1 | !> @file salsa_mod.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM-4U. |
---|
4 | ! |
---|
5 | ! PALM-4U is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM-4U is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: salsa_mod.f90 3481 2018-11-02 09:14:13Z raasch $ |
---|
27 | ! temporary variable cc introduced to circumvent a possible Intel18 compiler bug |
---|
28 | ! related to contiguous/non-contguous pointer/target attributes |
---|
29 | ! |
---|
30 | ! 3473 2018-10-30 20:50:15Z suehring |
---|
31 | ! NetCDF input routine renamed |
---|
32 | ! |
---|
33 | ! 3467 2018-10-30 19:05:21Z suehring |
---|
34 | ! Initial revision |
---|
35 | ! |
---|
36 | ! 3412 2018-10-24 07:25:57Z monakurppa |
---|
37 | ! |
---|
38 | ! Authors: |
---|
39 | ! -------- |
---|
40 | ! @author monakurppa |
---|
41 | ! |
---|
42 | ! |
---|
43 | ! Description: |
---|
44 | ! ------------ |
---|
45 | !> Sectional aerosol module for large scale applications SALSA |
---|
46 | !> (Kokkola et al., 2008, ACP 8, 2469-2483). Solves the aerosol number and mass |
---|
47 | !> concentration as well as chemical composition. Includes aerosol dynamic |
---|
48 | !> processes: nucleation, condensation/evaporation of vapours, coagulation and |
---|
49 | !> deposition on tree leaves, ground and roofs. |
---|
50 | !> Implementation is based on formulations implemented in UCLALES-SALSA except |
---|
51 | !> for deposition which is based on parametrisations by Zhang et al. (2001, |
---|
52 | !> Atmos. Environ. 35, 549-560) or Petroff&Zhang (2010, Geosci. Model Dev. 3, |
---|
53 | !> 753-769) |
---|
54 | !> |
---|
55 | !> @todo Implement turbulent inflow of aerosols in inflow_turbulence. |
---|
56 | !> @todo Deposition on walls and horizontal surfaces calculated from the aerosol |
---|
57 | !> dry radius, not wet |
---|
58 | !> @todo Deposition on subgrid scale vegetation |
---|
59 | !> @todo Deposition on vegetation calculated by default for deciduous broadleaf |
---|
60 | !> trees |
---|
61 | !> @todo Revise masked data output. There is a potential bug in case of |
---|
62 | !> terrain-following masked output, according to data_output_mask. |
---|
63 | !> @todo There are now improved interfaces for NetCDF data input which can be |
---|
64 | !> used instead of get variable etc. |
---|
65 | !------------------------------------------------------------------------------! |
---|
66 | MODULE salsa_mod |
---|
67 | |
---|
68 | USE basic_constants_and_equations_mod, & |
---|
69 | ONLY: c_p, g, p_0, pi, r_d |
---|
70 | |
---|
71 | USE chemistry_model_mod, & |
---|
72 | ONLY: chem_species, nspec, nvar, spc_names |
---|
73 | |
---|
74 | USE chem_modules, & |
---|
75 | ONLY: call_chem_at_all_substeps, chem_gasphase_on |
---|
76 | |
---|
77 | USE control_parameters |
---|
78 | |
---|
79 | USE indices, & |
---|
80 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, & |
---|
81 | nzb_s_inner, nz, nzt, wall_flags_0 |
---|
82 | |
---|
83 | USE kinds |
---|
84 | |
---|
85 | USE pegrid |
---|
86 | |
---|
87 | USE salsa_util_mod |
---|
88 | |
---|
89 | IMPLICIT NONE |
---|
90 | ! |
---|
91 | !-- SALSA constants: |
---|
92 | ! |
---|
93 | !-- Local constants: |
---|
94 | INTEGER(iwp), PARAMETER :: ngast = 5 !< total number of gaseous tracers: |
---|
95 | !< 1 = H2SO4, 2 = HNO3, 3 = NH3, |
---|
96 | !< 4 = OCNV (non-volatile OC), |
---|
97 | !< 5 = OCSV (semi-volatile) |
---|
98 | INTEGER(iwp), PARAMETER :: nmod = 7 !< number of modes for initialising |
---|
99 | !< the aerosol size distribution |
---|
100 | INTEGER(iwp), PARAMETER :: nreg = 2 !< Number of main size subranges |
---|
101 | INTEGER(iwp), PARAMETER :: maxspec = 7 !< Max. number of aerosol species |
---|
102 | ! |
---|
103 | !-- Universal constants |
---|
104 | REAL(wp), PARAMETER :: abo = 1.380662E-23_wp !< Boltzmann constant (J/K) |
---|
105 | REAL(wp), PARAMETER :: alv = 2.260E+6_wp !< latent heat for H2O |
---|
106 | !< vaporisation (J/kg) |
---|
107 | REAL(wp), PARAMETER :: alv_d_rv = 4896.96865_wp !< alv / rv |
---|
108 | REAL(wp), PARAMETER :: am_airmol = 4.8096E-26_wp !< Average mass of one air |
---|
109 | !< molecule (Jacobson, |
---|
110 | !< 2005, Eq. 2.3) |
---|
111 | REAL(wp), PARAMETER :: api6 = 0.5235988_wp !< pi / 6 |
---|
112 | REAL(wp), PARAMETER :: argas = 8.314409_wp !< Gas constant (J/(mol K)) |
---|
113 | REAL(wp), PARAMETER :: argas_d_cpd = 8.281283865E-3_wp !< argas per cpd |
---|
114 | REAL(wp), PARAMETER :: avo = 6.02214E+23_wp !< Avogadro constant (1/mol) |
---|
115 | REAL(wp), PARAMETER :: d_sa = 5.539376964394570E-10_wp !< diameter of |
---|
116 | !< condensing sulphuric |
---|
117 | !< acid molecule (m) |
---|
118 | REAL(wp), PARAMETER :: for_ppm_to_nconc = 7.243016311E+16_wp !< |
---|
119 | !< ppm * avo / R (K/(Pa*m3)) |
---|
120 | REAL(wp), PARAMETER :: epsoc = 0.15_wp !< water uptake of organic |
---|
121 | !< material |
---|
122 | REAL(wp), PARAMETER :: mclim = 1.0E-23_wp !< mass concentration min |
---|
123 | !< limit for aerosols (kg/m3) |
---|
124 | REAL(wp), PARAMETER :: n3 = 158.79_wp !< Number of H2SO4 molecules in |
---|
125 | !< 3 nm cluster if d_sa=5.54e-10m |
---|
126 | REAL(wp), PARAMETER :: nclim = 1.0_wp !< number concentration min limit |
---|
127 | !< for aerosols and gases (#/m3) |
---|
128 | REAL(wp), PARAMETER :: surfw0 = 0.073_wp !< surface tension of pure water |
---|
129 | !< at ~ 293 K (J/m2) |
---|
130 | REAL(wp), PARAMETER :: vclim = 1.0E-24_wp !< volume concentration min |
---|
131 | !< limit for aerosols (m3/m3) |
---|
132 | !-- Molar masses in kg/mol |
---|
133 | REAL(wp), PARAMETER :: ambc = 12.0E-3_wp !< black carbon (BC) |
---|
134 | REAL(wp), PARAMETER :: amdair = 28.970E-3_wp !< dry air |
---|
135 | REAL(wp), PARAMETER :: amdu = 100.E-3_wp !< mineral dust |
---|
136 | REAL(wp), PARAMETER :: amh2o = 18.0154E-3_wp !< H2O |
---|
137 | REAL(wp), PARAMETER :: amh2so4 = 98.06E-3_wp !< H2SO4 |
---|
138 | REAL(wp), PARAMETER :: amhno3 = 63.01E-3_wp !< HNO3 |
---|
139 | REAL(wp), PARAMETER :: amn2o = 44.013E-3_wp !< N2O |
---|
140 | REAL(wp), PARAMETER :: amnh3 = 17.031E-3_wp !< NH3 |
---|
141 | REAL(wp), PARAMETER :: amo2 = 31.9988E-3_wp !< O2 |
---|
142 | REAL(wp), PARAMETER :: amo3 = 47.998E-3_wp !< O3 |
---|
143 | REAL(wp), PARAMETER :: amoc = 150.E-3_wp !< organic carbon (OC) |
---|
144 | REAL(wp), PARAMETER :: amss = 58.44E-3_wp !< sea salt (NaCl) |
---|
145 | !-- Densities in kg/m3 |
---|
146 | REAL(wp), PARAMETER :: arhobc = 2000.0_wp !< black carbon |
---|
147 | REAL(wp), PARAMETER :: arhodu = 2650.0_wp !< mineral dust |
---|
148 | REAL(wp), PARAMETER :: arhoh2o = 1000.0_wp !< H2O |
---|
149 | REAL(wp), PARAMETER :: arhoh2so4 = 1830.0_wp !< SO4 |
---|
150 | REAL(wp), PARAMETER :: arhohno3 = 1479.0_wp !< HNO3 |
---|
151 | REAL(wp), PARAMETER :: arhonh3 = 1530.0_wp !< NH3 |
---|
152 | REAL(wp), PARAMETER :: arhooc = 2000.0_wp !< organic carbon |
---|
153 | REAL(wp), PARAMETER :: arhoss = 2165.0_wp !< sea salt (NaCl) |
---|
154 | !-- Volume of molecule in m3/# |
---|
155 | REAL(wp), PARAMETER :: amvh2o = amh2o /avo / arhoh2o !< H2O |
---|
156 | REAL(wp), PARAMETER :: amvh2so4 = amh2so4 / avo / arhoh2so4 !< SO4 |
---|
157 | REAL(wp), PARAMETER :: amvhno3 = amhno3 / avo / arhohno3 !< HNO3 |
---|
158 | REAL(wp), PARAMETER :: amvnh3 = amnh3 / avo / arhonh3 !< NH3 |
---|
159 | REAL(wp), PARAMETER :: amvoc = amoc / avo / arhooc !< OC |
---|
160 | REAL(wp), PARAMETER :: amvss = amss / avo / arhoss !< sea salt |
---|
161 | |
---|
162 | ! |
---|
163 | !-- SALSA switches: |
---|
164 | INTEGER(iwp) :: nj3 = 1 !< J3 parametrization (nucleation) |
---|
165 | !< 1 = condensational sink (Kerminen&Kulmala, 2002) |
---|
166 | !< 2 = coagulational sink (Lehtinen et al. 2007) |
---|
167 | !< 3 = coagS+self-coagulation (Anttila et al. 2010) |
---|
168 | INTEGER(iwp) :: nsnucl = 0 !< Choice of the nucleation scheme: |
---|
169 | !< 0 = off |
---|
170 | !< 1 = binary nucleation |
---|
171 | !< 2 = activation type nucleation |
---|
172 | !< 3 = kinetic nucleation |
---|
173 | !< 4 = ternary nucleation |
---|
174 | !< 5 = nucleation with ORGANICs |
---|
175 | !< 6 = activation type of nucleation with |
---|
176 | !< H2SO4+ORG |
---|
177 | !< 7 = heteromolecular nucleation with H2SO4*ORG |
---|
178 | !< 8 = homomolecular nucleation of H2SO4 + |
---|
179 | !< heteromolecular nucleation with H2SO4*ORG |
---|
180 | !< 9 = homomolecular nucleation of H2SO4 and ORG |
---|
181 | !< +heteromolecular nucleation with H2SO4*ORG |
---|
182 | LOGICAL :: advect_particle_water = .TRUE. !< advect water concentration of |
---|
183 | !< particles |
---|
184 | LOGICAL :: decycle_lr = .FALSE. !< Undo cyclic boundary |
---|
185 | !< conditions: left and right |
---|
186 | LOGICAL :: decycle_ns = .FALSE. !< north and south boundaries |
---|
187 | LOGICAL :: feedback_to_palm = .FALSE. !< allow feedback due to |
---|
188 | !< hydration and/or condensation |
---|
189 | !< of H20 |
---|
190 | LOGICAL :: no_insoluble = .FALSE. !< Switch to exclude insoluble |
---|
191 | !< chemical components |
---|
192 | LOGICAL :: read_restart_data_salsa = .FALSE. !< read restart data for salsa |
---|
193 | LOGICAL :: salsa = .FALSE. !< SALSA master switch |
---|
194 | LOGICAL :: salsa_gases_from_chem = .FALSE. !< Transfer the gaseous |
---|
195 | !< components to SALSA from |
---|
196 | !< from chemistry model |
---|
197 | LOGICAL :: van_der_waals_coagc = .FALSE. !< Enhancement of coagulation |
---|
198 | !< kernel by van der Waals and |
---|
199 | !< viscous forces |
---|
200 | LOGICAL :: write_binary_salsa = .FALSE. !< read binary for salsa |
---|
201 | !-- Process switches: nl* is read from the NAMELIST and is NOT changed. |
---|
202 | !-- ls* is the switch used and will get the value of nl* |
---|
203 | !-- except for special circumstances (spinup period etc.) |
---|
204 | LOGICAL :: nlcoag = .FALSE. !< Coagulation master switch |
---|
205 | LOGICAL :: lscoag = .FALSE. !< |
---|
206 | LOGICAL :: nlcnd = .FALSE. !< Condensation master switch |
---|
207 | LOGICAL :: lscnd = .FALSE. !< |
---|
208 | LOGICAL :: nlcndgas = .FALSE. !< Condensation of precursor gases |
---|
209 | LOGICAL :: lscndgas = .FALSE. !< |
---|
210 | LOGICAL :: nlcndh2oae = .FALSE. !< Condensation of H2O on aerosol |
---|
211 | LOGICAL :: lscndh2oae = .FALSE. !< particles (FALSE -> equilibrium calc.) |
---|
212 | LOGICAL :: nldepo = .FALSE. !< Deposition master switch |
---|
213 | LOGICAL :: lsdepo = .FALSE. !< |
---|
214 | LOGICAL :: nldepo_topo = .FALSE. !< Deposition on vegetation master switch |
---|
215 | LOGICAL :: lsdepo_topo = .FALSE. !< |
---|
216 | LOGICAL :: nldepo_vege = .FALSE. !< Deposition on walls master switch |
---|
217 | LOGICAL :: lsdepo_vege = .FALSE. !< |
---|
218 | LOGICAL :: nldistupdate = .TRUE. !< Size distribution update master switch |
---|
219 | LOGICAL :: lsdistupdate = .FALSE. !< |
---|
220 | ! |
---|
221 | !-- SALSA variables: |
---|
222 | CHARACTER (LEN=20) :: bc_salsa_b = 'neumann' !< bottom boundary condition |
---|
223 | CHARACTER (LEN=20) :: bc_salsa_t = 'neumann' !< top boundary condition |
---|
224 | CHARACTER (LEN=20) :: depo_vege_type = 'zhang2001' !< or 'petroff2010' |
---|
225 | CHARACTER (LEN=20) :: depo_topo_type = 'zhang2001' !< or 'petroff2010' |
---|
226 | CHARACTER (LEN=20), DIMENSION(4) :: decycle_method = & |
---|
227 | (/'dirichlet','dirichlet','dirichlet','dirichlet'/) |
---|
228 | !< Decycling method at horizontal boundaries, |
---|
229 | !< 1=left, 2=right, 3=south, 4=north |
---|
230 | !< dirichlet = initial size distribution and |
---|
231 | !< chemical composition set for the ghost and |
---|
232 | !< first three layers |
---|
233 | !< neumann = zero gradient |
---|
234 | CHARACTER (LEN=3), DIMENSION(maxspec) :: listspec = & !< Active aerosols |
---|
235 | (/'SO4',' ',' ',' ',' ',' ',' '/) |
---|
236 | CHARACTER (LEN=20) :: salsa_source_mode = 'no_source' |
---|
237 | !< 'read_from_file', |
---|
238 | !< 'constant' or 'no_source' |
---|
239 | INTEGER(iwp) :: dots_salsa = 0 !< starting index for salsa-timeseries |
---|
240 | INTEGER(iwp) :: fn1a = 1 !< last index for bin subranges: subrange 1a |
---|
241 | INTEGER(iwp) :: fn2a = 1 !< subrange 2a |
---|
242 | INTEGER(iwp) :: fn2b = 1 !< subrange 2b |
---|
243 | INTEGER(iwp), DIMENSION(ngast) :: gas_index_chem = (/ 1, 1, 1, 1, 1/) !< |
---|
244 | !< Index of gaseous compounds in the chemistry |
---|
245 | !< model. In SALSA, 1 = H2SO4, 2 = HNO3, |
---|
246 | !< 3 = NH3, 4 = OCNV, 5 = OCSV |
---|
247 | INTEGER(iwp) :: ibc_salsa_b !< |
---|
248 | INTEGER(iwp) :: ibc_salsa_t !< |
---|
249 | INTEGER(iwp) :: igctyp = 0 !< Initial gas concentration type |
---|
250 | !< 0 = uniform (use H2SO4_init, HNO3_init, |
---|
251 | !< NH3_init, OCNV_init and OCSV_init) |
---|
252 | !< 1 = read vertical profile from an input file |
---|
253 | INTEGER(iwp) :: in1a = 1 !< start index for bin subranges: subrange 1a |
---|
254 | INTEGER(iwp) :: in2a = 1 !< subrange 2a |
---|
255 | INTEGER(iwp) :: in2b = 1 !< subrange 2b |
---|
256 | INTEGER(iwp) :: isdtyp = 0 !< Initial size distribution type |
---|
257 | !< 0 = uniform |
---|
258 | !< 1 = read vertical profile of the mode number |
---|
259 | !< concentration from an input file |
---|
260 | INTEGER(iwp) :: ibc = -1 !< Indice for: black carbon (BC) |
---|
261 | INTEGER(iwp) :: idu = -1 !< dust |
---|
262 | INTEGER(iwp) :: inh = -1 !< NH3 |
---|
263 | INTEGER(iwp) :: ino = -1 !< HNO3 |
---|
264 | INTEGER(iwp) :: ioc = -1 !< organic carbon (OC) |
---|
265 | INTEGER(iwp) :: iso4 = -1 !< SO4 or H2SO4 |
---|
266 | INTEGER(iwp) :: iss = -1 !< sea salt |
---|
267 | INTEGER(iwp) :: lod_aero = 0 !< level of detail for aerosol emissions |
---|
268 | INTEGER(iwp) :: lod_gases = 0 !< level of detail for gaseous emissions |
---|
269 | INTEGER(iwp), DIMENSION(nreg) :: nbin = (/ 3, 7/) !< Number of size bins |
---|
270 | !< for each aerosol size subrange |
---|
271 | INTEGER(iwp) :: nbins = 1 !< total number of size bins |
---|
272 | INTEGER(iwp) :: ncc = 1 !< number of chemical components used |
---|
273 | INTEGER(iwp) :: ncc_tot = 1!< total number of chemical compounds (ncc+1 |
---|
274 | !< if particle water is advected) |
---|
275 | REAL(wp) :: act_coeff = 1.0E-7_wp !< Activation coefficient |
---|
276 | REAL(wp) :: aerosol_source = 0.0_wp !< Constant aerosol flux (#/(m3*s)) |
---|
277 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: emission_mass_fracs !< array for |
---|
278 | !< aerosol composition per emission category |
---|
279 | !< 1:SO4 2:OC 3:BC 4:DU 5:SS 6:NO 7:NH |
---|
280 | REAL(wp) :: dt_salsa = 0.00001_wp !< Time step of SALSA |
---|
281 | REAL(wp) :: H2SO4_init = nclim !< Init value for sulphuric acid gas |
---|
282 | REAL(wp) :: HNO3_init = nclim !< Init value for nitric acid gas |
---|
283 | REAL(wp) :: last_salsa_time = 0.0_wp !< time of the previous salsa |
---|
284 | !< timestep |
---|
285 | REAL(wp) :: nf2a = 1.0_wp !< Number fraction allocated to a- |
---|
286 | !< bins in subrange 2 |
---|
287 | !< (b-bins will get 1-nf2a) |
---|
288 | REAL(wp) :: NH3_init = nclim !< Init value for ammonia gas |
---|
289 | REAL(wp) :: OCNV_init = nclim !< Init value for non-volatile |
---|
290 | !< organic gases |
---|
291 | REAL(wp) :: OCSV_init = nclim !< Init value for semi-volatile |
---|
292 | !< organic gases |
---|
293 | REAL(wp), DIMENSION(nreg+1) :: reglim = & !< Min&max diameters of size subranges |
---|
294 | (/ 3.0E-9_wp, 5.0E-8_wp, 1.0E-5_wp/) |
---|
295 | REAL(wp) :: rhlim = 1.20_wp !< RH limit in %/100. Prevents |
---|
296 | !< unrealistically high RH in condensation |
---|
297 | REAL(wp) :: skip_time_do_salsa = 0.0_wp !< Starting time of SALSA (s) |
---|
298 | !-- Initial log-normal size distribution: mode diameter (dpg, micrometres), |
---|
299 | !-- standard deviation (sigmag) and concentration (n_lognorm, #/cm3) |
---|
300 | REAL(wp), DIMENSION(nmod) :: dpg = (/0.013_wp, 0.054_wp, 0.86_wp, & |
---|
301 | 0.2_wp, 0.2_wp, 0.2_wp, 0.2_wp/) |
---|
302 | REAL(wp), DIMENSION(nmod) :: sigmag = (/1.8_wp, 2.16_wp, 2.21_wp, & |
---|
303 | 2.0_wp, 2.0_wp, 2.0_wp, 2.0_wp/) |
---|
304 | REAL(wp), DIMENSION(nmod) :: n_lognorm = (/1.04e+5_wp, 3.23E+4_wp, 5.4_wp,& |
---|
305 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp/) |
---|
306 | !-- Initial mass fractions / chemical composition of the size distribution |
---|
307 | REAL(wp), DIMENSION(maxspec) :: mass_fracs_a = & !< mass fractions between |
---|
308 | (/1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0/) !< aerosol species for A bins |
---|
309 | REAL(wp), DIMENSION(maxspec) :: mass_fracs_b = & !< mass fractions between |
---|
310 | (/0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0/) !< aerosol species for B bins |
---|
311 | |
---|
312 | REAL(wp), ALLOCATABLE, DIMENSION(:) :: bin_low_limits !< to deliver |
---|
313 | !< information about |
---|
314 | !< the lower |
---|
315 | !< diameters per bin |
---|
316 | REAL(wp), ALLOCATABLE, DIMENSION(:) :: nsect !< Background number |
---|
317 | !< concentration per bin |
---|
318 | REAL(wp), ALLOCATABLE, DIMENSION(:) :: massacc !< Mass accomodation |
---|
319 | !< coefficients per bin |
---|
320 | ! |
---|
321 | !-- SALSA derived datatypes: |
---|
322 | ! |
---|
323 | !-- Prognostic variable: Aerosol size bin information (number (#/m3) and |
---|
324 | !-- mass (kg/m3) concentration) and the concentration of gaseous tracers (#/m3). |
---|
325 | !-- Gas tracers are contained sequentially in dimension 4 as: |
---|
326 | !-- 1. H2SO4, 2. HNO3, 3. NH3, 4. OCNV (non-volatile organics), |
---|
327 | !-- 5. OCSV (semi-volatile) |
---|
328 | TYPE salsa_variable |
---|
329 | REAL(wp), POINTER, DIMENSION(:,:,:), CONTIGUOUS :: conc |
---|
330 | REAL(wp), POINTER, DIMENSION(:,:,:), CONTIGUOUS :: conc_p |
---|
331 | REAL(wp), POINTER, DIMENSION(:,:,:), CONTIGUOUS :: tconc_m |
---|
332 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: flux_s, diss_s |
---|
333 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: flux_l, diss_l |
---|
334 | REAL(wp), ALLOCATABLE, DIMENSION(:) :: init |
---|
335 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: source |
---|
336 | REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: sums_ws_l |
---|
337 | END TYPE salsa_variable |
---|
338 | |
---|
339 | !-- Map bin indices between parallel size distributions |
---|
340 | TYPE t_parallelbin |
---|
341 | INTEGER(iwp) :: cur ! Index for current distribution |
---|
342 | INTEGER(iwp) :: par ! Index for corresponding parallel distribution |
---|
343 | END TYPE t_parallelbin |
---|
344 | |
---|
345 | !-- Datatype used to store information about the binned size distributions of |
---|
346 | !-- aerosols |
---|
347 | TYPE t_section |
---|
348 | REAL(wp) :: vhilim !< bin volume at the high limit |
---|
349 | REAL(wp) :: vlolim !< bin volume at the low limit |
---|
350 | REAL(wp) :: vratiohi !< volume ratio between the center and high limit |
---|
351 | REAL(wp) :: vratiolo !< volume ratio between the center and low limit |
---|
352 | REAL(wp) :: dmid !< bin middle diameter (m) |
---|
353 | !****************************************************** |
---|
354 | ! ^ Do NOT change the stuff above after initialization ! |
---|
355 | !****************************************************** |
---|
356 | REAL(wp) :: dwet !< Wet diameter or mean droplet diameter (m) |
---|
357 | REAL(wp), DIMENSION(maxspec+1) :: volc !< Volume concentrations |
---|
358 | !< (m^3/m^3) of aerosols + water. Since most of |
---|
359 | !< the stuff in SALSA is hard coded, these *have to |
---|
360 | !< be* in the order |
---|
361 | !< 1:SO4, 2:OC, 3:BC, 4:DU, 5:SS, 6:NO, 7:NH, 8:H2O |
---|
362 | REAL(wp) :: veqh2o !< Equilibrium H2O concentration for each particle |
---|
363 | REAL(wp) :: numc !< Number concentration of particles/droplets (#/m3) |
---|
364 | REAL(wp) :: core !< Volume of dry particle |
---|
365 | END TYPE t_section |
---|
366 | ! |
---|
367 | !-- Local aerosol properties in SALSA |
---|
368 | TYPE(t_section), ALLOCATABLE :: aero(:) |
---|
369 | ! |
---|
370 | !-- SALSA tracers: |
---|
371 | !-- Tracers as x = x(k,j,i,bin). The 4th dimension contains all the size bins |
---|
372 | !-- sequentially for each aerosol species + water. |
---|
373 | ! |
---|
374 | !-- Prognostic tracers: |
---|
375 | ! |
---|
376 | !-- Number concentration (#/m3) |
---|
377 | TYPE(salsa_variable), ALLOCATABLE, DIMENSION(:), TARGET :: aerosol_number |
---|
378 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: nconc_1 |
---|
379 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: nconc_2 |
---|
380 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: nconc_3 |
---|
381 | ! |
---|
382 | !-- Mass concentration (kg/m3) |
---|
383 | TYPE(salsa_variable), ALLOCATABLE, DIMENSION(:), TARGET :: aerosol_mass |
---|
384 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: mconc_1 |
---|
385 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: mconc_2 |
---|
386 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: mconc_3 |
---|
387 | ! |
---|
388 | !-- Gaseous tracers (#/m3) |
---|
389 | TYPE(salsa_variable), ALLOCATABLE, DIMENSION(:), TARGET :: salsa_gas |
---|
390 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: gconc_1 |
---|
391 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: gconc_2 |
---|
392 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: gconc_3 |
---|
393 | ! |
---|
394 | !-- Diagnostic tracers |
---|
395 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: sedim_vd !< sedimentation |
---|
396 | !< velocity per size |
---|
397 | !< bin (m/s) |
---|
398 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: Ra_dry !< dry radius (m) |
---|
399 | |
---|
400 | !-- Particle component index tables |
---|
401 | TYPE(component_index) :: prtcl !< Contains "getIndex" which gives the index |
---|
402 | !< for a given aerosol component name, i.e. |
---|
403 | !< 1:SO4, 2:OC, 3:BC, 4:DU, |
---|
404 | !< 5:SS, 6:NO, 7:NH, 8:H2O |
---|
405 | ! |
---|
406 | !-- Data output arrays: |
---|
407 | !-- Gases: |
---|
408 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_H2SO4_av !< H2SO4 |
---|
409 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_HNO3_av !< HNO3 |
---|
410 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_NH3_av !< NH3 |
---|
411 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_OCNV_av !< non-vola- |
---|
412 | !< tile OC |
---|
413 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: g_OCSV_av !< semi-vol. |
---|
414 | !< OC |
---|
415 | !-- Integrated: |
---|
416 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: LDSA_av !< lung deposited |
---|
417 | !< surface area |
---|
418 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: Ntot_av !< total number conc. |
---|
419 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: PM25_av !< PM2.5 |
---|
420 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: PM10_av !< PM10 |
---|
421 | !-- In the particle phase: |
---|
422 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_BC_av !< black carbon |
---|
423 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_DU_av !< dust |
---|
424 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_H2O_av !< liquid water |
---|
425 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_NH_av !< ammonia |
---|
426 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_NO_av !< nitrates |
---|
427 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_OC_av !< org. carbon |
---|
428 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_SO4_av !< sulphates |
---|
429 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:), TARGET :: s_SS_av !< sea salt |
---|
430 | !-- Bins: |
---|
431 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: mbins_av !< bin mass |
---|
432 | !< concentration |
---|
433 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: Nbins_av !< bin number |
---|
434 | !< concentration |
---|
435 | |
---|
436 | ! |
---|
437 | !-- PALM interfaces: |
---|
438 | ! |
---|
439 | !-- Boundary conditions: |
---|
440 | INTERFACE salsa_boundary_conds |
---|
441 | MODULE PROCEDURE salsa_boundary_conds |
---|
442 | MODULE PROCEDURE salsa_boundary_conds_decycle |
---|
443 | END INTERFACE salsa_boundary_conds |
---|
444 | ! |
---|
445 | !-- Data output checks for 2D/3D data to be done in check_parameters |
---|
446 | INTERFACE salsa_check_data_output |
---|
447 | MODULE PROCEDURE salsa_check_data_output |
---|
448 | END INTERFACE salsa_check_data_output |
---|
449 | |
---|
450 | ! |
---|
451 | !-- Input parameter checks to be done in check_parameters |
---|
452 | INTERFACE salsa_check_parameters |
---|
453 | MODULE PROCEDURE salsa_check_parameters |
---|
454 | END INTERFACE salsa_check_parameters |
---|
455 | |
---|
456 | ! |
---|
457 | !-- Averaging of 3D data for output |
---|
458 | INTERFACE salsa_3d_data_averaging |
---|
459 | MODULE PROCEDURE salsa_3d_data_averaging |
---|
460 | END INTERFACE salsa_3d_data_averaging |
---|
461 | |
---|
462 | ! |
---|
463 | !-- Data output of 2D quantities |
---|
464 | INTERFACE salsa_data_output_2d |
---|
465 | MODULE PROCEDURE salsa_data_output_2d |
---|
466 | END INTERFACE salsa_data_output_2d |
---|
467 | |
---|
468 | ! |
---|
469 | !-- Data output of 3D data |
---|
470 | INTERFACE salsa_data_output_3d |
---|
471 | MODULE PROCEDURE salsa_data_output_3d |
---|
472 | END INTERFACE salsa_data_output_3d |
---|
473 | |
---|
474 | ! |
---|
475 | !-- Data output of 3D data |
---|
476 | INTERFACE salsa_data_output_mask |
---|
477 | MODULE PROCEDURE salsa_data_output_mask |
---|
478 | END INTERFACE salsa_data_output_mask |
---|
479 | |
---|
480 | ! |
---|
481 | !-- Definition of data output quantities |
---|
482 | INTERFACE salsa_define_netcdf_grid |
---|
483 | MODULE PROCEDURE salsa_define_netcdf_grid |
---|
484 | END INTERFACE salsa_define_netcdf_grid |
---|
485 | |
---|
486 | ! |
---|
487 | !-- Output of information to the header file |
---|
488 | INTERFACE salsa_header |
---|
489 | MODULE PROCEDURE salsa_header |
---|
490 | END INTERFACE salsa_header |
---|
491 | |
---|
492 | ! |
---|
493 | !-- Initialization actions |
---|
494 | INTERFACE salsa_init |
---|
495 | MODULE PROCEDURE salsa_init |
---|
496 | END INTERFACE salsa_init |
---|
497 | |
---|
498 | ! |
---|
499 | !-- Initialization of arrays |
---|
500 | INTERFACE salsa_init_arrays |
---|
501 | MODULE PROCEDURE salsa_init_arrays |
---|
502 | END INTERFACE salsa_init_arrays |
---|
503 | |
---|
504 | ! |
---|
505 | !-- Writing of binary output for restart runs !!! renaming?! |
---|
506 | INTERFACE salsa_wrd_local |
---|
507 | MODULE PROCEDURE salsa_wrd_local |
---|
508 | END INTERFACE salsa_wrd_local |
---|
509 | |
---|
510 | ! |
---|
511 | !-- Reading of NAMELIST parameters |
---|
512 | INTERFACE salsa_parin |
---|
513 | MODULE PROCEDURE salsa_parin |
---|
514 | END INTERFACE salsa_parin |
---|
515 | |
---|
516 | ! |
---|
517 | !-- Reading of parameters for restart runs |
---|
518 | INTERFACE salsa_rrd_local |
---|
519 | MODULE PROCEDURE salsa_rrd_local |
---|
520 | END INTERFACE salsa_rrd_local |
---|
521 | |
---|
522 | ! |
---|
523 | !-- Swapping of time levels (required for prognostic variables) |
---|
524 | INTERFACE salsa_swap_timelevel |
---|
525 | MODULE PROCEDURE salsa_swap_timelevel |
---|
526 | END INTERFACE salsa_swap_timelevel |
---|
527 | |
---|
528 | INTERFACE salsa_driver |
---|
529 | MODULE PROCEDURE salsa_driver |
---|
530 | END INTERFACE salsa_driver |
---|
531 | |
---|
532 | INTERFACE salsa_tendency |
---|
533 | MODULE PROCEDURE salsa_tendency |
---|
534 | MODULE PROCEDURE salsa_tendency_ij |
---|
535 | END INTERFACE salsa_tendency |
---|
536 | |
---|
537 | |
---|
538 | |
---|
539 | SAVE |
---|
540 | |
---|
541 | PRIVATE |
---|
542 | ! |
---|
543 | !-- Public functions: |
---|
544 | PUBLIC salsa_boundary_conds, salsa_check_data_output, & |
---|
545 | salsa_check_parameters, salsa_3d_data_averaging, & |
---|
546 | salsa_data_output_2d, salsa_data_output_3d, salsa_data_output_mask, & |
---|
547 | salsa_define_netcdf_grid, salsa_diagnostics, salsa_driver, & |
---|
548 | salsa_header, salsa_init, salsa_init_arrays, salsa_parin, & |
---|
549 | salsa_rrd_local, salsa_swap_timelevel, salsa_tendency, & |
---|
550 | salsa_wrd_local |
---|
551 | ! |
---|
552 | !-- Public parameters, constants and initial values |
---|
553 | PUBLIC dots_salsa, dt_salsa, last_salsa_time, lsdepo, salsa, & |
---|
554 | salsa_gases_from_chem, skip_time_do_salsa |
---|
555 | ! |
---|
556 | !-- Public prognostic variables |
---|
557 | PUBLIC aerosol_mass, aerosol_number, fn2a, fn2b, gconc_2, in1a, in2b, & |
---|
558 | mconc_2, nbins, ncc, ncc_tot, nclim, nconc_2, ngast, prtcl, Ra_dry, & |
---|
559 | salsa_gas, sedim_vd |
---|
560 | |
---|
561 | CONTAINS |
---|
562 | |
---|
563 | !------------------------------------------------------------------------------! |
---|
564 | ! Description: |
---|
565 | ! ------------ |
---|
566 | !> Parin for &salsa_par for new modules |
---|
567 | !------------------------------------------------------------------------------! |
---|
568 | SUBROUTINE salsa_parin |
---|
569 | |
---|
570 | IMPLICIT NONE |
---|
571 | |
---|
572 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line |
---|
573 | !< of the parameter file |
---|
574 | |
---|
575 | NAMELIST /salsa_parameters/ & |
---|
576 | advect_particle_water, & ! Switch for advecting |
---|
577 | ! particle water. If .FALSE., |
---|
578 | ! equilibration is called at |
---|
579 | ! each time step. |
---|
580 | bc_salsa_b, & ! bottom boundary condition |
---|
581 | bc_salsa_t, & ! top boundary condition |
---|
582 | decycle_lr, & ! decycle SALSA components |
---|
583 | decycle_method, & ! decycle method applied: |
---|
584 | ! 1=left 2=right 3=south 4=north |
---|
585 | decycle_ns, & ! decycle SALSA components |
---|
586 | depo_vege_type, & ! Parametrisation type |
---|
587 | depo_topo_type, & ! Parametrisation type |
---|
588 | dpg, & ! Mean diameter for the initial |
---|
589 | ! log-normal modes |
---|
590 | dt_salsa, & ! SALSA timestep in seconds |
---|
591 | feedback_to_palm, & ! allow feedback due to |
---|
592 | ! hydration / condensation |
---|
593 | H2SO4_init, & ! Init value for sulphuric acid |
---|
594 | HNO3_init, & ! Init value for nitric acid |
---|
595 | igctyp, & ! Initial gas concentration type |
---|
596 | isdtyp, & ! Initial size distribution type |
---|
597 | listspec, & ! List of actived aerosols |
---|
598 | ! (string list) |
---|
599 | mass_fracs_a, & ! Initial relative contribution |
---|
600 | ! of each species to particle |
---|
601 | ! volume in a-bins, 0 for unused |
---|
602 | mass_fracs_b, & ! Initial relative contribution |
---|
603 | ! of each species to particle |
---|
604 | ! volume in b-bins, 0 for unused |
---|
605 | n_lognorm, & ! Number concentration for the |
---|
606 | ! log-normal modes |
---|
607 | nbin, & ! Number of size bins for |
---|
608 | ! aerosol size subranges 1 & 2 |
---|
609 | nf2a, & ! Number fraction of particles |
---|
610 | ! allocated to a-bins in |
---|
611 | ! subrange 2 b-bins will get |
---|
612 | ! 1-nf2a |
---|
613 | NH3_init, & ! Init value for ammonia |
---|
614 | nj3, & ! J3 parametrization |
---|
615 | ! 1 = condensational sink |
---|
616 | ! (Kerminen&Kulmala, 2002) |
---|
617 | ! 2 = coagulational sink |
---|
618 | ! (Lehtinen et al. 2007) |
---|
619 | ! 3 = coagS+self-coagulation |
---|
620 | ! (Anttila et al. 2010) |
---|
621 | nlcnd, & ! Condensation master switch |
---|
622 | nlcndgas, & ! Condensation of gases |
---|
623 | nlcndh2oae, & ! Condensation of H2O |
---|
624 | nlcoag, & ! Coagulation master switch |
---|
625 | nldepo, & ! Deposition master switch |
---|
626 | nldepo_vege, & ! Deposition on vegetation |
---|
627 | ! master switch |
---|
628 | nldepo_topo, & ! Deposition on topo master |
---|
629 | ! switch |
---|
630 | nldistupdate, & ! Size distribution update |
---|
631 | ! master switch |
---|
632 | nsnucl, & ! Nucleation scheme: |
---|
633 | ! 0 = off, |
---|
634 | ! 1 = binary nucleation |
---|
635 | ! 2 = activation type nucleation |
---|
636 | ! 3 = kinetic nucleation |
---|
637 | ! 4 = ternary nucleation |
---|
638 | ! 5 = nucleation with organics |
---|
639 | ! 6 = activation type of |
---|
640 | ! nucleation with H2SO4+ORG |
---|
641 | ! 7 = heteromolecular nucleation |
---|
642 | ! with H2SO4*ORG |
---|
643 | ! 8 = homomolecular nucleation |
---|
644 | ! of H2SO4 + heteromolecular |
---|
645 | ! nucleation with H2SO4*ORG |
---|
646 | ! 9 = homomolecular nucleation |
---|
647 | ! of H2SO4 and ORG + hetero- |
---|
648 | ! molecular nucleation with |
---|
649 | ! H2SO4*ORG |
---|
650 | OCNV_init, & ! Init value for non-volatile |
---|
651 | ! organic gases |
---|
652 | OCSV_init, & ! Init value for semi-volatile |
---|
653 | ! organic gases |
---|
654 | read_restart_data_salsa, & ! read restart data for |
---|
655 | ! salsa |
---|
656 | reglim, & ! Min&max diameter limits of |
---|
657 | ! size subranges |
---|
658 | salsa, & ! Master switch for SALSA |
---|
659 | salsa_source_mode,& ! 'read_from_file' or 'constant' |
---|
660 | ! or 'no_source' |
---|
661 | sigmag, & ! stdev for the initial log- |
---|
662 | ! normal modes |
---|
663 | skip_time_do_salsa, & ! Starting time of SALSA (s) |
---|
664 | van_der_waals_coagc,& ! include van der Waals forces |
---|
665 | write_binary_salsa ! Write binary for salsa |
---|
666 | |
---|
667 | |
---|
668 | line = ' ' |
---|
669 | |
---|
670 | ! |
---|
671 | !-- Try to find salsa package |
---|
672 | REWIND ( 11 ) |
---|
673 | line = ' ' |
---|
674 | DO WHILE ( INDEX( line, '&salsa_parameters' ) == 0 ) |
---|
675 | READ ( 11, '(A)', END=10 ) line |
---|
676 | ENDDO |
---|
677 | BACKSPACE ( 11 ) |
---|
678 | |
---|
679 | ! |
---|
680 | !-- Read user-defined namelist |
---|
681 | READ ( 11, salsa_parameters ) |
---|
682 | |
---|
683 | ! |
---|
684 | !-- Set flag that indicates that the new module is switched on |
---|
685 | !-- Note that this parameter needs to be declared in modules.f90 |
---|
686 | salsa = .TRUE. |
---|
687 | |
---|
688 | 10 CONTINUE |
---|
689 | |
---|
690 | END SUBROUTINE salsa_parin |
---|
691 | |
---|
692 | |
---|
693 | !------------------------------------------------------------------------------! |
---|
694 | ! Description: |
---|
695 | ! ------------ |
---|
696 | !> Check parameters routine for salsa. |
---|
697 | !------------------------------------------------------------------------------! |
---|
698 | SUBROUTINE salsa_check_parameters |
---|
699 | |
---|
700 | USE control_parameters, & |
---|
701 | ONLY: message_string |
---|
702 | |
---|
703 | IMPLICIT NONE |
---|
704 | |
---|
705 | ! |
---|
706 | !-- Checks go here (cf. check_parameters.f90). |
---|
707 | IF ( salsa .AND. .NOT. humidity ) THEN |
---|
708 | WRITE( message_string, * ) 'salsa = ', salsa, ' is ', & |
---|
709 | 'not allowed with humidity = ', humidity |
---|
710 | CALL message( 'check_parameters', 'SA0009', 1, 2, 0, 6, 0 ) |
---|
711 | ENDIF |
---|
712 | |
---|
713 | IF ( bc_salsa_b == 'dirichlet' ) THEN |
---|
714 | ibc_salsa_b = 0 |
---|
715 | ELSEIF ( bc_salsa_b == 'neumann' ) THEN |
---|
716 | ibc_salsa_b = 1 |
---|
717 | ELSE |
---|
718 | message_string = 'unknown boundary condition: bc_salsa_b = "' & |
---|
719 | // TRIM( bc_salsa_t ) // '"' |
---|
720 | CALL message( 'check_parameters', 'SA0011', 1, 2, 0, 6, 0 ) |
---|
721 | ENDIF |
---|
722 | |
---|
723 | IF ( bc_salsa_t == 'dirichlet' ) THEN |
---|
724 | ibc_salsa_t = 0 |
---|
725 | ELSEIF ( bc_salsa_t == 'neumann' ) THEN |
---|
726 | ibc_salsa_t = 1 |
---|
727 | ELSE |
---|
728 | message_string = 'unknown boundary condition: bc_salsa_t = "' & |
---|
729 | // TRIM( bc_salsa_t ) // '"' |
---|
730 | CALL message( 'check_parameters', 'SA0012', 1, 2, 0, 6, 0 ) |
---|
731 | ENDIF |
---|
732 | |
---|
733 | IF ( nj3 < 1 .OR. nj3 > 3 ) THEN |
---|
734 | message_string = 'unknown nj3 (must be 1-3)' |
---|
735 | CALL message( 'check_parameters', 'SA0044', 1, 2, 0, 6, 0 ) |
---|
736 | ENDIF |
---|
737 | |
---|
738 | END SUBROUTINE salsa_check_parameters |
---|
739 | |
---|
740 | !------------------------------------------------------------------------------! |
---|
741 | ! |
---|
742 | ! Description: |
---|
743 | ! ------------ |
---|
744 | !> Subroutine defining appropriate grid for netcdf variables. |
---|
745 | !> It is called out from subroutine netcdf. |
---|
746 | !> Same grid as for other scalars (see netcdf_interface_mod.f90) |
---|
747 | !------------------------------------------------------------------------------! |
---|
748 | SUBROUTINE salsa_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
749 | |
---|
750 | IMPLICIT NONE |
---|
751 | |
---|
752 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< |
---|
753 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< |
---|
754 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< |
---|
755 | CHARACTER (LEN=*), INTENT(IN) :: var !< |
---|
756 | |
---|
757 | LOGICAL, INTENT(OUT) :: found !< |
---|
758 | |
---|
759 | found = .TRUE. |
---|
760 | ! |
---|
761 | !-- Check for the grid |
---|
762 | |
---|
763 | IF ( var(1:2) == 'g_' ) THEN |
---|
764 | grid_x = 'x' |
---|
765 | grid_y = 'y' |
---|
766 | grid_z = 'zu' |
---|
767 | ELSEIF ( var(1:4) == 'LDSA' ) THEN |
---|
768 | grid_x = 'x' |
---|
769 | grid_y = 'y' |
---|
770 | grid_z = 'zu' |
---|
771 | ELSEIF ( var(1:5) == 'm_bin' ) THEN |
---|
772 | grid_x = 'x' |
---|
773 | grid_y = 'y' |
---|
774 | grid_z = 'zu' |
---|
775 | ELSEIF ( var(1:5) == 'N_bin' ) THEN |
---|
776 | grid_x = 'x' |
---|
777 | grid_y = 'y' |
---|
778 | grid_z = 'zu' |
---|
779 | ELSEIF ( var(1:4) == 'Ntot' ) THEN |
---|
780 | grid_x = 'x' |
---|
781 | grid_y = 'y' |
---|
782 | grid_z = 'zu' |
---|
783 | ELSEIF ( var(1:2) == 'PM' ) THEN |
---|
784 | grid_x = 'x' |
---|
785 | grid_y = 'y' |
---|
786 | grid_z = 'zu' |
---|
787 | ELSEIF ( var(1:2) == 's_' ) THEN |
---|
788 | grid_x = 'x' |
---|
789 | grid_y = 'y' |
---|
790 | grid_z = 'zu' |
---|
791 | ELSE |
---|
792 | found = .FALSE. |
---|
793 | grid_x = 'none' |
---|
794 | grid_y = 'none' |
---|
795 | grid_z = 'none' |
---|
796 | ENDIF |
---|
797 | |
---|
798 | END SUBROUTINE salsa_define_netcdf_grid |
---|
799 | |
---|
800 | |
---|
801 | !------------------------------------------------------------------------------! |
---|
802 | ! Description: |
---|
803 | ! ------------ |
---|
804 | !> Header output for new module |
---|
805 | !------------------------------------------------------------------------------! |
---|
806 | SUBROUTINE salsa_header( io ) |
---|
807 | |
---|
808 | IMPLICIT NONE |
---|
809 | |
---|
810 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
811 | ! |
---|
812 | !-- Write SALSA header |
---|
813 | WRITE( io, 1 ) |
---|
814 | WRITE( io, 2 ) skip_time_do_salsa |
---|
815 | WRITE( io, 3 ) dt_salsa |
---|
816 | WRITE( io, 12 ) SHAPE( aerosol_number(1)%conc ), nbins |
---|
817 | IF ( advect_particle_water ) THEN |
---|
818 | WRITE( io, 16 ) SHAPE( aerosol_mass(1)%conc ), ncc_tot*nbins, & |
---|
819 | advect_particle_water |
---|
820 | ELSE |
---|
821 | WRITE( io, 16 ) SHAPE( aerosol_mass(1)%conc ), ncc*nbins, & |
---|
822 | advect_particle_water |
---|
823 | ENDIF |
---|
824 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
825 | WRITE( io, 17 ) SHAPE( aerosol_mass(1)%conc ), ngast, & |
---|
826 | salsa_gases_from_chem |
---|
827 | ENDIF |
---|
828 | WRITE( io, 4 ) |
---|
829 | IF ( nsnucl > 0 ) THEN |
---|
830 | WRITE( io, 5 ) nsnucl, nj3 |
---|
831 | ENDIF |
---|
832 | IF ( nlcoag ) THEN |
---|
833 | WRITE( io, 6 ) |
---|
834 | ENDIF |
---|
835 | IF ( nlcnd ) THEN |
---|
836 | WRITE( io, 7 ) nlcndgas, nlcndh2oae |
---|
837 | ENDIF |
---|
838 | IF ( nldepo ) THEN |
---|
839 | WRITE( io, 14 ) nldepo_vege, nldepo_topo |
---|
840 | ENDIF |
---|
841 | WRITE( io, 8 ) reglim, nbin, bin_low_limits |
---|
842 | WRITE( io, 15 ) nsect |
---|
843 | WRITE( io, 13 ) ncc, listspec, mass_fracs_a, mass_fracs_b |
---|
844 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
845 | WRITE( io, 18 ) ngast, H2SO4_init, HNO3_init, NH3_init, OCNV_init, & |
---|
846 | OCSV_init |
---|
847 | ENDIF |
---|
848 | WRITE( io, 9 ) isdtyp, igctyp |
---|
849 | IF ( isdtyp == 0 ) THEN |
---|
850 | WRITE( io, 10 ) dpg, sigmag, n_lognorm |
---|
851 | ELSE |
---|
852 | WRITE( io, 11 ) |
---|
853 | ENDIF |
---|
854 | |
---|
855 | |
---|
856 | 1 FORMAT (//' SALSA information:'/ & |
---|
857 | ' ------------------------------'/) |
---|
858 | 2 FORMAT (' Starts at: skip_time_do_salsa = ', F10.2, ' s') |
---|
859 | 3 FORMAT (/' Timestep: dt_salsa = ', F6.2, ' s') |
---|
860 | 12 FORMAT (/' Array shape (z,y,x,bins):'/ & |
---|
861 | ' aerosol_number: ', 4(I3)) |
---|
862 | 16 FORMAT (/' aerosol_mass: ', 4(I3),/ & |
---|
863 | ' (advect_particle_water = ', L1, ')') |
---|
864 | 17 FORMAT (' salsa_gas: ', 4(I3),/ & |
---|
865 | ' (salsa_gases_from_chem = ', L1, ')') |
---|
866 | 4 FORMAT (/' Aerosol dynamic processes included: ') |
---|
867 | 5 FORMAT (/' nucleation (scheme = ', I1, ' and J3 parametrization = ',& |
---|
868 | I1, ')') |
---|
869 | 6 FORMAT (/' coagulation') |
---|
870 | 7 FORMAT (/' condensation (of precursor gases = ', L1, & |
---|
871 | ' and water vapour = ', L1, ')' ) |
---|
872 | 14 FORMAT (/' dry deposition (on vegetation = ', L1, & |
---|
873 | ' and on topography = ', L1, ')') |
---|
874 | 8 FORMAT (/' Aerosol bin subrange limits (in metres): ', 3(ES10.2E3) / & |
---|
875 | ' Number of size bins for each aerosol subrange: ', 2I3,/ & |
---|
876 | ' Aerosol bin limits (in metres): ', *(ES10.2E3)) |
---|
877 | 15 FORMAT (' Initial number concentration in bins at the lowest level', & |
---|
878 | ' (#/m**3):', *(ES10.2E3)) |
---|
879 | 13 FORMAT (/' Number of chemical components used: ', I1,/ & |
---|
880 | ' Species: ',7(A6),/ & |
---|
881 | ' Initial relative contribution of each species to particle', & |
---|
882 | ' volume in:',/ & |
---|
883 | ' a-bins: ', 7(F6.3),/ & |
---|
884 | ' b-bins: ', 7(F6.3)) |
---|
885 | 18 FORMAT (/' Number of gaseous tracers used: ', I1,/ & |
---|
886 | ' Initial gas concentrations:',/ & |
---|
887 | ' H2SO4: ',ES12.4E3, ' #/m**3',/ & |
---|
888 | ' HNO3: ',ES12.4E3, ' #/m**3',/ & |
---|
889 | ' NH3: ',ES12.4E3, ' #/m**3',/ & |
---|
890 | ' OCNV: ',ES12.4E3, ' #/m**3',/ & |
---|
891 | ' OCSV: ',ES12.4E3, ' #/m**3') |
---|
892 | 9 FORMAT (/' Initialising concentrations: ', / & |
---|
893 | ' Aerosol size distribution: isdtyp = ', I1,/ & |
---|
894 | ' Gas concentrations: igctyp = ', I1 ) |
---|
895 | 10 FORMAT ( ' Mode diametres: dpg(nmod) = ', 7(F7.3),/ & |
---|
896 | ' Standard deviation: sigmag(nmod) = ', 7(F7.2),/ & |
---|
897 | ' Number concentration: n_lognorm(nmod) = ', 7(ES12.4E3) ) |
---|
898 | 11 FORMAT (/' Size distribution read from a file.') |
---|
899 | |
---|
900 | END SUBROUTINE salsa_header |
---|
901 | |
---|
902 | !------------------------------------------------------------------------------! |
---|
903 | ! Description: |
---|
904 | ! ------------ |
---|
905 | !> Allocate SALSA arrays and define pointers if required |
---|
906 | !------------------------------------------------------------------------------! |
---|
907 | SUBROUTINE salsa_init_arrays |
---|
908 | |
---|
909 | USE surface_mod, & |
---|
910 | ONLY: surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
911 | surf_usm_v |
---|
912 | |
---|
913 | IMPLICIT NONE |
---|
914 | |
---|
915 | INTEGER(iwp) :: gases_available !< Number of available gas components in |
---|
916 | !< the chemistry model |
---|
917 | INTEGER(iwp) :: i !< loop index for allocating |
---|
918 | INTEGER(iwp) :: l !< loop index for allocating: surfaces |
---|
919 | INTEGER(iwp) :: lsp !< loop index for chem species in the chemistry model |
---|
920 | |
---|
921 | gases_available = 0 |
---|
922 | |
---|
923 | ! |
---|
924 | !-- Allocate prognostic variables (see salsa_swap_timelevel) |
---|
925 | #if defined( __nopointer ) |
---|
926 | message_string = 'SALSA runs only with POINTER Version' |
---|
927 | CALL message( 'salsa_mod: salsa_init_arrays', 'SA0023', 1, 2, 0, 6, 0 ) |
---|
928 | #else |
---|
929 | ! |
---|
930 | !-- Set derived indices: |
---|
931 | !-- (This does the same as the subroutine salsa_initialize in SALSA/ |
---|
932 | !-- UCLALES-SALSA) |
---|
933 | in1a = 1 ! 1st index of subrange 1a |
---|
934 | in2a = in1a + nbin(1) ! 1st index of subrange 2a |
---|
935 | fn1a = in2a - 1 ! last index of subrange 1a |
---|
936 | fn2a = fn1a + nbin(2) ! last index of subrange 2a |
---|
937 | |
---|
938 | ! |
---|
939 | !-- If the fraction of insoluble aerosols in subrange 2 is zero: do not allocate |
---|
940 | !-- arrays for them |
---|
941 | IF ( nf2a > 0.999999_wp .AND. SUM( mass_fracs_b ) < 0.00001_wp ) THEN |
---|
942 | no_insoluble = .TRUE. |
---|
943 | in2b = fn2a+1 ! 1st index of subrange 2b |
---|
944 | fn2b = fn2a ! last index of subrange 2b |
---|
945 | ELSE |
---|
946 | in2b = in2a + nbin(2) ! 1st index of subrange 2b |
---|
947 | fn2b = fn2a + nbin(2) ! last index of subrange 2b |
---|
948 | ENDIF |
---|
949 | |
---|
950 | |
---|
951 | nbins = fn2b ! total number of aerosol size bins |
---|
952 | ! |
---|
953 | !-- Create index tables for different aerosol components |
---|
954 | CALL component_index_constructor( prtcl, ncc, maxspec, listspec ) |
---|
955 | |
---|
956 | ncc_tot = ncc |
---|
957 | IF ( advect_particle_water ) ncc_tot = ncc + 1 ! Add water |
---|
958 | |
---|
959 | ! |
---|
960 | !-- Allocate: |
---|
961 | ALLOCATE( aero(nbins), bin_low_limits(nbins), nsect(nbins), massacc(nbins) ) |
---|
962 | IF ( nldepo ) ALLOCATE( sedim_vd(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins) ) |
---|
963 | ALLOCATE( Ra_dry(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins) ) |
---|
964 | |
---|
965 | ! |
---|
966 | !-- Aerosol number concentration |
---|
967 | ALLOCATE( aerosol_number(nbins) ) |
---|
968 | ALLOCATE( nconc_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins), & |
---|
969 | nconc_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins), & |
---|
970 | nconc_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins) ) |
---|
971 | nconc_1 = 0.0_wp |
---|
972 | nconc_2 = 0.0_wp |
---|
973 | nconc_3 = 0.0_wp |
---|
974 | |
---|
975 | DO i = 1, nbins |
---|
976 | aerosol_number(i)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => nconc_1(:,:,:,i) |
---|
977 | aerosol_number(i)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => nconc_2(:,:,:,i) |
---|
978 | aerosol_number(i)%tconc_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => nconc_3(:,:,:,i) |
---|
979 | ALLOCATE( aerosol_number(i)%flux_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
980 | aerosol_number(i)%diss_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
981 | aerosol_number(i)%flux_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
982 | aerosol_number(i)%diss_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
983 | aerosol_number(i)%init(nzb:nzt+1), & |
---|
984 | aerosol_number(i)%sums_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
