
668 | OCSV_init, & ! Init value for semi-volatile |
---|
669 | ! organic gases |
---|
670 | read_restart_data_salsa, & ! read restart data for |
---|
671 | ! salsa |
---|
672 | reglim, & ! Min&max diameter limits of |
---|
673 | ! size subranges |
---|
674 | salsa, & ! Master switch for SALSA |
---|
675 | salsa_source_mode,& ! 'read_from_file' or 'constant' |
---|
676 | ! or 'no_source' |
---|
677 | sigmag, & ! stdev for the initial log- |
---|
678 | ! normal modes |
---|
679 | skip_time_do_salsa, & ! Starting time of SALSA (s) |
---|
680 | van_der_waals_coagc,& ! include van der Waals forces |
---|
681 | write_binary_salsa ! Write binary for salsa |
---|
682 | |
---|
683 | |
---|
684 | line = ' ' |
---|
685 | |
---|
686 | ! |
---|
687 | !-- Try to find salsa package |
---|
688 | REWIND ( 11 ) |
---|
689 | line = ' ' |
---|
690 | DO WHILE ( INDEX( line, '&salsa_parameters' ) == 0 ) |
---|
691 | READ ( 11, '(A)', END=10 ) line |
---|
692 | ENDDO |
---|
693 | BACKSPACE ( 11 ) |
---|
694 | |
---|
695 | ! |
---|
696 | !-- Read user-defined namelist |
---|
697 | READ ( 11, salsa_parameters ) |
---|
698 | |
---|
699 | ! |
---|
700 | !-- Enable salsa (salsa switch in modules.f90) |
---|
701 | salsa = .TRUE. |
---|
702 | |
---|
703 | 10 CONTINUE |
---|
704 | |
---|
705 | END SUBROUTINE salsa_parin |
---|
706 | |
---|
707 | |
---|
708 | !------------------------------------------------------------------------------! |
---|
709 | ! Description: |
---|
710 | ! ------------ |
---|
711 | !> Check parameters routine for salsa. |
---|
712 | !------------------------------------------------------------------------------! |
---|
713 | SUBROUTINE salsa_check_parameters |
---|
714 | |
---|
715 | USE control_parameters, & |
---|
716 | ONLY: message_string |
---|
717 | |
---|
718 | IMPLICIT NONE |
---|
719 | |
---|
720 | ! |
---|
721 | !-- Checks go here (cf. check_parameters.f90). |
---|
722 | IF ( salsa .AND. .NOT. humidity ) THEN |
---|
723 | WRITE( message_string, * ) 'salsa = ', salsa, ' is ', & |
---|
724 | 'not allowed with humidity = ', humidity |
---|
725 | CALL message( 'check_parameters', 'SA0009', 1, 2, 0, 6, 0 ) |
---|
726 | ENDIF |
---|
727 | |
---|
728 | IF ( bc_salsa_b == 'dirichlet' ) THEN |
---|
729 | ibc_salsa_b = 0 |
---|
730 | ELSEIF ( bc_salsa_b == 'neumann' ) THEN |
---|
731 | ibc_salsa_b = 1 |
---|
732 | ELSE |
---|
733 | message_string = 'unknown boundary condition: bc_salsa_b = "' & |
---|
734 | // TRIM( bc_salsa_t ) // '"' |
---|
735 | CALL message( 'check_parameters', 'SA0011', 1, 2, 0, 6, 0 ) |
---|
736 | ENDIF |
---|
737 | |
---|
738 | IF ( bc_salsa_t == 'dirichlet' ) THEN |
---|
739 | ibc_salsa_t = 0 |
---|
740 | ELSEIF ( bc_salsa_t == 'neumann' ) THEN |
---|
741 | ibc_salsa_t = 1 |
---|
742 | ELSE |
---|
743 | message_string = 'unknown boundary condition: bc_salsa_t = "' & |
---|
744 | // TRIM( bc_salsa_t ) // '"' |
---|
745 | CALL message( 'check_parameters', 'SA0012', 1, 2, 0, 6, 0 ) |
---|
746 | ENDIF |
---|
747 | |
---|
748 | IF ( nj3 < 1 .OR. nj3 > 3 ) THEN |
---|
749 | message_string = 'unknown nj3 (must be 1-3)' |
---|
750 | CALL message( 'check_parameters', 'SA0044', 1, 2, 0, 6, 0 ) |
---|
751 | ENDIF |
---|
752 | |
---|
753 | END SUBROUTINE salsa_check_parameters |
---|
754 | |
---|
755 | !------------------------------------------------------------------------------! |
---|
756 | ! |
---|
757 | ! Description: |
---|
758 | ! ------------ |
---|
759 | !> Subroutine defining appropriate grid for netcdf variables. |
---|
760 | !> It is called out from subroutine netcdf. |
---|
761 | !> Same grid as for other scalars (see netcdf_interface_mod.f90) |
---|
762 | !------------------------------------------------------------------------------! |
---|
763 | SUBROUTINE salsa_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
764 | |
---|
765 | IMPLICIT NONE |
---|
766 | |
---|
767 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< |
---|
768 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< |
---|
769 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< |
---|
770 | CHARACTER (LEN=*), INTENT(IN) :: var !< |
---|
771 | |
---|
772 | LOGICAL, INTENT(OUT) :: found !< |
---|
773 | |
---|
774 | found = .TRUE. |
---|
775 | ! |
---|
776 | !-- Check for the grid |
---|
777 | |
---|
778 | IF ( var(1:2) == 'g_' ) THEN |
---|
779 | grid_x = 'x' |
---|
780 | grid_y = 'y' |
---|
781 | grid_z = 'zu' |
---|
782 | ELSEIF ( var(1:4) == 'LDSA' ) THEN |
---|
783 | grid_x = 'x' |
---|
784 | grid_y = 'y' |
---|
785 | grid_z = 'zu' |
---|
786 | ELSEIF ( var(1:5) == 'm_bin' ) THEN |
---|
787 | grid_x = 'x' |
---|
788 | grid_y = 'y' |
---|
789 | grid_z = 'zu' |
---|
790 | ELSEIF ( var(1:5) == 'N_bin' ) THEN |
---|
791 | grid_x = 'x' |
---|
792 | grid_y = 'y' |
---|
793 | grid_z = 'zu' |
---|
794 | ELSEIF ( var(1:4) == 'Ntot' ) THEN |
---|
795 | grid_x = 'x' |
---|
796 | grid_y = 'y' |
---|
797 | grid_z = 'zu' |
---|
798 | ELSEIF ( var(1:2) == 'PM' ) THEN |
---|
799 | grid_x = 'x' |
---|
800 | grid_y = 'y' |
---|
801 | grid_z = 'zu' |
---|
802 | ELSEIF ( var(1:2) == 's_' ) THEN |
---|
803 | grid_x = 'x' |
---|
804 | grid_y = 'y' |
---|
805 | grid_z = 'zu' |
---|
806 | ELSE |
---|
807 | found = .FALSE. |
---|
808 | grid_x = 'none' |
---|
809 | grid_y = 'none' |
---|
810 | grid_z = 'none' |
---|
811 | ENDIF |
---|
812 | |
---|
813 | END SUBROUTINE salsa_define_netcdf_grid |
---|
814 | |
---|
815 | |
---|
816 | !------------------------------------------------------------------------------! |
---|
817 | ! Description: |
---|
818 | ! ------------ |
---|
819 | !> Header output for new module |
---|
820 | !------------------------------------------------------------------------------! |
---|
821 | SUBROUTINE salsa_header( io ) |
---|
822 | |
---|
823 | IMPLICIT NONE |
---|
824 | |
---|
825 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
826 | ! |
---|
827 | !-- Write SALSA header |
---|
828 | WRITE( io, 1 ) |
---|
829 | WRITE( io, 2 ) skip_time_do_salsa |
---|
830 | WRITE( io, 3 ) dt_salsa |
---|
831 | WRITE( io, 12 ) SHAPE( aerosol_number(1)%conc ), nbins |
---|
832 | IF ( advect_particle_water ) THEN |
---|
833 | WRITE( io, 16 ) SHAPE( aerosol_mass(1)%conc ), ncc_tot*nbins, & |
---|
834 | advect_particle_water |
---|
835 | ELSE |
---|
836 | WRITE( io, 16 ) SHAPE( aerosol_mass(1)%conc ), ncc*nbins, & |
---|
837 | advect_particle_water |
---|
838 | ENDIF |
---|
839 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
840 | WRITE( io, 17 ) SHAPE( aerosol_mass(1)%conc ), ngast, & |
---|
841 | salsa_gases_from_chem |
---|
842 | ENDIF |
---|
843 | WRITE( io, 4 ) |
---|
844 | IF ( nsnucl > 0 ) THEN |
---|
845 | WRITE( io, 5 ) nsnucl, nj3 |
---|
846 | ENDIF |
---|
847 | IF ( nlcoag ) THEN |
---|
848 | WRITE( io, 6 ) |
---|
849 | ENDIF |
---|
850 | IF ( nlcnd ) THEN |
---|
851 | WRITE( io, 7 ) nlcndgas, nlcndh2oae |
---|
852 | ENDIF |
---|
853 | IF ( nldepo ) THEN |
---|
854 | WRITE( io, 14 ) nldepo_vege, nldepo_topo |
---|
855 | ENDIF |
---|
856 | WRITE( io, 8 ) reglim, nbin, bin_low_limits |
---|
857 | WRITE( io, 15 ) nsect |
---|
858 | WRITE( io, 13 ) ncc, listspec, mass_fracs_a, mass_fracs_b |
---|
859 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
860 | WRITE( io, 18 ) ngast, H2SO4_init, HNO3_init, NH3_init, OCNV_init, & |
---|
861 | OCSV_init |
---|
862 | ENDIF |
---|
863 | WRITE( io, 9 ) isdtyp, igctyp |
---|
864 | IF ( isdtyp == 0 ) THEN |
---|
865 | WRITE( io, 10 ) dpg, sigmag, n_lognorm |
---|
866 | ELSE |
---|
867 | WRITE( io, 11 ) |
---|
868 | ENDIF |
---|
869 | |
---|
870 | |
---|
871 | 1 FORMAT (//' SALSA information:'/ & |
---|
872 | ' ------------------------------'/) |
---|
873 | 2 FORMAT (' Starts at: skip_time_do_salsa = ', F10.2, ' s') |
---|
874 | 3 FORMAT (/' Timestep: dt_salsa = ', F6.2, ' s') |
---|
875 | 12 FORMAT (/' Array shape (z,y,x,bins):'/ & |
---|
876 | ' aerosol_number: ', 4(I3)) |
---|
877 | 16 FORMAT (/' aerosol_mass: ', 4(I3),/ & |
---|
878 | ' (advect_particle_water = ', L1, ')') |
---|
879 | 17 FORMAT (' salsa_gas: ', 4(I3),/ & |
---|
880 | ' (salsa_gases_from_chem = ', L1, ')') |
---|
881 | 4 FORMAT (/' Aerosol dynamic processes included: ') |
---|
882 | 5 FORMAT (/' nucleation (scheme = ', I1, ' and J3 parametrization = ',& |
---|
883 | I1, ')') |
---|
884 | 6 FORMAT (/' coagulation') |
---|
885 | 7 FORMAT (/' condensation (of precursor gases = ', L1, & |
---|
886 | ' and water vapour = ', L1, ')' ) |
---|
887 | 14 FORMAT (/' dry deposition (on vegetation = ', L1, & |
---|
888 | ' and on topography = ', L1, ')') |
---|
889 | 8 FORMAT (/' Aerosol bin subrange limits (in metres): ', 3(ES10.2E3), / & |
---|
890 | ' Number of size bins for each aerosol subrange: ', 2I3,/ & |
---|
891 | ' Aerosol bin limits (in metres): ', *(ES10.2E3)) |
---|
892 | 15 FORMAT (' Initial number concentration in bins at the lowest level', & |
---|
893 | ' (#/m**3):', *(ES10.2E3)) |
---|
894 | 13 FORMAT (/' Number of chemical components used: ', I1,/ & |
---|
895 | ' Species: ',7(A6),/ & |
---|
896 | ' Initial relative contribution of each species to particle', & |
---|
897 | ' volume in:',/ & |
---|
898 | ' a-bins: ', 7(F6.3),/ & |
---|
899 | ' b-bins: ', 7(F6.3)) |
---|
900 | 18 FORMAT (/' Number of gaseous tracers used: ', I1,/ & |
---|
901 | ' Initial gas concentrations:',/ & |
---|
902 | ' H2SO4: ',ES12.4E3, ' #/m**3',/ & |
---|
903 | ' HNO3: ',ES12.4E3, ' #/m**3',/ & |
---|
904 | ' NH3: ',ES12.4E3, ' #/m**3',/ & |
---|
905 | ' OCNV: ',ES12.4E3, ' #/m**3',/ & |
---|
906 | ' OCSV: ',ES12.4E3, ' #/m**3') |
---|
907 | 9 FORMAT (/' Initialising concentrations: ', / & |
---|
908 | ' Aerosol size distribution: isdtyp = ', I1,/ & |
---|
909 | ' Gas concentrations: igctyp = ', I1 ) |
---|
910 | 10 FORMAT ( ' Mode diametres: dpg(nmod) = ', 7(F7.3),/ & |
---|
911 | ' Standard deviation: sigmag(nmod) = ', 7(F7.2),/ & |
---|
912 | ' Number concentration: n_lognorm(nmod) = ', 7(ES12.4E3) ) |
---|
913 | 11 FORMAT (/' Size distribution read from a file.') |
---|
914 | |
---|
915 | END SUBROUTINE salsa_header |
---|
916 | |
---|
917 | !------------------------------------------------------------------------------! |
---|
918 | ! Description: |
---|
919 | ! ------------ |
---|
920 | !> Allocate SALSA arrays and define pointers if required |
---|
921 | !------------------------------------------------------------------------------! |
---|
922 | SUBROUTINE salsa_init_arrays |
---|
923 | |
---|
924 | USE surface_mod, & |
---|
925 | ONLY: surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
926 | surf_usm_v |
---|
927 | |
---|
928 | IMPLICIT NONE |
---|
929 | |
---|
930 | INTEGER(iwp) :: gases_available !< Number of available gas components in |
---|
931 | !< the chemistry model |
---|
932 | INTEGER(iwp) :: i !< loop index for allocating |
---|
933 | INTEGER(iwp) :: l !< loop index for allocating: surfaces |
---|
934 | INTEGER(iwp) :: lsp !< loop index for chem species in the chemistry model |
---|
935 | |
---|
936 | gases_available = 0 |
---|
937 | |
---|
938 | ! |
---|
939 | !-- Allocate prognostic variables (see salsa_swap_timelevel) |
---|
940 | |
---|
941 | ! |
---|
942 | !-- Set derived indices: |
---|
943 | !-- (This does the same as the subroutine salsa_initialize in SALSA/ |
---|
944 | !-- UCLALES-SALSA) |
---|
945 | in1a = 1 ! 1st index of subrange 1a |
---|
946 | in2a = in1a + nbin(1) ! 1st index of subrange 2a |
---|
947 | fn1a = in2a - 1 ! last index of subrange 1a |
---|
948 | fn2a = fn1a + nbin(2) ! last index of subrange 2a |
---|
949 | |
---|
950 | ! |
---|
951 | !-- If the fraction of insoluble aerosols in subrange 2 is zero: do not allocate |
---|
952 | !-- arrays for them |
---|
953 | IF ( nf2a > 0.999999_wp .AND. SUM( mass_fracs_b ) < 0.00001_wp ) THEN |
---|
954 | no_insoluble = .TRUE. |
---|
955 | in2b = fn2a+1 ! 1st index of subrange 2b |
---|
956 | fn2b = fn2a ! last index of subrange 2b |
---|
957 | ELSE |
---|
958 | in2b = in2a + nbin(2) ! 1st index of subrange 2b |
---|
959 | fn2b = fn2a + nbin(2) ! last index of subrange 2b |
---|
960 | ENDIF |
---|
961 | |
---|
962 | |
---|
963 | nbins = fn2b ! total number of aerosol size bins |
---|
964 | ! |
---|
965 | !-- Create index tables for different aerosol components |
---|
966 | CALL component_index_constructor( prtcl, ncc, maxspec, listspec ) |
---|
967 | |
---|
968 | ncc_tot = ncc |
---|
969 | IF ( advect_particle_water ) ncc_tot = ncc + 1 ! Add water |
---|
970 | |
---|
971 | ! |
---|
972 | !-- Allocate: |
---|
973 | ALLOCATE( aero(nbins), bin_low_limits(nbins), nsect(nbins), massacc(nbins) ) |
---|
974 | IF ( nldepo ) ALLOCATE( sedim_vd(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins) ) |
---|
975 | ALLOCATE( Ra_dry(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins) ) |
---|
976 | |
---|
977 | ! |
---|
978 | !-- Aerosol number concentration |
---|
979 | ALLOCATE( aerosol_number(nbins) ) |
---|
980 | ALLOCATE( nconc_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins), & |
---|
981 | nconc_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins), & |
---|
982 | nconc_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins) ) |
---|
983 | nconc_1 = 0.0_wp |
---|
984 | nconc_2 = 0.0_wp |
---|
985 | nconc_3 = 0.0_wp |
---|
986 | |
---|
987 | DO i = 1, nbins |
---|
988 | aerosol_number(i)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => nconc_1(:,:,:,i) |
---|
989 | aerosol_number(i)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => nconc_2(:,:,:,i) |
---|
990 | aerosol_number(i)%tconc_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => nconc_3(:,:,:,i) |
---|
991 | ALLOCATE( aerosol_number(i)%flux_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
992 | aerosol_number(i)%diss_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
993 | aerosol_number(i)%flux_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
994 | aerosol_number(i)%diss_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
995 | aerosol_number(i)%init(nzb:nzt+1), & |
---|
996 | aerosol_number(i)%sums_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
997 | ENDDO |
---|
998 | |
---|
999 | ! |
---|
1000 | !-- Aerosol mass concentration |
---|
1001 | ALLOCATE( aerosol_mass(ncc_tot*nbins) ) |
---|
1002 | ALLOCATE( mconc_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ncc_tot*nbins), & |
---|
1003 | mconc_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ncc_tot*nbins), & |
---|
1004 | mconc_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ncc_tot*nbins) ) |
---|
1005 | mconc_1 = 0.0_wp |
---|
1006 | mconc_2 = 0.0_wp |
---|
1007 | mconc_3 = 0.0_wp |
---|
1008 | |
---|
1009 | DO i = 1, ncc_tot*nbins |
---|
1010 | aerosol_mass(i)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => mconc_1(:,:,:,i) |
---|
1011 | aerosol_mass(i)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => mconc_2(:,:,:,i) |
---|
1012 | aerosol_mass(i)%tconc_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => mconc_3(:,:,:,i) |
---|
1013 | ALLOCATE( aerosol_mass(i)%flux_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1014 | aerosol_mass(i)%diss_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1015 | aerosol_mass(i)%flux_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
1016 | aerosol_mass(i)%diss_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
1017 | aerosol_mass(i)%init(nzb:nzt+1), & |
---|
1018 | aerosol_mass(i)%sums_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
1019 | ENDDO |
---|
1020 | |
---|
1021 | ! |
---|
1022 | !-- Surface fluxes: answs = aerosol number, amsws = aerosol mass |
---|
1023 | ! |
---|
1024 | !-- Horizontal surfaces: default type |
---|
1025 | DO l = 0, 2 ! upward (l=0), downward (l=1) and model top (l=2) |
---|
1026 | ALLOCATE( surf_def_h(l)%answs( 1:surf_def_h(l)%ns, nbins ) ) |
---|
1027 | ALLOCATE( surf_def_h(l)%amsws( 1:surf_def_h(l)%ns, nbins*ncc_tot ) ) |
---|
1028 | surf_def_h(l)%answs = 0.0_wp |
---|
1029 | surf_def_h(l)%amsws = 0.0_wp |
---|
1030 | ENDDO |
---|
1031 | !-- Horizontal surfaces: natural type |
---|
1032 | IF ( land_surface ) THEN |
---|
1033 | ALLOCATE( surf_lsm_h%answs( 1:surf_lsm_h%ns, nbins ) ) |
---|
1034 | ALLOCATE( surf_lsm_h%amsws( 1:surf_lsm_h%ns, nbins*ncc_tot ) ) |
---|
1035 | surf_lsm_h%answs = 0.0_wp |
---|
1036 | surf_lsm_h%amsws = 0.0_wp |
---|
1037 | ENDIF |
---|
1038 | !-- Horizontal surfaces: urban type |
---|
1039 | IF ( urban_surface ) THEN |
---|
1040 | ALLOCATE( surf_usm_h%answs( 1:surf_usm_h%ns, nbins ) ) |
---|
1041 | ALLOCATE( surf_usm_h%amsws( 1:surf_usm_h%ns, nbins*ncc_tot ) ) |
---|
1042 | surf_usm_h%answs = 0.0_wp |
---|
1043 | surf_usm_h%amsws = 0.0_wp |
---|
1044 | ENDIF |
---|
1045 | ! |
---|
1046 | !-- Vertical surfaces: northward (l=0), southward (l=1), eastward (l=2) and |
---|
1047 | !-- westward (l=3) facing |
---|
1048 | DO l = 0, 3 |
---|
1049 | ALLOCATE( surf_def_v(l)%answs( 1:surf_def_v(l)%ns, nbins ) ) |
---|
1050 | surf_def_v(l)%answs = 0.0_wp |
---|
1051 | ALLOCATE( surf_def_v(l)%amsws( 1:surf_def_v(l)%ns, nbins*ncc_tot ) ) |
---|
1052 | surf_def_v(l)%amsws = 0.0_wp |
---|
1053 | |
---|
1054 | IF ( land_surface) THEN |
---|
1055 | ALLOCATE( surf_lsm_v(l)%answs( 1:surf_lsm_v(l)%ns, nbins ) ) |
---|
1056 | surf_lsm_v(l)%answs = 0.0_wp |
---|
1057 | ALLOCATE( surf_lsm_v(l)%amsws( 1:surf_lsm_v(l)%ns, nbins*ncc_tot ) ) |
---|
1058 | surf_lsm_v(l)%amsws = 0.0_wp |
---|
1059 | ENDIF |
---|
1060 | |
---|
1061 | IF ( urban_surface ) THEN |
---|
1062 | ALLOCATE( surf_usm_v(l)%answs( 1:surf_usm_v(l)%ns, nbins ) ) |
---|
1063 | surf_usm_v(l)%answs = 0.0_wp |
---|
1064 | ALLOCATE( surf_usm_v(l)%amsws( 1:surf_usm_v(l)%ns, nbins*ncc_tot ) ) |
---|
1065 | surf_usm_v(l)%amsws = 0.0_wp |
---|
1066 | ENDIF |
---|
1067 | ENDDO |
---|
1068 | |
---|
1069 | ! |
---|
1070 | !-- Concentration of gaseous tracers (1. SO4, 2. HNO3, 3. NH3, 4. OCNV, 5. OCSV) |
---|
1071 | !-- (number concentration (#/m3) ) |
---|
1072 | ! |
---|
1073 | !-- If chemistry is on, read gas phase concentrations from there. Otherwise, |
---|
1074 | !-- allocate salsa_gas array. |
---|
1075 | |
---|
1076 | IF ( air_chemistry ) THEN |
---|
1077 | DO lsp = 1, nvar |
---|
1078 | IF ( TRIM( chem_species(lsp)%name ) == 'H2SO4' ) THEN |
---|
1079 | gases_available = gases_available + 1 |
---|
1080 | gas_index_chem(1) = lsp |
---|
1081 | ELSEIF ( TRIM( chem_species(lsp)%name ) == 'HNO3' ) THEN |
---|
1082 | gases_available = gases_available + 1 |
---|
1083 | gas_index_chem(2) = lsp |
---|
1084 | ELSEIF ( TRIM( chem_species(lsp)%name ) == 'NH3' ) THEN |
---|
1085 | gases_available = gases_available + 1 |
---|
1086 | gas_index_chem(3) = lsp |
---|
1087 | ELSEIF ( TRIM( chem_species(lsp)%name ) == 'OCNV' ) THEN |
---|
1088 | gases_available = gases_available + 1 |
---|
1089 | gas_index_chem(4) = lsp |
---|