985 | ENDDO |
---|
986 | |
---|
987 | ! |
---|
988 | !-- Aerosol mass concentration |
---|
989 | ALLOCATE( aerosol_mass(ncc_tot*nbins) ) |
---|
990 | ALLOCATE( mconc_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ncc_tot*nbins), & |
---|
991 | mconc_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ncc_tot*nbins), & |
---|
992 | mconc_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ncc_tot*nbins) ) |
---|
993 | mconc_1 = 0.0_wp |
---|
994 | mconc_2 = 0.0_wp |
---|
995 | mconc_3 = 0.0_wp |
---|
996 | |
---|
997 | DO i = 1, ncc_tot*nbins |
---|
998 | aerosol_mass(i)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => mconc_1(:,:,:,i) |
---|
999 | aerosol_mass(i)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => mconc_2(:,:,:,i) |
---|
1000 | aerosol_mass(i)%tconc_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => mconc_3(:,:,:,i) |
---|
1001 | ALLOCATE( aerosol_mass(i)%flux_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1002 | aerosol_mass(i)%diss_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1003 | aerosol_mass(i)%flux_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
1004 | aerosol_mass(i)%diss_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
1005 | aerosol_mass(i)%init(nzb:nzt+1), & |
---|
1006 | aerosol_mass(i)%sums_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
1007 | ENDDO |
---|
1008 | |
---|
1009 | ! |
---|
1010 | !-- Surface fluxes: answs = aerosol number, amsws = aerosol mass |
---|
1011 | ! |
---|
1012 | !-- Horizontal surfaces: default type |
---|
1013 | DO l = 0, 2 ! upward (l=0), downward (l=1) and model top (l=2) |
---|
1014 | ALLOCATE( surf_def_h(l)%answs( 1:surf_def_h(l)%ns, nbins ) ) |
---|
1015 | ALLOCATE( surf_def_h(l)%amsws( 1:surf_def_h(l)%ns, nbins*ncc_tot ) ) |
---|
1016 | surf_def_h(l)%answs = 0.0_wp |
---|
1017 | surf_def_h(l)%amsws = 0.0_wp |
---|
1018 | ENDDO |
---|
1019 | !-- Horizontal surfaces: natural type |
---|
1020 | IF ( land_surface ) THEN |
---|
1021 | ALLOCATE( surf_lsm_h%answs( 1:surf_lsm_h%ns, nbins ) ) |
---|
1022 | ALLOCATE( surf_lsm_h%amsws( 1:surf_lsm_h%ns, nbins*ncc_tot ) ) |
---|
1023 | surf_lsm_h%answs = 0.0_wp |
---|
1024 | surf_lsm_h%amsws = 0.0_wp |
---|
1025 | ENDIF |
---|
1026 | !-- Horizontal surfaces: urban type |
---|
1027 | IF ( urban_surface ) THEN |
---|
1028 | ALLOCATE( surf_usm_h%answs( 1:surf_usm_h%ns, nbins ) ) |
---|
1029 | ALLOCATE( surf_usm_h%amsws( 1:surf_usm_h%ns, nbins*ncc_tot ) ) |
---|
1030 | surf_usm_h%answs = 0.0_wp |
---|
1031 | surf_usm_h%amsws = 0.0_wp |
---|
1032 | ENDIF |
---|
1033 | ! |
---|
1034 | !-- Vertical surfaces: northward (l=0), southward (l=1), eastward (l=2) and |
---|
1035 | !-- westward (l=3) facing |
---|
1036 | DO l = 0, 3 |
---|
1037 | ALLOCATE( surf_def_v(l)%answs( 1:surf_def_v(l)%ns, nbins ) ) |
---|
1038 | surf_def_v(l)%answs = 0.0_wp |
---|
1039 | ALLOCATE( surf_def_v(l)%amsws( 1:surf_def_v(l)%ns, nbins*ncc_tot ) ) |
---|
1040 | surf_def_v(l)%amsws = 0.0_wp |
---|
1041 | |
---|
1042 | IF ( land_surface) THEN |
---|
1043 | ALLOCATE( surf_lsm_v(l)%answs( 1:surf_lsm_v(l)%ns, nbins ) ) |
---|
1044 | surf_lsm_v(l)%answs = 0.0_wp |
---|
1045 | ALLOCATE( surf_lsm_v(l)%amsws( 1:surf_lsm_v(l)%ns, nbins*ncc_tot ) ) |
---|
1046 | surf_lsm_v(l)%amsws = 0.0_wp |
---|
1047 | ENDIF |
---|
1048 | |
---|
1049 | IF ( urban_surface ) THEN |
---|
1050 | ALLOCATE( surf_usm_v(l)%answs( 1:surf_usm_v(l)%ns, nbins ) ) |
---|
1051 | surf_usm_v(l)%answs = 0.0_wp |
---|
1052 | ALLOCATE( surf_usm_v(l)%amsws( 1:surf_usm_v(l)%ns, nbins*ncc_tot ) ) |
---|
1053 | surf_usm_v(l)%amsws = 0.0_wp |
---|
1054 | ENDIF |
---|
1055 | ENDDO |
---|
1056 | |
---|
1057 | ! |
---|
1058 | !-- Concentration of gaseous tracers (1. SO4, 2. HNO3, 3. NH3, 4. OCNV, 5. OCSV) |
---|
1059 | !-- (number concentration (#/m3) ) |
---|
1060 | ! |
---|
1061 | !-- If chemistry is on, read gas phase concentrations from there. Otherwise, |
---|
1062 | !-- allocate salsa_gas array. |
---|
1063 | |
---|
1064 | IF ( air_chemistry ) THEN |
---|
1065 | DO lsp = 1, nvar |
---|
1066 | IF ( TRIM( chem_species(lsp)%name ) == 'H2SO4' ) THEN |
---|
1067 | gases_available = gases_available + 1 |
---|
1068 | gas_index_chem(1) = lsp |
---|
1069 | ELSEIF ( TRIM( chem_species(lsp)%name ) == 'HNO3' ) THEN |
---|
1070 | gases_available = gases_available + 1 |
---|
1071 | gas_index_chem(2) = lsp |
---|
1072 | ELSEIF ( TRIM( chem_species(lsp)%name ) == 'NH3' ) THEN |
---|
1073 | gases_available = gases_available + 1 |
---|
1074 | gas_index_chem(3) = lsp |
---|
1075 | ELSEIF ( TRIM( chem_species(lsp)%name ) == 'OCNV' ) THEN |
---|
1076 | gases_available = gases_available + 1 |
---|
1077 | gas_index_chem(4) = lsp |
---|
1078 | ELSEIF ( TRIM( chem_species(lsp)%name ) == 'OCSV' ) THEN |
---|
1079 | gases_available = gases_available + 1 |
---|
1080 | gas_index_chem(5) = lsp |
---|
1081 | ENDIF |
---|
1082 | ENDDO |
---|
1083 | |
---|
1084 | IF ( gases_available == ngast ) THEN |
---|
1085 | salsa_gases_from_chem = .TRUE. |
---|
1086 | ELSE |
---|
1087 | WRITE( message_string, * ) 'SALSA is run together with chemistry '// & |
---|
1088 | 'but not all gaseous components are '// & |
---|
1089 | 'provided by kpp (H2SO4, HNO3, NH3, '// & |
---|
1090 | 'OCNV, OCSC)' |
---|
1091 | CALL message( 'check_parameters', 'SA0024', 1, 2, 0, 6, 0 ) |
---|
1092 | ENDIF |
---|
1093 | |
---|
1094 | ELSE |
---|
1095 | |
---|
1096 | ALLOCATE( salsa_gas(ngast) ) |
---|
1097 | ALLOCATE( gconc_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ngast), & |
---|
1098 | gconc_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ngast), & |
---|
1099 | gconc_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg,ngast) ) |
---|
1100 | gconc_1 = 0.0_wp |
---|
1101 | gconc_2 = 0.0_wp |
---|
1102 | gconc_3 = 0.0_wp |
---|
1103 | |
---|
1104 | DO i = 1, ngast |
---|
1105 | salsa_gas(i)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => gconc_1(:,:,:,i) |
---|
1106 | salsa_gas(i)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => gconc_2(:,:,:,i) |
---|
1107 | salsa_gas(i)%tconc_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => gconc_3(:,:,:,i) |
---|
1108 | ALLOCATE( salsa_gas(i)%flux_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1109 | salsa_gas(i)%diss_s(nzb+1:nzt,0:threads_per_task-1), & |
---|
1110 | salsa_gas(i)%flux_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
1111 | salsa_gas(i)%diss_l(nzb+1:nzt,nys:nyn,0:threads_per_task-1),& |
---|
1112 | salsa_gas(i)%init(nzb:nzt+1), & |
---|
1113 | salsa_gas(i)%sums_ws_l(nzb:nzt+1,0:threads_per_task-1) ) |
---|
1114 | ENDDO |
---|
1115 | ! |
---|
1116 | !-- Surface fluxes: gtsws = gaseous tracer flux |
---|
1117 | ! |
---|
1118 | !-- Horizontal surfaces: default type |
---|
1119 | DO l = 0, 2 ! upward (l=0), downward (l=1) and model top (l=2) |
---|
1120 | ALLOCATE( surf_def_h(l)%gtsws( 1:surf_def_h(l)%ns, ngast ) ) |
---|
1121 | surf_def_h(l)%gtsws = 0.0_wp |
---|
1122 | ENDDO |
---|
1123 | !-- Horizontal surfaces: natural type |
---|
1124 | IF ( land_surface ) THEN |
---|
1125 | ALLOCATE( surf_lsm_h%gtsws( 1:surf_lsm_h%ns, ngast ) ) |
---|
1126 | surf_lsm_h%gtsws = 0.0_wp |
---|
1127 | ENDIF |
---|
1128 | !-- Horizontal surfaces: urban type |
---|
1129 | IF ( urban_surface ) THEN |
---|
1130 | ALLOCATE( surf_usm_h%gtsws( 1:surf_usm_h%ns, ngast ) ) |
---|
1131 | surf_usm_h%gtsws = 0.0_wp |
---|
1132 | ENDIF |
---|
1133 | ! |
---|
1134 | !-- Vertical surfaces: northward (l=0), southward (l=1), eastward (l=2) and |
---|
1135 | !-- westward (l=3) facing |
---|
1136 | DO l = 0, 3 |
---|
1137 | ALLOCATE( surf_def_v(l)%gtsws( 1:surf_def_v(l)%ns, ngast ) ) |
---|
1138 | surf_def_v(l)%gtsws = 0.0_wp |
---|
1139 | IF ( land_surface ) THEN |
---|
1140 | ALLOCATE( surf_lsm_v(l)%gtsws( 1:surf_lsm_v(l)%ns, ngast ) ) |
---|
1141 | surf_lsm_v(l)%gtsws = 0.0_wp |
---|
1142 | ENDIF |
---|
1143 | IF ( urban_surface ) THEN |
---|
1144 | ALLOCATE( surf_usm_v(l)%gtsws( 1:surf_usm_v(l)%ns, ngast ) ) |
---|
1145 | surf_usm_v(l)%gtsws = 0.0_wp |
---|
1146 | ENDIF |
---|
1147 | ENDDO |
---|
1148 | ENDIF |
---|
1149 | |
---|
1150 | #endif |
---|
1151 | |
---|
1152 | END SUBROUTINE salsa_init_arrays |
---|
1153 | |
---|
1154 | !------------------------------------------------------------------------------! |
---|
1155 | ! Description: |
---|
1156 | ! ------------ |
---|
1157 | !> Initialization of SALSA. Based on salsa_initialize in UCLALES-SALSA. |
---|
1158 | !> Subroutines salsa_initialize, SALSAinit and DiagInitAero in UCLALES-SALSA are |
---|
1159 | !> also merged here. |
---|
1160 | !------------------------------------------------------------------------------! |
---|
1161 | SUBROUTINE salsa_init |
---|
1162 | |
---|
1163 | IMPLICIT NONE |
---|
1164 | |
---|
1165 | INTEGER(iwp) :: b |
---|
1166 | INTEGER(iwp) :: c |
---|
1167 | INTEGER(iwp) :: g |
---|
1168 | INTEGER(iwp) :: i |
---|
1169 | INTEGER(iwp) :: j |
---|
1170 | |
---|
1171 | bin_low_limits = 0.0_wp |
---|
1172 | nsect = 0.0_wp |
---|
1173 | massacc = 1.0_wp |
---|
1174 | |
---|
1175 | ! |
---|
1176 | !-- Indices for chemical components used (-1 = not used) |
---|
1177 | i = 0 |
---|
1178 | IF ( is_used( prtcl, 'SO4' ) ) THEN |
---|
1179 | iso4 = get_index( prtcl,'SO4' ) |
---|
1180 | i = i + 1 |
---|
1181 | ENDIF |
---|
1182 | IF ( is_used( prtcl,'OC' ) ) THEN |
---|
1183 | ioc = get_index(prtcl, 'OC') |
---|
1184 | i = i + 1 |
---|
1185 | ENDIF |
---|
1186 | IF ( is_used( prtcl, 'BC' ) ) THEN |
---|
1187 | ibc = get_index( prtcl, 'BC' ) |
---|
1188 | i = i + 1 |
---|
1189 | ENDIF |
---|
1190 | IF ( is_used( prtcl, 'DU' ) ) THEN |
---|
1191 | idu = get_index( prtcl, 'DU' ) |
---|
1192 | i = i + 1 |
---|
1193 | ENDIF |
---|
1194 | IF ( is_used( prtcl, 'SS' ) ) THEN |
---|
1195 | iss = get_index( prtcl, 'SS' ) |
---|
1196 | i = i + 1 |
---|
1197 | ENDIF |
---|
1198 | IF ( is_used( prtcl, 'NO' ) ) THEN |
---|
1199 | ino = get_index( prtcl, 'NO' ) |
---|
1200 | i = i + 1 |
---|
1201 | ENDIF |
---|
1202 | IF ( is_used( prtcl, 'NH' ) ) THEN |
---|
1203 | inh = get_index( prtcl, 'NH' ) |
---|
1204 | i = i + 1 |
---|
1205 | ENDIF |
---|
1206 | ! |
---|
1207 | !-- All species must be known |
---|
1208 | IF ( i /= ncc ) THEN |
---|
1209 | message_string = 'Unknown aerosol species/component(s) given in the' // & |
---|
1210 | ' initialization' |
---|
1211 | CALL message( 'salsa_mod: salsa_init', 'SA0020', 1, 2, 0, 6, 0 ) |
---|
1212 | ENDIF |
---|
1213 | |
---|
1214 | ! |
---|
1215 | !-- Initialise |
---|
1216 | ! |
---|
1217 | !-- Aerosol size distribution (TYPE t_section) |
---|
1218 | aero(:)%dwet = 1.0E-10_wp |
---|
1219 | aero(:)%veqh2o = 1.0E-10_wp |
---|
1220 | aero(:)%numc = nclim |
---|
1221 | aero(:)%core = 1.0E-10_wp |
---|
1222 | DO c = 1, maxspec+1 ! 1:SO4, 2:OC, 3:BC, 4:DU, 5:SS, 6:NO, 7:NH, 8:H2O |
---|
1223 | aero(:)%volc(c) = 0.0_wp |
---|
1224 | ENDDO |
---|
1225 | |
---|
1226 | IF ( nldepo ) sedim_vd = 0.0_wp |
---|
1227 | ! |
---|
1228 | !-- Initilisation actions that are NOT conducted for restart runs |
---|
1229 | IF ( .NOT. read_restart_data_salsa ) THEN |
---|
1230 | |
---|
1231 | DO b = 1, nbins |
---|
1232 | aerosol_number(b)%conc = nclim |
---|
1233 | aerosol_number(b)%conc_p = 0.0_wp |
---|
1234 | aerosol_number(b)%tconc_m = 0.0_wp |
---|
1235 | aerosol_number(b)%flux_s = 0.0_wp |
---|
1236 | aerosol_number(b)%diss_s = 0.0_wp |
---|
1237 | aerosol_number(b)%flux_l = 0.0_wp |
---|
1238 | aerosol_number(b)%diss_l = 0.0_wp |
---|
1239 | aerosol_number(b)%init = nclim |
---|
1240 | aerosol_number(b)%sums_ws_l = 0.0_wp |
---|
1241 | ENDDO |
---|
1242 | DO c = 1, ncc_tot*nbins |
---|
1243 | aerosol_mass(c)%conc = mclim |
---|
1244 | aerosol_mass(c)%conc_p = 0.0_wp |
---|
1245 | aerosol_mass(c)%tconc_m = 0.0_wp |
---|
1246 | aerosol_mass(c)%flux_s = 0.0_wp |
---|
1247 | aerosol_mass(c)%diss_s = 0.0_wp |
---|
1248 | aerosol_mass(c)%flux_l = 0.0_wp |
---|
1249 | aerosol_mass(c)%diss_l = 0.0_wp |
---|
1250 | aerosol_mass(c)%init = mclim |
---|
1251 | aerosol_mass(c)%sums_ws_l = 0.0_wp |
---|
1252 | ENDDO |
---|
1253 | |
---|
1254 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
1255 | DO g = 1, ngast |
---|
1256 | salsa_gas(g)%conc_p = 0.0_wp |
---|
1257 | salsa_gas(g)%tconc_m = 0.0_wp |
---|
1258 | salsa_gas(g)%flux_s = 0.0_wp |
---|
1259 | salsa_gas(g)%diss_s = 0.0_wp |
---|
1260 | salsa_gas(g)%flux_l = 0.0_wp |
---|
1261 | salsa_gas(g)%diss_l = 0.0_wp |
---|
1262 | salsa_gas(g)%sums_ws_l = 0.0_wp |
---|
1263 | ENDDO |
---|
1264 | |
---|
1265 | ! |
---|
1266 | !-- Set initial value for gas compound tracers and initial values |
---|
1267 | salsa_gas(1)%conc = H2SO4_init |
---|
1268 | salsa_gas(1)%init = H2SO4_init |
---|
1269 | salsa_gas(2)%conc = HNO3_init |
---|
1270 | salsa_gas(2)%init = HNO3_init |
---|
1271 | salsa_gas(3)%conc = NH3_init |
---|
1272 | salsa_gas(3)%init = NH3_init |
---|
1273 | salsa_gas(4)%conc = OCNV_init |
---|
1274 | salsa_gas(4)%init = OCNV_init |
---|
1275 | salsa_gas(5)%conc = OCSV_init |
---|
1276 | salsa_gas(5)%init = OCSV_init |
---|
1277 | ENDIF |
---|
1278 | ! |
---|
1279 | !-- Aerosol radius in each bin: dry and wet (m) |
---|
1280 | Ra_dry = 1.0E-10_wp |
---|
1281 | ! |
---|
1282 | !-- Initialise aerosol tracers |
---|
1283 | aero(:)%vhilim = 0.0_wp |
---|
1284 | aero(:)%vlolim = 0.0_wp |
---|
1285 | aero(:)%vratiohi = 0.0_wp |
---|
1286 | aero(:)%vratiolo = 0.0_wp |
---|
1287 | aero(:)%dmid = 0.0_wp |
---|
1288 | ! |
---|
1289 | !-- Initialise the sectional particle size distribution |
---|
1290 | CALL set_sizebins() |
---|
1291 | ! |
---|
1292 | !-- Initialise location-dependent aerosol size distributions and |
---|
1293 | !-- chemical compositions: |
---|
1294 | CALL aerosol_init |
---|
1295 | ! |
---|
1296 | !-- Initalisation run of SALSA |
---|
1297 | DO i = nxl, nxr |
---|
1298 | DO j = nys, nyn |
---|
1299 | CALL salsa_driver( i, j, 1 ) |
---|
1300 | CALL salsa_diagnostics( i, j ) |
---|
1301 | ENDDO |
---|
1302 | ENDDO |
---|
1303 | ENDIF |
---|
1304 | ! |
---|
1305 | !-- Set the aerosol and gas sources |
---|
1306 | IF ( salsa_source_mode == 'read_from_file' ) THEN |
---|
1307 | CALL salsa_set_source |
---|
1308 | ENDIF |
---|
1309 | |
---|
1310 | END SUBROUTINE salsa_init |
---|
1311 | |
---|
1312 | !------------------------------------------------------------------------------! |
---|
1313 | ! Description: |
---|
1314 | ! ------------ |
---|
1315 | !> Initializes particle size distribution grid by calculating size bin limits |
---|
1316 | !> and mid-size for *dry* particles in each bin. Called from salsa_initialize |
---|
1317 | !> (only at the beginning of simulation). |
---|
1318 | !> Size distribution described using: |
---|
1319 | !> 1) moving center method (subranges 1 and 2) |
---|
1320 | !> (Jacobson, Atmos. Env., 31, 131-144, 1997) |
---|
1321 | !> 2) fixed sectional method (subrange 3) |
---|
1322 | !> Size bins in each subrange are spaced logarithmically |
---|
1323 | !> based on given subrange size limits and bin number. |
---|
1324 | ! |
---|
1325 | !> Mona changed 06/2017: Use geometric mean diameter to describe the mean |
---|
1326 | !> particle diameter in a size bin, not the arithmeric mean which clearly |
---|
1327 | !> overestimates the total particle volume concentration. |
---|
1328 | ! |
---|
1329 | !> Coded by: |
---|
1330 | !> Hannele Korhonen (FMI) 2005 |
---|
1331 | !> Harri Kokkola (FMI) 2006 |
---|
1332 | ! |
---|
1333 | !> Bug fixes for box model + updated for the new aerosol datatype: |
---|
1334 | !> Juha Tonttila (FMI) 2014 |
---|
1335 | !------------------------------------------------------------------------------! |
---|
1336 | SUBROUTINE set_sizebins |
---|
1337 | |
---|
1338 | IMPLICIT NONE |
---|
1339 | ! |
---|
1340 | !-- Local variables |
---|
1341 | INTEGER(iwp) :: cc |
---|
1342 | INTEGER(iwp) :: dd |
---|
1343 | REAL(wp) :: ratio_d !< ratio of the upper and lower diameter of subranges |
---|
1344 | ! |
---|
1345 | !-- vlolim&vhilim: min & max *dry* volumes [fxm] |
---|
1346 | !-- dmid: bin mid *dry* diameter (m) |
---|
1347 | !-- vratiolo&vratiohi: volume ratio between the center and low/high limit |
---|
1348 | ! |
---|
1349 | !-- 1) Size subrange 1: |
---|
1350 | ratio_d = reglim(2) / reglim(1) ! section spacing (m) |
---|
1351 | DO cc = in1a,fn1a |
---|
1352 | aero(cc)%vlolim = api6 * ( reglim(1) * ratio_d ** & |
---|
1353 | ( REAL( cc-1 ) / nbin(1) ) ) ** 3.0_wp |
---|
1354 | aero(cc)%vhilim = api6 * ( reglim(1) * ratio_d ** & |
---|
1355 | ( REAL( cc ) / nbin(1) ) ) ** 3.0_wp |
---|
1356 | aero(cc)%dmid = SQRT( ( aero(cc)%vhilim / api6 ) ** ( 1.0_wp / 3.0_wp ) & |
---|
1357 | * ( aero(cc)%vlolim / api6 ) ** ( 1.0_wp / 3.0_wp ) ) |
---|
1358 | aero(cc)%vratiohi = aero(cc)%vhilim / ( api6 * aero(cc)%dmid ** 3.0_wp ) |
---|
1359 | aero(cc)%vratiolo = aero(cc)%vlolim / ( api6 * aero(cc)%dmid ** 3.0_wp ) |
---|
1360 | ENDDO |
---|
1361 | ! |
---|
1362 | !-- 2) Size subrange 2: |
---|
1363 | !-- 2.1) Sub-subrange 2a: high hygroscopicity |
---|
1364 | ratio_d = reglim(3) / reglim(2) ! section spacing |
---|
1365 | DO dd = in2a, fn2a |
---|
1366 | cc = dd - in2a |
---|
1367 | aero(dd)%vlolim = api6 * ( reglim(2) * ratio_d ** & |
---|
1368 | ( REAL( cc ) / nbin(2) ) ) ** 3.0_wp |
---|
1369 | aero(dd)%vhilim = api6 * ( reglim(2) * ratio_d ** & |
---|
1370 | ( REAL( cc+1 ) / nbin(2) ) ) ** 3.0_wp |
---|
1371 | aero(dd)%dmid = SQRT( ( aero(dd)%vhilim / api6 ) ** ( 1.0_wp / 3.0_wp ) & |
---|
1372 | * ( aero(dd)%vlolim / api6 ) ** ( 1.0_wp / 3.0_wp ) ) |
---|
1373 | aero(dd)%vratiohi = aero(dd)%vhilim / ( api6 * aero(dd)%dmid ** 3.0_wp ) |
---|
1374 | aero(dd)%vratiolo = aero(dd)%vlolim / ( api6 * aero(dd)%dmid ** 3.0_wp ) |
---|
1375 | ENDDO |
---|
1376 | ! |
---|
1377 | !-- 2.2) Sub-subrange 2b: low hygroscopicity |
---|
1378 | IF ( .NOT. no_insoluble ) THEN |
---|
1379 | aero(in2b:fn2b)%vlolim = aero(in2a:fn2a)%vlolim |
---|
1380 | aero(in2b:fn2b)%vhilim = aero(in2a:fn2a)%vhilim |
---|
1381 | aero(in2b:fn2b)%dmid = aero(in2a:fn2a)%dmid |
---|
1382 | aero(in2b:fn2b)%vratiohi = aero(in2a:fn2a)%vratiohi |
---|
1383 | aero(in2b:fn2b)%vratiolo = aero(in2a:fn2a)%vratiolo |
---|
1384 | ENDIF |
---|
1385 | ! |
---|
1386 | !-- Initialize the wet diameter with the bin dry diameter to avoid numerical |
---|
1387 | !-- problems later |
---|
1388 | aero(:)%dwet = aero(:)%dmid |
---|
1389 | ! |
---|
1390 | !-- Save bin limits (lower diameter) to be delivered to the host model if needed |
---|
1391 | DO cc = 1, nbins |
---|
1392 | bin_low_limits(cc) = ( aero(cc)%vlolim / api6 )**( 1.0_wp / 3.0_wp ) |
---|
1393 | ENDDO |
---|
1394 | |
---|
1395 | END SUBROUTINE set_sizebins |
---|
1396 | |
---|
1397 | !------------------------------------------------------------------------------! |
---|
1398 | ! Description: |
---|
1399 | ! ------------ |
---|
1400 | !> Initilize altitude-dependent aerosol size distributions and compositions. |
---|
1401 | !> |
---|
1402 | !> Mona added 06/2017: Correct the number and mass concentrations by normalizing |
---|
1403 | !< by the given total number and mass concentration. |
---|
1404 | !> |
---|
1405 | !> Tomi Raatikainen, FMI, 29.2.2016 |
---|
1406 | !------------------------------------------------------------------------------! |
---|
1407 | SUBROUTINE aerosol_init |
---|
1408 | |
---|
1409 | USE arrays_3d, & |
---|
1410 | ONLY: zu |
---|
1411 | |
---|
1412 | USE NETCDF |
---|
1413 | |
---|
1414 | USE netcdf_data_input_mod, & |
---|
1415 | ONLY: get_attribute, netcdf_data_input_get_dimension_length, & |
---|
1416 | get_variable, open_read_file |
---|
1417 | |
---|
1418 | IMPLICIT NONE |
---|
1419 | |
---|
1420 | INTEGER(iwp) :: b !< loop index: size bins |
---|
1421 | INTEGER(iwp) :: c !< loop index: chemical components |
---|
1422 | INTEGER(iwp) :: ee !< index: end |
---|
1423 | INTEGER(iwp) :: g !< loop index: gases |
---|
1424 | INTEGER(iwp) :: i !< loop index: x-direction |
---|
1425 | INTEGER(iwp) :: id_faero !< NetCDF id of PIDS_SALSA |
---|
1426 | INTEGER(iwp) :: id_fchem !< NetCDF id of PIDS_CHEM |
---|
1427 | INTEGER(iwp) :: j !< loop index: y-direction |
---|
1428 | INTEGER(iwp) :: k !< loop index: z-direction |
---|
1429 | INTEGER(iwp) :: kk !< loop index: z-direction |
---|
1430 | INTEGER(iwp) :: nz_file !< Number of grid-points in file (heights) |
---|
1431 | INTEGER(iwp) :: prunmode |
---|
1432 | INTEGER(iwp) :: ss !< index: start |
---|
1433 | LOGICAL :: netcdf_extend = .FALSE. !< Flag indicating wether netcdf |
---|
1434 | !< topography input file or not |
---|
1435 | REAL(wp), DIMENSION(nbins) :: core !< size of the bin mid aerosol particle, |
---|
1436 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
1437 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pr_gas !< gas profiles |
---|
1438 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pr_mass_fracs_a !< mass fraction |
---|
1439 | !< profiles: a |
---|
1440 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pr_mass_fracs_b !< and b |
---|
1441 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pr_nsect !< sectional size |
---|
1442 | !< distribution profile |
---|
1443 | REAL(wp), DIMENSION(nbins) :: nsect !< size distribution (#/m3) |
---|
1444 | REAL(wp), DIMENSION(0:nz+1,nbins) :: pndist !< size dist as a function |
---|
1445 | !< of height (#/m3) |
---|
1446 | REAL(wp), DIMENSION(0:nz+1) :: pnf2a !< number fraction: bins 2a |
---|
1447 | REAL(wp), DIMENSION(0:nz+1,maxspec) :: pvf2a !< mass distributions of |
---|
1448 | !< aerosol species for a |
---|
1449 | REAL(wp), DIMENSION(0:nz+1,maxspec) :: pvf2b !< and b-bins |
---|
1450 | REAL(wp), DIMENSION(0:nz+1) :: pvfOC1a !< mass fraction between |
---|
1451 | !< SO4 and OC in 1a |
---|
1452 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pr_z |
---|
1453 | |
---|
1454 | prunmode = 1 |
---|
1455 | ! |
---|
1456 | !-- Bin mean aerosol particle volume (m3) |
---|
1457 | core(:) = 0.0_wp |
---|
1458 | core(1:nbins) = api6 * aero(1:nbins)%dmid ** 3.0_wp |
---|
1459 | ! |
---|
1460 | !-- Set concentrations to zero |
---|
1461 | nsect(:) = 0.0_wp |
---|
1462 | pndist(:,:) = 0.0_wp |
---|
1463 | pnf2a(:) = nf2a |
---|
1464 | pvf2a(:,:) = 0.0_wp |
---|
1465 | pvf2b(:,:) = 0.0_wp |
---|
1466 | pvfOC1a(:) = 0.0_wp |
---|
1467 | |
---|
1468 | IF ( isdtyp == 1 ) THEN |
---|
1469 | ! |
---|
1470 | !-- Read input profiles from PIDS_SALSA |
---|
1471 | ! |
---|
1472 | !-- Location-dependent size distributions and compositions. |
---|
1473 | INQUIRE( FILE='PIDS_SALSA'// TRIM( coupling_char ), EXIST=netcdf_extend ) |
---|
1474 | IF ( netcdf_extend ) THEN |
---|
1475 | ! |
---|
1476 | !-- Open file in read-only mode |
---|
1477 | CALL open_read_file( 'PIDS_SALSA' // TRIM( coupling_char ), id_faero ) |
---|
1478 | ! |
---|
1479 | !-- Input heights |
---|
1480 | CALL netcdf_data_input_get_dimension_length( id_faero, nz_file, "profile_z" ) |
---|
1481 | |
---|
1482 | ALLOCATE( pr_z(nz_file), pr_mass_fracs_a(maxspec,nz_file), & |
---|
1483 | pr_mass_fracs_b(maxspec,nz_file), pr_nsect(nbins,nz_file) ) |
---|
1484 | CALL get_variable( id_faero, 'profile_z', pr_z ) |
---|
1485 | ! |
---|
1486 | !-- Mass fracs profile: 1: H2SO4 (sulphuric acid), 2: OC (organic carbon), |
---|
1487 | !-- 3: BC (black carbon), 4: DU (dust), |
---|
1488 | !-- 5: SS (sea salt), 6: HNO3 (nitric acid), |
---|
1489 | !-- 7: NH3 (ammonia) |
---|
1490 | CALL get_variable( id_faero, "profile_mass_fracs_a", pr_mass_fracs_a,& |
---|
1491 | 0, nz_file-1, 0, maxspec-1 ) |
---|
1492 | CALL get_variable( id_faero, "profile_mass_fracs_b", pr_mass_fracs_b,& |
---|
1493 | 0, nz_file-1, 0, maxspec-1 ) |
---|
1494 | CALL get_variable( id_faero, "profile_nsect", pr_nsect, 0, nz_file-1,& |
---|
1495 | 0, nbins-1 ) |
---|
1496 | |
---|
1497 | kk = 1 |
---|
1498 | DO k = nzb, nz+1 |
---|
1499 | IF ( kk < nz_file ) THEN |
---|
1500 | DO WHILE ( pr_z(kk+1) <= zu(k) ) |
---|
1501 | kk = kk + 1 |
---|
1502 | IF ( kk == nz_file ) EXIT |
---|
1503 | ENDDO |
---|
1504 | ENDIF |
---|
1505 | IF ( kk < nz_file ) THEN |
---|
1506 | ! |
---|
1507 | !-- Set initial value for gas compound tracers and initial values |
---|
1508 | pvf2a(k,:) = pr_mass_fracs_a(:,kk) + ( zu(k) - pr_z(kk) ) / ( & |
---|
1509 | pr_z(kk+1) - pr_z(kk) ) * ( pr_mass_fracs_a(:,kk+1)& |
---|
1510 | - pr_mass_fracs_a(:,kk) ) |
---|
1511 | pvf2b(k,:) = pr_mass_fracs_b(:,kk) + ( zu(k) - pr_z(kk) ) / ( & |
---|
1512 | pr_z(kk+1) - pr_z(kk) ) * ( pr_mass_fracs_b(:,kk+1)& |
---|
1513 | - pr_mass_fracs_b(:,kk) ) |
---|
1514 | pndist(k,:) = pr_nsect(:,kk) + ( zu(k) - pr_z(kk) ) / ( & |
---|
1515 | pr_z(kk+1) - pr_z(kk) ) * ( pr_nsect(:,kk+1) - & |
---|
1516 | pr_nsect(:,kk) ) |
---|
1517 | ELSE |
---|
1518 | pvf2a(k,:) = pr_mass_fracs_a(:,kk) |
---|
1519 | pvf2b(k,:) = pr_mass_fracs_b(:,kk) |
---|
1520 | pndist(k,:) = pr_nsect(:,kk) |
---|
1521 | ENDIF |
---|
1522 | IF ( iso4 < 0 ) THEN |
---|
1523 | pvf2a(k,1) = 0.0_wp |
---|
1524 | pvf2b(k,1) = 0.0_wp |
---|
1525 | ENDIF |
---|
1526 | IF ( ioc < 0 ) THEN |
---|
1527 | pvf2a(k,2) = 0.0_wp |
---|
1528 | pvf2b(k,2) = 0.0_wp |
---|
1529 | ENDIF |
---|
1530 | IF ( ibc < 0 ) THEN |
---|
1531 | pvf2a(k,3) = 0.0_wp |
---|
1532 | pvf2b(k,3) = 0.0_wp |
---|
1533 | ENDIF |
---|
1534 | IF ( idu < 0 ) THEN |
---|
1535 | pvf2a(k,4) = 0.0_wp |
---|
1536 | pvf2b(k,4) = 0.0_wp |
---|
1537 | ENDIF |
---|
1538 | IF ( iss < 0 ) THEN |
---|
1539 | pvf2a(k,5) = 0.0_wp |
---|
1540 | pvf2b(k,5) = 0.0_wp |
---|
1541 | ENDIF |
---|
1542 | IF ( ino < 0 ) THEN |
---|
1543 | pvf2a(k,6) = 0.0_wp |
---|
1544 | pvf2b(k,6) = 0.0_wp |
---|
1545 | ENDIF |
---|
1546 | IF ( inh < 0 ) THEN |
---|
1547 | pvf2a(k,7) = 0.0_wp |
---|
1548 | pvf2b(k,7) = 0.0_wp |
---|
1549 | ENDIF |
---|
1550 | ! |
---|
1551 | !-- Then normalise the mass fraction so that SUM = 1 |
---|
1552 | pvf2a(k,:) = pvf2a(k,:) / SUM( pvf2a(k,:) ) |
---|
1553 | IF ( SUM( pvf2b(k,:) ) > 0.0_wp ) pvf2b(k,:) = pvf2b(k,:) / & |
---|
1554 | SUM( pvf2b(k,:) ) |
---|
1555 | ENDDO |
---|
1556 | DEALLOCATE( pr_z, pr_mass_fracs_a, pr_mass_fracs_b, pr_nsect ) |
---|
1557 | ELSE |
---|
1558 | message_string = 'Input file '// TRIM( 'PIDS_SALSA' ) // & |
---|
1559 | TRIM( coupling_char ) // ' for SALSA missing!' |
---|
1560 | CALL message( 'salsa_mod: aerosol_init', 'SA0032', 1, 2, 0, 6, 0 ) |
---|
1561 | ENDIF ! netcdf_extend |
---|
1562 | |
---|
1563 | ELSEIF ( isdtyp == 0 ) THEN |
---|
1564 | ! |
---|
1565 | !-- Mass fractions for species in a and b-bins |
---|
1566 | IF ( iso4 > 0 ) THEN |
---|
1567 | pvf2a(:,1) = mass_fracs_a(iso4) |
---|
1568 | pvf2b(:,1) = mass_fracs_b(iso4) |
---|
1569 | ENDIF |
---|
1570 | IF ( ioc > 0 ) THEN |
---|
1571 | pvf2a(:,2) = mass_fracs_a(ioc) |
---|
1572 | pvf2b(:,2) = mass_fracs_b(ioc) |
---|
1573 | ENDIF |
---|
1574 | IF ( ibc > 0 ) THEN |
---|
1575 | pvf2a(:,3) = mass_fracs_a(ibc) |
---|
1576 | pvf2b(:,3) = mass_fracs_b(ibc) |
---|
1577 | ENDIF |
---|
1578 | IF ( idu > 0 ) THEN |
---|
1579 | pvf2a(:,4) = mass_fracs_a(idu) |
---|
1580 | pvf2b(:,4) = mass_fracs_b(idu) |
---|
1581 | ENDIF |
---|
1582 | IF ( iss > 0 ) THEN |
---|
1583 | pvf2a(:,5) = mass_fracs_a(iss) |
---|
1584 | pvf2b(:,5) = mass_fracs_b(iss) |
---|
1585 | ENDIF |
---|
1586 | IF ( ino > 0 ) THEN |
---|
1587 | pvf2a(:,6) = mass_fracs_a(ino) |
---|
1588 | pvf2b(:,6) = mass_fracs_b(ino) |
---|
1589 | ENDIF |
---|
1590 | IF ( inh > 0 ) THEN |
---|
1591 | pvf2a(:,7) = mass_fracs_a(inh) |
---|
1592 | pvf2b(:,7) = mass_fracs_b(inh) |
---|
1593 | ENDIF |
---|
1594 | DO k = nzb, nz+1 |
---|
1595 | pvf2a(k,:) = pvf2a(k,:) / SUM( pvf2a(k,:) ) |
---|
1596 | IF ( SUM( pvf2b(k,:) ) > 0.0_wp ) pvf2b(k,:) = pvf2b(k,:) / & |
---|
1597 | SUM( pvf2b(k,:) ) |
---|
1598 | ENDDO |
---|
1599 | |
---|
1600 | CALL size_distribution( n_lognorm, dpg, sigmag, nsect ) |
---|
1601 | ! |
---|
1602 | !-- Normalize by the given total number concentration |
---|
1603 | nsect = nsect * SUM( n_lognorm ) * 1.0E+6_wp / SUM( nsect ) |
---|
1604 | DO b = in1a, fn2b |
---|
1605 | pndist(:,b) = nsect(b) |
---|
1606 | ENDDO |
---|
1607 | ENDIF |
---|
1608 | |
---|
1609 | IF ( igctyp == 1 ) THEN |
---|
1610 | ! |
---|
1611 | !-- Read input profiles from PIDS_CHEM |
---|
1612 | ! |
---|
1613 | !-- Location-dependent size distributions and compositions. |
---|
1614 | INQUIRE( FILE='PIDS_CHEM' // TRIM( coupling_char ), EXIST=netcdf_extend ) |
---|
1615 | IF ( netcdf_extend .AND. .NOT. salsa_gases_from_chem ) THEN |
---|
1616 | ! |
---|
1617 | !-- Open file in read-only mode |
---|
1618 | CALL open_read_file( 'PIDS_CHEM' // TRIM( coupling_char ), id_fchem ) |
---|
1619 | ! |
---|
1620 | !-- Input heights |
---|
1621 | CALL netcdf_data_input_get_dimension_length( id_fchem, nz_file, "profile_z" ) |
---|
1622 | ALLOCATE( pr_z(nz_file), pr_gas(ngast,nz_file) ) |
---|
1623 | CALL get_variable( id_fchem, 'profile_z', pr_z ) |
---|
1624 | ! |
---|
1625 | !-- Gases: |
---|
1626 | CALL get_variable( id_fchem, "profile_H2SO4", pr_gas(1,:) ) |
---|
1627 | CALL get_variable( id_fchem, "profile_HNO3", pr_gas(2,:) ) |
---|
1628 | CALL get_variable( id_fchem, "profile_NH3", pr_gas(3,:) ) |
---|
1629 | CALL get_variable( id_fchem, "profile_OCNV", pr_gas(4,:) ) |
---|
1630 | CALL get_variable( id_fchem, "profile_OCSV", pr_gas(5,:) ) |
---|
1631 | |
---|
1632 | kk = 1 |
---|
1633 | DO k = nzb, nz+1 |
---|
1634 | IF ( kk < nz_file ) THEN |
---|
1635 | DO WHILE ( pr_z(kk+1) <= zu(k) ) |
---|
1636 | kk = kk + 1 |
---|
1637 | IF ( kk == nz_file ) EXIT |
---|
1638 | ENDDO |
---|
1639 | ENDIF |
---|
1640 | IF ( kk < nz_file ) THEN |
---|
1641 | ! |
---|
1642 | !-- Set initial value for gas compound tracers and initial values |
---|
1643 | DO g = 1, ngast |
---|
1644 | salsa_gas(g)%init(k) = pr_gas(g,kk) + ( zu(k) - pr_z(kk) ) & |
---|
1645 | / ( pr_z(kk+1) - pr_z(kk) ) * & |
---|
1646 | ( pr_gas(g,kk+1) - pr_gas(g,kk) ) |
---|
1647 | salsa_gas(g)%conc(k,:,:) = salsa_gas(g)%init(k) |
---|
1648 | ENDDO |
---|
1649 | ELSE |
---|
1650 | DO g = 1, ngast |
---|
1651 | salsa_gas(g)%init(k) = pr_gas(g,kk) |
---|
1652 | salsa_gas(g)%conc(k,:,:) = salsa_gas(g)%init(k) |
---|
1653 | ENDDO |
---|
1654 | ENDIF |
---|
1655 | ENDDO |
---|
1656 | |
---|
1657 | DEALLOCATE( pr_z, pr_gas ) |
---|
1658 | ELSEIF ( .NOT. netcdf_extend .AND. .NOT. salsa_gases_from_chem ) THEN |
---|
1659 | message_string = 'Input file '// TRIM( 'PIDS_CHEM' ) // & |
---|
1660 | TRIM( coupling_char ) // ' for SALSA missing!' |
---|
1661 | CALL message( 'salsa_mod: aerosol_init', 'SA0033', 1, 2, 0, 6, 0 ) |
---|
1662 | ENDIF ! netcdf_extend |
---|
1663 | ENDIF |
---|
1664 | |
---|
1665 | IF ( ioc > 0 .AND. iso4 > 0 ) THEN |
---|
1666 | !-- Both are there, so use the given "massDistrA" |
---|
1667 | pvfOC1a(:) = pvf2a(:,2) / ( pvf2a(:,2) + pvf2a(:,1) ) ! Normalize |
---|
1668 | ELSEIF ( ioc > 0 ) THEN |
---|
1669 | !-- Pure organic carbon |
---|
1670 | pvfOC1a(:) = 1.0_wp |
---|
1671 | ELSEIF ( iso4 > 0 ) THEN |
---|
1672 | !-- Pure SO4 |
---|
1673 | pvfOC1a(:) = 0.0_wp |
---|
1674 | ELSE |
---|
1675 | message_string = 'Either OC or SO4 must be active for aerosol region 1a!' |
---|
1676 | CALL message( 'salsa_mod: aerosol_init', 'SA0021', 1, 2, 0, 6, 0 ) |
---|
1677 | ENDIF |
---|
1678 | |
---|
1679 | ! |
---|
1680 | !-- Initialize concentrations |
---|
1681 | DO i = nxlg, nxrg |
---|
1682 | DO j = nysg, nyng |
---|
1683 | DO k = nzb, nzt+1 |
---|
1684 | ! |
---|
1685 | !-- Predetermine flag to mask topography |
---|
1686 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1687 | ! |
---|
1688 | !-- a) Number concentrations |
---|
1689 | !-- Region 1: |
---|
1690 | DO b = in1a, fn1a |
---|
1691 | aerosol_number(b)%conc(k,j,i) = pndist(k,b) * flag |
---|
1692 | IF ( prunmode == 1 ) THEN |
---|
1693 | aerosol_number(b)%init = pndist(:,b) |
---|
1694 | ENDIF |
---|
1695 | ENDDO |
---|
1696 | ! |
---|
1697 | !-- Region 2: |
---|
1698 | IF ( nreg > 1 ) THEN |
---|
1699 | DO b = in2a, fn2a |
---|
1700 | aerosol_number(b)%conc(k,j,i) = MAX( 0.0_wp, pnf2a(k) ) * & |
---|
1701 | pndist(k,b) * flag |
---|
1702 | IF ( prunmode == 1 ) THEN |
---|
1703 | aerosol_number(b)%init = MAX( 0.0_wp, nf2a ) * pndist(:,b) |
---|
1704 | ENDIF |
---|
1705 | ENDDO |
---|
1706 | IF ( .NOT. no_insoluble ) THEN |
---|
1707 | DO b = in2b, fn2b |
---|
1708 | IF ( pnf2a(k) < 1.0_wp ) THEN |
---|
1709 | aerosol_number(b)%conc(k,j,i) = MAX( 0.0_wp, 1.0_wp & |
---|
1710 | - pnf2a(k) ) * pndist(k,b) * flag |
---|
1711 | IF ( prunmode == 1 ) THEN |
---|
1712 | aerosol_number(b)%init = MAX( 0.0_wp, 1.0_wp - & |
---|
1713 | nf2a ) * pndist(:,b) |
---|
1714 | ENDIF |
---|
1715 | ENDIF |
---|
1716 | ENDDO |
---|
1717 | ENDIF |
---|
1718 | ENDIF |
---|
1719 | ! |
---|
1720 | !-- b) Aerosol mass concentrations |
---|
1721 | !-- bin subrange 1: done here separately due to the SO4/OC convention |
---|
1722 | !-- SO4: |
---|
1723 | IF ( iso4 > 0 ) THEN |
---|
1724 | ss = ( iso4 - 1 ) * nbins + in1a !< start |
---|
1725 | ee = ( iso4 - 1 ) * nbins + fn1a !< end |
---|
1726 | b = in1a |
---|
1727 | DO c = ss, ee |
---|
1728 | aerosol_mass(c)%conc(k,j,i) = MAX( 0.0_wp, 1.0_wp - & |
---|
1729 | pvfOC1a(k) ) * pndist(k,b) * & |
---|
1730 | core(b) * arhoh2so4 * flag |
---|
1731 | IF ( prunmode == 1 ) THEN |
---|
1732 | aerosol_mass(c)%init = MAX( 0.0_wp, 1.0_wp - MAXVAL( & |
---|
1733 | pvfOC1a ) ) * pndist(:,b) * & |
---|
1734 | core(b) * arhoh2so4 |
---|
1735 | ENDIF |
---|
1736 | b = b+1 |
---|
1737 | ENDDO |
---|
1738 | ENDIF |
---|
1739 | !-- OC: |
---|
1740 | IF ( ioc > 0 ) THEN |
---|
1741 | ss = ( ioc - 1 ) * nbins + in1a !< start |
---|
1742 | ee = ( ioc - 1 ) * nbins + fn1a !< end |
---|
1743 | b = in1a |
---|
1744 | DO c = ss, ee |
---|
1745 | aerosol_mass(c)%conc(k,j,i) = MAX( 0.0_wp, pvfOC1a(k) ) * & |
---|
1746 | pndist(k,b) * core(b) * arhooc * flag |
---|
1747 | IF ( prunmode == 1 ) THEN |
---|
1748 | aerosol_mass(c)%init = MAX( 0.0_wp, MAXVAL( pvfOC1a ) ) & |
---|
1749 | * pndist(:,b) * core(b) * arhooc |
---|
1750 | ENDIF |
---|
1751 | b = b+1 |
---|
1752 | ENDDO |
---|
1753 | ENDIF |
---|
1754 | |
---|
1755 | prunmode = 3 ! Init only once |
---|
1756 | |
---|
1757 | ENDDO !< k |
---|
1758 | ENDDO !< j |
---|
1759 | ENDDO !< i |
---|
1760 | |
---|
1761 | ! |
---|
1762 | !-- c) Aerosol mass concentrations |
---|
1763 | !-- bin subrange 2: |
---|
1764 | IF ( nreg > 1 ) THEN |
---|
1765 | |
---|
1766 | IF ( iso4 > 0 ) THEN |
---|
1767 | CALL set_aero_mass( iso4, pvf2a(:,1), pvf2b(:,1), pnf2a, pndist, & |
---|
1768 | core, arhoh2so4 ) |
---|
1769 | ENDIF |
---|
1770 | IF ( ioc > 0 ) THEN |
---|
1771 | CALL set_aero_mass( ioc, pvf2a(:,2), pvf2b(:,2), pnf2a, pndist, core,& |
---|
1772 | arhooc ) |
---|
1773 | ENDIF |
---|
1774 | IF ( ibc > 0 ) THEN |
---|
1775 | CALL set_aero_mass( ibc, pvf2a(:,3), pvf2b(:,3), pnf2a, pndist, core,& |
---|
1776 | arhobc ) |
---|
1777 | ENDIF |
---|
1778 | IF ( idu > 0 ) THEN |
---|
1779 | CALL set_aero_mass( idu, pvf2a(:,4), pvf2b(:,4), pnf2a, pndist, core,& |
---|
1780 | arhodu ) |
---|
1781 | ENDIF |
---|
1782 | IF ( iss > 0 ) THEN |
---|
1783 | CALL set_aero_mass( iss, pvf2a(:,5), pvf2b(:,5), pnf2a, pndist, core,& |
---|
1784 | arhoss ) |
---|
1785 | ENDIF |
---|
1786 | IF ( ino > 0 ) THEN |
---|
1787 | CALL set_aero_mass( ino, pvf2a(:,6), pvf2b(:,6), pnf2a, pndist, core,& |
---|
1788 | arhohno3 ) |
---|
1789 | ENDIF |
---|
1790 | IF ( inh > 0 ) THEN |
---|
1791 | CALL set_aero_mass( inh, pvf2a(:,7), pvf2b(:,7), pnf2a, pndist, core,& |
---|
1792 | arhonh3 ) |
---|
1793 | ENDIF |
---|
1794 | |
---|
1795 | ENDIF |
---|
1796 | |
---|
1797 | END SUBROUTINE aerosol_init |
---|
1798 | |
---|
1799 | !------------------------------------------------------------------------------! |
---|
1800 | ! Description: |
---|
1801 | ! ------------ |
---|
1802 | !> Create a lognormal size distribution and discretise to a sectional |
---|
1803 | !> representation. |
---|
1804 | !------------------------------------------------------------------------------! |
---|
1805 | SUBROUTINE size_distribution( in_ntot, in_dpg, in_sigma, psd_sect ) |
---|
1806 | |
---|
1807 | IMPLICIT NONE |
---|
1808 | |
---|
1809 | !-- Log-normal size distribution: modes |
---|
1810 | REAL(wp), DIMENSION(:), INTENT(in) :: in_dpg !< geometric mean diameter |
---|
1811 | !< (micrometres) |
---|
1812 | REAL(wp), DIMENSION(:), INTENT(in) :: in_ntot !< number conc. (#/cm3) |
---|
1813 | REAL(wp), DIMENSION(:), INTENT(in) :: in_sigma !< standard deviation |
---|
1814 | REAL(wp), DIMENSION(:), INTENT(inout) :: psd_sect !< sectional size |
---|
1815 | !< distribution |
---|
1816 | INTEGER(iwp) :: b !< running index: bin |
---|
1817 | INTEGER(iwp) :: ib !< running index: iteration |
---|
1818 | REAL(wp) :: d1 !< particle diameter (m, dummy) |
---|
1819 | REAL(wp) :: d2 !< particle diameter (m, dummy) |
---|
1820 | REAL(wp) :: delta_d !< (d2-d1)/10 |
---|
1821 | REAL(wp) :: deltadp !< bin width |
---|
1822 | REAL(wp) :: dmidi !< ( d1 + d2 ) / 2 |
---|
1823 | |
---|
1824 | DO b = in1a, fn2b !< aerosol size bins |
---|
1825 | psd_sect(b) = 0.0_wp |
---|
1826 | !-- Particle diameter at the low limit (largest in the bin) (m) |
---|
1827 | d1 = ( aero(b)%vlolim / api6 ) ** ( 1.0_wp / 3.0_wp ) |
---|
1828 | !-- Particle diameter at the high limit (smallest in the bin) (m) |
---|
1829 | d2 = ( aero(b)%vhilim / api6 ) ** ( 1.0_wp / 3.0_wp ) |
---|
1830 | !-- Span of particle diameter in a bin (m) |
---|
1831 | delta_d = ( d2 - d1 ) / 10.0_wp |
---|
1832 | !-- Iterate: |
---|
1833 | DO ib = 1, 10 |
---|
1834 | d1 = ( aero(b)%vlolim / api6 ) ** ( 1.0_wp / 3.0_wp ) + ( ib - 1) & |
---|
1835 | * delta_d |
---|
1836 | d2 = d1 + delta_d |
---|
1837 | dmidi = ( d1 + d2 ) / 2.0_wp |
---|
1838 | deltadp = LOG10( d2 / d1 ) |
---|
1839 | |
---|
1840 | !-- Size distribution |
---|
1841 | !-- in_ntot = total number, total area, or total volume concentration |
---|
1842 | !-- in_dpg = geometric-mean number, area, or volume diameter |
---|
1843 | !-- n(k) = number, area, or volume concentration in a bin |
---|
1844 | !-- n_lognorm and dpg converted to units of #/m3 and m |
---|
1845 | psd_sect(b) = psd_sect(b) + SUM( in_ntot * 1.0E+6_wp * deltadp / & |
---|
1846 | ( SQRT( 2.0_wp * pi ) * LOG10( in_sigma ) ) * & |
---|
1847 | EXP( -LOG10( dmidi / ( 1.0E-6_wp * in_dpg ) )**2.0_wp / & |
---|
1848 | ( 2.0_wp * LOG10( in_sigma ) ** 2.0_wp ) ) ) |
---|
1849 | |
---|
1850 | ENDDO |
---|
1851 | ENDDO |
---|
1852 | |
---|
1853 | END SUBROUTINE size_distribution |
---|
1854 | |
---|
1855 | !------------------------------------------------------------------------------! |
---|
1856 | ! Description: |
---|
1857 | ! ------------ |
---|
1858 | !> Sets the mass concentrations to aerosol arrays in 2a and 2b. |
---|
1859 | !> |
---|
1860 | !> Tomi Raatikainen, FMI, 29.2.2016 |
---|
1861 | !------------------------------------------------------------------------------! |
---|
1862 | SUBROUTINE set_aero_mass( ispec, ppvf2a, ppvf2b, ppnf2a, ppndist, pcore, prho ) |
---|
1863 | |
---|
1864 | IMPLICIT NONE |
---|
1865 | |
---|
1866 | INTEGER(iwp), INTENT(in) :: ispec !< Aerosol species index |
---|
1867 | REAL(wp), INTENT(in) :: pcore(nbins) !< Aerosol bin mid core volume |
---|
1868 | REAL(wp), INTENT(in) :: ppndist(0:nz+1,nbins) !< Aerosol size distribution |
---|
1869 | REAL(wp), INTENT(in) :: ppnf2a(0:nz+1) !< Number fraction for 2a |
---|
1870 | REAL(wp), INTENT(in) :: ppvf2a(0:nz+1) !< Mass distributions for a |
---|
1871 | REAL(wp), INTENT(in) :: ppvf2b(0:nz+1) !< and b bins |
---|
1872 | REAL(wp), INTENT(in) :: prho !< Aerosol density |
---|
1873 | INTEGER(iwp) :: b !< loop index |
---|
1874 | INTEGER(iwp) :: c !< loop index |
---|
1875 | INTEGER(iwp) :: ee !< index: end |
---|
1876 | INTEGER(iwp) :: i !< loop index |
---|
1877 | INTEGER(iwp) :: j !< loop index |
---|
1878 | INTEGER(iwp) :: k !< loop index |
---|
1879 | INTEGER(iwp) :: prunmode !< 1 = initialise |
---|
1880 | INTEGER(iwp) :: ss !< index: start |
---|
1881 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
1882 | |
---|
1883 | prunmode = 1 |
---|
1884 | |
---|
1885 | DO i = nxlg, nxrg |
---|
1886 | DO j = nysg, nyng |
---|
1887 | DO k = nzb, nzt+1 |
---|
1888 | ! |
---|
1889 | !-- Predetermine flag to mask topography |
---|
1890 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1891 | ! |
---|
1892 | !-- Regime 2a: |
---|
1893 | ss = ( ispec - 1 ) * nbins + in2a |
---|
1894 | ee = ( ispec - 1 ) * nbins + fn2a |
---|
1895 | b = in2a |
---|
1896 | DO c = ss, ee |
---|
1897 | aerosol_mass(c)%conc(k,j,i) = MAX( 0.0_wp, ppvf2a(k) ) * & |
---|
1898 | ppnf2a(k) * ppndist(k,b) * pcore(b) * prho * flag |
---|
1899 | IF ( prunmode == 1 ) THEN |
---|
1900 | aerosol_mass(c)%init = MAX( 0.0_wp, MAXVAL( ppvf2a(:) ) ) * & |
---|
1901 | MAXVAL( ppnf2a ) * pcore(b) * prho * & |
---|
1902 | MAXVAL( ppndist(:,b) ) |
---|
1903 | ENDIF |
---|
1904 | b = b+1 |
---|
1905 | ENDDO |
---|
1906 | !-- Regime 2b: |
---|
1907 | IF ( .NOT. no_insoluble ) THEN |
---|
1908 | ss = ( ispec - 1 ) * nbins + in2b |
---|
1909 | ee = ( ispec - 1 ) * nbins + fn2b |
---|
1910 | b = in2a |
---|
1911 | DO c = ss, ee |
---|
1912 | aerosol_mass(c)%conc(k,j,i) = MAX( 0.0_wp, ppvf2b(k) ) * ( & |
---|
1913 | 1.0_wp - ppnf2a(k) ) * ppndist(k,b) * & |
---|
1914 | pcore(b) * prho * flag |
---|
1915 | IF ( prunmode == 1 ) THEN |
---|
1916 | aerosol_mass(c)%init = MAX( 0.0_wp, MAXVAL( ppvf2b(:) ) )& |
---|
1917 | * ( 1.0_wp - MAXVAL( ppnf2a ) ) * & |
---|
1918 | MAXVAL( ppndist(:,b) ) * pcore(b) * prho |
---|
1919 | ENDIF |
---|
1920 | b = b+1 |
---|
1921 | ENDDO |
---|
1922 | ENDIF |
---|
1923 | prunmode = 3 ! Init only once |
---|
1924 | ENDDO |
---|
1925 | ENDDO |
---|
1926 | ENDDO |
---|
1927 | END SUBROUTINE set_aero_mass |
---|
1928 | |
---|
1929 | !------------------------------------------------------------------------------! |
---|
1930 | ! Description: |
---|
1931 | ! ------------ |
---|
1932 | !> Swapping of timelevels |
---|
1933 | !------------------------------------------------------------------------------! |
---|
1934 | SUBROUTINE salsa_swap_timelevel( mod_count ) |
---|
1935 | |
---|
1936 | IMPLICIT NONE |
---|
1937 | |
---|
1938 | INTEGER(iwp), INTENT(IN) :: mod_count !< |
---|
1939 | INTEGER(iwp) :: b !< |
---|
1940 | INTEGER(iwp) :: c !< |
---|
1941 | INTEGER(iwp) :: cc !< |
---|
1942 | INTEGER(iwp) :: g !< |
---|
1943 | |
---|
1944 | ! |
---|
1945 | !-- Example for prognostic variable "prog_var" |
---|
1946 | #if defined( __nopointer ) |
---|
1947 | IF ( myid == 0 ) THEN |
---|
1948 | message_string = ' SALSA runs only with POINTER Version' |
---|
1949 | CALL message( 'salsa_swap_timelevel', 'SA0022', 1, 2, 0, 6, 0 ) |
---|
1950 | ENDIF |
---|
1951 | #else |
---|
1952 | |
---|
1953 | SELECT CASE ( mod_count ) |
---|
1954 | |
---|
1955 | CASE ( 0 ) |
---|
1956 | |
---|
1957 | DO b = 1, nbins |
---|
1958 | aerosol_number(b)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1959 | nconc_1(:,:,:,b) |
---|
1960 | aerosol_number(b)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1961 | nconc_2(:,:,:,b) |
---|
1962 | DO c = 1, ncc_tot |
---|
1963 | cc = ( c-1 ) * nbins + b ! required due to possible Intel18 bug |
---|
1964 | aerosol_mass(cc)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1965 | mconc_1(:,:,:,cc) |
---|
1966 | aerosol_mass(cc)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1967 | mconc_2(:,:,:,cc) |
---|
1968 | ENDDO |
---|
1969 | ENDDO |
---|
1970 | |
---|
1971 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
1972 | DO g = 1, ngast |
---|
1973 | salsa_gas(g)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1974 | gconc_1(:,:,:,g) |
---|
1975 | salsa_gas(g)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1976 | gconc_2(:,:,:,g) |
---|
1977 | ENDDO |
---|
1978 | ENDIF |
---|
1979 | |
---|
1980 | CASE ( 1 ) |
---|
1981 | |
---|
1982 | DO b = 1, nbins |
---|
1983 | aerosol_number(b)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1984 | nconc_2(:,:,:,b) |
---|
1985 | aerosol_number(b)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1986 | nconc_1(:,:,:,b) |
---|
1987 | DO c = 1, ncc_tot |
---|
1988 | cc = ( c-1 ) * nbins + b ! required due to possible Intel18 bug |
---|
1989 | aerosol_mass(cc)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1990 | mconc_2(:,:,:,cc) |
---|
1991 | aerosol_mass(cc)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1992 | mconc_1(:,:,:,cc) |
---|
1993 | ENDDO |
---|
1994 | ENDDO |
---|
1995 | |
---|
1996 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
1997 | DO g = 1, ngast |
---|
1998 | salsa_gas(g)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
1999 | gconc_2(:,:,:,g) |
---|
2000 | salsa_gas(g)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => & |
---|
2001 | gconc_1(:,:,:,g) |
---|
2002 | ENDDO |
---|
2003 | ENDIF |
---|
2004 | |
---|
2005 | END SELECT |
---|
2006 | #endif |
---|
2007 | |
---|
2008 | END SUBROUTINE salsa_swap_timelevel |
---|
2009 | |
---|
2010 | |
---|
2011 | !------------------------------------------------------------------------------! |
---|
2012 | ! Description: |
---|
2013 | ! ------------ |
---|
2014 | !> This routine reads the respective restart data. |
---|
2015 | !------------------------------------------------------------------------------! |
---|
2016 | SUBROUTINE salsa_rrd_local |
---|
2017 | |
---|
2018 | |
---|
2019 | IMPLICIT NONE |
---|
2020 | |
---|
2021 | CHARACTER (LEN=20) :: field_char !< |
---|
2022 | INTEGER(iwp) :: b !< |
---|
2023 | INTEGER(iwp) :: c !< |
---|
2024 | INTEGER(iwp) :: g !< |
---|
2025 | INTEGER(iwp) :: i !< |
---|
2026 | INTEGER(iwp) :: j !< |
---|
2027 | INTEGER(iwp) :: k !< |
---|
2028 | |
---|
2029 | IF ( read_restart_data_salsa ) THEN |
---|
2030 | READ ( 13 ) field_char |
---|
2031 | |
---|
2032 | DO WHILE ( TRIM( field_char ) /= '*** end salsa ***' ) |
---|
2033 | |
---|
2034 | DO b = 1, nbins |
---|
2035 | READ ( 13 ) aero(b)%vlolim |
---|
2036 | READ ( 13 ) aero(b)%vhilim |
---|
2037 | READ ( 13 ) aero(b)%dmid |
---|
2038 | READ ( 13 ) aero(b)%vratiohi |
---|
2039 | READ ( 13 ) aero(b)%vratiolo |
---|
2040 | ENDDO |
---|
2041 | |
---|
2042 | DO i = nxl, nxr |
---|
2043 | DO j = nys, nyn |
---|
2044 | DO k = nzb+1, nzt |
---|
2045 | DO b = 1, nbins |
---|
2046 | READ ( 13 ) aerosol_number(b)%conc(k,j,i) |
---|
2047 | DO c = 1, ncc_tot |
---|
2048 | READ ( 13 ) aerosol_mass((c-1)*nbins+b)%conc(k,j,i) |
---|
2049 | ENDDO |
---|
2050 | ENDDO |
---|
2051 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
2052 | DO g = 1, ngast |
---|
2053 | READ ( 13 ) salsa_gas(g)%conc(k,j,i) |
---|
2054 | ENDDO |
---|
2055 | ENDIF |
---|
2056 | ENDDO |
---|
2057 | ENDDO |
---|
2058 | ENDDO |
---|
2059 | |
---|
2060 | READ ( 13 ) field_char |
---|
2061 | |
---|
2062 | ENDDO |
---|
2063 | |
---|
2064 | ENDIF |
---|
2065 | |
---|
2066 | END SUBROUTINE salsa_rrd_local |
---|
2067 | |
---|
2068 | |
---|
2069 | !------------------------------------------------------------------------------! |
---|
2070 | ! Description: |
---|
2071 | ! ------------ |
---|
2072 | !> This routine writes the respective restart data. |
---|
2073 | !> Note that the following input variables in PARIN have to be equal between |
---|
2074 | !> restart runs: |
---|
2075 | !> listspec, nbin, nbin2, nf2a, ncc, mass_fracs_a, mass_fracs_b |
---|
2076 | !------------------------------------------------------------------------------! |
---|
2077 | SUBROUTINE salsa_wrd_local |
---|
2078 | |
---|
2079 | IMPLICIT NONE |
---|
2080 | |
---|
2081 | INTEGER(iwp) :: b !< |
---|
2082 | INTEGER(iwp) :: c !< |
---|
2083 | INTEGER(iwp) :: g !< |
---|
2084 | INTEGER(iwp) :: i !< |
---|
2085 | INTEGER(iwp) :: j !< |
---|
2086 | INTEGER(iwp) :: k !< |
---|
2087 | |
---|
2088 | IF ( write_binary .AND. write_binary_salsa ) THEN |
---|
2089 | |
---|
2090 | DO b = 1, nbins |
---|
2091 | WRITE ( 14 ) aero(b)%vlolim |
---|
2092 | WRITE ( 14 ) aero(b)%vhilim |
---|
2093 | WRITE ( 14 ) aero(b)%dmid |
---|
2094 | WRITE ( 14 ) aero(b)%vratiohi |
---|
2095 | WRITE ( 14 ) aero(b)%vratiolo |
---|
2096 | ENDDO |
---|
2097 | |
---|
2098 | DO i = nxl, nxr |
---|
2099 | DO j = nys, nyn |
---|
2100 | DO k = nzb+1, nzt |
---|
2101 | DO b = 1, nbins |
---|
2102 | WRITE ( 14 ) aerosol_number(b)%conc(k,j,i) |
---|
2103 | DO c = 1, ncc_tot |
---|
2104 | WRITE ( 14 ) aerosol_mass((c-1)*nbins+b)%conc(k,j,i) |
---|
2105 | ENDDO |
---|
2106 | ENDDO |
---|
2107 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
2108 | DO g = 1, ngast |
---|
2109 | WRITE ( 14 ) salsa_gas(g)%conc(k,j,i) |
---|
2110 | ENDDO |
---|
2111 | ENDIF |
---|
2112 | ENDDO |
---|
2113 | ENDDO |
---|
2114 | ENDDO |
---|
2115 | |
---|
2116 | WRITE ( 14 ) '*** end salsa *** ' |
---|
2117 | |
---|
2118 | ENDIF |
---|
2119 | |
---|
2120 | END SUBROUTINE salsa_wrd_local |
---|
2121 | |
---|
2122 | |
---|
2123 | !------------------------------------------------------------------------------! |
---|
2124 | ! Description: |
---|
2125 | ! ------------ |
---|
2126 | !> Performs necessary unit and dimension conversion between the host model and |
---|
2127 | !> SALSA module, and calls the main SALSA routine. |
---|
2128 | !> Partially adobted form the original SALSA boxmodel version. |
---|
2129 | !> Now takes masses in as kg/kg from LES!! Converted to m3/m3 for SALSA |
---|
2130 | !> 05/2016 Juha: This routine is still pretty much in its original shape. |
---|
2131 | !> It's dumb as a mule and twice as ugly, so implementation of |
---|
2132 | !> an improved solution is necessary sooner or later. |
---|
2133 | !> Juha Tonttila, FMI, 2014 |
---|
2134 | !> Jaakko Ahola, FMI, 2016 |
---|
2135 | !> Only aerosol processes included, Mona Kurppa, UHel, 2017 |
---|
2136 | !------------------------------------------------------------------------------! |
---|
2137 | SUBROUTINE salsa_driver( i, j, prunmode ) |
---|
2138 | |
---|
2139 | USE arrays_3d, & |
---|
2140 | ONLY: pt_p, q_p, rho_air_zw, u, v, w |
---|
2141 | |
---|
2142 | USE plant_canopy_model_mod, & |
---|
2143 | ONLY: lad_s |
---|
2144 | |
---|
2145 | USE surface_mod, & |
---|
2146 | ONLY: surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
2147 | surf_usm_v |
---|
2148 | |
---|
2149 | IMPLICIT NONE |
---|
2150 | |
---|
2151 | INTEGER(iwp), INTENT(in) :: i !< loop index |
---|
2152 | INTEGER(iwp), INTENT(in) :: j !< loop index |
---|
2153 | INTEGER(iwp), INTENT(in) :: prunmode !< 1: Initialization call |
---|
2154 | !< 2: Spinup period call |
---|
2155 | !< 3: Regular runtime call |
---|
2156 | !-- Local variables |
---|
2157 | TYPE(t_section), DIMENSION(fn2b) :: aero_old !< helper array |
---|
2158 | INTEGER(iwp) :: bb !< loop index |
---|
2159 | INTEGER(iwp) :: cc !< loop index |
---|
2160 | INTEGER(iwp) :: endi !< end index |
---|
2161 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
2162 | INTEGER(iwp) :: k !< loop index |
---|
2163 | INTEGER(iwp) :: l !< loop index |
---|
2164 | INTEGER(iwp) :: nc_h2o !< index of H2O in the prtcl index table |
---|
2165 | INTEGER(iwp) :: ss !< loop index |
---|
2166 | INTEGER(iwp) :: str !< start index |
---|
2167 | INTEGER(iwp) :: vc !< default index in prtcl |
---|
2168 | REAL(wp) :: cw_old !< previous H2O mixing ratio |
---|
2169 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
2170 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_adn !< air density (kg/m3) |
---|
2171 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_cs !< H2O sat. vapour conc. |
---|
2172 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_cw !< H2O vapour concentration |
---|
2173 | REAL(wp) :: in_lad !< leaf area density (m2/m3) |
---|
2174 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_p !< pressure (Pa) |
---|
2175 | REAL(wp) :: in_rh !< relative humidity |
---|
2176 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_t !< temperature (K) |
---|
2177 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_u !< wind magnitude (m/s) |
---|
2178 | REAL(wp), DIMENSION(nzb:nzt+1) :: kvis !< kinematic viscosity of air(m2/s) |
---|
2179 | REAL(wp), DIMENSION(nzb:nzt+1,fn2b) :: Sc !< particle Schmidt number |
---|
2180 | REAL(wp), DIMENSION(nzb:nzt+1,fn2b) :: vd !< particle fall seed (m/s, |
---|
2181 | !< sedimentation velocity) |
---|
2182 | REAL(wp), DIMENSION(nzb:nzt+1) :: ppm_to_nconc !< Conversion factor |
---|
2183 | !< from ppm to #/m3 |
---|
2184 | REAL(wp) :: zgso4 !< SO4 |
---|
2185 | REAL(wp) :: zghno3 !< HNO3 |
---|
2186 | REAL(wp) :: zgnh3 !< NH3 |
---|
2187 | REAL(wp) :: zgocnv !< non-volatile OC |
---|
2188 | REAL(wp) :: zgocsv !< semi-volatile OC |
---|
2189 | |
---|
2190 | aero_old(:)%numc = 0.0_wp |
---|
2191 | in_adn = 0.0_wp |
---|
2192 | in_cs = 0.0_wp |
---|
2193 | in_cw = 0.0_wp |
---|
2194 | in_lad = 0.0_wp |
---|
2195 | in_rh = 0.0_wp |
---|
2196 | in_p = 0.0_wp |
---|
2197 | in_t = 0.0_wp |
---|
2198 | in_u = 0.0_wp |
---|
2199 | kvis = 0.0_wp |
---|
2200 | Sc = 0.0_wp |
---|
2201 | vd = 0.0_wp |
---|
2202 | ppm_to_nconc = 1.0_wp |
---|
2203 | zgso4 = nclim |
---|
2204 | zghno3 = nclim |
---|
2205 | zgnh3 = nclim |
---|
2206 | zgocnv = nclim |
---|
2207 | zgocsv = nclim |
---|
2208 | |
---|
2209 | ! |
---|
2210 | !-- Aerosol number is always set, but mass can be uninitialized |
---|
2211 | DO cc = 1, nbins |
---|
2212 | aero(cc)%volc = 0.0_wp |
---|
2213 | aero_old(cc)%volc = 0.0_wp |
---|
2214 | ENDDO |
---|
2215 | ! |
---|
2216 | !-- Set the salsa runtime config (How to make this more efficient?) |
---|
2217 | CALL set_salsa_runtime( prunmode ) |
---|
2218 | ! |
---|
2219 | !-- Calculate thermodynamic quantities needed in SALSA |
---|
2220 | CALL salsa_thrm_ij( i, j, p_ij=in_p, temp_ij=in_t, cw_ij=in_cw, & |
---|
2221 | cs_ij=in_cs, adn_ij=in_adn ) |
---|
2222 | ! |
---|
2223 | !-- Magnitude of wind: needed for deposition |
---|
2224 | IF ( lsdepo ) THEN |
---|
2225 | in_u(nzb+1:nzt) = SQRT( & |
---|
2226 | ( 0.5_wp * ( u(nzb+1:nzt,j,i) + u(nzb+1:nzt,j,i+1) ) )**2 + & |
---|
2227 | ( 0.5_wp * ( v(nzb+1:nzt,j,i) + v(nzb+1:nzt,j+1,i) ) )**2 + & |
---|
2228 | ( 0.5_wp * ( w(nzb:nzt-1,j,i) + w(nzb+1:nzt,j, i) ) )**2 ) |
---|
2229 | ENDIF |
---|
2230 | ! |
---|
2231 | !-- Calculate conversion factors for gas concentrations |
---|
2232 | ppm_to_nconc = for_ppm_to_nconc * in_p / in_t |
---|
2233 | ! |
---|
2234 | !-- Determine topography-top index on scalar grid |
---|
2235 | k_wall = MAXLOC( MERGE( 1, 0, BTEST( wall_flags_0(:,j,i), 12 ) ), & |
---|
2236 | DIM = 1 ) - 1 |
---|
2237 | |
---|
2238 | DO k = nzb+1, nzt |
---|
2239 | ! |
---|
2240 | !-- Predetermine flag to mask topography |
---|
2241 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2242 | ! |
---|
2243 | !-- Do not run inside buildings |
---|
2244 | IF ( flag == 0.0_wp ) CYCLE |
---|
2245 | ! |
---|
2246 | !-- Wind velocity for dry depositon on vegetation |
---|
2247 | IF ( lsdepo_vege .AND. plant_canopy ) THEN |
---|
2248 | in_lad = lad_s(k-k_wall,j,i) |
---|
2249 | ENDIF |
---|
2250 | ! |
---|
2251 | !-- For initialization and spinup, limit the RH with the parameter rhlim |
---|
2252 | IF ( prunmode < 3 ) THEN |
---|
2253 | in_cw(k) = MIN( in_cw(k), in_cs(k) * rhlim ) |
---|
2254 | ELSE |
---|
2255 | in_cw(k) = in_cw(k) |
---|
2256 | ENDIF |
---|
2257 | cw_old = in_cw(k) !* in_adn(k) |
---|
2258 | ! |
---|
2259 | !-- Set volume concentrations: |
---|
2260 | !-- Sulphate (SO4) or sulphuric acid H2SO4 |
---|
2261 | IF ( iso4 > 0 ) THEN |
---|
2262 | vc = 1 |
---|
2263 | str = ( iso4-1 ) * nbins + 1 ! start index |
---|
2264 | endi = iso4 * nbins ! end index |
---|
2265 | cc = 1 |
---|
2266 | DO ss = str, endi |
---|
2267 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhoh2so4 |
---|
2268 | cc = cc+1 |
---|
2269 | ENDDO |
---|
2270 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2271 | ENDIF |
---|
2272 | |
---|
2273 | !-- Organic carbon (OC) compounds |
---|
2274 | IF ( ioc > 0 ) THEN |
---|
2275 | vc = 2 |
---|
2276 | str = ( ioc-1 ) * nbins + 1 |
---|
2277 | endi = ioc * nbins |
---|
2278 | cc = 1 |
---|
2279 | DO ss = str, endi |
---|
2280 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhooc |
---|
2281 | cc = cc+1 |
---|
2282 | ENDDO |
---|
2283 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2284 | ENDIF |
---|
2285 | |
---|
2286 | !-- Black carbon (BC) |
---|
2287 | IF ( ibc > 0 ) THEN |
---|
2288 | vc = 3 |
---|
2289 | str = ( ibc-1 ) * nbins + 1 + fn1a |
---|
2290 | endi = ibc * nbins |
---|
2291 | cc = 1 + fn1a |
---|
2292 | DO ss = str, endi |
---|
2293 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhobc |
---|
2294 | cc = cc+1 |
---|
2295 | ENDDO |
---|
2296 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2297 | ENDIF |
---|
2298 | |
---|
2299 | !-- Dust (DU) |
---|
2300 | IF ( idu > 0 ) THEN |
---|
2301 | vc = 4 |
---|
2302 | str = ( idu-1 ) * nbins + 1 + fn1a |
---|
2303 | endi = idu * nbins |
---|
2304 | cc = 1 + fn1a |
---|
2305 | DO ss = str, endi |
---|
2306 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhodu |
---|
2307 | cc = cc+1 |
---|
2308 | ENDDO |
---|
2309 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2310 | ENDIF |
---|
2311 | |
---|
2312 | !-- Sea salt (SS) |
---|
2313 | IF ( iss > 0 ) THEN |
---|
2314 | vc = 5 |
---|
2315 | str = ( iss-1 ) * nbins + 1 + fn1a |
---|
2316 | endi = iss * nbins |
---|
2317 | cc = 1 + fn1a |
---|
2318 | DO ss = str, endi |
---|
2319 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhoss |
---|
2320 | cc = cc+1 |
---|
2321 | ENDDO |
---|
2322 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2323 | ENDIF |
---|
2324 | |
---|
2325 | !-- Nitrate (NO(3-)) or nitric acid HNO3 |
---|
2326 | IF ( ino > 0 ) THEN |
---|
2327 | vc = 6 |
---|
2328 | str = ( ino-1 ) * nbins + 1 |
---|
2329 | endi = ino * nbins |
---|
2330 | cc = 1 |
---|
2331 | DO ss = str, endi |
---|
2332 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhohno3 |
---|
2333 | cc = cc+1 |
---|
2334 | ENDDO |
---|
2335 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2336 | ENDIF |
---|
2337 | |
---|
2338 | !-- Ammonium (NH(4+)) or ammonia NH3 |
---|
2339 | IF ( inh > 0 ) THEN |
---|
2340 | vc = 7 |
---|
2341 | str = ( inh-1 ) * nbins + 1 |
---|
2342 | endi = inh * nbins |
---|
2343 | cc = 1 |
---|
2344 | DO ss = str, endi |
---|
2345 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhonh3 |
---|
2346 | cc = cc+1 |
---|
2347 | ENDDO |
---|
2348 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2349 | ENDIF |
---|
2350 | |
---|
2351 | !-- Water (always used) |
---|
2352 | nc_h2o = get_index( prtcl,'H2O' ) |
---|
2353 | vc = 8 |
---|
2354 | str = ( nc_h2o-1 ) * nbins + 1 |
---|
2355 | endi = nc_h2o * nbins |
---|
2356 | cc = 1 |
---|
2357 | IF ( advect_particle_water ) THEN |
---|
2358 | DO ss = str, endi |
---|
2359 | aero(cc)%volc(vc) = aerosol_mass(ss)%conc(k,j,i) / arhoh2o |
---|
2360 | cc = cc+1 |
---|
2361 | ENDDO |
---|
2362 | ELSE |
---|
2363 | aero(1:nbins)%volc(vc) = mclim |
---|
2364 | ENDIF |
---|
2365 | aero_old(1:nbins)%volc(vc) = aero(1:nbins)%volc(vc) |
---|
2366 | ! |
---|
2367 | !-- Number concentrations (numc) and particle sizes |
---|
2368 | !-- (dwet = wet diameter, core = dry volume) |
---|
2369 | DO bb = 1, nbins |
---|
2370 | aero(bb)%numc = aerosol_number(bb)%conc(k,j,i) |
---|
2371 | aero_old(bb)%numc = aero(bb)%numc |
---|
2372 | IF ( aero(bb)%numc > nclim ) THEN |
---|
2373 | aero(bb)%dwet = ( SUM( aero(bb)%volc(:) ) / aero(bb)%numc / api6 )& |
---|
2374 | **( 1.0_wp / 3.0_wp ) |
---|
2375 | aero(bb)%core = SUM( aero(bb)%volc(1:7) ) / aero(bb)%numc |
---|
2376 | ELSE |
---|
2377 | aero(bb)%dwet = aero(bb)%dmid |
---|
2378 | aero(bb)%core = api6 * ( aero(bb)%dwet ) ** 3.0_wp |
---|
2379 | ENDIF |
---|
2380 | ENDDO |
---|
2381 | ! |
---|
2382 | !-- On EACH call of salsa_driver, calculate the ambient sizes of |
---|
2383 | !-- particles by equilibrating soluble fraction of particles with water |
---|
2384 | !-- using the ZSR method. |
---|
2385 | in_rh = in_cw(k) / in_cs(k) |
---|
2386 | IF ( prunmode==1 .OR. .NOT. advect_particle_water ) THEN |
---|
2387 | CALL equilibration( in_rh, in_t(k), aero, .TRUE. ) |
---|
2388 | ENDIF |
---|
2389 | ! |
---|
2390 | !-- Gaseous tracer concentrations in #/m3 |
---|
2391 | IF ( salsa_gases_from_chem ) THEN |
---|
2392 | ! |
---|
2393 | !-- Convert concentrations in ppm to #/m3 |
---|
2394 | zgso4 = chem_species(gas_index_chem(1))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2395 | zghno3 = chem_species(gas_index_chem(2))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2396 | zgnh3 = chem_species(gas_index_chem(3))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2397 | zgocnv = chem_species(gas_index_chem(4))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2398 | zgocsv = chem_species(gas_index_chem(5))%conc(k,j,i) * ppm_to_nconc(k) |
---|
2399 | ELSE |
---|
2400 | zgso4 = salsa_gas(1)%conc(k,j,i) |
---|
2401 | zghno3 = salsa_gas(2)%conc(k,j,i) |
---|
2402 | zgnh3 = salsa_gas(3)%conc(k,j,i) |
---|
2403 | zgocnv = salsa_gas(4)%conc(k,j,i) |
---|
2404 | zgocsv = salsa_gas(5)%conc(k,j,i) |
---|
2405 | ENDIF |
---|
2406 | ! |
---|
2407 | !-- ***************************************! |
---|
2408 | !-- Run SALSA ! |
---|
2409 | !-- ***************************************! |
---|
2410 | CALL run_salsa( in_p(k), in_cw(k), in_cs(k), in_t(k), in_u(k), & |
---|
2411 | in_adn(k), in_lad, zgso4, zgocnv, zgocsv, zghno3, zgnh3,& |
---|
2412 | aero, prtcl, kvis(k), Sc(k,:), vd(k,:), dt_salsa ) |
---|
2413 | !-- ***************************************! |
---|
2414 | IF ( lsdepo ) sedim_vd(k,j,i,:) = vd(k,:) |
---|
2415 | ! |
---|
2416 | !-- Calculate changes in concentrations |
---|
2417 | DO bb = 1, nbins |
---|
2418 | aerosol_number(bb)%conc(k,j,i) = aerosol_number(bb)%conc(k,j,i) & |
---|
2419 | + ( aero(bb)%numc - aero_old(bb)%numc ) * flag |
---|
2420 | ENDDO |
---|
2421 | |
---|
2422 | IF ( iso4 > 0 ) THEN |
---|
2423 | vc = 1 |
---|
2424 | str = ( iso4-1 ) * nbins + 1 |
---|
2425 | endi = iso4 * nbins |
---|
2426 | cc = 1 |
---|
2427 | DO ss = str, endi |
---|
2428 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2429 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2430 | * arhoh2so4 * flag |
---|
2431 | cc = cc+1 |
---|
2432 | ENDDO |
---|
2433 | ENDIF |
---|
2434 | |
---|
2435 | IF ( ioc > 0 ) THEN |
---|
2436 | vc = 2 |
---|
2437 | str = ( ioc-1 ) * nbins + 1 |
---|
2438 | endi = ioc * nbins |
---|
2439 | cc = 1 |
---|
2440 | DO ss = str, endi |
---|
2441 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2442 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2443 | * arhooc * flag |
---|
2444 | cc = cc+1 |
---|
2445 | ENDDO |
---|
2446 | ENDIF |
---|
2447 | |
---|
2448 | IF ( ibc > 0 ) THEN |
---|
2449 | vc = 3 |
---|
2450 | str = ( ibc-1 ) * nbins + 1 + fn1a |
---|
2451 | endi = ibc * nbins |
---|
2452 | cc = 1 + fn1a |
---|
2453 | DO ss = str, endi |
---|
2454 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2455 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2456 | * arhobc * flag |
---|
2457 | cc = cc+1 |
---|
2458 | ENDDO |
---|
2459 | ENDIF |
---|
2460 | |
---|
2461 | IF ( idu > 0 ) THEN |
---|
2462 | vc = 4 |
---|
2463 | str = ( idu-1 ) * nbins + 1 + fn1a |
---|
2464 | endi = idu * nbins |
---|
2465 | cc = 1 + fn1a |
---|
2466 | DO ss = str, endi |
---|
2467 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2468 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2469 | * arhodu * flag |
---|
2470 | cc = cc+1 |
---|
2471 | ENDDO |
---|
2472 | ENDIF |
---|
2473 | |
---|
2474 | IF ( iss > 0 ) THEN |
---|
2475 | vc = 5 |
---|
2476 | str = ( iss-1 ) * nbins + 1 + fn1a |
---|
2477 | endi = iss * nbins |
---|
2478 | cc = 1 + fn1a |
---|
2479 | DO ss = str, endi |
---|
2480 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2481 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2482 | * arhoss * flag |
---|
2483 | cc = cc+1 |
---|
2484 | ENDDO |
---|
2485 | ENDIF |
---|
2486 | |
---|
2487 | IF ( ino > 0 ) THEN |
---|
2488 | vc = 6 |
---|
2489 | str = ( ino-1 ) * nbins + 1 |
---|
2490 | endi = ino * nbins |
---|
2491 | cc = 1 |
---|
2492 | DO ss = str, endi |
---|
2493 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2494 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2495 | * arhohno3 * flag |
---|
2496 | cc = cc+1 |
---|
2497 | ENDDO |
---|
2498 | ENDIF |
---|
2499 | |
---|
2500 | IF ( inh > 0 ) THEN |
---|
2501 | vc = 7 |
---|
2502 | str = ( ino-1 ) * nbins + 1 |
---|
2503 | endi = ino * nbins |
---|
2504 | cc = 1 |
---|
2505 | DO ss = str, endi |
---|
2506 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2507 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2508 | * arhonh3 * flag |
---|
2509 | cc = cc+1 |
---|
2510 | ENDDO |
---|
2511 | ENDIF |
---|
2512 | |
---|
2513 | IF ( advect_particle_water ) THEN |
---|
2514 | nc_h2o = get_index( prtcl,'H2O' ) |
---|
2515 | vc = 8 |
---|
2516 | str = ( nc_h2o-1 ) * nbins + 1 |
---|
2517 | endi = nc_h2o * nbins |
---|
2518 | cc = 1 |
---|
2519 | DO ss = str, endi |
---|
2520 | aerosol_mass(ss)%conc(k,j,i) = aerosol_mass(ss)%conc(k,j,i) & |
---|
2521 | + ( aero(cc)%volc(vc) - aero_old(cc)%volc(vc) ) & |
---|
2522 | * arhoh2o * flag |
---|
2523 | IF ( prunmode == 1 ) THEN |
---|
2524 | aerosol_mass(ss)%init(k) = MAX( aerosol_mass(ss)%init(k), & |
---|
2525 | aerosol_mass(ss)%conc(k,j,i) ) |
---|
2526 | ENDIF |
---|
2527 | cc = cc+1 |
---|
2528 | ENDDO |
---|
2529 | ENDIF |
---|
2530 | |
---|
2531 | !-- Condensation of precursor gases |
---|
2532 | IF ( lscndgas ) THEN |
---|
2533 | IF ( salsa_gases_from_chem ) THEN |
---|
2534 | ! |
---|
2535 | !-- SO4 (or H2SO4) |
---|
2536 | chem_species( gas_index_chem(1) )%conc(k,j,i) = & |
---|
2537 | chem_species( gas_index_chem(1) )%conc(k,j,i) + & |
---|
2538 | ( zgso4 / ppm_to_nconc(k) - & |
---|
2539 | chem_species( gas_index_chem(1) )%conc(k,j,i) ) * flag |
---|
2540 | ! |
---|
2541 | !-- HNO3 |
---|
2542 | chem_species( gas_index_chem(2) )%conc(k,j,i) = & |
---|
2543 | chem_species( gas_index_chem(2) )%conc(k,j,i) + & |
---|
2544 | ( zghno3 / ppm_to_nconc(k) - & |
---|
2545 | chem_species( gas_index_chem(2) )%conc(k,j,i) ) * flag |
---|
2546 | ! |
---|
2547 | !-- NH3 |
---|
2548 | chem_species( gas_index_chem(3) )%conc(k,j,i) = & |
---|
2549 | chem_species( gas_index_chem(3) )%conc(k,j,i) + & |
---|
2550 | ( zgnh3 / ppm_to_nconc(k) - & |
---|
2551 | chem_species( gas_index_chem(3) )%conc(k,j,i) ) * flag |
---|
2552 | ! |
---|
2553 | !-- non-volatile OC |
---|
2554 | chem_species( gas_index_chem(4) )%conc(k,j,i) = & |
---|
2555 | chem_species( gas_index_chem(4) )%conc(k,j,i) + & |
---|
2556 | ( zgocnv / ppm_to_nconc(k) - & |
---|
2557 | chem_species( gas_index_chem(4) )%conc(k,j,i) ) * flag |
---|
2558 | ! |
---|
2559 | !-- semi-volatile OC |
---|
2560 | chem_species( gas_index_chem(5) )%conc(k,j,i) = & |
---|
2561 | chem_species( gas_index_chem(5) )%conc(k,j,i) + & |
---|
2562 | ( zgocsv / ppm_to_nconc(k) - & |
---|
2563 | chem_species( gas_index_chem(5) )%conc(k,j,i) ) * flag |
---|
2564 | |
---|
2565 | ELSE |
---|
2566 | ! |
---|
2567 | !-- SO4 (or H2SO4) |
---|
2568 | salsa_gas(1)%conc(k,j,i) = salsa_gas(1)%conc(k,j,i) + ( zgso4 - & |
---|
2569 | salsa_gas(1)%conc(k,j,i) ) * flag |
---|
2570 | ! |
---|
2571 | !-- HNO3 |
---|
2572 | salsa_gas(2)%conc(k,j,i) = salsa_gas(2)%conc(k,j,i) + ( zghno3 - & |
---|
2573 | salsa_gas(2)%conc(k,j,i) ) * flag |
---|
2574 | ! |
---|
2575 | !-- NH3 |
---|
2576 | salsa_gas(3)%conc(k,j,i) = salsa_gas(3)%conc(k,j,i) + ( zgnh3 - & |
---|
2577 | salsa_gas(3)%conc(k,j,i) ) * flag |
---|
2578 | ! |
---|
2579 | !-- non-volatile OC |
---|
2580 | salsa_gas(4)%conc(k,j,i) = salsa_gas(4)%conc(k,j,i) + ( zgocnv - & |
---|
2581 | salsa_gas(4)%conc(k,j,i) ) * flag |
---|
2582 | ! |
---|
2583 | !-- semi-volatile OC |
---|
2584 | salsa_gas(5)%conc(k,j,i) = salsa_gas(5)%conc(k,j,i) + ( zgocsv - & |
---|
2585 | salsa_gas(5)%conc(k,j,i) ) * flag |
---|
2586 | ENDIF |
---|
2587 | ENDIF |
---|
2588 | ! |
---|
2589 | !-- Tendency of water vapour mixing ratio is obtained from the |
---|
2590 | !-- change in RH during SALSA run. This releases heat and changes pt. |
---|
2591 | !-- Assumes no temperature change during SALSA run. |
---|
2592 | !-- q = r / (1+r), Euler method for integration |
---|
2593 | ! |
---|
2594 | IF ( feedback_to_palm ) THEN |
---|
2595 | q_p(k,j,i) = q_p(k,j,i) + 1.0_wp / ( in_cw(k) * in_adn(k) + 1.0_wp ) & |
---|
2596 | ** 2.0_wp * ( in_cw(k) - cw_old ) * in_adn(k) |
---|
2597 | pt_p(k,j,i) = pt_p(k,j,i) + alv / c_p * ( in_cw(k) - cw_old ) * & |
---|
2598 | in_adn(k) / ( in_cw(k) / in_adn(k) + 1.0_wp ) ** 2.0_wp& |
---|
2599 | * pt_p(k,j,i) / in_t(k) |
---|
2600 | ENDIF |
---|
2601 | |
---|
2602 | ENDDO ! k |
---|
2603 | ! |
---|
2604 | !-- Set surfaces and wall fluxes due to deposition |
---|
2605 | IF ( lsdepo_topo .AND. prunmode == 3 ) THEN |
---|
2606 | IF ( .NOT. land_surface .AND. .NOT. urban_surface ) THEN |
---|
2607 | CALL depo_topo( i, j, surf_def_h(0), vd, Sc, kvis, in_u, rho_air_zw ) |
---|
2608 | DO l = 0, 3 |
---|
2609 | CALL depo_topo( i, j, surf_def_v(l), vd, Sc, kvis, in_u, & |
---|
2610 | rho_air_zw**0.0_wp ) |
---|
2611 | ENDDO |
---|
2612 | ELSE |
---|
2613 | CALL depo_topo( i, j, surf_usm_h, vd, Sc, kvis, in_u, rho_air_zw ) |
---|
2614 | DO l = 0, 3 |
---|
2615 | CALL depo_topo( i, j, surf_usm_v(l), vd, Sc, kvis, in_u, & |
---|
2616 | rho_air_zw**0.0_wp ) |
---|
2617 | ENDDO |
---|
2618 | CALL depo_topo( i, j, surf_lsm_h, vd, Sc, kvis, in_u, rho_air_zw ) |
---|
2619 | DO l = 0, 3 |
---|
2620 | CALL depo_topo( i, j, surf_lsm_v(l), vd, Sc, kvis, in_u, & |
---|
2621 | rho_air_zw**0.0_wp ) |
---|
2622 | ENDDO |
---|
2623 | ENDIF |
---|
2624 | ENDIF |
---|
2625 | |
---|
2626 | END SUBROUTINE salsa_driver |
---|
2627 | |
---|
2628 | !------------------------------------------------------------------------------! |
---|
2629 | ! Description: |
---|
2630 | ! ------------ |
---|
2631 | !> The SALSA subroutine |
---|
2632 | !> Modified for the new aerosol datatype, |
---|
2633 | !> Juha Tonttila, FMI, 2014. |
---|
2634 | !> Only aerosol processes included, Mona Kurppa, UHel, 2017 |
---|
2635 | !------------------------------------------------------------------------------! |
---|
2636 | SUBROUTINE run_salsa( ppres, pcw, pcs, ptemp, mag_u, adn, lad, pc_h2so4, & |
---|
2637 | pc_ocnv, pc_ocsv, pc_hno3, pc_nh3, paero, prtcl, kvis, & |
---|
2638 | Sc, vc, ptstep ) |
---|
2639 | |
---|
2640 | IMPLICIT NONE |
---|
2641 | ! |
---|
2642 | !-- Input parameters and variables |
---|
2643 | REAL(wp), INTENT(in) :: adn !< air density (kg/m3) |
---|
2644 | REAL(wp), INTENT(in) :: lad !< leaf area density (m2/m3) |
---|
2645 | REAL(wp), INTENT(in) :: mag_u !< magnitude of wind (m/s) |
---|
2646 | REAL(wp), INTENT(in) :: ppres !< atmospheric pressure at each grid |
---|
2647 | !< point (Pa) |
---|
2648 | REAL(wp), INTENT(in) :: ptemp !< temperature at each grid point (K) |
---|
2649 | REAL(wp), INTENT(in) :: ptstep !< time step of salsa processes (s) |
---|
2650 | TYPE(component_index), INTENT(in) :: prtcl !< part. component index table |
---|
2651 | ! |
---|
2652 | !-- Input variables that are changed within: |
---|
2653 | REAL(wp), INTENT(inout) :: kvis !< kinematic viscosity of air (m2/s) |
---|
2654 | REAL(wp), INTENT(inout) :: Sc(:) !< particle Schmidt number |
---|
2655 | REAL(wp), INTENT(inout) :: vc(:) !< particle fall speed (m/s, |
---|
2656 | !< sedimentation velocity) |
---|
2657 | !-- Gas phase concentrations at each grid point (#/m3) |
---|
2658 | REAL(wp), INTENT(inout) :: pc_h2so4 !< sulphuric acid |
---|
2659 | REAL(wp), INTENT(inout) :: pc_hno3 !< nitric acid |
---|
2660 | REAL(wp), INTENT(inout) :: pc_nh3 !< ammonia |
---|
2661 | REAL(wp), INTENT(inout) :: pc_ocnv !< nonvolatile OC |
---|
2662 | REAL(wp), INTENT(inout) :: pc_ocsv !< semivolatile OC |
---|
2663 | REAL(wp), INTENT(inout) :: pcs !< Saturation concentration of water |
---|
2664 | !< vapour (kg/m3) |
---|
2665 | REAL(wp), INTENT(inout) :: pcw !< Water vapour concentration (kg/m3) |
---|
2666 | TYPE(t_section), INTENT(inout) :: paero(fn2b) |
---|
2667 | ! |
---|
2668 | !-- Coagulation |
---|
2669 | IF ( lscoag ) THEN |
---|
2670 | CALL coagulation( paero, ptstep, ptemp, ppres ) |
---|
2671 | ENDIF |
---|
2672 | ! |
---|
2673 | !-- Condensation |
---|
2674 | IF ( lscnd ) THEN |
---|
2675 | CALL condensation( paero, pc_h2so4, pc_ocnv, pc_ocsv, pc_hno3, pc_nh3, & |
---|
2676 | pcw, pcs, ptemp, ppres, ptstep, prtcl ) |
---|
2677 | ENDIF |
---|
2678 | ! |
---|
2679 | !-- Deposition |
---|
2680 | IF ( lsdepo ) THEN |
---|
2681 | CALL deposition( paero, ptemp, adn, mag_u, lad, kvis, Sc, vc ) |
---|
2682 | ENDIF |
---|
2683 | ! |
---|
2684 | !-- Size distribution bin update |
---|
2685 | !-- Mona: why done 3 times in SALSA-standalone? |
---|
2686 | IF ( lsdistupdate ) THEN |
---|
2687 | CALL distr_update( paero ) |
---|
2688 | ENDIF |
---|
2689 | |
---|
2690 | END SUBROUTINE run_salsa |
---|
2691 | |
---|
2692 | !------------------------------------------------------------------------------! |
---|
2693 | ! Description: |
---|
2694 | ! ------------ |
---|
2695 | !> Set logical switches according to the host model state and user-specified |
---|
2696 | !> NAMELIST options. |
---|
2697 | !> Juha Tonttila, FMI, 2014 |
---|
2698 | !> Only aerosol processes included, Mona Kurppa, UHel, 2017 |
---|
2699 | !------------------------------------------------------------------------------! |
---|
2700 | SUBROUTINE set_salsa_runtime( prunmode ) |
---|
2701 | |
---|
2702 | IMPLICIT NONE |
---|
2703 | |
---|
2704 | INTEGER(iwp), INTENT(in) :: prunmode |
---|
2705 | |
---|
2706 | SELECT CASE(prunmode) |
---|
2707 | |
---|
2708 | CASE(1) !< Initialization |
---|
2709 | lscoag = .FALSE. |
---|
2710 | lscnd = .FALSE. |
---|
2711 | lscndgas = .FALSE. |
---|
2712 | lscndh2oae = .FALSE. |
---|
2713 | lsdepo = .FALSE. |
---|
2714 | lsdepo_vege = .FALSE. |
---|
2715 | lsdepo_topo = .FALSE. |
---|
2716 | lsdistupdate = .TRUE. |
---|
2717 | |
---|
2718 | CASE(2) !< Spinup period |
---|
2719 | lscoag = ( .FALSE. .AND. nlcoag ) |
---|
2720 | lscnd = ( .TRUE. .AND. nlcnd ) |
---|
2721 | lscndgas = ( .TRUE. .AND. nlcndgas ) |
---|
2722 | lscndh2oae = ( .TRUE. .AND. nlcndh2oae ) |
---|
2723 | |
---|
2724 | CASE(3) !< Run |
---|
2725 | lscoag = nlcoag |
---|
2726 | lscnd = nlcnd |
---|
2727 | lscndgas = nlcndgas |
---|
2728 | lscndh2oae = nlcndh2oae |
---|
2729 | lsdepo = nldepo |
---|
2730 | lsdepo_vege = nldepo_vege |
---|
2731 | lsdepo_topo = nldepo_topo |
---|
2732 | lsdistupdate = nldistupdate |
---|
2733 | |
---|
2734 | END SELECT |
---|
2735 | |
---|
2736 | |
---|
2737 | END SUBROUTINE set_salsa_runtime |
---|
2738 | |
---|
2739 | !------------------------------------------------------------------------------! |
---|
2740 | ! Description: |
---|
2741 | ! ------------ |
---|
2742 | !> Calculates the absolute temperature (using hydrostatic pressure), saturation |
---|
2743 | !> vapour pressure and mixing ratio over water, relative humidity and air |
---|
2744 | !> density needed in the SALSA model. |
---|
2745 | !> NOTE, no saturation adjustment takes place -> the resulting water vapour |
---|
2746 | !> mixing ratio can be supersaturated, allowing the microphysical calculations |
---|
2747 | !> in SALSA. |
---|
2748 | ! |
---|
2749 | !> Juha Tonttila, FMI, 2014 (original SALSAthrm) |
---|
2750 | !> Mona Kurppa, UHel, 2017 (adjustment for PALM and only aerosol processes) |
---|
2751 | !------------------------------------------------------------------------------! |
---|
2752 | SUBROUTINE salsa_thrm_ij( i, j, p_ij, temp_ij, cw_ij, cs_ij, adn_ij ) |
---|
2753 | |
---|
2754 | USE arrays_3d, & |
---|
2755 | ONLY: p, pt, q, zu |
---|
2756 | |
---|
2757 | USE basic_constants_and_equations_mod, & |
---|
2758 | ONLY: barometric_formula, exner_function, ideal_gas_law_rho, magnus |
---|
2759 | |
---|
2760 | USE control_parameters, & |
---|
2761 | ONLY: pt_surface, surface_pressure |
---|
2762 | |
---|
2763 | IMPLICIT NONE |
---|
2764 | |
---|
2765 | INTEGER(iwp), INTENT(in) :: i |
---|
2766 | INTEGER(iwp), INTENT(in) :: j |
---|
2767 | REAL(wp), DIMENSION(:), INTENT(inout) :: adn_ij |
---|
2768 | REAL(wp), DIMENSION(:), INTENT(inout) :: p_ij |
---|
2769 | REAL(wp), DIMENSION(:), INTENT(inout) :: temp_ij |
---|
2770 | REAL(wp), DIMENSION(:), INTENT(inout), OPTIONAL :: cw_ij |
---|
2771 | REAL(wp), DIMENSION(:), INTENT(inout), OPTIONAL :: cs_ij |
---|
2772 | REAL(wp), DIMENSION(nzb:nzt+1) :: e_s !< saturation vapour pressure |
---|
2773 | !< over water (Pa) |
---|
2774 | REAL(wp) :: t_surface !< absolute surface temperature (K) |
---|
2775 | ! |
---|
2776 | !-- Pressure p_ijk (Pa) = hydrostatic pressure + perturbation pressure (p) |
---|
2777 | t_surface = pt_surface * exner_function( surface_pressure ) |
---|
2778 | p_ij(:) = 100.0_wp * barometric_formula( zu, t_surface, surface_pressure ) & |
---|
2779 | + p(:,j,i) |
---|
2780 | ! |
---|
2781 | !-- Absolute ambient temperature (K) |
---|
2782 | temp_ij(:) = pt(:,j,i) * exner_function( p_ij(:) ) |
---|
2783 | ! |
---|
2784 | !-- Air density |
---|
2785 | adn_ij(:) = ideal_gas_law_rho( p_ij(:), temp_ij(:) ) |
---|
2786 | ! |
---|
2787 | !-- Water vapour concentration r_v (kg/m3) |
---|
2788 | IF ( PRESENT( cw_ij ) ) THEN |
---|
2789 | cw_ij(:) = ( q(:,j,i) / ( 1.0_wp - q(:,j,i) ) ) * adn_ij(:) |
---|
2790 | ENDIF |
---|
2791 | ! |
---|
2792 | !-- Saturation mixing ratio r_s (kg/kg) from vapour pressure at temp (Pa) |
---|
2793 | IF ( PRESENT( cs_ij ) ) THEN |
---|
2794 | e_s(:) = magnus( temp_ij(:) ) |
---|
2795 | cs_ij(:) = ( 0.622_wp * e_s / ( p_ij(:) - e_s(:) ) ) * adn_ij(:) |
---|
2796 | ENDIF |
---|
2797 | |
---|
2798 | END SUBROUTINE salsa_thrm_ij |
---|
2799 | |
---|
2800 | !------------------------------------------------------------------------------! |
---|
2801 | ! Description: |
---|
2802 | ! ------------ |
---|
2803 | !> Calculates ambient sizes of particles by equilibrating soluble fraction of |
---|
2804 | !> particles with water using the ZSR method (Stokes and Robinson, 1966). |
---|
2805 | !> Method: |
---|
2806 | !> Following chemical components are assumed water-soluble |
---|
2807 | !> - (ammonium) sulphate (100%) |
---|
2808 | !> - sea salt (100 %) |
---|
2809 | !> - organic carbon (epsoc * 100%) |
---|
2810 | !> Exact thermodynamic considerations neglected. |
---|
2811 | !> - If particles contain no sea salt, calculation according to sulphate |
---|
2812 | !> properties |
---|
2813 | !> - If contain sea salt but no sulphate, calculation according to sea salt |
---|
2814 | !> properties |
---|
2815 | !> - If contain both sulphate and sea salt -> the molar fraction of these |
---|
2816 | !> compounds determines which one of them is used as the basis of calculation. |
---|
2817 | !> If sulphate and sea salt coexist in a particle, it is assumed that the Cl is |
---|
2818 | !> replaced by sulphate; thus only either sulphate + organics or sea salt + |
---|
2819 | !> organics is included in the calculation of soluble fraction. |
---|
2820 | !> Molality parameterizations taken from Table 1 of Tang: Thermodynamic and |
---|
2821 | !> optical properties of mixed-salt aerosols of atmospheric importance, |
---|
2822 | !> J. Geophys. Res., 102 (D2), 1883-1893 (1997) |
---|
2823 | ! |
---|
2824 | !> Coded by: |
---|
2825 | !> Hannele Korhonen (FMI) 2005 |
---|
2826 | !> Harri Kokkola (FMI) 2006 |
---|
2827 | !> Matti Niskanen(FMI) 2012 |
---|
2828 | !> Anton Laakso (FMI) 2013 |
---|
2829 | !> Modified for the new aerosol datatype, Juha Tonttila (FMI) 2014 |
---|
2830 | ! |
---|
2831 | !> fxm: should sea salt form a solid particle when prh is very low (even though |
---|
2832 | !> it could be mixed with e.g. sulphate)? |
---|
2833 | !> fxm: crashes if no sulphate or sea salt |
---|
2834 | !> fxm: do we really need to consider Kelvin effect for subrange 2 |
---|
2835 | !------------------------------------------------------------------------------! |
---|
2836 | SUBROUTINE equilibration( prh, ptemp, paero, init ) |
---|
2837 | |
---|
2838 | IMPLICIT NONE |
---|
2839 | ! |
---|
2840 | !-- Input variables |
---|
2841 | LOGICAL, INTENT(in) :: init !< TRUE: Initialization call |
---|
2842 | !< FALSE: Normal runtime: update water |
---|
2843 | !< content only for 1a |
---|
2844 | REAL(wp), INTENT(in) :: prh !< relative humidity [0-1] |
---|
2845 | REAL(wp), INTENT(in) :: ptemp !< temperature (K) |
---|
2846 | ! |
---|
2847 | !-- Output variables |
---|
2848 | TYPE(t_section), INTENT(inout) :: paero(fn2b) |
---|
2849 | ! |
---|
2850 | !-- Local |
---|
2851 | INTEGER(iwp) :: b !< loop index |
---|
2852 | INTEGER(iwp) :: counti !< loop index |
---|
2853 | REAL(wp) :: zaw !< water activity [0-1] |
---|
2854 | REAL(wp) :: zbinmol(7) !< binary molality of each components (mol/kg) |
---|
2855 | REAL(wp) :: zcore !< Volume of dry particle |
---|
2856 | REAL(wp) :: zdold !< Old diameter |
---|
2857 | REAL(wp) :: zdwet !< Wet diameter or mean droplet diameter |
---|
2858 | REAL(wp) :: zke !< Kelvin term in the Köhler equation |
---|
2859 | REAL(wp) :: zlwc !< liquid water content [kg/m3-air] |
---|
2860 | REAL(wp) :: zrh !< Relative humidity |
---|
2861 | REAL(wp) :: zvpart(7) !< volume of chem. compounds in one particle |
---|
2862 | |
---|
2863 | zaw = 0.0_wp |
---|
2864 | zbinmol = 0.0_wp |
---|
2865 | zcore = 0.0_wp |
---|
2866 | zdold = 0.0_wp |
---|
2867 | zdwet = 0.0_wp |
---|
2868 | zlwc = 0.0_wp |
---|
2869 | zrh = 0.0_wp |
---|
2870 | |
---|
2871 | ! |
---|
2872 | !-- Relative humidity: |
---|
2873 | zrh = prh |
---|
2874 | zrh = MAX( zrh, 0.05_wp ) |
---|
2875 | zrh = MIN( zrh, 0.98_wp) |
---|
2876 | ! |
---|
2877 | !-- 1) Regime 1: sulphate and partly water-soluble OC. Done for every CALL |
---|
2878 | DO b = in1a, fn1a ! size bin |
---|
2879 | |
---|
2880 | zbinmol = 0.0_wp |
---|
2881 | zdold = 1.0_wp |
---|
2882 | zke = 1.02_wp |
---|
2883 | |
---|
2884 | IF ( paero(b)%numc > nclim ) THEN |
---|
2885 | ! |
---|
2886 | !-- Volume in one particle |
---|
2887 | zvpart = 0.0_wp |
---|
2888 | zvpart(1:2) = paero(b)%volc(1:2) / paero(b)%numc |
---|
2889 | zvpart(6:7) = paero(b)%volc(6:7) / paero(b)%numc |
---|
2890 | ! |
---|
2891 | !-- Total volume and wet diameter of one dry particle |
---|
2892 | zcore = SUM( zvpart(1:2) ) |
---|
2893 | zdwet = paero(b)%dwet |
---|
2894 | |
---|
2895 | counti = 0 |
---|
2896 | DO WHILE ( ABS( zdwet / zdold - 1.0_wp ) > 1.0E-2_wp ) |
---|
2897 | |
---|
2898 | zdold = MAX( zdwet, 1.0E-20_wp ) |
---|
2899 | zaw = MAX( 1.0E-3_wp, zrh / zke ) ! To avoid underflow |
---|
2900 | ! |
---|
2901 | !-- Binary molalities (mol/kg): |
---|
2902 | !-- Sulphate |
---|
2903 | zbinmol(1) = 1.1065495E+2_wp - 3.6759197E+2_wp * zaw & |
---|
2904 | + 5.0462934E+2_wp * zaw**2.0_wp & |
---|
2905 | - 3.1543839E+2_wp * zaw**3.0_wp & |
---|
2906 | + 6.770824E+1_wp * zaw**4.0_wp |
---|
2907 | !-- Organic carbon |
---|
2908 | zbinmol(2) = 1.0_wp / ( zaw * amh2o ) - 1.0_wp / amh2o |
---|
2909 | !-- Nitric acid |
---|
2910 | zbinmol(6) = 2.306844303E+1_wp - 3.563608869E+1_wp * zaw & |
---|
2911 | - 6.210577919E+1_wp * zaw**2.0_wp & |
---|
2912 | + 5.510176187E+2_wp * zaw**3.0_wp & |
---|
2913 | - 1.460055286E+3_wp * zaw**4.0_wp & |
---|
2914 | + 1.894467542E+3_wp * zaw**5.0_wp & |
---|
2915 | - 1.220611402E+3_wp * zaw**6.0_wp & |
---|
2916 | + 3.098597737E+2_wp * zaw**7.0_wp |
---|
2917 | ! |
---|
2918 | !-- Calculate the liquid water content (kg/m3-air) using ZSR (see e.g. |
---|
2919 | !-- Eq. 10.98 in Seinfeld and Pandis (2006)) |
---|
2920 | zlwc = ( paero(b)%volc(1) * ( arhoh2so4 / amh2so4 ) ) / & |
---|
2921 | zbinmol(1) + epsoc * paero(b)%volc(2) * ( arhooc / amoc ) & |
---|
2922 | / zbinmol(2) + ( paero(b)%volc(6) * ( arhohno3/amhno3 ) ) & |
---|
2923 | / zbinmol(6) |
---|
2924 | ! |
---|
2925 | !-- Particle wet diameter (m) |
---|
2926 | zdwet = ( zlwc / paero(b)%numc / arhoh2o / api6 + & |
---|
2927 | ( SUM( zvpart(6:7) ) / api6 ) + & |
---|
2928 | zcore / api6 )**( 1.0_wp / 3.0_wp ) |
---|
2929 | ! |
---|
2930 | !-- Kelvin effect (Eq. 10.85 in in Seinfeld and Pandis (2006)). Avoid |
---|
2931 | !-- overflow. |
---|
2932 | zke = EXP( MIN( 50.0_wp, & |
---|
2933 | 4.0_wp * surfw0 * amvh2so4 / ( abo * ptemp * zdwet ) ) ) |
---|
2934 | |
---|
2935 | counti = counti + 1 |
---|
2936 | IF ( counti > 1000 ) THEN |
---|
2937 | message_string = 'Subrange 1: no convergence!' |
---|
2938 | CALL message( 'salsa_mod: equilibration', 'SA0042', & |
---|
2939 | 1, 2, 0, 6, 0 ) |
---|
2940 | ENDIF |
---|
2941 | ENDDO |
---|
2942 | ! |
---|
2943 | !-- Instead of lwc, use the volume concentration of water from now on |
---|
2944 | !-- (easy to convert...) |
---|
2945 | paero(b)%volc(8) = zlwc / arhoh2o |
---|
2946 | ! |
---|
2947 | !-- If this is initialization, update the core and wet diameter |
---|
2948 | IF ( init ) THEN |
---|
2949 | paero(b)%dwet = zdwet |
---|
2950 | paero(b)%core = zcore |
---|
2951 | ENDIF |
---|
2952 | |
---|
2953 | ELSE |
---|
2954 | !-- If initialization |
---|
2955 | !-- 1.2) empty bins given bin average values |
---|
2956 | IF ( init ) THEN |
---|
2957 | paero(b)%dwet = paero(b)%dmid |
---|
2958 | paero(b)%core = api6 * paero(b)%dmid ** 3.0_wp |
---|
2959 | ENDIF |
---|
2960 | |
---|
2961 | ENDIF |
---|
2962 | |
---|
2963 | ENDDO !< b |
---|
2964 | ! |
---|
2965 | !-- 2) Regime 2a: sulphate, OC, BC and sea salt |
---|
2966 | !-- This is done only for initialization call, otherwise the water contents |
---|
2967 | !-- are computed via condensation |
---|
2968 | IF ( init ) THEN |
---|
2969 | DO b = in2a, fn2b |
---|
2970 | |
---|
2971 | !-- Initialize |
---|
2972 | zke = 1.02_wp |
---|
2973 | zbinmol = 0.0_wp |
---|
2974 | zdold = 1.0_wp |
---|
2975 | ! |
---|
2976 | !-- 1) Particle properties calculated for non-empty bins |
---|
2977 | IF ( paero(b)%numc > nclim ) THEN |
---|
2978 | ! |
---|
2979 | !-- Volume in one particle [fxm] |
---|
2980 | zvpart = 0.0_wp |
---|
2981 | zvpart(1:7) = paero(b)%volc(1:7) / paero(b)%numc |
---|
2982 | ! |
---|
2983 | !-- Total volume and wet diameter of one dry particle [fxm] |
---|
2984 | zcore = SUM( zvpart(1:5) ) |
---|
2985 | zdwet = paero(b)%dwet |
---|
2986 | |
---|
2987 | counti = 0 |
---|
2988 | DO WHILE ( ABS( zdwet / zdold - 1.0_wp ) > 1.0E-12_wp ) |
---|
2989 | |
---|
2990 | zdold = MAX( zdwet, 1.0E-20_wp ) |
---|
2991 | zaw = zrh / zke |
---|
2992 | ! |
---|
2993 | !-- Binary molalities (mol/kg): |
---|
2994 | !-- Sulphate |
---|
2995 | zbinmol(1) = 1.1065495E+2_wp - 3.6759197E+2_wp * zaw & |
---|
2996 | + 5.0462934E+2_wp * zaw**2 - 3.1543839E+2_wp * zaw**3 & |
---|
2997 | + 6.770824E+1_wp * zaw**4 |
---|
2998 | !-- Organic carbon |
---|
2999 | zbinmol(2) = 1.0_wp / ( zaw * amh2o ) - 1.0_wp / amh2o |
---|
3000 | !-- Nitric acid |
---|
3001 | zbinmol(6) = 2.306844303E+1_wp - 3.563608869E+1_wp * zaw & |
---|
3002 | - 6.210577919E+1_wp * zaw**2 + 5.510176187E+2_wp * zaw**3 & |
---|
3003 | - 1.460055286E+3_wp * zaw**4 + 1.894467542E+3_wp * zaw**5 & |
---|
3004 | - 1.220611402E+3_wp * zaw**6 + 3.098597737E+2_wp * zaw**7 |
---|
3005 | !-- Sea salt (natrium chloride) |
---|
3006 | zbinmol(5) = 5.875248E+1_wp - 1.8781997E+2_wp * zaw & |
---|
3007 | + 2.7211377E+2_wp * zaw**2 - 1.8458287E+2_wp * zaw**3 & |
---|
3008 | + 4.153689E+1_wp * zaw**4 |
---|
3009 | ! |
---|
3010 | !-- Calculate the liquid water content (kg/m3-air) |
---|
3011 | zlwc = ( paero(b)%volc(1) * ( arhoh2so4 / amh2so4 ) ) / & |
---|
3012 | zbinmol(1) + epsoc * ( paero(b)%volc(2) * ( arhooc / & |
---|
3013 | amoc ) ) / zbinmol(2) + ( paero(b)%volc(6) * ( arhohno3 & |
---|
3014 | / amhno3 ) ) / zbinmol(6) + ( paero(b)%volc(5) * & |
---|
3015 | ( arhoss / amss ) ) / zbinmol(5) |
---|
3016 | |
---|
3017 | !-- Particle wet radius (m) |
---|
3018 | zdwet = ( zlwc / paero(b)%numc / arhoh2o / api6 + & |
---|
3019 | ( SUM( zvpart(6:7) ) / api6 ) + & |
---|
3020 | zcore / api6 ) ** ( 1.0_wp / 3.0_wp ) |
---|
3021 | ! |
---|
3022 | !-- Kelvin effect (Eq. 10.85 in Seinfeld and Pandis (2006)) |
---|
3023 | zke = EXP( MIN( 50.0_wp, & |
---|
3024 | 4.0_wp * surfw0 * amvh2so4 / ( abo * zdwet * ptemp ) ) ) |
---|
3025 | |
---|
3026 | counti = counti + 1 |
---|
3027 | IF ( counti > 1000 ) THEN |
---|
3028 | message_string = 'Subrange 2: no convergence!' |
---|
3029 | CALL message( 'salsa_mod: equilibration', 'SA0043', & |
---|
3030 | 1, 2, 0, 6, 0 ) |
---|
3031 | ENDIF |
---|
3032 | ENDDO |
---|
3033 | ! |
---|
3034 | !-- Liquid water content; instead of LWC use the volume concentration |
---|
3035 | paero(b)%volc(8) = zlwc / arhoh2o |
---|
3036 | paero(b)%dwet = zdwet |
---|
3037 | paero(b)%core = zcore |
---|
3038 | |
---|
3039 | ELSE |
---|
3040 | !-- 2.2) empty bins given bin average values |
---|
3041 | paero(b)%dwet = paero(b)%dmid |
---|
3042 | paero(b)%core = api6 * paero(b)%dmid ** 3.0_wp |
---|
3043 | ENDIF |
---|
3044 | |
---|
3045 | ENDDO ! b |
---|
3046 | ENDIF |
---|
3047 | |
---|
3048 | END SUBROUTINE equilibration |
---|
3049 | |
---|
3050 | !------------------------------------------------------------------------------! |
---|
3051 | !> Description: |
---|
3052 | !> ------------ |
---|
3053 | !> Calculation of the settling velocity vc (m/s) per aerosol size bin and |
---|
3054 | !> deposition on plant canopy (lsdepo_vege). |
---|
3055 | ! |
---|
3056 | !> Deposition is based on either the scheme presented in: |
---|
3057 | !> Zhang et al. (2001), Atmos. Environ. 35, 549-560 (includes collection due to |
---|
3058 | !> Brownian diffusion, impaction, interception and sedimentation) |
---|
3059 | !> OR |
---|
3060 | !> Petroff & Zhang (2010), Geosci. Model Dev. 3, 753-769 (includes also |
---|
3061 | !> collection due to turbulent impaction) |
---|
3062 | ! |
---|
3063 | !> Equation numbers refer to equation in Jacobson (2005): Fundamentals of |
---|
3064 | !> Atmospheric Modeling, 2nd Edition. |
---|
3065 | ! |
---|
3066 | !> Subroutine follows closely sedim_SALSA in UCLALES-SALSA written by Juha |
---|
3067 | !> Tonttila (KIT/FMI) and Zubair Maalick (UEF). |
---|
3068 | !> Rewritten to PALM by Mona Kurppa (UH), 2017. |
---|
3069 | ! |
---|
3070 | !> Call for grid point i,j,k |
---|
3071 | !------------------------------------------------------------------------------! |
---|
3072 | |
---|
3073 | SUBROUTINE deposition( paero, tk, adn, mag_u, lad, kvis, Sc, vc ) |
---|
3074 | |
---|
3075 | USE plant_canopy_model_mod, & |
---|
3076 | ONLY: cdc |
---|
3077 | |
---|
3078 | IMPLICIT NONE |
---|
3079 | |
---|
3080 | REAL(wp), INTENT(in) :: adn !< air density (kg/m3) |
---|
3081 | REAL(wp), INTENT(out) :: kvis !< kinematic viscosity of air (m2/s) |
---|
3082 | REAL(wp), INTENT(in) :: lad !< leaf area density (m2/m3) |
---|
3083 | REAL(wp), INTENT(in) :: mag_u !< wind velocity (m/s) |
---|
3084 | REAL(wp), INTENT(out) :: Sc(:) !< particle Schmidt number |
---|
3085 | REAL(wp), INTENT(in) :: tk !< abs.temperature (K) |
---|
3086 | REAL(wp), INTENT(out) :: vc(:) !< critical fall speed i.e. settling |
---|
3087 | !< velocity of an aerosol particle (m/s) |
---|
3088 | TYPE(t_section), INTENT(inout) :: paero(fn2b) |
---|
3089 | |
---|
3090 | INTEGER(iwp) :: b !< loop index |
---|
3091 | INTEGER(iwp) :: c !< loop index |
---|
3092 | REAL(wp) :: avis !< molecular viscocity of air (kg/(m*s)) |
---|
3093 | REAL(wp), PARAMETER :: c_A = 1.249_wp !< Constants A, B and C for |
---|
3094 | REAL(wp), PARAMETER :: c_B = 0.42_wp !< calculating the Cunningham |
---|
3095 | REAL(wp), PARAMETER :: c_C = 0.87_wp !< slip-flow correction (Cc) |
---|
3096 | !< according to Jacobson (2005), |
---|
3097 | !< Eq. 15.30 |
---|
3098 | REAL(wp) :: Cc !< Cunningham slip-flow correction factor |
---|
3099 | REAL(wp) :: Kn !< Knudsen number |
---|
3100 | REAL(wp) :: lambda !< molecular mean free path (m) |
---|
3101 | REAL(wp) :: mdiff !< particle diffusivity coefficient |
---|
3102 | REAL(wp) :: pdn !< particle density (kg/m3) |
---|
3103 | REAL(wp) :: ustar !< friction velocity (m/s) |
---|
3104 | REAL(wp) :: va !< thermal speed of an air molecule (m/s) |
---|
3105 | REAL(wp) :: zdwet !< wet diameter (m) |
---|
3106 | ! |
---|
3107 | !-- Initialise |
---|
3108 | Cc = 0.0_wp |
---|
3109 | Kn = 0.0_wp |
---|
3110 | mdiff = 0.0_wp |
---|
3111 | pdn = 1500.0_wp ! default value |
---|
3112 | ustar = 0.0_wp |
---|
3113 | ! |
---|
3114 | !-- Molecular viscosity of air (Eq. 4.54) |
---|
3115 | avis = 1.8325E-5_wp * ( 416.16_wp / ( tk + 120.0_wp ) ) * ( tk / & |
---|
3116 | 296.16_wp )**1.5_wp |
---|
3117 | ! |
---|
3118 | !-- Kinematic viscosity (Eq. 4.55) |
---|
3119 | kvis = avis / adn |
---|
3120 | ! |
---|
3121 | !-- Thermal velocity of an air molecule (Eq. 15.32) |
---|
3122 | va = SQRT( 8.0_wp * abo * tk / ( pi * am_airmol ) ) |
---|
3123 | ! |
---|
3124 | !-- Mean free path (m) (Eq. 15.24) |
---|
3125 | lambda = 2.0_wp * avis / ( adn * va ) |
---|
3126 | |
---|
3127 | DO b = 1, nbins |
---|
3128 | |
---|
3129 | IF ( paero(b)%numc < nclim ) CYCLE |
---|
3130 | zdwet = paero(b)%dwet |
---|
3131 | ! |
---|
3132 | !-- Knudsen number (Eq. 15.23) |
---|
3133 | Kn = MAX( 1.0E-2_wp, lambda / ( zdwet * 0.5_wp ) ) ! To avoid underflow |
---|
3134 | ! |
---|
3135 | !-- Cunningham slip-flow correction (Eq. 15.30) |
---|
3136 | Cc = 1.0_wp + Kn * ( c_A + c_B * EXP( -c_C / Kn ) ) |
---|
3137 | |
---|
3138 | !-- Particle diffusivity coefficient (Eq. 15.29) |
---|
3139 | mdiff = ( abo * tk * Cc ) / ( 3.0_wp * pi * avis * zdwet ) |
---|
3140 | ! |
---|
3141 | !-- Particle Schmidt number (Eq. 15.36) |
---|
3142 | Sc(b) = kvis / mdiff |
---|
3143 | ! |
---|
3144 | !-- Critical fall speed i.e. settling velocity (Eq. 20.4) |
---|
3145 | vc(b) = MIN( 1.0_wp, terminal_vel( 0.5_wp * zdwet, pdn, adn, avis, Cc) ) |
---|
3146 | |
---|
3147 | IF ( lsdepo_vege .AND. plant_canopy .AND. lad > 0.0_wp ) THEN |
---|
3148 | ! |
---|
3149 | !-- Friction velocity calculated following Prandtl (1925): |
---|
3150 | ustar = SQRT( cdc ) * mag_u |
---|
3151 | CALL depo_vege( paero, b, vc(b), mag_u, ustar, kvis, Sc(b), lad ) |
---|
3152 | ENDIF |
---|
3153 | ENDDO |
---|
3154 | |
---|
3155 | END SUBROUTINE deposition |
---|
3156 | |
---|
3157 | !------------------------------------------------------------------------------! |