1090 | ELSEIF ( TRIM( chem_species(lsp)%name ) == 'OCSV' ) THEN |
---|
1091 | gases_available = gases_available + 1 |
---|
1092 | gas_index_chem(5) = lsp |
---|
1093 | ENDIF |
---|
1094 | ENDDO |
---|
1095 | |
---|
1096 | IF ( gases_available == ngast ) THEN |
---|
1097 | salsa_gases_from_chem = .TRUE. |
---|
1098 | ELSE |
---|
1099 | WRITE( message_string, * ) 'SALSA is run together with chemistry '// & |
---|
1100 | 'but not all gaseous components are '// & |
---|
1101 | 'provided by kpp (H2SO4, HNO3, NH3, '// & |
---|
1102 | 'OCNV, OCSC)' |
---|
1103 | CALL message( 'check_parameters', 'SA0024', 1, 2, 0, 6, 0 ) |
---|
1104 | ENDIF |
---|
1105 | |
---|
1106 | ELSE |
---|
1107 | |
---|
1108 | ALLOCATE( salsa_gas(ngast) ) |
---|
1109 | ALLOCATE( gconc_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ngast), & |
---|
1110 | gconc_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ngast), & |
---|
1111 | gconc_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ngast) ) |
---|
1112 | gconc_1 = 0.0_wp |
---|
1113 | gconc_2 = 0.0_wp |
---|
1114 | gconc_3 = 0.0_wp |
---|
1115 | |
---|
1116 | DO i = 1, ngast |
---|
1117 | salsa_gas(i)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => gconc_1(:,:,:,i) |
---|
1118 | salsa_gas(i)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => gconc_2(:,:,:,i) |
---|
1119 | salsa_gas(i)%tconc_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => gconc_3(:,:,:,i) |
---|
1120 | ALLOCATE( salsa_gas(i)%flux_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1121 | salsa_gas(i)%diss_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1122 | salsa_gas(i)%flux_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
1123 | salsa_gas(i)%diss_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
1124 | salsa_gas(i)%init(nzb:nzt+1), & |
---|
1125 | salsa_gas(i)%sums_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
1126 | ENDDO |
---|
1127 | ! |
---|
1128 | !-- Surface fluxes: gtsws = gaseous tracer flux |
---|
1129 | ! |
---|
1130 | !-- Horizontal surfaces: default type |
---|
1131 | DO l = 0, 2 ! upward (l=0), downward (l=1) and model top (l=2) |
---|
1132 | ALLOCATE( surf_def_h(l)%gtsws( 1:surf_def_h(l)%ns, ngast ) ) |
---|
1133 | surf_def_h(l)%gtsws = 0.0_wp |
---|
1134 | ENDDO |
---|
1135 | !-- Horizontal surfaces: natural type |
---|
1136 | IF ( land_surface ) THEN |
---|
1137 | ALLOCATE( surf_lsm_h%gtsws( 1:surf_lsm_h%ns, ngast ) ) |
---|
1138 | surf_lsm_h%gtsws = 0.0_wp |
---|
1139 | ENDIF |
---|
1140 | !-- Horizontal surfaces: urban type |
---|
1141 | IF ( urban_surface ) THEN |
---|
1142 | ALLOCATE( surf_usm_h%gtsws( 1:surf_usm_h%ns, ngast ) ) |
---|
1143 | surf_usm_h%gtsws = 0.0_wp |
---|
1144 | ENDIF |
---|
1145 | ! |
---|
1146 | !-- Vertical surfaces: northward (l=0), southward (l=1), eastward (l=2) and |
---|
1147 | !-- westward (l=3) facing |
---|
1148 | DO l = 0, 3 |
---|
1149 | ALLOCATE( surf_def_v(l)%gtsws( 1:surf_def_v(l)%ns, ngast ) ) |
---|
1150 | surf_def_v(l)%gtsws = 0.0_wp |
---|
1151 | IF ( land_surface ) THEN |
---|
1152 | ALLOCATE( surf_lsm_v(l)%gtsws( 1:surf_lsm_v(l)%ns, ngast ) ) |
---|
1153 | surf_lsm_v(l)%gtsws = 0.0_wp |
---|
1154 | ENDIF |
---|
1155 | IF ( urban_surface ) THEN |
---|
1156 | ALLOCATE( surf_usm_v(l)%gtsws( 1:surf_usm_v(l)%ns, ngast ) ) |
---|
1157 | surf_usm_v(l)%gtsws = 0.0_wp |
---|
1158 | ENDIF |
---|
1159 | ENDDO |
---|
1160 | ENDIF |
---|
1161 | |
---|
1162 | END SUBROUTINE salsa_init_arrays |
---|
1163 | |
---|
1164 | !------------------------------------------------------------------------------! |
---|
1165 | ! Description: |
---|
1166 | ! ------------ |
---|
1167 | !> Initialization of SALSA. Based on salsa_initialize in UCLALES-SALSA. |
---|
1168 | !> Subroutines salsa_initialize, SALSAinit and DiagInitAero in UCLALES-SALSA are |
---|
1169 | !> also merged here. |
---|
1170 | !------------------------------------------------------------------------------! |
---|
1171 | SUBROUTINE salsa_init |
---|
1172 | |
---|
1173 | IMPLICIT NONE |
---|
1174 | |
---|
1175 | INTEGER(iwp) :: b |
---|
1176 | INTEGER(iwp) :: c |
---|
1177 | INTEGER(iwp) :: g |
---|
1178 | INTEGER(iwp) :: i |
---|
1179 | INTEGER(iwp) :: j |
---|
1180 | |
---|
1181 | bin_low_limits = 0.0_wp |
---|
1182 | nsect = 0.0_wp |
---|
1183 | massacc = 1.0_wp |
---|
1184 | |
---|
1185 | ! |
---|
1186 | !-- Indices for chemical components used (-1 = not used) |
---|
1187 | i = 0 |
---|
1188 | IF ( is_used( prtcl, 'SO4' ) ) THEN |
---|
1189 | iso4 = get_index( prtcl,'SO4' ) |
---|
1190 | i = i + 1 |
---|
1191 | ENDIF |
---|
1192 | IF ( is_used( prtcl,'OC' ) ) THEN |
---|
1193 | ioc = get_index(prtcl, 'OC') |
---|
1194 | i = i + 1 |
---|
1195 | ENDIF |
---|
1196 | IF ( is_used( prtcl, 'BC' ) ) THEN |
---|
1197 | ibc = get_index( prtcl, 'BC' ) |
---|
1198 | i = i + 1 |
---|
1199 | ENDIF |
---|
1200 | IF ( is_used( prtcl, 'DU' ) ) THEN |
---|
1201 | idu = get_index( prtcl, 'DU' ) |
---|
1202 | i = i + 1 |
---|
1203 | ENDIF |
---|
1204 | IF ( is_used( prtcl, 'SS' ) ) THEN |
---|
1205 | iss = get_index( prtcl, 'SS' ) |
---|
1206 | i = i + 1 |
---|
1207 | ENDIF |
---|
1208 | IF ( is_used( prtcl, 'NO' ) ) THEN |
---|
1209 | ino = get_index( prtcl, 'NO' ) |
---|
1210 | i = i + 1 |
---|
1211 | ENDIF |
---|
1212 | IF ( is_used( prtcl, 'NH' ) ) THEN |
---|
1213 | inh = get_index( prtcl, 'NH' ) |
---|
1214 | i = i + 1 |
---|
1215 | ENDIF |
---|
1216 | ! |
---|
1217 | !-- All species must be known |
---|
1218 | IF ( i /= ncc ) THEN |
---|
1219 | message_string = 'Unknown aerosol species/component(s) given in the' // & |
---|
1220 | ' initialization' |
---|
1221 | CALL message( 'salsa_mod: salsa_init', 'SA0020', 1, 2, 0, 6, 0 ) |
---|
1222 | ENDIF |
---|
1223 | |
---|
1224 | ! |
---|
1225 | !-- Initialise |
---|
1226 | ! |
---|
1227 | !-- Aerosol size distribution (TYPE t_section) |
---|
1228 | aero(:)%dwet = 1.0E-10_wp |
---|
1229 | aero(:)%veqh2o = 1.0E-10_wp |
---|
1230 | aero(:)%numc = nclim |
---|
1231 | aero(:)%core = 1.0E-10_wp |
---|
1232 | DO c = 1, maxspec+1 ! 1:SO4, 2:OC, 3:BC, 4:DU, 5:SS, 6:NO, 7:NH, 8:H2O |
---|
1233 | aero(:)%volc(c) = 0.0_wp |
---|
1234 | ENDDO |
---|
1235 | |
---|
1236 | IF ( nldepo ) sedim_vd = 0.0_wp |
---|
1237 | |
---|
1238 | DO b = 1, nbins |
---|
1239 | IF ( .NOT. read_restart_data_salsa ) aerosol_number(b)%conc = nclim |
---|
1240 | aerosol_number(b)%conc_p = 0.0_wp |
---|
1241 | aerosol_number(b)%tconc_m = 0.0_wp |
---|
1242 | aerosol_number(b)%flux_s = 0.0_wp |
---|
1243 | aerosol_number(b)%diss_s = 0.0_wp |
---|
1244 | aerosol_number(b)%flux_l = 0.0_wp |
---|
1245 | aerosol_number(b)%diss_l = 0.0_wp |
---|
1246 | aerosol_number(b)%init = nclim |
---|
1247 | aerosol_number(b)%sums_ws_l = 0.0_wp |
---|
1248 | ENDDO |
---|
1249 | DO c = 1, ncc_tot*nbins |
---|
1250 | IF ( .NOT. read_restart_data_salsa ) aerosol_mass(c)%conc = mclim |
---|
1251 | aerosol_mass(c)%conc_p = 0.0_wp |
---|
1252 | aerosol_mass(c)%tconc_m = 0.0_wp |
---|
1253 | aerosol_mass(c)%flux_s = 0.0_wp |
---|
1254 | aerosol_mass(c)%diss_s = 0.0_wp |
---|
1255 | aerosol_mass(c)%flux_l = 0.0_wp |
---|
1256 | aerosol_mass(c)%diss_l = 0.0_wp |
---|
1257 | aerosol_mass(c)%init = mclim |
---|
1258 | aerosol_mass(c)%sums_ws_l = 0.0_wp |
---|
1259 | ENDDO |
---|
1260 | |
---|
1261 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
1262 | DO g = 1, ngast |
---|
1263 | salsa_gas(g)%conc_p = 0.0_wp |
---|
1264 | salsa_gas(g)%tconc_m = 0.0_wp |
---|
1265 | salsa_gas(g)%flux_s = 0.0_wp |
---|
1266 | salsa_gas(g)%diss_s = 0.0_wp |
---|
1267 | salsa_gas(g)%flux_l = 0.0_wp |
---|
1268 | salsa_gas(g)%diss_l = 0.0_wp |
---|
1269 | salsa_gas(g)%sums_ws_l = 0.0_wp |
---|
1270 | ENDDO |
---|
1271 | IF ( .NOT. read_restart_data_salsa ) THEN |
---|
1272 | salsa_gas(1)%conc = H2SO4_init |
---|
1273 | salsa_gas(2)%conc = HNO3_init |
---|
1274 | salsa_gas(3)%conc = NH3_init |
---|
1275 | salsa_gas(4)%conc = OCNV_init |
---|
1276 | salsa_gas(5)%conc = OCSV_init |
---|
1277 | ENDIF |
---|
1278 | ! |
---|
1279 | !-- Set initial value for gas compound tracers and initial values |
---|
1280 | salsa_gas(1)%init = H2SO4_init |
---|
1281 | salsa_gas(2)%init = HNO3_init |
---|
1282 | salsa_gas(3)%init = NH3_init |
---|
1283 | salsa_gas(4)%init = OCNV_init |
---|
1284 | salsa_gas(5)%init = OCSV_init |
---|
1285 | ENDIF |
---|
1286 | ! |
---|
1287 | !-- Aerosol radius in each bin: dry and wet (m) |
---|
1288 | Ra_dry = 1.0E-10_wp |
---|
1289 | ! |
---|
1290 | !-- Initialise aerosol tracers |
---|
1291 | aero(:)%vhilim = 0.0_wp |
---|
1292 | aero(:)%vlolim = 0.0_wp |
---|
1293 | aero(:)%vratiohi = 0.0_wp |
---|
1294 | aero(:)%vratiolo = 0.0_wp |
---|
1295 | aero(:)%dmid = 0.0_wp |
---|
1296 | ! |
---|
1297 | !-- Initialise the sectional particle size distribution |
---|
1298 | CALL set_sizebins() |
---|
1299 | ! |
---|
1300 | !-- Initialise location-dependent aerosol size distributions and |
---|
1301 | !-- chemical compositions: |
---|
1302 | CALL aerosol_init |
---|
1303 | ! |
---|
1304 | !-- Initalisation run of SALSA |
---|
1305 | DO i = nxl, nxr |
---|
1306 | DO j = nys, nyn |
---|
1307 | CALL salsa_driver( i, j, 1 ) |
---|
1308 | CALL salsa_diagnostics( i, j ) |
---|
1309 | ENDDO |
---|
1310 | ENDDO |
---|
1311 | ! |
---|
1312 | !-- Set the aerosol and gas sources |
---|
1313 | IF ( salsa_source_mode == 'read_from_file' ) THEN |
---|
1314 | CALL salsa_set_source |
---|
1315 | ENDIF |
---|
1316 | |
---|
1317 | END SUBROUTINE salsa_init |
---|
1318 | |
---|
1319 | !------------------------------------------------------------------------------! |
---|
1320 | ! Description: |
---|
1321 | ! ------------ |
---|
1322 | !> Initializes particle size distribution grid by calculating size bin limits |
---|
1323 | !> and mid-size for *dry* particles in each bin. Called from salsa_initialize |
---|
1324 | !> (only at the beginning of simulation). |
---|
1325 | !> Size distribution described using: |
---|
1326 | !> 1) moving center method (subranges 1 and 2) |
---|
1327 | !> (Jacobson, Atmos. Env., 31, 131-144, 1997) |
---|
1328 | !> 2) fixed sectional method (subrange 3) |
---|
1329 | !> Size bins in each subrange are spaced logarithmically |
---|
1330 | !> based on given subrange size limits and bin number. |
---|
1331 | ! |
---|
1332 | !> Mona changed 06/2017: Use geometric mean diameter to describe the mean |
---|
1333 | !> particle diameter in a size bin, not the arithmeric mean which clearly |
---|
1334 | !> overestimates the total particle volume concentration. |
---|
1335 | ! |
---|
1336 | !> Coded by: |
---|
1337 | !> Hannele Korhonen (FMI) 2005 |
---|
1338 | !> Harri Kokkola (FMI) 2006 |
---|
1339 | ! |
---|
1340 | !> Bug fixes for box model + updated for the new aerosol datatype: |
---|
1341 | !> Juha Tonttila (FMI) 2014 |
---|
1342 | !------------------------------------------------------------------------------! |
---|
1343 | SUBROUTINE set_sizebins |
---|
1344 | |
---|
1345 | IMPLICIT NONE |
---|
1346 | ! |
---|
1347 | !-- Local variables |
---|
1348 | INTEGER(iwp) :: cc |
---|
1349 | INTEGER(iwp) :: dd |
---|
1350 | REAL(wp) :: ratio_d !< ratio of the upper and lower diameter of subranges |
---|
1351 | ! |
---|
1352 | !-- vlolim&vhilim: min & max *dry* volumes [fxm] |
---|
1353 | !-- dmid: bin mid *dry* diameter (m) |
---|
1354 | !-- vratiolo&vratiohi: volume ratio between the center and low/high limit |
---|
1355 | ! |
---|
1356 | !-- 1) Size subrange 1: |
---|
1357 | ratio_d = reglim(2) / reglim(1) ! section spacing (m) |
---|
1358 | DO cc = in1a,fn1a |
---|
1359 | aero(cc)%vlolim = api6 * ( reglim(1) * ratio_d ** & |
---|
1360 | ( REAL( cc-1 ) / nbin(1) ) ) ** 3.0_wp |
---|
1361 | aero(cc)%vhilim = api6 * ( reglim(1) * ratio_d ** & |
---|
1362 | ( REAL( cc ) / nbin(1) ) ) ** 3.0_wp |
---|
1363 | aero(cc)%dmid = SQRT( ( aero(cc)%vhilim / api6 ) ** ( 1.0_wp / 3.0_wp ) & |
---|
1364 | * ( aero(cc)%vlolim / api6 ) ** ( 1.0_wp / 3.0_wp ) ) |
---|
1365 | aero(cc)%vratiohi = aero(cc)%vhilim / ( api6 * aero(cc)%dmid ** 3.0_wp ) |
---|
1366 | aero(cc)%vratiolo = aero(cc)%vlolim / ( api6 * aero(cc)%dmid ** 3.0_wp ) |
---|
1367 | ENDDO |
---|
1368 | ! |
---|
1369 | !-- 2) Size subrange 2: |
---|
1370 | !-- 2.1) Sub-subrange 2a: high hygroscopicity |
---|
1371 | ratio_d = reglim(3) / reglim(2) ! section spacing |
---|
1372 | DO dd = in2a, fn2a |
---|
1373 | cc = dd - in2a |
---|
1374 | aero(dd)%vlolim = api6 * ( reglim(2) * ratio_d ** & |
---|
1375 | ( REAL( cc ) / nbin(2) ) ) ** 3.0_wp |
---|
1376 | aero(dd)%vhilim = api6 * ( reglim(2) * ratio_d ** & |
---|
1377 | ( REAL( cc+1 ) / nbin(2) ) ) ** 3.0_wp |
---|
1378 | aero(dd)%dmid = SQRT( ( aero(dd)%vhilim / api6 ) ** ( 1.0_wp / 3.0_wp ) & |
---|
1379 | * ( aero(dd)%vlolim / api6 ) ** ( 1.0_wp / 3.0_wp ) ) |
---|
1380 | aero(dd)%vratiohi = aero(dd)%vhilim / ( api6 * aero(dd)%dmid ** 3.0_wp ) |
---|
1381 | aero(dd)%vratiolo = aero(dd)%vlolim / ( api6 * aero(dd)%dmid ** 3.0_wp ) |
---|
1382 | ENDDO |
---|
1383 | ! |
---|
1384 | !-- 2.2) Sub-subrange 2b: low hygroscopicity |
---|
1385 | IF ( .NOT. no_insoluble ) THEN |
---|
1386 | aero(in2b:fn2b)%vlolim = aero(in2a:fn2a)%vlolim |
---|
1387 | aero(in2b:fn2b)%vhilim = aero(in2a:fn2a)%vhilim |
---|
1388 | aero(in2b:fn2b)%dmid = aero(in2a:fn2a)%dmid |
---|
1389 | aero(in2b:fn2b)%vratiohi = aero(in2a:fn2a)%vratiohi |
---|
1390 | aero(in2b:fn2b)%vratiolo = aero(in2a:fn2a)%vratiolo |
---|
1391 | ENDIF |
---|
1392 | ! |
---|
1393 | !-- Initialize the wet diameter with the bin dry diameter to avoid numerical |
---|
1394 | !-- problems later |
---|
1395 | aero(:)%dwet = aero(:)%dmid |
---|
1396 | ! |
---|
1397 | !-- Save bin limits (lower diameter) to be delivered to the host model if needed |
---|
1398 | DO cc = 1, nbins |
---|
1399 | bin_low_limits(cc) = ( aero(cc)%vlolim / api6 )**( 1.0_wp / 3.0_wp ) |
---|
1400 | ENDDO |
---|
1401 | |
---|
1402 | END SUBROUTINE set_sizebins |
---|
1403 | |
---|
1404 | !------------------------------------------------------------------------------! |
---|
1405 | ! Description: |
---|
1406 | ! ------------ |
---|
1407 | !> Initilize altitude-dependent aerosol size distributions and compositions. |
---|
1408 | !> |
---|
1409 | !> Mona added 06/2017: Correct the number and mass concentrations by normalizing |
---|
1410 | !< by the given total number and mass concentration. |
---|
1411 | !> |
---|
1412 | !> Tomi Raatikainen, FMI, 29.2.2016 |
---|
1413 | !------------------------------------------------------------------------------! |
---|
1414 | SUBROUTINE aerosol_init |
---|
1415 | |
---|
1416 | USE arrays_3d, & |
---|
1417 | ONLY: zu |
---|
1418 | |
---|
1419 | ! USE NETCDF |
---|
1420 | |
---|
1421 | USE netcdf_data_input_mod, & |
---|
1422 | ONLY: get_attribute, get_variable, & |
---|
1423 | netcdf_data_input_get_dimension_length, open_read_file |
---|
1424 | |
---|
1425 | IMPLICIT NONE |
---|
1426 | |
---|
1427 | INTEGER(iwp) :: b !< loop index: size bins |
---|
1428 | INTEGER(iwp) :: c !< loop index: chemical components |
---|
1429 | INTEGER(iwp) :: ee !< index: end |
---|
1430 | INTEGER(iwp) :: g !< loop index: gases |
---|
1431 | INTEGER(iwp) :: i !< loop index: x-direction |
---|
1432 | INTEGER(iwp) :: id_faero !< NetCDF id of PIDS_SALSA |
---|
1433 | INTEGER(iwp) :: id_fchem !< NetCDF id of PIDS_CHEM |
---|
1434 | INTEGER(iwp) :: j !< loop index: y-direction |
---|
1435 | INTEGER(iwp) :: k !< loop index: z-direction |
---|
1436 | INTEGER(iwp) :: kk !< loop index: z-direction |
---|
1437 | INTEGER(iwp) :: nz_file !< Number of grid-points in file (heights) |
---|
1438 | INTEGER(iwp) :: prunmode |
---|
1439 | INTEGER(iwp) :: ss !< index: start |
---|
1440 | LOGICAL :: netcdf_extend = .FALSE. !< Flag indicating wether netcdf |
---|
1441 | !< topography input file or not |
---|
1442 | REAL(wp), DIMENSION(nbins) :: core !< size of the bin mid aerosol particle, |
---|
1443 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
1444 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pr_gas !< gas profiles |
---|
1445 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pr_mass_fracs_a !< mass fraction |
---|
1446 | !< profiles: a |
---|
1447 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pr_mass_fracs_b !< and b |
---|
1448 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pr_nsect !< sectional size |
---|
1449 | !< distribution profile |
---|
1450 | REAL(wp), DIMENSION(nbins) :: nsect !< size distribution (#/m3) |
---|
1451 | REAL(wp), DIMENSION(0:nz+1,nbins) :: pndist !< size dist as a function |
---|
1452 | !< of height (#/m3) |
---|
1453 | REAL(wp), DIMENSION(0:nz+1) :: pnf2a !< number fraction: bins 2a |
---|
1454 | REAL(wp), DIMENSION(0:nz+1,maxspec) :: pvf2a !< mass distributions of |
---|
1455 | !< aerosol species for a |
---|
1456 | REAL(wp), DIMENSION(0:nz+1,maxspec) :: pvf2b !< and b-bins |
---|
1457 | REAL(wp), DIMENSION(0:nz+1) :: pvfOC1a !< mass fraction between |
---|
1458 | !< SO4 and OC in 1a |
---|
1459 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pr_z |
---|
1460 | |
---|
1461 | prunmode = 1 |
---|
1462 | ! |
---|
1463 | !-- Bin mean aerosol particle volume (m3) |
---|
1464 | core(:) = 0.0_wp |
---|
1465 | core(1:nbins) = api6 * aero(1:nbins)%dmid ** 3.0_wp |
---|
1466 | ! |
---|
1467 | !-- Set concentrations to zero |
---|
1468 | nsect(:) = 0.0_wp |
---|
1469 | pndist(:,:) = 0.0_wp |
---|
1470 | pnf2a(:) = nf2a |
---|
1471 | pvf2a(:,:) = 0.0_wp |
---|
1472 | pvf2b(:,:) = 0.0_wp |
---|
1473 | pvfOC1a(:) = 0.0_wp |
---|
1474 | |
---|
1475 | IF ( isdtyp == 1 ) THEN |
---|
1476 | ! |
---|
1477 | !-- Read input profiles from PIDS_SALSA |
---|
1478 | #if defined( __netcdf ) |
---|
1479 | ! |
---|
1480 | !-- Location-dependent size distributions and compositions. |
---|
1481 | INQUIRE( FILE='PIDS_SALSA'// TRIM( coupling_char ), EXIST=netcdf_extend ) |
---|
1482 | IF ( netcdf_extend ) THEN |
---|
1483 | ! |
---|
1484 | !-- Open file in read-only mode |
---|
1485 | CALL open_read_file( 'PIDS_SALSA' // TRIM( coupling_char ), id_faero ) |
---|
1486 | ! |
---|
1487 | !-- Input heights |
---|
1488 | CALL netcdf_data_input_get_dimension_length( id_faero, nz_file, & |
---|
1489 | "profile_z" ) |
---|
1490 | |
---|
1491 | ALLOCATE( pr_z(nz_file), pr_mass_fracs_a(maxspec,nz_file), & |
---|
1492 | pr_mass_fracs_b(maxspec,nz_file), pr_nsect(nbins,nz_file) ) |
---|
1493 | CALL get_variable( id_faero, 'profile_z', pr_z ) |
---|
1494 | ! |
---|
1495 | !-- Mass fracs profile: 1: H2SO4 (sulphuric acid), 2: OC (organic carbon), |
---|
1496 | !-- 3: BC (black carbon), 4: DU (dust), |
---|
1497 | !-- 5: SS (sea salt), 6: HNO3 (nitric acid), |
---|
1498 | !-- 7: NH3 (ammonia) |
---|
1499 | CALL get_variable( id_faero, "profile_mass_fracs_a", pr_mass_fracs_a,& |
---|
1500 | 0, nz_file-1, 0, maxspec-1 ) |