---|
3158 | ! Description: |
---|
3159 | ! ------------ |
---|
3160 | !> Calculate change in number and volume concentrations due to deposition on |
---|
3161 | !> plant canopy. |
---|
3162 | !------------------------------------------------------------------------------! |
---|
3163 | SUBROUTINE depo_vege( paero, b, vc, mag_u, ustar, kvis_a, Sc, lad ) |
---|
3164 | |
---|
3165 | IMPLICIT NONE |
---|
3166 | |
---|
3167 | INTEGER(iwp), INTENT(in) :: b !< loop index |
---|
3168 | REAL(wp), INTENT(in) :: kvis_a !< kinematic viscosity of air (m2/s) |
---|
3169 | REAL(wp), INTENT(in) :: lad !< leaf area density (m2/m3) |
---|
3170 | REAL(wp), INTENT(in) :: mag_u !< wind velocity (m/s) |
---|
3171 | REAL(wp), INTENT(in) :: Sc !< particle Schmidt number |
---|
3172 | REAL(wp), INTENT(in) :: ustar !< friction velocity (m/s) |
---|
3173 | REAL(wp), INTENT(in) :: vc !< terminal velocity (m/s) |
---|
3174 | TYPE(t_section), INTENT(inout) :: paero(fn2b) |
---|
3175 | |
---|
3176 | INTEGER(iwp) :: c !< loop index |
---|
3177 | REAL(wp), PARAMETER :: c_A = 1.249_wp !< Constants A, B and C for |
---|
3178 | REAL(wp), PARAMETER :: c_B = 0.42_wp !< calculating the Cunningham |
---|
3179 | REAL(wp), PARAMETER :: c_C = 0.87_wp !< slip-flow correction (Cc) |
---|
3180 | !< according to Jacobson (2005), |
---|
3181 | !< Eq. 15.30 |
---|
3182 | REAL(wp) :: alpha !< parameter, Table 3 in Zhang et al. (2001) |
---|
3183 | REAL(wp) :: depo !< deposition efficiency |
---|
3184 | REAL(wp) :: C_Br !< coefficient for Brownian diffusion |
---|
3185 | REAL(wp) :: C_IM !< coefficient for inertial impaction |
---|
3186 | REAL(wp) :: C_IN !< coefficient for interception |
---|
3187 | REAL(wp) :: C_IT !< coefficient for turbulent impaction |
---|
3188 | REAL(wp) :: gamma !< parameter, Table 3 in Zhang et al. (2001) |
---|
3189 | REAL(wp) :: par_A !< parameter A for the characteristic radius of |
---|
3190 | !< collectors, Table 3 in Zhang et al. (2001) |
---|
3191 | REAL(wp) :: rt !< the overall quasi-laminar resistance for |
---|
3192 | !< particles |
---|
3193 | REAL(wp) :: St !< Stokes number for smooth surfaces or bluff |
---|
3194 | !< surface elements |
---|
3195 | REAL(wp) :: tau_plus !< dimensionless particle relaxation time |
---|
3196 | REAL(wp) :: v_bd !< deposition velocity due to Brownian diffusion |
---|
3197 | REAL(wp) :: v_im !< deposition velocity due to impaction |
---|
3198 | REAL(wp) :: v_in !< deposition velocity due to interception |
---|
3199 | REAL(wp) :: v_it !< deposition velocity due to turbulent impaction |
---|
3200 | ! |
---|
3201 | !-- Initialise |
---|
3202 | depo = 0.0_wp |
---|
3203 | rt = 0.0_wp |
---|
3204 | St = 0.0_wp |
---|
3205 | tau_plus = 0.0_wp |
---|
3206 | v_bd = 0.0_wp |
---|
3207 | v_im = 0.0_wp |
---|
3208 | v_in = 0.0_wp |
---|
3209 | v_it = 0.0_wp |
---|
3210 | |
---|
3211 | IF ( depo_vege_type == 'zhang2001' ) THEN |
---|
3212 | ! |
---|
3213 | !-- Parameters for the land use category 'deciduous broadleaf trees'(Table 3) |
---|
3214 | par_A = 5.0E-3_wp |
---|
3215 | alpha = 0.8_wp |
---|
3216 | gamma = 0.56_wp |
---|
3217 | ! |
---|
3218 | !-- Stokes number for vegetated surfaces (Seinfeld & Pandis (2006): Eq.19.24) |
---|
3219 | St = vc * ustar / ( g * par_A ) |
---|
3220 | ! |
---|
3221 | !-- The overall quasi-laminar resistance for particles (Zhang et al., Eq. 5) |
---|
3222 | rt = MAX( EPSILON( 1.0_wp ), ( 3.0_wp * ustar * EXP( -St**0.5_wp ) * & |
---|
3223 | ( Sc**( -gamma ) + ( St / ( alpha + St ) )**2.0_wp + & |
---|
3224 | 0.5_wp * ( paero(b)%dwet / par_A )**2.0_wp ) ) ) |
---|
3225 | depo = ( rt + vc ) * lad |
---|
3226 | paero(b)%numc = paero(b)%numc - depo * paero(b)%numc * dt_salsa |
---|
3227 | DO c = 1, maxspec+1 |
---|
3228 | paero(b)%volc(c) = paero(b)%volc(c) - depo * paero(b)%volc(c) * & |
---|
3229 | dt_salsa |
---|
3230 | ENDDO |
---|
3231 | |
---|
3232 | ELSEIF ( depo_vege_type == 'petroff2010' ) THEN |
---|
3233 | ! |
---|
3234 | !-- vd = v_BD + v_IN + v_IM + v_IT + vc |
---|
3235 | !-- Deposition efficiencies from Table 1. Constants from Table 2. |
---|
3236 | C_Br = 1.262_wp |
---|
3237 | C_IM = 0.130_wp |
---|
3238 | C_IN = 0.216_wp |
---|
3239 | C_IT = 0.056_wp |
---|
3240 | par_A = 0.03_wp ! Here: leaf width (m) |
---|
3241 | ! |
---|
3242 | !-- Stokes number for vegetated surfaces (Seinfeld & Pandis (2006): Eq.19.24) |
---|
3243 | St = vc * ustar / ( g * par_A ) |
---|
3244 | ! |
---|
3245 | !-- Non-dimensional relexation time of the particle on top of canopy |
---|
3246 | tau_plus = vc * ustar**2.0_wp / ( kvis_a * g ) |
---|
3247 | ! |
---|
3248 | !-- Brownian diffusion |
---|
3249 | v_bd = mag_u * C_Br * Sc**( -2.0_wp / 3.0_wp ) * & |
---|
3250 | ( mag_u * par_A / kvis_a )**( -0.5_wp ) |
---|
3251 | ! |
---|
3252 | !-- Interception |
---|
3253 | v_in = mag_u * C_IN * paero(b)%dwet / par_A * ( 2.0_wp + LOG( 2.0_wp * & |
---|
3254 | par_A / paero(b)%dwet ) ) |
---|
3255 | ! |
---|
3256 | !-- Impaction: Petroff (2009) Eq. 18 |
---|
3257 | v_im = mag_u * C_IM * ( St / ( St + 0.47_wp ) )**2.0_wp |
---|
3258 | |
---|
3259 | IF ( tau_plus < 20.0_wp ) THEN |
---|
3260 | v_it = 2.5E-3_wp * C_IT * tau_plus**2.0_wp |
---|
3261 | ELSE |
---|
3262 | v_it = C_IT |
---|
3263 | ENDIF |
---|
3264 | depo = ( v_bd + v_in + v_im + v_it + vc ) * lad |
---|
3265 | paero(b)%numc = paero(b)%numc - depo * paero(b)%numc * dt_salsa |
---|
3266 | DO c = 1, maxspec+1 |
---|
3267 | paero(b)%volc(c) = paero(b)%volc(c) - depo * paero(b)%volc(c) * & |
---|
3268 | dt_salsa |
---|
3269 | ENDDO |
---|
3270 | ENDIF |
---|
3271 | |
---|
3272 | END SUBROUTINE depo_vege |
---|
3273 | |
---|
3274 | !------------------------------------------------------------------------------! |
---|
3275 | ! Description: |
---|
3276 | ! ------------ |
---|
3277 | !> Calculate deposition on horizontal and vertical surfaces. Implement as |
---|
3278 | !> surface flux. |
---|
3279 | !------------------------------------------------------------------------------! |
---|
3280 | |
---|
3281 | SUBROUTINE depo_topo( i, j, surf, vc, Sc, kvis, mag_u, norm ) |
---|
3282 | |
---|
3283 | USE surface_mod, & |
---|
3284 | ONLY: surf_type |
---|
3285 | |
---|
3286 | IMPLICIT NONE |
---|
3287 | |
---|
3288 | INTEGER(iwp), INTENT(in) :: i !< loop index |
---|
3289 | INTEGER(iwp), INTENT(in) :: j !< loop index |
---|
3290 | REAL(wp), INTENT(in) :: kvis(:) !< kinematic viscosity of air (m2/s) |
---|
3291 | REAL(wp), INTENT(in) :: mag_u(:) !< wind velocity (m/s) |
---|
3292 | REAL(wp), INTENT(in) :: norm(:) !< normalisation (usually air density) |
---|
3293 | REAL(wp), INTENT(in) :: Sc(:,:) !< particle Schmidt number |
---|
3294 | REAL(wp), INTENT(in) :: vc(:,:) !< terminal velocity (m/s) |
---|
3295 | TYPE(surf_type), INTENT(inout) :: surf !< respective surface type |
---|
3296 | INTEGER(iwp) :: b !< loop index |
---|
3297 | INTEGER(iwp) :: c !< loop index |
---|
3298 | INTEGER(iwp) :: k !< loop index |
---|
3299 | INTEGER(iwp) :: m !< loop index |
---|
3300 | INTEGER(iwp) :: surf_e !< End index of surface elements at (j,i)-gridpoint |
---|
3301 | INTEGER(iwp) :: surf_s !< Start index of surface elements at (j,i)-gridpoint |
---|
3302 | REAL(wp) :: alpha !< parameter, Table 3 in Zhang et al. (2001) |
---|
3303 | REAL(wp) :: C_Br !< coefficient for Brownian diffusion |
---|
3304 | REAL(wp) :: C_IM !< coefficient for inertial impaction |
---|
3305 | REAL(wp) :: C_IN !< coefficient for interception |
---|
3306 | REAL(wp) :: C_IT !< coefficient for turbulent impaction |
---|
3307 | REAL(wp) :: depo !< deposition efficiency |
---|
3308 | REAL(wp) :: gamma !< parameter, Table 3 in Zhang et al. (2001) |
---|
3309 | REAL(wp) :: par_A !< parameter A for the characteristic radius of |
---|
3310 | !< collectors, Table 3 in Zhang et al. (2001) |
---|
3311 | REAL(wp) :: rt !< the overall quasi-laminar resistance for |
---|
3312 | !< particles |
---|
3313 | REAL(wp) :: St !< Stokes number for bluff surface elements |
---|
3314 | REAL(wp) :: tau_plus !< dimensionless particle relaxation time |
---|
3315 | REAL(wp) :: v_bd !< deposition velocity due to Brownian diffusion |
---|
3316 | REAL(wp) :: v_im !< deposition velocity due to impaction |
---|
3317 | REAL(wp) :: v_in !< deposition velocity due to interception |
---|
3318 | REAL(wp) :: v_it !< deposition velocity due to turbulent impaction |
---|
3319 | ! |
---|
3320 | !-- Initialise |
---|
3321 | rt = 0.0_wp |
---|
3322 | St = 0.0_wp |
---|
3323 | tau_plus = 0.0_wp |
---|
3324 | v_bd = 0.0_wp |
---|
3325 | v_im = 0.0_wp |
---|
3326 | v_in = 0.0_wp |
---|
3327 | v_it = 0.0_wp |
---|
3328 | surf_s = surf%start_index(j,i) |
---|
3329 | surf_e = surf%end_index(j,i) |
---|
3330 | |
---|
3331 | DO m = surf_s, surf_e |
---|
3332 | k = surf%k(m) |
---|
3333 | DO b = 1, nbins |
---|
3334 | IF ( aerosol_number(b)%conc(k,j,i) <= nclim .OR. & |
---|
3335 | Sc(k+1,b) < 1.0_wp ) CYCLE |
---|
3336 | |
---|
3337 | IF ( depo_topo_type == 'zhang2001' ) THEN |
---|
3338 | ! |
---|
3339 | !-- Parameters for the land use category 'urban' in Table 3 |
---|
3340 | alpha = 1.5_wp |
---|
3341 | gamma = 0.56_wp |
---|
3342 | par_A = 10.0E-3_wp |
---|
3343 | ! |
---|
3344 | !-- Stokes number for smooth surfaces or surfaces with bluff roughness |
---|
3345 | !-- elements (Seinfeld and Pandis, 2nd edition (2006): Eq. 19.23) |
---|
3346 | St = MAX( 0.01_wp, vc(k+1,b) * surf%us(m) ** 2.0_wp / & |
---|
3347 | ( g * kvis(k+1) ) ) |
---|
3348 | ! |
---|
3349 | !-- The overall quasi-laminar resistance for particles (Eq. 5) |
---|
3350 | rt = MAX( EPSILON( 1.0_wp ), ( 3.0_wp * surf%us(m) * ( & |
---|
3351 | Sc(k+1,b)**( -gamma ) + ( St / ( alpha + St ) )**2.0_wp & |
---|
3352 | + 0.5_wp * ( Ra_dry(k,j,i,b) / par_A )**2.0_wp ) * & |
---|
3353 | EXP( -St**0.5_wp ) ) ) |
---|
3354 | depo = vc(k+1,b) + rt |
---|
3355 | |
---|
3356 | ELSEIF ( depo_topo_type == 'petroff2010' ) THEN |
---|
3357 | ! |
---|
3358 | !-- vd = v_BD + v_IN + v_IM + v_IT + vc |
---|
3359 | !-- Deposition efficiencies from Table 1. Constants from Table 2. |
---|
3360 | C_Br = 1.262_wp |
---|
3361 | C_IM = 0.130_wp |
---|
3362 | C_IN = 0.216_wp |
---|
3363 | C_IT = 0.056_wp |
---|
3364 | par_A = 0.03_wp ! Here: leaf width (m) |
---|
3365 | ! |
---|
3366 | !-- Stokes number for smooth surfaces or surfaces with bluff roughness |
---|
3367 | !-- elements (Seinfeld and Pandis, 2nd edition (2006): Eq. 19.23) |
---|
3368 | St = MAX( 0.01_wp, vc(k+1,b) * surf%us(m) ** 2.0_wp / & |
---|
3369 | ( g * kvis(k+1) ) ) |
---|
3370 | ! |
---|
3371 | !-- Non-dimensional relexation time of the particle on top of canopy |
---|
3372 | tau_plus = vc(k+1,b) * surf%us(m)**2.0_wp / ( kvis(k+1) * g ) |
---|
3373 | ! |
---|
3374 | !-- Brownian diffusion |
---|
3375 | v_bd = mag_u(k+1) * C_Br * Sc(k+1,b)**( -2.0_wp / 3.0_wp ) * & |
---|
3376 | ( mag_u(k+1) * par_A / kvis(k+1) )**( -0.5_wp ) |
---|
3377 | ! |
---|
3378 | !-- Interception |
---|
3379 | v_in = mag_u(k+1) * C_IN * Ra_dry(k,j,i,b)/ par_A * ( 2.0_wp + & |
---|
3380 | LOG( 2.0_wp * par_A / Ra_dry(k,j,i,b) ) ) |
---|
3381 | ! |
---|
3382 | !-- Impaction: Petroff (2009) Eq. 18 |
---|
3383 | v_im = mag_u(k+1) * C_IM * ( St / ( St + 0.47_wp ) )**2.0_wp |
---|
3384 | |
---|
3385 | IF ( tau_plus < 20.0_wp ) THEN |
---|
3386 | v_it = 2.5E-3_wp * C_IT * tau_plus**2.0_wp |
---|
3387 | ELSE |
---|
3388 | v_it = C_IT |
---|
3389 | ENDIF |
---|
3390 | depo = v_bd + v_in + v_im + v_it + vc(k+1,b) |
---|
3391 | |
---|
3392 | ENDIF |
---|
3393 | IF ( lod_aero == 3 .OR. salsa_source_mode == 'no_source' ) THEN |
---|
3394 | surf%answs(m,b) = -depo * norm(k) * aerosol_number(b)%conc(k,j,i) |
---|
3395 | DO c = 1, ncc_tot |
---|
3396 | surf%amsws(m,(c-1)*nbins+b) = -depo * norm(k) * & |
---|
3397 | aerosol_mass((c-1)*nbins+b)%conc(k,j,i) |
---|
3398 | ENDDO ! c |
---|
3399 | ELSE |
---|
3400 | surf%answs(m,b) = SUM( aerosol_number(b)%source(:,j,i) ) - & |
---|
3401 | MAX( 0.0_wp, depo * norm(k) * & |
---|
3402 | aerosol_number(b)%conc(k,j,i) ) |
---|
3403 | DO c = 1, ncc_tot |
---|
3404 | surf%amsws(m,(c-1)*nbins+b) = SUM( & |
---|
3405 | aerosol_mass((c-1)*nbins+b)%source(:,j,i) ) - & |
---|
3406 | MAX( 0.0_wp, depo * norm(k) * & |
---|
3407 | aerosol_mass((c-1)*nbins+b)%conc(k,j,i) ) |
---|
3408 | ENDDO |
---|
3409 | ENDIF |
---|
3410 | ENDDO ! b |
---|
3411 | ENDDO ! m |
---|
3412 | |
---|
3413 | END SUBROUTINE depo_topo |
---|
3414 | |
---|
3415 | !------------------------------------------------------------------------------! |
---|
3416 | ! Description: |
---|
3417 | ! ------------ |
---|
3418 | ! Function for calculating terminal velocities for different particles sizes. |
---|
3419 | !------------------------------------------------------------------------------! |
---|
3420 | REAL(wp) FUNCTION terminal_vel( radius, rhop, rhoa, visc, beta ) |
---|
3421 | |
---|
3422 | IMPLICIT NONE |
---|
3423 | |
---|
3424 | REAL(wp), INTENT(in) :: beta !< Cunningham correction factor |
---|
3425 | REAL(wp), INTENT(in) :: radius !< particle radius (m) |
---|
3426 | REAL(wp), INTENT(in) :: rhop !< particle density (kg/m3) |
---|
3427 | REAL(wp), INTENT(in) :: rhoa !< air density (kg/m3) |
---|
3428 | REAL(wp), INTENT(in) :: visc !< molecular viscosity of air (kg/(m*s)) |
---|
3429 | |
---|
3430 | REAL(wp), PARAMETER :: rhoa_ref = 1.225_wp ! reference air density (kg/m3) |
---|
3431 | ! |
---|
3432 | !-- Stokes law with Cunningham slip correction factor |
---|
3433 | terminal_vel = ( 4.0_wp * radius**2.0_wp ) * ( rhop - rhoa ) * g * beta / & |
---|
3434 | ( 18.0_wp * visc ) ! (m/s) |
---|
3435 | |
---|
3436 | END FUNCTION terminal_vel |
---|
3437 | |
---|
3438 | !------------------------------------------------------------------------------! |
---|
3439 | ! Description: |
---|
3440 | ! ------------ |
---|
3441 | !> Calculates particle loss and change in size distribution due to (Brownian) |
---|
3442 | !> coagulation. Only for particles with dwet < 30 micrometres. |
---|
3443 | ! |
---|
3444 | !> Method: |
---|
3445 | !> Semi-implicit, non-iterative method: (Jacobson, 1994) |
---|
3446 | !> Volume concentrations of the smaller colliding particles added to the bin of |
---|
3447 | !> the larger colliding particles. Start from first bin and use the updated |
---|
3448 | !> number and volume for calculation of following bins. NB! Our bin numbering |
---|
3449 | !> does not follow particle size in subrange 2. |
---|
3450 | ! |
---|
3451 | !> Schematic for bin numbers in different subranges: |
---|
3452 | !> 1 2 |
---|
3453 | !> +-------------------------------------------+ |
---|
3454 | !> a | 1 | 2 | 3 || 4 | 5 | 6 | 7 | 8 | 9 | 10|| |
---|
3455 | !> b | ||11 |12 |13 |14 | 15 | 16 | 17|| |
---|
3456 | !> +-------------------------------------------+ |
---|
3457 | ! |
---|
3458 | !> Exact coagulation coefficients for each pressure level are scaled according |
---|
3459 | !> to current particle wet size (linear scaling). |
---|
3460 | !> Bins are organized in terms of the dry size of the condensation nucleus, |
---|
3461 | !> while coagulation kernell is calculated with the actual hydrometeor |
---|
3462 | !> size. |
---|
3463 | ! |
---|
3464 | !> Called from salsa_driver |
---|
3465 | !> fxm: Process selection should be made smarter - now just lots of IFs inside |
---|
3466 | !> loops |
---|
3467 | ! |
---|
3468 | !> Coded by: |
---|
3469 | !> Hannele Korhonen (FMI) 2005 |
---|
3470 | !> Harri Kokkola (FMI) 2006 |
---|
3471 | !> Tommi Bergman (FMI) 2012 |
---|
3472 | !> Matti Niskanen(FMI) 2012 |
---|
3473 | !> Anton Laakso (FMI) 2013 |
---|
3474 | !> Juha Tonttila (FMI) 2014 |
---|
3475 | !------------------------------------------------------------------------------! |
---|
3476 | SUBROUTINE coagulation( paero, ptstep, ptemp, ppres ) |
---|
3477 | |
---|
3478 | IMPLICIT NONE |
---|
3479 | |
---|
3480 | !-- Input and output variables |
---|
3481 | TYPE(t_section), INTENT(inout) :: paero(fn2b) !< Aerosol properties |
---|
3482 | REAL(wp), INTENT(in) :: ppres !< ambient pressure (Pa) |
---|
3483 | REAL(wp), INTENT(in) :: ptemp !< ambient temperature (K) |
---|
3484 | REAL(wp), INTENT(in) :: ptstep !< time step (s) |
---|
3485 | !-- Local variables |
---|
3486 | INTEGER(iwp) :: index_2a !< corresponding bin in subrange 2a |
---|
3487 | INTEGER(iwp) :: index_2b !< corresponding bin in subrange 2b |
---|
3488 | INTEGER(iwp) :: b !< loop index |
---|
3489 | INTEGER(iwp) :: ll !< loop index |
---|
3490 | INTEGER(iwp) :: mm !< loop index |
---|
3491 | INTEGER(iwp) :: nn !< loop index |
---|
3492 | REAL(wp) :: pressi !< pressure |
---|
3493 | REAL(wp) :: temppi !< temperature |
---|
3494 | REAL(wp) :: zcc(fn2b,fn2b) !< updated coagulation coefficients (m3/s) |
---|
3495 | REAL(wp) :: zdpart_mm !< diameter of particle (m) |
---|
3496 | REAL(wp) :: zdpart_nn !< diameter of particle (m) |
---|
3497 | REAL(wp) :: zminusterm !< coagulation loss in a bin (1/s) |
---|
3498 | REAL(wp) :: zplusterm(8) !< coagulation gain in a bin (fxm/s) |
---|
3499 | !< (for each chemical compound) |
---|
3500 | REAL(wp) :: zmpart(fn2b) !< approximate mass of particles (kg) |
---|
3501 | |
---|
3502 | zcc = 0.0_wp |
---|
3503 | zmpart = 0.0_wp |
---|
3504 | zdpart_mm = 0.0_wp |
---|
3505 | zdpart_nn = 0.0_wp |
---|
3506 | ! |
---|
3507 | !-- 1) Coagulation to coarse mode calculated in a simplified way: |
---|
3508 | !-- CoagSink ~ Dp in continuum subrange, thus we calculate 'effective' |
---|
3509 | !-- number concentration of coarse particles |
---|
3510 | |
---|
3511 | !-- 2) Updating coagulation coefficients |
---|
3512 | ! |
---|
3513 | !-- Aerosol mass (kg). Density of 1500 kg/m3 assumed |
---|
3514 | zmpart(1:fn2b) = api6 * ( MIN( paero(1:fn2b)%dwet, 30.0E-6_wp )**3.0_wp ) & |
---|
3515 | * 1500.0_wp |
---|
3516 | temppi = ptemp |
---|
3517 | pressi = ppres |
---|
3518 | zcc = 0.0_wp |
---|
3519 | ! |
---|
3520 | !-- Aero-aero coagulation |
---|
3521 | DO mm = 1, fn2b ! smaller colliding particle |
---|
3522 | IF ( paero(mm)%numc < nclim ) CYCLE |
---|
3523 | DO nn = mm, fn2b ! larger colliding particle |
---|
3524 | IF ( paero(nn)%numc < nclim ) CYCLE |
---|
3525 | |
---|
3526 | zdpart_mm = MIN( paero(mm)%dwet, 30.0E-6_wp ) ! Limit to 30 um |
---|
3527 | zdpart_nn = MIN( paero(nn)%dwet, 30.0E-6_wp ) ! Limit to 30 um |
---|
3528 | ! |
---|
3529 | !-- Coagulation coefficient of particles (m3/s) |
---|
3530 | zcc(mm,nn) = coagc( zdpart_mm, zdpart_nn, zmpart(mm), zmpart(nn), & |
---|
3531 | temppi, pressi ) |
---|
3532 | zcc(nn,mm) = zcc(mm,nn) |
---|
3533 | ENDDO |
---|
3534 | ENDDO |
---|
3535 | |
---|
3536 | ! |
---|
3537 | !-- 3) New particle and volume concentrations after coagulation: |
---|
3538 | !-- Calculated according to Jacobson (2005) eq. 15.9 |
---|
3539 | ! |
---|
3540 | !-- Aerosols in subrange 1a: |
---|
3541 | DO b = in1a, fn1a |
---|
3542 | IF ( paero(b)%numc < nclim ) CYCLE |
---|
3543 | zminusterm = 0.0_wp |
---|
3544 | zplusterm(:) = 0.0_wp |
---|
3545 | ! |
---|
3546 | !-- Particles lost by coagulation with larger aerosols |
---|
3547 | DO ll = b+1, fn2b |
---|
3548 | zminusterm = zminusterm + zcc(b,ll) * paero(ll)%numc |
---|
3549 | ENDDO |
---|
3550 | ! |
---|
3551 | !-- Coagulation gain in a bin: change in volume conc. (cm3/cm3): |
---|
3552 | DO ll = in1a, b-1 |
---|
3553 | zplusterm(1:2) = zplusterm(1:2) + zcc(ll,b) * paero(ll)%volc(1:2) |
---|
3554 | zplusterm(6:7) = zplusterm(6:7) + zcc(ll,b) * paero(ll)%volc(6:7) |
---|
3555 | zplusterm(8) = zplusterm(8) + zcc(ll,b) * paero(ll)%volc(8) |
---|
3556 | ENDDO |
---|
3557 | ! |
---|
3558 | !-- Volume and number concentrations after coagulation update [fxm] |
---|
3559 | paero(b)%volc(1:2) = ( paero(b)%volc(1:2) + ptstep * zplusterm(1:2) * & |
---|
3560 | paero(b)%numc ) / ( 1.0_wp + ptstep * zminusterm ) |
---|
3561 | paero(b)%volc(6:7) = ( paero(b)%volc(6:7) + ptstep * zplusterm(6:7) * & |
---|
3562 | paero(b)%numc ) / ( 1.0_wp + ptstep * zminusterm ) |
---|
3563 | paero(b)%volc(8) = ( paero(b)%volc(8) + ptstep * zplusterm(8) * & |
---|
3564 | paero(b)%numc ) / ( 1.0_wp + ptstep * zminusterm ) |
---|
3565 | paero(b)%numc = paero(b)%numc / ( 1.0_wp + ptstep * zminusterm + & |
---|
3566 | 0.5_wp * ptstep * zcc(b,b) * paero(b)%numc ) |
---|
3567 | ENDDO |
---|
3568 | ! |
---|
3569 | !-- Aerosols in subrange 2a: |
---|
3570 | DO b = in2a, fn2a |
---|
3571 | IF ( paero(b)%numc < nclim ) CYCLE |
---|
3572 | zminusterm = 0.0_wp |
---|
3573 | zplusterm(:) = 0.0_wp |
---|
3574 | ! |
---|
3575 | !-- Find corresponding size bin in subrange 2b |
---|
3576 | index_2b = b - in2a + in2b |
---|
3577 | ! |
---|
3578 | !-- Particles lost by larger particles in 2a |
---|
3579 | DO ll = b+1, fn2a |
---|
3580 | zminusterm = zminusterm + zcc(b,ll) * paero(ll)%numc |
---|
3581 | ENDDO |
---|
3582 | ! |
---|
3583 | !-- Particles lost by larger particles in 2b |
---|
3584 | IF ( .NOT. no_insoluble ) THEN |
---|
3585 | DO ll = index_2b+1, fn2b |
---|
3586 | zminusterm = zminusterm + zcc(b,ll) * paero(ll)%numc |
---|
3587 | ENDDO |
---|
3588 | ENDIF |
---|
3589 | ! |
---|
3590 | !-- Particle volume gained from smaller particles in subranges 1, 2a and 2b |
---|
3591 | DO ll = in1a, b-1 |
---|
3592 | zplusterm(1:2) = zplusterm(1:2) + zcc(ll,b) * paero(ll)%volc(1:2) |
---|
3593 | zplusterm(6:7) = zplusterm(6:7) + zcc(ll,b) * paero(ll)%volc(6:7) |
---|
3594 | zplusterm(8) = zplusterm(8) + zcc(ll,b) * paero(ll)%volc(8) |
---|
3595 | ENDDO |
---|
3596 | ! |
---|
3597 | !-- Particle volume gained from smaller particles in 2a |
---|
3598 | !-- (Note, for components not included in the previous loop!) |
---|
3599 | DO ll = in2a, b-1 |
---|
3600 | zplusterm(3:5) = zplusterm(3:5) + zcc(ll,b)*paero(ll)%volc(3:5) |
---|
3601 | ENDDO |
---|
3602 | |
---|
3603 | ! |
---|
3604 | !-- Particle volume gained from smaller (and equal) particles in 2b |
---|
3605 | IF ( .NOT. no_insoluble ) THEN |
---|
3606 | DO ll = in2b, index_2b |
---|
3607 | zplusterm(1:8) = zplusterm(1:8) + zcc(ll,b) * paero(ll)%volc(1:8) |
---|
3608 | ENDDO |
---|
3609 | ENDIF |
---|
3610 | ! |
---|
3611 | !-- Volume and number concentrations after coagulation update [fxm] |
---|
3612 | paero(b)%volc(1:8) = ( paero(b)%volc(1:8) + ptstep * zplusterm(1:8) * & |
---|
3613 | paero(b)%numc ) / ( 1.0_wp + ptstep * zminusterm ) |
---|
3614 | paero(b)%numc = paero(b)%numc / ( 1.0_wp + ptstep * zminusterm + & |
---|
3615 | 0.5_wp * ptstep * zcc(b,b) * paero(b)%numc ) |
---|
3616 | ENDDO |
---|
3617 | ! |
---|
3618 | !-- Aerosols in subrange 2b: |
---|
3619 | IF ( .NOT. no_insoluble ) THEN |
---|
3620 | DO b = in2b, fn2b |
---|
3621 | IF ( paero(b)%numc < nclim ) CYCLE |
---|
3622 | zminusterm = 0.0_wp |
---|
3623 | zplusterm(:) = 0.0_wp |
---|
3624 | ! |
---|
3625 | !-- Find corresponding size bin in subsubrange 2a |
---|
3626 | index_2a = b - in2b + in2a |
---|
3627 | ! |
---|
3628 | !-- Particles lost to larger particles in subranges 2b |
---|
3629 | DO ll = b+1, fn2b |
---|
3630 | zminusterm = zminusterm + zcc(b,ll) * paero(ll)%numc |
---|
3631 | ENDDO |
---|
3632 | ! |
---|
3633 | !-- Particles lost to larger and equal particles in 2a |
---|
3634 | DO ll = index_2a, fn2a |
---|
3635 | zminusterm = zminusterm + zcc(b,ll) * paero(ll)%numc |
---|
3636 | ENDDO |
---|
3637 | ! |
---|
3638 | !-- Particle volume gained from smaller particles in subranges 1 & 2a |
---|
3639 | DO ll = in1a, index_2a-1 |
---|
3640 | zplusterm(1:8) = zplusterm(1:8) + zcc(ll,b) * paero(ll)%volc(1:8) |
---|
3641 | ENDDO |
---|
3642 | ! |
---|
3643 | !-- Particle volume gained from smaller particles in 2b |
---|
3644 | DO ll = in2b, b-1 |
---|
3645 | zplusterm(1:8) = zplusterm(1:8) + zcc(ll,b) * paero(ll)%volc(1:8) |
---|
3646 | ENDDO |
---|
3647 | ! |
---|
3648 | !-- Volume and number concentrations after coagulation update [fxm] |
---|
3649 | paero(b)%volc(1:8) = ( paero(b)%volc(1:8) + ptstep * zplusterm(1:8)& |
---|
3650 | * paero(b)%numc ) / ( 1.0_wp + ptstep * zminusterm ) |
---|
3651 | paero(b)%numc = paero(b)%numc / ( 1.0_wp + ptstep * zminusterm + & |
---|
3652 | 0.5_wp * ptstep * zcc(b,b) * paero(b)%numc ) |
---|
3653 | ENDDO |
---|
3654 | ENDIF |
---|
3655 | |
---|
3656 | END SUBROUTINE coagulation |
---|
3657 | |
---|
3658 | !------------------------------------------------------------------------------! |
---|
3659 | ! Description: |
---|
3660 | ! ------------ |
---|
3661 | !> Calculation of coagulation coefficients. Extended version of the function |
---|
3662 | !> originally found in mo_salsa_init. |
---|
3663 | ! |
---|
3664 | !> J. Tonttila, FMI, 05/2014 |
---|
3665 | !------------------------------------------------------------------------------! |
---|
3666 | REAL(wp) FUNCTION coagc( diam1, diam2, mass1, mass2, temp, pres ) |
---|
3667 | |
---|
3668 | IMPLICIT NONE |
---|
3669 | ! |
---|
3670 | !-- Input and output variables |
---|
3671 | REAL(wp), INTENT(in) :: diam1 !< diameter of colliding particle 1 (m) |
---|
3672 | REAL(wp), INTENT(in) :: diam2 !< diameter of colliding particle 2 (m) |
---|
3673 | REAL(wp), INTENT(in) :: mass1 !< mass of colliding particle 1 (kg) |
---|
3674 | REAL(wp), INTENT(in) :: mass2 !< mass of colliding particle 2 (kg) |
---|
3675 | REAL(wp), INTENT(in) :: pres !< ambient pressure (Pa?) [fxm] |
---|
3676 | REAL(wp), INTENT(in) :: temp !< ambient temperature (K) |
---|
3677 | ! |
---|
3678 | !-- Local variables |
---|
3679 | REAL(wp) :: fmdist !< distance of flux matching (m) |
---|
3680 | REAL(wp) :: knud_p !< particle Knudsen number |
---|
3681 | REAL(wp) :: mdiam !< mean diameter of colliding particles (m) |
---|
3682 | REAL(wp) :: mfp !< mean free path of air molecules (m) |
---|
3683 | REAL(wp) :: visc !< viscosity of air (kg/(m s)) |
---|
3684 | REAL(wp), DIMENSION (2) :: beta !< Cunningham correction factor |
---|
3685 | REAL(wp), DIMENSION (2) :: dfpart !< particle diffusion coefficient |
---|
3686 | !< (m2/s) |
---|
3687 | REAL(wp), DIMENSION (2) :: diam !< diameters of particles (m) |
---|
3688 | REAL(wp), DIMENSION (2) :: flux !< flux in continuum and free molec. |
---|
3689 | !< regime (m/s) |
---|
3690 | REAL(wp), DIMENSION (2) :: knud !< particle Knudsen number |
---|
3691 | REAL(wp), DIMENSION (2) :: mpart !< masses of particles (kg) |
---|
3692 | REAL(wp), DIMENSION (2) :: mtvel !< particle mean thermal velocity (m/s) |
---|
3693 | REAL(wp), DIMENSION (2) :: omega !< particle mean free path |
---|
3694 | REAL(wp), DIMENSION (2) :: tva !< temporary variable (m) |
---|
3695 | ! |
---|
3696 | !-- Initialisation |
---|
3697 | coagc = 0.0_wp |
---|
3698 | ! |
---|
3699 | !-- 1) Initializing particle and ambient air variables |
---|
3700 | diam = (/ diam1, diam2 /) !< particle diameters (m) |
---|
3701 | mpart = (/ mass1, mass2 /) !< particle masses (kg) |
---|
3702 | !-- Viscosity of air (kg/(m s)) |
---|
3703 | visc = ( 7.44523E-3_wp * temp ** 1.5_wp ) / & |
---|
3704 | ( 5093.0_wp * ( temp + 110.4_wp ) ) |
---|
3705 | !-- Mean free path of air (m) |
---|
3706 | mfp = ( 1.656E-10_wp * temp + 1.828E-8_wp ) * ( p_0 + 1325.0_wp ) / pres |
---|
3707 | ! |
---|
3708 | !-- 2) Slip correction factor for small particles |
---|
3709 | knud = 2.0_wp * EXP( LOG(mfp) - LOG(diam) )! Knudsen number for air (15.23) |
---|
3710 | !-- Cunningham correction factor (Allen and Raabe, Aerosol Sci. Tech. 4, 269) |
---|
3711 | beta = 1.0_wp + knud * ( 1.142_wp + 0.558_wp * EXP( -0.999_wp / knud ) ) |
---|
3712 | ! |
---|
3713 | !-- 3) Particle properties |
---|
3714 | !-- Diffusion coefficient (m2/s) (Jacobson (2005) eq. 15.29) |
---|
3715 | dfpart = beta * abo * temp / ( 3.0_wp * pi * visc * diam ) |
---|
3716 | !-- Mean thermal velocity (m/s) (Jacobson (2005) eq. 15.32) |
---|
3717 | mtvel = SQRT( ( 8.0_wp * abo * temp ) / ( pi * mpart ) ) |
---|
3718 | !-- Particle mean free path (m) (Jacobson (2005) eq. 15.34 ) |
---|
3719 | omega = 8.0_wp * dfpart / ( pi * mtvel ) |
---|
3720 | !-- Mean diameter (m) |
---|
3721 | mdiam = 0.5_wp * ( diam(1) + diam(2) ) |
---|
3722 | ! |
---|
3723 | !-- 4) Calculation of fluxes (Brownian collision kernels) and flux matching |
---|
3724 | !-- following Jacobson (2005): |
---|
3725 | !-- Flux in continuum regime (m3/s) (eq. 15.28) |
---|
3726 | flux(1) = 4.0_wp * pi * mdiam * ( dfpart(1) + dfpart(2) ) |
---|
3727 | !-- Flux in free molec. regime (m3/s) (eq. 15.31) |
---|
3728 | flux(2) = pi * SQRT( ( mtvel(1)**2.0_wp ) + ( mtvel(2)**2.0_wp ) ) * & |
---|
3729 | ( mdiam**2.0_wp ) |
---|
3730 | !-- temporary variables (m) to calculate flux matching distance (m) |
---|
3731 | tva(1) = ( ( mdiam + omega(1) )**3.0_wp - ( mdiam**2.0_wp + & |
---|
3732 | omega(1)**2.0_wp ) * SQRT( ( mdiam**2.0_wp + omega(1)**2.0_wp ) & |
---|
3733 | ) ) / ( 3.0_wp * mdiam * omega(1) ) - mdiam |
---|
3734 | tva(2) = ( ( mdiam + omega(2) )**3.0_wp - ( mdiam**2.0_wp + & |
---|
3735 | omega(2)**2.0_wp ) * SQRT( ( mdiam**2 + omega(2)**2 ) ) ) / & |
---|
3736 | ( 3.0_wp * mdiam * omega(2) ) - mdiam |
---|
3737 | !-- Flux matching distance (m) i.e. the mean distance from the centre of a |
---|
3738 | !-- sphere reached by particles leaving sphere's surface and travelling a |
---|
3739 | !-- distance of particle mean free path mfp (eq. 15 34) |
---|
3740 | fmdist = SQRT( tva(1)**2 + tva(2)**2.0_wp) |
---|
3741 | ! |
---|
3742 | !-- 5) Coagulation coefficient (m3/s) (eq. 15.33). Here assumed |
---|
3743 | !-- coalescence efficiency 1!! |
---|
3744 | coagc = flux(1) / ( mdiam / ( mdiam + fmdist) + flux(1) / flux(2) ) |
---|
3745 | !-- coagulation coefficient = coalescence efficiency * collision kernel |
---|
3746 | ! |
---|
3747 | !-- Corrected collision kernel following Karl et al., 2016 (ACP): |
---|
3748 | !-- Inclusion of van der Waals and viscous forces |
---|
3749 | IF ( van_der_waals_coagc ) THEN |
---|
3750 | knud_p = SQRT( omega(1)**2 + omega(2)**2 ) / mdiam |
---|
3751 | IF ( knud_p >= 0.1_wp .AND. knud_p <= 10.0_wp ) THEN |
---|
3752 | coagc = coagc * ( 2.0_wp + 0.4_wp * LOG( knud_p ) ) |
---|
3753 | ELSE |
---|
3754 | coagc = coagc * 3.0_wp |
---|
3755 | ENDIF |
---|
3756 | ENDIF |
---|
3757 | |
---|
3758 | END FUNCTION coagc |
---|
3759 | |
---|
3760 | !------------------------------------------------------------------------------! |
---|
3761 | ! Description: |
---|
3762 | ! ------------ |
---|
3763 | !> Calculates the change in particle volume and gas phase |
---|
3764 | !> concentrations due to nucleation, condensation and dissolutional growth. |
---|
3765 | ! |
---|
3766 | !> Sulphuric acid and organic vapour: only condensation and no evaporation. |
---|
3767 | ! |
---|
3768 | !> New gas and aerosol phase concentrations calculated according to Jacobson |
---|
3769 | !> (1997): Numerical techniques to solve condensational and dissolutional growth |
---|
3770 | !> equations when growth is coupled to reversible reactions, Aerosol Sci. Tech., |
---|
3771 | !> 27, pp 491-498. |
---|
3772 | ! |
---|
3773 | !> Following parameterization has been used: |
---|
3774 | !> Molecular diffusion coefficient of condensing vapour (m2/s) |
---|
3775 | !> (Reid et al. (1987): Properties of gases and liquids, McGraw-Hill, New York.) |
---|
3776 | !> D = {1.d-7*sqrt(1/M_air + 1/M_gas)*T^1.75} / & |
---|
3777 | ! {p_atm/p_stand * (d_air^(1/3) + d_gas^(1/3))^2 } |
---|
3778 | ! M_air = 28.965 : molar mass of air (g/mol) |
---|
3779 | ! d_air = 19.70 : diffusion volume of air |
---|
3780 | ! M_h2so4 = 98.08 : molar mass of h2so4 (g/mol) |
---|
3781 | ! d_h2so4 = 51.96 : diffusion volume of h2so4 |
---|
3782 | ! |
---|
3783 | !> Called from main aerosol model |
---|
3784 | ! |
---|
3785 | !> fxm: calculated for empty bins too |
---|
3786 | !> fxm: same diffusion coefficients and mean free paths used for sulphuric acid |
---|
3787 | !> and organic vapours (average values? 'real' values for each?) |
---|
3788 | !> fxm: one should really couple with vapour production and loss terms as well |
---|
3789 | !> should nucleation be coupled here as well???? |
---|
3790 | ! |
---|
3791 | ! Coded by: |
---|
3792 | ! Hannele Korhonen (FMI) 2005 |
---|
3793 | ! Harri Kokkola (FMI) 2006 |
---|
3794 | ! Juha Tonttila (FMI) 2014 |
---|
3795 | ! Rewritten to PALM by Mona Kurppa (UHel) 2017 |
---|
3796 | !------------------------------------------------------------------------------! |
---|
3797 | SUBROUTINE condensation( paero, pcsa, pcocnv, pcocsv, pchno3, pcnh3, pcw, pcs,& |
---|
3798 | ptemp, ppres, ptstep, prtcl ) |
---|
3799 | |
---|
3800 | IMPLICIT NONE |
---|
3801 | |
---|
3802 | !-- Input and output variables |
---|
3803 | REAL(wp), INTENT(IN) :: ppres !< ambient pressure (Pa) |
---|
3804 | REAL(wp), INTENT(IN) :: pcs !< Water vapour saturation concentration |
---|
3805 | !< (kg/m3) |
---|
3806 | REAL(wp), INTENT(IN) :: ptemp !< ambient temperature (K) |
---|
3807 | REAL(wp), INTENT(IN) :: ptstep !< timestep (s) |
---|
3808 | TYPE(component_index), INTENT(in) :: prtcl !< Keeps track which substances |
---|
3809 | !< are used |
---|
3810 | REAL(wp), INTENT(INOUT) :: pchno3 !< Gas concentrations (#/m3): |
---|
3811 | !< nitric acid HNO3 |
---|
3812 | REAL(wp), INTENT(INOUT) :: pcnh3 !< ammonia NH3 |
---|
3813 | REAL(wp), INTENT(INOUT) :: pcocnv !< non-volatile organics |
---|
3814 | REAL(wp), INTENT(INOUT) :: pcocsv !< semi-volatile organics |
---|
3815 | REAL(wp), INTENT(INOUT) :: pcsa !< sulphuric acid H2SO4 |
---|
3816 | REAL(wp), INTENT(INOUT) :: pcw !< Water vapor concentration (kg/m3) |
---|
3817 | TYPE(t_section), INTENT(inout) :: paero(fn2b) !< Aerosol properties |
---|
3818 | !-- Local variables |
---|
3819 | REAL(wp) :: zbeta(fn2b) !< transitional correction factor for aerosols |
---|
3820 | REAL(wp) :: zcolrate(fn2b) !< collision rate of molecules to particles |
---|
3821 | !< (1/s) |
---|
3822 | REAL(wp) :: zcolrate_ocnv(fn2b) !< collision rate of organic molecules |
---|
3823 | !< to particles (1/s) |
---|
3824 | REAL(wp) :: zcs_ocnv !< condensation sink of nonvolatile organics (1/s) |
---|
3825 | REAL(wp) :: zcs_ocsv !< condensation sink of semivolatile organics (1/s) |
---|
3826 | REAL(wp) :: zcs_su !< condensation sink of sulfate (1/s) |
---|
3827 | REAL(wp) :: zcs_tot!< total condensation sink (1/s) (gases) |
---|
3828 | !-- vapour concentration after time step (#/m3) |
---|
3829 | REAL(wp) :: zcvap_new1 !< sulphuric acid |
---|
3830 | REAL(wp) :: zcvap_new2 !< nonvolatile organics |
---|
3831 | REAL(wp) :: zcvap_new3 !< semivolatile organics |
---|
3832 | REAL(wp) :: zdfpart(in1a+1) !< particle diffusion coefficient (m2/s) |
---|
3833 | REAL(wp) :: zdfvap !< air diffusion coefficient (m2/s) |
---|
3834 | !-- change in vapour concentration (#/m3) |
---|
3835 | REAL(wp) :: zdvap1 !< sulphuric acid |
---|
3836 | REAL(wp) :: zdvap2 !< nonvolatile organics |
---|
3837 | REAL(wp) :: zdvap3 !< semivolatile organics |
---|
3838 | REAL(wp) :: zdvoloc(fn2b) !< change of organics volume in each bin [fxm] |
---|
3839 | REAL(wp) :: zdvolsa(fn2b) !< change of sulphate volume in each bin [fxm] |
---|
3840 | REAL(wp) :: zj3n3(2) !< Formation massrate of molecules in |
---|
3841 | !< nucleation, (molec/m3s). 1: H2SO4 |
---|
3842 | !< and 2: organic vapor |
---|
3843 | REAL(wp) :: zknud(fn2b) !< particle Knudsen number |
---|
3844 | REAL(wp) :: zmfp !< mean free path of condensing vapour (m) |
---|
3845 | REAL(wp) :: zrh !< Relative humidity [0-1] |
---|
3846 | REAL(wp) :: zvisc !< viscosity of air (kg/(m s)) |
---|
3847 | REAL(wp) :: zn_vs_c !< ratio of nucleation of all mass transfer in the |
---|
3848 | !< smallest bin |
---|
3849 | REAL(wp) :: zxocnv !< ratio of organic vapour in 3nm particles |
---|
3850 | REAL(wp) :: zxsa !< Ratio in 3nm particles: sulphuric acid |
---|
3851 | |
---|
3852 | zj3n3 = 0.0_wp |
---|
3853 | zrh = pcw / pcs |
---|
3854 | zxocnv = 0.0_wp |
---|
3855 | zxsa = 0.0_wp |
---|
3856 | ! |
---|
3857 | !-- Nucleation |
---|
3858 | IF ( nsnucl > 0 ) THEN |
---|
3859 | CALL nucleation( paero, ptemp, zrh, ppres, pcsa, pcocnv, pcnh3, ptstep, & |
---|
3860 | zj3n3, zxsa, zxocnv ) |
---|
3861 | ENDIF |
---|
3862 | ! |
---|
3863 | !-- Condensation on pre-existing particles |
---|
3864 | IF ( lscndgas ) THEN |
---|
3865 | ! |
---|
3866 | !-- Initialise: |
---|
3867 | zdvolsa = 0.0_wp |
---|
3868 | zdvoloc = 0.0_wp |
---|
3869 | zcolrate = 0.0_wp |
---|
3870 | ! |
---|
3871 | !-- 1) Properties of air and condensing gases: |
---|
3872 | !-- Viscosity of air (kg/(m s)) (Eq. 4.54 in Jabonson (2005)) |
---|
3873 | zvisc = ( 7.44523E-3_wp * ptemp ** 1.5_wp ) / ( 5093.0_wp * & |
---|
3874 | ( ptemp + 110.4_wp ) ) |
---|
3875 | !-- Diffusion coefficient of air (m2/s) |
---|
3876 | zdfvap = 5.1111E-10_wp * ptemp ** 1.75_wp * ( p_0 + 1325.0_wp ) / ppres |
---|
3877 | !-- Mean free path (m): same for H2SO4 and organic compounds |
---|
3878 | zmfp = 3.0_wp * zdfvap * SQRT( pi * amh2so4 / ( 8.0_wp * argas * ptemp ) ) |
---|
3879 | ! |
---|
3880 | !-- 2) Transition regime correction factor zbeta for particles: |
---|
3881 | !-- Fuchs and Sutugin (1971), In: Hidy et al. (ed.) Topics in current |
---|
3882 | !-- aerosol research, Pergamon. Size of condensing molecule considered |
---|
3883 | !-- only for nucleation mode (3 - 20 nm) |
---|
3884 | ! |
---|
3885 | !-- Particle Knudsen number: condensation of gases on aerosols |
---|
3886 | zknud(in1a:in1a+1) = 2.0_wp * zmfp / ( paero(in1a:in1a+1)%dwet + d_sa ) |
---|
3887 | zknud(in1a+2:fn2b) = 2.0_wp * zmfp / paero(in1a+2:fn2b)%dwet |
---|
3888 | ! |
---|
3889 | !-- Transitional correction factor: aerosol + gas (the semi-empirical Fuchs- |
---|
3890 | !-- Sutugin interpolation function (Fuchs and Sutugin, 1971)) |
---|
3891 | zbeta = ( zknud + 1.0_wp ) / ( 0.377_wp * zknud + 1.0_wp + 4.0_wp / & |
---|
3892 | ( 3.0_wp * massacc ) * ( zknud + zknud ** 2.0_wp ) ) |
---|
3893 | ! |
---|
3894 | !-- 3) Collision rate of molecules to particles |
---|
3895 | !-- Particle diffusion coefficient considered only for nucleation mode |
---|
3896 | !-- (3 - 20 nm) |
---|
3897 | ! |
---|
3898 | !-- Particle diffusion coefficient (m2/s) (e.g. Eq. 15.29 in Jacobson (2005)) |
---|
3899 | zdfpart = abo * ptemp * zbeta(in1a:in1a+1) / ( 3.0_wp * pi * zvisc * & |
---|
3900 | paero(in1a:in1a+1)%dwet ) |
---|
3901 | ! |
---|
3902 | !-- Collision rate (mass-transfer coefficient): gases on aerosols (1/s) |
---|
3903 | !-- (Eq. 16.64 in Jacobson (2005)) |
---|
3904 | zcolrate(in1a:in1a+1) = MERGE( 2.0_wp * pi * & |
---|
3905 | ( paero(in1a:in1a+1)%dwet + d_sa ) * & |
---|
3906 | ( zdfvap + zdfpart ) * zbeta(in1a:in1a+1)& |
---|
3907 | * paero(in1a:in1a+1)%numc, 0.0_wp, & |
---|
3908 | paero(in1a:in1a+1)%numc > nclim ) |
---|
3909 | zcolrate(in1a+2:fn2b) = MERGE( 2.0_wp * pi * paero(in1a+2:fn2b)%dwet * & |
---|
3910 | zdfvap * zbeta(in1a+2:fn2b) * & |
---|
3911 | paero(in1a+2:fn2b)%numc, 0.0_wp, & |
---|
3912 | paero(in1a+2:fn2b)%numc > nclim ) |
---|
3913 | ! |
---|
3914 | !-- 4) Condensation sink (1/s) |
---|
3915 | zcs_tot = SUM( zcolrate ) ! total sink |
---|
3916 | ! |
---|
3917 | !-- 5) Changes in gas-phase concentrations and particle volume |
---|
3918 | ! |
---|
3919 | !-- 5.1) Organic vapours |
---|
3920 | ! |
---|
3921 | !-- 5.1.1) Non-volatile organic compound: condenses onto all bins |
---|
3922 | IF ( pcocnv > 1.0E+10_wp .AND. zcs_tot > 1.0E-30_wp .AND. & |
---|
3923 | is_used( prtcl,'OC' ) ) & |
---|
3924 | THEN |
---|
3925 | !-- Ratio of nucleation vs. condensation rates in the smallest bin |
---|
3926 | zn_vs_c = 0.0_wp |
---|
3927 | IF ( zj3n3(2) > 1.0_wp ) THEN |
---|
3928 | zn_vs_c = ( zj3n3(2) ) / ( zj3n3(2) + pcocnv * zcolrate(in1a) ) |
---|
3929 | ENDIF |
---|
3930 | ! |
---|
3931 | !-- Collision rate in the smallest bin, including nucleation and |
---|
3932 | !-- condensation(see Jacobson, Fundamentals of Atmospheric Modeling, 2nd |
---|
3933 | !-- Edition (2005), equation (16.73) ) |
---|
3934 | zcolrate_ocnv = zcolrate |
---|
3935 | zcolrate_ocnv(in1a) = zcolrate_ocnv(in1a) + zj3n3(2) / pcocnv |
---|
3936 | ! |
---|
3937 | !-- Total sink for organic vapor |
---|
3938 | zcs_ocnv = zcs_tot + zj3n3(2) / pcocnv |
---|
3939 | ! |
---|
3940 | !-- New gas phase concentration (#/m3) |
---|
3941 | zcvap_new2 = pcocnv / ( 1.0_wp + ptstep * zcs_ocnv ) |
---|
3942 | ! |
---|
3943 | !-- Change in gas concentration (#/m3) |
---|
3944 | zdvap2 = pcocnv - zcvap_new2 |
---|
3945 | ! |
---|
3946 | !-- Updated vapour concentration (#/m3) |
---|
3947 | pcocnv = zcvap_new2 |
---|
3948 | ! |
---|
3949 | !-- Volume change of particles (m3(OC)/m3(air)) |
---|
3950 | zdvoloc = zcolrate_ocnv(in1a:fn2b) / zcs_ocnv * amvoc * zdvap2 |
---|
3951 | ! |
---|
3952 | !-- Change of volume due to condensation in 1a-2b |
---|
3953 | paero(in1a:fn2b)%volc(2) = paero(in1a:fn2b)%volc(2) + zdvoloc |
---|
3954 | ! |
---|
3955 | !-- Change of number concentration in the smallest bin caused by |
---|
3956 | !-- nucleation (Jacobson (2005), equation (16.75)). If zxocnv = 0, then |
---|
3957 | !-- the chosen nucleation mechanism doesn't take into account the non- |
---|
3958 | !-- volatile organic vapors and thus the paero doesn't have to be updated. |
---|
3959 | IF ( zxocnv > 0.0_wp ) THEN |
---|
3960 | paero(in1a)%numc = paero(in1a)%numc + zn_vs_c * zdvoloc(in1a) / & |
---|
3961 | amvoc / ( n3 * zxocnv ) |
---|
3962 | ENDIF |
---|
3963 | ENDIF |
---|
3964 | ! |
---|
3965 | !-- 5.1.2) Semivolatile organic compound: all bins except subrange 1 |
---|
3966 | zcs_ocsv = SUM( zcolrate(in2a:fn2b) ) !< sink for semi-volatile organics |
---|
3967 | IF ( pcocsv > 1.0E+10_wp .AND. zcs_ocsv > 1.0E-30 .AND. & |
---|
3968 | is_used( prtcl,'OC') ) & |
---|
3969 | THEN |
---|
3970 | ! |
---|
3971 | !-- New gas phase concentration (#/m3) |
---|
3972 | zcvap_new3 = pcocsv / ( 1.0_wp + ptstep * zcs_ocsv ) |
---|
3973 | ! |
---|
3974 | !-- Change in gas concentration (#/m3) |
---|
3975 | zdvap3 = pcocsv - zcvap_new3 |
---|
3976 | ! |
---|
3977 | !-- Updated gas concentration (#/m3) |
---|
3978 | pcocsv = zcvap_new3 |
---|
3979 | ! |
---|
3980 | !-- Volume change of particles (m3(OC)/m3(air)) |
---|
3981 | zdvoloc(in2a:fn2b) = zdvoloc(in2a:fn2b) + zcolrate(in2a:fn2b) / & |
---|
3982 | zcs_ocsv * amvoc * zdvap3 |
---|
3983 | ! |
---|
3984 | !-- Change of volume due to condensation in 1a-2b |
---|
3985 | paero(in1a:fn2b)%volc(2) = paero(in1a:fn2b)%volc(2) + zdvoloc |
---|
3986 | ENDIF |
---|
3987 | ! |
---|
3988 | !-- 5.2) Sulphate: condensed on all bins |
---|
3989 | IF ( pcsa > 1.0E+10_wp .AND. zcs_tot > 1.0E-30_wp .AND. & |
---|
3990 | is_used( prtcl,'SO4' ) ) & |
---|
3991 | THEN |
---|
3992 | ! |
---|
3993 | !-- Ratio of mass transfer between nucleation and condensation |
---|
3994 | zn_vs_c = 0.0_wp |
---|
3995 | IF ( zj3n3(1) > 1.0_wp ) THEN |
---|
3996 | zn_vs_c = ( zj3n3(1) ) / ( zj3n3(1) + pcsa * zcolrate(in1a) ) |
---|
3997 | ENDIF |
---|
3998 | ! |
---|
3999 | !-- Collision rate in the smallest bin, including nucleation and |
---|
4000 | !-- condensation (see Jacobson, Fundamentals of Atmospheric Modeling, 2nd |
---|
4001 | !-- Edition (2005), equation (16.73)) |
---|
4002 | zcolrate(in1a) = zcolrate(in1a) + zj3n3(1) / pcsa |
---|
4003 | ! |
---|
4004 | !-- Total sink for sulfate (1/s) |
---|
4005 | zcs_su = zcs_tot + zj3n3(1) / pcsa |
---|
4006 | ! |
---|
4007 | !-- Sulphuric acid: |
---|
4008 | !-- New gas phase concentration (#/m3) |
---|
4009 | zcvap_new1 = pcsa / ( 1.0_wp + ptstep * zcs_su ) |
---|
4010 | ! |
---|
4011 | !-- Change in gas concentration (#/m3) |
---|
4012 | zdvap1 = pcsa - zcvap_new1 |
---|
4013 | ! |
---|
4014 | !-- Updating vapour concentration (#/m3) |
---|
4015 | pcsa = zcvap_new1 |
---|
4016 | ! |
---|
4017 | !-- Volume change of particles (m3(SO4)/m3(air)) by condensation |
---|
4018 | zdvolsa = zcolrate(in1a:fn2b) / zcs_su * amvh2so4 * zdvap1 |
---|
4019 | !-- For validation: zdvolsa = 5.5 mum3/cm3 per 12 h |
---|
4020 | ! zdvolsa = zdvolsa / SUM( zdvolsa ) * 5.5E-12_wp * dt_salsa / 43200.0_wp |
---|
4021 | !0.3E-12_wp, 0.6E-12_wp, 11.0E-12_wp, 4.6E-12_wp, 9.2E-12_wp |
---|
4022 | ! |
---|
4023 | !-- Change of volume concentration of sulphate in aerosol [fxm] |
---|
4024 | paero(in1a:fn2b)%volc(1) = paero(in1a:fn2b)%volc(1) + zdvolsa |
---|
4025 | ! |
---|
4026 | !-- Change of number concentration in the smallest bin caused by nucleation |
---|
4027 | !-- (Jacobson (2005), equation (16.75)) |
---|
4028 | IF ( zxsa > 0.0_wp ) THEN |
---|
4029 | paero(in1a)%numc = paero(in1a)%numc + zn_vs_c * zdvolsa(in1a) / & |
---|
4030 | amvh2so4 / ( n3 * zxsa ) |
---|
4031 | ENDIF |
---|
4032 | ENDIF |
---|
4033 | ENDIF |
---|
4034 | ! |
---|
4035 | ! |
---|
4036 | !-- Condensation of water vapour |
---|
4037 | IF ( lscndh2oae ) THEN |
---|
4038 | CALL gpparth2o( paero, ptemp, ppres, pcs, pcw, ptstep ) |
---|
4039 | ENDIF |
---|
4040 | ! |
---|
4041 | ! |
---|
4042 | !-- Partitioning of H2O, HNO3, and NH3: Dissolutional growth |
---|
4043 | IF ( lscndgas .AND. ino > 0 .AND. inh > 0 .AND. & |
---|
4044 | ( pchno3 > 1.0E+10_wp .OR. pcnh3 > 1.0E+10_wp ) ) & |
---|
4045 | THEN |
---|
4046 | CALL gpparthno3( ppres, ptemp, paero, pchno3, pcnh3, pcw, pcs, zbeta, & |
---|
4047 | ptstep ) |
---|
4048 | ENDIF |
---|
4049 | |
---|
4050 | END SUBROUTINE condensation |
---|
4051 | |
---|
4052 | !------------------------------------------------------------------------------! |
---|
4053 | ! Description: |
---|
4054 | ! ------------ |
---|
4055 | !> Calculates the particle number and volume increase, and gas-phase |
---|
4056 | !> concentration decrease due to nucleation subsequent growth to detectable size |
---|
4057 | !> of 3 nm. |
---|
4058 | ! |
---|
4059 | !> Method: |
---|
4060 | !> When the formed clusters grow by condensation (possibly also by self- |
---|
4061 | !> coagulation), their number is reduced due to scavenging to pre-existing |
---|
4062 | !> particles. Thus, the apparent nucleation rate at 3 nm is significantly lower |
---|
4063 | !> than the real nucleation rate (at ~1 nm). |
---|
4064 | ! |
---|
4065 | !> Calculation of the formation rate of detectable particles at 3 nm (i.e. J3): |
---|
4066 | !> nj3 = 1: Kerminen, V.-M. and Kulmala, M. (2002), J. Aerosol Sci.,33, 609-622. |
---|
4067 | !> nj3 = 2: Lehtinen et al. (2007), J. Aerosol Sci., 38(9), 988-994. |
---|
4068 | !> nj3 = 3: Anttila et al. (2010), J. Aerosol Sci., 41(7), 621-636. |
---|
4069 | ! |
---|
4070 | !> Called from subroutine condensation (in module salsa_dynamics_mod.f90) |
---|
4071 | ! |
---|
4072 | !> Calls one of the following subroutines: |
---|
4073 | !> - binnucl |
---|
4074 | !> - ternucl |
---|
4075 | !> - kinnucl |
---|
4076 | !> - actnucl |
---|
4077 | ! |
---|
4078 | !> fxm: currently only sulphuric acid grows particles from 1 to 3 nm |
---|
4079 | !> (if asked from Markku, this is terribly wrong!!!) |
---|
4080 | ! |
---|
4081 | !> Coded by: |
---|
4082 | !> Hannele Korhonen (FMI) 2005 |
---|
4083 | !> Harri Kokkola (FMI) 2006 |
---|
4084 | !> Matti Niskanen(FMI) 2012 |
---|
4085 | !> Anton Laakso (FMI) 2013 |
---|
4086 | !------------------------------------------------------------------------------! |
---|
4087 | |
---|
4088 | SUBROUTINE nucleation( paero, ptemp, prh, ppres, pcsa, pcocnv, pcnh3, ptstep, & |
---|
4089 | pj3n3, pxsa, pxocnv ) |
---|
4090 | IMPLICIT NONE |
---|
4091 | ! |
---|
4092 | !-- Input and output variables |
---|
4093 | REAL(wp), INTENT(in) :: pcnh3 !< ammonia concentration (#/m3) |
---|
4094 | REAL(wp), INTENT(in) :: pcocnv !< conc. of non-volatile OC (#/m3) |
---|
4095 | REAL(wp), INTENT(in) :: pcsa !< sulphuric acid conc. (#/m3) |
---|
4096 | REAL(wp), INTENT(in) :: ppres !< ambient air pressure (Pa) |
---|
4097 | REAL(wp), INTENT(in) :: prh !< ambient rel. humidity [0-1] |
---|
4098 | REAL(wp), INTENT(in) :: ptemp !< ambient temperature (K) |
---|
4099 | REAL(wp), INTENT(in) :: ptstep !< time step (s) of SALSA |
---|
4100 | TYPE(t_section), INTENT(inout) :: paero(fn2b) !< aerosol properties |
---|
4101 | REAL(wp), INTENT(inout) :: pj3n3(2) !< formation mass rate of molecules |
---|
4102 | !< (molec/m3s) for 1: H2SO4 and |
---|
4103 | !< 2: organic vapour |
---|
4104 | REAL(wp), INTENT(out) :: pxocnv !< ratio of non-volatile organic vapours in |
---|
4105 | !< 3nm aerosol particles |
---|
4106 | REAL(wp), INTENT(out) :: pxsa !< ratio of H2SO4 in 3nm aerosol particles |
---|
4107 | !-- Local variables |
---|
4108 | INTEGER(iwp) :: iteration |
---|
4109 | REAL(wp) :: zbeta(fn2b) !< transitional correction factor |
---|
4110 | REAL(wp) :: zc_h2so4 !< H2SO4 conc. (#/cm3) !UNITS! |
---|
4111 | REAL(wp) :: zc_org !< organic vapour conc. (#/cm3) |
---|
4112 | REAL(wp) :: zCoagStot !< total losses due to coagulation, including |
---|
4113 | !< condensation and self-coagulation |
---|
4114 | REAL(wp) :: zcocnv_local !< organic vapour conc. (#/m3) |
---|
4115 | REAL(wp) :: zcsink !< condensational sink (#/m2) |
---|
4116 | REAL(wp) :: zcsa_local !< H2SO4 conc. (#/m3) |
---|
4117 | REAL(wp) :: zdcrit !< diameter of critical cluster (m) |
---|
4118 | REAL(wp) :: zdelta_vap !< change of H2SO4 and organic vapour |
---|
4119 | !< concentration (#/m3) |
---|
4120 | REAL(wp) :: zdfvap !< air diffusion coefficient (m2/s) |
---|
4121 | REAL(wp) :: zdmean !< mean diameter of existing particles (m) |
---|
4122 | REAL(wp) :: zeta !< constant: proportional to ratio of CS/GR (m) |
---|
4123 | !< (condensation sink / growth rate) |
---|
4124 | REAL(wp) :: zgamma !< proportionality factor ((nm2*m2)/h) |
---|
4125 | REAL(wp) :: zGRclust !< growth rate of formed clusters (nm/h) |
---|
4126 | REAL(wp) :: zGRtot !< total growth rate |
---|
4127 | REAL(wp) :: zj3 !< number conc. of formed 3nm particles (#/m3) |
---|
4128 | REAL(wp) :: zjnuc !< nucleation rate at ~1nm (#/m3s) |
---|
4129 | REAL(wp) :: zKeff !< effective cogulation coefficient between |
---|
4130 | !< freshly nucleated particles |
---|
4131 | REAL(wp) :: zknud(fn2b) !< particle Knudsen number |
---|
4132 | REAL(wp) :: zkocnv !< lever: zkocnv=1 --> organic compounds involved |
---|
4133 | !< in nucleation |
---|
4134 | REAL(wp) :: zksa !< lever: zksa=1 --> H2SO4 involved in nucleation |
---|
4135 | REAL(wp) :: zlambda !< parameter for adjusting the growth rate due to |
---|
4136 | !< self-coagulation |
---|
4137 | REAL(wp) :: zmfp !< mean free path of condesing vapour(m) |
---|
4138 | REAL(wp) :: zmixnh3 !< ammonia mixing ratio (ppt) |
---|
4139 | REAL(wp) :: zNnuc !< number of clusters/particles at the size range |
---|
4140 | !< d1-dx (#/m3) |
---|
4141 | REAL(wp) :: znoc !< number of organic molecules in critical cluster |
---|
4142 | REAL(wp) :: znsa !< number of H2SO4 molecules in critical cluster |
---|
4143 | ! |
---|
4144 | !-- Variable determined for the m-parameter |
---|
4145 | REAL(wp) :: zCc_2(fn2b) !< |
---|
4146 | REAL(wp) :: zCc_c !< |
---|
4147 | REAL(wp) :: zCc_x !< |
---|
4148 | REAL(wp) :: zCoagS_c !< |
---|
4149 | REAL(wp) :: zCoagS_x !< |
---|
4150 | REAL(wp) :: zcv_2(fn2b) !< |
---|
4151 | REAL(wp) :: zcv_c !< |
---|
4152 | REAL(wp) :: zcv_c2(fn2b) !< |
---|
4153 | REAL(wp) :: zcv_x !< |
---|
4154 | REAL(wp) :: zcv_x2(fn2b) !< |
---|
4155 | REAL(wp) :: zDc_2(fn2b) !< |
---|
4156 | REAL(wp) :: zDc_c(fn2b) !< |
---|
4157 | REAL(wp) :: zDc_c2(fn2b) !< |
---|
4158 | REAL(wp) :: zDc_x(fn2b) !< |
---|
4159 | REAL(wp) :: zDc_x2(fn2b) !< |
---|
4160 | REAL(wp) :: zgammaF_2(fn2b) !< |
---|
4161 | REAL(wp) :: zgammaF_c(fn2b) !< |
---|
4162 | REAL(wp) :: zgammaF_x(fn2b) !< |
---|
4163 | REAL(wp) :: zK_c2(fn2b) !< |
---|
4164 | REAL(wp) :: zK_x2(fn2b) !< |
---|
4165 | REAL(wp) :: zknud_2(fn2b) !< |
---|
4166 | REAL(wp) :: zknud_c !< |
---|
4167 | REAL(wp) :: zknud_x !< |
---|
4168 | REAL(wp) :: zm_2(fn2b) !< |
---|
4169 | REAL(wp) :: zm_c !< |
---|
4170 | REAL(wp) :: zm_para !< |
---|
4171 | REAL(wp) :: zm_x !< |
---|
4172 | REAL(wp) :: zmyy !< |
---|
4173 | REAL(wp) :: zomega_2c(fn2b) !< |
---|
4174 | REAL(wp) :: zomega_2x(fn2b) !< |
---|
4175 | REAL(wp) :: zomega_c(fn2b) !< |
---|
4176 | REAL(wp) :: zomega_x(fn2b) !< |
---|
4177 | REAL(wp) :: zRc2(fn2b) !< |
---|
4178 | REAL(wp) :: zRx2(fn2b) !< |
---|
4179 | REAL(wp) :: zsigma_c2(fn2b) !< |
---|
4180 | REAL(wp) :: zsigma_x2(fn2b) !< |
---|
4181 | ! |
---|
4182 | !-- 1) Nucleation rate (zjnuc) and diameter of critical cluster (zdcrit) |
---|
4183 | zjnuc = 0.0_wp |
---|
4184 | znsa = 0.0_wp |
---|
4185 | znoc = 0.0_wp |
---|
4186 | zdcrit = 0.0_wp |
---|
4187 | zksa = 0.0_wp |
---|
4188 | zkocnv = 0.0_wp |
---|
4189 | |
---|
4190 | SELECT CASE ( nsnucl ) |
---|
4191 | |
---|
4192 | CASE(1) ! Binary H2SO4-H2O nucleation |
---|
4193 | |
---|
4194 | zc_h2so4 = pcsa * 1.0E-6_wp ! sulphuric acid conc. to #/cm3 |
---|
4195 | CALL binnucl( zc_h2so4, ptemp, prh, zjnuc, znsa, znoc, zdcrit, zksa, & |
---|
4196 | zkocnv ) |
---|
4197 | |
---|
4198 | CASE(2) ! Activation type nucleation |
---|
4199 | |
---|
4200 | zc_h2so4 = pcsa * 1.0E-6_wp ! sulphuric acid conc. to #/cm3 |
---|
4201 | CALL binnucl( zc_h2so4, ptemp, prh, zjnuc, znsa, znoc, zdcrit, zksa, & |
---|
4202 | zkocnv ) |
---|
4203 | CALL actnucl( pcsa, zjnuc, zdcrit, znsa, znoc, zksa, zkocnv, act_coeff ) |
---|
4204 | |
---|
4205 | CASE(3) ! Kinetically limited nucleation of (NH4)HSO4 clusters |
---|
4206 | |
---|
4207 | zc_h2so4 = pcsa * 1.0E-6_wp ! sulphuric acid conc. to #/cm3 |
---|
4208 | CALL binnucl( zc_h2so4, ptemp, prh, zjnuc, znsa, znoc, zdcrit, zksa, & |
---|
4209 | zkocnv ) |
---|
4210 | |
---|
4211 | CALL kinnucl( zc_h2so4, zjnuc, zdcrit, znsa, znoc, zksa, zkocnv ) |
---|
4212 | |
---|
4213 | CASE(4) ! Ternary H2SO4-H2O-NH3 nucleation |
---|
4214 | |
---|
4215 | zmixnh3 = pcnh3 * ptemp * argas / ( ppres * avo ) |
---|
4216 | zc_h2so4 = pcsa * 1.0E-6_wp ! sulphuric acid conc. to #/cm3 |
---|
4217 | CALL ternucl( zc_h2so4, zmixnh3, ptemp, prh, zjnuc, znsa, znoc, zdcrit, & |
---|
4218 | zksa, zkocnv ) |
---|
4219 | |
---|
4220 | CASE(5) ! Organic nucleation, J~[ORG] or J~[ORG]**2 |
---|
4221 | |
---|
4222 | zc_org = pcocnv * 1.0E-6_wp ! conc. of non-volatile OC to #/cm3 |
---|
4223 | zc_h2so4 = pcsa * 1.0E-6_wp ! sulphuric acid conc. to #/cm3 |
---|
4224 | CALL binnucl( zc_h2so4, ptemp, prh, zjnuc, znsa, znoc, zdcrit, zksa, & |
---|
4225 | zkocnv ) |
---|
4226 | CALL orgnucl( pcocnv, zjnuc, zdcrit, znsa, znoc, zksa, zkocnv ) |
---|
4227 | |
---|
4228 | CASE(6) ! Sum of H2SO4 and organic activation type nucleation, |
---|
4229 | ! J~[H2SO4]+[ORG] |
---|
4230 | |
---|
4231 | zc_h2so4 = pcsa * 1.0E-6_wp ! sulphuric acid conc. to #/cm3 |
---|
4232 | CALL binnucl( zc_h2so4, ptemp, prh, zjnuc, znsa, znoc, zdcrit, zksa, & |
---|
4233 | zkocnv ) |
---|
4234 | CALL sumnucl( pcsa, pcocnv, zjnuc, zdcrit, znsa, znoc, zksa, zkocnv ) |
---|
4235 | |
---|
4236 | |
---|
4237 | CASE(7) ! Heteromolecular nucleation, J~[H2SO4]*[ORG] |
---|
4238 | |
---|
4239 | zc_h2so4 = pcsa * 1.0E-6_wp ! sulphuric acid conc. to #/cm3 |
---|
4240 | zc_org = pcocnv * 1.0E-6_wp ! conc. of non-volatile OC to #/cm3 |
---|
4241 | CALL binnucl( zc_h2so4, ptemp, prh, zjnuc, znsa, znoc, zdcrit, zksa, & |
---|
4242 | zkocnv ) |
---|
4243 | CALL hetnucl( zc_h2so4, zc_org, zjnuc, zdcrit, znsa, znoc, zksa, zkocnv ) |
---|
4244 | |
---|
4245 | CASE(8) ! Homomolecular nucleation of H2SO4 and heteromolecular |
---|
4246 | ! nucleation of H2SO4 and organic vapour, |
---|
4247 | ! J~[H2SO4]**2 + [H2SO4]*[ORG] (EUCAARI project) |
---|
4248 | zc_h2so4 = pcsa * 1.0E-6_wp ! sulphuric acid conc. to #/cm3 |
---|
4249 | zc_org = pcocnv * 1.0E-6_wp ! conc. of non-volatile OC to #/cm3 |
---|
4250 | CALL binnucl( zc_h2so4, ptemp, prh, zjnuc, znsa, znoc, zdcrit, zksa, & |
---|
4251 | zkocnv ) |
---|
4252 | CALL SAnucl( zc_h2so4, zc_org, zjnuc, zdcrit, znsa, znoc, zksa, zkocnv ) |
---|
4253 | |
---|
4254 | CASE(9) ! Homomolecular nucleation of H2SO4 and organic vapour and |
---|
4255 | ! heteromolecular nucleation of H2SO4 and organic vapour, |
---|
4256 | ! J~[H2SO4]**2 + [H2SO4]*[ORG]+[ORG]**2 (EUCAARI project) |
---|
4257 | |
---|
4258 | zc_h2so4 = pcsa * 1.0E-6_wp ! sulphuric acid conc. to #/cm3 |
---|
4259 | zc_org = pcocnv * 1.0E-6_wp ! conc. of non-volatile OC to #/cm3 |
---|
4260 | CALL binnucl( zc_h2so4, ptemp, prh, zjnuc, znsa, znoc, zdcrit, zksa, & |
---|
4261 | zkocnv ) |
---|
4262 | |
---|
4263 | CALL SAORGnucl( zc_h2so4, zc_org, zjnuc, zdcrit, znsa, znoc, zksa, & |
---|
4264 | zkocnv ) |
---|
4265 | END SELECT |
---|
4266 | |
---|
4267 | zcsa_local = pcsa |
---|
4268 | zcocnv_local = pcocnv |
---|
4269 | ! |
---|
4270 | !-- 2) Change of particle and gas concentrations due to nucleation |
---|
4271 | ! |
---|
4272 | !-- 2.1) Check that there is enough H2SO4 and organic vapour to produce the |
---|
4273 | !-- nucleation |
---|
4274 | IF ( nsnucl <= 4 ) THEN |
---|
4275 | !-- If the chosen nucleation scheme is 1-4, nucleation occurs only due to |
---|
4276 | !-- H2SO4. All of the total vapour concentration that is taking part to the |
---|
4277 | !-- nucleation is there for sulphuric acid (sa = H2SO4) and non-volatile |
---|
4278 | !-- organic vapour is zero. |
---|
4279 | pxsa = 1.0_wp ! ratio of sulphuric acid in 3nm particles |
---|
4280 | pxocnv = 0.0_wp ! ratio of non-volatile origanic vapour |
---|
4281 | ! in 3nm particles |
---|
4282 | ELSEIF ( nsnucl > 4 ) THEN |
---|
4283 | !-- If the chosen nucleation scheme is 5-9, nucleation occurs due to organic |
---|
4284 | !-- vapour or the combination of organic vapour and H2SO4. The number of |
---|
4285 | !-- needed molecules depends on the chosen nucleation type and it has an |
---|
4286 | !-- effect also on the minimum ratio of the molecules present. |
---|
4287 | IF ( pcsa * znsa + pcocnv * znoc < 1.E-14_wp ) THEN |
---|
4288 | pxsa = 0.0_wp |
---|
4289 | pxocnv = 0.0_wp |
---|
4290 | ELSE |
---|
4291 | pxsa = pcsa * znsa / ( pcsa * znsa + pcocnv * znoc ) |
---|
4292 | pxocnv = pcocnv * znoc / ( pcsa * znsa + pcocnv * znoc ) |
---|
4293 | ENDIF |
---|
4294 | ENDIF |
---|
4295 | ! |
---|
4296 | !-- The change in total vapour concentration is the sum of the concentrations |
---|
4297 | !-- of the vapours taking part to the nucleation (depends on the chosen |
---|
4298 | !-- nucleation scheme) |
---|
4299 | zdelta_vap = MIN( zjnuc * ( znoc + znsa ), ( pcocnv * zkocnv + pcsa * & |
---|
4300 | zksa ) / ptstep ) |
---|
4301 | ! |
---|
4302 | !-- Nucleation rate J at ~1nm (#/m3s) |
---|
4303 | zjnuc = zdelta_vap / ( znoc + znsa ) |
---|
4304 | ! |
---|
4305 | !-- H2SO4 concentration after nucleation in #/m3 |
---|
4306 | zcsa_local = MAX( 1.0_wp, pcsa - zdelta_vap * pxsa ) |
---|
4307 | ! |
---|
4308 | !-- Non-volative organic vapour concentration after nucleation (#/m3) |
---|
4309 | zcocnv_local = MAX( 1.0_wp, pcocnv - zdelta_vap * pxocnv ) |
---|
4310 | ! |
---|
4311 | !-- 2.2) Formation rate of 3 nm particles (Kerminen & Kulmala, 2002) |
---|
4312 | ! |
---|
4313 | !-- 2.2.1) Growth rate of clusters formed by H2SO4 |
---|
4314 | ! |
---|
4315 | !-- GR = 3.0e-15 / dens_clus * sum( molecspeed * molarmass * conc ) |
---|
4316 | ! |
---|
4317 | !-- dens_clus = density of the clusters (here 1830 kg/m3) |
---|
4318 | !-- molarmass = molar mass of condensing species (here 98.08 g/mol) |
---|
4319 | !-- conc = concentration of condensing species [#/m3] |
---|
4320 | !-- molecspeed = molecular speed of condensing species [m/s] |
---|
4321 | !-- = sqrt( 8.0 * R * ptemp / ( pi * molarmass ) ) |
---|
4322 | !-- (Seinfeld & Pandis, 1998) |
---|
4323 | ! |
---|
4324 | !-- Growth rate by H2SO4 and organic vapour in nm/h (Eq. 21) |
---|
4325 | zGRclust = 2.3623E-15_wp * SQRT( ptemp ) * ( zcsa_local + zcocnv_local ) |
---|
4326 | ! |
---|
4327 | !-- 2.2.2) Condensational sink of pre-existing particle population |
---|
4328 | ! |
---|
4329 | !-- Diffusion coefficient (m2/s) |
---|
4330 | zdfvap = 5.1111E-10_wp * ptemp ** 1.75_wp * ( p_0 + 1325.0_wp ) / ppres |
---|
4331 | !-- Mean free path of condensing vapour (m) (Jacobson (2005), Eq. 15.25 and |
---|
4332 | !-- 16.29) |
---|
4333 | zmfp = 3.0_wp * zdfvap * SQRT( pi * amh2so4 / ( 8.0_wp * argas * ptemp ) ) |
---|
4334 | !-- Knudsen number |
---|
4335 | zknud = 2.0_wp * zmfp / ( paero(:)%dwet + d_sa ) |
---|
4336 | !-- Transitional regime correction factor (zbeta) according to Fuchs and |
---|
4337 | !-- Sutugin (1971), In: Hidy et al. (ed.), Topics in current aerosol research, |
---|
4338 | !-- Pergamon. (Eq. 4 in Kerminen and Kulmala, 2002) |
---|
4339 | zbeta = ( zknud + 1.0_wp) / ( 0.377_wp * zknud + 1.0_wp + 4.0_wp / & |
---|
4340 | ( 3.0_wp * massacc ) * ( zknud + zknud ** 2 ) ) |
---|
4341 | !-- Condensational sink (#/m2) (Eq. 3) |
---|
4342 | zcsink = SUM( paero(:)%dwet * zbeta * paero(:)%numc ) |
---|
4343 | ! |
---|
4344 | !-- Parameterised formation rate of detectable 3 nm particles (i.e. J3) |
---|
4345 | IF ( nj3 == 1 ) THEN ! Kerminen and Kulmala (2002) |
---|
4346 | !-- 2.2.3) Parameterised formation rate of detectable 3 nm particles |
---|
4347 | !-- Constants needed for the parameterisation: |
---|
4348 | !-- dapp = 3 nm and dens_nuc = 1830 kg/m3 |
---|
4349 | IF ( zcsink < 1.0E-30_wp ) THEN |
---|
4350 | zeta = 0._dp |
---|
4351 | ELSE |
---|
4352 | !-- Mean diameter of backgroud population (nm) |
---|
4353 | zdmean = 1.0_wp / SUM( paero(:)%numc ) * SUM( paero(:)%numc * & |
---|
4354 | paero(:)%dwet ) * 1.0E+9_wp |
---|
4355 | !-- Proportionality factor (nm2*m2/h) (Eq. 22) |
---|
4356 | zgamma = 0.23_wp * ( zdcrit * 1.0E+9_wp ) ** 0.2_wp * ( zdmean / & |
---|
4357 | 150.0_wp ) ** 0.048_wp * ( ptemp / 293.0_wp ) ** ( -0.75_wp ) & |
---|
4358 | * ( arhoh2so4 / 1000.0_wp ) ** ( -0.33_wp ) |
---|
4359 | !-- Factor eta (nm) (Eq. 11) |
---|
4360 | zeta = MIN( zgamma * zcsink / zGRclust, zdcrit * 1.0E11_wp ) |
---|
4361 | ENDIF |
---|
4362 | ! |
---|
4363 | !-- Number conc. of clusters surviving to 3 nm in a time step (#/m3) (Eq.14) |
---|
4364 | zj3 = zjnuc * EXP( MIN( 0.0_wp, zeta / 3.0_wp - zeta / & |
---|
4365 | ( zdcrit * 1.0E9_wp ) ) ) |
---|
4366 | |
---|
4367 | ELSEIF ( nj3 > 1 ) THEN |
---|
4368 | !-- Defining the value for zm_para. The growth is investigated between |
---|
4369 | !-- [d1,reglim(1)] = [zdcrit,3nm] |
---|
4370 | !-- m = LOG( CoagS_dx / CoagX_zdcrit ) / LOG( reglim / zdcrit ) |
---|
4371 | !-- (Lehtinen et al. 2007, Eq. 5) |
---|
4372 | !-- The steps for the coagulation sink for reglim = 3nm and zdcrit ~= 1nm are |
---|
4373 | !-- explained in article of Kulmala et al. (2001). The particles of diameter |
---|
4374 | !-- zdcrit ~1.14 nm and reglim = 3nm are both in turn the "number 1" |
---|
4375 | !-- variables (Kulmala et al. 2001). |
---|
4376 | !-- c = critical (1nm), x = 3nm, 2 = wet or mean droplet |
---|
4377 | !-- Sum of the radii, R12 = R1 + zR2 (m) of two particles 1 and 2 |
---|
4378 | zRc2 = zdcrit / 2.0_wp + paero(:)%dwet / 2.0_wp |
---|
4379 | zRx2 = reglim(1) / 2.0_wp + paero(:)%dwet / 2.0_wp |
---|
4380 | ! |
---|
4381 | !-- The mass of particle (kg) (comes only from H2SO4) |
---|
4382 | zm_c = 4.0_wp / 3.0_wp * pi * ( zdcrit / 2.0_wp ) ** 3.0_wp * arhoh2so4 |
---|
4383 | zm_x = 4.0_wp / 3.0_wp * pi * ( reglim(1) / 2.0_wp ) ** 3.0_wp * & |
---|
4384 | arhoh2so4 |
---|
4385 | zm_2 = 4.0_wp / 3.0_wp * pi * ( paero(:)%dwet / 2.0_wp )** 3.0_wp * & |
---|
4386 | arhoh2so4 |
---|
4387 | ! |
---|
4388 | !-- Mean relative thermal velocity between the particles (m/s) |
---|
4389 | zcv_c = SQRT( 8.0_wp * abo * ptemp / ( pi * zm_c ) ) |
---|
4390 | zcv_x = SQRT( 8.0_wp * abo * ptemp / ( pi * zm_x ) ) |
---|
4391 | zcv_2 = SQRT( 8.0_wp * abo * ptemp / ( pi * zm_2 ) ) |
---|
4392 | ! |
---|
4393 | !-- Average velocity after coagulation |
---|
4394 | zcv_c2 = SQRT( zcv_c ** 2.0_wp + zcv_2 ** 2.0_wp ) |
---|
4395 | zcv_x2 = SQRT( zcv_x ** 2.0_wp + zcv_2 ** 2.0_wp ) |
---|
4396 | ! |
---|
4397 | !-- Knudsen number (zmfp = mean free path of condensing vapour) |
---|
4398 | zknud_c = 2.0_wp * zmfp / zdcrit |
---|
4399 | zknud_x = 2.0_wp * zmfp / reglim(1) |
---|
4400 | zknud_2 = MAX( 0.0_wp, 2.0_wp * zmfp / paero(:)%dwet ) |
---|
4401 | ! |
---|
4402 | !-- Cunningham correction factor |
---|
4403 | zCc_c = 1.0_wp + zknud_c * ( 1.142_wp + 0.558_wp * & |
---|
4404 | EXP( -0.999_wp / zknud_c ) ) |
---|
4405 | zCc_x = 1.0_wp + zknud_x * ( 1.142_wp + 0.558_wp * & |
---|
4406 | EXP( -0.999_wp / zknud_x ) ) |
---|
4407 | zCc_2 = 1.0_wp + zknud_2 * ( 1.142_wp + 0.558_wp * & |
---|
4408 | EXP( -0.999_wp / zknud_2 ) ) |
---|
4409 | ! |
---|
4410 | !-- Gas dynamic viscosity (N*s/m2). |
---|
4411 | !-- Viscocity(air @20C) = 1.81e-5_dp N/m2 *s (Hinds, p. 25) |
---|
4412 | zmyy = 1.81E-5_wp * ( ptemp / 293.0_wp) ** ( 0.74_wp ) |
---|
4413 | ! |
---|
4414 | !-- Particle diffusion coefficient (m2/s) |
---|
4415 | zDc_c = abo * ptemp * zCc_c / ( 3.0_wp * pi * zmyy * zdcrit ) |
---|
4416 | zDc_x = abo * ptemp * zCc_x / ( 3.0_wp * pi * zmyy * reglim(1) ) |
---|
4417 | zDc_2 = abo * ptemp * zCc_2 / ( 3.0_wp * pi * zmyy * paero(:)%dwet ) |
---|
4418 | ! |
---|
4419 | !-- D12 = D1+D2 (Seinfield and Pandis, 2nd ed. Eq. 13.38) |
---|
4420 | zDc_c2 = zDc_c + zDc_2 |
---|
4421 | zDc_x2 = zDc_x + zDc_2 |
---|
4422 | ! |
---|
4423 | !-- zgammaF = 8*D/pi/zcv (m) for calculating zomega |
---|
4424 | zgammaF_c = 8.0_wp * zDc_c / pi / zcv_c |
---|
4425 | zgammaF_x = 8.0_wp * zDc_x / pi / zcv_x |
---|
4426 | zgammaF_2 = 8.0_wp * zDc_2 / pi / zcv_2 |
---|
4427 | ! |
---|
4428 | !-- zomega (m) for calculating zsigma |
---|
4429 | zomega_c = ( ( zRc2 + zgammaF_c ) ** 3 - ( zRc2 ** 2 + & |
---|
4430 | zgammaF_c ) ** ( 3.0_wp / 2.0_wp ) ) / ( 3.0_wp * & |
---|
4431 | zRc2 * zgammaF_c ) - zRc2 |
---|
4432 | zomega_x = ( ( zRx2 + zgammaF_x ) ** 3.0_wp - ( zRx2 ** 2.0_wp + & |
---|
4433 | zgammaF_x ) ** ( 3.0_wp / 2.0_wp ) ) / ( 3.0_wp * & |
---|
4434 | zRx2 * zgammaF_x ) - zRx2 |
---|
4435 | zomega_2c = ( ( zRc2 + zgammaF_2 ) ** 3.0_wp - ( zRc2 ** 2.0_wp + & |
---|
4436 | zgammaF_2 ) ** ( 3.0_wp / 2.0_wp ) ) / ( 3.0_wp * & |
---|
4437 | zRc2 * zgammaF_2 ) - zRc2 |
---|
4438 | zomega_2x = ( ( zRx2 + zgammaF_2 ) ** 3.0_wp - ( zRx2 ** 2.0_wp + & |
---|
4439 | zgammaF_2 ) ** ( 3.0_wp / 2.0_wp ) ) / ( 3.0_wp * & |
---|
4440 | zRx2 * zgammaF_2 ) - zRx2 |
---|
4441 | ! |
---|
4442 | !-- The distance (m) at which the two fluxes are matched (condensation and |
---|
4443 | !-- coagulation sinks?) |
---|
4444 | zsigma_c2 = SQRT( zomega_c ** 2.0_wp + zomega_2c ** 2.0_wp ) |
---|
4445 | zsigma_x2 = SQRT( zomega_x ** 2.0_wp + zomega_2x ** 2.0_wp ) |
---|
4446 | ! |
---|
4447 | !-- Coagulation coefficient in the continuum regime (m*m2/s) |
---|
4448 | zK_c2 = 4.0_wp * pi * zRc2 * zDc_c2 / ( zRc2 / ( zRc2 + zsigma_c2 ) + & |
---|
4449 | 4.0_wp * zDc_c2 / ( zcv_c2 * zRc2 ) ) |
---|
4450 | zK_x2 = 4.0_wp * pi * zRx2 * zDc_x2 / ( zRx2 / ( zRx2 + zsigma_x2 ) + & |
---|
4451 | 4.0_wp * zDc_x2 / ( zcv_x2 * zRx2 ) ) |
---|
4452 | ! |
---|
4453 | !-- Coagulation sink (1/s) |
---|
4454 | zCoagS_c = MAX( 1.0E-20_wp, SUM( zK_c2 * paero(:)%numc ) ) |
---|
4455 | zCoagS_x = MAX( 1.0E-20_wp, SUM( zK_x2 * paero(:)%numc ) ) |
---|
4456 | ! |
---|
4457 | !-- Parameter m for calculating the coagulation sink onto background |
---|
4458 | !-- particles (Eq. 5&6 in Lehtinen et al. 2007) |
---|
4459 | zm_para = LOG( zCoagS_x / zCoagS_c ) / LOG( reglim(1) / zdcrit ) |
---|
4460 | ! |
---|
4461 | !-- Parameter gamma for calculating the formation rate J of particles having |
---|
4462 | !-- a diameter zdcrit < d < reglim(1) (Anttila et al. 2010, eq. 5) |
---|
4463 | zgamma = ( ( ( reglim(1) / zdcrit ) ** ( zm_para + 1.0_wp ) ) - 1.0_wp )& |
---|
4464 | / ( zm_para + 1.0_wp ) |
---|
4465 | |
---|
4466 | IF ( nj3 == 2 ) THEN ! Coagulation sink |
---|
4467 | ! |
---|
4468 | !-- Formation rate J before iteration (#/m3s) |
---|
4469 | zj3 = zjnuc * EXP( MIN( 0.0_wp, -zgamma * zdcrit * zCoagS_c / & |
---|
4470 | ( zGRclust * 1.0E-9_wp / ( 60.0_wp ** 2.0_wp ) ) ) ) |
---|
4471 | |
---|
4472 | ELSEIF ( nj3 == 3 ) THEN ! Coagulation sink and self-coag. |
---|
4473 | !-- IF polluted air... then the self-coagulation becomes important. |
---|
4474 | !-- Self-coagulation of small particles < 3 nm. |
---|
4475 | ! |
---|
4476 | !-- "Effective" coagulation coefficient between freshly-nucleated |
---|
4477 | !-- particles: |
---|
4478 | zKeff = 5.0E-16_wp ! cm3/s |
---|
4479 | ! |
---|
4480 | !-- zlambda parameter for "adjusting" the growth rate due to the |
---|
4481 | !-- self-coagulation |
---|
4482 | zlambda = 6.0_wp |
---|
4483 | IF ( reglim(1) >= 10.0E-9_wp ) THEN ! for particles >10 nm: |
---|
4484 | zKeff = 5.0E-17_wp |
---|
4485 | zlambda = 3.0_wp |
---|
4486 | ENDIF |
---|
4487 | ! |
---|
4488 | !-- Initial values for coagulation sink and growth rate (m/s) |
---|
4489 | zCoagStot = zCoagS_c |
---|
4490 | zGRtot = zGRclust * 1.0E-9_wp / 60.0_wp ** 2.0_wp |
---|
4491 | ! |
---|
4492 | !-- Number of clusters/particles at the size range [d1,dx] (#/m3): |
---|
4493 | zNnuc = zjnuc / zCoagStot !< Initial guess |
---|
4494 | ! |
---|
4495 | !-- Coagulation sink and growth rate due to self-coagulation: |
---|
4496 | DO iteration = 1, 5 |
---|
4497 | zCoagStot = zCoagS_c + zKeff * zNnuc * 1.0E-6_wp ! (1/s) |
---|
4498 | zGRtot = zGRclust * 1.0E-9_wp / ( 3600.0_wp ) + 1.5708E-6_wp * & |
---|
4499 | zlambda * zdcrit ** 3.0_wp * ( zNnuc * 1.0E-6_wp ) * & |
---|
4500 | zcv_c * avo * 1.0E-9_wp / 3600.0_wp |
---|
4501 | zeta = - zCoagStot / ( ( zm_para + 1.0_wp ) * zGRtot * ( zdcrit **& |
---|
4502 | zm_para ) ) ! Eq. 7b (Anttila) |
---|
4503 | zNnuc = zNnuc_tayl( zdcrit, reglim(1), zm_para, zjnuc, zeta, & |
---|
4504 | zGRtot ) |
---|
4505 | ENDDO |
---|
4506 | ! |
---|
4507 | !-- Calculate the final values with new zNnuc: |
---|
4508 | zCoagStot = zCoagS_c + zKeff * zNnuc * 1.0E-6_wp ! (1/s) |
---|
4509 | zGRtot = zGRclust * 1.0E-9_wp / 3600.0_wp + 1.5708E-6_wp * zlambda & |
---|
4510 | * zdcrit ** 3.0_wp * ( zNnuc * 1.0E-6_wp ) * zcv_c * avo * & |
---|
4511 | 1.0E-9_wp / 3600.0_wp !< (m/s) |
---|
4512 | zj3 = zjnuc * EXP( MIN( 0.0_wp, -zgamma * zdcrit * zCoagStot / & |
---|
4513 | zGRtot ) ) ! (Eq. 5a) (#/m3s) |
---|
4514 | |
---|
4515 | ENDIF |
---|
4516 | |
---|
4517 | ENDIF |
---|
4518 | !-- If J3 very small (< 1 #/cm3), neglect particle formation. In real atmosphere |
---|
4519 | !-- this would mean that clusters form but coagulate to pre-existing particles |
---|
4520 | !-- who gain sulphate. Since CoagS ~ CS (4piD*CS'), we do *not* update H2SO4 |
---|
4521 | !-- concentration here but let condensation take care of it. |
---|
4522 | !-- Formation mass rate of molecules (molec/m3s) for 1: H2SO4 and 2: organic |
---|
4523 | !-- vapour |
---|
4524 | pj3n3(1) = zj3 * n3 * pxsa |
---|
4525 | pj3n3(2) = zj3 * n3 * pxocnv |
---|
4526 | |
---|
4527 | |
---|
4528 | END SUBROUTINE nucleation |
---|
4529 | |
---|
4530 | !------------------------------------------------------------------------------! |
---|
4531 | ! Description: |
---|
4532 | ! ------------ |
---|
4533 | !> Calculate the nucleation rate and the size of critical clusters assuming |
---|
4534 | !> binary nucleation. |
---|
4535 | !> Parametrisation according to Vehkamaki et al. (2002), J. Geophys. Res., |
---|
4536 | !> 107(D22), 4622. Called from subroutine nucleation. |
---|
4537 | !------------------------------------------------------------------------------! |
---|
4538 | SUBROUTINE binnucl( pc_sa, ptemp, prh, pnuc_rate, pn_crit_sa, pn_crit_ocnv, & |
---|
4539 | pd_crit, pk_sa, pk_ocnv ) |
---|
4540 | |
---|
4541 | IMPLICIT NONE |
---|
4542 | ! |
---|
4543 | !-- Input and output variables |
---|
4544 | REAL(wp), INTENT(in) :: pc_sa !< H2SO4 conc. (#/cm3) |
---|
4545 | REAL(wp), INTENT(in) :: prh !< relative humidity [0-1] |
---|
4546 | REAL(wp), INTENT(in) :: ptemp !< ambient temperature (K) |
---|
4547 | REAL(wp), INTENT(out) :: pnuc_rate !< nucleation rate (#/(m3 s)) |
---|
4548 | REAL(wp), INTENT(out) :: pn_crit_sa !< number of H2SO4 molecules in |
---|
4549 | !< cluster (#) |
---|
4550 | REAL(wp), INTENT(out) :: pn_crit_ocnv !< number of organic molecules in |
---|
4551 | !< cluster (#) |
---|
4552 | REAL(wp), INTENT(out) :: pd_crit !< diameter of critical cluster (m) |
---|
4553 | REAL(wp), INTENT(out) :: pk_sa !< Lever: if pk_sa = 1, H2SO4 is |
---|
4554 | !< involved in nucleation. |
---|
4555 | REAL(wp), INTENT(out) :: pk_ocnv !< Lever: if pk_ocnv = 1, organic |
---|
4556 | !< compounds are involved in |
---|
4557 | !< nucleation. |
---|
4558 | !-- Local variables |
---|
4559 | REAL(wp) :: zx !< mole fraction of sulphate in critical cluster |
---|
4560 | REAL(wp) :: zntot !< number of molecules in critical cluster |
---|
4561 | REAL(wp) :: zt !< temperature |
---|
4562 | REAL(wp) :: zpcsa !< sulfuric acid concentration |
---|
4563 | REAL(wp) :: zrh !< relative humidity |
---|
4564 | REAL(wp) :: zma !< |
---|
4565 | REAL(wp) :: zmw !< |
---|
4566 | REAL(wp) :: zxmass!< |
---|
4567 | REAL(wp) :: za !< |
---|
4568 | REAL(wp) :: zb !< |
---|
4569 | REAL(wp) :: zc !< |
---|
4570 | REAL(wp) :: zroo !< |
---|
4571 | REAL(wp) :: zm1 !< |
---|
4572 | REAL(wp) :: zm2 !< |
---|
4573 | REAL(wp) :: zv1 !< |
---|
4574 | REAL(wp) :: zv2 !< |
---|
4575 | REAL(wp) :: zcoll !< |
---|
4576 | |
---|
4577 | pnuc_rate = 0.0_wp |
---|
4578 | pd_crit = 1.0E-9_wp |
---|
4579 | |
---|
4580 | ! |
---|
4581 | !-- 1) Checking that we are in the validity range of the parameterization |
---|
4582 | zt = MAX( ptemp, 190.15_wp ) |
---|
4583 | zt = MIN( zt, 300.15_wp ) |
---|
4584 | zpcsa = MAX( pc_sa, 1.0E4_wp ) |
---|
4585 | zpcsa = MIN( zpcsa, 1.0E11_wp ) |
---|
4586 | zrh = MAX( prh, 0.0001_wp ) |
---|
4587 | zrh = MIN( zrh, 1.0_wp ) |
---|
4588 | ! |
---|
4589 | !-- 2) Mole fraction of sulphate in a critical cluster (Eq. 11) |
---|
4590 | zx = 0.7409967177282139_wp & |
---|
4591 | - 0.002663785665140117_wp * zt & |
---|
4592 | + 0.002010478847383187_wp * LOG( zrh ) & |
---|
4593 | - 0.0001832894131464668_wp* zt * LOG( zrh ) & |
---|
4594 | + 0.001574072538464286_wp * LOG( zrh ) ** 2 & |
---|
4595 | - 0.00001790589121766952_wp * zt * LOG( zrh ) ** 2 & |
---|
4596 | + 0.0001844027436573778_wp * LOG( zrh ) ** 3 & |
---|
4597 | - 1.503452308794887E-6_wp * zt * LOG( zrh ) ** 3 & |
---|
4598 | - 0.003499978417957668_wp * LOG( zpcsa ) & |
---|
4599 | + 0.0000504021689382576_wp * zt * LOG( zpcsa ) |
---|
4600 | ! |
---|
4601 | !-- 3) Nucleation rate (Eq. 12) |
---|
4602 | pnuc_rate = 0.1430901615568665_wp & |
---|
4603 | + 2.219563673425199_wp * zt & |
---|
4604 | - 0.02739106114964264_wp * zt ** 2 & |
---|
4605 | + 0.00007228107239317088_wp * zt ** 3 & |
---|
4606 | + 5.91822263375044_wp / zx & |
---|
4607 | + 0.1174886643003278_wp * LOG( zrh ) & |
---|
4608 | + 0.4625315047693772_wp * zt * LOG( zrh ) & |
---|
4609 | - 0.01180591129059253_wp * zt ** 2 * LOG( zrh ) & |
---|
4610 | + 0.0000404196487152575_wp * zt ** 3 * LOG( zrh ) & |
---|
4611 | + ( 15.79628615047088_wp * LOG( zrh ) ) / zx & |
---|
4612 | - 0.215553951893509_wp * LOG( zrh ) ** 2 & |
---|
4613 | - 0.0810269192332194_wp * zt * LOG( zrh ) ** 2 & |
---|
4614 | + 0.001435808434184642_wp * zt ** 2 * LOG( zrh ) ** 2 & |
---|
4615 | - 4.775796947178588E-6_wp * zt ** 3 * LOG( zrh ) ** 2 & |
---|
4616 | - (2.912974063702185_wp * LOG( zrh ) ** 2 ) / zx & |
---|
4617 | - 3.588557942822751_wp * LOG( zrh ) ** 3 & |
---|
4618 | + 0.04950795302831703_wp * zt * LOG( zrh ) ** 3 & |
---|
4619 | - 0.0002138195118737068_wp * zt ** 2 * LOG( zrh ) ** 3 & |
---|
4620 | + 3.108005107949533E-7_wp * zt ** 3 * LOG( zrh ) ** 3 & |
---|
4621 | - ( 0.02933332747098296_wp * LOG( zrh ) ** 3 ) / zx & |
---|
4622 | + 1.145983818561277_wp * LOG( zpcsa ) & |
---|
4623 | - 0.6007956227856778_wp * zt * LOG( zpcsa ) & |
---|
4624 | + 0.00864244733283759_wp * zt ** 2 * LOG( zpcsa ) & |
---|
4625 | - 0.00002289467254710888_wp * zt ** 3 * LOG( zpcsa ) & |
---|
4626 | - ( 8.44984513869014_wp * LOG( zpcsa ) ) / zx & |
---|
4627 | + 2.158548369286559_wp * LOG( zrh ) * LOG( zpcsa ) & |
---|
4628 | + 0.0808121412840917_wp * zt * LOG( zrh ) * LOG( zpcsa ) & |
---|
4629 | - 0.0004073815255395214_wp * zt ** 2 * LOG( zrh ) * LOG( zpcsa ) & |
---|
4630 | - 4.019572560156515E-7_wp * zt ** 3 * LOG( zrh ) * LOG( zpcsa ) & |
---|
4631 | + ( 0.7213255852557236_wp * LOG( zrh ) * LOG( zpcsa ) ) / zx & |
---|
4632 | + 1.62409850488771_wp * LOG( zrh ) ** 2 * LOG( zpcsa ) & |
---|
4633 | - 0.01601062035325362_wp * zt * LOG( zrh ) ** 2 * LOG( zpcsa ) & |
---|
4634 | + 0.00003771238979714162_wp*zt**2* LOG( zrh )**2 * LOG( zpcsa ) & |
---|
4635 | + 3.217942606371182E-8_wp * zt**3 * LOG( zrh )**2 * LOG( zpcsa ) & |
---|
4636 | - (0.01132550810022116_wp * LOG( zrh )**2 * LOG( zpcsa ) ) / zx & |
---|
4637 | + 9.71681713056504_wp * LOG( zpcsa ) ** 2 & |
---|
4638 | - 0.1150478558347306_wp * zt * LOG( zpcsa ) ** 2 & |
---|
4639 | + 0.0001570982486038294_wp * zt ** 2 * LOG( zpcsa ) ** 2 & |
---|
4640 | + 4.009144680125015E-7_wp * zt ** 3 * LOG( zpcsa ) ** 2 & |
---|
4641 | + ( 0.7118597859976135_wp * LOG( zpcsa ) ** 2 ) / zx & |
---|
4642 | - 1.056105824379897_wp * LOG( zrh ) * LOG( zpcsa ) ** 2 & |
---|
4643 | + 0.00903377584628419_wp * zt * LOG( zrh ) * LOG( zpcsa )**2 & |
---|
4644 | - 0.00001984167387090606_wp*zt**2*LOG( zrh )*LOG( zpcsa )**2 & |
---|
4645 | + 2.460478196482179E-8_wp * zt**3 * LOG( zrh ) * LOG( zpcsa )**2 & |
---|
4646 | - ( 0.05790872906645181_wp * LOG( zrh ) * LOG( zpcsa )**2 ) / zx & |
---|
4647 | - 0.1487119673397459_wp * LOG( zpcsa ) ** 3 & |
---|
4648 | + 0.002835082097822667_wp * zt * LOG( zpcsa ) ** 3 & |
---|
4649 | - 9.24618825471694E-6_wp * zt ** 2 * LOG( zpcsa ) ** 3 & |
---|
4650 | + 5.004267665960894E-9_wp * zt ** 3 * LOG( zpcsa ) ** 3 & |
---|
4651 | - ( 0.01270805101481648_wp * LOG( zpcsa ) ** 3 ) / zx |
---|
4652 | ! |
---|
4653 | !-- Nucleation rate in #/(cm3 s) |
---|
4654 | pnuc_rate = EXP( pnuc_rate ) |
---|
4655 | ! |
---|
4656 | !-- Check the validity of parameterization |
---|
4657 | IF ( pnuc_rate < 1.0E-7_wp ) THEN |
---|
4658 | pnuc_rate = 0.0_wp |
---|
4659 | pd_crit = 1.0E-9_wp |
---|
4660 | ENDIF |
---|
4661 | ! |
---|
4662 | !-- 4) Total number of molecules in the critical cluster (Eq. 13) |
---|
4663 | zntot = - 0.002954125078716302_wp & |
---|
4664 | - 0.0976834264241286_wp * zt & |
---|
4665 | + 0.001024847927067835_wp * zt ** 2 & |
---|
4666 | - 2.186459697726116E-6_wp * zt ** 3 & |
---|
4667 | - 0.1017165718716887_wp / zx & |
---|
4668 | - 0.002050640345231486_wp * LOG( zrh ) & |
---|
4669 | - 0.007585041382707174_wp * zt * LOG( zrh ) & |
---|
4670 | + 0.0001926539658089536_wp * zt ** 2 * LOG( zrh ) & |
---|
4671 | - 6.70429719683894E-7_wp * zt ** 3 * LOG( zrh ) & |
---|
4672 | - ( 0.2557744774673163_wp * LOG( zrh ) ) / zx & |
---|
4673 | + 0.003223076552477191_wp * LOG( zrh ) ** 2 & |
---|
4674 | + 0.000852636632240633_wp * zt * LOG( zrh ) ** 2 & |
---|
4675 | - 0.00001547571354871789_wp * zt ** 2 * LOG( zrh ) ** 2 & |
---|
4676 | + 5.666608424980593E-8_wp * zt ** 3 * LOG( zrh ) ** 2 & |
---|
4677 | + ( 0.03384437400744206_wp * LOG( zrh ) ** 2 ) / zx & |
---|
4678 | + 0.04743226764572505_wp * LOG( zrh ) ** 3 & |
---|
4679 | - 0.0006251042204583412_wp * zt * LOG( zrh ) ** 3 & |
---|
4680 | + 2.650663328519478E-6_wp * zt ** 2 * LOG( zrh ) ** 3 & |
---|
4681 | - 3.674710848763778E-9_wp * zt ** 3 * LOG( zrh ) ** 3 & |
---|
4682 | - ( 0.0002672510825259393_wp * LOG( zrh ) ** 3 ) / zx & |
---|
4683 | - 0.01252108546759328_wp * LOG( zpcsa ) & |
---|
4684 | + 0.005806550506277202_wp * zt * LOG( zpcsa ) & |
---|
4685 | - 0.0001016735312443444_wp * zt ** 2 * LOG( zpcsa ) & |
---|
4686 | + 2.881946187214505E-7_wp * zt ** 3 * LOG( zpcsa ) & |
---|
4687 | + ( 0.0942243379396279_wp * LOG( zpcsa ) ) / zx & |
---|
4688 | - 0.0385459592773097_wp * LOG( zrh ) * LOG( zpcsa ) & |
---|
4689 | - 0.0006723156277391984_wp * zt * LOG( zrh ) * LOG( zpcsa ) & |
---|
4690 | + 2.602884877659698E-6_wp * zt ** 2 * LOG( zrh ) * LOG( zpcsa ) & |
---|
4691 | + 1.194163699688297E-8_wp * zt ** 3 * LOG( zrh ) * LOG( zpcsa ) & |
---|
4692 | - ( 0.00851515345806281_wp * LOG( zrh ) * LOG( zpcsa ) ) / zx & |
---|
4693 | - 0.01837488495738111_wp * LOG( zrh ) ** 2 * LOG( zpcsa ) & |
---|
4694 | + 0.0001720723574407498_wp * zt * LOG( zrh ) ** 2 * LOG( zpcsa ) & |
---|
4695 | - 3.717657974086814E-7_wp * zt**2 * LOG( zrh )**2 * LOG( zpcsa ) & |
---|
4696 | - 5.148746022615196E-10_wp * zt**3 * LOG( zrh )**2 * LOG( zpcsa ) & |
---|
4697 | + ( 0.0002686602132926594_wp * LOG(zrh)**2 * LOG(zpcsa) ) / zx & |
---|
4698 | - 0.06199739728812199_wp * LOG( zpcsa ) ** 2 & |
---|
4699 | + 0.000906958053583576_wp * zt * LOG( zpcsa ) ** 2 & |
---|
4700 | - 9.11727926129757E-7_wp * zt ** 2 * LOG( zpcsa ) ** 2 & |
---|
4701 | - 5.367963396508457E-9_wp * zt ** 3 * LOG( zpcsa ) ** 2 & |
---|
4702 | - ( 0.007742343393937707_wp * LOG( zpcsa ) ** 2 ) / zx & |
---|
4703 | + 0.0121827103101659_wp * LOG( zrh ) * LOG( zpcsa ) ** 2 & |
---|
4704 | - 0.0001066499571188091_wp * zt * LOG( zrh ) * LOG( zpcsa ) ** 2 & |
---|
4705 | + 2.534598655067518E-7_wp * zt**2 * LOG( zrh ) * LOG( zpcsa )**2 & |
---|
4706 | - 3.635186504599571E-10_wp * zt**3 * LOG( zrh ) * LOG( zpcsa )**2 & |
---|
4707 | + ( 0.0006100650851863252_wp * LOG( zrh ) * LOG( zpcsa ) **2 )/ zx & |
---|
4708 | + 0.0003201836700403512_wp * LOG( zpcsa ) ** 3 & |
---|
4709 | - 0.0000174761713262546_wp * zt * LOG( zpcsa ) ** 3 & |
---|
4710 | + 6.065037668052182E-8_wp * zt ** 2 * LOG( zpcsa ) ** 3 & |
---|
4711 | - 1.421771723004557E-11_wp * zt ** 3 * LOG( zpcsa ) ** 3 & |
---|
4712 | + ( 0.0001357509859501723_wp * LOG( zpcsa ) ** 3 ) / zx |
---|
4713 | zntot = EXP( zntot ) ! in # |
---|
4714 | ! |
---|
4715 | !-- 5) Size of the critical cluster pd_crit (m) (diameter) (Eq. 14) |
---|
4716 | pn_crit_sa = zx * zntot |
---|
4717 | pd_crit = 2.0E-9_wp * EXP( -1.6524245_wp + 0.42316402_wp * zx + & |
---|
4718 | 0.33466487_wp * LOG( zntot ) ) |
---|
4719 | ! |
---|
4720 | !-- 6) Organic compounds not involved when binary nucleation is assumed |
---|
4721 | pn_crit_ocnv = 0.0_wp ! number of organic molecules |
---|
4722 | pk_sa = 1.0_wp ! if = 1, H2SO4 involved in nucleation |
---|
4723 | pk_ocnv = 0.0_wp ! if = 1, organic compounds involved |
---|
4724 | ! |
---|
4725 | !-- Set nucleation rate to collision rate |
---|
4726 | IF ( pn_crit_sa < 4.0_wp ) THEN |
---|
4727 | ! |
---|
4728 | !-- Volumes of the colliding objects |
---|
4729 | zma = 96.0_wp ! molar mass of SO4 in g/mol |
---|
4730 | zmw = 18.0_wp ! molar mass of water in g/mol |
---|
4731 | zxmass = 1.0_wp ! mass fraction of H2SO4 |
---|
4732 | za = 0.7681724_wp + zxmass * ( 2.1847140_wp + zxmass * ( & |
---|
4733 | 7.1630022_wp + zxmass * ( -44.31447_wp + zxmass * ( & |
---|
4734 | 88.75606 + zxmass * ( -75.73729_wp + zxmass * & |
---|
4735 | 23.43228_wp ) ) ) ) ) |
---|
4736 | zb = 1.808225E-3_wp + zxmass * ( -9.294656E-3_wp + zxmass * & |
---|
4737 | ( -0.03742148_wp + zxmass * ( 0.2565321_wp + zxmass * & |
---|
4738 | ( -0.5362872_wp + zxmass * ( 0.4857736 - zxmass * & |
---|
4739 | 0.1629592_wp ) ) ) ) ) |
---|
4740 | zc = - 3.478524E-6_wp + zxmass * ( 1.335867E-5_wp + zxmass * & |
---|
4741 | ( 5.195706E-5_wp + zxmass * ( -3.717636E-4_wp + zxmass * & |
---|
4742 | ( 7.990811E-4_wp + zxmass * ( -7.458060E-4_wp + zxmass * & |
---|
4743 | 2.58139E-4_wp ) ) ) ) ) |
---|
4744 | ! |
---|
4745 | !-- Density for the sulphuric acid solution (Eq. 10 in Vehkamaki) |
---|
4746 | zroo = za + zt * ( zb + zc * zt ) ! g/cm^3 |
---|
4747 | zroo = zroo * 1.0E+3_wp ! kg/m^3 |
---|
4748 | zm1 = 0.098_wp ! molar mass of H2SO4 in kg/mol |
---|
4749 | zm2 = zm1 |
---|
4750 | zv1 = zm1 / avo / zroo ! volume |
---|
4751 | zv2 = zv1 |
---|
4752 | ! |
---|
4753 | !-- Collision rate |
---|
4754 | zcoll = zpcsa * zpcsa * ( 3.0_wp * pi / 4.0_wp ) ** ( 1.0_wp / 6.0_wp )& |
---|
4755 | * SQRT( 6.0_wp * argas * zt / zm1 + 6.0_wp * argas * zt / zm2 )& |
---|
4756 | * ( zv1 ** ( 1.0_wp / 3.0_wp ) + zv2 ** ( 1.0_wp /3.0_wp ) ) **& |
---|
4757 | 2.0_wp * 1.0E+6_wp ! m3 -> cm3 |
---|
4758 | |
---|
4759 | zcoll = MIN( zcoll, 1.0E+10_wp ) |
---|
4760 | pnuc_rate = zcoll ! (#/(cm3 s)) |
---|
4761 | |
---|
4762 | ELSE |
---|
4763 | pnuc_rate = MIN( pnuc_rate, 1.0E+10_wp ) |
---|
4764 | ENDIF |
---|
4765 | pnuc_rate = pnuc_rate * 1.0E+6_wp ! (#/(m3 s)) |
---|
4766 | |
---|
4767 | END SUBROUTINE binnucl |
---|
4768 | |
---|
4769 | !------------------------------------------------------------------------------! |
---|
4770 | ! Description: |
---|
4771 | ! ------------ |
---|
4772 | !> Calculate the nucleation rate and the size of critical clusters assuming |
---|
4773 | !> ternary nucleation. Parametrisation according to: |
---|
4774 | !> Napari et al. (2002), J. Chem. Phys., 116, 4221-4227 and |
---|
4775 | !> Napari et al. (2002), J. Geophys. Res., 107(D19), AAC 6-1-ACC 6-6. |
---|
4776 | !> Called from subroutine nucleation. |
---|
4777 | !------------------------------------------------------------------------------! |
---|
4778 | SUBROUTINE ternucl( pc_sa, pc_nh3, ptemp, prh, pnuc_rate, pn_crit_sa, & |
---|
4779 | pn_crit_ocnv, pd_crit, pk_sa, pk_ocnv ) |
---|
4780 | |
---|
4781 | IMPLICIT NONE |
---|
4782 | |
---|
4783 | !-- Input and output variables |
---|
4784 | REAL(wp), INTENT(in) :: pc_nh3 !< ammonia mixing ratio (ppt) |
---|
4785 | REAL(wp), INTENT(in) :: pc_sa !< H2SO4 conc. (#/cm3) |
---|
4786 | REAL(wp), INTENT(in) :: prh !< relative humidity [0-1] |
---|
4787 | REAL(wp), INTENT(in) :: ptemp !< ambient temperature (K) |
---|
4788 | REAL(wp), INTENT(out) :: pd_crit !< diameter of critical |
---|
4789 | !< cluster (m) |
---|
4790 | REAL(wp), INTENT(out) :: pk_ocnv !< Lever: if pk_ocnv = 1,organic compounds |
---|
4791 | !< are involved in nucleation |
---|
4792 | REAL(wp), INTENT(out) :: pk_sa !< Lever: if pk_sa = 1, H2SO4 is involved |
---|
4793 | !< in nucleation |
---|
4794 | REAL(wp), INTENT(out) :: pn_crit_ocnv !< number of organic molecules in |
---|
4795 | !< cluster (#) |
---|
4796 | REAL(wp), INTENT(out) :: pn_crit_sa !< number of H2SO4 molecules in |
---|
4797 | !< cluster (#) |
---|
4798 | REAL(wp), INTENT(out) :: pnuc_rate !< nucleation rate (#/(m3 s)) |
---|
4799 | !-- Local variables |
---|
4800 | REAL(wp) :: zlnj !< logarithm of nucleation rate |
---|
4801 | |
---|
4802 | !-- 1) Checking that we are in the validity range of the parameterization. |
---|
4803 | !-- Validity of parameterization : DO NOT REMOVE! |
---|
4804 | IF ( ptemp < 240.0_wp .OR. ptemp > 300.0_wp ) THEN |
---|
4805 | message_string = 'Invalid input value: ptemp' |
---|
4806 | CALL message( 'salsa_mod: ternucl', 'SA0045', 1, 2, 0, 6, 0 ) |
---|
4807 | ENDIF |
---|
4808 | IF ( prh < 0.05_wp .OR. prh > 0.95_wp ) THEN |
---|
4809 | message_string = 'Invalid input value: prh' |
---|
4810 | CALL message( 'salsa_mod: ternucl', 'SA0046', 1, 2, 0, 6, 0 ) |
---|
4811 | ENDIF |
---|
4812 | IF ( pc_sa < 1.0E+4_wp .OR. pc_sa > 1.0E+9_wp ) THEN |
---|
4813 | message_string = 'Invalid input value: pc_sa' |
---|
4814 | CALL message( 'salsa_mod: ternucl', 'SA0047', 1, 2, 0, 6, 0 ) |
---|
4815 | ENDIF |
---|
4816 | IF ( pc_nh3 < 0.1_wp .OR. pc_nh3 > 100.0_wp ) THEN |
---|
4817 | message_string = 'Invalid input value: pc_nh3' |
---|
4818 | CALL message( 'salsa_mod: ternucl', 'SA0048', 1, 2, 0, 6, 0 ) |
---|
4819 | ENDIF |
---|
4820 | ! |
---|
4821 | !-- 2) Nucleation rate (Eq. 7 in Napari et al., 2002: Parameterization of |
---|
4822 | !-- ternary nucleation of sulfuric acid - ammonia - water. |
---|
4823 | zlnj = - 84.7551114741543_wp & |
---|
4824 | + 0.3117595133628944_wp * prh & |
---|
4825 | + 1.640089605712946_wp * prh * ptemp & |
---|
4826 | - 0.003438516933381083_wp * prh * ptemp ** 2.0_wp & |
---|
4827 | - 0.00001097530402419113_wp * prh * ptemp ** 3.0_wp & |
---|
4828 | - 0.3552967070274677_wp / LOG( pc_sa ) & |
---|
4829 | - ( 0.06651397829765026_wp * prh ) / LOG( pc_sa ) & |
---|
4830 | - ( 33.84493989762471_wp * ptemp ) / LOG( pc_sa ) & |
---|
4831 | - ( 7.823815852128623_wp * prh * ptemp ) / LOG( pc_sa) & |
---|
4832 | + ( 0.3453602302090915_wp * ptemp ** 2.0_wp ) / LOG( pc_sa ) & |
---|
4833 | + ( 0.01229375748100015_wp * prh * ptemp ** 2.0_wp ) / LOG( pc_sa ) & |
---|
4834 | - ( 0.000824007160514956_wp *ptemp ** 3.0_wp ) / LOG( pc_sa ) & |
---|
4835 | + ( 0.00006185539100670249_wp * prh * ptemp ** 3.0_wp ) & |
---|
4836 | / LOG( pc_sa ) & |
---|
4837 | + 3.137345238574998_wp * LOG( pc_sa ) & |
---|
4838 | + 3.680240980277051_wp * prh * LOG( pc_sa ) & |
---|
4839 | - 0.7728606202085936_wp * ptemp * LOG( pc_sa ) & |
---|
4840 | - 0.204098217156962_wp * prh * ptemp * LOG( pc_sa ) & |
---|
4841 | + 0.005612037586790018_wp * ptemp ** 2.0_wp * LOG( pc_sa ) & |
---|
4842 | + 0.001062588391907444_wp * prh * ptemp ** 2.0_wp * LOG( pc_sa ) & |
---|
4843 | - 9.74575691760229E-6_wp * ptemp ** 3.0_wp * LOG( pc_sa ) & |
---|
4844 | - 1.265595265137352E-6_wp * prh * ptemp ** 3.0_wp * LOG( pc_sa ) & |
---|
4845 | + 19.03593713032114_wp * LOG( pc_sa ) ** 2.0_wp & |
---|
4846 | - 0.1709570721236754_wp * ptemp * LOG( pc_sa ) ** 2.0_wp & |
---|
4847 | + 0.000479808018162089_wp * ptemp ** 2.0_wp * LOG( pc_sa ) ** 2.0_wp& |
---|
4848 | - 4.146989369117246E-7_wp * ptemp ** 3.0_wp * LOG( pc_sa ) ** 2.0_wp& |
---|
4849 | + 1.076046750412183_wp * LOG( pc_nh3 ) & |
---|
4850 | + 0.6587399318567337_wp * prh * LOG( pc_nh3 ) & |
---|
4851 | + 1.48932164750748_wp * ptemp * LOG( pc_nh3 ) & |
---|
4852 | + 0.1905424394695381_wp * prh * ptemp * LOG( pc_nh3 ) & |
---|
4853 | - 0.007960522921316015_wp * ptemp ** 2.0_wp * LOG( pc_nh3 ) & |
---|
4854 | - 0.001657184248661241_wp * prh * ptemp ** 2.0_wp * LOG( pc_nh3 ) & |
---|
4855 | + 7.612287245047392E-6_wp * ptemp ** 3.0_wp * LOG( pc_nh3 ) & |
---|
4856 | + 3.417436525881869E-6_wp * prh * ptemp ** 3.0_wp * LOG( pc_nh3 ) & |
---|
4857 | + ( 0.1655358260404061_wp * LOG( pc_nh3 ) ) / LOG( pc_sa) & |
---|
4858 | + ( 0.05301667612522116_wp * prh * LOG( pc_nh3 ) ) / LOG( pc_sa ) & |
---|
4859 | + ( 3.26622914116752_wp * ptemp * LOG( pc_nh3 ) ) / LOG( pc_sa ) & |
---|
4860 | - ( 1.988145079742164_wp * prh * ptemp * LOG( pc_nh3 ) ) & |
---|
4861 | / LOG( pc_sa ) & |
---|
4862 | - ( 0.04897027401984064_wp * ptemp ** 2.0_wp * LOG( pc_nh3) ) & |
---|
4863 | / LOG( pc_sa ) & |
---|
4864 | + ( 0.01578269253599732_wp * prh * ptemp ** 2.0_wp * LOG( pc_nh3 ) & |
---|
4865 | ) / LOG( pc_sa ) & |
---|
4866 | + ( 0.0001469672236351303_wp * ptemp ** 3.0_wp * LOG( pc_nh3 ) ) & |
---|
4867 | / LOG( pc_sa ) & |
---|
4868 | - ( 0.00002935642836387197_wp * prh * ptemp ** 3.0_wp *LOG( pc_nh3 )& |
---|
4869 | ) / LOG( pc_sa ) & |
---|
4870 | + 6.526451177887659_wp * LOG( pc_sa ) * LOG( pc_nh3 ) & |
---|
4871 | - 0.2580021816722099_wp * ptemp * LOG( pc_sa ) * LOG( pc_nh3 ) & |
---|
4872 | + 0.001434563104474292_wp * ptemp ** 2.0_wp * LOG( pc_sa ) & |
---|
4873 | * LOG( pc_nh3 ) & |
---|
4874 | - 2.020361939304473E-6_wp * ptemp ** 3.0_wp * LOG( pc_sa ) & |
---|
4875 | * LOG( pc_nh3 ) & |
---|
4876 | - 0.160335824596627_wp * LOG( pc_sa ) ** 2.0_wp * LOG( pc_nh3 ) & |
---|
4877 | + 0.00889880721460806_wp * ptemp * LOG( pc_sa ) ** 2.0_wp & |
---|
4878 | * LOG( pc_nh3 ) & |
---|
4879 | - 0.00005395139051155007_wp * ptemp ** 2.0_wp & |
---|
4880 | * LOG( pc_sa) ** 2.0_wp * LOG( pc_nh3 ) & |
---|
4881 | + 8.39521718689596E-8_wp * ptemp ** 3.0_wp * LOG( pc_sa ) ** 2.0_wp& |
---|
4882 | * LOG( pc_nh3 ) & |
---|
4883 | + 6.091597586754857_wp * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4884 | + 8.5786763679309_wp * prh * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4885 | - 1.253783854872055_wp * ptemp * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4886 | - 0.1123577232346848_wp * prh * ptemp * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4887 | + 0.00939835595219825_wp * ptemp ** 2.0_wp * LOG( pc_nh3 ) ** 2.0_wp& |
---|
4888 | + 0.0004726256283031513_wp * prh * ptemp ** 2.0_wp & |
---|
4889 | * LOG( pc_nh3) ** 2.0_wp & |
---|
4890 | - 0.00001749269360523252_wp * ptemp ** 3.0_wp & |
---|
4891 | * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4892 | - 6.483647863710339E-7_wp * prh * ptemp ** 3.0_wp & |
---|
4893 | * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4894 | + ( 0.7284285726576598_wp * LOG( pc_nh3 ) ** 2.0_wp ) / LOG( pc_sa )& |
---|
4895 | + ( 3.647355600846383_wp * ptemp * LOG( pc_nh3 ) ** 2.0_wp ) & |
---|
4896 | / LOG( pc_sa ) & |
---|
4897 | - ( 0.02742195276078021_wp * ptemp ** 2.0_wp & |
---|
4898 | * LOG( pc_nh3) ** 2.0_wp ) / LOG( pc_sa ) & |
---|
4899 | + ( 0.00004934777934047135_wp * ptemp ** 3.0_wp & |
---|
4900 | * LOG( pc_nh3 ) ** 2.0_wp ) / LOG( pc_sa ) & |
---|
4901 | + 41.30162491567873_wp * LOG( pc_sa ) * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4902 | - 0.357520416800604_wp * ptemp * LOG( pc_sa ) & |
---|
4903 | * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4904 | + 0.000904383005178356_wp * ptemp ** 2.0_wp * LOG( pc_sa ) & |
---|
4905 | * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4906 | - 5.737876676408978E-7_wp * ptemp ** 3.0_wp * LOG( pc_sa ) & |
---|
4907 | * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4908 | - 2.327363918851818_wp * LOG( pc_sa ) ** 2.0_wp & |
---|
4909 | * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4910 | + 0.02346464261919324_wp * ptemp * LOG( pc_sa ) ** 2.0_wp & |
---|
4911 | * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4912 | - 0.000076518969516405_wp * ptemp ** 2.0_wp & |
---|
4913 | * LOG( pc_sa ) ** 2.0_wp * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4914 | + 8.04589834836395E-8_wp * ptemp ** 3.0_wp * LOG( pc_sa ) ** 2.0_wp & |
---|
4915 | * LOG( pc_nh3 ) ** 2.0_wp & |
---|
4916 | - 0.02007379204248076_wp * LOG( prh ) & |
---|
4917 | - 0.7521152446208771_wp * ptemp * LOG( prh ) & |
---|
4918 | + 0.005258130151226247_wp * ptemp ** 2.0_wp * LOG( prh ) & |
---|
4919 | - 8.98037634284419E-6_wp * ptemp ** 3.0_wp * LOG( prh ) & |
---|
4920 | + ( 0.05993213079516759_wp * LOG( prh ) ) / LOG( pc_sa ) & |
---|
4921 | + ( 5.964746463184173_wp * ptemp * LOG( prh ) ) / LOG( pc_sa ) & |
---|
4922 | - ( 0.03624322255690942_wp * ptemp ** 2.0_wp * LOG( prh ) ) & |
---|
4923 | / LOG( pc_sa ) & |
---|
4924 | + ( 0.00004933369382462509_wp * ptemp ** 3.0_wp * LOG( prh ) ) & |
---|
4925 | / LOG( pc_sa ) & |
---|
4926 | - 0.7327310805365114_wp * LOG( pc_nh3 ) * LOG( prh ) & |