---|
1501 | CALL get_variable( id_faero, "profile_mass_fracs_b", pr_mass_fracs_b,& |
---|
1502 | 0, nz_file-1, 0, maxspec-1 ) |
---|
1503 | CALL get_variable( id_faero, "profile_nsect", pr_nsect, 0, nz_file-1,& |
---|
1504 | 0, nbins-1 ) |
---|
1505 | |
---|
1506 | kk = 1 |
---|
1507 | DO k = nzb, nz+1 |
---|
1508 | IF ( kk < nz_file ) THEN |
---|
1509 | DO WHILE ( pr_z(kk+1) <= zu(k) ) |
---|
1510 | kk = kk + 1 |
---|
1511 | IF ( kk == nz_file ) EXIT |
---|
1512 | ENDDO |
---|
1513 | ENDIF |
---|
1514 | IF ( kk < nz_file ) THEN |
---|
1515 | ! |
---|
1516 | !-- Set initial value for gas compound tracers and initial values |
---|
1517 | pvf2a(k,:) = pr_mass_fracs_a(:,kk) + ( zu(k) - pr_z(kk) ) / ( & |
---|
1518 | pr_z(kk+1) - pr_z(kk) ) * ( pr_mass_fracs_a(:,kk+1)& |
---|
1519 | - pr_mass_fracs_a(:,kk) ) |
---|
1520 | pvf2b(k,:) = pr_mass_fracs_b(:,kk) + ( zu(k) - pr_z(kk) ) / ( & |
---|
1521 | pr_z(kk+1) - pr_z(kk) ) * ( pr_mass_fracs_b(:,kk+1)& |
---|
1522 | - pr_mass_fracs_b(:,kk) ) |
---|
1523 | pndist(k,:) = pr_nsect(:,kk) + ( zu(k) - pr_z(kk) ) / ( & |
---|
1524 | pr_z(kk+1) - pr_z(kk) ) * ( pr_nsect(:,kk+1) - & |
---|
1525 | pr_nsect(:,kk) ) |
---|
1526 | ELSE |
---|
1527 | pvf2a(k,:) = pr_mass_fracs_a(:,kk) |
---|
1528 | pvf2b(k,:) = pr_mass_fracs_b(:,kk) |
---|
1529 | pndist(k,:) = pr_nsect(:,kk) |
---|
1530 | ENDIF |
---|
1531 | IF ( iso4 < 0 ) THEN |
---|
1532 | pvf2a(k,1) = 0.0_wp |
---|
1533 | pvf2b(k,1) = 0.0_wp |
---|
1534 | ENDIF |
---|
1535 | IF ( ioc < 0 ) THEN |
---|
1536 | pvf2a(k,2) = 0.0_wp |
---|
1537 | pvf2b(k,2) = 0.0_wp |
---|
1538 | ENDIF |
---|
1539 | IF ( ibc < 0 ) THEN |
---|
1540 | pvf2a(k,3) = 0.0_wp |
---|
1541 | pvf2b(k,3) = 0.0_wp |
---|
1542 | ENDIF |
---|
1543 | IF ( idu < 0 ) THEN |
---|
1544 | pvf2a(k,4) = 0.0_wp |
---|
1545 | pvf2b(k,4) = 0.0_wp |
---|
1546 | ENDIF |
---|
1547 | IF ( iss < 0 ) THEN |
---|
1548 | pvf2a(k,5) = 0.0_wp |
---|
1549 | pvf2b(k,5) = 0.0_wp |
---|
1550 | ENDIF |
---|
1551 | IF ( ino < 0 ) THEN |
---|
1552 | pvf2a(k,6) = 0.0_wp |
---|
1553 | pvf2b(k,6) = 0.0_wp |
---|
1554 | ENDIF |
---|
1555 | IF ( inh < 0 ) THEN |
---|
1556 | pvf2a(k,7) = 0.0_wp |
---|
1557 | pvf2b(k,7) = 0.0_wp |
---|
1558 | ENDIF |
---|
1559 | ! |
---|
1560 | !-- Then normalise the mass fraction so that SUM = 1 |
---|
1561 | pvf2a(k,:) = pvf2a(k,:) / SUM( pvf2a(k,:) ) |
---|
1562 | IF ( SUM( pvf2b(k,:) ) > 0.0_wp ) pvf2b(k,:) = pvf2b(k,:) / & |
---|
1563 | SUM( pvf2b(k,:) ) |
---|
1564 | ENDDO |
---|
1565 | DEALLOCATE( pr_z, pr_mass_fracs_a, pr_mass_fracs_b, pr_nsect ) |
---|
1566 | ELSE |
---|
1567 | message_string = 'Input file '// TRIM( 'PIDS_SALSA' ) // & |
---|
1568 | TRIM( coupling_char ) // ' for SALSA missing!' |
---|
1569 | CALL message( 'salsa_mod: aerosol_init', 'SA0032', 1, 2, 0, 6, 0 ) |
---|
1570 | ENDIF ! netcdf_extend |
---|
1571 | #endif |
---|
1572 | |
---|
1573 | ELSEIF ( isdtyp == 0 ) THEN |
---|
1574 | ! |
---|
1575 | !-- Mass fractions for species in a and b-bins |
---|
1576 | IF ( iso4 > 0 ) THEN |
---|
1577 | pvf2a(:,1) = mass_fracs_a(iso4) |
---|
1578 | pvf2b(:,1) = mass_fracs_b(iso4) |
---|
1579 | ENDIF |
---|
1580 | IF ( ioc > 0 ) THEN |
---|
1581 | pvf2a(:,2) = mass_fracs_a(ioc) |
---|
1582 | pvf2b(:,2) = mass_fracs_b(ioc) |
---|
1583 | ENDIF |
---|
1584 | IF ( ibc > 0 ) THEN |
---|
1585 | pvf2a(:,3) = mass_fracs_a(ibc) |
---|
1586 | pvf2b(:,3) = mass_fracs_b(ibc) |
---|
1587 | ENDIF |
---|
1588 | IF ( idu > 0 ) THEN |
---|
1589 | pvf2a(:,4) = mass_fracs_a(idu) |
---|
1590 | pvf2b(:,4) = mass_fracs_b(idu) |
---|
1591 | ENDIF |
---|
1592 | IF ( iss > 0 ) THEN |
---|
1593 | pvf2a(:,5) = mass_fracs_a(iss) |
---|
1594 | pvf2b(:,5) = mass_fracs_b(iss) |
---|
1595 | ENDIF |
---|
1596 | IF ( ino > 0 ) THEN |
---|
1597 | pvf2a(:,6) = mass_fracs_a(ino) |
---|
1598 | pvf2b(:,6) = mass_fracs_b(ino) |
---|
1599 | ENDIF |
---|
1600 | IF ( inh > 0 ) THEN |
---|
1601 | pvf2a(:,7) = mass_fracs_a(inh) |
---|
1602 | pvf2b(:,7) = mass_fracs_b(inh) |
---|
1603 | ENDIF |
---|
1604 | DO k = nzb, nz+1 |
---|
1605 | pvf2a(k,:) = pvf2a(k,:) / SUM( pvf2a(k,:) ) |
---|
1606 | IF ( SUM( pvf2b(k,:) ) > 0.0_wp ) pvf2b(k,:) = pvf2b(k,:) / & |
---|
1607 | SUM( pvf2b(k,:) ) |
---|
1608 | ENDDO |
---|
1609 | |
---|
1610 | CALL size_distribution( n_lognorm, dpg, sigmag, nsect ) |
---|
1611 | ! |
---|
1612 | !-- Normalize by the given total number concentration |
---|
1613 | nsect = nsect * SUM( n_lognorm ) * 1.0E+6_wp / SUM( nsect ) |
---|
1614 | DO b = in1a, fn2b |
---|
1615 | pndist(:,b) = nsect(b) |
---|
1616 | ENDDO |
---|
1617 | ENDIF |
---|
1618 | |
---|
1619 | IF ( igctyp == 1 ) THEN |
---|
1620 | ! |
---|
1621 | !-- Read input profiles from PIDS_CHEM |
---|
1622 | #if defined( __netcdf ) |
---|
1623 | ! |
---|
1624 | !-- Location-dependent size distributions and compositions. |
---|
1625 | INQUIRE( FILE='PIDS_CHEM' // TRIM( coupling_char ), EXIST=netcdf_extend ) |
---|
1626 | IF ( netcdf_extend .AND. .NOT. salsa_gases_from_chem ) THEN |
---|
1627 | ! |
---|
1628 | !-- Open file in read-only mode |
---|
1629 | CALL open_read_file( 'PIDS_CHEM' // TRIM( coupling_char ), id_fchem ) |
---|
1630 | ! |
---|
1631 | !-- Input heights |
---|
1632 | CALL netcdf_data_input_get_dimension_length( id_fchem, nz_file, & |
---|
1633 | "profile_z" ) |
---|
1634 | ALLOCATE( pr_z(nz_file), pr_gas(ngast,nz_file) ) |
---|
1635 | CALL get_variable( id_fchem, 'profile_z', pr_z ) |
---|
1636 | ! |
---|
1637 | !-- Gases: |
---|
1638 | CALL get_variable( id_fchem, "profile_H2SO4", pr_gas(1,:) ) |
---|
1639 | CALL get_variable( id_fchem, "profile_HNO3", pr_gas(2,:) ) |
---|
1640 | CALL get_variable( id_fchem, "profile_NH3", pr_gas(3,:) ) |
---|
1641 | CALL get_variable( id_fchem, "profile_OCNV", pr_gas(4,:) ) |
---|
1642 | CALL get_variable( id_fchem, "profile_OCSV", pr_gas(5,:) ) |
---|
1643 | |
---|
1644 | kk = 1 |
---|
1645 | DO k = nzb, nz+1 |
---|
1646 | IF ( kk < nz_file ) THEN |
---|
1647 | DO WHILE ( pr_z(kk+1) <= zu(k) ) |
---|
1648 | kk = kk + 1 |
---|
1649 | IF ( kk == nz_file ) EXIT |
---|
1650 | ENDDO |
---|
1651 | ENDIF |
---|
1652 | IF ( kk < nz_file ) THEN |
---|
1653 | ! |
---|
1654 | !-- Set initial value for gas compound tracers and initial values |
---|
1655 | DO g = 1, ngast |
---|
1656 | salsa_gas(g)%init(k) = pr_gas(g,kk) + ( zu(k) - pr_z(kk) ) & |
---|
1657 | / ( pr_z(kk+1) - pr_z(kk) ) * & |
---|
1658 | ( pr_gas(g,kk+1) - pr_gas(g,kk) ) |
---|
1659 | salsa_gas(g)%conc(k,:,:) = salsa_gas(g)%init(k) |
---|
1660 | ENDDO |
---|
1661 | ELSE |
---|
1662 | DO g = 1, ngast |
---|
1663 | salsa_gas(g)%init(k) = pr_gas(g,kk) |
---|
1664 | salsa_gas(g)%conc(k,:,:) = salsa_gas(g)%init(k) |
---|
1665 | ENDDO |
---|
1666 | ENDIF |
---|
1667 | ENDDO |
---|
1668 | |
---|
1669 | DEALLOCATE( pr_z, pr_gas ) |
---|
1670 | ELSEIF ( .NOT. netcdf_extend .AND. .NOT. salsa_gases_from_chem ) THEN |
---|
1671 | message_string = 'Input file '// TRIM( 'PIDS_CHEM' ) // & |
---|
1672 | TRIM( coupling_char ) // ' for SALSA missing!' |
---|
1673 | CALL message( 'salsa_mod: aerosol_init', 'SA0033', 1, 2, 0, 6, 0 ) |
---|
1674 | ENDIF ! netcdf_extend |
---|
1675 | #endif |
---|
1676 | |
---|
1677 | ENDIF |
---|
1678 | |
---|
1679 | IF ( ioc > 0 .AND. iso4 > 0 ) THEN |
---|
1680 | !-- Both are there, so use the given "massDistrA" |
---|
1681 | pvfOC1a(:) = pvf2a(:,2) / ( pvf2a(:,2) + pvf2a(:,1) ) ! Normalize |
---|
1682 | ELSEIF ( ioc > 0 ) THEN |
---|
1683 | !-- Pure organic carbon |
---|
1684 | pvfOC1a(:) = 1.0_wp |
---|
1685 | ELSEIF ( iso4 > 0 ) THEN |
---|
1686 | !-- Pure SO4 |
---|
1687 | pvfOC1a(:) = 0.0_wp |
---|
1688 | ELSE |
---|
1689 | message_string = 'Either OC or SO4 must be active for aerosol region 1a!' |
---|
1690 | CALL message( 'salsa_mod: aerosol_init', 'SA0021', 1, 2, 0, 6, 0 ) |
---|
1691 | ENDIF |
---|
1692 | |
---|
1693 | ! |
---|
1694 | !-- Initialize concentrations |
---|
1695 | DO i = nxlg, nxrg |
---|
1696 | DO j = nysg, nyng |
---|
1697 | DO k = nzb, nzt+1 |
---|
1698 | ! |
---|
1699 | !-- Predetermine flag to mask topography |
---|
1700 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1701 | ! |
---|
1702 | !-- a) Number concentrations |
---|
1703 | !-- Region 1: |
---|
1704 | DO b = in1a, fn1a |
---|
1705 | aerosol_number(b)%conc(k,j,i) = pndist(k,b) * flag |
---|
1706 | IF ( prunmode == 1 ) THEN |
---|
1707 | aerosol_number(b)%init = pndist(:,b) |
---|
1708 | ENDIF |
---|
1709 | ENDDO |
---|
1710 | ! |
---|
1711 | !-- Region 2: |
---|
1712 | IF ( nreg > 1 ) THEN |
---|
1713 | DO b = in2a, fn2a |
---|
1714 | aerosol_number(b)%conc(k,j,i) = MAX( 0.0_wp, pnf2a(k) ) * & |
---|
1715 | pndist(k,b) * flag |
---|
1716 | IF ( prunmode == 1 ) THEN |
---|
1717 | aerosol_number(b)%init = MAX( 0.0_wp, nf2a ) * pndist(:,b) |
---|
1718 | ENDIF |
---|
1719 | ENDDO |
---|
1720 | IF ( .NOT. no_insoluble ) THEN |
---|
1721 | DO b = in2b, fn2b |
---|
1722 | IF ( pnf2a(k) < 1.0_wp ) THEN |
---|
1723 | aerosol_number(b)%conc(k,j,i) = MAX( 0.0_wp, 1.0_wp & |
---|
1724 | - pnf2a(k) ) * pndist(k,b) * flag |
---|
1725 | IF ( prunmode == 1 ) THEN |
---|
1726 | aerosol_number(b)%init = MAX( 0.0_wp, 1.0_wp - & |
---|
1727 | nf2a ) * pndist(:,b) |
---|
1728 | ENDIF |
---|
1729 | ENDIF |
---|
1730 | ENDDO |
---|
1731 | ENDIF |
---|
1732 | ENDIF |
---|
1733 | ! |
---|
1734 | !-- b) Aerosol mass concentrations |
---|
1735 | !-- bin subrange 1: done here separately due to the SO4/OC convention |
---|
1736 | !-- SO4: |
---|
1737 | IF ( iso4 > 0 ) THEN |
---|
1738 | ss = ( iso4 - 1 ) * nbins + in1a !< start |
---|
1739 | ee = ( iso4 - 1 ) * nbins + fn1a !< end |
---|
1740 | b = in1a |
---|
1741 | DO c = ss, ee |
---|
1742 | aerosol_mass(c)%conc(k,j,i) = MAX( 0.0_wp, 1.0_wp - & |
---|
1743 | pvfOC1a(k) ) * pndist(k,b) * & |
---|
1744 | core(b) * arhoh2so4 * flag |
---|
1745 | IF ( prunmode == 1 ) THEN |
---|
1746 | aerosol_mass(c)%init = MAX( 0.0_wp, 1.0_wp - MAXVAL( & |
---|
1747 | pvfOC1a ) ) * pndist(:,b) * & |
---|
1748 | core(b) * arhoh2so4 |
---|
1749 | ENDIF |
---|
1750 | b = b+1 |
---|
1751 | ENDDO |
---|
1752 | ENDIF |
---|
1753 | !-- OC: |
---|
1754 | IF ( ioc > 0 ) THEN |
---|
1755 | ss = ( ioc - 1 ) * nbins + in1a !< start |
---|
1756 | ee = ( ioc - 1 ) * nbins + fn1a !< end |
---|
1757 | b = in1a |
---|
1758 | DO c = ss, ee |
---|
1759 | aerosol_mass(c)%conc(k,j,i) = MAX( 0.0_wp, pvfOC1a(k) ) * & |
---|
1760 | pndist(k,b) * core(b) * arhooc * flag |
---|
1761 | IF ( prunmode == 1 ) THEN |
---|
1762 | aerosol_mass(c)%init = MAX( 0.0_wp, MAXVAL( pvfOC1a ) ) & |
---|
1763 | * pndist(:,b) * core(b) * arhooc |
---|
1764 | ENDIF |
---|
1765 | b = b+1 |
---|
1766 | ENDDO |
---|
1767 | ENDIF |
---|
1768 | |
---|
1769 | prunmode = 3 ! Init only once |
---|
1770 | |
---|
1771 | ENDDO !< k |
---|
1772 | ENDDO !< j |
---|
1773 | ENDDO !< i |
---|
1774 | |
---|
1775 | ! |
---|
1776 | !-- c) Aerosol mass concentrations |
---|
1777 | !-- bin subrange 2: |
---|
1778 | IF ( nreg > 1 ) THEN |
---|
1779 | |
---|
1780 | IF ( iso4 > 0 ) THEN |
---|
1781 | CALL set_aero_mass( iso4, pvf2a(:,1), pvf2b(:,1), pnf2a, pndist, & |
---|
1782 | core, arhoh2so4 ) |
---|
1783 | ENDIF |
---|
1784 | IF ( ioc > 0 ) THEN |
---|
1785 | CALL set_aero_mass( ioc, pvf2a(:,2), pvf2b(:,2), pnf2a, pndist, core,& |
---|
1786 | arhooc ) |
---|
1787 | ENDIF |
---|
1788 | IF ( ibc > 0 ) THEN |
---|
1789 | CALL set_aero_mass( ibc, pvf2a(:,3), pvf2b(:,3), pnf2a, pndist, core,& |
---|
1790 | arhobc ) |
---|
1791 | ENDIF |
---|
1792 | IF ( idu > 0 ) THEN |
---|
1793 | CALL set_aero_mass( idu, pvf2a(:,4), pvf2b(:,4), pnf2a, pndist, core,& |
---|
1794 | arhodu ) |
---|
1795 | ENDIF |
---|
1796 | IF ( iss > 0 ) THEN |
---|
1797 | CALL set_aero_mass( iss, pvf2a(:,5), pvf2b(:,5), pnf2a, pndist, core,& |
---|
1798 | arhoss ) |
---|
1799 | ENDIF |
---|
1800 | IF ( ino > 0 ) THEN |
---|
1801 | CALL set_aero_mass( ino, pvf2a(:,6), pvf2b(:,6), pnf2a, pndist, core,& |
---|
1802 | arhohno3 ) |
---|
1803 | ENDIF |
---|
1804 | IF ( inh > 0 ) THEN |
---|
1805 | CALL set_aero_mass( inh, pvf2a(:,7), pvf2b(:,7), pnf2a, pndist, core,& |
---|
1806 | arhonh3 ) |
---|
1807 | ENDIF |
---|
1808 | |
---|
1809 | ENDIF |
---|
1810 | |
---|
1811 | END SUBROUTINE aerosol_init |
---|
1812 | |
---|
1813 | !------------------------------------------------------------------------------! |
---|
1814 | ! Description: |
---|
1815 | ! ------------ |
---|
1816 | !> Create a lognormal size distribution and discretise to a sectional |
---|
1817 | !> representation. |
---|
1818 | !------------------------------------------------------------------------------! |
---|
1819 | SUBROUTINE size_distribution( in_ntot, in_dpg, in_sigma, psd_sect ) |
---|
1820 | |
---|
1821 | IMPLICIT NONE |
---|
1822 | |
---|
1823 | !-- Log-normal size distribution: modes |
---|
1824 | REAL(wp), DIMENSION(:), INTENT(in) :: in_dpg !< geometric mean diameter |
---|
1825 | !< (micrometres) |
---|
1826 | REAL(wp), DIMENSION(:), INTENT(in) :: in_ntot !< number conc. (#/cm3) |
---|
1827 | REAL(wp), DIMENSION(:), INTENT(in) :: in_sigma !< standard deviation |
---|
1828 | REAL(wp), DIMENSION(:), INTENT(inout) :: psd_sect !< sectional size |
---|
1829 | !< distribution |
---|
1830 | INTEGER(iwp) :: b !< running index: bin |
---|
1831 | INTEGER(iwp) :: ib !< running index: iteration |
---|
1832 | REAL(wp) :: d1 !< particle diameter (m, dummy) |
---|
1833 | REAL(wp) :: d2 !< particle diameter (m, dummy) |
---|
1834 | REAL(wp) :: delta_d !< (d2-d1)/10 |
---|
1835 | REAL(wp) :: deltadp !< bin width |
---|
1836 | REAL(wp) :: dmidi !< ( d1 + d2 ) / 2 |
---|
1837 | |
---|
1838 | DO b = in1a, fn2b !< aerosol size bins |
---|
1839 | psd_sect(b) = 0.0_wp |
---|
1840 | !-- Particle diameter at the low limit (largest in the bin) (m) |
---|
1841 | d1 = ( aero(b)%vlolim / api6 ) ** ( 1.0_wp / 3.0_wp ) |
---|
1842 | !-- Particle diameter at the high limit (smallest in the bin) (m) |
---|
1843 | d2 = ( aero(b)%vhilim / api6 ) ** ( 1.0_wp / 3.0_wp ) |
---|
1844 | !-- Span of particle diameter in a bin (m) |
---|
1845 | delta_d = ( d2 - d1 ) / 10.0_wp |
---|
1846 | !-- Iterate: |
---|
1847 | DO ib = 1, 10 |
---|
1848 | d1 = ( aero(b)%vlolim / api6 ) ** ( 1.0_wp / 3.0_wp ) + ( ib - 1) & |
---|
1849 | * delta_d |
---|
1850 | d2 = d1 + delta_d |
---|
1851 | dmidi = ( d1 + d2 ) / 2.0_wp |
---|
1852 | deltadp = LOG10( d2 / d1 ) |
---|
1853 | |
---|
1854 | !-- Size distribution |
---|
1855 | !-- in_ntot = total number, total area, or total volume concentration |
---|
1856 | !-- in_dpg = geometric-mean number, area, or volume diameter |
---|
1857 | !-- n(k) = number, area, or volume concentration in a bin |
---|
1858 | !-- n_lognorm and dpg converted to units of #/m3 and m |
---|
1859 | psd_sect(b) = psd_sect(b) + SUM( in_ntot * 1.0E+6_wp * deltadp / & |
---|
1860 | ( SQRT( 2.0_wp * pi ) * LOG10( in_sigma ) ) * & |
---|
1861 | EXP( -LOG10( dmidi / ( 1.0E-6_wp * in_dpg ) )**2.0_wp / & |
---|
1862 | ( 2.0_wp * LOG10( in_sigma ) ** 2.0_wp ) ) ) |
---|
1863 | |
---|
1864 | ENDDO |
---|
1865 | ENDDO |
---|
1866 | |
---|
1867 | END SUBROUTINE size_distribution |
---|
1868 | |
---|
1869 | !------------------------------------------------------------------------------! |
---|
1870 | ! Description: |
---|
1871 | ! ------------ |
---|
1872 | !> Sets the mass concentrations to aerosol arrays in 2a and 2b. |
---|
1873 | !> |
---|
1874 | !> Tomi Raatikainen, FMI, 29.2.2016 |
---|
1875 | !------------------------------------------------------------------------------! |
---|
1876 | SUBROUTINE set_aero_mass( ispec, ppvf2a, ppvf2b, ppnf2a, ppndist, pcore, prho ) |
---|
1877 | |
---|
1878 | IMPLICIT NONE |
---|
1879 | |
---|
1880 | INTEGER(iwp), INTENT(in) :: ispec !< Aerosol species index |
---|
1881 | REAL(wp), INTENT(in) :: pcore(nbins) !< Aerosol bin mid core volume |
---|
1882 | REAL(wp), INTENT(in) :: ppndist(0:nz+1,nbins) !< Aerosol size distribution |
---|
1883 | REAL(wp), INTENT(in) :: ppnf2a(0:nz+1) !< Number fraction for 2a |
---|
1884 | REAL(wp), INTENT(in) :: ppvf2a(0:nz+1) !< Mass distributions for a |
---|
1885 | REAL(wp), INTENT(in) :: ppvf2b(0:nz+1) !< and b bins |
---|
1886 | REAL(wp), INTENT(in) :: prho !< Aerosol density |
---|
1887 | INTEGER(iwp) :: b !< loop index |
---|
1888 | INTEGER(iwp) :: c !< loop index |
---|
1889 | INTEGER(iwp) :: ee !< index: end |
---|
1890 | INTEGER(iwp) :: i !< loop index |
---|
1891 | INTEGER(iwp) :: j !< loop index |
---|
1892 | INTEGER(iwp) :: k !< loop index |
---|
1893 | INTEGER(iwp) :: prunmode !< 1 = initialise |
---|
1894 | INTEGER(iwp) :: ss !< index: start |
---|
1895 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
1896 | |
---|
1897 | prunmode = 1 |
---|
1898 | |
---|
1899 | DO i = nxlg, nxrg |
---|
1900 | DO j = nysg, nyng |
---|
1901 | DO k = nzb, nzt+1 |
---|
1902 | ! |
---|
1903 | !-- Predetermine flag to mask topography |
---|
1904 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1905 | ! |
---|
1906 | !-- Regime 2a: |
---|
1907 | ss = ( ispec - 1 ) * nbins + in2a |
---|
1908 | ee = ( ispec - 1 ) * nbins + fn2a |
---|
1909 | b = in2a |
---|
1910 | DO c = ss, ee |
---|
1911 | aerosol_mass(c)%conc(k,j,i) = MAX( 0.0_wp, ppvf2a(k) ) * & |
---|
1912 | ppnf2a(k) * ppndist(k,b) * pcore(b) * prho * flag |
---|
1913 | IF ( prunmode == 1 ) THEN |
---|
1914 | aerosol_mass(c)%init = MAX( 0.0_wp, MAXVAL( ppvf2a(:) ) ) * & |
---|
1915 | MAXVAL( ppnf2a ) * pcore(b) * prho * & |
---|
1916 | MAXVAL( ppndist(:,b) ) |
---|
1917 | ENDIF |
---|
1918 | b = b+1 |
---|
1919 | ENDDO |
---|
1920 | !-- Regime 2b: |
---|
1921 | IF ( .NOT. no_insoluble ) THEN |
---|
1922 | ss = ( ispec - 1 ) * nbins + in2b |
---|
1923 | ee = ( ispec - 1 ) * nbins + fn2b |
---|
1924 | b = in2a |
---|
1925 | DO c = ss, ee |
---|
1926 | aerosol_mass(c)%conc(k,j,i) = MAX( 0.0_wp, ppvf2b(k) ) * ( & |
---|
1927 | 1.0_wp - ppnf2a(k) ) * ppndist(k,b) * & |
---|
1928 | pcore(b) * prho * flag |
---|
1929 | IF ( prunmode == 1 ) THEN |
---|
1930 | aerosol_mass(c)%init = MAX( 0.0_wp, MAXVAL( ppvf2b(:) ) )& |
---|
1931 | * ( 1.0_wp - MAXVAL( ppnf2a ) ) * & |
---|
1932 | MAXVAL( ppndist(:,b) ) * pcore(b) * prho |
---|
1933 | ENDIF |
---|
1934 | b = b+1 |
---|
1935 | ENDDO |
---|
1936 | ENDIF |
---|
1937 | prunmode = 3 ! Init only once |
---|
1938 | ENDDO |
---|
1939 | ENDDO |
---|
1940 | ENDDO |
---|
1941 | END SUBROUTINE set_aero_mass |
---|
1942 | |
---|
1943 | !------------------------------------------------------------------------------! |
---|
1944 | ! Description: |
---|
1945 | ! ------------ |
---|
1946 | !> Swapping of timelevels |
---|
1947 | !------------------------------------------------------------------------------! |
---|
1948 | SUBROUTINE salsa_swap_timelevel( mod_count ) |
---|
1949 | |
---|
1950 | IMPLICIT NONE |
---|
1951 | |
---|
1952 | INTEGER(iwp), INTENT(IN) :: mod_count !< |
---|
1953 | INTEGER(iwp) :: b !< |
---|
1954 | INTEGER(iwp) :: c !< |
---|
1955 | INTEGER(iwp) :: cc !< |
---|
1956 | INTEGER(iwp) :: g !< |
---|
1957 | |
---|
1958 | |
---|
1959 | SELECT CASE ( mod_count ) |
---|
1960 | |
---|
1961 | CASE ( 0 ) |
---|
1962 | |
---|
1963 | DO b = 1, nbins |
---|
1964 | aerosol_number(b)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1965 | nconc_1(:,:,:,b) |
---|
1966 | aerosol_number(b)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1967 | nconc_2(:,:,:,b) |
---|
1968 | DO c = 1, ncc_tot |
---|
1969 | cc = ( c-1 ) * nbins + b ! required due to possible Intel18 bug |
---|
1970 | aerosol_mass(cc)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1971 | mconc_1(:,:,:,cc) |
---|
1972 | aerosol_mass(cc)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1973 | mconc_2(:,:,:,cc) |
---|
1974 | ENDDO |
---|
1975 | ENDDO |
---|
1976 | |
---|
1977 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
1978 | DO g = 1, ngast |
---|
1979 | salsa_gas(g)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1980 | gconc_1(:,:,:,g) |
---|
1981 | salsa_gas(g)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1982 | gconc_2(:,:,:,g) |
---|
1983 | ENDDO |
---|
1984 | ENDIF |
---|
1985 | |
---|
1986 | CASE ( 1 ) |
---|
1987 | |
---|
1988 | DO b = 1, nbins |
---|
1989 | aerosol_number(b)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1990 | nconc_2(:,:,:,b) |
---|
1991 | aerosol_number(b)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1992 | nconc_1(:,:,:,b) |
---|
1993 | DO c = 1, ncc_tot |
---|
1994 | cc = ( c-1 ) * nbins + b ! required due to possible Intel18 bug |
---|
1995 | aerosol_mass(cc)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1996 | mconc_2(:,:,:,cc) |
---|
1997 | aerosol_mass(cc)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1998 | mconc_1(:,:,:,cc) |
---|
1999 | ENDDO |
---|
2000 | ENDDO |
---|
2001 | |
---|
2002 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
2003 | DO g = 1, ngast |
---|
2004 | salsa_gas(g)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
2005 | gconc_2(:,:,:,g) |
---|
2006 | salsa_gas(g)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
2007 | gconc_1(:,:,:,g) |
---|
2008 | ENDDO |
---|
2009 | ENDIF |
---|
2010 | |
---|
2011 | END SELECT |
---|
2012 | |
---|
2013 | END SUBROUTINE salsa_swap_timelevel |
---|
2014 | |
---|
2015 | |
---|
2016 | !------------------------------------------------------------------------------! |
---|
2017 | ! Description: |
---|
2018 | ! ------------ |
---|
2019 | !> This routine reads the respective restart data. |
---|
2020 | !------------------------------------------------------------------------------! |
---|
2021 | SUBROUTINE salsa_rrd_local( i, k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, & |
---|
2022 | nxr_on_file, nynf, nync, nyn_on_file, nysf, & |
---|
2023 | nysc, nys_on_file, tmp_3d, found ) |
---|
2024 | |
---|
2025 | |
---|
2026 | IMPLICIT NONE |
---|
2027 | |
---|
2028 | CHARACTER (LEN=20) :: field_char !< |
---|
2029 | INTEGER(iwp) :: b !< |
---|
2030 | INTEGER(iwp) :: c !< |
---|
2031 | INTEGER(iwp) :: g !< |
---|
2032 | INTEGER(iwp) :: i !< |
---|
2033 | INTEGER(iwp) :: k !< |
---|
2034 | INTEGER(iwp) :: nxlc !< |
---|
2035 | INTEGER(iwp) :: nxlf !< |
---|
2036 | INTEGER(iwp) :: nxl_on_file !< |
---|
2037 | INTEGER(iwp) :: nxrc !< |
---|
2038 | INTEGER(iwp) :: nxrf !< |
---|
2039 | INTEGER(iwp) :: nxr_on_file !< |
---|
2040 | INTEGER(iwp) :: nync !< |
---|
2041 | INTEGER(iwp) :: nynf !< |
---|
2042 | INTEGER(iwp) :: nyn_on_file !< |
---|
2043 | INTEGER(iwp) :: nysc !< |
---|
2044 | INTEGER(iwp) :: nysf !< |
---|
2045 | INTEGER(iwp) :: nys_on_file !< |
---|
2046 | |
---|
2047 | LOGICAL, INTENT(OUT) :: found |
---|
2048 | |
---|
2049 | REAL(wp), & |
---|
2050 | DIMENSION(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d !< |
---|
2051 | |
---|
2052 | found = .FALSE. |
---|
2053 | |
---|
2054 | IF ( read_restart_data_salsa ) THEN |
---|
2055 | |
---|
2056 | SELECT CASE ( restart_string(1:length) ) |
---|
2057 | |
---|
2058 | CASE ( 'aerosol_number' ) |
---|
2059 | DO b = 1, nbins |
---|
2060 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
2061 | aerosol_number(b)%conc(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
2062 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
2063 | found = .TRUE. |
---|
2064 | ENDDO |
---|
2065 | |
---|
2066 | CASE ( 'aerosol_mass' ) |
---|
2067 | DO c = 1, ncc_tot * nbins |
---|
2068 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
2069 | aerosol_mass(c)%conc(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
2070 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
2071 | found = .TRUE. |
---|
2072 | ENDDO |
---|
2073 | |
---|
2074 | CASE ( 'salsa_gas' ) |
---|
2075 | DO g = 1, ngast |
---|
2076 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
2077 | salsa_gas(g)%conc(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
2078 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
2079 | found = .TRUE. |
---|
2080 | ENDDO |
---|
2081 | |
---|
2082 | CASE DEFAULT |
---|
2083 | found = .FALSE. |
---|
2084 | |
---|
2085 | END SELECT |
---|
2086 | ENDIF |
---|
2087 | |
---|
2088 | END SUBROUTINE salsa_rrd_local |
---|
2089 | |
---|
2090 | |
---|
2091 | !------------------------------------------------------------------------------! |
---|
2092 | ! Description: |
---|
2093 | ! ------------ |
---|
2094 | !> This routine writes the respective restart data. |
---|
2095 | !> Note that the following input variables in PARIN have to be equal between |
---|
2096 | !> restart runs: |
---|
2097 | !> listspec, nbin, nbin2, nf2a, ncc, mass_fracs_a, mass_fracs_b |
---|
2098 | !------------------------------------------------------------------------------! |
---|
2099 | SUBROUTINE salsa_wrd_local |
---|
2100 | |
---|
2101 | IMPLICIT NONE |
---|
2102 | |
---|
2103 | INTEGER(iwp) :: b !< |
---|
2104 | INTEGER(iwp) :: c !< |
---|
2105 | INTEGER(iwp) :: g !< |
---|
2106 | |
---|
2107 | IF ( write_binary .AND. write_binary_salsa ) THEN |
---|
2108 | |
---|
2109 | CALL wrd_write_string( 'aerosol_number' ) |
---|
2110 | DO b = 1, nbins |
---|
2111 | WRITE ( 14 ) aerosol_number(b)%conc |
---|
2112 | ENDDO |
---|
2113 | |
---|
2114 | CALL wrd_write_string( 'aerosol_mass' ) |
---|
2115 | DO c = 1, nbins*ncc_tot |
---|
2116 | WRITE ( 14 ) aerosol_mass(c)%conc |
---|
2117 | ENDDO |
---|
2118 | |
---|
2119 | CALL wrd_write_string( 'salsa_gas' ) |
---|
2120 | DO g = 1, ngast |
---|
2121 | WRITE ( 14 ) salsa_gas(g)%conc |
---|
2122 | ENDDO |
---|
2123 | |
---|
2124 | ENDIF |
---|
2125 | |
---|
2126 | END SUBROUTINE salsa_wrd_local |
---|
2127 | |
---|
2128 | |
---|
2129 | !------------------------------------------------------------------------------! |
---|
2130 | ! Description: |
---|
2131 | ! ------------ |
---|
2132 | !> Performs necessary unit and dimension conversion between the host model and |
---|
2133 | !> SALSA module, and calls the main SALSA routine. |
---|
2134 | !> Partially adobted form the original SALSA boxmodel version. |
---|
2135 | !> Now takes masses in as kg/kg from LES!! Converted to m3/m3 for SALSA |
---|
2136 | !> 05/2016 Juha: This routine is still pretty much in its original shape. |
---|
2137 | !> It's dumb as a mule and twice as ugly, so implementation of |
---|
2138 | !> an improved solution is necessary sooner or later. |
---|
2139 | !> Juha Tonttila, FMI, 2014 |
---|
2140 | !> Jaakko Ahola, FMI, 2016 |
---|
2141 | !> Only aerosol processes included, Mona Kurppa, UHel, 2017 |
---|
2142 | !------------------------------------------------------------------------------! |
---|
2143 | SUBROUTINE salsa_driver( i, j, prunmode ) |
---|
2144 | |
---|
2145 | USE arrays_3d, & |
---|
2146 | ONLY: pt_p, q_p, rho_air_zw, u, v, w |
---|
2147 | |
---|
2148 | USE plant_canopy_model_mod, & |
---|
2149 | ONLY: lad_s |
---|
2150 | |
---|
2151 | USE surface_mod, & |
---|
2152 | ONLY: surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
2153 | surf_usm_v |
---|
2154 | |
---|
2155 | IMPLICIT NONE |
---|
2156 | |
---|
2157 | INTEGER(iwp), INTENT(in) :: i !< loop index |
---|
2158 | INTEGER(iwp), INTENT(in) :: j !< loop index |
---|
2159 | INTEGER(iwp), INTENT(in) :: prunmode !< 1: Initialization call |
---|
2160 | !< 2: Spinup period call |
---|
2161 | !< 3: Regular runtime call |
---|
2162 | !-- Local variables |
---|
2163 | TYPE(t_section), DIMENSION(fn2b) :: aero_old !< helper array |
---|
2164 | INTEGER(iwp) :: bb !< loop index |
---|
2165 | INTEGER(iwp) :: cc !< loop index |
---|
2166 | INTEGER(iwp) :: endi !< end index |
---|
2167 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
2168 | INTEGER(iwp) :: k !< loop index |
---|
2169 | INTEGER(iwp) :: l !< loop index |
---|
2170 | INTEGER(iwp) :: nc_h2o !< index of H2O in the prtcl index table |
---|
2171 | INTEGER(iwp) :: ss !< loop index |
---|
2172 | INTEGER(iwp) :: str !< start index |
---|
2173 | INTEGER(iwp) :: vc !< default index in prtcl |
---|
2174 | REAL(wp) :: cw_old !< previous H2O mixing ratio |
---|
2175 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
2176 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_adn !< air density (kg/m3) |
---|
2177 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_cs !< H2O sat. vapour conc. |
---|
2178 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_cw !< H2O vapour concentration |
---|
2179 | REAL(wp) :: in_lad !< leaf area density (m2/m3) |
---|
2180 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_p !< pressure (Pa) |
---|
2181 | REAL(wp) :: in_rh !< relative humidity |
---|
2182 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_t !< temperature (K) |
---|
2183 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_u !< wind magnitude (m/s) |
---|
2184 | REAL(wp), DIMENSION(nzb:nzt+1) :: kvis !< kinematic viscosity of air(m2/s) |
---|
2185 | REAL(wp), DIMENSION(nzb:nzt+1,fn2b) :: Sc !< particle Schmidt number |
---|
2186 | REAL(wp), DIMENSION(nzb:nzt+1,fn2b) :: vd !< particle fall seed (m/s, |
---|
2187 | !< sedimentation velocity) |
---|
2188 | REAL(wp), DIMENSION(nzb:nzt+1) :: ppm_to_nconc !< Conversion factor |
---|
2189 | !< from ppm to #/m3 |
---|
2190 | REAL(wp) :: zgso4 !< SO4 |
---|
2191 | REAL(wp) :: zghno3 !< HNO3 |
---|
2192 | REAL(wp) :: zgnh3 !< NH3 |
---|
2193 | REAL(wp) :: zgocnv !< non-volatile OC |
---|
2194 | REAL(wp) :: zgocsv !< semi-volatile OC |
---|
2195 | |
---|
2196 | aero_old(:)%numc = 0.0_wp |
---|
2197 | in_adn = 0.0_wp |
---|
2198 | in_cs = 0.0_wp |
---|
2199 | in_cw = 0.0_wp |
---|
2200 | in_lad = 0.0_wp |
---|
2201 | in_rh = 0.0_wp |
---|
2202 | in_p = 0.0_wp |
---|
2203 | in_t = 0.0_wp |
---|
2204 | in_u = 0.0_wp |
---|
2205 | kvis = 0.0_wp |
---|
2206 | Sc = 0.0_wp |
---|
2207 | vd = 0.0_wp |
---|
2208 | ppm_to_nconc = 1.0_wp |
---|
2209 | zgso4 = nclim |
---|
2210 | zghno3 = nclim |
---|
2211 | zgnh3 = nclim |
---|
2212 | zgocnv = nclim |
---|
2213 | zgocsv = nclim |
---|
2214 | |
---|
2215 | ! |
---|
2216 | !-- Aerosol number is always set, but mass can be uninitialized |
---|
2217 | DO cc = 1, nbins |
---|
2218 | aero(cc)%volc = 0.0_wp |
---|
2219 | aero_old(cc)%volc = 0.0_wp |
---|
2220 | ENDDO |
---|
2221 | ! |
---|
2222 | !-- Set the salsa runtime config (How to make this more efficient?) |
---|
2223 | CALL set_salsa_runtime( prunmode ) |
---|
2224 | ! |
---|
2225 | !-- Calculate thermodynamic quantities needed in SALSA |
---|
2226 | CALL salsa_thrm_ij( i, j, p_ij=in_p, temp_ij=in_t, cw_ij=in_cw, & |
---|
2227 | cs_ij=in_cs, adn_ij=in_adn ) |
---|
2228 | ! |
---|
2229 | !-- Magnitude of wind: needed for deposition |
---|
2230 | IF ( lsdepo ) THEN |
---|
2231 | in_u(nzb+1:nzt) = SQRT( & |
---|
2232 | ( 0.5_wp * ( u(nzb+1:nzt,j,i) + u(nzb+1:nzt,j,i+1) ) )**2 + & |
---|
2233 | ( 0.5_wp * ( v(nzb+1:nzt,j,i) + v(nzb+1:nzt,j+1,i) ) )**2 + & |
---|
2234 | ( 0.5_wp * ( w(nzb:nzt-1,j,i) + w(nzb+1:nzt,j, i) ) )**2 ) |
---|
2235 | ENDIF |
---|
2236 | ! |
---|
2237 | !-- Calculate conversion factors for gas concentrations |
---|
2238 | ppm_to_nconc = for_ppm_to_nconc * in_p / in_t |
---|
2239 | ! |
---|
2240 | !-- Determine topography-top index on scalar grid |
---|
2241 | k_wall = MAXLOC( MERGE( 1, 0, BTEST( wall_flags_0(:,j,i), 12 ) ), & |
---|
2242 | DIM = 1 ) - 1 |
---|
2243 | |
---|
2244 | DO k = nzb+1, nzt |
---|
2245 | ! |
---|
2246 | !-- Predetermine flag to mask topography |
---|
2247 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2248 | ! |
---|
2249 | !-- Do not run inside buildings |
---|
2250 | IF ( flag == 0.0_wp ) CYCLE |
---|
2251 | ! |
---|
2252 | !-- Wind velocity for dry depositon on vegetation |
---|
2253 | IF ( lsdepo_vege .AND. plant_canopy ) THEN |
---|
2254 | in_lad = lad_s(k-k_wall,j,i) |
---|
2255 | ENDIF |
---|
2256 | ! |
---|
2257 | !-- For initialization and spinup, limit the RH with the parameter rhlim |
---|
2258 | IF ( prunmode < 3 ) THEN |
---|
2259 | in_cw(k) = MIN( in_cw(k), in_cs(k) * rhlim ) |
---|
2260 | ELSE |
---|
2261 | in_cw(k) = in_cw(k) |
---|
2262 | ENDIF |
---|
2263 | cw_old = in_cw(k) !* in_adn(k) |
---|
2264 | ! |
---|
2265 | !-- Set volume concentrations: |
---|
2266 | !-- Sulphate (SO4) or sulphuric acid H2SO4 |
---|
2267 | IF ( iso4 > 0 ) THEN |
---|
2268 | vc = 1 |
---|
2269 | str = ( iso4-1 ) * nbins + 1 ! start index |
---|
2270 | endi = iso4 * nbins ! end index |
---|
2271 | cc = 1 |
---|
2272 | DO ss = str, endi |
---|
2273 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhoh2so4 |
---|
2274 | cc = cc+1 |
---|
2275 | ENDDO |
---|
2276 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2277 | ENDIF |
---|
2278 | |
---|
2279 | !-- Organic carbon (OC) compounds |
---|
2280 | IF ( ioc > 0 ) THEN |
---|
2281 | vc = 2 |
---|
2282 | str = ( ioc-1 ) * nbins + 1 |
---|
2283 | endi = ioc * nbins |
---|
2284 | cc = 1 |
---|
2285 | DO ss = str, endi |
---|
2286 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhooc |
---|
2287 | cc = cc+1 |
---|
2288 | ENDDO |
---|
2289 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2290 | ENDIF |
---|
2291 | |
---|
2292 | !-- Black carbon (BC) |
---|
2293 | IF ( ibc > 0 ) THEN |
---|
2294 | vc = 3 |
---|
2295 | str = ( ibc-1 ) * nbins + 1 + fn1a |
---|
2296 | endi = ibc * nbins |
---|
2297 | cc = 1 + fn1a |
---|
2298 | DO ss = str, endi |
---|
2299 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhobc |
---|
2300 | cc = cc+1 |
---|
2301 | ENDDO |
---|
2302 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2303 | ENDIF |
---|
2304 | |
---|
2305 | !-- Dust (DU) |
---|
2306 | IF ( idu > 0 ) THEN |
---|
2307 | vc = 4 |
---|
2308 | str = ( idu-1 ) * nbins + 1 + fn1a |
---|
2309 | endi = idu * nbins |
---|
2310 | cc = 1 + fn1a |
---|
2311 | DO ss = str, endi |
---|
2312 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhodu |
---|
2313 | cc = cc+1 |
---|
2314 | ENDDO |
---|
2315 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2316 | ENDIF |
---|
2317 | |
---|
2318 | !-- Sea salt (SS) |
---|
2319 | IF ( iss > 0 ) THEN |
---|
2320 | vc = 5 |
---|
2321 | str = ( iss-1 ) * nbins + 1 + fn1a |
---|
2322 | endi = iss * nbins |
---|
2323 | cc = 1 + fn1a |
---|
2324 | DO ss = str, endi |
---|
2325 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhoss |
---|
2326 | cc = cc+1 |
---|
2327 | ENDDO |
---|
2328 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2329 | ENDIF |
---|
2330 | |
---|
2331 | !-- Nitrate (NO(3-)) or nitric acid HNO3 |
---|
2332 | IF ( ino > 0 ) THEN |
---|
2333 | vc = 6 |
---|
2334 | str = ( ino-1 ) * nbins + 1 |
---|
2335 | endi = ino * nbins |
---|
2336 | cc = 1 |
---|
2337 | DO ss = str, endi |
---|
2338 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhohno3 |
---|
2339 | cc = cc+1 |
---|
2340 | ENDDO |
---|
2341 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2342 | ENDIF |
---|
2343 | |
---|
2344 | !-- Ammonium (NH(4+)) or ammonia NH3 |
---|
2345 | IF ( inh > 0 ) THEN |
---|
2346 | vc = 7 |
---|
2347 | str = ( inh-1 ) * nbins + 1 |
---|
2348 | endi = inh * nbins |
---|
2349 | cc = 1 |
---|
2350 | DO ss = str, endi |
---|
2351 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhonh3 |
---|
2352 | cc = cc+1 |
---|
2353 | ENDDO |
---|
2354 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2355 | ENDIF |
---|
2356 | |
---|
2357 | !-- Water (always used) |
---|
2358 | nc_h2o = get_index( prtcl,'H2O' ) |
---|
2359 | vc = 8 |
---|
2360 | str = ( nc_h2o-1 ) * nbins + 1 |
---|
2361 | endi = nc_h2o * nbins |
---|
2362 | cc = 1 |
---|
2363 | IF ( advect_particle_water ) THEN |
---|
2364 | DO ss = str, endi |
---|
2365 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhoh2o |
---|
2366 | cc = cc+1 |
---|
2367 | ENDDO |
---|
2368 | ELSE |
---|
2369 | aero(1:nbins)%volc(vc) = mclim |
---|
2370 | ENDIF |
---|
2371 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2372 | ! |
---|
2373 | !-- Number concentrations (numc) and particle sizes |
---|
2374 | !-- (dwet = wet diameter, core = dry volume) |
---|
2375 | DO bb = 1, nbins |
---|
2376 | aero(bb)%numc = aerosol_number(bb)%conc(k,j,i) |
---|
2377 | aero_old(bb)%numc = aero(bb)%numc |
---|
2378 | IF ( aero(bb)%numc > nclim ) THEN |
---|
2379 | aero(bb)%dwet = ( SUM( aero(bb)%volc(:) ) / aero(bb)%numc / api6 )& |
---|
2380 | **( 1.0_wp / 3.0_wp ) |
---|
2381 | aero(bb)%core = SUM( aero(bb)%volc(1:7) ) / aero(bb)%numc |
---|
2382 | ELSE |
---|
2383 | aero(bb)%dwet = aero(bb)%dmid |
---|
2384 | aero(bb)%core = api6 * ( aero(bb)%dwet ) ** 3.0_wp |
---|
2385 | ENDIF |
---|
2386 | ENDDO |
---|
2387 | ! |
---|
2388 | !-- On EACH call of salsa_driver, calculate the ambient sizes of |
---|
2389 | !-- particles by equilibrating soluble fraction of particles with water |
---|
2390 | !-- using the ZSR method. |
---|
2391 | in_rh = in_cw(k) / in_cs(k) |
---|
2392 | IF ( prunmode==1 .OR. .NOT. advect_particle_water ) THEN |
---|
2393 | CALL equilibration( in_rh, in_t(k), aero, .TRUE. ) |
---|
2394 | ENDIF |
---|
2395 | ! |
---|
2396 | !-- Gaseous tracer concentrations in #/m3 |
---|
2397 | IF ( salsa_gases_from_chem ) THEN |
---|
2398 | ! |
---|
2399 | !-- Convert concentrations in ppm to #/m3 |
---|
2400 | zgso4 = chem_species(gas_index_chem(1))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2401 | zghno3 = chem_species(gas_index_chem(2))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2402 | zgnh3 = chem_species(gas_index_chem(3))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2403 | zgocnv = chem_species(gas_index_chem(4))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2404 | zgocsv = chem_species(gas_index_chem(5))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2405 | ELSE |
---|
2406 | zgso4 = salsa_gas(1)%conc(k,j,i) |
---|
2407 | zghno3 = salsa_gas(2)%conc(k,j,i) |