---|
4927 | - 0.01841792282958795_wp * ptemp * LOG( pc_nh3 ) * LOG( prh ) & |
---|
4928 | + 0.0001471855981005184_wp * ptemp ** 2.0_wp * LOG( pc_nh3 ) & |
---|
4929 | * LOG( prh ) & |
---|
4930 | - 2.377113195631848E-7_wp * ptemp ** 3.0_wp * LOG( pc_nh3 ) & |
---|
4931 | * LOG( prh ) |
---|
4932 | pnuc_rate = EXP( zlnj ) ! (#/(cm3 s)) |
---|
4933 | ! |
---|
4934 | !-- Check validity of parametrization |
---|
4935 | IF ( pnuc_rate < 1.0E-5_wp ) THEN |
---|
4936 | pnuc_rate = 0.0_wp |
---|
4937 | pd_crit = 1.0E-9_wp |
---|
4938 | ELSEIF ( pnuc_rate > 1.0E6_wp ) THEN |
---|
4939 | message_string = 'Invalid output value: nucleation rate > 10^6 1/cm3s' |
---|
4940 | CALL message( 'salsa_mod: ternucl', 'SA0049', 1, 2, 0, 6, 0 ) |
---|
4941 | ENDIF |
---|
4942 | pnuc_rate = pnuc_rate * 1.0E6_wp ! (#/(m3 s)) |
---|
4943 | ! |
---|
4944 | !-- 3) Number of H2SO4 molecules in a critical cluster (Eq. 9) |
---|
4945 | pn_crit_sa = 38.16448247950508_wp + 0.7741058259731187_wp * zlnj + & |
---|
4946 | 0.002988789927230632_wp * zlnj ** 2.0_wp - & |
---|
4947 | 0.3576046920535017_wp * ptemp - & |
---|
4948 | 0.003663583011953248_wp * zlnj * ptemp + & |
---|
4949 | 0.000855300153372776_wp * ptemp ** 2.0_wp |
---|
4950 | !-- Kinetic limit: at least 2 H2SO4 molecules in a cluster |
---|
4951 | pn_crit_sa = MAX( pn_crit_sa, 2.0E0_wp ) |
---|
4952 | ! |
---|
4953 | !-- 4) Size of the critical cluster in nm (Eq. 12) |
---|
4954 | pd_crit = 0.1410271086638381_wp - 0.001226253898894878_wp * zlnj - & |
---|
4955 | 7.822111731550752E-6_wp * zlnj ** 2.0_wp - & |
---|
4956 | 0.001567273351921166_wp * ptemp - & |
---|
4957 | 0.00003075996088273962_wp * zlnj * ptemp + & |
---|
4958 | 0.00001083754117202233_wp * ptemp ** 2.0_wp |
---|
4959 | pd_crit = pd_crit * 2.0E-9_wp ! Diameter in m |
---|
4960 | ! |
---|
4961 | !-- 5) Organic compounds not involved when ternary nucleation assumed |
---|
4962 | pn_crit_ocnv = 0.0_wp |
---|
4963 | pk_sa = 1.0_wp |
---|
4964 | pk_ocnv = 0.0_wp |
---|
4965 | |
---|
4966 | END SUBROUTINE ternucl |
---|
4967 | |
---|
4968 | !------------------------------------------------------------------------------! |
---|
4969 | ! Description: |
---|
4970 | ! ------------ |
---|
4971 | !> Calculate the nucleation rate and the size of critical clusters assuming |
---|
4972 | !> kinetic nucleation. Each sulphuric acid molecule forms an (NH4)HSO4 molecule |
---|
4973 | !> in the atmosphere and two colliding (NH4)HSO4 molecules form a stable |
---|
4974 | !> cluster. See Sihto et al. (2006), Atmos. Chem. Phys., 6(12), 4079-4091. |
---|
4975 | !> |
---|
4976 | !> Below the following assumption have been made: |
---|
4977 | !> nucrate = coagcoeff*zpcsa**2 |
---|
4978 | !> coagcoeff = 8*sqrt(3*boltz*ptemp*r_abs/dens_abs) |
---|
4979 | !> r_abs = 0.315d-9 radius of bisulphate molecule [m] |
---|
4980 | !> dens_abs = 1465 density of - " - [kg/m3] |
---|
4981 | !------------------------------------------------------------------------------! |
---|
4982 | SUBROUTINE kinnucl( pc_sa, pnuc_rate, pd_crit, pn_crit_sa, pn_crit_ocnv, & |
---|
4983 | pk_sa, pk_ocnv ) |
---|
4984 | |
---|
4985 | IMPLICIT NONE |
---|
4986 | |
---|
4987 | !-- Input and output variables |
---|
4988 | REAL(wp), INTENT(in) :: pc_sa !< H2SO4 conc. (#/m3) |
---|
4989 | REAL(wp), INTENT(out) :: pd_crit !< critical diameter of clusters (m) |
---|
4990 | REAL(wp), INTENT(out) :: pk_ocnv !< Lever: if pk_ocnv = 1, organic |
---|
4991 | !< compounds are involved in nucleation |
---|
4992 | REAL(wp), INTENT(out) :: pk_sa !< Lever: if pk_sa = 1, H2SO4 is involved |
---|
4993 | !< in nucleation |
---|
4994 | REAL(wp), INTENT(out) :: pn_crit_ocnv !< number of organic molecules in |
---|
4995 | !< cluster (#) |
---|
4996 | REAL(wp), INTENT(out) :: pn_crit_sa !< number of H2SO4 molecules in |
---|
4997 | !< cluster (#) |
---|
4998 | REAL(wp), INTENT(out) :: pnuc_rate !< nucl. rate (#/(m3 s)) |
---|
4999 | |
---|
5000 | !-- Nucleation rate (#/(m3 s)) |
---|
5001 | pnuc_rate = 5.0E-13_wp * pc_sa ** 2.0_wp * 1.0E+6_wp |
---|
5002 | !-- Organic compounds not involved when kinetic nucleation is assumed. |
---|
5003 | pn_crit_sa = 2.0_wp |
---|
5004 | pn_crit_ocnv = 0.0_wp |
---|
5005 | pk_sa = 1.0_wp |
---|
5006 | pk_ocnv = 0.0_wp |
---|
5007 | pd_crit = 7.9375E-10_wp ! (m) |
---|
5008 | |
---|
5009 | END SUBROUTINE kinnucl |
---|
5010 | !------------------------------------------------------------------------------! |
---|
5011 | ! Description: |
---|
5012 | ! ------------ |
---|
5013 | !> Calculate the nucleation rate and the size of critical clusters assuming |
---|
5014 | !> activation type nucleation. |
---|
5015 | !> See Riipinen et al. (2007), Atmos. Chem. Phys., 7(8), 1899-1914. |
---|
5016 | !------------------------------------------------------------------------------! |
---|
5017 | SUBROUTINE actnucl( psa_conc, pnuc_rate, pd_crit, pn_crit_sa, pn_crit_ocnv, & |
---|
5018 | pk_sa, pk_ocnv, activ ) |
---|
5019 | |
---|
5020 | IMPLICIT NONE |
---|
5021 | |
---|
5022 | !-- Input and output variables |
---|
5023 | REAL(wp), INTENT(in) :: psa_conc !< H2SO4 conc. (#/m3) |
---|
5024 | REAL(wp), INTENT(in) :: activ !< |
---|
5025 | REAL(wp), INTENT(out) :: pd_crit !< critical diameter of clusters (m) |
---|
5026 | REAL(wp), INTENT(out) :: pk_ocnv !< Lever: if pk_ocnv = 1, organic |
---|
5027 | !< compounds are involved in nucleation |
---|
5028 | REAL(wp), INTENT(out) :: pk_sa !< Lever: if pk_sa = 1, H2SO4 is involved |
---|
5029 | !< in nucleation |
---|
5030 | REAL(wp), INTENT(out) :: pn_crit_ocnv !< number of organic molecules in |
---|
5031 | !< cluster (#) |
---|
5032 | REAL(wp), INTENT(out) :: pn_crit_sa !< number of H2SO4 molecules in |
---|
5033 | !< cluster (#) |
---|
5034 | REAL(wp), INTENT(out) :: pnuc_rate !< nucl. rate (#/(m3 s)) |
---|
5035 | |
---|
5036 | !-- act_coeff 1e-7 by default |
---|
5037 | pnuc_rate = activ * psa_conc ! (#/(m3 s)) |
---|
5038 | !-- Organic compounds not involved when kinetic nucleation is assumed. |
---|
5039 | pn_crit_sa = 2.0_wp |
---|
5040 | pn_crit_ocnv = 0.0_wp |
---|
5041 | pk_sa = 1.0_wp |
---|
5042 | pk_ocnv = 0.0_wp |
---|
5043 | pd_crit = 7.9375E-10_wp ! (m) |
---|
5044 | END SUBROUTINE actnucl |
---|
5045 | !------------------------------------------------------------------------------! |
---|
5046 | ! Description: |
---|
5047 | ! ------------ |
---|
5048 | !> Conciders only the organic matter in nucleation. Paasonen et al. (2010) |
---|
5049 | !> determined particle formation rates for 2 nm particles, J2, from different |
---|
5050 | !> kind of combinations of sulphuric acid and organic matter concentration. |
---|
5051 | !> See Paasonen et al. (2010), Atmos. Chem. Phys., 10, 11223-11242. |
---|
5052 | !------------------------------------------------------------------------------! |
---|
5053 | SUBROUTINE orgnucl( pc_org, pnuc_rate, pd_crit, pn_crit_sa, pn_crit_ocnv, & |
---|
5054 | pk_sa, pk_ocnv ) |
---|
5055 | |
---|
5056 | IMPLICIT NONE |
---|
5057 | |
---|
5058 | !-- Input and output variables |
---|
5059 | REAL(wp), INTENT(in) :: pc_org !< organic vapour concentration (#/m3) |
---|
5060 | REAL(wp), INTENT(out) :: pd_crit !< critical diameter of clusters (m) |
---|
5061 | REAL(wp), INTENT(out) :: pk_ocnv !< Lever: if pk_ocnv = 1, organic |
---|
5062 | !< compounds are involved in nucleation |
---|
5063 | REAL(wp), INTENT(out) :: pk_sa !< Lever: if pk_sa = 1, H2SO4 is involved |
---|
5064 | !< in nucleation |
---|
5065 | REAL(wp), INTENT(out) :: pn_crit_ocnv !< number of organic molecules in |
---|
5066 | !< cluster (#) |
---|
5067 | REAL(wp), INTENT(out) :: pn_crit_sa !< number of H2SO4 molecules in |
---|
5068 | !< cluster (#) |
---|
5069 | REAL(wp), INTENT(out) :: pnuc_rate !< nucl. rate (#/(m3 s)) |
---|
5070 | !-- Local variables |
---|
5071 | REAL(wp) :: Aorg = 1.3E-7_wp !< (1/s) (Paasonen et al. Table 4: median) |
---|
5072 | |
---|
5073 | !-- Homomolecular nuleation - which one? |
---|
5074 | pnuc_rate = Aorg * pc_org |
---|
5075 | !-- H2SO4 not involved when pure organic nucleation is assumed. |
---|
5076 | pn_crit_sa = 0.0_wp |
---|
5077 | pn_crit_ocnv = 1.0_wp |
---|
5078 | pk_sa = 0.0_wp |
---|
5079 | pk_ocnv = 1.0_wp |
---|
5080 | pd_crit = 1.5E-9_wp ! (m) |
---|
5081 | |
---|
5082 | END SUBROUTINE orgnucl |
---|
5083 | !------------------------------------------------------------------------------! |
---|
5084 | ! Description: |
---|
5085 | ! ------------ |
---|
5086 | !> Conciders both the organic vapor and H2SO4 in nucleation - activation type |
---|
5087 | !> of nucleation. |
---|
5088 | !> See Paasonen et al. (2010), Atmos. Chem. Phys., 10, 11223-11242. |
---|
5089 | !------------------------------------------------------------------------------! |
---|
5090 | SUBROUTINE sumnucl( pc_sa, pc_org, pnuc_rate, pd_crit, pn_crit_sa, & |
---|
5091 | pn_crit_ocnv, pk_sa, pk_ocnv ) |
---|
5092 | |
---|
5093 | IMPLICIT NONE |
---|
5094 | |
---|
5095 | !-- Input and output variables |
---|
5096 | REAL(wp), INTENT(in) :: pc_org !< organic vapour concentration (#/m3) |
---|
5097 | REAL(wp), INTENT(in) :: pc_sa !< H2SO4 conc. (#/m3) |
---|
5098 | REAL(wp), INTENT(out) :: pd_crit !< critical diameter of clusters (m) |
---|
5099 | REAL(wp), INTENT(out) :: pk_ocnv !< Lever: if pk_ocnv = 1, organic |
---|
5100 | !< compounds are involved in nucleation |
---|
5101 | REAL(wp), INTENT(out) :: pk_sa !< Lever: if pk_sa = 1, H2SO4 is involved |
---|
5102 | !< in nucleation |
---|
5103 | REAL(wp), INTENT(out) :: pn_crit_ocnv !< number of organic molecules in |
---|
5104 | !< cluster (#) |
---|
5105 | REAL(wp), INTENT(out) :: pn_crit_sa !< number of H2SO4 molecules in |
---|
5106 | !< cluster (#) |
---|
5107 | REAL(wp), INTENT(out) :: pnuc_rate !< nucl. rate (#/(m3 s)) |
---|
5108 | !-- Local variables |
---|
5109 | REAL(wp) :: As1 = 6.1E-7_wp !< (1/s) |
---|
5110 | REAL(wp) :: As2 = 0.39E-7_wp !< (1/s) (Paasonen et al. Table 3.) |
---|
5111 | |
---|
5112 | !-- Nucleation rate (#/m3/s) |
---|
5113 | pnuc_rate = As1 * pc_sa + As2 * pc_org |
---|
5114 | !-- Both Organic compounds and H2SO4 are involved when SUMnucleation is assumed. |
---|
5115 | pn_crit_sa = 1.0_wp |
---|
5116 | pn_crit_ocnv = 1.0_wp |
---|
5117 | pk_sa = 1.0_wp |
---|
5118 | pk_ocnv = 1.0_wp |
---|
5119 | pd_crit = 1.5E-9_wp ! (m) |
---|
5120 | |
---|
5121 | END SUBROUTINE sumnucl |
---|
5122 | !------------------------------------------------------------------------------! |
---|
5123 | ! Description: |
---|
5124 | ! ------------ |
---|
5125 | !> Conciders both the organic vapor and H2SO4 in nucleation - heteromolecular |
---|
5126 | !> nucleation. |
---|
5127 | !> See Paasonen et al. (2010), Atmos. Chem. Phys., 10, 11223-11242. |
---|
5128 | !------------------------------------------------------------------------------! |
---|
5129 | SUBROUTINE hetnucl( pc_sa, pc_org, pnuc_rate, pd_crit, pn_crit_sa, & |
---|
5130 | pn_crit_ocnv, pk_sa, pk_ocnv ) |
---|
5131 | |
---|
5132 | IMPLICIT NONE |
---|
5133 | |
---|
5134 | !-- Input and output variables |
---|
5135 | REAL(wp), INTENT(in) :: pc_org !< organic vapour concentration (#/m3) |
---|
5136 | REAL(wp), INTENT(in) :: pc_sa !< H2SO4 conc. (#/m3) |
---|
5137 | REAL(wp), INTENT(out) :: pd_crit !< critical diameter of clusters (m) |
---|
5138 | REAL(wp), INTENT(out) :: pk_ocnv !< Lever: if pk_ocnv = 1, organic |
---|
5139 | !< compounds are involved in nucleation |
---|
5140 | REAL(wp), INTENT(out) :: pk_sa !< Lever: if pk_sa = 1, H2SO4 is involved |
---|
5141 | !< in nucleation |
---|
5142 | REAL(wp), INTENT(out) :: pn_crit_ocnv !< number of organic molecules in |
---|
5143 | !< cluster (#) |
---|
5144 | REAL(wp), INTENT(out) :: pn_crit_sa !< number of H2SO4 molecules in |
---|
5145 | !< cluster (#) |
---|
5146 | REAL(wp), INTENT(out) :: pnuc_rate !< nucl. rate (#/(m3 s)) |
---|
5147 | !-- Local variables |
---|
5148 | REAL(wp) :: zKhet = 4.1E-14_wp !< (cm3/s) (Paasonen et al. Table 4: median) |
---|
5149 | |
---|
5150 | !-- Nucleation rate (#/m3/s) |
---|
5151 | pnuc_rate = zKhet * pc_sa * pc_org * 1.0E6_wp |
---|
5152 | !-- Both Organic compounds and H2SO4 are involved when heteromolecular |
---|
5153 | !-- nucleation is assumed. |
---|
5154 | pn_crit_sa = 1.0_wp |
---|
5155 | pn_crit_ocnv = 1.0_wp |
---|
5156 | pk_sa = 1.0_wp |
---|
5157 | pk_ocnv = 1.0_wp |
---|
5158 | pd_crit = 1.5E-9_wp ! (m) |
---|
5159 | |
---|
5160 | END SUBROUTINE hetnucl |
---|
5161 | !------------------------------------------------------------------------------! |
---|
5162 | ! Description: |
---|
5163 | ! ------------ |
---|
5164 | !> Takes into account the homomolecular nucleation of sulphuric acid H2SO4 with |
---|
5165 | !> both of the available vapours. |
---|
5166 | !> See Paasonen et al. (2010), Atmos. Chem. Phys., 10, 11223-11242. |
---|
5167 | !------------------------------------------------------------------------------! |
---|
5168 | SUBROUTINE SAnucl( pc_sa, pc_org, pnuc_rate, pd_crit, pn_crit_sa, & |
---|
5169 | pn_crit_ocnv, pk_sa, pk_ocnv ) |
---|
5170 | |
---|
5171 | IMPLICIT NONE |
---|
5172 | |
---|
5173 | !-- Input and output variables |
---|
5174 | REAL(wp), INTENT(in) :: pc_org !< organic vapour concentration (#/m3) |
---|
5175 | REAL(wp), INTENT(in) :: pc_sa !< H2SO4 conc. (#/m3) |
---|
5176 | REAL(wp), INTENT(out) :: pd_crit !< critical diameter of clusters (m) |
---|
5177 | REAL(wp), INTENT(out) :: pk_ocnv !< Lever: if pk_ocnv = 1, organic |
---|
5178 | !< compounds are involved in nucleation |
---|
5179 | REAL(wp), INTENT(out) :: pk_sa !< Lever: if pk_sa = 1, H2SO4 is involved |
---|
5180 | !< in nucleation |
---|
5181 | REAL(wp), INTENT(out) :: pn_crit_ocnv !< number of organic molecules in |
---|
5182 | !< cluster (#) |
---|
5183 | REAL(wp), INTENT(out) :: pn_crit_sa !< number of H2SO4 molecules in |
---|
5184 | !< cluster (#) |
---|
5185 | REAL(wp), INTENT(out) :: pnuc_rate !< nucleation rate (#/(m3 s)) |
---|
5186 | !-- Local variables |
---|
5187 | REAL(wp) :: zKsa1 = 1.1E-14_wp !< (cm3/s) |
---|
5188 | REAL(wp) :: zKsa2 = 3.2E-14_wp !< (cm3/s) (Paasonen et al. Table 3.) |
---|
5189 | |
---|
5190 | !-- Nucleation rate (#/m3/s) |
---|
5191 | pnuc_rate = ( zKsa1 * pc_sa ** 2.0_wp + zKsa2 * pc_sa * pc_org ) * 1.0E+6_wp |
---|
5192 | !-- Both Organic compounds and H2SO4 are involved when SAnucleation is assumed. |
---|
5193 | pn_crit_sa = 3.0_wp |
---|
5194 | pn_crit_ocnv = 1.0_wp |
---|
5195 | pk_sa = 1.0_wp |
---|
5196 | pk_ocnv = 1.0_wp |
---|
5197 | pd_crit = 1.5E-9_wp ! (m) |
---|
5198 | |
---|
5199 | END SUBROUTINE SAnucl |
---|
5200 | !------------------------------------------------------------------------------! |
---|
5201 | ! Description: |
---|
5202 | ! ------------ |
---|
5203 | !> Takes into account the homomolecular nucleation of both sulphuric acid and |
---|
5204 | !> Lorganic with heteromolecular nucleation. |
---|
5205 | !> See Paasonen et al. (2010), Atmos. Chem. Phys., 10, 11223-11242. |
---|
5206 | !------------------------------------------------------------------------------! |
---|
5207 | SUBROUTINE SAORGnucl( pc_sa, pc_org, pnuc_rate, pd_crit, pn_crit_sa, & |
---|
5208 | pn_crit_ocnv, pk_sa, pk_ocnv ) |
---|
5209 | |
---|
5210 | IMPLICIT NONE |
---|
5211 | |
---|
5212 | !-- Input and output variables |
---|
5213 | REAL(wp), INTENT(in) :: pc_org !< organic vapour concentration (#/m3) |
---|
5214 | REAL(wp), INTENT(in) :: pc_sa !< H2SO4 conc. (#/m3) |
---|
5215 | REAL(wp), INTENT(out) :: pd_crit !< critical diameter of clusters (m) |
---|
5216 | REAL(wp), INTENT(out) :: pk_ocnv !< Lever: if pk_ocnv = 1, organic |
---|
5217 | !< compounds are involved in nucleation |
---|
5218 | REAL(wp), INTENT(out) :: pk_sa !< Lever: if pk_sa = 1, H2SO4 is involved |
---|
5219 | !< in nucleation |
---|
5220 | REAL(wp), INTENT(out) :: pn_crit_ocnv !< number of organic molecules in |
---|
5221 | !< cluster (#) |
---|
5222 | REAL(wp), INTENT(out) :: pn_crit_sa !< number of H2SO4 molecules in |
---|
5223 | !< cluster (#) |
---|
5224 | REAL(wp), INTENT(out) :: pnuc_rate !< nucl. rate (#/(m3 s)) |
---|
5225 | !-- Local variables |
---|
5226 | REAL(wp) :: zKs1 = 1.4E-14_wp !< (cm3/s]) |
---|
5227 | REAL(wp) :: zKs2 = 2.6E-14_wp !< (cm3/s]) |
---|
5228 | REAL(wp) :: zKs3 = 0.037E-14_wp !< (cm3/s]) (Paasonen et al. Table 3.) |
---|
5229 | |
---|
5230 | !-- Nucleation rate (#/m3/s) |
---|
5231 | pnuc_rate = ( zKs1 * pc_sa **2 + zKs2 * pc_sa * pc_org + zKs3 * & |
---|
5232 | pc_org ** 2.0_wp ) * 1.0E+6_wp |
---|
5233 | !-- Organic compounds not involved when kinetic nucleation is assumed. |
---|
5234 | pn_crit_sa = 3.0_wp |
---|
5235 | pn_crit_ocnv = 3.0_wp |
---|
5236 | pk_sa = 1.0_wp |
---|
5237 | pk_ocnv = 1.0_wp |
---|
5238 | pd_crit = 1.5E-9_wp ! (m) |
---|
5239 | |
---|
5240 | END SUBROUTINE SAORGnucl |
---|
5241 | |
---|
5242 | !------------------------------------------------------------------------------! |
---|
5243 | ! Description: |
---|
5244 | ! ------------ |
---|
5245 | !> Function zNnuc_tayl is connected to the calculation of self-coagualtion of |
---|
5246 | !> small particles. It calculates number of the particles in the size range |
---|
5247 | !> [zdcrit,dx] using Taylor-expansion (please note that the expansion is not |
---|
5248 | !> valid for certain rational numbers, e.g. -4/3 and -3/2) |
---|
5249 | !------------------------------------------------------------------------------! |
---|
5250 | FUNCTION zNnuc_tayl( d1, dx, zm_para, zjnuc_t, zeta, zGRtot ) |
---|
5251 | IMPLICIT NONE |
---|
5252 | |
---|
5253 | INTEGER(iwp) :: i |
---|
5254 | REAL(wp) :: d1 |
---|
5255 | REAL(wp) :: dx |
---|
5256 | REAL(wp) :: zjnuc_t |
---|
5257 | REAL(wp) :: zeta |
---|
5258 | REAL(wp) :: term1 |
---|
5259 | REAL(wp) :: term2 |
---|
5260 | REAL(wp) :: term3 |
---|
5261 | REAL(wp) :: term4 |
---|
5262 | REAL(wp) :: term5 |
---|
5263 | REAL(wp) :: zNnuc_tayl |
---|
5264 | REAL(wp) :: zGRtot |
---|
5265 | REAL(wp) :: zm_para |
---|
5266 | |
---|
5267 | zNnuc_tayl = 0.0_wp |
---|
5268 | |
---|
5269 | DO i = 0, 29 |
---|
5270 | IF ( i == 0 .OR. i == 1 ) THEN |
---|
5271 | term1 = 1.0_wp |
---|
5272 | ELSE |
---|
5273 | term1 = term1 * REAL( i, SELECTED_REAL_KIND(12,307) ) |
---|
5274 | END IF |
---|
5275 | term2 = ( REAL( i, SELECTED_REAL_KIND(12,307) ) * ( zm_para + 1.0_wp & |
---|
5276 | ) + 1.0_wp ) * term1 |
---|
5277 | term3 = zeta ** i |
---|
5278 | term4 = term3 / term2 |
---|
5279 | term5 = REAL( i, SELECTED_REAL_KIND(12,307) ) * ( zm_para + 1.0_wp ) & |
---|
5280 | + 1.0_wp |
---|
5281 | zNnuc_tayl = zNnuc_tayl + term4 * ( dx ** term5 - d1 ** term5 ) |
---|
5282 | ENDDO |
---|
5283 | zNnuc_tayl = zNnuc_tayl * zjnuc_t * EXP( -zeta * & |
---|
5284 | ( d1 ** ( zm_para + 1 ) ) ) / zGRtot |
---|
5285 | |
---|
5286 | END FUNCTION zNnuc_tayl |
---|
5287 | |
---|
5288 | !------------------------------------------------------------------------------! |
---|
5289 | ! Description: |
---|
5290 | ! ------------ |
---|
5291 | !> Calculates the condensation of water vapour on aerosol particles. Follows the |
---|
5292 | !> analytical predictor method by Jacobson (2005). |
---|
5293 | !> For equations, see Jacobson (2005), Fundamentals of atmospheric modelling |
---|
5294 | !> (2nd edition). |
---|
5295 | !------------------------------------------------------------------------------! |
---|
5296 | SUBROUTINE gpparth2o( paero, ptemp, ppres, pcs, pcw, ptstep ) |
---|
5297 | |
---|
5298 | IMPLICIT NONE |
---|
5299 | ! |
---|
5300 | !-- Input and output variables |
---|
5301 | REAL(wp), INTENT(in) :: ppres !< Air pressure (Pa) |
---|
5302 | REAL(wp), INTENT(in) :: pcs !< Water vapour saturation |
---|
5303 | !< concentration (kg/m3) |
---|
5304 | REAL(wp), INTENT(in) :: ptemp !< Ambient temperature (K) |
---|
5305 | REAL(wp), INTENT(in) :: ptstep !< timestep (s) |
---|
5306 | REAL(wp), INTENT(inout) :: pcw !< Water vapour concentration |
---|
5307 | !< (kg/m3) |
---|
5308 | TYPE(t_section), INTENT(inout) :: paero(nbins) !< Aerosol properties |
---|
5309 | !-- Local variables |
---|
5310 | INTEGER(iwp) :: b !< loop index |
---|
5311 | INTEGER(iwp) :: nstr |
---|
5312 | REAL(wp) :: adt !< internal timestep in this subroutine |
---|
5313 | REAL(wp) :: adtc(nbins) |
---|
5314 | REAL(wp) :: rhoair |
---|
5315 | REAL(wp) :: ttot |
---|
5316 | REAL(wp) :: zact !< Water activity |
---|
5317 | REAL(wp) :: zaelwc1 !< Current aerosol water content |
---|
5318 | REAL(wp) :: zaelwc2 !< New aerosol water content after |
---|
5319 | !< equilibrium calculation |
---|
5320 | REAL(wp) :: zbeta !< Transitional correction factor |
---|
5321 | REAL(wp) :: zcwc !< Current water vapour mole concentration |
---|
5322 | REAL(wp) :: zcwcae(nbins) !< Current water mole concentrations |
---|
5323 | !< in aerosols |
---|
5324 | REAL(wp) :: zcwint !< Current and new water vapour mole concentrations |
---|
5325 | REAL(wp) :: zcwintae(nbins) !< Current and new water mole concentrations |
---|
5326 | !< in aerosols |
---|
5327 | REAL(wp) :: zcwn !< New water vapour mole concentration |
---|
5328 | REAL(wp) :: zcwnae(nbins) !< New water mole concentration in aerosols |
---|
5329 | REAL(wp) :: zcwsurfae(nbins) !< Surface mole concentration |
---|
5330 | REAL(wp) :: zcwtot !< Total water mole concentration |
---|
5331 | REAL(wp) :: zdfh2o |
---|
5332 | REAL(wp) :: zhlp1 |
---|
5333 | REAL(wp) :: zhlp2 |
---|
5334 | REAL(wp) :: zhlp3 |
---|
5335 | REAL(wp) :: zka(nbins) !< Activity coefficient |
---|
5336 | REAL(wp) :: zkelvin(nbins) !< Kelvin effect |
---|
5337 | REAL(wp) :: zknud |
---|
5338 | REAL(wp) :: zmfph2o !< mean free path of H2O gas molecule |
---|
5339 | REAL(wp) :: zmtae(nbins) !< Mass transfer coefficients |
---|
5340 | REAL(wp) :: zrh !< Relative humidity [0-1] |
---|
5341 | REAL(wp) :: zthcond |
---|
5342 | REAL(wp) :: zwsatae(nbins) !< Water saturation ratio above aerosols |
---|
5343 | ! |
---|
5344 | !-- Relative humidity [0-1] |
---|
5345 | zrh = pcw / pcs |
---|
5346 | !-- Calculate the condensation only for 2a/2b aerosol bins |
---|
5347 | nstr = in2a |
---|
5348 | !-- Save the current aerosol water content, 8 in paero is H2O |
---|
5349 | zaelwc1 = SUM( paero(in1a:fn2b)%volc(8) ) * arhoh2o |
---|
5350 | ! |
---|
5351 | !-- Equilibration: |
---|
5352 | IF ( advect_particle_water ) THEN |
---|
5353 | IF ( zrh < 0.98_wp .OR. .NOT. lscndh2oae ) THEN |
---|
5354 | CALL equilibration( zrh, ptemp, paero, .TRUE. ) |
---|
5355 | ELSE |
---|
5356 | CALL equilibration( zrh, ptemp, paero, .FALSE. ) |
---|
5357 | ENDIF |
---|
5358 | ENDIF |
---|
5359 | ! |
---|
5360 | !-- The new aerosol water content after equilibrium calculation |
---|
5361 | zaelwc2 = SUM( paero(in1a:fn2b)%volc(8) ) * arhoh2o |
---|
5362 | !-- New water vapour mixing ratio (kg/m3) |
---|
5363 | pcw = pcw - ( zaelwc2 - zaelwc1 ) * ppres * amdair / ( argas * ptemp ) |
---|
5364 | ! |
---|
5365 | !-- Initialise variables |
---|
5366 | adtc(:) = 0.0_wp |
---|
5367 | zcwc = 0.0_wp |
---|
5368 | zcwcae = 0.0_wp |
---|
5369 | zcwint = 0.0_wp |
---|
5370 | zcwintae = 0.0_wp |
---|
5371 | zcwn = 0.0_wp |
---|
5372 | zcwnae = 0.0_wp |
---|
5373 | zhlp1 = 0.0_wp |
---|
5374 | zwsatae = 0.0_wp |
---|
5375 | ! |
---|
5376 | !-- Air: |
---|
5377 | !-- Density (kg/m3) |
---|
5378 | rhoair = amdair * ppres / ( argas * ptemp ) |
---|
5379 | !-- Thermal conductivity of air |
---|
5380 | zthcond = 0.023807_wp + 7.1128E-5_wp * ( ptemp - 273.16_wp ) |
---|
5381 | ! |
---|
5382 | !-- Water vapour: |
---|
5383 | ! |
---|
5384 | !-- Molecular diffusion coefficient (cm2/s) (eq.16.17) |
---|
5385 | zdfh2o = ( 5.0_wp / ( 16.0_wp * avo * rhoair * 1.0E-3_wp * & |
---|
5386 | ( 3.11E-8_wp ) ** 2.0_wp ) ) * SQRT( argas * 1.0E+7_wp * ptemp * & |
---|
5387 | amdair * 1.0E+3_wp * ( amh2o + amdair ) * 1.0E+3_wp / ( 2.0_wp * & |
---|
5388 | pi * amh2o * 1.0E+3_wp ) ) |
---|
5389 | zdfh2o = zdfh2o * 1.0E-4 ! Unit change to m^2/s |
---|
5390 | ! |
---|
5391 | !-- Mean free path (eq. 15.25 & 16.29) |
---|
5392 | zmfph2o = 3.0_wp * zdfh2o * SQRT( pi * amh2o / ( 8.0_wp * argas * ptemp ) ) |
---|
5393 | zka = 1.0_wp ! Assume activity coefficients as 1 for now. |
---|
5394 | ! |
---|
5395 | !-- Kelvin effect (eq. 16.33) |
---|
5396 | zkelvin = 1.0_wp |
---|
5397 | zkelvin(1:nbins) = EXP( 4.0_wp * surfw0 * amh2o / ( argas * ptemp * & |
---|
5398 | arhoh2o * paero(1:nbins)%dwet) ) |
---|
5399 | ! |
---|
5400 | ! --Aerosols: |
---|
5401 | zmtae(:) = 0.0_wp ! mass transfer coefficient |
---|
5402 | zcwsurfae(:) = 0.0_wp ! surface mole concentrations |
---|
5403 | DO b = 1, nbins |
---|
5404 | IF ( paero(b)%numc > nclim .AND. zrh > 0.98_wp ) THEN |
---|
5405 | ! |
---|
5406 | !-- Water activity |
---|
5407 | zact = acth2o( paero(b) ) |
---|
5408 | ! |
---|
5409 | !-- Saturation mole concentration over flat surface. Limit the super- |
---|
5410 | !-- saturation to max 1.01 for the mass transfer. Experimental! |
---|
5411 | zcwsurfae(b) = MAX( pcs, pcw / 1.01_wp ) * rhoair / amh2o |
---|
5412 | ! |
---|
5413 | !-- Equilibrium saturation ratio |
---|
5414 | zwsatae(b) = zact * zkelvin(b) |
---|
5415 | ! |
---|
5416 | !-- Knudsen number (eq. 16.20) |
---|
5417 | zknud = 2.0_wp * zmfph2o / paero(b)%dwet |
---|
5418 | ! |
---|
5419 | !-- Transitional correction factor (Fuks & Sutugin, 1971) |
---|
5420 | zbeta = ( zknud + 1.0_wp ) / ( 0.377_wp * zknud + 1.0_wp + 4.0_wp / & |
---|
5421 | ( 3.0_wp * massacc(b) ) * ( zknud + zknud ** 2.0_wp ) ) |
---|
5422 | ! |
---|
5423 | !-- Mass transfer of H2O: Eq. 16.64 but here D^eff = zdfh2o * zbeta |
---|
5424 | zhlp1 = paero(b)%numc * 2.0_wp * pi * paero(b)%dwet * zdfh2o * & |
---|
5425 | zbeta |
---|
5426 | !-- 1st term on the left side of the denominator in eq. 16.55 |
---|
5427 | zhlp2 = amh2o * zdfh2o * alv * zwsatae(b) * zcwsurfae(b) / & |
---|
5428 | ( zthcond * ptemp ) |
---|
5429 | !-- 2nd term on the left side of the denominator in eq. 16.55 |
---|
5430 | zhlp3 = ( (alv * amh2o ) / ( argas * ptemp ) ) - 1.0_wp |
---|
5431 | !-- Full eq. 16.64: Mass transfer coefficient (1/s) |
---|
5432 | zmtae(b) = zhlp1 / ( zhlp2 * zhlp3 + 1.0_wp ) |
---|
5433 | ENDIF |
---|
5434 | ENDDO |
---|
5435 | ! |
---|
5436 | !-- Current mole concentrations of water |
---|
5437 | zcwc = pcw * rhoair / amh2o ! as vapour |
---|
5438 | zcwcae(1:nbins) = paero(1:nbins)%volc(8) * arhoh2o / amh2o ! in aerosols |
---|
5439 | zcwtot = zcwc + SUM( zcwcae ) ! total water concentration |
---|
5440 | ttot = 0.0_wp |
---|
5441 | adtc = 0.0_wp |
---|
5442 | zcwintae = zcwcae |
---|
5443 | ! |
---|
5444 | !-- Substepping loop |
---|
5445 | zcwint = 0.0_wp |
---|
5446 | DO WHILE ( ttot < ptstep ) |
---|
5447 | adt = 2.0E-2_wp ! internal timestep |
---|
5448 | ! |
---|
5449 | !-- New vapour concentration: (eq. 16.71) |
---|
5450 | zhlp1 = zcwc + adt * ( SUM( zmtae(nstr:nbins) * zwsatae(nstr:nbins) * & |
---|
5451 | zcwsurfae(nstr:nbins) ) ) ! numerator |
---|
5452 | zhlp2 = 1.0_wp + adt * ( SUM( zmtae(nstr:nbins) ) ) ! denomin. |
---|
5453 | zcwint = zhlp1 / zhlp2 ! new vapour concentration |
---|
5454 | zcwint = MIN( zcwint, zcwtot ) |
---|
5455 | IF ( ANY( paero(:)%numc > nclim ) .AND. zrh > 0.98_wp ) THEN |
---|
5456 | DO b = nstr, nbins |
---|
5457 | zcwintae(b) = zcwcae(b) + MIN( MAX( adt * zmtae(b) * & |
---|
5458 | ( zcwint - zwsatae(b) * zcwsurfae(b) ), & |
---|
5459 | -0.02_wp * zcwcae(b) ), 0.05_wp * zcwcae(b) ) |
---|
5460 | zwsatae(b) = acth2o( paero(b), zcwintae(b) ) * zkelvin(b) |
---|
5461 | ENDDO |
---|
5462 | ENDIF |
---|
5463 | zcwintae(nstr:nbins) = MAX( zcwintae(nstr:nbins), 0.0_wp ) |
---|
5464 | ! |
---|
5465 | !-- Update vapour concentration for consistency |
---|
5466 | zcwint = zcwtot - SUM( zcwintae(1:nbins) ) |
---|
5467 | !-- Update "old" values for next cycle |
---|
5468 | zcwcae = zcwintae |
---|
5469 | |
---|
5470 | ttot = ttot + adt |
---|
5471 | ENDDO ! ADT |
---|
5472 | zcwn = zcwint |
---|
5473 | zcwnae = zcwintae |
---|
5474 | pcw = zcwn * amh2o / rhoair |
---|
5475 | paero(1:nbins)%volc(8) = MAX( 0.0_wp, zcwnae(1:nbins) * amh2o / arhoh2o ) |
---|
5476 | |
---|
5477 | END SUBROUTINE gpparth2o |
---|
5478 | |
---|
5479 | !------------------------------------------------------------------------------! |
---|
5480 | ! Description: |
---|
5481 | ! ------------ |
---|
5482 | !> Calculates the activity coefficient of liquid water |
---|
5483 | !------------------------------------------------------------------------------! |
---|
5484 | REAL(wp) FUNCTION acth2o( ppart, pcw ) |
---|
5485 | |
---|
5486 | IMPLICIT NONE |
---|
5487 | |
---|
5488 | TYPE(t_section), INTENT(in) :: ppart !< Aerosol properties of a bin |
---|
5489 | REAL(wp), INTENT(in), OPTIONAL :: pcw !< molar concentration of water |
---|
5490 | !< (mol/m3) |
---|
5491 | |
---|
5492 | REAL(wp) :: zns !< molar concentration of solutes (mol/m3) |
---|
5493 | REAL(wp) :: znw !< molar concentration of water (mol/m3) |
---|
5494 | |
---|
5495 | zns = ( 3.0_wp * ( ppart%volc(1) * arhoh2so4 / amh2so4 ) + & |
---|
5496 | ( ppart%volc(2) * arhooc / amoc ) + & |
---|
5497 | 2.0_wp * ( ppart%volc(5) * arhoss / amss ) + & |
---|
5498 | ( ppart%volc(6) * arhohno3 / amhno3 ) + & |
---|
5499 | ( ppart%volc(7) * arhonh3 / amnh3 ) ) |
---|
5500 | IF ( PRESENT(pcw) ) THEN |
---|
5501 | znw = pcw |
---|
5502 | ELSE |
---|
5503 | znw = ppart%volc(8) * arhoh2o / amh2o |
---|
5504 | ENDIF |
---|
5505 | !-- Activity = partial pressure of water vapour / |
---|
5506 | !-- sat. vapour pressure of water over a bulk liquid surface |
---|
5507 | !-- = molality * activity coefficient (Jacobson, 2005: eq. 17.20-21) |
---|
5508 | !-- Assume activity coefficient of 1 for water |
---|
5509 | acth2o = MAX( 0.1_wp, znw / MAX( EPSILON( 1.0_wp ),( znw + zns ) ) ) |
---|
5510 | END FUNCTION acth2o |
---|
5511 | |
---|
5512 | !------------------------------------------------------------------------------! |
---|
5513 | ! Description: |
---|
5514 | ! ------------ |
---|
5515 | !> Calculates the dissolutional growth of particles (i.e. gas transfers to a |
---|
5516 | !> particle surface and dissolves in liquid water on the surface). Treated here |
---|
5517 | !> as a non-equilibrium (time-dependent) process. Gases: HNO3 and NH3 |
---|
5518 | !> (Chapter 17.14 in Jacobson, 2005). |
---|
5519 | ! |
---|
5520 | !> Called from subroutine condensation. |
---|
5521 | !> Coded by: |
---|
5522 | !> Harri Kokkola (FMI) |
---|
5523 | !------------------------------------------------------------------------------! |
---|
5524 | SUBROUTINE gpparthno3( ppres, ptemp, paero, pghno3, pgnh3, pcw, pcs, pbeta, & |
---|
5525 | ptstep ) |
---|
5526 | |
---|
5527 | IMPLICIT NONE |
---|
5528 | ! |
---|
5529 | !-- Input and output variables |
---|
5530 | REAL(wp), INTENT(in) :: pbeta(nbins) !< transitional correction factor for |
---|
5531 | !< aerosols |
---|
5532 | REAL(wp), INTENT(in) :: ppres !< ambient pressure (Pa) |
---|
5533 | REAL(wp), INTENT(in) :: pcs !< water vapour saturation |
---|
5534 | !< concentration (kg/m3) |
---|
5535 | REAL(wp), INTENT(in) :: ptemp !< ambient temperature (K) |
---|
5536 | REAL(wp), INTENT(in) :: ptstep !< time step (s) |
---|
5537 | REAL(wp), INTENT(inout) :: pghno3 !< nitric acid concentration (#/m3) |
---|
5538 | REAL(wp), INTENT(inout) :: pgnh3 !< ammonia conc. (#/m3) |
---|
5539 | REAL(wp), INTENT(inout) :: pcw !< water vapour concentration (kg/m3) |
---|
5540 | TYPE(t_section), INTENT(inout) :: paero(nbins) !< Aerosol properties |
---|
5541 | ! |
---|
5542 | !-- Local variables |
---|
5543 | INTEGER(iwp) :: b !< loop index |
---|
5544 | REAL(wp) :: adt !< timestep |
---|
5545 | REAL(wp) :: zachhso4ae(nbins) !< Activity coefficients for HHSO4 |
---|
5546 | REAL(wp) :: zacnh3ae(nbins) !< Activity coefficients for NH3 |
---|
5547 | REAL(wp) :: zacnh4hso2ae(nbins)!< Activity coefficients for NH4HSO2 |
---|
5548 | REAL(wp) :: zacno3ae(nbins) !< Activity coefficients for HNO3 |
---|
5549 | REAL(wp) :: zcgnh3eqae(nbins) !< Equilibrium gas concentration: NH3 |
---|
5550 | REAL(wp) :: zcgno3eqae(nbins) !< Equilibrium gas concentration: HNO3 |
---|
5551 | REAL(wp) :: zcgwaeqae(nbins) !< Equilibrium gas concentration: H2O |
---|
5552 | REAL(wp) :: zcnh3c !< Current NH3 gas concentration |
---|
5553 | REAL(wp) :: zcnh3int !< Intermediate NH3 gas concentration |
---|
5554 | REAL(wp) :: zcnh3intae(nbins) !< Intermediate NH3 aerosol concentration |
---|
5555 | REAL(wp) :: zcnh3n !< New NH3 gas concentration |
---|
5556 | REAL(wp) :: zcnh3cae(nbins) !< Current NH3 in aerosols |
---|
5557 | REAL(wp) :: zcnh3nae(nbins) !< New NH3 in aerosols |
---|
5558 | REAL(wp) :: zcnh3tot !< Total NH3 concentration |
---|
5559 | REAL(wp) :: zcno3c !< Current HNO3 gas concentration |
---|
5560 | REAL(wp) :: zcno3int !< Intermediate HNO3 gas concentration |
---|
5561 | REAL(wp) :: zcno3intae(nbins) !< Intermediate HNO3 aerosol concentration |
---|
5562 | REAL(wp) :: zcno3n !< New HNO3 gas concentration |
---|
5563 | REAL(wp) :: zcno3cae(nbins) !< Current HNO3 in aerosols |
---|
5564 | REAL(wp) :: zcno3nae(nbins) !< New HNO3 in aerosols |
---|
5565 | REAL(wp) :: zcno3tot !< Total HNO3 concentration |
---|
5566 | REAL(wp) :: zdfvap !< Diffusion coefficient for vapors |
---|
5567 | REAL(wp) :: zhlp1 !< helping variable |
---|
5568 | REAL(wp) :: zhlp2 !< helping variable |
---|
5569 | REAL(wp) :: zkelnh3ae(nbins) !< Kelvin effects for NH3 |
---|
5570 | REAL(wp) :: zkelno3ae(nbins) !< Kelvin effect for HNO3 |
---|
5571 | REAL(wp) :: zmolsae(nbins,7) !< Ion molalities from pdfite |
---|
5572 | REAL(wp) :: zmtnh3ae(nbins) !< Mass transfer coefficients for NH3 |
---|
5573 | REAL(wp) :: zmtno3ae(nbins) !< Mass transfer coefficients for HNO3 |
---|
5574 | REAL(wp) :: zrh !< relative humidity |
---|
5575 | REAL(wp) :: zsathno3ae(nbins) !< HNO3 saturation ratio |
---|
5576 | REAL(wp) :: zsatnh3ae(nbins) !< NH3 saturation ratio = the partial |
---|
5577 | !< pressure of a gas divided by its |
---|
5578 | !< saturation vapor pressure over a surface |
---|
5579 | ! |
---|
5580 | !-- Initialise: |
---|
5581 | adt = ptstep |
---|
5582 | zachhso4ae = 0.0_wp |
---|
5583 | zacnh3ae = 0.0_wp |
---|
5584 | zacnh4hso2ae = 0.0_wp |
---|
5585 | zacno3ae = 0.0_wp |
---|
5586 | zcgnh3eqae = 0.0_wp |
---|
5587 | zcgno3eqae = 0.0_wp |
---|
5588 | zcnh3c = 0.0_wp |
---|
5589 | zcnh3cae = 0.0_wp |
---|
5590 | zcnh3int = 0.0_wp |
---|
5591 | zcnh3intae = 0.0_wp |
---|
5592 | zcnh3n = 0.0_wp |
---|
5593 | zcnh3nae = 0.0_wp |
---|
5594 | zcnh3tot = 0.0_wp |
---|
5595 | zcno3c = 0.0_wp |
---|
5596 | zcno3cae = 0.0_wp |
---|
5597 | zcno3int = 0.0_wp |
---|
5598 | zcno3intae = 0.0_wp |
---|
5599 | zcno3n = 0.0_wp |
---|
5600 | zcno3nae = 0.0_wp |
---|
5601 | zcno3tot = 0.0_wp |
---|
5602 | zhlp1 = 0.0_wp |
---|
5603 | zhlp2 = 0.0_wp |
---|
5604 | zkelno3ae = 1.0_wp |
---|
5605 | zkelnh3ae = 1.0_wp |
---|
5606 | zmolsae = 0.0_wp |
---|
5607 | zmtno3ae = 0.0_wp |
---|
5608 | zmtnh3ae = 0.0_wp |
---|
5609 | zrh = 0.0_wp |
---|
5610 | zsatnh3ae = 1.0_wp |
---|
5611 | zsathno3ae = 1.0_wp |
---|
5612 | ! |
---|
5613 | !-- Diffusion coefficient (m2/s) |
---|
5614 | zdfvap = 5.1111E-10_wp * ptemp ** 1.75_wp * ( p_0 + 1325.0_wp ) / ppres |
---|
5615 | ! |
---|
5616 | !-- Kelvin effects (Jacobson (2005), eq. 16.33) |
---|
5617 | zkelno3ae(1:nbins) = EXP( 4.0_wp * surfw0 * amvhno3 / ( abo * ptemp * & |
---|
5618 | paero(1:nbins)%dwet ) ) |
---|
5619 | zkelnh3ae(1:nbins) = EXP( 4.0_wp * surfw0 * amvnh3 / ( abo * ptemp * & |
---|
5620 | paero(1:nbins)%dwet ) ) |
---|
5621 | ! |
---|
5622 | !-- Current vapour mole concentrations (mol/m3) |
---|
5623 | zcno3c = pghno3 / avo ! HNO3 |
---|
5624 | zcnh3c = pgnh3 / avo ! NH3 |
---|
5625 | ! |
---|
5626 | !-- Current particle mole concentrations (mol/m3) |
---|
5627 | zcno3cae(1:nbins) = paero(1:nbins)%volc(6) * arhohno3 / amhno3 |
---|
5628 | zcnh3cae(1:nbins) = paero(1:nbins)%volc(7) * arhonh3 / amnh3 |
---|
5629 | ! |
---|
5630 | !-- Total mole concentrations: gas and particle phase |
---|
5631 | zcno3tot = zcno3c + SUM( zcno3cae(1:nbins) ) |
---|
5632 | zcnh3tot = zcnh3c + SUM( zcnh3cae(1:nbins) ) |
---|
5633 | ! |
---|
5634 | !-- Relative humidity [0-1] |
---|
5635 | zrh = pcw / pcs |
---|
5636 | ! |
---|
5637 | !-- Mass transfer coefficients (Jacobson, Eq. 16.64) |
---|
5638 | zmtno3ae(1:nbins) = 2.0_wp * pi * paero(1:nbins)%dwet * zdfvap * & |
---|
5639 | paero(1:nbins)%numc * pbeta(1:nbins) |
---|
5640 | zmtnh3ae(1:nbins) = 2.0_wp * pi * paero(1:nbins)%dwet * zdfvap * & |
---|
5641 | paero(1:nbins)%numc * pbeta(1:nbins) |
---|
5642 | |
---|
5643 | ! |
---|
5644 | !-- Get the equilibrium concentrations above aerosols |
---|
5645 | CALL NONHEquil( zrh, ptemp, paero, zcgno3eqae, zcgnh3eqae, zacno3ae, & |
---|
5646 | zacnh3ae, zacnh4hso2ae, zachhso4ae, zmolsae ) |
---|
5647 | |
---|
5648 | ! |
---|
5649 | !-- NH4/HNO3 saturation ratios for aerosols |
---|
5650 | CALL SVsat( ptemp, paero, zacno3ae, zacnh3ae, zacnh4hso2ae, zachhso4ae, & |
---|
5651 | zcgno3eqae, zcno3cae, zcnh3cae, zkelno3ae, zkelnh3ae, & |
---|
5652 | zsathno3ae, zsatnh3ae, zmolsae ) |
---|
5653 | ! |
---|
5654 | !-- Intermediate concentrations |
---|
5655 | zhlp1 = SUM( zcno3cae(1:nbins) / ( 1.0_wp + adt * zmtno3ae(1:nbins) * & |
---|
5656 | zsathno3ae(1:nbins) ) ) |
---|
5657 | zhlp2 = SUM( zmtno3ae(1:nbins) / ( 1.0_wp + adt * zmtno3ae(1:nbins) * & |
---|
5658 | zsathno3ae(1:nbins) ) ) |
---|
5659 | zcno3int = ( zcno3tot - zhlp1 ) / ( 1.0_wp + adt * zhlp2 ) |
---|
5660 | |
---|
5661 | zhlp1 = SUM( zcnh3cae(1:nbins) / ( 1.0_wp + adt * zmtnh3ae(1:nbins) * & |
---|
5662 | zsatnh3ae(1:nbins) ) ) |
---|
5663 | zhlp2 = SUM( zmtnh3ae(1:nbins) / ( 1.0_wp + adt * zmtnh3ae(1:nbins) * & |
---|
5664 | zsatnh3ae(1:nbins) ) ) |
---|
5665 | zcnh3int = ( zcnh3tot - zhlp1 )/( 1.0_wp + adt * zhlp2 ) |
---|
5666 | |
---|
5667 | zcno3int = MIN(zcno3int, zcno3tot) |
---|
5668 | zcnh3int = MIN(zcnh3int, zcnh3tot) |
---|
5669 | ! |
---|
5670 | !-- Calculate the new particle concentrations |
---|
5671 | zcno3intae = zcno3cae |
---|
5672 | zcnh3intae = zcnh3cae |
---|
5673 | DO b = 1, nbins |
---|
5674 | zcno3intae(b) = ( zcno3cae(b) + adt * zmtno3ae(b) * zcno3int ) / & |
---|
5675 | ( 1.0_wp + adt * zmtno3ae(b) * zsathno3ae(b) ) |
---|
5676 | zcnh3intae(b) = ( zcnh3cae(b) + adt * zmtnh3ae(b) * zcnh3int ) / & |
---|
5677 | ( 1.0_wp + adt * zmtnh3ae(b) * zsatnh3ae(b) ) |
---|
5678 | ENDDO |
---|
5679 | |
---|
5680 | zcno3intae(1:nbins) = MAX( zcno3intae(1:nbins), 0.0_wp ) |
---|
5681 | zcnh3intae(1:nbins) = MAX( zcnh3intae(1:nbins), 0.0_wp ) |
---|
5682 | |
---|
5683 | zcno3n = zcno3int ! Final molar gas concentration of HNO3 |
---|
5684 | zcno3nae = zcno3intae ! Final molar particle concentration of HNO3 |
---|
5685 | |
---|
5686 | zcnh3n = zcnh3int ! Final molar gas concentration of NH3 |
---|
5687 | zcnh3nae = zcnh3intae ! Final molar particle concentration of NH3 |
---|
5688 | ! |
---|
5689 | !-- Model timestep reached - update the new arrays |
---|
5690 | pghno3 = zcno3n * avo |
---|
5691 | pgnh3 = zcnh3n * avo |
---|
5692 | |
---|
5693 | DO b = in1a, fn2b |
---|
5694 | paero(b)%volc(6) = zcno3nae(b) * amhno3 / arhohno3 |
---|
5695 | paero(b)%volc(7) = zcnh3nae(b) * amnh3 / arhonh3 |
---|
5696 | ENDDO |
---|
5697 | |
---|
5698 | |
---|
5699 | END SUBROUTINE gpparthno3 |
---|
5700 | !------------------------------------------------------------------------------! |
---|
5701 | ! Description: |
---|
5702 | ! ------------ |
---|
5703 | !> Calculate the equilibrium concentrations above aerosols (reference?) |
---|
5704 | !------------------------------------------------------------------------------! |
---|
5705 | SUBROUTINE NONHEquil( prh, ptemp, ppart, pcgno3eq, pcgnh3eq, pgammano, & |
---|
5706 | pgammanh, pgammanh4hso2, pgammahhso4, pmols ) |
---|
5707 | |
---|
5708 | IMPLICIT NONE |
---|
5709 | |
---|
5710 | REAL(wp), INTENT(in) :: prh !< relative humidity |
---|
5711 | REAL(wp), INTENT(in) :: ptemp !< ambient temperature (K) |
---|
5712 | |
---|
5713 | TYPE(t_section), INTENT(inout) :: ppart(nbins) !< Aerosol properties |
---|
5714 | !-- Equilibrium molar concentration above aerosols: |
---|
5715 | REAL(wp), INTENT(inout) :: pcgnh3eq(nbins) !< of NH3 |
---|
5716 | REAL(wp), INTENT(inout) :: pcgno3eq(nbins) !< of HNO3 |
---|
5717 | !< Activity coefficients: |
---|
5718 | REAL(wp), INTENT(inout) :: pgammahhso4(nbins) !< HHSO4 |
---|
5719 | REAL(wp), INTENT(inout) :: pgammanh(nbins) !< NH3 |
---|
5720 | REAL(wp), INTENT(inout) :: pgammanh4hso2(nbins) !< NH4HSO2 |
---|
5721 | REAL(wp), INTENT(inout) :: pgammano(nbins) !< HNO3 |
---|
5722 | REAL(wp), INTENT(inout) :: pmols(nbins,7) !< Ion molalities |
---|
5723 | |
---|
5724 | INTEGER(iwp) :: b |
---|
5725 | |
---|
5726 | REAL(wp) :: zgammas(7) !< Activity coefficients |
---|
5727 | REAL(wp) :: zhlp !< Dummy variable |
---|
5728 | REAL(wp) :: zions(7) !< molar concentration of ion (mol/m3) |
---|
5729 | REAL(wp) :: zphcl !< Equilibrium vapor pressures (Pa??) |
---|
5730 | REAL(wp) :: zphno3 !< Equilibrium vapor pressures (Pa??) |
---|
5731 | REAL(wp) :: zpnh3 !< Equilibrium vapor pressures (Pa??) |
---|
5732 | REAL(wp) :: zwatertotal !< Total water in particles (mol/m3) ??? |
---|
5733 | |
---|
5734 | zgammas = 0.0_wp |
---|
5735 | zhlp = 0.0_wp |
---|
5736 | zions = 0.0_wp |
---|
5737 | zphcl = 0.0_wp |
---|
5738 | zphno3 = 0.0_wp |
---|
5739 | zpnh3 = 0.0_wp |
---|
5740 | zwatertotal = 0.0_wp |
---|
5741 | |
---|
5742 | DO b = 1, nbins |
---|
5743 | |
---|
5744 | IF ( ppart(b)%numc < nclim ) CYCLE |
---|
5745 | ! |
---|
5746 | !-- 2*H2SO4 + CL + NO3 - Na - NH4 |
---|
5747 | zhlp = 2.0_wp * ppart(b)%volc(1) * arhoh2so4 / amh2so4 + & |
---|
5748 | ppart(b)%volc(5) * arhoss / amss + & |
---|
5749 | ppart(b)%volc(6) * arhohno3 / amhno3 - & |
---|
5750 | ppart(b)%volc(5) * arhoss / amss - & |
---|
5751 | ppart(b)%volc(7) * arhonh3 / amnh3 |
---|
5752 | |
---|
5753 | zhlp = MAX( zhlp, 1.0E-30_wp ) |
---|
5754 | |
---|
5755 | zions(1) = zhlp ! H+ |
---|
5756 | zions(2) = ppart(b)%volc(7) * arhonh3 / amnh3 ! NH4+ |
---|
5757 | zions(3) = ppart(b)%volc(5) * arhoss / amss ! Na+ |
---|
5758 | zions(4) = ppart(b)%volc(1) * arhoh2so4 / amh2so4 ! SO4(2-) |
---|
5759 | zions(5) = 0.0_wp ! HSO4- |
---|
5760 | zions(6) = ppart(b)%volc(6) * arhohno3 / amhno3 ! NO3- |
---|
5761 | zions(7) = ppart(b)%volc(5) * arhoss / amss ! Cl- |
---|
5762 | |
---|
5763 | zwatertotal = ppart(b)%volc(8) * arhoh2o / amh2o |
---|
5764 | IF ( zwatertotal > 1.0E-30_wp ) THEN |
---|
5765 | CALL inorganic_pdfite( prh, ptemp, zions, zwatertotal, zphno3, zphcl,& |
---|
5766 | zpnh3, zgammas, pmols(b,:) ) |
---|
5767 | ENDIF |
---|
5768 | ! |
---|
5769 | !-- Activity coefficients |
---|
5770 | pgammano(b) = zgammas(1) ! HNO3 |
---|
5771 | pgammanh(b) = zgammas(3) ! NH3 |
---|
5772 | pgammanh4hso2(b) = zgammas(6) ! NH4HSO2 |
---|
5773 | pgammahhso4(b) = zgammas(7) ! HHSO4 |
---|
5774 | ! |
---|
5775 | !-- Equilibrium molar concentrations (mol/m3) from equlibrium pressures (Pa) |
---|
5776 | pcgno3eq(b) = zphno3 / ( argas * ptemp ) |
---|
5777 | pcgnh3eq(b) = zpnh3 / ( argas * ptemp ) |
---|
5778 | |
---|
5779 | ENDDO |
---|
5780 | |
---|
5781 | END SUBROUTINE NONHEquil |
---|
5782 | |
---|
5783 | !------------------------------------------------------------------------------! |
---|
5784 | ! Description: |
---|
5785 | ! ------------ |
---|
5786 | !> Calculate saturation ratios of NH4 and HNO3 for aerosols |
---|
5787 | !------------------------------------------------------------------------------! |
---|
5788 | SUBROUTINE SVsat( ptemp, ppart, pachno3, pacnh3, pacnh4hso2, pachhso4, & |
---|
5789 | pchno3eq, pchno3, pcnh3, pkelhno3, pkelnh3, psathno3, & |
---|
5790 | psatnh3, pmols ) |
---|
5791 | |
---|
5792 | IMPLICIT NONE |
---|
5793 | |
---|
5794 | REAL(wp), INTENT(in) :: ptemp !< ambient temperature (K) |
---|
5795 | |
---|
5796 | TYPE(t_section), INTENT(inout) :: ppart(nbins) !< Aerosol properties |
---|
5797 | !-- Activity coefficients |
---|
5798 | REAL(wp), INTENT(in) :: pachhso4(nbins) !< |
---|
5799 | REAL(wp), INTENT(in) :: pacnh3(nbins) !< |
---|
5800 | REAL(wp), INTENT(in) :: pacnh4hso2(nbins) !< |
---|
5801 | REAL(wp), INTENT(in) :: pachno3(nbins) !< |
---|
5802 | REAL(wp), INTENT(in) :: pchno3eq(nbins) !< Equilibrium surface concentration |
---|
5803 | !< of HNO3 |
---|
5804 | REAL(wp), INTENT(in) :: pchno3(nbins) !< Current particle mole |
---|
5805 | !< concentration of HNO3 (mol/m3) |
---|
5806 | REAL(wp), INTENT(in) :: pcnh3(nbins) !< Current particle mole |
---|
5807 | !< concentration of NH3 (mol/m3) |
---|
5808 | REAL(wp), INTENT(in) :: pkelhno3(nbins) !< Kelvin effect for HNO3 |
---|
5809 | REAL(wp), INTENT(in) :: pkelnh3(nbins) !< Kelvin effect for NH3 |
---|
5810 | REAL(wp), INTENT(in) :: pmols(nbins,7) |
---|
5811 | !-- Saturation ratios |
---|
5812 | REAL(wp), INTENT(out) :: psathno3(nbins) !< |
---|
5813 | REAL(wp), INTENT(out) :: psatnh3(nbins) !< |
---|
5814 | |
---|
5815 | INTEGER :: b !< running index for aerosol bins |
---|
5816 | !-- Constants for calculating equilibrium constants: |
---|
5817 | REAL(wp), PARAMETER :: a1 = -22.52_wp !< |
---|
5818 | REAL(wp), PARAMETER :: a2 = -1.50_wp !< |
---|
5819 | REAL(wp), PARAMETER :: a3 = 13.79_wp !< |
---|
5820 | REAL(wp), PARAMETER :: a4 = 29.17_wp !< |
---|
5821 | REAL(wp), PARAMETER :: b1 = 26.92_wp !< |
---|
5822 | REAL(wp), PARAMETER :: b2 = 26.92_wp !< |
---|
5823 | REAL(wp), PARAMETER :: b3 = -5.39_wp !< |
---|
5824 | REAL(wp), PARAMETER :: b4 = 16.84_wp !< |
---|
5825 | REAL(wp), PARAMETER :: K01 = 1.01E-14_wp !< |
---|
5826 | REAL(wp), PARAMETER :: K02 = 1.81E-5_wp !< |
---|
5827 | REAL(wp), PARAMETER :: K03 = 57.64_wp !< |
---|
5828 | REAL(wp), PARAMETER :: K04 = 2.51E+6_wp !< |
---|
5829 | !-- Equilibrium constants of equilibrium reactions |
---|
5830 | REAL(wp) :: KllH2O !< H2O(aq) <--> H+ + OH- (mol/kg) |
---|
5831 | REAL(wp) :: KllNH3 !< NH3(aq) + H2O(aq) <--> NH4+ + OH- (mol/kg) |
---|
5832 | REAL(wp) :: KglNH3 !< NH3(g) <--> NH3(aq) (mol/kg/atm) |
---|
5833 | REAL(wp) :: KglHNO3 !< HNO3(g) <--> H+ + NO3- (mol2/kg2/atm) |
---|
5834 | REAL(wp) :: zmolno3 !< molality of NO3- (mol/kg) |
---|
5835 | REAL(wp) :: zmolhp !< molality of H+ (mol/kg) |
---|
5836 | REAL(wp) :: zmolso4 !< molality of SO4(2-) (mol/kg) |
---|
5837 | REAL(wp) :: zmolcl !< molality of Cl (mol/kg) |
---|
5838 | REAL(wp) :: zmolnh4 !< Molality of NH4 (mol/kg) |
---|
5839 | REAL(wp) :: zmolna !< Molality of Na (mol/kg) |
---|
5840 | REAL(wp) :: zhlp1 !< |
---|
5841 | REAL(wp) :: zhlp2 !< |
---|
5842 | REAL(wp) :: zhlp3 !< |
---|
5843 | REAL(wp) :: zxi !< |
---|
5844 | REAL(wp) :: zt0 !< Reference temp |
---|
5845 | |
---|
5846 | zhlp1 = 0.0_wp |
---|
5847 | zhlp2 = 0.0_wp |
---|
5848 | zhlp3 = 0.0_wp |
---|
5849 | zmolcl = 0.0_wp |
---|
5850 | zmolhp = 0.0_wp |
---|
5851 | zmolna = 0.0_wp |
---|
5852 | zmolnh4 = 0.0_wp |
---|
5853 | zmolno3 = 0.0_wp |
---|
5854 | zmolso4 = 0.0_wp |
---|
5855 | zt0 = 298.15_wp |
---|
5856 | zxi = 0.0_wp |
---|
5857 | ! |
---|