---|
2408 | zgnh3 = salsa_gas(3)%conc(k,j,i) |
---|
2409 | zgocnv = salsa_gas(4)%conc(k,j,i) |
---|
2410 | zgocsv = salsa_gas(5)%conc(k,j,i) |
---|
2411 | ENDIF |
---|
2412 | ! |
---|
2413 | !-- ***************************************! |
---|
2414 | !-- Run SALSA ! |
---|
2415 | !-- ***************************************! |
---|
2416 | CALL run_salsa( in_p(k), in_cw(k), in_cs(k), in_t(k), in_u(k), & |
---|
2417 | in_adn(k), in_lad, zgso4, zgocnv, zgocsv, zghno3, zgnh3,& |
---|
2418 | aero, prtcl, kvis(k), Sc(k,:), vd(k,:), dt_salsa ) |
---|
2419 | !-- ***************************************! |
---|
2420 | IF ( lsdepo ) sedim_vd(k,j,i,:) = vd(k,:) |
---|
2421 | ! |
---|
2422 | !-- Calculate changes in concentrations |
---|
2423 | DO bb = 1, nbins |
---|
2424 | aerosol_number(bb)%conc(k,j,i) = aerosol_number(bb)%conc(k,j,i) & |
---|
2425 | + ( aero(bb)%numc - aero_old(bb)%numc ) * flag |
---|
2426 | ENDDO |
---|
2427 | |
---|
2428 | IF ( iso4 > 0 ) THEN |
---|
2429 | vc = 1 |
---|
2430 | str = ( iso4-1 ) * nbins + 1 |
---|
2431 | endi = iso4 * nbins |
---|
2432 | cc = 1 |
---|
2433 | DO ss = str, endi |
---|
2434 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2435 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2436 | * arhoh2so4 * flag |
---|
2437 | cc = cc+1 |
---|
2438 | ENDDO |
---|
2439 | ENDIF |
---|
2440 | |
---|
2441 | IF ( ioc > 0 ) THEN |
---|
2442 | vc = 2 |
---|
2443 | str = ( ioc-1 ) * nbins + 1 |
---|
2444 | endi = ioc * nbins |
---|
2445 | cc = 1 |
---|
2446 | DO ss = str, endi |
---|
2447 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2448 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2449 | * arhooc * flag |
---|
2450 | cc = cc+1 |
---|
2451 | ENDDO |
---|
2452 | ENDIF |
---|
2453 | |
---|
2454 | IF ( ibc > 0 ) THEN |
---|
2455 | vc = 3 |
---|
2456 | str = ( ibc-1 ) * nbins + 1 + fn1a |
---|
2457 | endi = ibc * nbins |
---|
2458 | cc = 1 + fn1a |
---|
2459 | DO ss = str, endi |
---|
2460 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2461 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2462 | * arhobc * flag |
---|
2463 | cc = cc+1 |
---|
2464 | ENDDO |
---|
2465 | ENDIF |
---|
2466 | |
---|
2467 | IF ( idu > 0 ) THEN |
---|
2468 | vc = 4 |
---|
2469 | str = ( idu-1 ) * nbins + 1 + fn1a |
---|
2470 | endi = idu * nbins |
---|
2471 | cc = 1 + fn1a |
---|
2472 | DO ss = str, endi |
---|
2473 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2474 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2475 | * arhodu * flag |
---|
2476 | cc = cc+1 |
---|
2477 | ENDDO |
---|
2478 | ENDIF |
---|
2479 | |
---|
2480 | IF ( iss > 0 ) THEN |
---|
2481 | vc = 5 |
---|
2482 | str = ( iss-1 ) * nbins + 1 + fn1a |
---|
2483 | endi = iss * nbins |
---|
2484 | cc = 1 + fn1a |
---|
2485 | DO ss = str, endi |
---|
2486 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2487 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2488 | * arhoss * flag |
---|
2489 | cc = cc+1 |
---|
2490 | ENDDO |
---|
2491 | ENDIF |
---|
2492 | |
---|
2493 | IF ( ino > 0 ) THEN |
---|
2494 | vc = 6 |
---|
2495 | str = ( ino-1 ) * nbins + 1 |
---|
2496 | endi = ino * nbins |
---|
2497 | cc = 1 |
---|
2498 | DO ss = str, endi |
---|
2499 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2500 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2501 | * arhohno3 * flag |
---|
2502 | cc = cc+1 |
---|
2503 | ENDDO |
---|
2504 | ENDIF |
---|
2505 | |
---|
2506 | IF ( inh > 0 ) THEN |
---|
2507 | vc = 7 |
---|
2508 | str = ( ino-1 ) * nbins + 1 |
---|
2509 | endi = ino * nbins |
---|
2510 | cc = 1 |
---|
2511 | DO ss = str, endi |
---|
2512 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2513 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2514 | * arhonh3 * flag |
---|
2515 | cc = cc+1 |
---|
2516 | ENDDO |
---|
2517 | ENDIF |
---|
2518 | |
---|
2519 | IF ( advect_particle_water ) THEN |
---|
2520 | nc_h2o = get_index( prtcl,'H2O' ) |
---|
2521 | vc = 8 |
---|
2522 | str = ( nc_h2o-1 ) * nbins + 1 |
---|
2523 | endi = nc_h2o * nbins |
---|
2524 | cc = 1 |
---|
2525 | DO ss = str, endi |
---|
2526 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2527 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2528 | * arhoh2o * flag |
---|
2529 | IF ( prunmode == 1 ) THEN |
---|
2530 | aerosol_mass(ss)%init(k) = MAX( aerosol_mass(ss)%init(k), & |
---|
2531 | aerosol_mass(ss)%conc(k,j,i) ) |
---|
2532 | ENDIF |
---|
2533 | cc = cc+1 |
---|
2534 | ENDDO |
---|
2535 | ENDIF |
---|
2536 | |
---|
2537 | !-- Condensation of precursor gases |
---|
2538 | IF ( lscndgas ) THEN |
---|
2539 | IF ( salsa_gases_from_chem ) THEN |
---|
2540 | ! |
---|
2541 | !-- SO4 (or H2SO4) |
---|
2542 | chem_species( gas_index_chem(1) )%conc(k,j,i) = & |
---|
2543 | chem_species( gas_index_chem(1) )%conc(k,j,i) + & |
---|
2544 | ( zgso4 / ppm_to_nconc(k) - & |
---|
2545 | chem_species( gas_index_chem(1) )%conc(k,j,i) ) * flag |
---|
2546 | ! |
---|
2547 | !-- HNO3 |
---|
2548 | chem_species( gas_index_chem(2) )%conc(k,j,i) = & |
---|
2549 | chem_species( gas_index_chem(2) )%conc(k,j,i) + & |
---|
2550 | ( zghno3 / ppm_to_nconc(k) - & |
---|
2551 | chem_species( gas_index_chem(2) )%conc(k,j,i) ) * flag |
---|
2552 | ! |
---|
2553 | !-- NH3 |
---|
2554 | chem_species( gas_index_chem(3) )%conc(k,j,i) = & |
---|
2555 | chem_species( gas_index_chem(3) )%conc(k,j,i) + & |
---|
2556 | ( zgnh3 / ppm_to_nconc(k) - & |
---|
2557 | chem_species( gas_index_chem(3) )%conc(k,j,i) ) * flag |
---|
2558 | ! |
---|
2559 | !-- non-volatile OC |
---|
2560 | chem_species( gas_index_chem(4) )%conc(k,j,i) = & |
---|
2561 | chem_species( gas_index_chem(4) )%conc(k,j,i) + & |
---|
2562 | ( zgocnv / ppm_to_nconc(k) - & |
---|
2563 | chem_species( gas_index_chem(4) )%conc(k,j,i) ) * flag |
---|
2564 | ! |
---|
2565 | !-- semi-volatile OC |
---|
2566 | chem_species( gas_index_chem(5) )%conc(k,j,i) = & |
---|
2567 | chem_species( gas_index_chem(5) )%conc(k,j,i) + & |
---|
2568 | ( zgocsv / ppm_to_nconc(k) - & |
---|
2569 | chem_species( gas_index_chem(5) )%conc(k,j,i) ) * flag |
---|
2570 | |
---|
2571 | ELSE |
---|
2572 | ! |
---|
2573 | !-- SO4 (or H2SO4) |
---|
2574 | salsa_gas(1)%conc(k,j,i) = salsa_gas(1)%conc(k,j,i) + ( zgso4 - & |
---|
2575 | salsa_gas(1)%conc(k,j,i) ) * flag |
---|
2576 | ! |
---|
2577 | !-- HNO3 |
---|
2578 | salsa_gas(2)%conc(k,j,i) = salsa_gas(2)%conc(k,j,i) + ( zghno3 - & |
---|
2579 | salsa_gas(2)%conc(k,j,i) ) * flag |
---|
2580 | ! |
---|
2581 | !-- NH3 |
---|
2582 | salsa_gas(3)%conc(k,j,i) = salsa_gas(3)%conc(k,j,i) + ( zgnh3 - & |
---|
2583 | salsa_gas(3)%conc(k,j,i) ) * flag |
---|
2584 | ! |
---|
2585 | !-- non-volatile OC |
---|
2586 | salsa_gas(4)%conc(k,j,i) = salsa_gas(4)%conc(k,j,i) + ( zgocnv - & |
---|
2587 | salsa_gas(4)%conc(k,j,i) ) * flag |
---|
2588 | ! |
---|
2589 | !-- semi-volatile OC |
---|
2590 | salsa_gas(5)%conc(k,j,i) = salsa_gas(5)%conc(k,j,i) + ( zgocsv - & |
---|
2591 | salsa_gas(5)%conc(k,j,i) ) * flag |
---|
2592 | ENDIF |
---|
2593 | ENDIF |
---|
2594 | ! |
---|
2595 | !-- Tendency of water vapour mixing ratio is obtained from the |
---|
2596 | !-- change in RH during SALSA run. This releases heat and changes pt. |
---|
2597 | !-- Assumes no temperature change during SALSA run. |
---|
2598 | !-- q = r / (1+r), Euler method for integration |
---|
2599 | ! |
---|
2600 | IF ( feedback_to_palm ) THEN |
---|
2601 | q_p(k,j,i) = q_p(k,j,i) + 1.0_wp / ( in_cw(k) * in_adn(k) + 1.0_wp ) & |
---|
2602 | ** 2.0_wp * ( in_cw(k) - cw_old ) * in_adn(k) |
---|
2603 | pt_p(k,j,i) = pt_p(k,j,i) + alv / c_p * ( in_cw(k) - cw_old ) * & |
---|
2604 | in_adn(k) / ( in_cw(k) / in_adn(k) + 1.0_wp ) ** 2.0_wp& |
---|
2605 | * pt_p(k,j,i) / in_t(k) |
---|
2606 | ENDIF |
---|
2607 | |
---|
2608 | ENDDO ! k |
---|
2609 | ! |
---|
2610 | !-- Set surfaces and wall fluxes due to deposition |
---|
2611 | IF ( lsdepo_topo .AND. prunmode == 3 ) THEN |
---|
2612 | IF ( .NOT. land_surface .AND. .NOT. urban_surface ) THEN |
---|
2613 | CALL depo_topo( i, j, surf_def_h(0), vd, Sc, kvis, in_u, rho_air_zw ) |
---|
2614 | DO l = 0, 3 |
---|
2615 | CALL depo_topo( i, j, surf_def_v(l), vd, Sc, kvis, in_u, & |
---|
2616 | rho_air_zw**0.0_wp ) |
---|
2617 | ENDDO |
---|
2618 | ELSE |
---|
2619 | CALL depo_topo( i, j, surf_usm_h, vd, Sc, kvis, in_u, rho_air_zw ) |
---|
2620 | DO l = 0, 3 |
---|
2621 | CALL depo_topo( i, j, surf_usm_v(l), vd, Sc, kvis, in_u, & |
---|
2622 | rho_air_zw**0.0_wp ) |
---|
2623 | ENDDO |
---|
2624 | CALL depo_topo( i, j, surf_lsm_h, vd, Sc, kvis, in_u, rho_air_zw ) |
---|
2625 | DO l = 0, 3 |
---|
2626 | CALL depo_topo( i, j, surf_lsm_v(l), vd, Sc, kvis, in_u, & |
---|
2627 | rho_air_zw**0.0_wp ) |
---|
2628 | ENDDO |
---|
2629 | ENDIF |
---|
2630 | ENDIF |
---|
2631 | |
---|
2632 | END SUBROUTINE salsa_driver |
---|
2633 | |
---|
2634 | !------------------------------------------------------------------------------! |
---|
2635 | ! Description: |
---|
2636 | ! ------------ |
---|
2637 | !> The SALSA subroutine |
---|
2638 | !> Modified for the new aerosol datatype, |
---|
2639 | !> Juha Tonttila, FMI, 2014. |
---|
2640 | !> Only aerosol processes included, Mona Kurppa, UHel, 2017 |
---|
2641 | !------------------------------------------------------------------------------! |
---|
2642 | SUBROUTINE run_salsa( ppres, pcw, pcs, ptemp, mag_u, adn, lad, pc_h2so4, & |
---|
2643 | pc_ocnv, pc_ocsv, pc_hno3, pc_nh3, paero, prtcl, kvis, & |
---|
2644 | Sc, vc, ptstep ) |
---|
2645 | |
---|
2646 | IMPLICIT NONE |
---|
2647 | ! |
---|
2648 | !-- Input parameters and variables |
---|
2649 | REAL(wp), INTENT(in) :: adn !< air density (kg/m3) |
---|
2650 | REAL(wp), INTENT(in) :: lad !< leaf area density (m2/m3) |
---|
2651 | REAL(wp), INTENT(in) :: mag_u !< magnitude of wind (m/s) |
---|
2652 | REAL(wp), INTENT(in) :: ppres !< atmospheric pressure at each grid |
---|
2653 | !< point (Pa) |
---|
2654 | REAL(wp), INTENT(in) :: ptemp !< temperature at each grid point (K) |
---|
2655 | REAL(wp), INTENT(in) :: ptstep !< time step of salsa processes (s) |
---|
2656 | TYPE(component_index), INTENT(in) :: prtcl !< part. component index table |
---|
2657 | ! |
---|
2658 | !-- Input variables that are changed within: |
---|
2659 | REAL(wp), INTENT(inout) :: kvis !< kinematic viscosity of air (m2/s) |
---|
2660 | REAL(wp), INTENT(inout) :: Sc(:) !< particle Schmidt number |
---|
2661 | REAL(wp), INTENT(inout) :: vc(:) !< particle fall speed (m/s, |
---|
2662 | !< sedimentation velocity) |
---|
2663 | !-- Gas phase concentrations at each grid point (#/m3) |
---|
2664 | REAL(wp), INTENT(inout) :: pc_h2so4 !< sulphuric acid |
---|
2665 | REAL(wp), INTENT(inout) :: pc_hno3 !< nitric acid |
---|
2666 | REAL(wp), INTENT(inout) :: pc_nh3 !< ammonia |
---|
2667 | REAL(wp), INTENT(inout) :: pc_ocnv !< nonvolatile OC |
---|
2668 | REAL(wp), INTENT(inout) :: pc_ocsv !< semivolatile OC |
---|
2669 | REAL(wp), INTENT(inout) :: pcs !< Saturation concentration of water |
---|
2670 | !< vapour (kg/m3) |
---|
2671 | REAL(wp), INTENT(inout) :: pcw !< Water vapour concentration (kg/m3) |
---|
2672 | TYPE(t_section), INTENT(inout) :: paero(fn2b) |
---|
2673 | ! |
---|
2674 | !-- Coagulation |
---|
2675 | IF ( lscoag ) THEN |
---|
2676 | CALL coagulation( paero, ptstep, ptemp, ppres ) |
---|
2677 | ENDIF |
---|
2678 | ! |
---|
2679 | !-- Condensation |
---|
2680 | IF ( lscnd ) THEN |
---|
2681 | CALL condensation( paero, pc_h2so4, pc_ocnv, pc_ocsv, pc_hno3, pc_nh3, & |
---|
2682 | pcw, pcs, ptemp, ppres, ptstep, prtcl ) |
---|
2683 | ENDIF |
---|
2684 | ! |
---|
2685 | !-- Deposition |
---|
2686 | IF ( lsdepo ) THEN |
---|
2687 | CALL deposition( paero, ptemp, adn, mag_u, lad, kvis, Sc, vc ) |
---|
2688 | ENDIF |
---|
2689 | ! |
---|
2690 | !-- Size distribution bin update |
---|
2691 | !-- Mona: why done 3 times in SALSA-standalone? |
---|
2692 | IF ( lsdistupdate ) THEN |
---|
2693 | CALL distr_update( paero ) |
---|
2694 | ENDIF |
---|
2695 | |
---|
2696 | END SUBROUTINE run_salsa |
---|
2697 | |
---|
2698 | !------------------------------------------------------------------------------! |
---|
2699 | ! Description: |
---|
2700 | ! ------------ |
---|
2701 | !> Set logical switches according to the host model state and user-specified |
---|
2702 | !> NAMELIST options. |
---|
2703 | !> Juha Tonttila, FMI, 2014 |
---|
2704 | !> Only aerosol processes included, Mona Kurppa, UHel, 2017 |
---|
2705 | !------------------------------------------------------------------------------! |
---|
2706 | SUBROUTINE set_salsa_runtime( prunmode ) |
---|
2707 | |
---|
2708 | IMPLICIT NONE |
---|
2709 | |
---|
2710 | INTEGER(iwp), INTENT(in) :: prunmode |
---|
2711 | |
---|
2712 | SELECT CASE(prunmode) |
---|
2713 | |
---|
2714 | CASE(1) !< Initialization |
---|
2715 | lscoag = .FALSE. |
---|
2716 | lscnd = .FALSE. |
---|
2717 | lscndgas = .FALSE. |
---|
2718 | lscndh2oae = .FALSE. |
---|
2719 | lsdepo = .FALSE. |
---|
2720 | lsdepo_vege = .FALSE. |
---|
2721 | lsdepo_topo = .FALSE. |
---|
2722 | lsdistupdate = .TRUE. |
---|
2723 | |
---|
2724 | CASE(2) !< Spinup period |
---|
2725 | lscoag = ( .FALSE. .AND. nlcoag ) |
---|
2726 | lscnd = ( .TRUE. .AND. nlcnd ) |
---|
2727 | lscndgas = ( .TRUE. .AND. nlcndgas ) |
---|
2728 | lscndh2oae = ( .TRUE. .AND. nlcndh2oae ) |
---|
2729 | |
---|
2730 | CASE(3) !< Run |
---|
2731 | lscoag = nlcoag |
---|
2732 | lscnd = nlcnd |
---|
2733 | lscndgas = nlcndgas |
---|
2734 | lscndh2oae = nlcndh2oae |
---|
2735 | lsdepo = nldepo |
---|
2736 | lsdepo_vege = nldepo_vege |
---|
2737 | lsdepo_topo = nldepo_topo |
---|
2738 | lsdistupdate = nldistupdate |
---|
2739 | |
---|
2740 | END SELECT |
---|
2741 | |
---|
2742 | |
---|
2743 | END SUBROUTINE set_salsa_runtime |
---|
2744 | |
---|
2745 | !------------------------------------------------------------------------------! |
---|
2746 | ! Description: |
---|
2747 | ! ------------ |
---|
2748 | !> Calculates the absolute temperature (using hydrostatic pressure), saturation |
---|
2749 | !> vapour pressure and mixing ratio over water, relative humidity and air |
---|
2750 | !> density needed in the SALSA model. |
---|
2751 | !> NOTE, no saturation adjustment takes place -> the resulting water vapour |
---|
2752 | !> mixing ratio can be supersaturated, allowing the microphysical calculations |
---|
2753 | !> in SALSA. |
---|
2754 | ! |
---|
2755 | !> Juha Tonttila, FMI, 2014 (original SALSAthrm) |
---|
2756 | !> Mona Kurppa, UHel, 2017 (adjustment for PALM and only aerosol processes) |
---|
2757 | !------------------------------------------------------------------------------! |
---|
2758 | SUBROUTINE salsa_thrm_ij( i, j, p_ij, temp_ij, cw_ij, cs_ij, adn_ij ) |
---|
2759 | |
---|
2760 | USE arrays_3d, & |
---|
2761 | ONLY: p, pt, q, zu |
---|
2762 | |
---|
2763 | USE basic_constants_and_equations_mod, & |
---|
2764 | ONLY: barometric_formula, exner_function, ideal_gas_law_rho, magnus |
---|
2765 | |
---|
2766 | USE control_parameters, & |
---|
2767 | ONLY: pt_surface, surface_pressure |
---|
2768 | |
---|
2769 | IMPLICIT NONE |
---|
2770 | |
---|
2771 | INTEGER(iwp), INTENT(in) :: i |
---|
2772 | INTEGER(iwp), INTENT(in) :: j |
---|
2773 | REAL(wp), DIMENSION(:), INTENT(inout) :: adn_ij |
---|
2774 | REAL(wp), DIMENSION(:), INTENT(inout) :: p_ij |
---|
2775 | REAL(wp), DIMENSION(:), INTENT(inout) :: temp_ij |
---|
2776 | REAL(wp), DIMENSION(:), INTENT(inout), OPTIONAL :: cw_ij |
---|
2777 | REAL(wp), DIMENSION(:), INTENT(inout), OPTIONAL :: cs_ij |
---|
2778 | REAL(wp), DIMENSION(nzb:nzt+1) :: e_s !< saturation vapour pressure |
---|
2779 | !< over water (Pa) |
---|
2780 | REAL(wp) :: t_surface !< absolute surface temperature (K) |
---|
2781 | ! |
---|
2782 | !-- Pressure p_ijk (Pa) = hydrostatic pressure + perturbation pressure (p) |
---|
2783 | t_surface = pt_surface * exner_function( surface_pressure * 100.0_wp ) |
---|
2784 | p_ij(:) = barometric_formula( zu, t_surface, surface_pressure * 100.0_wp ) & |
---|
2785 | + p(:,j,i) |
---|
2786 | ! |
---|
2787 | !-- Absolute ambient temperature (K) |
---|
2788 | temp_ij(:) = pt(:,j,i) * exner_function( p_ij(:) ) |
---|
2789 | ! |
---|
2790 | !-- Air density |
---|
2791 | adn_ij(:) = ideal_gas_law_rho( p_ij(:), temp_ij(:) ) |
---|
2792 | ! |
---|
2793 | !-- Water vapour concentration r_v (kg/m3) |
---|
2794 | IF ( PRESENT( cw_ij ) ) THEN |
---|
2795 | cw_ij(:) = ( q(:,j,i) / ( 1.0_wp - q(:,j,i) ) ) * adn_ij(:) |
---|
2796 | ENDIF |
---|
2797 | ! |
---|
2798 | !-- Saturation mixing ratio r_s (kg/kg) from vapour pressure at temp (Pa) |
---|
2799 | IF ( PRESENT( cs_ij ) ) THEN |
---|
2800 | e_s(:) = 611.0_wp * EXP( alv_d_rv * ( 3.6609E-3_wp - 1.0_wp / & |
---|
2801 | temp_ij(:) ) )! magnus( temp_ij(:) ) |
---|
2802 | cs_ij(:) = ( 0.622_wp * e_s / ( p_ij(:) - e_s(:) ) ) * adn_ij(:) |
---|
2803 | ENDIF |
---|
2804 | |
---|
2805 | END SUBROUTINE salsa_thrm_ij |
---|
2806 | |
---|
2807 | !------------------------------------------------------------------------------! |
---|
2808 | ! Description: |
---|
2809 | ! ------------ |
---|
2810 | !> Calculates ambient sizes of particles by equilibrating soluble fraction of |
---|
2811 | !> particles with water using the ZSR method (Stokes and Robinson, 1966). |
---|
2812 | !> Method: |
---|
2813 | !> Following chemical components are assumed water-soluble |
---|
2814 | !> - (ammonium) sulphate (100%) |
---|
2815 | !> - sea salt (100 %) |
---|
2816 | !> - organic carbon (epsoc * 100%) |
---|
2817 | !> Exact thermodynamic considerations neglected. |
---|
2818 | !> - If particles contain no sea salt, calculation according to sulphate |
---|
2819 | !> properties |
---|
2820 | !> - If contain sea salt but no sulphate, calculation according to sea salt |
---|
2821 | !> properties |
---|
2822 | !> - If contain both sulphate and sea salt -> the molar fraction of these |
---|
2823 | !> compounds determines which one of them is used as the basis of calculation. |
---|
2824 | !> If sulphate and sea salt coexist in a particle, it is assumed that the Cl is |
---|
2825 | !> replaced by sulphate; thus only either sulphate + organics or sea salt + |
---|
2826 | !> organics is included in the calculation of soluble fraction. |
---|
2827 | !> Molality parameterizations taken from Table 1 of Tang: Thermodynamic and |
---|
2828 | !> optical properties of mixed-salt aerosols of atmospheric importance, |
---|
2829 | !> J. Geophys. Res., 102 (D2), 1883-1893 (1997) |
---|
2830 | ! |
---|
2831 | !> Coded by: |
---|
2832 | !> Hannele Korhonen (FMI) 2005 |
---|
2833 | !> Harri Kokkola (FMI) 2006 |
---|
2834 | !> Matti Niskanen(FMI) 2012 |
---|
2835 | !> Anton Laakso (FMI) 2013 |
---|
2836 | !> Modified for the new aerosol datatype, Juha Tonttila (FMI) 2014 |
---|
2837 | ! |
---|
2838 | !> fxm: should sea salt form a solid particle when prh is very low (even though |
---|
2839 | !> it could be mixed with e.g. sulphate)? |
---|
2840 | !> fxm: crashes if no sulphate or sea salt |
---|
2841 | !> fxm: do we really need to consider Kelvin effect for subrange 2 |
---|
2842 | !------------------------------------------------------------------------------! |
---|
2843 | SUBROUTINE equilibration( prh, ptemp, paero, init ) |
---|
2844 | |
---|
2845 | IMPLICIT NONE |
---|
2846 | ! |
---|
2847 | !-- Input variables |
---|
2848 | LOGICAL, INTENT(in) :: init !< TRUE: Initialization call |
---|
2849 | !< FALSE: Normal runtime: update water |
---|
2850 | !< content only for 1a |
---|
2851 | REAL(wp), INTENT(in) :: prh !< relative humidity [0-1] |
---|
2852 | REAL(wp), INTENT(in) :: ptemp !< temperature (K) |
---|
2853 | ! |
---|
2854 | !-- Output variables |
---|
2855 | TYPE(t_section), INTENT(inout) :: paero(fn2b) |
---|
2856 | ! |
---|
2857 | !-- Local |
---|
2858 | INTEGER(iwp) :: b !< loop index |
---|
2859 | INTEGER(iwp) :: counti !< loop index |
---|
2860 | REAL(wp) :: zaw !< water activity [0-1] |
---|
2861 | REAL(wp) :: zbinmol(7) !< binary molality of each components (mol/kg) |
---|
2862 | REAL(wp) :: zcore !< Volume of dry particle |
---|
2863 | REAL(wp) :: zdold !< Old diameter |
---|
2864 | REAL(wp) :: zdwet !< Wet diameter or mean droplet diameter |
---|
2865 | REAL(wp) :: zke !< Kelvin term in the Köhler equation |
---|
2866 | REAL(wp) :: zlwc !< liquid water content [kg/m3-air] |
---|
2867 | REAL(wp) :: zrh !< Relative humidity |
---|
2868 | REAL(wp) :: zvpart(7) !< volume of chem. compounds in one particle |
---|
2869 | |
---|
2870 | zaw = 0.0_wp |
---|
2871 | zbinmol = 0.0_wp |
---|
2872 | zcore = 0.0_wp |
---|
2873 | zdold = 0.0_wp |
---|
2874 | zdwet = 0.0_wp |
---|
2875 | zlwc = 0.0_wp |
---|
2876 | zrh = 0.0_wp |
---|
2877 | |
---|
2878 | ! |
---|
2879 | !-- Relative humidity: |
---|
2880 | zrh = prh |
---|
2881 | zrh = MAX( zrh, 0.05_wp ) |
---|
2882 | zrh = MIN( zrh, 0.98_wp) |
---|
2883 | ! |
---|
2884 | !-- 1) Regime 1: sulphate and partly water-soluble OC. Done for every CALL |
---|
2885 | DO b = in1a, fn1a ! size bin |
---|
2886 | |
---|
2887 | zbinmol = 0.0_wp |
---|
2888 | zdold = 1.0_wp |
---|
2889 | zke = 1.02_wp |
---|
2890 | |
---|
2891 | IF ( paero(b)%numc > nclim ) THEN |
---|
2892 | ! |
---|
2893 | !-- Volume in one particle |
---|
2894 | zvpart = 0.0_wp |
---|
2895 | zvpart(1:2) = paero(b)%volc(1:2) / paero(b)%numc |
---|
2896 | zvpart(6:7) = paero(b)%volc(6:7) / paero(b)%numc |
---|
2897 | ! |
---|
2898 | !-- Total volume and wet diameter of one dry particle |
---|
2899 | zcore = SUM( zvpart(1:2) ) |
---|
2900 | zdwet = paero(b)%dwet |
---|
2901 | |
---|
2902 | counti = 0 |
---|
2903 | DO WHILE ( ABS( zdwet / zdold - 1.0_wp ) > 1.0E-2_wp ) |
---|
2904 | |
---|
2905 | zdold = MAX( zdwet, 1.0E-20_wp ) |
---|
2906 | zaw = MAX( 1.0E-3_wp, zrh / zke ) ! To avoid underflow |
---|
2907 | ! |
---|
2908 | !-- Binary molalities (mol/kg): |
---|
2909 | !-- Sulphate |
---|
2910 | zbinmol(1) = 1.1065495E+2_wp - 3.6759197E+2_wp * zaw & |
---|
2911 | + 5.0462934E+2_wp * zaw**2.0_wp & |
---|
2912 | - 3.1543839E+2_wp * zaw**3.0_wp & |
---|
2913 | + 6.770824E+1_wp * zaw**4.0_wp |
---|
2914 | !-- Organic carbon |
---|
2915 | zbinmol(2) = 1.0_wp / ( zaw * amh2o ) - 1.0_wp / amh2o |
---|
2916 | !-- Nitric acid |
---|
2917 | zbinmol(6) = 2.306844303E+1_wp - 3.563608869E+1_wp * zaw & |
---|
2918 | - 6.210577919E+1_wp * zaw**2.0_wp & |
---|
2919 | + 5.510176187E+2_wp * zaw**3.0_wp & |
---|
2920 | - 1.460055286E+3_wp * zaw**4.0_wp & |
---|
2921 | + 1.894467542E+3_wp * zaw**5.0_wp & |
---|
2922 | - 1.220611402E+3_wp * zaw**6.0_wp & |
---|
2923 | + 3.098597737E+2_wp * zaw**7.0_wp |
---|
2924 | ! |
---|
2925 | !-- Calculate the liquid water content (kg/m3-air) using ZSR (see e.g. |
---|
2926 | !-- Eq. 10.98 in Seinfeld and Pandis (2006)) |
---|
2927 | zlwc = ( paero(b)%volc(1) * ( arhoh2so4 / amh2so4 ) ) / & |
---|
2928 | zbinmol(1) + epsoc * paero(b)%volc(2) * ( arhooc / amoc ) & |
---|
2929 | / zbinmol(2) + ( paero(b)%volc(6) * ( arhohno3/amhno3 ) ) & |
---|
2930 | / zbinmol(6) |
---|
2931 | ! |
---|
2932 | !-- Particle wet diameter (m) |
---|
2933 | zdwet = ( zlwc / paero(b)%numc / arhoh2o / api6 + & |
---|
2934 | ( SUM( zvpart(6:7) ) / api6 ) + & |
---|
2935 | zcore / api6 )**( 1.0_wp / 3.0_wp ) |
---|
2936 | ! |
---|
2937 | !-- Kelvin effect (Eq. 10.85 in in Seinfeld and Pandis (2006)). Avoid |
---|
2938 | !-- overflow. |
---|
2939 | zke = EXP( MIN( 50.0_wp, & |
---|
2940 | 4.0_wp * surfw0 * amvh2so4 / ( abo * ptemp * zdwet ) ) ) |
---|
2941 | |
---|
2942 | counti = counti + 1 |
---|
2943 | IF ( counti > 1000 ) THEN |
---|
2944 | message_string = 'Subrange 1: no convergence!' |
---|
2945 | CALL message( 'salsa_mod: equilibration', 'SA0042', & |
---|
2946 | 1, 2, 0, 6, 0 ) |
---|
2947 | ENDIF |
---|
2948 | ENDDO |
---|
2949 | ! |
---|
2950 | !-- Instead of lwc, use the volume concentration of water from now on |
---|
2951 | !-- (easy to convert...) |
---|
2952 | paero(b)%volc(8) = zlwc / arhoh2o |
---|
2953 | ! |
---|
2954 | !-- If this is initialization, update the core and wet diameter |
---|
2955 | IF ( init ) THEN |
---|
2956 | paero(b)%dwet = zdwet |
---|
2957 | paero(b)%core = zcore |
---|
2958 | ENDIF |
---|
2959 | |
---|
2960 | ELSE |
---|
2961 | !-- If initialization |
---|
2962 | !-- 1.2) empty bins given bin average values |
---|
2963 | IF ( init ) THEN |
---|
2964 | paero(b)%dwet = paero(b)%dmid |
---|
2965 | paero(b)%core = api6 * paero(b)%dmid ** 3.0_wp |
---|
2966 | ENDIF |
---|
2967 | |
---|
2968 | ENDIF |
---|
2969 | |
---|
2970 | ENDDO !< b |
---|
2971 | ! |
---|
2972 | !-- 2) Regime 2a: sulphate, OC, BC and sea salt |
---|
2973 | !-- This is done only for initialization call, otherwise the water contents |
---|
2974 | !-- are computed via condensation |
---|
2975 | IF ( init ) THEN |
---|
2976 | DO b = in2a, fn2b |
---|
2977 | |
---|
2978 | !-- Initialize |
---|
2979 | zke = 1.02_wp |
---|
2980 | zbinmol = 0.0_wp |
---|
2981 | zdold = 1.0_wp |
---|
2982 | ! |
---|
2983 | !-- 1) Particle properties calculated for non-empty bins |
---|
2984 | IF ( paero(b)%numc > nclim ) THEN |
---|
2985 | ! |
---|
2986 | !-- Volume in one particle [fxm] |
---|
2987 | zvpart = 0.0_wp |
---|
2988 | zvpart(1:7) = paero(b)%volc(1:7) / paero(b)%numc |
---|
2989 | ! |
---|
2990 | !-- Total volume and wet diameter of one dry particle [fxm] |
---|
2991 | zcore = SUM( zvpart(1:5) ) |
---|
2992 | zdwet = paero(b)%dwet |
---|
2993 | |
---|
2994 | counti = 0 |
---|
2995 | DO WHILE ( ABS( zdwet / zdold - 1.0_wp ) > 1.0E-12_wp ) |
---|
2996 | |
---|
2997 | zdold = MAX( zdwet, 1.0E-20_wp ) |
---|
2998 | zaw = zrh / zke |
---|
2999 | ! |
---|
3000 | !-- Binary molalities (mol/kg): |
---|
3001 | !-- Sulphate |
---|
3002 | zbinmol(1) = 1.1065495E+2_wp - 3.6759197E+2_wp * zaw & |
---|
3003 | + 5.0462934E+2_wp * zaw**2 - 3.1543839E+2_wp * zaw**3 & |
---|
3004 | + 6.770824E+1_wp * zaw**4 |
---|
3005 | !-- Organic carbon |
---|
3006 | zbinmol(2) = 1.0_wp / ( zaw * amh2o ) - 1.0_wp / amh2o |
---|
3007 | !-- Nitric acid |
---|
3008 | zbinmol(6) = 2.306844303E+1_wp - 3.563608869E+1_wp * zaw & |
---|
3009 | - 6.210577919E+1_wp * zaw**2 + 5.510176187E+2_wp * zaw**3 & |
---|
3010 | - 1.460055286E+3_wp * zaw**4 + 1.894467542E+3_wp * zaw**5 & |
---|
3011 | - 1.220611402E+3_wp * zaw**6 + 3.098597737E+2_wp * zaw**7 |
---|
3012 | !-- Sea salt (natrium chloride) |
---|
3013 | zbinmol(5) = 5.875248E+1_wp - 1.8781997E+2_wp * zaw & |
---|
3014 | + 2.7211377E+2_wp * zaw**2 - 1.8458287E+2_wp * zaw**3 & |
---|
3015 | + 4.153689E+1_wp * zaw**4 |
---|
3016 | ! |
---|
3017 | !-- Calculate the liquid water content (kg/m3-air) |
---|
3018 | zlwc = ( paero(b)%volc(1) * ( arhoh2so4 / amh2so4 ) ) / & |
---|
3019 | zbinmol(1) + epsoc * ( paero(b)%volc(2) * ( arhooc / & |
---|
3020 | amoc ) ) / zbinmol(2) + ( paero(b)%volc(6) * ( arhohno3 & |
---|
3021 | / amhno3 ) ) / zbinmol(6) + ( paero(b)%volc(5) * & |
---|
3022 | ( arhoss / amss ) ) / zbinmol(5) |
---|
3023 | |
---|
3024 | !-- Particle wet radius (m) |
---|
3025 | zdwet = ( zlwc / paero(b)%numc / arhoh2o / api6 + & |
---|
3026 | ( SUM( zvpart(6:7) ) / api6 ) + & |
---|
3027 | zcore / api6 ) ** ( 1.0_wp / 3.0_wp ) |
---|
3028 | ! |
---|
3029 | !-- Kelvin effect (Eq. 10.85 in Seinfeld and Pandis (2006)) |
---|
3030 | zke = EXP( MIN( 50.0_wp, & |
---|
3031 | 4.0_wp * surfw0 * amvh2so4 / ( abo * zdwet * ptemp ) ) ) |
---|
3032 | |
---|
3033 | counti = counti + 1 |
---|
3034 | IF ( counti > 1000 ) THEN |
---|
3035 | message_string = 'Subrange 2: no convergence!' |
---|
3036 | CALL message( 'salsa_mod: equilibration', 'SA0043', & |
---|
3037 | 1, 2, 0, 6, 0 ) |
---|
3038 | ENDIF |
---|
3039 | ENDDO |
---|
3040 | ! |
---|
3041 | !-- Liquid water content; instead of LWC use the volume concentration |
---|
3042 | paero(b)%volc(8) = zlwc / arhoh2o |
---|
3043 | paero(b)%dwet = zdwet |
---|
3044 | paero(b)%core = zcore |
---|
3045 | |
---|
3046 | ELSE |
---|
3047 | !-- 2.2) empty bins given bin average values |
---|
3048 | paero(b)%dwet = paero(b)%dmid |
---|
3049 | paero(b)%core = api6 * paero(b)%dmid ** 3.0_wp |
---|
3050 | ENDIF |
---|
3051 | |
---|
3052 | ENDDO ! b |
---|
3053 | ENDIF |
---|
3054 | |
---|
3055 | END SUBROUTINE equilibration |
---|
3056 | |
---|
3057 | !------------------------------------------------------------------------------! |
---|
3058 | !> Description: |
---|
3059 | !> ------------ |
---|
3060 | !> Calculation of the settling velocity vc (m/s) per aerosol size bin and |
---|
3061 | !> deposition on plant canopy (lsdepo_vege). |
---|
3062 | ! |
---|
3063 | !> Deposition is based on either the scheme presented in: |
---|
3064 | !> Zhang et al. (2001), Atmos. Environ. 35, 549-560 (includes collection due to |
---|
3065 | !> Brownian diffusion, impaction, interception and sedimentation) |
---|
3066 | !> OR |
---|
3067 | !> Petroff & Zhang (2010), Geosci. Model Dev. 3, 753-769 (includes also |
---|
3068 | !> collection due to turbulent impaction) |
---|
3069 | ! |
---|
3070 | !> Equation numbers refer to equation in Jacobson (2005): Fundamentals of |
---|
3071 | !> Atmospheric Modeling, 2nd Edition. |
---|
3072 | ! |
---|
3073 | !> Subroutine follows closely sedim_SALSA in UCLALES-SALSA written by Juha |
---|
3074 | !> Tonttila (KIT/FMI) and Zubair Maalick (UEF). |
---|
3075 | !> Rewritten to PALM by Mona Kurppa (UH), 2017. |
---|
3076 | ! |
---|
3077 | !> Call for grid point i,j,k |
---|
3078 | !------------------------------------------------------------------------------! |
---|
3079 | |
---|
3080 | SUBROUTINE deposition( paero, tk, adn, mag_u, lad, kvis, Sc, vc ) |
---|
3081 | |
---|
3082 | USE plant_canopy_model_mod, & |
---|
3083 | ONLY: cdc |
---|
3084 | |
---|
3085 | IMPLICIT NONE |
---|
3086 | |
---|
3087 | REAL(wp), INTENT(in) :: adn !< air density (kg/m3) |
---|
3088 | REAL(wp), INTENT(out) :: kvis !< kinematic viscosity of air (m2/s) |
---|
3089 | REAL(wp), INTENT(in) :: lad !< leaf area density (m2/m3) |
---|
3090 | REAL(wp), INTENT(in) :: mag_u !< wind velocity (m/s) |
---|
3091 | REAL(wp), INTENT(out) :: Sc(:) !< particle Schmidt number |
---|
3092 | REAL(wp), INTENT(in) :: tk !< abs.temperature (K) |
---|
3093 | REAL(wp), INTENT(out) :: vc(:) !< critical fall speed i.e. settling |
---|
3094 | !< velocity of an aerosol particle (m/s) |
---|
3095 | TYPE(t_section), INTENT(inout) :: paero(fn2b) |
---|
3096 | |
---|
3097 | INTEGER(iwp) :: b !< loop index |
---|
3098 | INTEGER(iwp) :: c !< loop index |
---|
3099 | REAL(wp) :: avis !< molecular viscocity of air (kg/(m*s)) |
---|
3100 | REAL(wp), PARAMETER :: c_A = 1.249_wp !< Constants A, B and C for |
---|
3101 | REAL(wp), PARAMETER :: c_B = 0.42_wp !< calculating the Cunningham |
---|
3102 | REAL(wp), PARAMETER :: c_C = 0.87_wp !< slip-flow correction (Cc) |
---|
3103 | !< according to Jacobson (2005), |
---|
3104 | !< Eq. 15.30 |
---|
3105 | REAL(wp) :: Cc !< Cunningham slip-flow correction factor |
---|
3106 | REAL(wp) :: Kn !< Knudsen number |
---|
3107 | REAL(wp) :: lambda !< molecular mean free path (m) |
---|
3108 | REAL(wp) :: mdiff !< particle diffusivity coefficient |
---|
3109 | REAL(wp) :: pdn !< particle density (kg/m3) |
---|
3110 | REAL(wp) :: ustar !< friction velocity (m/s) |
---|
3111 | REAL(wp) :: va !< thermal speed of an air molecule (m/s) |
---|
3112 | REAL(wp) :: zdwet !< wet diameter (m) |
---|
3113 | ! |
---|
3114 | !-- Initialise |
---|
3115 | Cc = 0.0_wp |
---|
3116 | Kn = 0.0_wp |
---|
3117 | mdiff = 0.0_wp |
---|
3118 | pdn = 1500.0_wp ! default value |
---|
3119 | ustar = 0.0_wp |
---|
3120 | ! |
---|
3121 | !-- Molecular viscosity of air (Eq. 4.54) |
---|
3122 | avis = 1.8325E-5_wp * ( 416.16_wp / ( tk + 120.0_wp ) ) * ( tk / & |
---|
3123 | 296.16_wp )**1.5_wp |
---|
3124 | ! |
---|
3125 | !-- Kinematic viscosity (Eq. 4.55) |
---|
3126 | kvis = avis / adn |
---|
3127 | ! |
---|
3128 | !-- Thermal velocity of an air molecule (Eq. 15.32) |
---|
3129 | va = SQRT( 8.0_wp * abo * tk / ( pi * am_airmol ) ) |
---|
3130 | ! |
---|
3131 | !-- Mean free path (m) (Eq. 15.24) |
---|
3132 | lambda = 2.0_wp * avis / ( adn * va ) |
---|
3133 | |
---|
3134 | DO b = 1, nbins |
---|
3135 | |
---|
3136 | IF ( paero(b)%numc < nclim ) CYCLE |
---|
3137 | zdwet = paero(b)%dwet |
---|
3138 | ! |
---|
3139 | !-- Knudsen number (Eq. 15.23) |
---|
3140 | Kn = MAX( 1.0E-2_wp, lambda / ( zdwet * 0.5_wp ) ) ! To avoid underflow |
---|
3141 | ! |
---|
3142 | !-- Cunningham slip-flow correction (Eq. 15.30) |
---|
3143 | Cc = 1.0_wp + Kn * ( c_A + c_B * EXP( -c_C / Kn ) ) |
---|
3144 | |
---|
3145 | !-- Particle diffusivity coefficient (Eq. 15.29) |
---|
3146 | mdiff = ( abo * tk * Cc ) / ( 3.0_wp * pi * avis * zdwet ) |
---|
3147 | ! |
---|
3148 | !-- Particle Schmidt number (Eq. 15.36) |
---|
3149 | Sc(b) = kvis / mdiff |
---|
3150 | ! |
---|
3151 | !-- Critical fall speed i.e. settling velocity (Eq. 20.4) |
---|
3152 | vc(b) = MIN( 1.0_wp, terminal_vel( 0.5_wp * zdwet, pdn, adn, avis, Cc) ) |
---|
3153 | |
---|
3154 | IF ( lsdepo_vege .AND. plant_canopy .AND. lad > 0.0_wp ) THEN |
---|
3155 | ! |
---|
3156 | !-- Friction velocity calculated following Prandtl (1925): |
---|
3157 | ustar = SQRT( cdc ) * mag_u |
---|
3158 | CALL depo_vege( paero, b, vc(b), mag_u, ustar, kvis, Sc(b), lad ) |
---|
3159 | ENDIF |
---|
3160 | ENDDO |
---|
3161 | |
---|
3162 | END SUBROUTINE deposition |
---|
3163 | |
---|
3164 | !------------------------------------------------------------------------------! |
---|
3165 | ! Description: |
---|
3166 | ! ------------ |
---|
3167 | !> Calculate change in number and volume concentrations due to deposition on |
---|
3168 | !> plant canopy. |
---|
3169 | !------------------------------------------------------------------------------! |
---|
3170 | SUBROUTINE depo_vege( paero, b, vc, mag_u, ustar, kvis_a, Sc, lad ) |
---|
3171 | |
---|
3172 | IMPLICIT NONE |
---|
3173 | |
---|
3174 | INTEGER(iwp), INTENT(in) :: b !< loop index |
---|
3175 | REAL(wp), INTENT(in) :: kvis_a !< kinematic viscosity of air (m2/s) |
---|
3176 | REAL(wp), INTENT(in) :: lad !< leaf area density (m2/m3) |
---|
3177 | REAL(wp), INTENT(in) :: mag_u !< wind velocity (m/s) |
---|
3178 | REAL(wp), INTENT(in) :: Sc !< particle Schmidt number |
---|
3179 | REAL(wp), INTENT(in) :: ustar !< friction velocity (m/s) |
---|
3180 | REAL(wp), INTENT(in) :: vc !< terminal velocity (m/s) |
---|
3181 | TYPE(t_section), INTENT(inout) :: paero(fn2b) |
---|
3182 | |
---|
3183 | INTEGER(iwp) :: c !< loop index |
---|
3184 | REAL(wp), PARAMETER :: c_A = 1.249_wp !< Constants A, B and C for |
---|
3185 | REAL(wp), PARAMETER :: c_B = 0.42_wp !< calculating the Cunningham |
---|
3186 | REAL(wp), PARAMETER :: c_C = 0.87_wp !< slip-flow correction (Cc) |
---|
3187 | !< according to Jacobson (2005), |
---|
3188 | !< Eq. 15.30 |
---|
3189 | REAL(wp) :: alpha !< parameter, Table 3 in Zhang et al. (2001) |
---|
3190 | REAL(wp) :: depo !< deposition efficiency |
---|
3191 | REAL(wp) :: C_Br !< coefficient for Brownian diffusion |
---|
3192 | REAL(wp) :: C_IM !< coefficient for inertial impaction |
---|
3193 | REAL(wp) :: C_IN !< coefficient for interception |
---|
3194 | REAL(wp) :: C_IT !< coefficient for turbulent impaction |
---|
3195 | REAL(wp) :: gamma !< parameter, Table 3 in Zhang et al. (2001) |
---|
3196 | REAL(wp) :: par_A !< parameter A for the characteristic radius of |
---|
3197 | !< collectors, Table 3 in Zhang et al. (2001) |
---|
3198 | REAL(wp) :: rt !< the overall quasi-laminar resistance for |
---|
3199 | !< particles |
---|
3200 | REAL(wp) :: St !< Stokes number for smooth surfaces or bluff |
---|
3201 | !< surface elements |
---|
3202 | REAL(wp) :: tau_plus !< dimensionless particle relaxation time |
---|
3203 | REAL(wp) :: v_bd !< deposition velocity due to Brownian diffusion |
---|
3204 | REAL(wp) :: v_im !< deposition velocity due to impaction |
---|
3205 | REAL(wp) :: v_in !< deposition velocity due to interception |
---|
3206 | REAL(wp) :: v_it !< deposition velocity due to turbulent impaction |
---|
3207 | ! |
---|
3208 | !-- Initialise |
---|
3209 | depo = 0.0_wp |
---|
3210 | rt = 0.0_wp |
---|
3211 | St = 0.0_wp |
---|
3212 | tau_plus = 0.0_wp |
---|
3213 | v_bd = 0.0_wp |
---|
3214 | v_im = 0.0_wp |
---|
3215 | v_in = 0.0_wp |
---|
3216 | v_it = 0.0_wp |
---|
3217 | |
---|
3218 | IF ( depo_vege_type == 'zhang2001' ) THEN |
---|
3219 | ! |
---|
3220 | !-- Parameters for the land use category 'deciduous broadleaf trees'(Table 3) |
---|
3221 | par_A = 5.0E-3_wp |
---|
3222 | alpha = 0.8_wp |
---|
3223 | gamma = 0.56_wp |
---|
3224 | ! |
---|
3225 | !-- Stokes number for vegetated surfaces (Seinfeld & Pandis (2006): Eq.19.24) |
---|
3226 | St = vc * ustar / ( g * par_A ) |
---|
3227 | ! |
---|
3228 | !-- The overall quasi-laminar resistance for particles (Zhang et al., Eq. 5) |
---|
3229 | rt = MAX( EPSILON( 1.0_wp ), ( 3.0_wp * ustar * EXP( -St**0.5_wp ) * & |
---|
3230 | ( Sc**( -gamma ) + ( St / ( alpha + St ) )**2.0_wp + & |
---|
3231 | 0.5_wp * ( paero(b)%dwet / par_A )**2.0_wp ) ) ) |
---|
3232 | depo = ( rt + vc ) * lad |
---|
3233 | paero(b)%numc = paero(b)%numc - depo * paero(b)%numc * dt_salsa |
---|
3234 | DO c = 1, maxspec+1 |
---|
3235 | paero(b)%volc(c) = paero(b)%volc(c) - depo * paero(b)%volc(c) * & |
---|
3236 | dt_salsa |
---|
3237 | ENDDO |
---|
3238 | |
---|
3239 | ELSEIF ( depo_vege_type == 'petroff2010' ) THEN |
---|
3240 | ! |
---|
3241 | !-- vd = v_BD + v_IN + v_IM + v_IT + vc |
---|
3242 | !-- Deposition efficiencies from Table 1. Constants from Table 2. |
---|
3243 | C_Br = 1.262_wp |