5858 | !-- Calculates equlibrium rate constants based on Table B.7 in Jacobson (2005) |
---|
5859 | !-- K^ll_H20, K^ll_NH3, K^gl_NH3, K^gl_HNO3 |
---|
5860 | zhlp1 = zt0 / ptemp |
---|
5861 | zhlp2 = zhlp1 - 1.0_wp |
---|
5862 | zhlp3 = 1.0_wp + LOG( zhlp1 ) - zhlp1 |
---|
5863 | |
---|
5864 | KllH2O = K01 * EXP( a1 * zhlp2 + b1 * zhlp3 ) |
---|
5865 | KllNH3 = K02 * EXP( a2 * zhlp2 + b2 * zhlp3 ) |
---|
5866 | KglNH3 = K03 * EXP( a3 * zhlp2 + b3 * zhlp3 ) |
---|
5867 | KglHNO3 = K04 * EXP( a4 * zhlp2 + b4 * zhlp3 ) |
---|
5868 | |
---|
5869 | DO b = 1, nbins |
---|
5870 | |
---|
5871 | IF ( ppart(b)%numc > nclim .AND. ppart(b)%volc(8) > 1.0E-30_wp ) THEN |
---|
5872 | ! |
---|
5873 | !-- Molality of H+ and NO3- |
---|
5874 | zhlp1 = pcnh3(b) * amnh3 + ppart(b)%volc(1) * arhoh2so4 + & |
---|
5875 | ppart(b)%volc(2) * arhooc + ppart(b)%volc(5) * arhoss + & |
---|
5876 | ppart(b)%volc(8) * arhoh2o |
---|
5877 | zmolno3 = pchno3(b) / zhlp1 !< mol/kg |
---|
5878 | ! |
---|
5879 | !-- Particle mole concentration ratio: (NH3+SS)/H2SO4 |
---|
5880 | zxi = ( pcnh3(b) + ppart(b)%volc(5) * arhoss / amss ) / & |
---|
5881 | ( ppart(b)%volc(1) * arhoh2so4 / amh2so4 ) |
---|
5882 | |
---|
5883 | IF ( zxi <= 2.0_wp ) THEN |
---|
5884 | ! |
---|
5885 | !-- Molality of SO4(2-) |
---|
5886 | zhlp1 = pcnh3(b) * amnh3 + pchno3(b) * amhno3 + & |
---|
5887 | ppart(b)%volc(2) * arhooc + ppart(b)%volc(5) * arhoss + & |
---|
5888 | ppart(b)%volc(8) * arhoh2o |
---|
5889 | zmolso4 = ( ppart(b)%volc(1) * arhoh2so4 / amh2so4 ) / zhlp1 |
---|
5890 | ! |
---|
5891 | !-- Molality of Cl- |
---|
5892 | zhlp1 = pcnh3(b) * amnh3 + pchno3(b) * amhno3 + & |
---|
5893 | ppart(b)%volc(2) * arhooc + ppart(b)%volc(1) * arhoh2so4 & |
---|
5894 | + ppart(b)%volc(8) * arhoh2o |
---|
5895 | zmolcl = ( ppart(b)%volc(5) * arhoss / amss ) / zhlp1 |
---|
5896 | ! |
---|
5897 | !-- Molality of NH4+ |
---|
5898 | zhlp1 = pchno3(b) * amhno3 + ppart(b)%volc(1) * arhoh2so4 + & |
---|
5899 | ppart(b)%volc(2) * arhooc + ppart(b)%volc(5) * arhoss + & |
---|
5900 | ppart(b)%volc(8) * arhoh2o |
---|
5901 | zmolnh4 = pcnh3(b) / zhlp1 |
---|
5902 | ! |
---|
5903 | !-- Molality of Na+ |
---|
5904 | zmolna = zmolcl |
---|
5905 | ! |
---|
5906 | !-- Molality of H+ |
---|
5907 | zmolhp = 2.0_wp * zmolso4 + zmolno3 + zmolcl - ( zmolnh4 + zmolna ) |
---|
5908 | |
---|
5909 | ELSE |
---|
5910 | |
---|
5911 | zhlp2 = pkelhno3(b) * zmolno3 * pachno3(b) ** 2.0_wp |
---|
5912 | ! |
---|
5913 | !-- Mona debugging |
---|
5914 | IF ( zhlp2 > 1.0E-30_wp ) THEN |
---|
5915 | zmolhp = KglHNO3 * pchno3eq(b) / zhlp2 ! Eq. 17.38 |
---|
5916 | ELSE |
---|
5917 | zmolhp = 0.0_wp |
---|
5918 | ENDIF |
---|
5919 | |
---|
5920 | ENDIF |
---|
5921 | |
---|
5922 | zhlp1 = ppart(b)%volc(8) * arhoh2o * argas * ptemp * KglHNO3 |
---|
5923 | ! |
---|
5924 | !-- Saturation ratio for NH3 and for HNO3 |
---|
5925 | IF ( zmolhp > 0.0_wp ) THEN |
---|
5926 | zhlp2 = pkelnh3(b) / ( zhlp1 * zmolhp ) |
---|
5927 | zhlp3 = KllH2O / ( KllNH3 + KglNH3 ) |
---|
5928 | psatnh3(b) = zhlp2 * ( ( pacnh4hso2(b) / pachhso4(b) ) **2.0_wp ) & |
---|
5929 | * zhlp3 |
---|
5930 | psathno3(b) = ( pkelhno3(b) * zmolhp * pachno3(b)**2.0_wp ) / zhlp1 |
---|
5931 | ELSE |
---|
5932 | psatnh3(b) = 1.0_wp |
---|
5933 | psathno3(b) = 1.0_wp |
---|
5934 | ENDIF |
---|
5935 | ELSE |
---|
5936 | psatnh3(b) = 1.0_wp |
---|
5937 | psathno3(b) = 1.0_wp |
---|
5938 | ENDIF |
---|
5939 | |
---|
5940 | ENDDO |
---|
5941 | |
---|
5942 | END SUBROUTINE SVsat |
---|
5943 | |
---|
5944 | !------------------------------------------------------------------------------! |
---|
5945 | ! Description: |
---|
5946 | ! ------------ |
---|
5947 | !> Prototype module for calculating the water content of a mixed inorganic/ |
---|
5948 | !> organic particle + equilibrium water vapour pressure above the solution |
---|
5949 | !> (HNO3, HCL, NH3 and representative organic compounds. Efficient calculation |
---|
5950 | !> of the partitioning of species between gas and aerosol. Based in a chamber |
---|
5951 | !> study. |
---|
5952 | ! |
---|
5953 | !> Written by Dave Topping. Pure organic component properties predicted by Mark |
---|
5954 | !> Barley based on VOCs predicted in MCM simulations performed by Mike Jenkin. |
---|
5955 | !> Delivered by Gordon McFiggans as Deliverable D22 from WP1.4 in the EU FP6 |
---|
5956 | !> EUCAARI Integrated Project. |
---|
5957 | ! |
---|
5958 | !> Queries concerning the use of this code through Gordon McFiggans, |
---|
5959 | !> g.mcfiggans@manchester.ac.uk, |
---|
5960 | !> Ownership: D. Topping, Centre for Atmospheric Sciences, University of |
---|
5961 | !> Manchester, 2007 |
---|
5962 | ! |
---|
5963 | !> Rewritten to PALM by Mona Kurppa, UHel, 2017 |
---|
5964 | !------------------------------------------------------------------------------! |
---|
5965 | SUBROUTINE inorganic_pdfite( RH, temp, ions, water_total, Press_HNO3, & |
---|
5966 | Press_HCL, Press_NH3, gamma_out, mols_out ) |
---|
5967 | |
---|
5968 | IMPLICIT NONE |
---|
5969 | |
---|
5970 | REAL(wp), DIMENSION(:) :: gamma_out !< Activity coefficient for calculating |
---|
5971 | !< the non-ideal dissociation constants |
---|
5972 | !< 1: HNO3, 2: HCL, 3: NH4+/H+ (NH3) |
---|
5973 | !< 4: HHSO4**2/H2SO4, |
---|
5974 | !< 5: H2SO4**3/HHSO4**2 |
---|
5975 | !< 6: NH4HSO2, 7: HHSO4 |
---|
5976 | REAL(wp), DIMENSION(:) :: ions !< ion molarities (mol/m3) |
---|
5977 | !< 1: H+, 2: NH4+, 3: Na+, 4: SO4(2-), |
---|
5978 | !< 5: HSO4-, 6: NO3-, 7: Cl- |
---|
5979 | REAL(wp), DIMENSION(7) :: ions_mol !< ion molalities (mol/kg) |
---|
5980 | !< 1: H+, 2: NH4+, 3: Na+, 4: SO4(2-), |
---|
5981 | !< 5: HSO4-, 6: NO3-, 7: Cl- |
---|
5982 | REAL(wp), DIMENSION(:) :: mols_out !< ion molality output (mol/kg) |
---|
5983 | !< 1: H+, 2: NH4+, 3: Na+, 4: SO4(2-), |
---|
5984 | !< 5: HSO4-, 6: NO3-, 7: Cl- |
---|
5985 | REAL(wp) :: act_product !< ionic activity coef. product: |
---|
5986 | !< = (gamma_h2so4**3d0) / |
---|
5987 | !< (gamma_hhso4**2d0) |
---|
5988 | REAL(wp) :: ammonium_chloride !< |
---|
5989 | REAL(wp) :: ammonium_chloride_eq_frac !< |
---|
5990 | REAL(wp) :: ammonium_nitrate !< |
---|
5991 | REAL(wp) :: ammonium_nitrate_eq_frac !< |
---|
5992 | REAL(wp) :: ammonium_sulphate !< |
---|
5993 | REAL(wp) :: ammonium_sulphate_eq_frac !< |
---|
5994 | REAL(wp) :: binary_h2so4 !< binary H2SO4 activity coeff. |
---|
5995 | REAL(wp) :: binary_hcl !< binary HCL activity coeff. |
---|
5996 | REAL(wp) :: binary_hhso4 !< binary HHSO4 activity coeff. |
---|
5997 | REAL(wp) :: binary_hno3 !< binary HNO3 activity coeff. |
---|
5998 | REAL(wp) :: binary_nh4hso4 !< binary NH4HSO4 activity coeff. |
---|
5999 | REAL(wp) :: charge_sum !< sum of ionic charges |
---|
6000 | REAL(wp) :: gamma_h2so4 !< activity coefficient |
---|
6001 | REAL(wp) :: gamma_hcl !< activity coefficient |
---|
6002 | REAL(wp) :: gamma_hhso4 !< activity coeffient |
---|
6003 | REAL(wp) :: gamma_hno3 !< activity coefficient |
---|
6004 | REAL(wp) :: gamma_nh3 !< activity coefficient |
---|
6005 | REAL(wp) :: gamma_nh4hso4 !< activity coefficient |
---|
6006 | REAL(wp) :: h_out !< |
---|
6007 | REAL(wp) :: h_real !< new hydrogen ion conc. |
---|
6008 | REAL(wp) :: H2SO4_hcl !< contribution of H2SO4 |
---|
6009 | REAL(wp) :: H2SO4_hno3 !< contribution of H2SO4 |
---|
6010 | REAL(wp) :: H2SO4_nh3 !< contribution of H2SO4 |
---|
6011 | REAL(wp) :: H2SO4_nh4hso4 !< contribution of H2SO4 |
---|
6012 | REAL(wp) :: HCL_h2so4 !< contribution of HCL |
---|
6013 | REAL(wp) :: HCL_hhso4 !< contribution of HCL |
---|
6014 | REAL(wp) :: HCL_hno3 !< contribution of HCL |
---|
6015 | REAL(wp) :: HCL_nh3 !< contribution of HCL |
---|
6016 | REAL(wp) :: HCL_nh4hso4 !< contribution of HCL |
---|
6017 | REAL(wp) :: henrys_temp_dep !< temperature dependence of |
---|
6018 | !< Henry's Law |
---|
6019 | REAL(wp) :: HNO3_h2so4 !< contribution of HNO3 |
---|
6020 | REAL(wp) :: HNO3_hcl !< contribution of HNO3 |
---|
6021 | REAL(wp) :: HNO3_hhso4 !< contribution of HNO3 |
---|
6022 | REAL(wp) :: HNO3_nh3 !< contribution of HNO3 |
---|
6023 | REAL(wp) :: HNO3_nh4hso4 !< contribution of HNO3 |
---|
6024 | REAL(wp) :: hso4_out !< |
---|
6025 | REAL(wp) :: hso4_real !< new bisulphate ion conc. |
---|
6026 | REAL(wp) :: hydrochloric_acid !< |
---|
6027 | REAL(wp) :: hydrochloric_acid_eq_frac !< |
---|
6028 | REAL(wp) :: Kh !< equilibrium constant for H+ |
---|
6029 | REAL(wp) :: K_hcl !< equilibrium constant of HCL |
---|
6030 | REAL(wp) :: K_hno3 !< equilibrium constant of HNO3 |
---|
6031 | REAL(wp) :: Knh4 !< equilibrium constant for NH4+ |
---|
6032 | REAL(wp) :: Kw !< equil. const. for water_surface |
---|
6033 | REAL(wp) :: Ln_h2so4_act !< gamma_h2so4 = EXP(Ln_h2so4_act) |
---|
6034 | REAL(wp) :: Ln_HCL_act !< gamma_hcl = EXP( Ln_HCL_act ) |
---|
6035 | REAL(wp) :: Ln_hhso4_act !< gamma_hhso4 = EXP(Ln_hhso4_act) |
---|
6036 | REAL(wp) :: Ln_HNO3_act !< gamma_hno3 = EXP( Ln_HNO3_act ) |
---|
6037 | REAL(wp) :: Ln_NH4HSO4_act !< gamma_nh4hso4 = |
---|
6038 | !< EXP( Ln_NH4HSO4_act ) |
---|
6039 | REAL(wp) :: molality_ratio_nh3 !< molality ratio of NH3 |
---|
6040 | !< (NH4+ and H+) |
---|
6041 | REAL(wp) :: Na2SO4_h2so4 !< contribution of Na2SO4 |
---|
6042 | REAL(wp) :: Na2SO4_hcl !< contribution of Na2SO4 |
---|
6043 | REAL(wp) :: Na2SO4_hhso4 !< contribution of Na2SO4 |
---|
6044 | REAL(wp) :: Na2SO4_hno3 !< contribution of Na2SO4 |
---|
6045 | REAL(wp) :: Na2SO4_nh3 !< contribution of Na2SO4 |
---|
6046 | REAL(wp) :: Na2SO4_nh4hso4 !< contribution of Na2SO4 |
---|
6047 | REAL(wp) :: NaCl_h2so4 !< contribution of NaCl |
---|
6048 | REAL(wp) :: NaCl_hcl !< contribution of NaCl |
---|
6049 | REAL(wp) :: NaCl_hhso4 !< contribution of NaCl |
---|
6050 | REAL(wp) :: NaCl_hno3 !< contribution of NaCl |
---|
6051 | REAL(wp) :: NaCl_nh3 !< contribution of NaCl |
---|
6052 | REAL(wp) :: NaCl_nh4hso4 !< contribution of NaCl |
---|
6053 | REAL(wp) :: NaNO3_h2so4 !< contribution of NaNO3 |
---|
6054 | REAL(wp) :: NaNO3_hcl !< contribution of NaNO3 |
---|
6055 | REAL(wp) :: NaNO3_hhso4 !< contribution of NaNO3 |
---|
6056 | REAL(wp) :: NaNO3_hno3 !< contribution of NaNO3 |
---|
6057 | REAL(wp) :: NaNO3_nh3 !< contribution of NaNO3 |
---|
6058 | REAL(wp) :: NaNO3_nh4hso4 !< contribution of NaNO3 |
---|
6059 | REAL(wp) :: NH42SO4_h2so4 !< contribution of NH42SO4 |
---|
6060 | REAL(wp) :: NH42SO4_hcl !< contribution of NH42SO4 |
---|
6061 | REAL(wp) :: NH42SO4_hhso4 !< contribution of NH42SO4 |
---|
6062 | REAL(wp) :: NH42SO4_hno3 !< contribution of NH42SO4 |
---|
6063 | REAL(wp) :: NH42SO4_nh3 !< contribution of NH42SO4 |
---|
6064 | REAL(wp) :: NH42SO4_nh4hso4 !< contribution of NH42SO4 |
---|
6065 | REAL(wp) :: NH4Cl_h2so4 !< contribution of NH4Cl |
---|
6066 | REAL(wp) :: NH4Cl_hcl !< contribution of NH4Cl |
---|
6067 | REAL(wp) :: NH4Cl_hhso4 !< contribution of NH4Cl |
---|
6068 | REAL(wp) :: NH4Cl_hno3 !< contribution of NH4Cl |
---|
6069 | REAL(wp) :: NH4Cl_nh3 !< contribution of NH4Cl |
---|
6070 | REAL(wp) :: NH4Cl_nh4hso4 !< contribution of NH4Cl |
---|
6071 | REAL(wp) :: NH4NO3_h2so4 !< contribution of NH4NO3 |
---|
6072 | REAL(wp) :: NH4NO3_hcl !< contribution of NH4NO3 |
---|
6073 | REAL(wp) :: NH4NO3_hhso4 !< contribution of NH4NO3 |
---|
6074 | REAL(wp) :: NH4NO3_hno3 !< contribution of NH4NO3 |
---|
6075 | REAL(wp) :: NH4NO3_nh3 !< contribution of NH4NO3 |
---|
6076 | REAL(wp) :: NH4NO3_nh4hso4 !< contribution of NH4NO3 |
---|
6077 | REAL(wp) :: nitric_acid !< |
---|
6078 | REAL(wp) :: nitric_acid_eq_frac !< Equivalent fractions |
---|
6079 | REAL(wp) :: Press_HCL !< partial pressure of HCL |
---|
6080 | REAL(wp) :: Press_HNO3 !< partial pressure of HNO3 |
---|
6081 | REAL(wp) :: Press_NH3 !< partial pressure of NH3 |
---|
6082 | REAL(wp) :: RH !< relative humidity [0-1] |
---|
6083 | REAL(wp) :: temp !< temperature |
---|
6084 | REAL(wp) :: so4_out !< |
---|
6085 | REAL(wp) :: so4_real !< new sulpate ion concentration |
---|
6086 | REAL(wp) :: sodium_chloride !< |
---|
6087 | REAL(wp) :: sodium_chloride_eq_frac !< |
---|
6088 | REAL(wp) :: sodium_nitrate !< |
---|
6089 | REAL(wp) :: sodium_nitrate_eq_frac !< |
---|
6090 | REAL(wp) :: sodium_sulphate !< |
---|
6091 | REAL(wp) :: sodium_sulphate_eq_frac !< |
---|
6092 | REAL(wp) :: solutes !< |
---|
6093 | REAL(wp) :: sulphuric_acid !< |
---|
6094 | REAL(wp) :: sulphuric_acid_eq_frac !< |
---|
6095 | REAL(wp) :: water_total !< |
---|
6096 | |
---|
6097 | REAL(wp) :: a !< auxiliary variable |
---|
6098 | REAL(wp) :: b !< auxiliary variable |
---|
6099 | REAL(wp) :: c !< auxiliary variable |
---|
6100 | REAL(wp) :: root1 !< auxiliary variable |
---|
6101 | REAL(wp) :: root2 !< auxiliary variable |
---|
6102 | |
---|
6103 | INTEGER(iwp) :: binary_case |
---|
6104 | INTEGER(iwp) :: full_complexity |
---|
6105 | ! |
---|
6106 | !-- Value initialisation |
---|
6107 | binary_h2so4 = 0.0_wp |
---|
6108 | binary_hcl = 0.0_wp |
---|
6109 | binary_hhso4 = 0.0_wp |
---|
6110 | binary_hno3 = 0.0_wp |
---|
6111 | binary_nh4hso4 = 0.0_wp |
---|
6112 | henrys_temp_dep = ( 1.0_wp / temp - 1.0_wp / 298.0_wp ) |
---|
6113 | HCL_hno3 = 1.0_wp |
---|
6114 | H2SO4_hno3 = 1.0_wp |
---|
6115 | NH42SO4_hno3 = 1.0_wp |
---|
6116 | NH4NO3_hno3 = 1.0_wp |
---|
6117 | NH4Cl_hno3 = 1.0_wp |
---|
6118 | Na2SO4_hno3 = 1.0_wp |
---|
6119 | NaNO3_hno3 = 1.0_wp |
---|
6120 | NaCl_hno3 = 1.0_wp |
---|
6121 | HNO3_hcl = 1.0_wp |
---|
6122 | H2SO4_hcl = 1.0_wp |
---|
6123 | NH42SO4_hcl = 1.0_wp |
---|
6124 | NH4NO3_hcl = 1.0_wp |
---|
6125 | NH4Cl_hcl = 1.0_wp |
---|
6126 | Na2SO4_hcl = 1.0_wp |
---|
6127 | NaNO3_hcl = 1.0_wp |
---|
6128 | NaCl_hcl = 1.0_wp |
---|
6129 | HNO3_nh3 = 1.0_wp |
---|
6130 | HCL_nh3 = 1.0_wp |
---|
6131 | H2SO4_nh3 = 1.0_wp |
---|
6132 | NH42SO4_nh3 = 1.0_wp |
---|
6133 | NH4NO3_nh3 = 1.0_wp |
---|
6134 | NH4Cl_nh3 = 1.0_wp |
---|
6135 | Na2SO4_nh3 = 1.0_wp |
---|
6136 | NaNO3_nh3 = 1.0_wp |
---|
6137 | NaCl_nh3 = 1.0_wp |
---|
6138 | HNO3_hhso4 = 1.0_wp |
---|
6139 | HCL_hhso4 = 1.0_wp |
---|
6140 | NH42SO4_hhso4 = 1.0_wp |
---|
6141 | NH4NO3_hhso4 = 1.0_wp |
---|
6142 | NH4Cl_hhso4 = 1.0_wp |
---|
6143 | Na2SO4_hhso4 = 1.0_wp |
---|
6144 | NaNO3_hhso4 = 1.0_wp |
---|
6145 | NaCl_hhso4 = 1.0_wp |
---|
6146 | HNO3_h2so4 = 1.0_wp |
---|
6147 | HCL_h2so4 = 1.0_wp |
---|
6148 | NH42SO4_h2so4 = 1.0_wp |
---|
6149 | NH4NO3_h2so4 = 1.0_wp |
---|
6150 | NH4Cl_h2so4 = 1.0_wp |
---|
6151 | Na2SO4_h2so4 = 1.0_wp |
---|
6152 | NaNO3_h2so4 = 1.0_wp |
---|
6153 | NaCl_h2so4 = 1.0_wp |
---|
6154 | !-- New NH3 variables |
---|
6155 | HNO3_nh4hso4 = 1.0_wp |
---|
6156 | HCL_nh4hso4 = 1.0_wp |
---|
6157 | H2SO4_nh4hso4 = 1.0_wp |
---|
6158 | NH42SO4_nh4hso4 = 1.0_wp |
---|
6159 | NH4NO3_nh4hso4 = 1.0_wp |
---|
6160 | NH4Cl_nh4hso4 = 1.0_wp |
---|
6161 | Na2SO4_nh4hso4 = 1.0_wp |
---|
6162 | NaNO3_nh4hso4 = 1.0_wp |
---|
6163 | NaCl_nh4hso4 = 1.0_wp |
---|
6164 | ! |
---|
6165 | !-- Juha Tonttila added |
---|
6166 | mols_out = 0.0_wp |
---|
6167 | Press_HNO3 = 0.0_wp |
---|
6168 | Press_HCL = 0.0_wp |
---|
6169 | Press_NH3 = 0.0_wp !< Initialising vapour pressure over the |
---|
6170 | !< multicomponent particle |
---|
6171 | gamma_out = 1.0_wp !< i.e. don't alter the ideal mixing ratios if |
---|
6172 | !< there's nothing there. |
---|
6173 | ! |
---|
6174 | !-- 1) - COMPOSITION DEFINITIONS |
---|
6175 | ! |
---|
6176 | !-- a) Inorganic ion pairing: |
---|
6177 | !-- In order to calculate the water content, which is also used in |
---|
6178 | !-- calculating vapour pressures, one needs to pair the anions and cations |
---|
6179 | !-- for use in the ZSR mixing rule. The equation provided by Clegg et al. |
---|
6180 | !-- (2001) is used for ion pairing. The solutes chosen comprise of 9 |
---|
6181 | !-- inorganic salts and acids which provide a pairing between each anion and |
---|
6182 | !-- cation: (NH4)2SO4, NH4NO3, NH4Cl, Na2SO4, NaNO3, NaCl, H2SO4, HNO3, HCL. |
---|
6183 | !-- The organic compound is treated as a seperate solute. |
---|
6184 | !-- Ions: 1: H+, 2: NH4+, 3: Na+, 4: SO4(2-), 5: HSO4-, 6: NO3-, 7: Cl- |
---|
6185 | ! |
---|
6186 | charge_sum = ions(1) + ions(2) + ions(3) + 2.0_wp * ions(4) + ions(5) + & |
---|
6187 | ions(6) + ions(7) |
---|
6188 | nitric_acid = 0.0_wp ! HNO3 |
---|
6189 | nitric_acid = ( 2.0_wp * ions(1) * ions(6) * & |
---|
6190 | ( ( 1.0_wp / 1.0_wp ) ** 0.5_wp ) ) / ( charge_sum ) |
---|
6191 | hydrochloric_acid = 0.0_wp ! HCL |
---|
6192 | hydrochloric_acid = ( 2.0_wp * ions(1) * ions(7) * & |
---|
6193 | ( ( 1.0_wp / 1.0_wp ) ** 0.5_wp ) ) / ( charge_sum ) |
---|
6194 | sulphuric_acid = 0.0_wp ! H2SO4 |
---|
6195 | sulphuric_acid = ( 2.0_wp * ions(1) * ions(4) * & |
---|
6196 | ( ( 2.0_wp / 2.0_wp ) ** 0.5_wp ) ) / ( charge_sum ) |
---|
6197 | ammonium_sulphate = 0.0_wp ! (NH4)2SO4 |
---|
6198 | ammonium_sulphate = ( 2.0_wp * ions(2) * ions(4) * & |
---|
6199 | ( ( 2.0_wp / 2.0_wp ) ** 0.5_wp ) ) / ( charge_sum ) |
---|
6200 | ammonium_nitrate = 0.0_wp ! NH4NO3 |
---|
6201 | ammonium_nitrate = ( 2.0_wp * ions(2) * ions(6) * & |
---|
6202 | ( ( 1.0_wp / 1.0_wp ) ** 0.5_wp ) ) / ( charge_sum ) |
---|
6203 | ammonium_chloride = 0.0_wp ! NH4Cl |
---|
6204 | ammonium_chloride = ( 2.0_wp * ions(2) * ions(7) * & |
---|
6205 | ( ( 1.0_wp / 1.0_wp ) ** 0.5_wp ) ) / ( charge_sum ) |
---|
6206 | sodium_sulphate = 0.0_wp ! Na2SO4 |
---|
6207 | sodium_sulphate = ( 2.0_wp * ions(3) * ions(4) * & |
---|
6208 | ( ( 2.0_wp / 2.0_wp ) ** 0.5_wp ) ) / ( charge_sum ) |
---|
6209 | sodium_nitrate = 0.0_wp ! NaNO3 |
---|
6210 | sodium_nitrate = ( 2.0_wp * ions(3) *ions(6) * & |
---|
6211 | ( ( 1.0_wp / 1.0_wp ) ** 0.5_wp ) ) / ( charge_sum ) |
---|
6212 | sodium_chloride = 0.0_wp ! NaCl |
---|
6213 | sodium_chloride = ( 2.0_wp * ions(3) * ions(7) * & |
---|
6214 | ( ( 1.0_wp / 1.0_wp ) ** 0.5_wp ) ) / ( charge_sum ) |
---|
6215 | solutes = 0.0_wp |
---|
6216 | solutes = 3.0_wp * sulphuric_acid + 2.0_wp * hydrochloric_acid + & |
---|
6217 | 2.0_wp * nitric_acid + 3.0_wp * ammonium_sulphate + & |
---|
6218 | 2.0_wp * ammonium_nitrate + 2.0_wp * ammonium_chloride + & |
---|
6219 | 3.0_wp * sodium_sulphate + 2.0_wp * sodium_nitrate + & |
---|
6220 | 2.0_wp * sodium_chloride |
---|
6221 | |
---|
6222 | ! |
---|
6223 | !-- b) Inorganic equivalent fractions: |
---|
6224 | !-- These values are calculated so that activity coefficients can be |
---|
6225 | !-- expressed by a linear additive rule, thus allowing more efficient |
---|
6226 | !-- calculations and future expansion (see more detailed description below) |
---|
6227 | nitric_acid_eq_frac = 2.0_wp * nitric_acid / ( solutes ) |
---|
6228 | hydrochloric_acid_eq_frac = 2.0_wp * hydrochloric_acid / ( solutes ) |
---|
6229 | sulphuric_acid_eq_frac = 3.0_wp * sulphuric_acid / ( solutes ) |
---|
6230 | ammonium_sulphate_eq_frac = 3.0_wp * ammonium_sulphate / ( solutes ) |
---|
6231 | ammonium_nitrate_eq_frac = 2.0_wp * ammonium_nitrate / ( solutes ) |
---|
6232 | ammonium_chloride_eq_frac = 2.0_wp * ammonium_chloride / ( solutes ) |
---|
6233 | sodium_sulphate_eq_frac = 3.0_wp * sodium_sulphate / ( solutes ) |
---|
6234 | sodium_nitrate_eq_frac = 2.0_wp * sodium_nitrate / ( solutes ) |
---|
6235 | sodium_chloride_eq_frac = 2.0_wp * sodium_chloride / ( solutes ) |
---|
6236 | ! |
---|
6237 | !-- Inorganic ion molalities |
---|
6238 | ions_mol(:) = 0.0_wp |
---|
6239 | ions_mol(1) = ions(1) / ( water_total * 18.01528E-3_wp ) ! H+ |
---|
6240 | ions_mol(2) = ions(2) / ( water_total * 18.01528E-3_wp ) ! NH4+ |
---|
6241 | ions_mol(3) = ions(3) / ( water_total * 18.01528E-3_wp ) ! Na+ |
---|
6242 | ions_mol(4) = ions(4) / ( water_total * 18.01528E-3_wp ) ! SO4(2-) |
---|
6243 | ions_mol(5) = ions(5) / ( water_total * 18.01528E-3_wp ) ! HSO4(2-) |
---|
6244 | ions_mol(6) = ions(6) / ( water_total * 18.01528E-3_wp ) ! NO3- |
---|
6245 | ions_mol(7) = ions(7) / ( water_total * 18.01528E-3_wp ) ! Cl- |
---|
6246 | |
---|
6247 | !-- *** |
---|
6248 | !-- At this point we may need to introduce a method for prescribing H+ when |
---|
6249 | !-- there is no 'real' value for H+..i.e. in the sulphate poor domain |
---|
6250 | !-- This will give a value for solve quadratic proposed by Zaveri et al. 2005 |
---|
6251 | ! |
---|
6252 | !-- 2) - WATER CALCULATION |
---|
6253 | ! |
---|
6254 | !-- a) The water content is calculated using the ZSR rule with solute |
---|
6255 | !-- concentrations calculated using 1a above. Whilst the usual approximation of |
---|
6256 | !-- ZSR relies on binary data consisting of 5th or higher order polynomials, in |
---|
6257 | !-- this code 4 different RH regimes are used, each housing cubic equations for |
---|
6258 | !-- the water associated with each solute listed above. Binary water contents |
---|
6259 | !-- for inorganic components were calculated using AIM online (Clegg et al |
---|
6260 | !-- 1998). The water associated with the organic compound is calculated assuming |
---|
6261 | !-- ideality and that aw = RH. |
---|
6262 | ! |
---|
6263 | !-- b) Molality of each inorganic ion and organic solute (initial input) is |
---|
6264 | !-- calculated for use in vapour pressure calculation. |
---|
6265 | ! |
---|
6266 | !-- 3) - BISULPHATE ION DISSOCIATION CALCULATION |
---|
6267 | ! |
---|
6268 | !-- The dissociation of the bisulphate ion is calculated explicitly. A solution |
---|
6269 | !-- to the equilibrium equation between the bisulphate ion, hydrogen ion and |
---|
6270 | !-- sulphate ion is found using tabulated equilibrium constants (referenced). It |
---|
6271 | !-- is necessary to calculate the activity coefficients of HHSO4 and H2SO4 in a |
---|
6272 | !-- non-iterative manner. These are calculated using the same format as |
---|
6273 | !-- described in 4) below, where both activity coefficients were fit to the |
---|
6274 | !-- output from ADDEM (Topping et al 2005a,b) covering an extensive composition |
---|
6275 | !-- space, providing the activity coefficients and bisulphate ion dissociation |
---|
6276 | !-- as a function of equivalent mole fractions and relative humidity. |
---|
6277 | ! |
---|
6278 | !-- NOTE: the flags "binary_case" and "full_complexity" are not used in this |
---|
6279 | !-- prototype. They are used for simplification of the fit expressions when |
---|
6280 | !-- using limited composition regions. This section of code calculates the |
---|
6281 | !-- bisulphate ion concentration |
---|
6282 | ! |
---|
6283 | IF ( ions(1) > 0.0_wp .AND. ions(4) > 0.0_wp ) THEN |
---|
6284 | ! |
---|
6285 | !-- HHSO4: |
---|
6286 | binary_case = 1 |
---|
6287 | IF ( RH > 0.1_wp .AND. RH < 0.9_wp ) THEN |
---|
6288 | binary_hhso4 = - 4.9521_wp * ( RH**3 ) + 9.2881_wp * ( RH**2 ) - & |
---|
6289 | 10.777_wp * RH + 6.0534_wp |
---|
6290 | ELSEIF ( RH >= 0.9_wp .AND. RH < 0.955_wp ) THEN |
---|
6291 | binary_hhso4 = - 6.3777_wp * RH + 5.962_wp |
---|
6292 | ELSEIF ( RH >= 0.955_wp .AND. RH < 0.99_wp ) THEN |
---|
6293 | binary_hhso4 = 2367.2_wp * ( RH**3 ) - 6849.7_wp * ( RH**2 ) + & |
---|
6294 | 6600.9_wp * RH - 2118.7_wp |
---|
6295 | ELSEIF ( RH >= 0.99_wp .AND. RH < 0.9999_wp ) THEN |
---|
6296 | binary_hhso4 = 3E-7_wp * ( RH**5 ) - 2E-5_wp * ( RH**4 ) + & |
---|
6297 | 0.0004_wp * ( RH**3 ) - 0.0035_wp * ( RH**2 ) + & |
---|
6298 | 0.0123_wp * RH - 0.3025_wp |
---|
6299 | ENDIF |
---|
6300 | |
---|
6301 | IF ( nitric_acid > 0.0_wp ) THEN |
---|
6302 | HNO3_hhso4 = - 4.2204_wp * ( RH**4 ) + 12.193_wp * ( RH**3 ) - & |
---|
6303 | 12.481_wp * ( RH**2 ) + 6.459_wp * RH - 1.9004_wp |
---|
6304 | ENDIF |
---|
6305 | |
---|
6306 | IF ( hydrochloric_acid > 0.0_wp ) THEN |
---|
6307 | HCL_hhso4 = - 54.845_wp * ( RH**7 ) + 209.54_wp * ( RH**6 ) - & |
---|
6308 | 336.59_wp * ( RH**5 ) + 294.21_wp * ( RH**4 ) - & |
---|
6309 | 150.07_wp * ( RH**3 ) + 43.767_wp * ( RH**2 ) - & |
---|
6310 | 6.5495_wp * RH + 0.60048_wp |
---|
6311 | ENDIF |
---|
6312 | |
---|
6313 | IF ( ammonium_sulphate > 0.0_wp ) THEN |
---|
6314 | NH42SO4_hhso4 = 16.768_wp * ( RH**3 ) - 28.75_wp * ( RH**2 ) + & |
---|
6315 | 20.011_wp * RH - 8.3206_wp |
---|
6316 | ENDIF |
---|
6317 | |
---|
6318 | IF ( ammonium_nitrate > 0.0_wp ) THEN |
---|
6319 | NH4NO3_hhso4 = - 17.184_wp * ( RH**4 ) + 56.834_wp * ( RH**3 ) - & |
---|
6320 | 65.765_wp * ( RH**2 ) + 35.321_wp * RH - 9.252_wp |
---|
6321 | ENDIF |
---|
6322 | |
---|
6323 | IF (ammonium_chloride > 0.0_wp ) THEN |
---|
6324 | IF ( RH < 0.2_wp .AND. RH >= 0.1_wp ) THEN |
---|
6325 | NH4Cl_hhso4 = 3.2809_wp * RH - 2.0637_wp |
---|
6326 | ELSEIF ( RH >= 0.2_wp .AND. RH < 0.99_wp ) THEN |
---|
6327 | NH4Cl_hhso4 = - 1.2981_wp * ( RH**3 ) + 4.7461_wp * ( RH**2 ) - & |
---|
6328 | 2.3269_wp * RH - 1.1259_wp |
---|
6329 | ENDIF |
---|
6330 | ENDIF |
---|
6331 | |
---|
6332 | IF ( sodium_sulphate > 0.0_wp ) THEN |
---|
6333 | Na2SO4_hhso4 = 118.87_wp * ( RH**6 ) - 358.63_wp * ( RH**5 ) + & |
---|
6334 | 435.85_wp * ( RH**4 ) - 272.88_wp * ( RH**3 ) + & |
---|
6335 | 94.411_wp * ( RH**2 ) - 18.21_wp * RH + 0.45935_wp |
---|
6336 | ENDIF |
---|
6337 | |
---|
6338 | IF ( sodium_nitrate > 0.0_wp ) THEN |
---|
6339 | IF ( RH < 0.2_wp .AND. RH >= 0.1_wp ) THEN |
---|
6340 | NaNO3_hhso4 = 4.8456_wp * RH - 2.5773_wp |
---|
6341 | ELSEIF ( RH >= 0.2_wp .AND. RH < 0.99_wp ) THEN |
---|
6342 | NaNO3_hhso4 = 0.5964_wp * ( RH**3 ) - 0.38967_wp * ( RH**2 ) + & |
---|
6343 | 1.7918_wp * RH - 1.9691_wp |
---|
6344 | ENDIF |
---|
6345 | ENDIF |
---|
6346 | |
---|
6347 | IF ( sodium_chloride > 0.0_wp ) THEN |
---|
6348 | IF ( RH < 0.2_wp ) THEN |
---|
6349 | NaCl_hhso4 = 0.51995_wp * RH - 1.3981_wp |
---|
6350 | ELSEIF ( RH >= 0.2_wp .AND. RH < 0.99_wp ) THEN |
---|
6351 | NaCl_hhso4 = 1.6539_wp * RH - 1.6101_wp |
---|
6352 | ENDIF |
---|
6353 | ENDIF |
---|
6354 | |
---|
6355 | Ln_hhso4_act = binary_hhso4 + & |
---|
6356 | nitric_acid_eq_frac * HNO3_hhso4 + & |
---|
6357 | hydrochloric_acid_eq_frac * HCL_hhso4 + & |
---|
6358 | ammonium_sulphate_eq_frac * NH42SO4_hhso4 + & |
---|
6359 | ammonium_nitrate_eq_frac * NH4NO3_hhso4 + & |
---|
6360 | ammonium_chloride_eq_frac * NH4Cl_hhso4 + & |
---|
6361 | sodium_sulphate_eq_frac * Na2SO4_hhso4 + & |
---|
6362 | sodium_nitrate_eq_frac * NaNO3_hhso4 + & |
---|
6363 | sodium_chloride_eq_frac * NaCl_hhso4 |
---|
6364 | gamma_hhso4 = EXP( Ln_hhso4_act ) ! molal activity coefficient of HHSO4 |
---|
6365 | |
---|
6366 | !-- H2SO4 (sulphuric acid): |
---|
6367 | IF ( RH >= 0.1_wp .AND. RH < 0.9_wp ) THEN |
---|
6368 | binary_h2so4 = 2.4493_wp * ( RH**2 ) - 6.2326_wp * RH + 2.1763_wp |
---|
6369 | ELSEIF ( RH >= 0.9_wp .AND. RH < 0.98 ) THEN |
---|
6370 | binary_h2so4 = 914.68_wp * ( RH**3 ) - 2502.3_wp * ( RH**2 ) + & |
---|
6371 | 2281.9_wp * RH - 695.11_wp |
---|
6372 | ELSEIF ( RH >= 0.98 .AND. RH < 0.9999 ) THEN |
---|
6373 | binary_h2so4 = 3E-8_wp * ( RH**4 ) - 5E-6_wp * ( RH**3 ) + & |
---|
6374 | 0.0003_wp * ( RH**2 ) - 0.0022_wp * RH - 1.1305_wp |
---|
6375 | ENDIF |
---|
6376 | |
---|
6377 | IF ( nitric_acid > 0.0_wp ) THEN |
---|
6378 | HNO3_h2so4 = - 16.382_wp * ( RH**5 ) + 46.677_wp * ( RH**4 ) - & |
---|
6379 | 54.149_wp * ( RH**3 ) + 34.36_wp * ( RH**2 ) - & |
---|
6380 | 12.54_wp * RH + 2.1368_wp |
---|
6381 | ENDIF |
---|
6382 | |
---|
6383 | IF ( hydrochloric_acid > 0.0_wp ) THEN |
---|
6384 | HCL_h2so4 = - 14.409_wp * ( RH**5 ) + 42.804_wp * ( RH**4 ) - & |
---|
6385 | 47.24_wp * ( RH**3 ) + 24.668_wp * ( RH**2 ) - & |
---|
6386 | 5.8015_wp * RH + 0.084627_wp |
---|
6387 | ENDIF |
---|
6388 | |
---|
6389 | IF ( ammonium_sulphate > 0.0_wp ) THEN |
---|
6390 | NH42SO4_h2so4 = 66.71_wp * ( RH**5 ) - 187.5_wp * ( RH**4 ) + & |
---|
6391 | 210.57_wp * ( RH**3 ) - 121.04_wp * ( RH**2 ) + & |
---|
6392 | 39.182_wp * RH - 8.0606_wp |
---|
6393 | ENDIF |
---|
6394 | |
---|
6395 | IF ( ammonium_nitrate > 0.0_wp ) THEN |
---|
6396 | NH4NO3_h2so4 = - 22.532_wp * ( RH**4 ) + 66.615_wp * ( RH**3 ) - & |
---|
6397 | 74.647_wp * ( RH**2 ) + 37.638_wp * RH - 6.9711_wp |
---|
6398 | ENDIF |
---|
6399 | |
---|
6400 | IF ( ammonium_chloride > 0.0_wp ) THEN |
---|
6401 | IF ( RH >= 0.1_wp .AND. RH < 0.2_wp ) THEN |
---|
6402 | NH4Cl_h2so4 = - 0.32089_wp * RH + 0.57738_wp |
---|
6403 | ELSEIF ( RH >= 0.2_wp .AND. RH < 0.9_wp ) THEN |
---|
6404 | NH4Cl_h2so4 = 18.089_wp * ( RH**5 ) - 51.083_wp * ( RH**4 ) + & |
---|
6405 | 50.32_wp * ( RH**3 ) - 17.012_wp * ( RH**2 ) - & |
---|
6406 | 0.93435_wp * RH + 1.0548_wp |
---|
6407 | ELSEIF ( RH >= 0.9_wp .AND. RH < 0.99_wp ) THEN |
---|
6408 | NH4Cl_h2so4 = - 1.5749_wp * RH + 1.7002_wp |
---|
6409 | ENDIF |
---|
6410 | ENDIF |
---|
6411 | |
---|
6412 | IF ( sodium_sulphate > 0.0_wp ) THEN |
---|
6413 | Na2SO4_h2so4 = 29.843_wp * ( RH**4 ) - 69.417_wp * ( RH**3 ) + & |
---|
6414 | 61.507_wp * ( RH**2 ) - 29.874_wp * RH + 7.7556_wp |
---|
6415 | ENDIF |
---|
6416 | |
---|
6417 | IF ( sodium_nitrate > 0.0_wp ) THEN |
---|
6418 | NaNO3_h2so4 = - 122.37_wp * ( RH**6 ) + 427.43_wp * ( RH**5 ) - & |
---|
6419 | 604.68_wp * ( RH**4 ) + 443.08_wp * ( RH**3 ) - & |
---|
6420 | 178.61_wp * ( RH**2 ) + 37.242_wp * RH - 1.9564_wp |
---|
6421 | ENDIF |
---|
6422 | |
---|
6423 | IF ( sodium_chloride > 0.0_wp ) THEN |
---|
6424 | NaCl_h2so4 = - 40.288_wp * ( RH**5 ) + 115.61_wp * ( RH**4 ) - & |
---|
6425 | 129.99_wp * ( RH**3 ) + 72.652_wp * ( RH**2 ) - & |
---|
6426 | 22.124_wp * RH + 4.2676_wp |
---|
6427 | ENDIF |
---|
6428 | |
---|
6429 | Ln_h2so4_act = binary_h2so4 + & |
---|
6430 | nitric_acid_eq_frac * HNO3_h2so4 + & |
---|
6431 | hydrochloric_acid_eq_frac * HCL_h2so4 + & |
---|
6432 | ammonium_sulphate_eq_frac * NH42SO4_h2so4 + & |
---|
6433 | ammonium_nitrate_eq_frac * NH4NO3_h2so4 + & |
---|
6434 | ammonium_chloride_eq_frac * NH4Cl_h2so4 + & |
---|
6435 | sodium_sulphate_eq_frac * Na2SO4_h2so4 + & |
---|
6436 | sodium_nitrate_eq_frac * NaNO3_h2so4 + & |
---|
6437 | sodium_chloride_eq_frac * NaCl_h2so4 |
---|
6438 | |
---|
6439 | gamma_h2so4 = EXP( Ln_h2so4_act ) ! molal activity coefficient |
---|
6440 | ! |
---|
6441 | !-- Export activity coefficients |
---|
6442 | IF ( gamma_h2so4 > 1.0E-10_wp ) THEN |
---|
6443 | gamma_out(4) = ( gamma_hhso4**2.0_wp ) / gamma_h2so4 |
---|
6444 | ENDIF |
---|
6445 | IF ( gamma_hhso4 > 1.0E-10_wp ) THEN |
---|
6446 | gamma_out(5) = ( gamma_h2so4**3.0_wp ) / ( gamma_hhso4**2.0_wp ) |
---|
6447 | ENDIF |
---|
6448 | ! |
---|
6449 | !-- Ionic activity coefficient product |
---|
6450 | act_product = ( gamma_h2so4**3.0_wp ) / ( gamma_hhso4**2.0_wp ) |
---|
6451 | ! |
---|
6452 | !-- Solve the quadratic equation (i.e. x in ax**2 + bx + c = 0) |
---|
6453 | a = 1.0_wp |
---|
6454 | b = - 1.0_wp * ( ions(4) + ions(1) + ( ( water_total * 18.0E-3_wp ) / & |
---|
6455 | ( 99.0_wp * act_product ) ) ) |
---|
6456 | c = ions(4) * ions(1) |
---|
6457 | root1 = ( ( -1.0_wp * b ) + ( ( ( b**2 ) - 4.0_wp * a * c )**0.5_wp & |
---|
6458 | ) ) / ( 2 * a ) |
---|
6459 | root2 = ( ( -1.0_wp * b ) - ( ( ( b**2 ) - 4.0_wp * a * c) **0.5_wp & |
---|
6460 | ) ) / ( 2 * a ) |
---|
6461 | |
---|
6462 | IF ( root1 > ions(1) .OR. root1 < 0.0_wp ) THEN |
---|
6463 | root1 = 0.0_wp |
---|
6464 | ENDIF |
---|
6465 | |
---|
6466 | IF ( root2 > ions(1) .OR. root2 < 0.0_wp ) THEN |
---|
6467 | root2 = 0.0_wp |
---|
6468 | ENDIF |
---|
6469 | ! |
---|
6470 | !-- Calculate the new hydrogen ion, bisulphate ion and sulphate ion |
---|
6471 | !-- concentration |
---|
6472 | hso4_real = 0.0_wp |
---|
6473 | h_real = ions(1) |
---|
6474 | so4_real = ions(4) |
---|
6475 | IF ( root1 == 0.0_wp ) THEN |
---|
6476 | hso4_real = root2 |
---|
6477 | ELSEIF ( root2 == 0.0_wp ) THEN |
---|
6478 | hso4_real = root1 |
---|
6479 | ENDIF |
---|
6480 | h_real = ions(1) - hso4_real |
---|
6481 | so4_real = ions(4) - hso4_real |
---|
6482 | ! |
---|
6483 | !-- Recalculate ion molalities |
---|
6484 | ions_mol(1) = h_real / ( water_total * 18.01528E-3_wp ) ! H+ |
---|
6485 | ions_mol(4) = so4_real / ( water_total * 18.01528E-3_wp ) ! SO4(2-) |
---|
6486 | ions_mol(5) = hso4_real / ( water_total * 18.01528E-3_wp ) ! HSO4(2-) |
---|
6487 | |
---|
6488 | h_out = h_real |
---|
6489 | hso4_out = hso4_real |
---|
6490 | so4_out = so4_real |
---|
6491 | |
---|
6492 | ELSEIF ( ions(1) == 0.0_wp .OR. ions(4) == 0.0_wp ) THEN |
---|
6493 | h_out = ions(1) |
---|
6494 | hso4_out = 0.0_wp |
---|
6495 | so4_out = ions(4) |
---|
6496 | ENDIF |
---|
6497 | |
---|
6498 | ! |
---|
6499 | !-- 4) ACTIVITY COEFFICIENTS -for vapour pressures of HNO3,HCL and NH3 |
---|
6500 | ! |
---|
6501 | !-- This section evaluates activity coefficients and vapour pressures using the |
---|
6502 | !-- water content calculated above) for each inorganic condensing species: |
---|
6503 | !-- a - HNO3, b - NH3, c - HCL. |
---|
6504 | !-- The following procedure is used: |
---|
6505 | !-- Zaveri et al (2005) found that one could express the variation of activity |
---|
6506 | !-- coefficients linearly in log-space if equivalent mole fractions were used. |
---|
6507 | !-- So, by a taylor series expansion LOG( activity coefficient ) = |
---|
6508 | !-- LOG( binary activity coefficient at a given RH ) + |
---|
6509 | !-- (equivalent mole fraction compound A) * |
---|
6510 | !-- ('interaction' parameter between A and condensing species) + |
---|
6511 | !-- equivalent mole fraction compound B) * |
---|
6512 | !-- ('interaction' parameter between B and condensing species). |
---|
6513 | !-- Here, the interaction parameters have been fit to ADDEM by searching the |
---|
6514 | !-- whole compositon space and fit usign the Levenberg-Marquardt non-linear |
---|
6515 | !-- least squares algorithm. |
---|
6516 | ! |
---|
6517 | !-- They are given as a function of RH and vary with complexity ranging from |
---|
6518 | !-- linear to 5th order polynomial expressions, the binary activity coefficients |
---|
6519 | !-- were calculated using AIM online. |
---|
6520 | !-- NOTE: for NH3, no binary activity coefficient was used and the data were fit |
---|
6521 | !-- to the ratio of the activity coefficients for the ammonium and hydrogen |
---|
6522 | !-- ions. Once the activity coefficients are obtained the vapour pressure can be |
---|
6523 | !-- easily calculated using tabulated equilibrium constants (referenced). This |
---|
6524 | !-- procedure differs from that of Zaveri et al (2005) in that it is not assumed |
---|
6525 | !-- one can carry behaviour from binary mixtures in multicomponent systems. To |
---|
6526 | !-- this end we have fit the 'interaction' parameters explicitly to a general |
---|
6527 | !-- inorganic equilibrium model (ADDEM - Topping et al. 2005a,b). Such |
---|
6528 | !-- parameters take into account bisulphate ion dissociation and water content. |
---|
6529 | !-- This also allows us to consider one regime for all composition space, rather |
---|
6530 | !-- than defining sulphate rich and sulphate poor regimes |
---|
6531 | !-- NOTE: The flags "binary_case" and "full_complexity" are not used in this |
---|
6532 | !-- prototype. They are used for simplification of the fit expressions when |
---|
6533 | !-- using limited composition regions. |
---|
6534 | ! |
---|
6535 | !-- a) - ACTIVITY COEFF/VAPOUR PRESSURE - HNO3 |
---|
6536 | IF ( ions(1) > 0.0_wp .AND. ions(6) > 0.0_wp ) THEN |
---|
6537 | binary_case = 1 |
---|
6538 | IF ( RH > 0.1_wp .AND. RH < 0.98_wp ) THEN |
---|
6539 | IF ( binary_case == 1 ) THEN |
---|
6540 | binary_hno3 = 1.8514_wp * ( RH**3 ) - 4.6991_wp * ( RH**2 ) + & |
---|
6541 | 1.5514_wp * RH + 0.90236_wp |
---|
6542 | ELSEIF ( binary_case == 2 ) THEN |
---|
6543 | binary_hno3 = - 1.1751_wp * ( RH**2 ) - 0.53794_wp * RH + & |
---|
6544 | 1.2808_wp |
---|
6545 | ENDIF |
---|
6546 | ELSEIF ( RH >= 0.98_wp .AND. RH < 0.9999_wp ) THEN |
---|
6547 | binary_hno3 = 1244.69635941351_wp * ( RH**3 ) - & |
---|
6548 | 2613.93941099991_wp * ( RH**2 ) + & |
---|
6549 | 1525.0684974546_wp * RH -155.946764059316_wp |
---|
6550 | ENDIF |
---|
6551 | ! |
---|
6552 | !-- Contributions from other solutes |
---|
6553 | full_complexity = 1 |
---|
6554 | IF ( hydrochloric_acid > 0.0_wp ) THEN ! HCL |
---|
6555 | IF ( full_complexity == 1 .OR. RH < 0.4_wp ) THEN |
---|
6556 | HCL_hno3 = 16.051_wp * ( RH**4 ) - 44.357_wp * ( RH**3 ) + & |
---|
6557 | 45.141_wp * ( RH**2 ) - 21.638_wp * RH + 4.8182_wp |
---|
6558 | ELSEIF ( full_complexity == 0 .AND. RH > 0.4_wp ) THEN |
---|
6559 | HCL_hno3 = - 1.5833_wp * RH + 1.5569_wp |
---|
6560 | ENDIF |
---|
6561 | ENDIF |
---|
6562 | |
---|
6563 | IF ( sulphuric_acid > 0.0_wp ) THEN ! H2SO4 |
---|
6564 | IF ( full_complexity == 1 .OR. RH < 0.4_wp ) THEN |
---|
6565 | H2SO4_hno3 = - 3.0849_wp * ( RH**3 ) + 5.9609_wp * ( RH**2 ) - & |
---|
6566 | 4.468_wp * RH + 1.5658_wp |
---|
6567 | ELSEIF ( full_complexity == 0 .AND. RH > 0.4_wp ) THEN |
---|
6568 | H2SO4_hno3 = - 0.93473_wp * RH + 0.9363_wp |
---|
6569 | ENDIF |
---|
6570 | ENDIF |
---|
6571 | |
---|
6572 | IF ( ammonium_sulphate > 0.0_wp ) THEN ! NH42SO4 |
---|
6573 | NH42SO4_hno3 = 16.821_wp * ( RH**3 ) - 28.391_wp * ( RH**2 ) + & |
---|
6574 | 18.133_wp * RH - 6.7356_wp |
---|
6575 | ENDIF |
---|
6576 | |
---|
6577 | IF ( ammonium_nitrate > 0.0_wp ) THEN ! NH4NO3 |
---|
6578 | NH4NO3_hno3 = 11.01_wp * ( RH**3 ) - 21.578_wp * ( RH**2 ) + & |
---|
6579 | 14.808_wp * RH - 4.2593_wp |
---|
6580 | ENDIF |
---|
6581 | |
---|
6582 | IF ( ammonium_chloride > 0.0_wp ) THEN ! NH4Cl |
---|
6583 | IF ( full_complexity == 1 .OR. RH <= 0.4_wp ) THEN |
---|
6584 | NH4Cl_hno3 = - 1.176_wp * ( RH**3 ) + 5.0828_wp * ( RH**2 ) - & |
---|
6585 | 3.8792_wp * RH - 0.05518_wp |
---|
6586 | ELSEIF ( full_complexity == 0 .AND. RH > 0.4_wp ) THEN |
---|
6587 | NH4Cl_hno3 = 2.6219_wp * ( RH**2 ) - 2.2609_wp * RH - 0.38436_wp |
---|
6588 | ENDIF |
---|
6589 | ENDIF |
---|
6590 | |
---|
6591 | IF ( sodium_sulphate > 0.0_wp ) THEN ! Na2SO4 |
---|
6592 | Na2SO4_hno3 = 35.504_wp * ( RH**4 ) - 80.101_wp * ( RH**3 ) + & |
---|
6593 | 67.326_wp * ( RH**2 ) - 28.461_wp * RH + 5.6016_wp |
---|
6594 | ENDIF |
---|
6595 | |
---|
6596 | IF ( sodium_nitrate > 0.0_wp ) THEN ! NaNO3 |
---|
6597 | IF ( full_complexity == 1 .OR. RH <= 0.4_wp ) THEN |
---|
6598 | NaNO3_hno3 = 23.659_wp * ( RH**5 ) - 66.917_wp * ( RH**4 ) + & |
---|
6599 | 74.686_wp * ( RH**3 ) - 40.795_wp * ( RH**2 ) + & |
---|
6600 | 10.831_wp * RH - 1.4701_wp |
---|
6601 | ELSEIF ( full_complexity == 0 .AND. RH > 0.4_wp ) THEN |
---|
6602 | NaNO3_hno3 = 14.749_wp * ( RH**4 ) - 35.237_wp * ( RH**3 ) + & |
---|
6603 | 31.196_wp * ( RH**2 ) - 12.076_wp * RH + 1.3605_wp |
---|
6604 | ENDIF |
---|
6605 | ENDIF |
---|
6606 | |
---|
6607 | IF ( sodium_chloride > 0.0_wp ) THEN ! NaCl |
---|
6608 | IF ( full_complexity == 1 .OR. RH <= 0.4_wp ) THEN |
---|
6609 | NaCl_hno3 = 13.682_wp * ( RH**4 ) - 35.122_wp * ( RH**3 ) + & |
---|
6610 | 33.397_wp * ( RH**2 ) - 14.586_wp * RH + 2.6276_wp |
---|
6611 | ELSEIF ( full_complexity == 0 .AND. RH > 0.4_wp ) THEN |
---|
6612 | NaCl_hno3 = 1.1882_wp * ( RH**3 ) - 1.1037_wp * ( RH**2 ) - & |
---|
6613 | 0.7642_wp * RH + 0.6671_wp |
---|
6614 | ENDIF |
---|
6615 | ENDIF |
---|
6616 | |
---|
6617 | Ln_HNO3_act = binary_hno3 + & |
---|
6618 | hydrochloric_acid_eq_frac * HCL_hno3 + & |
---|
6619 | sulphuric_acid_eq_frac * H2SO4_hno3 + & |
---|
6620 | ammonium_sulphate_eq_frac * NH42SO4_hno3 + & |
---|
6621 | ammonium_nitrate_eq_frac * NH4NO3_hno3 + & |
---|
6622 | ammonium_chloride_eq_frac * NH4Cl_hno3 + & |
---|
6623 | sodium_sulphate_eq_frac * Na2SO4_hno3 + & |
---|
6624 | sodium_nitrate_eq_frac * NaNO3_hno3 + & |
---|
6625 | sodium_chloride_eq_frac * NaCl_hno3 |
---|
6626 | |
---|
6627 | gamma_hno3 = EXP( Ln_HNO3_act ) ! Molal activity coefficient of HNO3 |
---|
6628 | gamma_out(1) = gamma_hno3 |
---|
6629 | ! |
---|
6630 | !-- Partial pressure calculation |
---|
6631 | !-- K_hno3 = 2.51 * ( 10**6 ) |
---|
6632 | !-- K_hno3 = 2.628145923d6 !< calculated by AIM online (Clegg et al 1998) |
---|
6633 | !-- after Chameides (1984) (and NIST database) |
---|
6634 | K_hno3 = 2.6E6_wp * EXP( 8700.0_wp * henrys_temp_dep) |
---|
6635 | Press_HNO3 = ( ions_mol(1) * ions_mol(6) * ( gamma_hno3**2 ) ) / & |
---|
6636 | K_hno3 |
---|
6637 | ENDIF |
---|
6638 | ! |
---|
6639 | !-- b) - ACTIVITY COEFF/VAPOUR PRESSURE - NH3 |
---|
6640 | !-- Follow the two solute approach of Zaveri et al. (2005) |
---|
6641 | IF ( ions(2) > 0.0_wp .AND. ions_mol(1) > 0.0_wp ) THEN |
---|
6642 | !-- NH4HSO4: |
---|
6643 | binary_nh4hso4 = 56.907_wp * ( RH**6 ) - 155.32_wp * ( RH**5 ) + & |
---|
6644 | 142.94_wp * ( RH**4 ) - 32.298_wp * ( RH**3 ) - & |
---|
6645 | 27.936_wp * ( RH**2 ) + 19.502_wp * RH - 4.2618_wp |
---|
6646 | IF ( nitric_acid > 0.0_wp) THEN ! HNO3 |
---|
6647 | HNO3_nh4hso4 = 104.8369_wp * ( RH**8 ) - 288.8923_wp * ( RH**7 ) + & |
---|
6648 | 129.3445_wp * ( RH**6 ) + 373.0471_wp * ( RH**5 ) - & |
---|
6649 | 571.0385_wp * ( RH**4 ) + 326.3528_wp * ( RH**3 ) - & |
---|
6650 | 74.169_wp * ( RH**2 ) - 2.4999_wp * RH + 3.17_wp |
---|
6651 | ENDIF |
---|
6652 | |
---|
6653 | IF ( hydrochloric_acid > 0.0_wp) THEN ! HCL |
---|
6654 | HCL_nh4hso4 = - 7.9133_wp * ( RH**8 ) + 126.6648_wp * ( RH**7 ) - & |
---|
6655 | 460.7425_wp * ( RH**6 ) + 731.606_wp * ( RH**5 ) - & |
---|
6656 | 582.7467_wp * ( RH**4 ) + 216.7197_wp * ( RH**3 ) - & |
---|
6657 | 11.3934_wp * ( RH**2 ) - 17.7728_wp * RH + 5.75_wp |
---|
6658 | ENDIF |
---|
6659 | |
---|
6660 | IF ( sulphuric_acid > 0.0_wp) THEN ! H2SO4 |
---|
6661 | H2SO4_nh4hso4 = 195.981_wp * ( RH**8 ) - 779.2067_wp * ( RH**7 ) + & |
---|
6662 | 1226.3647_wp * ( RH**6 ) - 964.0261_wp * ( RH**5 ) + & |
---|
6663 | 391.7911_wp * ( RH**4 ) - 84.1409_wp * ( RH**3 ) + & |
---|
6664 | 20.0602_wp * ( RH**2 ) - 10.2663_wp * RH + 3.5817_wp |
---|
6665 | ENDIF |
---|
6666 | |
---|
6667 | IF ( ammonium_sulphate > 0.0_wp) THEN ! NH42SO4 |
---|
6668 | NH42SO4_nh4hso4 = 617.777_wp * ( RH**8 ) - 2547.427_wp * ( RH**7 ) & |
---|
6669 | + 4361.6009_wp * ( RH**6 ) - 4003.162_wp * ( RH**5 ) & |
---|
6670 | + 2117.8281_wp * ( RH**4 ) - 640.0678_wp * ( RH**3 ) & |
---|
6671 | + 98.0902_wp * ( RH**2 ) - 2.2615_wp * RH - 2.3811_wp |
---|
6672 | ENDIF |
---|
6673 | |
---|
6674 | IF ( ammonium_nitrate > 0.0_wp) THEN ! NH4NO3 |
---|
6675 | NH4NO3_nh4hso4 = - 104.4504_wp * ( RH**8 ) + 539.5921_wp * & |
---|
6676 | ( RH**7 ) - 1157.0498_wp * ( RH**6 ) + 1322.4507_wp * & |
---|
6677 | ( RH**5 ) - 852.2475_wp * ( RH**4 ) + 298.3734_wp * & |
---|
6678 | ( RH**3 ) - 47.0309_wp * ( RH**2 ) + 1.297_wp * RH - & |
---|
6679 | 0.8029_wp |
---|
6680 | ENDIF |
---|
6681 | |
---|
6682 | IF ( ammonium_chloride > 0.0_wp) THEN ! NH4Cl |
---|
6683 | NH4Cl_nh4hso4 = 258.1792_wp * ( RH**8 ) - 1019.3777_wp * & |
---|
6684 | ( RH**7 ) + 1592.8918_wp * ( RH**6 ) - 1221.0726_wp * & |
---|
6685 | ( RH**5 ) + 442.2548_wp * ( RH**4 ) - 43.6278_wp * & |
---|
6686 | ( RH**3 ) - 7.5282_wp * ( RH**2 ) - 3.8459_wp * RH + 2.2728_wp |
---|
6687 | ENDIF |
---|
6688 | |
---|
6689 | IF ( sodium_sulphate > 0.0_wp) THEN ! Na2SO4 |
---|
6690 | Na2SO4_nh4hso4 = 225.4238_wp * ( RH**8 ) - 732.4113_wp * & |
---|
6691 | ( RH**7 ) + 843.7291_wp * ( RH**6 ) - 322.7328_wp * & |
---|
6692 | ( RH**5 ) - 88.6252_wp * ( RH**4 ) + 72.4434_wp * & |
---|
6693 | ( RH**3 ) + 22.9252_wp * ( RH**2 ) - 25.3954_wp * RH + & |
---|
6694 | 4.6971_wp |
---|
6695 | ENDIF |
---|
6696 | |
---|
6697 | IF ( sodium_nitrate > 0.0_wp) THEN ! NaNO3 |
---|
6698 | NaNO3_nh4hso4 = 96.1348_wp * ( RH**8 ) - 341.6738_wp * ( RH**7 ) + & |
---|
6699 | 406.5314_wp * ( RH**6 ) - 98.5777_wp * ( RH**5 ) - & |
---|
6700 | 172.8286_wp * ( RH**4 ) + 149.3151_wp * ( RH**3 ) - & |
---|
6701 | 38.9998_wp * ( RH**2 ) - 0.2251 * RH + 0.4953_wp |
---|
6702 | ENDIF |
---|
6703 | |
---|
6704 | IF ( sodium_chloride > 0.0_wp) THEN ! NaCl |
---|
6705 | NaCl_nh4hso4 = 91.7856_wp * ( RH**8 ) - 316.6773_wp * ( RH**7 ) + & |
---|
6706 | 358.2703_wp * ( RH**6 ) - 68.9142 * ( RH**5 ) - & |
---|
6707 | 156.5031_wp * ( RH**4 ) + 116.9592_wp * ( RH**3 ) - & |
---|
6708 | 22.5271_wp * ( RH**2 ) - 3.7716_wp * RH + 1.56_wp |
---|
6709 | ENDIF |
---|
6710 | |
---|
6711 | Ln_NH4HSO4_act = binary_nh4hso4 + & |
---|
6712 | nitric_acid_eq_frac * HNO3_nh4hso4 + & |
---|
6713 | hydrochloric_acid_eq_frac * HCL_nh4hso4 + & |
---|
6714 | sulphuric_acid_eq_frac * H2SO4_nh4hso4 + & |
---|
6715 | ammonium_sulphate_eq_frac * NH42SO4_nh4hso4 + & |
---|
6716 | ammonium_nitrate_eq_frac * NH4NO3_nh4hso4 + & |
---|
6717 | ammonium_chloride_eq_frac * NH4Cl_nh4hso4 + & |
---|
6718 | sodium_sulphate_eq_frac * Na2SO4_nh4hso4 + & |
---|
6719 | sodium_nitrate_eq_frac * NaNO3_nh4hso4 + & |
---|
6720 | sodium_chloride_eq_frac * NaCl_nh4hso4 |
---|
6721 | |
---|
6722 | gamma_nh4hso4 = EXP( Ln_NH4HSO4_act ) ! molal act. coefficient of NH4HSO4 |
---|
6723 | !-- Molal activity coefficient of NO3- |
---|
6724 | gamma_out(6) = gamma_nh4hso4 |
---|
6725 | !-- Molal activity coefficient of NH4+ |
---|
6726 | gamma_nh3 = ( gamma_nh4hso4**2 ) / ( gamma_hhso4**2 ) |
---|
6727 | gamma_out(3) = gamma_nh3 |
---|
6728 | ! |
---|
6729 | !-- This actually represents the ratio of the ammonium to hydrogen ion |
---|
6730 | !-- activity coefficients (see Zaveri paper) - multiply this by the ratio |
---|
6731 | !-- of the ammonium to hydrogen ion molality and the ratio of appropriate |
---|
6732 | !-- equilibrium constants |
---|
6733 | ! |
---|
6734 | !-- Equilibrium constants |
---|
6735 | !-- Kh = 57.64d0 ! Zaveri et al. (2005) |
---|
6736 | Kh = 5.8E1_wp * EXP( 4085.0_wp * henrys_temp_dep ) ! after Chameides |
---|
6737 | ! ! (1984) (and NIST database) |
---|
6738 | !-- Knh4 = 1.81E-5_wp ! Zaveri et al. (2005) |
---|
6739 | Knh4 = 1.7E-5_wp * EXP( -4325.0_wp * henrys_temp_dep ) ! Chameides |
---|
6740 | ! (1984) |
---|
6741 | !-- Kw = 1.01E-14_wp ! Zaveri et al (2005) |
---|
6742 | Kw = 1.E-14_wp * EXP( -6716.0_wp * henrys_temp_dep ) ! Chameides |
---|
6743 | ! (1984) |
---|
6744 | ! |
---|
6745 | molality_ratio_nh3 = ions_mol(2) / ions_mol(1) |
---|
6746 | !-- Partial pressure calculation |
---|
6747 | Press_NH3 = molality_ratio_nh3 * gamma_nh3 * ( Kw / ( Kh * Knh4 ) ) |
---|
6748 | |
---|
6749 | ENDIF |
---|
6750 | ! |
---|
6751 | !-- c) - ACTIVITY COEFF/VAPOUR PRESSURE - HCL |
---|
6752 | IF ( ions(1) > 0.0_wp .AND. ions(7) > 0.0_wp ) THEN |
---|
6753 | binary_case = 1 |
---|
6754 | IF ( RH > 0.1_wp .AND. RH < 0.98 ) THEN |
---|
6755 | IF ( binary_case == 1 ) THEN |
---|
6756 | binary_hcl = - 5.0179_wp * ( RH**3 ) + 9.8816_wp * ( RH**2 ) - & |
---|
6757 | 10.789_wp * RH + 5.4737_wp |
---|
6758 | ELSEIF ( binary_case == 2 ) THEN |
---|
6759 | binary_hcl = - 4.6221_wp * RH + 4.2633_wp |
---|
6760 | ENDIF |
---|
6761 | ELSEIF ( RH >= 0.98_wp .AND. RH < 0.9999_wp ) THEN |
---|
6762 | binary_hcl = 775.6111008626_wp * ( RH**3 ) - 2146.01320888771_wp * & |
---|
6763 | ( RH**2 ) + 1969.01979670259_wp * RH - 598.878230033926_wp |
---|
6764 | ENDIF |
---|
6765 | ENDIF |
---|
6766 | |
---|
6767 | IF ( nitric_acid > 0.0_wp ) THEN ! HNO3 |
---|
6768 | IF ( full_complexity == 1 .OR. RH <= 0.4_wp ) THEN |
---|
6769 | HNO3_hcl = 9.6256_wp * ( RH**4 ) - 26.507_wp * ( RH**3 ) + & |
---|
6770 | 27.622_wp * ( RH**2 ) - 12.958_wp * RH + 2.2193_wp |
---|