---|
3244 | C_IM = 0.130_wp |
---|
3245 | C_IN = 0.216_wp |
---|
3246 | C_IT = 0.056_wp |
---|
3247 | par_A = 0.03_wp ! Here: leaf width (m) |
---|
3248 | ! |
---|
3249 | !-- Stokes number for vegetated surfaces (Seinfeld & Pandis (2006): Eq.19.24) |
---|
3250 | St = vc * ustar / ( g * par_A ) |
---|
3251 | ! |
---|
3252 | !-- Non-dimensional relexation time of the particle on top of canopy |
---|
3253 | tau_plus = vc * ustar**2.0_wp / ( kvis_a * g ) |
---|
3254 | ! |
---|
3255 | !-- Brownian diffusion |
---|
3256 | v_bd = mag_u * C_Br * Sc**( -2.0_wp / 3.0_wp ) * & |
---|
3257 | ( mag_u * par_A / kvis_a )**( -0.5_wp ) |
---|
3258 | ! |
---|
3259 | !-- Interception |
---|
3260 | v_in = mag_u * C_IN * paero(b)%dwet / par_A * ( 2.0_wp + LOG( 2.0_wp * & |
---|
3261 | par_A / paero(b)%dwet ) ) |
---|
3262 | ! |
---|
3263 | !-- Impaction: Petroff (2009) Eq. 18 |
---|
3264 | v_im = mag_u * C_IM * ( St / ( St + 0.47_wp ) )**2.0_wp |
---|
3265 | |
---|
3266 | IF ( tau_plus < 20.0_wp ) THEN |
---|
3267 | v_it = 2.5E-3_wp * C_IT * tau_plus**2.0_wp |
---|
3268 | ELSE |
---|
3269 | v_it = C_IT |
---|
3270 | ENDIF |
---|
3271 | depo = ( v_bd + v_in + v_im + v_it + vc ) * lad |
---|
3272 | paero(b)%numc = paero(b)%numc - depo * paero(b)%numc * dt_salsa |
---|
3273 | DO c = 1, maxspec+1 |
---|
3274 | paero(b)%volc(c) = paero(b)%volc(c) - depo * paero(b)%volc(c) * & |
---|
3275 | dt_salsa |
---|
3276 | ENDDO |
---|
3277 | ENDIF |
---|
3278 | |
---|
3279 | END SUBROUTINE depo_vege |
---|
3280 | |
---|
3281 | !------------------------------------------------------------------------------! |
---|
3282 | ! Description: |
---|
3283 | ! ------------ |
---|
3284 | !> Calculate deposition on horizontal and vertical surfaces. Implement as |
---|
3285 | !> surface flux. |
---|
3286 | !------------------------------------------------------------------------------! |
---|
3287 | |
---|
3288 | SUBROUTINE depo_topo( i, j, surf, vc, Sc, kvis, mag_u, norm ) |
---|
3289 | |
---|
3290 | USE surface_mod, & |
---|
3291 | ONLY: surf_type |
---|
3292 | |
---|
3293 | IMPLICIT NONE |
---|
3294 | |
---|
3295 | INTEGER(iwp), INTENT(in) :: i !< loop index |
---|
3296 | INTEGER(iwp), INTENT(in) :: j !< loop index |
---|
3297 | REAL(wp), INTENT(in) :: kvis(:) !< kinematic viscosity of air (m2/s) |
---|
3298 | REAL(wp), INTENT(in) :: mag_u(:) !< wind velocity (m/s) |
---|
3299 | REAL(wp), INTENT(in) :: norm(:) !< normalisation (usually air density) |
---|
3300 | REAL(wp), INTENT(in) :: Sc(:,:) !< particle Schmidt number |
---|
3301 | REAL(wp), INTENT(in) :: vc(:,:) !< terminal velocity (m/s) |
---|
3302 | TYPE(surf_type), INTENT(inout) :: surf !< respective surface type |
---|
3303 | INTEGER(iwp) :: b !< loop index |
---|
3304 | INTEGER(iwp) :: c !< loop index |
---|
3305 | INTEGER(iwp) :: k !< loop index |
---|
3306 | INTEGER(iwp) :: m !< loop index |
---|
3307 | INTEGER(iwp) :: surf_e !< End index of surface elements at (j,i)-gridpoint |
---|
3308 | INTEGER(iwp) :: surf_s !< Start index of surface elements at (j,i)-gridpoint |
---|
3309 | REAL(wp) :: alpha !< parameter, Table 3 in Zhang et al. (2001) |
---|
3310 | REAL(wp) :: C_Br !< coefficient for Brownian diffusion |
---|
3311 | REAL(wp) :: C_IM !< coefficient for inertial impaction |
---|
3312 | REAL(wp) :: C_IN !< coefficient for interception |
---|
3313 | REAL(wp) :: C_IT !< coefficient for turbulent impaction |
---|
3314 | REAL(wp) :: depo !< deposition efficiency |
---|
3315 | REAL(wp) :: gamma !< parameter, Table 3 in Zhang et al. (2001) |
---|
3316 | REAL(wp) :: par_A !< parameter A for the characteristic radius of |
---|
3317 | !< collectors, Table 3 in Zhang et al. (2001) |
---|
3318 | REAL(wp) :: rt !< the overall quasi-laminar resistance for |
---|
3319 | !< particles |
---|
3320 | REAL(wp) :: St !< Stokes number for bluff surface elements |
---|
3321 | REAL(wp) :: tau_plus !< dimensionless particle relaxation time |
---|
3322 | REAL(wp) :: v_bd !< deposition velocity due to Brownian diffusion |
---|
3323 | REAL(wp) :: v_im !< deposition velocity due to impaction |
---|
3324 | REAL(wp) :: v_in !< deposition velocity due to interception |
---|
3325 | REAL(wp) :: v_it !< deposition velocity due to turbulent impaction |
---|
3326 | ! |
---|
3327 | !-- Initialise |
---|
3328 | rt = 0.0_wp |
---|
3329 | St = 0.0_wp |
---|
3330 | tau_plus = 0.0_wp |
---|
3331 | v_bd = 0.0_wp |
---|
3332 | v_im = 0.0_wp |
---|
3333 | v_in = 0.0_wp |
---|
3334 | v_it = 0.0_wp |
---|
3335 | surf_s = surf%start_index(j,i) |
---|
3336 | surf_e = surf%end_index(j,i) |
---|
3337 | |
---|
3338 | DO m = surf_s, surf_e |
---|
3339 | k = surf%k(m) |
---|
3340 | DO b = 1, nbins |
---|
3341 | IF ( aerosol_number(b)%conc(k,j,i) <= nclim .OR. & |
---|
3342 | Sc(k+1,b) < 1.0_wp ) CYCLE |
---|
3343 | |
---|
3344 | IF ( depo_topo_type == 'zhang2001' ) THEN |
---|
3345 | ! |
---|
3346 | !-- Parameters for the land use category 'urban' in Table 3 |
---|
3347 | alpha = 1.5_wp |
---|
3348 | gamma = 0.56_wp |
---|
3349 | par_A = 10.0E-3_wp |
---|
3350 | ! |
---|
3351 | !-- Stokes number for smooth surfaces or surfaces with bluff roughness |
---|
3352 | !-- elements (Seinfeld and Pandis, 2nd edition (2006): Eq. 19.23) |
---|
3353 | St = MAX( 0.01_wp, vc(k+1,b) * surf%us(m) ** 2.0_wp / & |
---|
3354 | ( g * kvis(k+1) ) ) |
---|
3355 | ! |
---|
3356 | !-- The overall quasi-laminar resistance for particles (Eq. 5) |
---|
3357 | rt = MAX( EPSILON( 1.0_wp ), ( 3.0_wp * surf%us(m) * ( & |
---|
3358 | Sc(k+1,b)**( -gamma ) + ( St / ( alpha + St ) )**2.0_wp & |
---|
3359 | + 0.5_wp * ( Ra_dry(k,j,i,b) / par_A )**2.0_wp ) * & |
---|
3360 | EXP( -St**0.5_wp ) ) ) |
---|
3361 | depo = vc(k+1,b) + rt |
---|
3362 | |
---|
3363 | ELSEIF ( depo_topo_type == 'petroff2010' ) THEN |
---|
3364 | ! |
---|
3365 | !-- vd = v_BD + v_IN + v_IM + v_IT + vc |
---|
3366 | !-- Deposition efficiencies from Table 1. Constants from Table 2. |
---|
3367 | C_Br = 1.262_wp |
---|
3368 | C_IM = 0.130_wp |
---|
3369 | C_IN = 0.216_wp |
---|
3370 | C_IT = 0.056_wp |
---|
3371 | par_A = 0.03_wp ! Here: leaf width (m) |
---|
3372 | ! |
---|
3373 | !-- Stokes number for smooth surfaces or surfaces with bluff roughness |
---|
3374 | !-- elements (Seinfeld and Pandis, 2nd edition (2006): Eq. 19.23) |
---|
3375 | St = MAX( 0.01_wp, vc(k+1,b) * surf%us(m) ** 2.0_wp / & |
---|
3376 | ( g * kvis(k+1) ) ) |
---|
3377 | ! |
---|
3378 | !-- Non-dimensional relexation time of the particle on top of canopy |
---|
3379 | tau_plus = vc(k+1,b) * surf%us(m)**2.0_wp / ( kvis(k+1) * g ) |
---|
3380 | ! |
---|
3381 | !-- Brownian diffusion |
---|
3382 | v_bd = mag_u(k+1) * C_Br * Sc(k+1,b)**( -2.0_wp / 3.0_wp ) * & |
---|
3383 | ( mag_u(k+1) * par_A / kvis(k+1) )**( -0.5_wp ) |
---|
3384 | ! |
---|
3385 | !-- Interception |
---|
3386 | v_in = mag_u(k+1) * C_IN * Ra_dry(k,j,i,b)/ par_A * ( 2.0_wp + & |
---|
3387 | LOG( 2.0_wp * par_A / Ra_dry(k,j,i,b) ) ) |
---|
3388 | ! |
---|
3389 | !-- Impaction: Petroff (2009) Eq. 18 |
---|
3390 | v_im = mag_u(k+1) * C_IM * ( St / ( St + 0.47_wp ) )**2.0_wp |
---|
3391 | |
---|
3392 | IF ( tau_plus < 20.0_wp ) THEN |
---|
3393 | v_it = 2.5E-3_wp * C_IT * tau_plus**2.0_wp |
---|
3394 | ELSE |
---|
3395 | v_it = C_IT |
---|
3396 | ENDIF |
---|
3397 | depo = v_bd + v_in + v_im + v_it + vc(k+1,b) |
---|
3398 | |
---|
3399 | ENDIF |
---|
3400 | IF ( lod_aero == 3 .OR. salsa_source_mode == 'no_source' ) THEN |
---|
3401 | surf%answs(m,b) = -depo * norm(k) * aerosol_number(b)%conc(k,j,i) |
---|
3402 | DO c = 1, ncc_tot |
---|
3403 | surf%amsws(m,(c-1)*nbins+b) = -depo * norm(k) * & |
---|
3404 | aerosol_mass((c-1)*nbins+b)%conc(k,j,i) |
---|
3405 | ENDDO ! c |
---|
3406 | ELSE |
---|
3407 | surf%answs(m,b) = SUM( aerosol_number(b)%source(:,j,i) ) - & |
---|
3408 | MAX( 0.0_wp, depo * norm(k) * & |
---|
3409 | aerosol_number(b)%conc(k,j,i) ) |
---|
3410 | DO c = 1, ncc_tot |
---|
3411 | surf%amsws(m,(c-1)*nbins+b) = SUM( & |
---|
3412 | aerosol_mass((c-1)*nbins+b)%source(:,j,i) ) - & |
---|
3413 | MAX( 0.0_wp, depo * norm(k) * & |
---|
3414 | aerosol_mass((c-1)*nbins+b)%conc(k,j,i) ) |
---|
3415 | ENDDO |
---|
3416 | ENDIF |
---|
3417 | ENDDO ! b |
---|
3418 | ENDDO ! m |
---|
3419 | |
---|
3420 | END SUBROUTINE depo_topo |
---|
3421 | |
---|
3422 | !------------------------------------------------------------------------------! |
---|
3423 | ! Description: |
---|
3424 | ! ------------ |
---|
3425 | ! Function for calculating terminal velocities for different particles sizes. |
---|
3426 | !------------------------------------------------------------------------------! |
---|
3427 | REAL(wp) FUNCTION terminal_vel( radius, rhop, rhoa, visc, beta ) |
---|
3428 | |
---|
3429 | IMPLICIT NONE |
---|
3430 | |
---|
3431 | REAL(wp), INTENT(in) :: beta !< Cunningham correction factor |
---|
3432 | REAL(wp), INTENT(in) :: radius !< particle radius (m) |
---|
3433 | REAL(wp), INTENT(in) :: rhop !< particle density (kg/m3) |
---|
3434 | REAL(wp), INTENT(in) :: rhoa !< air density (kg/m3) |
---|
3435 | REAL(wp), INTENT(in) :: visc !< molecular viscosity of air (kg/(m*s)) |
---|
3436 | |
---|
3437 | REAL(wp), PARAMETER :: rhoa_ref = 1.225_wp ! reference air density (kg/m3) |
---|
3438 | ! |
---|
3439 | !-- Stokes law with Cunningham slip correction factor |
---|
3440 | terminal_vel = ( 4.0_wp * radius**2.0_wp ) * ( rhop - rhoa ) * g * beta / & |
---|
3441 | ( 18.0_wp * visc ) ! (m/s) |
---|
3442 | |
---|
3443 | END FUNCTION terminal_vel |
---|
3444 | |
---|
3445 | !------------------------------------------------------------------------------! |
---|
3446 | ! Description: |
---|
3447 | ! ------------ |
---|
3448 | !> Calculates particle loss and change in size distribution due to (Brownian) |
---|
3449 | !> coagulation. Only for particles with dwet < 30 micrometres. |
---|
3450 | ! |
---|
3451 | !> Method: |
---|
3452 | !> Semi-implicit, non-iterative method: (Jacobson, 1994) |
---|
3453 | !> Volume concentrations of the smaller colliding particles added to the bin of |
---|
3454 | !> the larger colliding particles. Start from first bin and use the updated |
---|
3455 | !> number and volume for calculation of following bins. NB! Our bin numbering |
---|
3456 | !> does not follow particle size in subrange 2. |
---|
3457 | ! |
---|
3458 | !> Schematic for bin numbers in different subranges: |
---|
3459 | !> 1 2 |
---|
3460 | !> +-------------------------------------------+ |
---|
3461 | !> a | 1 | 2 | 3 || 4 | 5 | 6 | 7 | 8 | 9 | 10|| |
---|
3462 | !> b | ||11 |12 |13 |14 | 15 | 16 | 17|| |
---|
3463 | !> +-------------------------------------------+ |
---|
3464 | ! |
---|
3465 | !> Exact coagulation coefficients for each pressure level are scaled according |
---|
3466 | !> to current particle wet size (linear scaling). |
---|
3467 | !> Bins are organized in terms of the dry size of the condensation nucleus, |
---|
3468 | !> while coagulation kernell is calculated with the actual hydrometeor |
---|
3469 | !> size. |
---|
3470 | ! |
---|
3471 | !> Called from salsa_driver |
---|
3472 | !> fxm: Process selection should be made smarter - now just lots of IFs inside |
---|
3473 | !> loops |
---|
3474 | ! |
---|
3475 | !> Coded by: |
---|
3476 | !> Hannele Korhonen (FMI) 2005 |
---|
3477 | !> Harri Kokkola (FMI) 2006 |
---|
3478 | !> Tommi Bergman (FMI) 2012 |
---|
3479 | !> Matti Niskanen(FMI) 2012 |
---|
3480 | !> Anton Laakso (FMI) 2013 |
---|
3481 | !> Juha Tonttila (FMI) 2014 |
---|
3482 | !------------------------------------------------------------------------------! |
---|
3483 | SUBROUTINE coagulation( paero, ptstep, ptemp, ppres ) |
---|
3484 | |
---|
3485 | IMPLICIT NONE |
---|
3486 | |
---|
3487 | !-- Input and output variables |
---|
3488 | TYPE(t_section), INTENT(inout) :: paero(fn2b) !< Aerosol properties |
---|
3489 | REAL(wp), INTENT(in) :: ppres !< ambient pressure (Pa) |
---|
3490 | REAL(wp), INTENT(in) :: ptemp !< ambient temperature (K) |
---|
3491 | REAL(wp), INTENT(in) :: ptstep !< time step (s) |
---|
3492 | !-- Local variables |
---|
3493 | INTEGER(iwp) :: index_2a !< corresponding bin in subrange 2a |
---|
3494 | INTEGER(iwp) :: index_2b !< corresponding bin in subrange 2b |
---|
3495 | INTEGER(iwp) :: b !< loop index |
---|
3496 | INTEGER(iwp) :: ll !< loop index |
---|
3497 | INTEGER(iwp) :: mm !< loop index |
---|
3498 | INTEGER(iwp) :: nn !< loop index |
---|
3499 | REAL(wp) :: pressi !< pressure |
---|
3500 | REAL(wp) :: temppi !< temperature |
---|
3501 | REAL(wp) :: zcc(fn2b,fn2b) !< updated coagulation coefficients (m3/s) |
---|
3502 | REAL(wp) :: zdpart_mm !< diameter of particle (m) |
---|
3503 | REAL(wp) :: zdpart_nn !< diameter of particle (m) |
---|
3504 | REAL(wp) :: zminusterm !< coagulation loss in a bin (1/s) |
---|
3505 | REAL(wp) :: zplusterm(8) !< coagulation gain in a bin (fxm/s) |
---|
3506 | !< (for each chemical compound) |
---|
3507 | REAL(wp) :: zmpart(fn2b) !< approximate mass of particles (kg) |
---|
3508 | |
---|
3509 | zcc = 0.0_wp |
---|
3510 | zmpart = 0.0_wp |
---|
3511 | zdpart_mm = 0.0_wp |
---|
3512 | zdpart_nn = 0.0_wp |
---|
3513 | ! |
---|
3514 | !-- 1) Coagulation to coarse mode calculated in a simplified way: |
---|
3515 | !-- CoagSink ~ Dp in continuum subrange, thus we calculate 'effective' |
---|
3516 | !-- number concentration of coarse particles |
---|
3517 | |
---|
3518 | !-- 2) Updating coagulation coefficients |
---|
3519 | ! |
---|
3520 | !-- Aerosol mass (kg). Density of 1500 kg/m3 assumed |
---|
3521 | zmpart(1:fn2b) = api6 * ( MIN( paero(1:fn2b)%dwet, 30.0E-6_wp )**3.0_wp ) & |
---|
3522 | * 1500.0_wp |
---|
3523 | temppi = ptemp |
---|
3524 | pressi = ppres |
---|
3525 | zcc = 0.0_wp |
---|
3526 | ! |
---|
3527 | !-- Aero-aero coagulation |
---|
3528 | DO mm = 1, fn2b ! smaller colliding particle |
---|
3529 | IF ( paero(mm)%numc < nclim ) CYCLE |
---|
3530 | DO nn = mm, fn2b ! larger colliding particle |
---|
3531 | IF ( paero(nn)%numc < nclim ) CYCLE |
---|
3532 | |
---|
3533 | zdpart_mm = MIN( paero(mm)%dwet, 30.0E-6_wp ) ! Limit to 30 um |
---|
3534 | zdpart_nn = MIN( paero(nn)%dwet, 30.0E-6_wp ) ! Limit to 30 um |
---|
3535 | ! |
---|
3536 | !-- Coagulation coefficient of particles (m3/s) |
---|
3537 | zcc(mm,nn) = coagc( zdpart_mm, zdpart_nn, zmpart(mm), zmpart(nn), & |
---|
3538 | temppi, pressi ) |
---|
3539 | zcc(nn,mm) = zcc(mm,nn) |
---|
3540 | ENDDO |
---|
3541 | ENDDO |
---|
3542 | |
---|
3543 | ! |
---|
3544 | !-- 3) New particle and volume concentrations after coagulation: |
---|
3545 | !-- Calculated according to Jacobson (2005) eq. 15.9 |
---|
3546 | ! |
---|
3547 | !-- Aerosols in subrange 1a: |
---|
3548 | DO b = in1a, fn1a |
---|
3549 | IF ( paero(b)%numc < nclim ) CYCLE |
---|
3550 | zminusterm = 0.0_wp |
---|
3551 | zplusterm(:) = 0.0_wp |
---|
3552 | ! |
---|
3553 | !-- Particles lost by coagulation with larger aerosols |
---|
3554 | DO ll = b+1, fn2b |
---|
3555 | zminusterm = zminusterm + zcc(b,ll) * paero(ll)%numc |
---|
3556 | ENDDO |
---|
3557 | ! |
---|
3558 | !-- Coagulation gain in a bin: change in volume conc. (cm3/cm3): |
---|
3559 | DO ll = in1a, b-1 |
---|
3560 | zplusterm(1:2) = zplusterm(1:2) + zcc(ll,b) * paero(ll)%volc(1:2) |
---|
3561 | zplusterm(6:7) = zplusterm(6:7) + zcc(ll,b) * paero(ll)%volc(6:7) |
---|
3562 | zplusterm(8) = zplusterm(8) + zcc(ll,b) * paero(ll)%volc(8) |
---|
3563 | ENDDO |
---|
3564 | ! |
---|
3565 | !-- Volume and number concentrations after coagulation update [fxm] |
---|
3566 | paero(b)%volc(1:2) = ( paero(b)%volc(1:2) + ptstep * zplusterm(1:2) * & |
---|
3567 | paero(b)%numc ) / ( 1.0_wp + ptstep * zminusterm ) |
---|
3568 | paero(b)%volc(6:7) = ( paero(b)%volc(6:7) + ptstep * zplusterm(6:7) * & |
---|
3569 | paero(b)%numc ) / ( 1.0_wp + ptstep * zminusterm ) |
---|
3570 | paero(b)%volc(8) = ( paero(b)%volc(8) + ptstep * zplusterm(8) * & |
---|
3571 | paero(b)%numc ) / ( 1.0_wp + ptstep * zminusterm ) |
---|
3572 | paero(b)%numc = paero(b)%numc / ( 1.0_wp + ptstep * zminusterm + & |
---|
3573 | 0.5_wp * ptstep * zcc(b,b) * paero(b)%numc ) |
---|
3574 | ENDDO |
---|
3575 | ! |
---|
3576 | !-- Aerosols in subrange 2a: |
---|
3577 | DO b = in2a, fn2a |
---|
3578 | IF ( paero(b)%numc < nclim ) CYCLE |
---|
3579 | zminusterm = 0.0_wp |
---|
3580 | zplusterm(:) = 0.0_wp |
---|
3581 | ! |
---|
3582 | !-- Find corresponding size bin in subrange 2b |
---|
3583 | index_2b = b - in2a + in2b |
---|
3584 | ! |
---|
3585 | !-- Particles lost by larger particles in 2a |
---|
3586 | DO ll = b+1, fn2a |
---|
3587 | zminusterm = zminusterm + zcc(b,ll) * paero(ll)%numc |
---|
3588 | ENDDO |
---|
3589 | ! |
---|
3590 | !-- Particles lost by larger particles in 2b |
---|
3591 | IF ( .NOT. no_insoluble ) THEN |
---|
3592 | DO ll = index_2b+1, fn2b |
---|
3593 | zminusterm = zminusterm + zcc(b,ll) * paero(ll)%numc |
---|
3594 | ENDDO |
---|
3595 | ENDIF |
---|
3596 | ! |
---|
3597 | !-- Particle volume gained from smaller particles in subranges 1, 2a and 2b |
---|
3598 | DO ll = in1a, b-1 |
---|
3599 | zplusterm(1:2) = zplusterm(1:2) + zcc(ll,b) * paero(ll)%volc(1:2) |
---|
3600 | zplusterm(6:7) = zplusterm(6:7) + zcc(ll,b) * paero(ll)%volc(6:7) |
---|
3601 | zplusterm(8) = zplusterm(8) + zcc(ll,b) * paero(ll)%volc(8) |
---|
3602 | ENDDO |
---|
3603 | ! |
---|
3604 | !-- Particle volume gained from smaller particles in 2a |
---|
3605 | !-- (Note, for components not included in the previous loop!) |
---|
3606 | DO ll = in2a, b-1 |
---|
3607 | zplusterm(3:5) = zplusterm(3:5) + zcc(ll,b)*paero(ll)%volc(3:5) |
---|
3608 | ENDDO |
---|
3609 | |
---|
3610 | ! |
---|
3611 | !-- Particle volume gained from smaller (and equal) particles in 2b |
---|
3612 | IF ( .NOT. no_insoluble ) THEN |
---|
3613 | DO ll = in2b, index_2b |
---|
3614 | zplusterm(1:8) = zplusterm(1:8) + zcc(ll,b) * paero(ll)%volc(1:8) |
---|
3615 | ENDDO |
---|
3616 | ENDIF |
---|
3617 | ! |
---|
3618 | !-- Volume and number concentrations after coagulation update [fxm] |
---|
3619 | paero(b)%volc(1:8) = ( paero(b)%volc(1:8) + ptstep * zplusterm(1:8) * & |
---|
3620 | paero(b)%numc ) / ( 1.0_wp + ptstep * zminusterm ) |
---|
3621 | paero(b)%numc = paero(b)%numc / ( 1.0_wp + ptstep * zminusterm + & |
---|
3622 | 0.5_wp * ptstep * zcc(b,b) * paero(b)%numc ) |
---|
3623 | ENDDO |
---|
3624 | ! |
---|
3625 | !-- Aerosols in subrange 2b: |
---|
3626 | IF ( .NOT. no_insoluble ) THEN |
---|
3627 | DO b = in2b, fn2b |
---|
3628 | IF ( paero(b)%numc < nclim ) CYCLE |
---|
3629 | zminusterm = 0.0_wp |
---|
3630 | zplusterm(:) = 0.0_wp |
---|
3631 | ! |
---|
3632 | !-- Find corresponding size bin in subsubrange 2a |
---|
3633 | index_2a = b - in2b + in2a |
---|
3634 | ! |
---|
3635 | !-- Particles lost to larger particles in subranges 2b |
---|
3636 | DO ll = b+1, fn2b |
---|
3637 | zminusterm = zminusterm + zcc(b,ll) * paero(ll)%numc |
---|
3638 | ENDDO |
---|
3639 | ! |
---|
3640 | !-- Particles lost to larger and equal particles in 2a |
---|
3641 | DO ll = index_2a, fn2a |
---|
3642 | zminusterm = zminusterm + zcc(b,ll) * paero(ll)%numc |
---|
3643 | ENDDO |
---|
3644 | ! |
---|
3645 | !-- Particle volume gained from smaller particles in subranges 1 & 2a |
---|
3646 | DO ll = in1a, index_2a-1 |
---|
3647 | zplusterm(1:8) = zplusterm(1:8) + zcc(ll,b) * paero(ll)%volc(1:8) |
---|
3648 | ENDDO |
---|
3649 | ! |
---|
3650 | !-- Particle volume gained from smaller particles in 2b |
---|
3651 | DO ll = in2b, b-1 |
---|
3652 | zplusterm(1:8) = zplusterm(1:8) + zcc(ll,b) * paero(ll)%volc(1:8) |
---|
3653 | ENDDO |
---|
3654 | ! |
---|
3655 | !-- Volume and number concentrations after coagulation update [fxm] |
---|
3656 | paero(b)%volc(1:8) = ( paero(b)%volc(1:8) + ptstep * zplusterm(1:8)& |
---|
3657 | * paero(b)%numc ) / ( 1.0_wp + ptstep * zminusterm ) |
---|
3658 | paero(b)%numc = paero(b)%numc / ( 1.0_wp + ptstep * zminusterm + & |
---|
3659 | 0.5_wp * ptstep * zcc(b,b) * paero(b)%numc ) |
---|
3660 | ENDDO |
---|
3661 | ENDIF |
---|
3662 | |
---|
3663 | END SUBROUTINE coagulation |
---|
3664 | |
---|
3665 | !------------------------------------------------------------------------------! |
---|
3666 | ! Description: |
---|
3667 | ! ------------ |
---|
3668 | !> Calculation of coagulation coefficients. Extended version of the function |
---|
3669 | !> originally found in mo_salsa_init. |
---|
3670 | ! |
---|
3671 | !> J. Tonttila, FMI, 05/2014 |
---|
3672 | !------------------------------------------------------------------------------! |
---|
3673 | REAL(wp) FUNCTION coagc( diam1, diam2, mass1, mass2, temp, pres ) |
---|
3674 | |
---|
3675 | IMPLICIT NONE |
---|
3676 | ! |
---|
3677 | !-- Input and output variables |
---|
3678 | REAL(wp), INTENT(in) :: diam1 !< diameter of colliding particle 1 (m) |
---|
3679 | REAL(wp), INTENT(in) :: diam2 !< diameter of colliding particle 2 (m) |
---|
3680 | REAL(wp), INTENT(in) :: mass1 !< mass of colliding particle 1 (kg) |
---|
3681 | REAL(wp), INTENT(in) :: mass2 !< mass of colliding particle 2 (kg) |
---|
3682 | REAL(wp), INTENT(in) :: pres !< ambient pressure (Pa?) [fxm] |
---|
3683 | REAL(wp), INTENT(in) :: temp !< ambient temperature (K) |
---|
3684 | ! |
---|
3685 | !-- Local variables |
---|
3686 | REAL(wp) :: fmdist !< distance of flux matching (m) |
---|
3687 | REAL(wp) :: knud_p !< particle Knudsen number |
---|
3688 | REAL(wp) :: mdiam !< mean diameter of colliding particles (m) |
---|
3689 | REAL(wp) :: mfp !< mean free path of air molecules (m) |
---|
3690 | REAL(wp) :: visc !< viscosity of air (kg/(m s)) |
---|
3691 | REAL(wp), DIMENSION (2) :: beta !< Cunningham correction factor |
---|
3692 | REAL(wp), DIMENSION (2) :: dfpart !< particle diffusion coefficient |
---|
3693 | !< (m2/s) |
---|
3694 | REAL(wp), DIMENSION (2) :: diam !< diameters of particles (m) |
---|
3695 | REAL(wp), DIMENSION (2) :: flux !< flux in continuum and free molec. |
---|
3696 | !< regime (m/s) |
---|
3697 | REAL(wp), DIMENSION (2) :: knud !< particle Knudsen number |
---|
3698 | REAL(wp), DIMENSION (2) :: mpart !< masses of particles (kg) |
---|
3699 | REAL(wp), DIMENSION (2) :: mtvel !< particle mean thermal velocity (m/s) |
---|
3700 | REAL(wp), DIMENSION (2) :: omega !< particle mean free path |
---|
3701 | REAL(wp), DIMENSION (2) :: tva !< temporary variable (m) |
---|
3702 | ! |
---|
3703 | !-- Initialisation |
---|
3704 | coagc = 0.0_wp |
---|
3705 | ! |
---|
3706 | !-- 1) Initializing particle and ambient air variables |
---|
3707 | diam = (/ diam1, diam2 /) !< particle diameters (m) |
---|
3708 | mpart = (/ mass1, mass2 /) !< particle masses (kg) |
---|
3709 | !-- Viscosity of air (kg/(m s)) |
---|
3710 | visc = ( 7.44523E-3_wp * temp ** 1.5_wp ) / & |
---|
3711 | ( 5093.0_wp * ( temp + 110.4_wp ) ) |
---|
3712 | !-- Mean free path of air (m) |
---|
3713 | mfp = ( 1.656E-10_wp * temp + 1.828E-8_wp ) * ( p_0 + 1325.0_wp ) / pres |
---|
3714 | ! |
---|
3715 | !-- 2) Slip correction factor for small particles |
---|
3716 | knud = 2.0_wp * EXP( LOG(mfp) - LOG(diam) )! Knudsen number for air (15.23) |
---|
3717 | !-- Cunningham correction factor (Allen and Raabe, Aerosol Sci. Tech. 4, 269) |
---|
3718 | beta = 1.0_wp + knud * ( 1.142_wp + 0.558_wp * EXP( -0.999_wp / knud ) ) |
---|
3719 | ! |
---|
3720 | !-- 3) Particle properties |
---|
3721 | !-- Diffusion coefficient (m2/s) (Jacobson (2005) eq. 15.29) |
---|
3722 | dfpart = beta * abo * temp / ( 3.0_wp * pi * visc * diam ) |
---|
3723 | !-- Mean thermal velocity (m/s) (Jacobson (2005) eq. 15.32) |
---|
3724 | mtvel = SQRT( ( 8.0_wp * abo * temp ) / ( pi * mpart ) ) |
---|
3725 | !-- Particle mean free path (m) (Jacobson (2005) eq. 15.34 ) |
---|
3726 | omega = 8.0_wp * dfpart / ( pi * mtvel ) |
---|
3727 | !-- Mean diameter (m) |
---|
3728 | mdiam = 0.5_wp * ( diam(1) + diam(2) ) |
---|
3729 | ! |
---|
3730 | !-- 4) Calculation of fluxes (Brownian collision kernels) and flux matching |
---|
3731 | !-- following Jacobson (2005): |
---|
3732 | !-- Flux in continuum regime (m3/s) (eq. 15.28) |
---|
3733 | flux(1) = 4.0_wp * pi * mdiam * ( dfpart(1) + dfpart(2) ) |
---|
3734 | !-- Flux in free molec. regime (m3/s) (eq. 15.31) |
---|
3735 | flux(2) = pi * SQRT( ( mtvel(1)**2.0_wp ) + ( mtvel(2)**2.0_wp ) ) * & |
---|
3736 | ( mdiam**2.0_wp ) |
---|
3737 | !-- temporary variables (m) to calculate flux matching distance (m) |
---|
3738 | tva(1) = ( ( mdiam + omega(1) )**3.0_wp - ( mdiam**2.0_wp + & |
---|
3739 | omega(1)**2.0_wp ) * SQRT( ( mdiam**2.0_wp + omega(1)**2.0_wp ) & |
---|
3740 | ) ) / ( 3.0_wp * mdiam * omega(1) ) - mdiam |
---|
3741 | tva(2) = ( ( mdiam + omega(2) )**3.0_wp - ( mdiam**2.0_wp + & |
---|
3742 | omega(2)**2.0_wp ) * SQRT( ( mdiam**2 + omega(2)**2 ) ) ) / & |
---|
3743 | ( 3.0_wp * mdiam * omega(2) ) - mdiam |
---|
3744 | !-- Flux matching distance (m) i.e. the mean distance from the centre of a |
---|
3745 | !-- sphere reached by particles leaving sphere's surface and travelling a |
---|
3746 | !-- distance of particle mean free path mfp (eq. 15 34) |
---|
3747 | fmdist = SQRT( tva(1)**2 + tva(2)**2.0_wp) |
---|
3748 | ! |
---|
3749 | !-- 5) Coagulation coefficient (m3/s) (eq. 15.33). Here assumed |
---|
3750 | !-- coalescence efficiency 1!! |
---|
3751 | coagc = flux(1) / ( mdiam / ( mdiam + fmdist) + flux(1) / flux(2) ) |
---|
3752 | !-- coagulation coefficient = coalescence efficiency * collision kernel |
---|
3753 | ! |
---|
3754 | !-- Corrected collision kernel following Karl et al., 2016 (ACP): |
---|
3755 | !-- Inclusion of van der Waals and viscous forces |
---|
3756 | IF ( van_der_waals_coagc ) THEN |
---|
3757 | knud_p = SQRT( omega(1)**2 + omega(2)**2 ) / mdiam |
---|
3758 | IF ( knud_p >= 0.1_wp .AND. knud_p <= 10.0_wp ) THEN |
---|
3759 | coagc = coagc * ( 2.0_wp + 0.4_wp * LOG( knud_p ) ) |
---|
3760 | ELSE |
---|
3761 | coagc = coagc * 3.0_wp |
---|
3762 | ENDIF |
---|
3763 | ENDIF |
---|
3764 | |
---|
3765 | END FUNCTION coagc |
---|
3766 | |
---|
3767 | !------------------------------------------------------------------------------! |
---|
3768 | ! Description: |
---|
3769 | ! ------------ |
---|
3770 | !> Calculates the change in particle volume and gas phase |
---|
3771 | !> concentrations due to nucleation, condensation and dissolutional growth. |
---|
3772 | ! |
---|
3773 | !> Sulphuric acid and organic vapour: only condensation and no evaporation. |
---|
3774 | ! |
---|
3775 | !> New gas and aerosol phase concentrations calculated according to Jacobson |
---|
3776 | !> (1997): Numerical techniques to solve condensational and dissolutional growth |
---|
3777 | !> equations when growth is coupled to reversible reactions, Aerosol Sci. Tech., |
---|
3778 | !> 27, pp 491-498. |
---|
3779 | ! |
---|
3780 | !> Following parameterization has been used: |
---|
3781 | !> Molecular diffusion coefficient of condensing vapour (m2/s) |
---|
3782 | !> (Reid et al. (1987): Properties of gases and liquids, McGraw-Hill, New York.) |
---|
3783 | !> D = {1.d-7*sqrt(1/M_air + 1/M_gas)*T^1.75} / & |
---|
3784 | ! {p_atm/p_stand * (d_air^(1/3) + d_gas^(1/3))^2 } |
---|
3785 | ! M_air = 28.965 : molar mass of air (g/mol) |
---|
3786 | ! d_air = 19.70 : diffusion volume of air |
---|
3787 | ! M_h2so4 = 98.08 : molar mass of h2so4 (g/mol) |
---|
3788 | ! d_h2so4 = 51.96 : diffusion volume of h2so4 |
---|
3789 | ! |
---|
3790 | !> Called from main aerosol model |
---|
3791 | ! |
---|
3792 | !> fxm: calculated for empty bins too |
---|
3793 | !> fxm: same diffusion coefficients and mean free paths used for sulphuric acid |
---|
3794 | !> and organic vapours (average values? 'real' values for each?) |
---|
3795 | !> fxm: one should really couple with vapour production and loss terms as well |
---|
3796 | !> should nucleation be coupled here as well???? |
---|
3797 | ! |
---|
3798 | ! Coded by: |
---|
3799 | ! Hannele Korhonen (FMI) 2005 |
---|
3800 | ! Harri Kokkola (FMI) 2006 |
---|
3801 | ! Juha Tonttila (FMI) 2014 |
---|
3802 | ! Rewritten to PALM by Mona Kurppa (UHel) 2017 |
---|
3803 | !------------------------------------------------------------------------------! |
---|
3804 | SUBROUTINE condensation( paero, pcsa, pcocnv, pcocsv, pchno3, pcnh3, pcw, pcs,& |
---|
3805 | ptemp, ppres, ptstep, prtcl ) |
---|
3806 | |
---|
3807 | IMPLICIT NONE |
---|
3808 | |
---|
3809 | !-- Input and output variables |
---|
3810 | REAL(wp), INTENT(IN) :: ppres !< ambient pressure (Pa) |
---|
3811 | REAL(wp), INTENT(IN) :: pcs !< Water vapour saturation concentration |
---|
3812 | !< (kg/m3) |
---|
3813 | REAL(wp), INTENT(IN) :: ptemp !< ambient temperature (K) |
---|
3814 | REAL(wp), INTENT(IN) :: ptstep !< timestep (s) |
---|
3815 | TYPE(component_index), INTENT(in) :: prtcl !< Keeps track which substances |
---|
3816 | !< are used |
---|
3817 | REAL(wp), INTENT(INOUT) :: pchno3 !< Gas concentrations (#/m3): |
---|
3818 | !< nitric acid HNO3 |
---|
3819 | REAL(wp), INTENT(INOUT) :: pcnh3 !< ammonia NH3 |
---|
3820 | REAL(wp), INTENT(INOUT) :: pcocnv !< non-volatile organics |
---|
3821 | REAL(wp), INTENT(INOUT) :: pcocsv !< semi-volatile organics |
---|
3822 | REAL(wp), INTENT(INOUT) :: pcsa !< sulphuric acid H2SO4 |
---|
3823 | REAL(wp), INTENT(INOUT) :: pcw !< Water vapor concentration (kg/m3) |
---|
3824 | TYPE(t_section), INTENT(inout) :: paero(fn2b) !< Aerosol properties |
---|
3825 | !-- Local variables |
---|
3826 | REAL(wp) :: zbeta(fn2b) !< transitional correction factor for aerosols |
---|
3827 | REAL(wp) :: zcolrate(fn2b) !< collision rate of molecules to particles |
---|
3828 | !< (1/s) |
---|
3829 | REAL(wp) :: zcolrate_ocnv(fn2b) !< collision rate of organic molecules |
---|
3830 | !< to particles (1/s) |
---|
3831 | REAL(wp) :: zcs_ocnv !< condensation sink of nonvolatile organics (1/s) |
---|
3832 | REAL(wp) :: zcs_ocsv !< condensation sink of semivolatile organics (1/s) |
---|
3833 | REAL(wp) :: zcs_su !< condensation sink of sulfate (1/s) |
---|
3834 | REAL(wp) :: zcs_tot!< total condensation sink (1/s) (gases) |
---|
3835 | !-- vapour concentration after time step (#/m3) |
---|
3836 | REAL(wp) :: zcvap_new1 !< sulphuric acid |
---|
3837 | REAL(wp) :: zcvap_new2 !< nonvolatile organics |
---|
3838 | REAL(wp) :: zcvap_new3 !< semivolatile organics |
---|
3839 | REAL(wp) :: zdfpart(in1a+1) !< particle diffusion coefficient (m2/s) |
---|
3840 | REAL(wp) :: zdfvap !< air diffusion coefficient (m2/s) |
---|
3841 | !-- change in vapour concentration (#/m3) |
---|
3842 | REAL(wp) :: zdvap1 !< sulphuric acid |
---|
3843 | REAL(wp) :: zdvap2 !< nonvolatile organics |
---|
3844 | REAL(wp) :: zdvap3 !< semivolatile organics |
---|
3845 | REAL(wp) :: zdvoloc(fn2b) !< change of organics volume in each bin [fxm] |
---|
3846 | REAL(wp) :: zdvolsa(fn2b) !< change of sulphate volume in each bin [fxm] |
---|
3847 | REAL(wp) :: zj3n3(2) !< Formation massrate of molecules in |
---|
3848 | !< nucleation, (molec/m3s). 1: H2SO4 |
---|
3849 | !< and 2: organic vapor |
---|
3850 | REAL(wp) :: zknud(fn2b) !< particle Knudsen number |
---|
3851 | REAL(wp) :: zmfp !< mean free path of condensing vapour (m) |
---|
3852 | REAL(wp) :: zrh !< Relative humidity [0-1] |
---|
3853 | REAL(wp) :: zvisc !< viscosity of air (kg/(m s)) |
---|
3854 | REAL(wp) :: zn_vs_c !< ratio of nucleation of all mass transfer in the |
---|
3855 | !< smallest bin |
---|
3856 | REAL(wp) :: zxocnv !< ratio of organic vapour in 3nm particles |
---|
3857 | REAL(wp) :: zxsa !< Ratio in 3nm particles: sulphuric acid |
---|
3858 | |
---|
3859 | zj3n3 = 0.0_wp |
---|
3860 | zrh = pcw / pcs |
---|
3861 | zxocnv = 0.0_wp |
---|
3862 | zxsa = 0.0_wp |
---|
3863 | ! |
---|
3864 | !-- Nucleation |
---|
3865 | IF ( nsnucl > 0 ) THEN |
---|
3866 | CALL nucleation( paero, ptemp, zrh, ppres, pcsa, pcocnv, pcnh3, ptstep, & |
---|
3867 | zj3n3, zxsa, zxocnv ) |
---|
3868 | ENDIF |
---|
3869 | ! |
---|
3870 | !-- Condensation on pre-existing particles |
---|
3871 | IF ( lscndgas ) THEN |
---|
3872 | ! |
---|
3873 | !-- Initialise: |
---|
3874 | zdvolsa = 0.0_wp |
---|
3875 | zdvoloc = 0.0_wp |
---|
3876 | zcolrate = 0.0_wp |
---|
3877 | ! |
---|
3878 | !-- 1) Properties of air and condensing gases: |
---|
3879 | !-- Viscosity of air (kg/(m s)) (Eq. 4.54 in Jabonson (2005)) |
---|
3880 | zvisc = ( 7.44523E-3_wp * ptemp ** 1.5_wp ) / ( 5093.0_wp * & |
---|
3881 | ( ptemp + 110.4_wp ) ) |
---|
3882 | !-- Diffusion coefficient of air (m2/s) |
---|
3883 | zdfvap = 5.1111E-10_wp * ptemp ** 1.75_wp * ( p_0 + 1325.0_wp ) / ppres |
---|
3884 | !-- Mean free path (m): same for H2SO4 and organic compounds |
---|
3885 | zmfp = 3.0_wp * zdfvap * SQRT( pi * amh2so4 / ( 8.0_wp * argas * ptemp ) ) |
---|
3886 | ! |
---|
3887 | !-- 2) Transition regime correction factor zbeta for particles: |
---|
3888 | !-- Fuchs and Sutugin (1971), In: Hidy et al. (ed.) Topics in current |
---|
3889 | !-- aerosol research, Pergamon. Size of condensing molecule considered |
---|
3890 | !-- only for nucleation mode (3 - 20 nm) |
---|
3891 | ! |
---|
3892 | !-- Particle Knudsen number: condensation of gases on aerosols |
---|
3893 | zknud(in1a:in1a+1) = 2.0_wp * zmfp / ( paero(in1a:in1a+1)%dwet + d_sa ) |
---|
3894 | zknud(in1a+2:fn2b) = 2.0_wp * zmfp / paero(in1a+2:fn2b)%dwet |
---|
3895 | ! |
---|
3896 | !-- Transitional correction factor: aerosol + gas (the semi-empirical Fuchs- |
---|
3897 | !-- Sutugin interpolation function (Fuchs and Sutugin, 1971)) |
---|
3898 | zbeta = ( zknud + 1.0_wp ) / ( 0.377_wp * zknud + 1.0_wp + 4.0_wp / & |
---|
3899 | ( 3.0_wp * massacc ) * ( zknud + zknud ** 2.0_wp ) ) |
---|
3900 | ! |
---|
3901 | !-- 3) Collision rate of molecules to particles |
---|
3902 | !-- Particle diffusion coefficient considered only for nucleation mode |
---|
3903 | !-- (3 - 20 nm) |
---|
3904 | ! |
---|
3905 | !-- Particle diffusion coefficient (m2/s) (e.g. Eq. 15.29 in Jacobson (2005)) |
---|
3906 | zdfpart = abo * ptemp * zbeta(in1a:in1a+1) / ( 3.0_wp * pi * zvisc * & |
---|
3907 | paero(in1a:in1a+1)%dwet ) |
---|
3908 | ! |
---|
3909 | !-- Collision rate (mass-transfer coefficient): gases on aerosols (1/s) |
---|
3910 | !-- (Eq. 16.64 in Jacobson (2005)) |
---|
3911 | zcolrate(in1a:in1a+1) = MERGE( 2.0_wp * pi * & |
---|
3912 | ( paero(in1a:in1a+1)%dwet + d_sa ) * & |
---|
3913 | ( zdfvap + zdfpart ) * zbeta(in1a:in1a+1)& |
---|
3914 | * paero(in1a:in1a+1)%numc, 0.0_wp, & |
---|
3915 | paero(in1a:in1a+1)%numc > nclim ) |
---|
3916 | zcolrate(in1a+2:fn2b) = MERGE( 2.0_wp * pi * paero(in1a+2:fn2b)%dwet * & |
---|
3917 | zdfvap * zbeta(in1a+2:fn2b) * & |
---|
3918 | paero(in1a+2:fn2b)%numc, 0.0_wp, & |
---|
3919 | paero(in1a+2:fn2b)%numc > nclim ) |
---|
3920 | ! |
---|
3921 | !-- 4) Condensation sink (1/s) |
---|
3922 | zcs_tot = SUM( zcolrate ) ! total sink |
---|
3923 | ! |
---|
3924 | !-- 5) Changes in gas-phase concentrations and particle volume |
---|
3925 | ! |
---|
3926 | !-- 5.1) Organic vapours |
---|
3927 | ! |
---|
3928 | !-- 5.1.1) Non-volatile organic compound: condenses onto all bins |
---|
3929 | IF ( pcocnv > 1.0E+10_wp .AND. zcs_tot > 1.0E-30_wp .AND. & |
---|
3930 | is_used( prtcl,'OC' ) ) & |
---|
3931 | THEN |
---|
3932 | !-- Ratio of nucleation vs. condensation rates in the smallest bin |
---|
3933 | zn_vs_c = 0.0_wp |
---|
3934 | IF ( zj3n3(2) > 1.0_wp ) THEN |
---|
3935 | zn_vs_c = ( zj3n3(2) ) / ( zj3n3(2) + pcocnv * zcolrate(in1a) ) |
---|
3936 | ENDIF |
---|
3937 | ! |
---|
3938 | !-- Collision rate in the smallest bin, including nucleation and |
---|
3939 | !-- condensation(see Jacobson, Fundamentals of Atmospheric Modeling, 2nd |
---|
3940 | !-- Edition (2005), equation (16.73) ) |
---|
3941 | zcolrate_ocnv = zcolrate |
---|
3942 | zcolrate_ocnv(in1a) = zcolrate_ocnv(in1a) + zj3n3(2) / pcocnv |
---|
3943 | ! |
---|
3944 | !-- Total sink for organic vapor |
---|
3945 | zcs_ocnv = zcs_tot + zj3n3(2) / pcocnv |
---|
3946 | ! |
---|
3947 | !-- New gas phase concentration (#/m3) |
---|
3948 | zcvap_new2 = pcocnv / ( 1.0_wp + ptstep * zcs_ocnv ) |
---|
3949 | ! |
---|
3950 | !-- Change in gas concentration (#/m3) |
---|
3951 | zdvap2 = pcocnv - zcvap_new2 |
---|
3952 | ! |
---|
3953 | !-- Updated vapour concentration (#/m3) |
---|
3954 | pcocnv = zcvap_new2 |
---|
3955 | ! |
---|
3956 | !-- Volume change of particles (m3(OC)/m3(air)) |
---|
3957 | zdvoloc = zcolrate_ocnv(in1a:fn2b) / zcs_ocnv * amvoc * zdvap2 |
---|
3958 | ! |
---|
3959 | !-- Change of volume due to condensation in 1a-2b |
---|
3960 | paero(in1a:fn2b)%volc(2) = paero(in1a:fn2b)%volc(2) + zdvoloc |
---|
3961 | ! |
---|
3962 | !-- Change of number concentration in the smallest bin caused by |
---|
3963 | !-- nucleation (Jacobson (2005), equation (16.75)). If zxocnv = 0, then |
---|
3964 | !-- the chosen nucleation mechanism doesn't take into account the non- |
---|
3965 | !-- volatile organic vapors and thus the paero doesn't have to be updated. |
---|
3966 | IF ( zxocnv > 0.0_wp ) THEN |
---|
3967 | paero(in1a)%numc = paero(in1a)%numc + zn_vs_c * zdvoloc(in1a) / & |
---|
3968 | amvoc / ( n3 * zxocnv ) |
---|
3969 | ENDIF |
---|
3970 | ENDIF |
---|
3971 | ! |
---|
3972 | !-- 5.1.2) Semivolatile organic compound: all bins except subrange 1 |
---|
3973 | zcs_ocsv = SUM( zcolrate(in2a:fn2b) ) !< sink for semi-volatile organics |
---|
3974 | IF ( pcocsv > 1.0E+10_wp .AND. zcs_ocsv > 1.0E-30 .AND. & |
---|
3975 | is_used( prtcl,'OC') ) & |
---|
3976 | THEN |
---|
3977 | ! |
---|
3978 | !-- New gas phase concentration (#/m3) |
---|
3979 | zcvap_new3 = pcocsv |
---|