6771 | ELSEIF ( full_complexity == 0 .AND. RH > 0.4_wp ) THEN |
---|
6772 | HNO3_hcl = 1.3242_wp * ( RH**2 ) - 1.8827_wp * RH + 0.55706_wp |
---|
6773 | ENDIF |
---|
6774 | ENDIF |
---|
6775 | |
---|
6776 | IF ( sulphuric_acid > 0.0_wp ) THEN ! H2SO4 |
---|
6777 | IF ( full_complexity == 1 .OR. RH <= 0.4 ) THEN |
---|
6778 | H2SO4_hcl = 1.4406_wp * ( RH**3 ) - 2.7132_wp * ( RH**2 ) + & |
---|
6779 | 1.014_wp * RH + 0.25226_wp |
---|
6780 | ELSEIF ( full_complexity == 0 .AND. RH > 0.4_wp ) THEN |
---|
6781 | H2SO4_hcl = 0.30993_wp * ( RH**2 ) - 0.99171_wp * RH + 0.66913_wp |
---|
6782 | ENDIF |
---|
6783 | ENDIF |
---|
6784 | |
---|
6785 | IF ( ammonium_sulphate > 0.0_wp ) THEN ! NH42SO4 |
---|
6786 | NH42SO4_hcl = 22.071_wp * ( RH**3 ) - 40.678_wp * ( RH**2 ) + & |
---|
6787 | 27.893_wp * RH - 9.4338_wp |
---|
6788 | ENDIF |
---|
6789 | |
---|
6790 | IF ( ammonium_nitrate > 0.0_wp ) THEN ! NH4NO3 |
---|
6791 | NH4NO3_hcl = 19.935_wp * ( RH**3 ) - 42.335_wp * ( RH**2 ) + & |
---|
6792 | 31.275_wp * RH - 8.8675_wp |
---|
6793 | ENDIF |
---|
6794 | |
---|
6795 | IF ( ammonium_chloride > 0.0_wp ) THEN ! NH4Cl |
---|
6796 | IF ( full_complexity == 1 .OR. RH <= 0.4_wp ) THEN |
---|
6797 | NH4Cl_hcl = 2.8048_wp * ( RH**3 ) - 4.3182_wp * ( RH**2 ) + & |
---|
6798 | 3.1971_wp * RH - 1.6824_wp |
---|
6799 | ELSEIF ( full_complexity == 0 .AND. RH > 0.4_wp ) THEN |
---|
6800 | NH4Cl_hcl = 1.2304_wp * ( RH**2 ) - 0.18262_wp * RH - 1.0643_wp |
---|
6801 | ENDIF |
---|
6802 | ENDIF |
---|
6803 | |
---|
6804 | IF ( sodium_sulphate > 0.0_wp ) THEN ! Na2SO4 |
---|
6805 | Na2SO4_hcl = 36.104_wp * ( RH**4 ) - 78.658_wp * ( RH**3 ) + & |
---|
6806 | 63.441_wp * ( RH**2 ) - 26.727_wp * RH + 5.7007_wp |
---|
6807 | ENDIF |
---|
6808 | |
---|
6809 | IF ( sodium_nitrate > 0.0_wp ) THEN ! NaNO3 |
---|
6810 | IF ( full_complexity == 1 .OR. RH <= 0.4_wp ) THEN |
---|
6811 | NaNO3_hcl = 54.471_wp * ( RH**5 ) - 159.42_wp * ( RH**4 ) + & |
---|
6812 | 180.25_wp * ( RH**3 ) - 98.176_wp * ( RH**2 ) + & |
---|
6813 | 25.309_wp * RH - 2.4275_wp |
---|
6814 | ELSEIF ( full_complexity == 0 .AND. RH > 0.4_wp ) THEN |
---|
6815 | NaNO3_hcl = 21.632_wp * ( RH**4 ) - 53.088_wp * ( RH**3 ) + & |
---|
6816 | 47.285_wp * ( RH**2 ) - 18.519_wp * RH + 2.6846_wp |
---|
6817 | ENDIF |
---|
6818 | ENDIF |
---|
6819 | |
---|
6820 | IF ( sodium_chloride > 0.0_wp ) THEN ! NaCl |
---|
6821 | IF ( full_complexity == 1 .OR. RH <= 0.4_wp ) THEN |
---|
6822 | NaCl_hcl = 5.4138_wp * ( RH**4 ) - 12.079_wp * ( RH**3 ) + & |
---|
6823 | 9.627_wp * ( RH**2 ) - 3.3164_wp * RH + 0.35224_wp |
---|
6824 | ELSEIF ( full_complexity == 0 .AND. RH > 0.4_wp ) THEN |
---|
6825 | NaCl_hcl = 2.432_wp * ( RH**3 ) - 4.3453_wp * ( RH**2 ) + & |
---|
6826 | 2.3834_wp * RH - 0.4762_wp |
---|
6827 | ENDIF |
---|
6828 | ENDIF |
---|
6829 | |
---|
6830 | Ln_HCL_act = binary_hcl + & |
---|
6831 | nitric_acid_eq_frac * HNO3_hcl + & |
---|
6832 | sulphuric_acid_eq_frac * H2SO4_hcl + & |
---|
6833 | ammonium_sulphate_eq_frac * NH42SO4_hcl + & |
---|
6834 | ammonium_nitrate_eq_frac * NH4NO3_hcl + & |
---|
6835 | ammonium_chloride_eq_frac * NH4Cl_hcl + & |
---|
6836 | sodium_sulphate_eq_frac * Na2SO4_hcl + & |
---|
6837 | sodium_nitrate_eq_frac * NaNO3_hcl + & |
---|
6838 | sodium_chloride_eq_frac * NaCl_hcl |
---|
6839 | |
---|
6840 | gamma_hcl = EXP( Ln_HCL_act ) ! Molal activity coefficient |
---|
6841 | gamma_out(2) = gamma_hcl |
---|
6842 | ! |
---|
6843 | !-- Equilibrium constant after Wagman et al. (1982) (and NIST database) |
---|
6844 | K_hcl = 2E6_wp * EXP( 9000.0_wp * henrys_temp_dep ) |
---|
6845 | |
---|
6846 | Press_HCL = ( ions_mol(1) * ions_mol(7) * ( gamma_hcl**2 ) ) / K_hcl |
---|
6847 | ! |
---|
6848 | !-- 5) Ion molility output |
---|
6849 | mols_out = ions_mol |
---|
6850 | ! |
---|
6851 | !-- REFERENCES |
---|
6852 | !-- Clegg et al. (1998) A Thermodynamic Model of the System |
---|
6853 | !-- H+-NH4+-Na+-SO42- -NO3--Cl--H2O at 298.15 K, J. Phys. Chem., 102A, |
---|
6854 | !-- 2155-2171. |
---|
6855 | !-- Clegg et al. (2001) Thermodynamic modelling of aqueous aerosols containing |
---|
6856 | !-- electrolytes and dissolved organic compounds. Journal of Aerosol Science |
---|
6857 | !-- 2001;32(6):713-738. |
---|
6858 | !-- Topping et al. (2005a) A curved multi-component aerosol hygroscopicity model |
---|
6859 | !-- framework: Part 1 - Inorganic compounds. Atmospheric Chemistry and |
---|
6860 | !-- Physics 2005;5:1205-1222. |
---|
6861 | !-- Topping et al. (2005b) A curved multi-component aerosol hygroscopicity model |
---|
6862 | !-- framework: Part 2 - Including organic compounds. Atmospheric Chemistry |
---|
6863 | !-- and Physics 2005;5:1223-1242. |
---|
6864 | !-- Wagman et al. (1982). The NBS tables of chemical thermodynamic properties: |
---|
6865 | !-- selected values for inorganic and Câ and Câ organic substances in SI |
---|
6866 | !-- units (book) |
---|
6867 | !-- Zaveri et al. (2005). A new method for multicomponent activity coefficients |
---|
6868 | !-- of electrolytes in aqueous atmospheric aerosols, JGR, 110, D02201, 2005. |
---|
6869 | END SUBROUTINE inorganic_pdfite |
---|
6870 | |
---|
6871 | !------------------------------------------------------------------------------! |
---|
6872 | ! Description: |
---|
6873 | ! ------------ |
---|
6874 | !> Update the particle size distribution. Put particles into corrects bins. |
---|
6875 | !> |
---|
6876 | !> Moving-centre method assumed, i.e. particles are allowed to grow to their |
---|
6877 | !> exact size as long as they are not crossing the fixed diameter bin limits. |
---|
6878 | !> If the particles in a size bin cross the lower or upper diameter limit, they |
---|
6879 | !> are all moved to the adjacent diameter bin and their volume is averaged with |
---|
6880 | !> the particles in the new bin, which then get a new diameter. |
---|
6881 | ! |
---|
6882 | !> Moving-centre method minimises numerical diffusion. |
---|
6883 | !------------------------------------------------------------------------------! |
---|
6884 | SUBROUTINE distr_update( paero ) |
---|
6885 | |
---|
6886 | IMPLICIT NONE |
---|
6887 | |
---|
6888 | !-- Input and output variables |
---|
6889 | TYPE(t_section), INTENT(inout) :: paero(fn2b) !< Aerosols particle |
---|
6890 | !< size distribution and properties |
---|
6891 | !-- Local variables |
---|
6892 | INTEGER(iwp) :: b !< loop index |
---|
6893 | INTEGER(iwp) :: mm !< loop index |
---|
6894 | INTEGER(iwp) :: counti |
---|
6895 | LOGICAL :: within_bins !< logical (particle belongs to the bin?) |
---|
6896 | REAL(wp) :: znfrac !< number fraction to be moved to the larger bin |
---|
6897 | REAL(wp) :: zvfrac !< volume fraction to be moved to the larger bin |
---|
6898 | REAL(wp) :: zVexc !< Volume in the grown bin which exceeds the bin |
---|
6899 | !< upper limit |
---|
6900 | REAL(wp) :: zVihi !< particle volume at the high end of the bin |
---|
6901 | REAL(wp) :: zVilo !< particle volume at the low end of the bin |
---|
6902 | REAL(wp) :: zvpart !< particle volume (m3) |
---|
6903 | REAL(wp) :: zVrat !< volume ratio of a size bin |
---|
6904 | |
---|
6905 | zvpart = 0.0_wp |
---|
6906 | zvfrac = 0.0_wp |
---|
6907 | |
---|
6908 | within_bins = .FALSE. |
---|
6909 | |
---|
6910 | ! |
---|
6911 | !-- Check if the volume of the bin is within bin limits after update |
---|
6912 | counti = 0 |
---|
6913 | DO WHILE ( .NOT. within_bins ) |
---|
6914 | within_bins = .TRUE. |
---|
6915 | |
---|
6916 | DO b = fn2b-1, in1a, -1 |
---|
6917 | mm = 0 |
---|
6918 | IF ( paero(b)%numc > nclim ) THEN |
---|
6919 | |
---|
6920 | zvpart = 0.0_wp |
---|
6921 | zvfrac = 0.0_wp |
---|
6922 | |
---|
6923 | IF ( b == fn2a ) CYCLE |
---|
6924 | ! |
---|
6925 | !-- Dry volume |
---|
6926 | zvpart = SUM( paero(b)%volc(1:7) ) / paero(b)%numc |
---|
6927 | ! |
---|
6928 | !-- Smallest bin cannot decrease |
---|
6929 | IF ( paero(b)%vlolim > zvpart .AND. b == in1a ) CYCLE |
---|
6930 | ! |
---|
6931 | !-- Decreasing bins |
---|
6932 | IF ( paero(b)%vlolim > zvpart ) THEN |
---|
6933 | mm = b - 1 |
---|
6934 | IF ( b == in2b ) mm = fn1a ! 2b goes to 1a |
---|
6935 | |
---|
6936 | paero(mm)%numc = paero(mm)%numc + paero(b)%numc |
---|
6937 | paero(b)%numc = 0.0_wp |
---|
6938 | paero(mm)%volc(:) = paero(mm)%volc(:) + paero(b)%volc(:) |
---|
6939 | paero(b)%volc(:) = 0.0_wp |
---|
6940 | CYCLE |
---|
6941 | ENDIF |
---|
6942 | ! |
---|
6943 | !-- If size bin has not grown, cycle |
---|
6944 | !-- Changed by Mona: compare to the arithmetic mean volume, as done |
---|
6945 | !-- originally. Now particle volume is derived from the geometric mean |
---|
6946 | !-- diameter, not arithmetic (see SUBROUTINE set_sizebins). |
---|
6947 | IF ( zvpart <= api6 * ( ( aero(b)%vhilim + aero(b)%vlolim ) / & |
---|
6948 | ( 2.0_wp * api6 ) ) ) CYCLE |
---|
6949 | IF ( ABS( zvpart - api6 * paero(b)%dmid ** 3.0_wp ) < & |
---|
6950 | 1.0E-35_wp ) CYCLE ! Mona: to avoid precision problems |
---|
6951 | ! |
---|
6952 | !-- Volume ratio of the size bin |
---|
6953 | zVrat = paero(b)%vhilim / paero(b)%vlolim |
---|
6954 | !-- Particle volume at the low end of the bin |
---|
6955 | zVilo = 2.0_wp * zvpart / ( 1.0_wp + zVrat ) |
---|
6956 | !-- Particle volume at the high end of the bin |
---|
6957 | zVihi = zVrat * zVilo |
---|
6958 | !-- Volume in the grown bin which exceeds the bin upper limit |
---|
6959 | zVexc = 0.5_wp * ( zVihi + paero(b)%vhilim ) |
---|
6960 | !-- Number fraction to be moved to the larger bin |
---|
6961 | znfrac = MIN( 1.0_wp, ( zVihi - paero(b)%vhilim) / & |
---|
6962 | ( zVihi - zVilo ) ) |
---|
6963 | !-- Volume fraction to be moved to the larger bin |
---|
6964 | zvfrac = MIN( 0.99_wp, znfrac * zVexc / zvpart ) |
---|
6965 | IF ( zvfrac < 0.0_wp ) THEN |
---|
6966 | message_string = 'Error: zvfrac < 0' |
---|
6967 | CALL message( 'salsa_mod: distr_update', 'SA0050', & |
---|
6968 | 1, 2, 0, 6, 0 ) |
---|
6969 | ENDIF |
---|
6970 | ! |
---|
6971 | !-- Update bin |
---|
6972 | mm = b + 1 |
---|
6973 | !-- Volume (cm3/cm3) |
---|
6974 | paero(mm)%volc(:) = paero(mm)%volc(:) + znfrac * paero(b)%numc * & |
---|
6975 | zVexc * paero(b)%volc(:) / & |
---|
6976 | SUM( paero(b)%volc(1:7) ) |
---|
6977 | paero(b)%volc(:) = paero(b)%volc(:) - znfrac * paero(b)%numc * & |
---|
6978 | zVexc * paero(b)%volc(:) / & |
---|
6979 | SUM( paero(b)%volc(1:7) ) |
---|
6980 | |
---|
6981 | !-- Number concentration (#/m3) |
---|
6982 | paero(mm)%numc = paero(mm)%numc + znfrac * paero(b)%numc |
---|
6983 | paero(b)%numc = paero(b)%numc * ( 1.0_wp - znfrac ) |
---|
6984 | |
---|
6985 | ENDIF ! nclim |
---|
6986 | |
---|
6987 | IF ( paero(b)%numc > nclim ) THEN |
---|
6988 | zvpart = SUM( paero(b)%volc(1:7) ) / paero(b)%numc |
---|
6989 | within_bins = ( paero(b)%vlolim < zvpart .AND. & |
---|
6990 | zvpart < paero(b)%vhilim ) |
---|
6991 | ENDIF |
---|
6992 | |
---|
6993 | ENDDO ! - b |
---|
6994 | |
---|
6995 | counti = counti + 1 |
---|
6996 | IF ( counti > 100 ) THEN |
---|
6997 | message_string = 'Error: Aerosol bin update not converged' |
---|
6998 | CALL message( 'salsa_mod: distr_update', 'SA0051', 1, 2, 0, 6, 0 ) |
---|
6999 | ENDIF |
---|
7000 | |
---|
7001 | ENDDO ! - within bins |
---|
7002 | |
---|
7003 | END SUBROUTINE distr_update |
---|
7004 | |
---|
7005 | !------------------------------------------------------------------------------! |
---|
7006 | ! Description: |
---|
7007 | ! ------------ |
---|
7008 | !> salsa_diagnostics: Update properties for the current timestep: |
---|
7009 | !> |
---|
7010 | !> Juha Tonttila, FMI, 2014 |
---|
7011 | !> Tomi Raatikainen, FMI, 2016 |
---|
7012 | !------------------------------------------------------------------------------! |
---|
7013 | SUBROUTINE salsa_diagnostics( i, j ) |
---|
7014 | |
---|
7015 | USE arrays_3d, & |
---|
7016 | ONLY: p, pt, zu |
---|
7017 | |
---|
7018 | USE basic_constants_and_equations_mod, & |
---|
7019 | ONLY: g |
---|
7020 | |
---|
7021 | USE control_parameters, & |
---|
7022 | ONLY: pt_surface, surface_pressure |
---|
7023 | |
---|
7024 | USE cpulog, & |
---|
7025 | ONLY: cpu_log, log_point_s |
---|
7026 | |
---|
7027 | IMPLICIT NONE |
---|
7028 | |
---|
7029 | INTEGER(iwp), INTENT(in) :: i !< |
---|
7030 | INTEGER(iwp), INTENT(in) :: j !< |
---|
7031 | |
---|
7032 | INTEGER(iwp) :: b !< |
---|
7033 | INTEGER(iwp) :: c !< |
---|
7034 | INTEGER(iwp) :: gt !< |
---|
7035 | INTEGER(iwp) :: k !< |
---|
7036 | INTEGER(iwp) :: nc !< |
---|
7037 | REAL(wp), DIMENSION(nzb:nzt+1) :: flag !< flag to mask topography |
---|
7038 | REAL(wp), DIMENSION(nzb:nzt+1) :: flag_zddry !< flag to mask zddry |
---|
7039 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_adn !< air density (kg/m3) |
---|
7040 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_p !< pressure |
---|
7041 | REAL(wp), DIMENSION(nzb:nzt+1) :: in_t !< temperature (K) |
---|
7042 | REAL(wp), DIMENSION(nzb:nzt+1) :: mcsum !< sum of mass concentration |
---|
7043 | REAL(wp), DIMENSION(nzb:nzt+1) :: ppm_to_nconc !< Conversion factor |
---|
7044 | !< from ppm to #/m3 |
---|
7045 | REAL(wp), DIMENSION(nzb:nzt+1) :: zddry !< |
---|
7046 | REAL(wp), DIMENSION(nzb:nzt+1) :: zvol !< |
---|
7047 | |
---|
7048 | flag_zddry = 0.0_wp |
---|
7049 | in_adn = 0.0_wp |
---|
7050 | in_p = 0.0_wp |
---|
7051 | in_t = 0.0_wp |
---|
7052 | ppm_to_nconc = 1.0_wp |
---|
7053 | zddry = 0.0_wp |
---|
7054 | zvol = 0.0_wp |
---|
7055 | |
---|
7056 | CALL cpu_log( log_point_s(94), 'salsa diagnostics ', 'start' ) |
---|
7057 | |
---|
7058 | ! |
---|
7059 | !-- Calculate thermodynamic quantities needed in SALSA |
---|
7060 | CALL salsa_thrm_ij( i, j, p_ij=in_p, temp_ij=in_t, adn_ij=in_adn ) |
---|
7061 | ! |
---|
7062 | !-- Calculate conversion factors for gas concentrations |
---|
7063 | ppm_to_nconc = for_ppm_to_nconc * in_p / in_t |
---|
7064 | ! |
---|
7065 | !-- Predetermine flag to mask topography |
---|
7066 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(:,j,i), 0 ) ) |
---|
7067 | |
---|
7068 | DO b = 1, nbins ! aerosol size bins |
---|
7069 | ! |
---|
7070 | !-- Remove negative values |
---|
7071 | aerosol_number(b)%conc(:,j,i) = MAX( nclim, & |
---|
7072 | aerosol_number(b)%conc(:,j,i) ) * flag |
---|
7073 | mcsum = 0.0_wp ! total mass concentration |
---|
7074 | DO c = 1, ncc_tot |
---|
7075 | ! |
---|
7076 | !-- Remove negative concentrations |
---|
7077 | aerosol_mass((c-1)*nbins+b)%conc(:,j,i) = MAX( mclim, & |
---|
7078 | aerosol_mass((c-1)*nbins+b)%conc(:,j,i) ) & |
---|
7079 | * flag |
---|
7080 | mcsum = mcsum + aerosol_mass((c-1)*nbins+b)%conc(:,j,i) * flag |
---|
7081 | ENDDO |
---|
7082 | ! |
---|
7083 | !-- Check that number and mass concentration match qualitatively |
---|
7084 | IF ( ANY ( aerosol_number(b)%conc(:,j,i) > nclim .AND. & |
---|
7085 | mcsum <= 0.0_wp ) ) & |
---|
7086 | THEN |
---|
7087 | DO k = nzb+1, nzt |
---|
7088 | IF ( aerosol_number(b)%conc(k,j,i) > nclim .AND. & |
---|
7089 | mcsum(k) <= 0.0_wp ) & |
---|
7090 | THEN |
---|
7091 | aerosol_number(b)%conc(k,j,i) = nclim * flag(k) |
---|
7092 | DO c = 1, ncc_tot |
---|
7093 | aerosol_mass((c-1)*nbins+b)%conc(k,j,i) = mclim * flag(k) |
---|
7094 | ENDDO |
---|
7095 | ENDIF |
---|
7096 | ENDDO |
---|
7097 | ENDIF |
---|
7098 | ! |
---|
7099 | !-- Update aerosol particle radius |
---|
7100 | CALL bin_mixrat( 'dry', b, i, j, zvol ) |
---|
7101 | zvol = zvol / arhoh2so4 ! Why on sulphate? |
---|
7102 | ! |
---|
7103 | !-- Particles smaller then 0.1 nm diameter are set to zero |
---|
7104 | zddry = ( zvol / MAX( nclim, aerosol_number(b)%conc(:,j,i) ) / api6 )** & |
---|
7105 | ( 1.0_wp / 3.0_wp ) |
---|
7106 | flag_zddry = MERGE( 1.0_wp, 0.0_wp, ( zddry < 1.0E-10_wp .AND. & |
---|
7107 | aerosol_number(b)%conc(:,j,i) > nclim ) ) |
---|
7108 | ! |
---|
7109 | !-- Volatile species to the gas phase |
---|
7110 | IF ( is_used( prtcl, 'SO4' ) .AND. lscndgas ) THEN |
---|
7111 | nc = get_index( prtcl, 'SO4' ) |
---|
7112 | c = ( nc - 1 ) * nbins + b |
---|
7113 | IF ( salsa_gases_from_chem ) THEN |
---|
7114 | chem_species( gas_index_chem(1) )%conc(:,j,i) = & |
---|
7115 | chem_species( gas_index_chem(1) )%conc(:,j,i) + & |
---|
7116 | aerosol_mass(c)%conc(:,j,i) * avo * flag * & |
---|
7117 | flag_zddry / ( amh2so4 * ppm_to_nconc ) |
---|
7118 | ELSE |
---|
7119 | salsa_gas(1)%conc(:,j,i) = salsa_gas(1)%conc(:,j,i) + & |
---|
7120 | aerosol_mass(c)%conc(:,j,i) / amh2so4 *& |
---|
7121 | avo * flag * flag_zddry |
---|
7122 | ENDIF |
---|
7123 | ENDIF |
---|
7124 | IF ( is_used( prtcl, 'OC' ) .AND. lscndgas ) THEN |
---|
7125 | nc = get_index( prtcl, 'OC' ) |
---|
7126 | c = ( nc - 1 ) * nbins + b |
---|
7127 | IF ( salsa_gases_from_chem ) THEN |
---|
7128 | chem_species( gas_index_chem(5) )%conc(:,j,i) = & |
---|
7129 | chem_species( gas_index_chem(5) )%conc(:,j,i) + & |
---|
7130 | aerosol_mass(c)%conc(:,j,i) * avo * flag * & |
---|
7131 | flag_zddry / ( amoc * ppm_to_nconc ) |
---|
7132 | ELSE |
---|
7133 | salsa_gas(5)%conc(:,j,i) = salsa_gas(5)%conc(:,j,i) + & |
---|
7134 | aerosol_mass(c)%conc(:,j,i) / amoc * & |
---|
7135 | avo * flag * flag_zddry |
---|
7136 | ENDIF |
---|
7137 | ENDIF |
---|
7138 | IF ( is_used( prtcl, 'NO' ) .AND. lscndgas ) THEN |
---|
7139 | nc = get_index( prtcl, 'NO' ) |
---|
7140 | c = ( nc - 1 ) * nbins + b |
---|
7141 | IF ( salsa_gases_from_chem ) THEN |
---|
7142 | chem_species( gas_index_chem(2) )%conc(:,j,i) = & |
---|
7143 | chem_species( gas_index_chem(2) )%conc(:,j,i) + & |
---|
7144 | aerosol_mass(c)%conc(:,j,i) * avo * flag * & |
---|
7145 | flag_zddry / ( amhno3 * ppm_to_nconc ) |
---|
7146 | ELSE |
---|
7147 | salsa_gas(2)%conc(:,j,i) = salsa_gas(2)%conc(:,j,i) + & |
---|
7148 | aerosol_mass(c)%conc(:,j,i) / amhno3 * & |
---|
7149 | avo * flag * flag_zddry |
---|
7150 | ENDIF |
---|
7151 | ENDIF |
---|
7152 | IF ( is_used( prtcl, 'NH' ) .AND. lscndgas ) THEN |
---|
7153 | nc = get_index( prtcl, 'NH' ) |
---|
7154 | c = ( nc - 1 ) * nbins + b |
---|
7155 | IF ( salsa_gases_from_chem ) THEN |
---|
7156 | chem_species( gas_index_chem(3) )%conc(:,j,i) = & |
---|
7157 | chem_species( gas_index_chem(3) )%conc(:,j,i) + & |
---|
7158 | aerosol_mass(c)%conc(:,j,i) * avo * flag * & |
---|
7159 | flag_zddry / ( amnh3 * ppm_to_nconc ) |
---|
7160 | ELSE |
---|
7161 | salsa_gas(3)%conc(:,j,i) = salsa_gas(3)%conc(:,j,i) + & |
---|
7162 | aerosol_mass(c)%conc(:,j,i) / amnh3 * & |
---|
7163 | avo * flag * flag_zddry |
---|
7164 | ENDIF |
---|
7165 | ENDIF |
---|
7166 | ! |
---|
7167 | !-- Mass and number to zero (insoluble species and water are lost) |
---|
7168 | DO c = 1, ncc_tot |
---|
7169 | aerosol_mass((c-1)*nbins+b)%conc(:,j,i) = MERGE( mclim * flag, & |
---|
7170 | aerosol_mass((c-1)*nbins+b)%conc(:,j,i), & |
---|
7171 | flag_zddry > 0.0_wp ) |
---|
7172 | ENDDO |
---|
7173 | aerosol_number(b)%conc(:,j,i) = MERGE( nclim * flag, & |
---|
7174 | aerosol_number(b)%conc(:,j,i), & |
---|
7175 | flag_zddry > 0.0_wp ) |
---|
7176 | Ra_dry(:,j,i,b) = MAX( 1.0E-10_wp, 0.5_wp * zddry ) |
---|
7177 | |
---|
7178 | ENDDO |
---|
7179 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
7180 | DO gt = 1, ngast |
---|
7181 | salsa_gas(gt)%conc(:,j,i) = MAX( nclim, salsa_gas(gt)%conc(:,j,i) ) & |
---|
7182 | * flag |
---|
7183 | ENDDO |
---|
7184 | ENDIF |
---|
7185 | |
---|
7186 | CALL cpu_log( log_point_s(94), 'salsa diagnostics ', 'stop' ) |
---|
7187 | |
---|
7188 | END SUBROUTINE salsa_diagnostics |
---|
7189 | |
---|
7190 | |
---|
7191 | ! |
---|
7192 | !------------------------------------------------------------------------------! |
---|
7193 | ! Description: |
---|
7194 | ! ------------ |
---|
7195 | !> Calculate the tendencies for aerosol number and mass concentrations. |
---|
7196 | !> Cache-optimized. |
---|
7197 | !------------------------------------------------------------------------------! |
---|
7198 | SUBROUTINE salsa_tendency_ij( id, rs_p, rs, trs_m, i, j, i_omp_start, tn, b, & |
---|
7199 | c, flux_s, diss_s, flux_l, diss_l, rs_init ) |
---|
7200 | |
---|
7201 | USE advec_ws, & |
---|
7202 | ONLY: advec_s_ws |
---|
7203 | USE advec_s_pw_mod, & |
---|
7204 | ONLY: advec_s_pw |
---|
7205 | USE advec_s_up_mod, & |
---|
7206 | ONLY: advec_s_up |
---|
7207 | USE arrays_3d, & |
---|
7208 | ONLY: ddzu, hyp, pt, rdf_sc, tend |
---|
7209 | USE diffusion_s_mod, & |
---|
7210 | ONLY: diffusion_s |
---|
7211 | USE indices, & |
---|
7212 | ONLY: wall_flags_0 |
---|
7213 | USE pegrid, & |
---|
7214 | ONLY: threads_per_task, myid |
---|
7215 | USE surface_mod, & |
---|
7216 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
7217 | surf_usm_v |
---|
7218 | |
---|
7219 | IMPLICIT NONE |
---|
7220 | |
---|
7221 | CHARACTER (LEN = *) :: id |
---|
7222 | INTEGER(iwp) :: b !< bin index in derived type aerosol_size_bin |
---|
7223 | INTEGER(iwp) :: c !< bin index in derived type aerosol_size_bin |
---|
7224 | INTEGER(iwp) :: i !< |
---|
7225 | INTEGER(iwp) :: i_omp_start !< |
---|
7226 | INTEGER(iwp) :: j !< |
---|
7227 | INTEGER(iwp) :: k !< |
---|
7228 | INTEGER(iwp) :: nc !< (c-1)*nbins+b |
---|
7229 | INTEGER(iwp) :: tn !< |
---|
7230 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn,0:threads_per_task-1) :: diss_l !< |
---|
7231 | REAL(wp), DIMENSION(nzb+1:nzt,0:threads_per_task-1) :: diss_s !< |
---|
7232 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn,0:threads_per_task-1) :: flux_l !< |
---|
7233 | REAL(wp), DIMENSION(nzb+1:nzt,0:threads_per_task-1) :: flux_s !< |
---|
7234 | REAL(wp), DIMENSION(nzb:nzt+1) :: rs_init !< |
---|
7235 | REAL(wp), DIMENSION(:,:,:), POINTER :: rs_p !< |
---|
7236 | REAL(wp), DIMENSION(:,:,:), POINTER :: rs !< |
---|
7237 | REAL(wp), DIMENSION(:,:,:), POINTER :: trs_m !< |
---|
7238 | |
---|
7239 | nc = (c-1)*nbins+b |
---|
7240 | ! |
---|
7241 | !-- Tendency-terms for reactive scalar |
---|
7242 | tend(:,j,i) = 0.0_wp |
---|
7243 | |
---|
7244 | IF ( id == 'aerosol_number' .AND. lod_aero == 3 ) THEN |
---|
7245 | tend(:,j,i) = tend(:,j,i) + aerosol_number(b)%source(:,j,i) |
---|
7246 | ELSEIF ( id == 'aerosol_mass' .AND. lod_aero == 3 ) THEN |
---|
7247 | tend(:,j,i) = tend(:,j,i) + aerosol_mass(nc)%source(:,j,i) |
---|
7248 | ENDIF |
---|
7249 | ! |
---|
7250 | !-- Advection terms |
---|
7251 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
7252 | IF ( ws_scheme_sca ) THEN |
---|
7253 | CALL advec_s_ws( i, j, rs, id, flux_s, diss_s, flux_l, diss_l, & |
---|
7254 | i_omp_start, tn ) |
---|
7255 | ELSE |
---|
7256 | CALL advec_s_pw( i, j, rs ) |
---|
7257 | ENDIF |
---|
7258 | ELSE |
---|
7259 | CALL advec_s_up( i, j, rs ) |
---|
7260 | ENDIF |
---|
7261 | ! |
---|
7262 | !-- Diffusion terms |
---|
7263 | IF ( id == 'aerosol_number' ) THEN |
---|
7264 | CALL diffusion_s( i, j, rs, surf_def_h(0)%answs(:,b), & |
---|
7265 | surf_def_h(1)%answs(:,b), surf_def_h(2)%answs(:,b), & |
---|
7266 | surf_lsm_h%answs(:,b), surf_usm_h%answs(:,b), & |
---|
7267 | surf_def_v(0)%answs(:,b), surf_def_v(1)%answs(:,b), & |
---|
7268 | surf_def_v(2)%answs(:,b), surf_def_v(3)%answs(:,b), & |
---|
7269 | surf_lsm_v(0)%answs(:,b), surf_lsm_v(1)%answs(:,b), & |
---|
7270 | surf_lsm_v(2)%answs(:,b), surf_lsm_v(3)%answs(:,b), & |
---|
7271 | surf_usm_v(0)%answs(:,b), surf_usm_v(1)%answs(:,b), & |
---|
7272 | surf_usm_v(2)%answs(:,b), surf_usm_v(3)%answs(:,b) ) |
---|
7273 | ! |
---|
7274 | !-- Sedimentation for aerosol number and mass |
---|
7275 | IF ( lsdepo ) THEN |
---|
7276 | tend(nzb+1:nzt,j,i) = tend(nzb+1:nzt,j,i) - MAX( 0.0_wp, & |
---|
7277 | ( rs(nzb+2:nzt+1,j,i) * sedim_vd(nzb+2:nzt+1,j,i,b) - & |
---|
7278 | rs(nzb+1:nzt,j,i) * sedim_vd(nzb+1:nzt,j,i,b) ) * & |
---|
7279 | ddzu(nzb+1:nzt) ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
7280 | BTEST( wall_flags_0(nzb:nzt-1,j,i), 0 ) ) |
---|
7281 | ENDIF |
---|
7282 | |
---|
7283 | ELSEIF ( id == 'aerosol_mass' ) THEN |
---|
7284 | CALL diffusion_s( i, j, rs, surf_def_h(0)%amsws(:,nc), & |
---|
7285 | surf_def_h(1)%amsws(:,nc), surf_def_h(2)%amsws(:,nc), & |
---|
7286 | surf_lsm_h%amsws(:,nc), surf_usm_h%amsws(:,nc), & |
---|
7287 | surf_def_v(0)%amsws(:,nc), surf_def_v(1)%amsws(:,nc), & |
---|
7288 | surf_def_v(2)%amsws(:,nc), surf_def_v(3)%amsws(:,nc), & |
---|
7289 | surf_lsm_v(0)%amsws(:,nc), surf_lsm_v(1)%amsws(:,nc), & |
---|
7290 | surf_lsm_v(2)%amsws(:,nc), surf_lsm_v(3)%amsws(:,nc), & |
---|
7291 | surf_usm_v(0)%amsws(:,nc), surf_usm_v(1)%amsws(:,nc), & |
---|
7292 | surf_usm_v(2)%amsws(:,nc), surf_usm_v(3)%amsws(:,nc) ) |
---|
7293 | ! |
---|
7294 | !-- Sedimentation for aerosol number and mass |
---|
7295 | IF ( lsdepo ) THEN |
---|
7296 | tend(nzb+1:nzt,j,i) = tend(nzb+1:nzt,j,i) - MAX( 0.0_wp, & |
---|
7297 | ( rs(nzb+2:nzt+1,j,i) * sedim_vd(nzb+2:nzt+1,j,i,b) - & |
---|
7298 | rs(nzb+1:nzt,j,i) * sedim_vd(nzb+1:nzt,j,i,b) ) * & |
---|
7299 | ddzu(nzb+1:nzt) ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
7300 | BTEST( wall_flags_0(nzb:nzt-1,j,i), 0 ) ) |
---|
7301 | ENDIF |
---|
7302 | ELSEIF ( id == 'salsa_gas' ) THEN |
---|
7303 | CALL diffusion_s( i, j, rs, surf_def_h(0)%gtsws(:,b), & |
---|
7304 | surf_def_h(1)%gtsws(:,b), surf_def_h(2)%gtsws(:,b), & |
---|
7305 | surf_lsm_h%gtsws(:,b), surf_usm_h%gtsws(:,b), & |
---|
7306 | surf_def_v(0)%gtsws(:,b), surf_def_v(1)%gtsws(:,b), & |
---|
7307 | surf_def_v(2)%gtsws(:,b), surf_def_v(3)%gtsws(:,b), & |
---|
7308 | surf_lsm_v(0)%gtsws(:,b), surf_lsm_v(1)%gtsws(:,b), & |
---|
7309 | surf_lsm_v(2)%gtsws(:,b), surf_lsm_v(3)%gtsws(:,b), & |
---|
7310 | surf_usm_v(0)%gtsws(:,b), surf_usm_v(1)%gtsws(:,b), & |
---|
7311 | surf_usm_v(2)%gtsws(:,b), surf_usm_v(3)%gtsws(:,b) ) |
---|
7312 | ENDIF |
---|
7313 | ! |
---|
7314 | !-- Prognostic equation for a scalar |
---|
7315 | DO k = nzb+1, nzt |
---|
7316 | rs_p(k,j,i) = rs(k,j,i) + ( dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
7317 | tsc(3) * trs_m(k,j,i) ) & |
---|
7318 | - tsc(5) * rdf_sc(k) & |
---|
7319 | * ( rs(k,j,i) - rs_init(k) ) ) & |
---|
7320 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
7321 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
7322 | IF ( rs_p(k,j,i) < 0.0_wp ) rs_p(k,j,i) = 0.1_wp * rs(k,j,i) |
---|
7323 | ENDDO |
---|
7324 | |
---|
7325 | ! |
---|
7326 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
7327 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
7328 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
7329 | DO k = nzb+1, nzt |
---|
7330 | trs_m(k,j,i) = tend(k,j,i) |
---|
7331 | ENDDO |
---|
7332 | ELSEIF ( intermediate_timestep_count < & |
---|
7333 | intermediate_timestep_count_max ) THEN |
---|
7334 | DO k = nzb+1, nzt |
---|
7335 | trs_m(k,j,i) = -9.5625_wp * tend(k,j,i) + 5.3125_wp * trs_m(k,j,i) |
---|
7336 | ENDDO |
---|
7337 | ENDIF |
---|
7338 | ENDIF |
---|
7339 | |
---|
7340 | END SUBROUTINE salsa_tendency_ij |
---|
7341 | |
---|
7342 | ! |
---|
7343 | !------------------------------------------------------------------------------! |
---|
7344 | ! Description: |
---|
7345 | ! ------------ |
---|
7346 | !> Calculate the tendencies for aerosol number and mass concentrations. |
---|
7347 | !> Vector-optimized. |
---|
7348 | !------------------------------------------------------------------------------! |
---|
7349 | SUBROUTINE salsa_tendency( id, rs_p, rs, trs_m, b, c, rs_init ) |
---|
7350 | |
---|
7351 | USE advec_ws, & |
---|
7352 | ONLY: advec_s_ws |
---|
7353 | USE advec_s_pw_mod, & |
---|
7354 | ONLY: advec_s_pw |
---|
7355 | USE advec_s_up_mod, & |
---|
7356 | ONLY: advec_s_up |
---|
7357 | USE arrays_3d, & |
---|
7358 | ONLY: ddzu, hyp, pt, rdf_sc, tend |
---|
7359 | USE diffusion_s_mod, & |
---|
7360 | ONLY: diffusion_s |
---|
7361 | USE indices, & |
---|
7362 | ONLY: wall_flags_0 |
---|
7363 | USE surface_mod, & |
---|
7364 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
7365 | surf_usm_v |
---|
7366 | |
---|
7367 | IMPLICIT NONE |
---|
7368 | |
---|
7369 | CHARACTER (LEN = *) :: id |
---|
7370 | INTEGER(iwp) :: b !< bin index in derived type aerosol_size_bin |
---|
7371 | INTEGER(iwp) :: c !< bin index in derived type aerosol_size_bin |
---|
7372 | INTEGER(iwp) :: i !< |
---|
7373 | INTEGER(iwp) :: j !< |
---|
7374 | INTEGER(iwp) :: k !< |
---|
7375 | INTEGER(iwp) :: nc !< (c-1)*nbins+b |
---|
7376 | REAL(wp), DIMENSION(nzb:nzt+1) :: rs_init !< |
---|
7377 | REAL(wp), DIMENSION(:,:,:), POINTER :: rs_p !< |
---|
7378 | REAL(wp), DIMENSION(:,:,:), POINTER :: rs !< |
---|
7379 | REAL(wp), DIMENSION(:,:,:), POINTER :: trs_m !< |
---|
7380 | |
---|
7381 | nc = (c-1)*nbins+b |
---|
7382 | ! |
---|
7383 | !-- Tendency-terms for reactive scalar |
---|
7384 | tend = 0.0_wp |
---|
7385 | |
---|
7386 | IF ( id == 'aerosol_number' .AND. lod_aero == 3 ) THEN |
---|
7387 | tend = tend + aerosol_number(b)%source |
---|
7388 | ELSEIF ( id == 'aerosol_mass' .AND. lod_aero == 3 ) THEN |
---|
7389 | tend = tend + aerosol_mass(nc)%source |
---|
7390 | ENDIF |
---|
7391 | ! |
---|
7392 | !-- Advection terms |
---|
7393 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
7394 | IF ( ws_scheme_sca ) THEN |
---|
7395 | CALL advec_s_ws( rs, id ) |
---|
7396 | ELSE |
---|
7397 | CALL advec_s_pw( rs ) |
---|
7398 | ENDIF |
---|
7399 | ELSE |
---|
7400 | CALL advec_s_up( rs ) |
---|
7401 | ENDIF |
---|
7402 | ! |
---|
7403 | !-- Diffusion terms |
---|
7404 | IF ( id == 'aerosol_number' ) THEN |
---|
7405 | CALL diffusion_s( rs, surf_def_h(0)%answs(:,b), & |
---|
7406 | surf_def_h(1)%answs(:,b), surf_def_h(2)%answs(:,b), & |
---|
7407 | surf_lsm_h%answs(:,b), surf_usm_h%answs(:,b), & |
---|
7408 | surf_def_v(0)%answs(:,b), surf_def_v(1)%answs(:,b), & |
---|
7409 | surf_def_v(2)%answs(:,b), surf_def_v(3)%answs(:,b), & |
---|
7410 | surf_lsm_v(0)%answs(:,b), surf_lsm_v(1)%answs(:,b), & |
---|
7411 | surf_lsm_v(2)%answs(:,b), surf_lsm_v(3)%answs(:,b), & |
---|
7412 | surf_usm_v(0)%answs(:,b), surf_usm_v(1)%answs(:,b), & |
---|
7413 | surf_usm_v(2)%answs(:,b), surf_usm_v(3)%answs(:,b) ) |
---|
7414 | ELSEIF ( id == 'aerosol_mass' ) THEN |
---|
7415 | CALL diffusion_s( rs, surf_def_h(0)%amsws(:,nc), & |
---|
7416 | surf_def_h(1)%amsws(:,nc), surf_def_h(2)%amsws(:,nc), & |
---|
7417 | surf_lsm_h%amsws(:,nc), surf_usm_h%amsws(:,nc), & |
---|
7418 | surf_def_v(0)%amsws(:,nc), surf_def_v(1)%amsws(:,nc), & |
---|
7419 | surf_def_v(2)%amsws(:,nc), surf_def_v(3)%amsws(:,nc), & |
---|
7420 | surf_lsm_v(0)%amsws(:,nc), surf_lsm_v(1)%amsws(:,nc), & |
---|
7421 | surf_lsm_v(2)%amsws(:,nc), surf_lsm_v(3)%amsws(:,nc), & |
---|
7422 | surf_usm_v(0)%amsws(:,nc), surf_usm_v(1)%amsws(:,nc), & |
---|
7423 | surf_usm_v(2)%amsws(:,nc), surf_usm_v(3)%amsws(:,nc) ) |
---|
7424 | ELSEIF ( id == 'salsa_gas' ) THEN |
---|
7425 | CALL diffusion_s( rs, surf_def_h(0)%gtsws(:,b), & |
---|
7426 | surf_def_h(1)%gtsws(:,b), surf_def_h(2)%gtsws(:,b), & |
---|
7427 | surf_lsm_h%gtsws(:,b), surf_usm_h%gtsws(:,b), & |
---|
7428 | surf_def_v(0)%gtsws(:,b), surf_def_v(1)%gtsws(:,b), & |
---|
7429 | surf_def_v(2)%gtsws(:,b), surf_def_v(3)%gtsws(:,b), & |
---|
7430 | surf_lsm_v(0)%gtsws(:,b), surf_lsm_v(1)%gtsws(:,b), & |
---|
7431 | surf_lsm_v(2)%gtsws(:,b), surf_lsm_v(3)%gtsws(:,b), & |
---|
7432 | surf_usm_v(0)%gtsws(:,b), surf_usm_v(1)%gtsws(:,b), & |
---|
7433 | surf_usm_v(2)%gtsws(:,b), surf_usm_v(3)%gtsws(:,b) ) |
---|
7434 | ENDIF |
---|
7435 | ! |
---|
7436 | !-- Prognostic equation for a scalar |
---|
7437 | DO i = nxl, nxr |
---|
7438 | DO j = nys, nyn |
---|
7439 | IF ( id == 'salsa_gas' .AND. lod_gases == 3 ) THEN |
---|
7440 | tend(:,j,i) = tend(:,j,i) + salsa_gas(b)%source(:,j,i) * & |
---|
7441 | for_ppm_to_nconc * hyp(:) / pt(:,j,i) * ( hyp(:) / & |
---|
7442 | 100000.0_wp )**0.286_wp ! ppm to #/m3 |
---|
7443 | ELSEIF ( id == 'aerosol_mass' .OR. id == 'aerosol_number') THEN |
---|
7444 | ! |
---|
7445 | !-- Sedimentation for aerosol number and mass |
---|
7446 | IF ( lsdepo ) THEN |
---|
7447 | tend(nzb+1:nzt,j,i) = tend(nzb+1:nzt,j,i) - MAX( 0.0_wp, & |
---|
7448 | ( rs(nzb+2:nzt+1,j,i) * sedim_vd(nzb+2:nzt+1,j,i,b) - & |
---|
7449 | rs(nzb+1:nzt,j,i) * sedim_vd(nzb+1:nzt,j,i,b) ) * & |
---|
7450 | ddzu(nzb+1:nzt) ) * MERGE( 1.0_wp, 0.0_wp, & |
---|
7451 | BTEST( wall_flags_0(nzb:nzt-1,j,i), 0 ) ) |
---|
7452 | ENDIF |
---|
7453 | ENDIF |
---|
7454 | DO k = nzb+1, nzt |
---|
7455 | rs_p(k,j,i) = rs(k,j,i) + ( dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
7456 | tsc(3) * trs_m(k,j,i) ) & |
---|
7457 | - tsc(5) * rdf_sc(k) & |
---|
7458 | * ( rs(k,j,i) - rs_init(k) ) )& |
---|
7459 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
7460 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
7461 | IF ( rs_p(k,j,i) < 0.0_wp ) rs_p(k,j,i) = 0.1_wp * rs(k,j,i) |
---|
7462 | ENDDO |
---|
7463 | ENDDO |
---|
7464 | ENDDO |
---|
7465 | |
---|
7466 | ! |
---|
7467 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
7468 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
7469 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
7470 | DO i = nxl, nxr |
---|
7471 | DO j = nys, nyn |
---|
7472 | DO k = nzb+1, nzt |
---|
7473 | trs_m(k,j,i) = tend(k,j,i) |
---|
7474 | ENDDO |
---|
7475 | ENDDO |
---|
7476 | ENDDO |
---|
7477 | ELSEIF ( intermediate_timestep_count < & |
---|
7478 | intermediate_timestep_count_max ) THEN |
---|
7479 | DO i = nxl, nxr |
---|
7480 | DO j = nys, nyn |
---|
7481 | DO k = nzb+1, nzt |
---|
7482 | trs_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
7483 | + 5.3125_wp * trs_m(k,j,i) |
---|
7484 | ENDDO |
---|
7485 | ENDDO |
---|
7486 | ENDDO |
---|
7487 | ENDIF |
---|
7488 | ENDIF |
---|
7489 | |
---|
7490 | END SUBROUTINE salsa_tendency |
---|
7491 | |
---|
7492 | !------------------------------------------------------------------------------! |
---|
7493 | ! Description: |
---|
7494 | ! ------------ |
---|
7495 | !> Boundary conditions for prognostic variables in SALSA |
---|
7496 | !------------------------------------------------------------------------------! |
---|
7497 | SUBROUTINE salsa_boundary_conds |
---|
7498 | |
---|
7499 | USE surface_mod, & |
---|
7500 | ONLY : bc_h |
---|
7501 | |
---|
7502 | IMPLICIT NONE |
---|
7503 | |
---|
7504 | INTEGER(iwp) :: b !< index for aerosol size bins |
---|
7505 | INTEGER(iwp) :: c !< index for chemical compounds in aerosols |
---|
7506 | INTEGER(iwp) :: g !< idex for gaseous compounds |
---|
7507 | INTEGER(iwp) :: i !< grid index x direction |
---|
7508 | INTEGER(iwp) :: j !< grid index y direction |
---|
7509 | INTEGER(iwp) :: k !< grid index y direction |
---|
7510 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on |
---|
7511 | !< facing. |
---|
7512 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward- |
---|
7513 | !< facing walls |
---|
7514 | INTEGER(iwp) :: m !< running index surface elements |
---|
7515 | |
---|
7516 | ! |
---|
7517 | !-- Surface conditions: |
---|
7518 | IF ( ibc_salsa_b == 0 ) THEN ! Dirichlet |
---|
7519 | ! |
---|
7520 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
7521 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
7522 | !-- s_p at k-1 |
---|
7523 | |
---|
7524 | DO l = 0, 1 |
---|
7525 | ! |
---|
7526 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is |
---|
7527 | !-- set, for downward-facing surfaces at topography bottom (k+1) |
---|
7528 | kb = MERGE ( -1, 1, l == 0 ) |
---|
7529 | !$OMP PARALLEL PRIVATE( b, c, g, i, j, k ) |
---|
7530 | !$OMP DO |
---|
7531 | DO m = 1, bc_h(l)%ns |
---|
7532 | |
---|
7533 | i = bc_h(l)%i(m) |
---|
7534 | j = bc_h(l)%j(m) |
---|
7535 | k = bc_h(l)%k(m) |
---|
7536 | |
---|
7537 | DO b = 1, nbins |
---|
7538 | aerosol_number(b)%conc_p(k+kb,j,i) = & |
---|
7539 | aerosol_number(b)%conc(k+kb,j,i) |
---|
7540 | DO c = 1, ncc_tot |
---|
7541 | aerosol_mass((c-1)*nbins+b)%conc_p(k+kb,j,i) = & |
---|
7542 | aerosol_mass((c-1)*nbins+b)%conc(k+kb,j,i) |
---|
7543 | ENDDO |
---|
7544 | ENDDO |
---|
7545 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
7546 | DO g = 1, ngast |
---|
7547 | salsa_gas(g)%conc_p(k+kb,j,i) = salsa_gas(g)%conc(k+kb,j,i) |
---|
7548 | ENDDO |
---|
7549 | ENDIF |
---|
7550 | |
---|
7551 | ENDDO |
---|
7552 | !$OMP END PARALLEL |
---|
7553 | |
---|
7554 | ENDDO |
---|
7555 | |
---|
7556 | ELSE ! Neumann |
---|
7557 | |
---|
7558 | DO l = 0, 1 |
---|
7559 | ! |
---|
7560 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is |
---|
7561 | !-- set, for downward-facing surfaces at topography bottom (k+1) |
---|
7562 | kb = MERGE( -1, 1, l == 0 ) |
---|
7563 | !$OMP PARALLEL PRIVATE( b, c, g, i, j, k ) |
---|
7564 | !$OMP DO |
---|
7565 | DO m = 1, bc_h(l)%ns |
---|
7566 | |
---|
7567 | i = bc_h(l)%i(m) |
---|
7568 | j = bc_h(l)%j(m) |
---|
7569 | k = bc_h(l)%k(m) |
---|
7570 | |
---|
7571 | DO b = 1, nbins |
---|
7572 | aerosol_number(b)%conc_p(k+kb,j,i) = & |
---|
7573 | aerosol_number(b)%conc_p(k,j,i) |
---|
7574 | DO c = 1, ncc_tot |
---|
7575 | aerosol_mass((c-1)*nbins+b)%conc_p(k+kb,j,i) = & |
---|
7576 | aerosol_mass((c-1)*nbins+b)%conc_p(k,j,i) |
---|
7577 | ENDDO |
---|
7578 | ENDDO |
---|
7579 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
7580 | DO g = 1, ngast |
---|
7581 | salsa_gas(g)%conc_p(k+kb,j,i) = salsa_gas(g)%conc_p(k,j,i) |
---|
7582 | ENDDO |
---|
7583 | ENDIF |
---|
7584 | |
---|
7585 | ENDDO |
---|
7586 | !$OMP END PARALLEL |
---|
7587 | ENDDO |
---|
7588 | |
---|
7589 | ENDIF |
---|
7590 | |
---|
7591 | ! |
---|
7592 | !--Top boundary conditions: |
---|
7593 | IF ( ibc_salsa_t == 0 ) THEN ! Dirichlet |
---|
7594 | |
---|
7595 | DO b = 1, nbins |
---|
7596 | aerosol_number(b)%conc_p(nzt+1,:,:) = & |
---|
7597 | aerosol_number(b)%conc(nzt+1,:,:) |
---|
7598 | DO c = 1, ncc_tot |
---|
7599 | aerosol_mass((c-1)*nbins+b)%conc_p(nzt+1,:,:) = & |
---|
7600 | aerosol_mass((c-1)*nbins+b)%conc(nzt+1,:,:) |
---|
7601 | ENDDO |
---|
7602 | ENDDO |
---|
7603 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
7604 | DO g = 1, ngast |
---|
7605 | salsa_gas(g)%conc_p(nzt+1,:,:) = salsa_gas(g)%conc(nzt+1,:,:) |
---|
7606 | ENDDO |
---|
7607 | ENDIF |
---|
7608 | |
---|
7609 | ELSEIF ( ibc_salsa_t == 1 ) THEN ! Neumann |
---|
7610 | |
---|
7611 | DO b = 1, nbins |
---|
7612 | aerosol_number(b)%conc_p(nzt+1,:,:) = & |
---|
7613 | aerosol_number(b)%conc_p(nzt,:,:) |
---|
7614 | DO c = 1, ncc_tot |
---|
7615 | aerosol_mass((c-1)*nbins+b)%conc_p(nzt+1,:,:) = & |
---|
7616 | aerosol_mass((c-1)*nbins+b)%conc_p(nzt,:,:) |
---|
7617 | ENDDO |
---|
7618 | ENDDO |
---|
7619 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
7620 | DO g = 1, ngast |
---|
7621 | salsa_gas(g)%conc_p(nzt+1,:,:) = salsa_gas(g)%conc_p(nzt,:,:) |
---|
7622 | ENDDO |
---|
7623 | ENDIF |
---|
7624 | |
---|
7625 | ENDIF |
---|
7626 | ! |
---|
7627 | !-- Lateral boundary conditions at the outflow |
---|
7628 | IF ( bc_radiation_s ) THEN |
---|
7629 | DO b = 1, nbins |
---|
7630 | aerosol_number(b)%conc_p(:,nys-1,:) = aerosol_number(b)%conc_p(:,nys,:) |
---|
7631 | DO c = 1, ncc_tot |
---|
7632 | aerosol_mass((c-1)*nbins+b)%conc_p(:,nys-1,:) = & |
---|
7633 | aerosol_mass((c-1)*nbins+b)%conc_p(:,nys,:) |
---|
7634 | ENDDO |
---|
7635 | ENDDO |
---|
7636 | ELSEIF ( bc_radiation_n ) THEN |
---|
7637 | DO b = 1, nbins |
---|
7638 | aerosol_number(b)%conc_p(:,nyn+1,:) = aerosol_number(b)%conc_p(:,nyn,:) |
---|
7639 | DO c = 1, ncc_tot |
---|
7640 | aerosol_mass((c-1)*nbins+b)%conc_p(:,nyn+1,:) = & |
---|
7641 | aerosol_mass((c-1)*nbins+b)%conc_p(:,nyn,:) |
---|
7642 | ENDDO |
---|
7643 | ENDDO |
---|
7644 | ELSEIF ( bc_radiation_l ) THEN |
---|
7645 | DO b = 1, nbins |
---|
7646 | aerosol_number(b)%conc_p(:,nxl-1,:) = aerosol_number(b)%conc_p(:,nxl,:) |
---|
7647 | DO c = 1, ncc_tot |
---|
7648 | aerosol_mass((c-1)*nbins+b)%conc_p(:,nxl-1,:) = & |
---|
7649 | aerosol_mass((c-1)*nbins+b)%conc_p(:,nxl,:) |
---|
7650 | ENDDO |
---|
7651 | ENDDO |
---|
7652 | ELSEIF ( bc_radiation_r ) THEN |
---|
7653 | DO b = 1, nbins |
---|
7654 | aerosol_number(b)%conc_p(:,nxr+1,:) = aerosol_number(b)%conc_p(:,nxr,:) |
---|
7655 | DO c = 1, ncc_tot |
---|
7656 | aerosol_mass((c-1)*nbins+b)%conc_p(:,nxr+1,:) = & |
---|
7657 | aerosol_mass((c-1)*nbins+b)%conc_p(:,nxr,:) |
---|
7658 | ENDDO |
---|
7659 | ENDDO |
---|
7660 | ENDIF |
---|
7661 | |
---|
7662 | END SUBROUTINE salsa_boundary_conds |
---|
7663 | |
---|
7664 | !------------------------------------------------------------------------------! |
---|
7665 | ! Description: |
---|
7666 | ! ------------ |
---|
7667 | ! Undoing of the previously done cyclic boundary conditions. |
---|
7668 | !------------------------------------------------------------------------------! |
---|
7669 | SUBROUTINE salsa_boundary_conds_decycle ( sq, sq_init ) |
---|
7670 | |
---|
7671 | IMPLICIT NONE |
---|
7672 | |
---|
7673 | INTEGER(iwp) :: boundary !< |
---|
7674 | INTEGER(iwp) :: ee !< |
---|
7675 | INTEGER(iwp) :: copied !< |
---|
7676 | INTEGER(iwp) :: i !< |
---|
7677 | INTEGER(iwp) :: j !< |
---|
7678 | INTEGER(iwp) :: k !< |
---|
7679 | INTEGER(iwp) :: ss !< |
---|
7680 | REAL(wp), DIMENSION(nzb:nzt+1) :: sq_init |
---|
7681 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sq |
---|
7682 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
7683 | |
---|
7684 | flag = 0.0_wp |
---|
7685 | ! |
---|
7686 | !-- Left and right boundaries |
---|
7687 | IF ( decycle_lr .AND. ( bc_lr_cyc .OR. bc_lr == 'nested' ) ) THEN |
---|
7688 | |
---|
7689 | DO boundary = 1, 2 |
---|
7690 | |
---|
7691 | IF ( decycle_method(boundary) == 'dirichlet' ) THEN |
---|
7692 | ! |
---|
7693 | !-- Initial profile is copied to ghost and first three layers |
---|
7694 | ss = 1 |
---|
7695 | ee = 0 |
---|
7696 | IF ( boundary == 1 .AND. nxl == 0 ) THEN |
---|
7697 | ss = nxlg |
---|
7698 | ee = nxl+2 |
---|
7699 | ELSEIF ( boundary == 2 .AND. nxr == nx ) THEN |
---|
7700 | ss = nxr-2 |
---|
7701 | ee = nxrg |
---|
7702 | ENDIF |
---|
7703 | |
---|
7704 | DO i = ss, ee |
---|
7705 | DO j = nysg, nyng |
---|
7706 | DO k = nzb+1, nzt |
---|
7707 | flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
7708 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
7709 | sq(k,j,i) = sq_init(k) * flag |
---|
7710 | ENDDO |
---|
7711 | ENDDO |
---|
7712 | ENDDO |
---|
7713 | |
---|
7714 | ELSEIF ( decycle_method(boundary) == 'neumann' ) THEN |
---|
7715 | ! |
---|
7716 | !-- The value at the boundary is copied to the ghost layers to simulate |
---|
7717 | !-- an outlet with zero gradient |
---|
7718 | ss = 1 |
---|
7719 | ee = 0 |
---|
7720 | IF ( boundary == 1 .AND. nxl == 0 ) THEN |
---|
7721 | ss = nxlg |
---|
7722 | ee = nxl-1 |
---|
7723 | copied = nxl |
---|
7724 | ELSEIF ( boundary == 2 .AND. nxr == nx ) THEN |
---|
7725 | ss = nxr+1 |
---|
7726 | ee = nxrg |
---|
7727 | copied = nxr |
---|
7728 | ENDIF |
---|
7729 | |
---|
7730 | DO i = ss, ee |
---|
7731 | DO j = nysg, nyng |
---|
7732 | DO k = nzb+1, nzt |
---|
7733 | flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
7734 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
7735 | sq(k,j,i) = sq(k,j,copied) * flag |
---|
7736 | ENDDO |
---|
7737 | ENDDO |
---|
7738 | ENDDO |
---|
7739 | |
---|
7740 | ELSE |
---|
7741 | WRITE(message_string,*) & |
---|
7742 | 'unknown decycling method: decycle_method (', & |
---|
7743 | boundary, ') ="' // TRIM( decycle_method(boundary) ) // '"' |
---|
7744 | CALL message( 'salsa_boundary_conds_decycle', 'SA0029', & |
---|
7745 | 1, 2, 0, 6, 0 ) |
---|
7746 | ENDIF |
---|
7747 | ENDDO |
---|
7748 | ENDIF |
---|
7749 | |
---|
7750 | ! |
---|
7751 | !-- South and north boundaries |
---|
7752 | IF ( decycle_ns .AND. ( bc_ns_cyc .OR. bc_ns == 'nested' ) ) THEN |
---|
7753 | |
---|
7754 | DO boundary = 3, 4 |
---|
7755 | |
---|
7756 | IF ( decycle_method(boundary) == 'dirichlet' ) THEN |
---|
7757 | ! |
---|
7758 | !-- Initial profile is copied to ghost and first three layers |
---|
7759 | ss = 1 |
---|
7760 | ee = 0 |
---|
7761 | IF ( boundary == 3 .AND. nys == 0 ) THEN |
---|
7762 | ss = nysg |
---|
7763 | ee = nys+2 |
---|
7764 | ELSEIF ( boundary == 4 .AND. nyn == ny ) THEN |
---|
7765 | ss = nyn-2 |
---|
7766 | ee = nyng |
---|
7767 | ENDIF |
---|
7768 | |
---|
7769 | DO i = nxlg, nxrg |
---|
7770 | DO j = ss, ee |
---|
7771 | DO k = nzb+1, nzt |
---|
7772 | flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
7773 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
7774 | sq(k,j,i) = sq_init(k) * flag |
---|
7775 | ENDDO |
---|
7776 | ENDDO |
---|
7777 | ENDDO |
---|
7778 | |
---|
7779 | ELSEIF ( decycle_method(boundary) == 'neumann' ) THEN |
---|
7780 | ! |
---|
7781 | !-- The value at the boundary is copied to the ghost layers to simulate |
---|
7782 | !-- an outlet with zero gradient |
---|
7783 | ss = 1 |
---|
7784 | ee = 0 |
---|
7785 | IF ( boundary == 3 .AND. nys == 0 ) THEN |
---|
7786 | ss = nysg |
---|
7787 | ee = nys-1 |
---|
7788 | copied = nys |
---|
7789 | ELSEIF ( boundary == 4 .AND. nyn == ny ) THEN |
---|
7790 | ss = nyn+1 |
---|
7791 | ee = nyng |
---|
7792 | copied = nyn |
---|
7793 | ENDIF |
---|
7794 | |
---|
7795 | DO i = nxlg, nxrg |
---|
7796 | DO j = ss, ee |
---|
7797 | DO k = nzb+1, nzt |
---|
7798 | flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
7799 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
7800 | sq(k,j,i) = sq(k,copied,i) * flag |
---|
7801 | ENDDO |
---|
7802 | ENDDO |
---|
7803 | ENDDO |
---|
7804 | |
---|
7805 | ELSE |
---|
7806 | WRITE(message_string,*) & |
---|
7807 | 'unknown decycling method: decycle_method (', & |
---|
7808 | boundary, ') ="' // TRIM( decycle_method(boundary) ) // '"' |
---|
7809 | CALL message( 'salsa_boundary_conds_decycle', 'SA0030', & |
---|
7810 | 1, 2, 0, 6, 0 ) |
---|
7811 | ENDIF |
---|
7812 | ENDDO |
---|
7813 | ENDIF |
---|
7814 | |
---|
7815 | END SUBROUTINE salsa_boundary_conds_decycle |
---|
7816 | |
---|
7817 | !------------------------------------------------------------------------------! |
---|
7818 | ! Description: |
---|
7819 | ! ------------ |
---|
7820 | !> Calculates the total dry or wet mass concentration for individual bins |
---|
7821 | !> Juha Tonttila (FMI) 2015 |
---|
7822 | !> Tomi Raatikainen (FMI) 2016 |
---|
7823 | !------------------------------------------------------------------------------! |
---|
7824 | SUBROUTINE bin_mixrat( itype, ibin, i, j, mconc ) |
---|
7825 | |
---|
7826 | IMPLICIT NONE |
---|
7827 | |
---|
7828 | CHARACTER(len=*), INTENT(in) :: itype !< 'dry' or 'wet' |
---|
7829 | INTEGER(iwp), INTENT(in) :: ibin !< index of the chemical component |
---|
7830 | INTEGER(iwp), INTENT(in) :: i !< loop index for x-direction |
---|
7831 | INTEGER(iwp), INTENT(in) :: j !< loop index for y-direction |
---|
7832 | REAL(wp), DIMENSION(:), INTENT(out) :: mconc !< total dry or wet mass |
---|
7833 | !< concentration |
---|
7834 | |
---|
7835 | INTEGER(iwp) :: c !< loop index for mass bin number |
---|
7836 | INTEGER(iwp) :: iend !< end index: include water or not |
---|
7837 | |
---|
7838 | !-- Number of components |
---|
7839 | IF ( itype == 'dry' ) THEN |
---|
7840 | iend = get_n_comp( prtcl ) - 1 |
---|
7841 | ELSE IF ( itype == 'wet' ) THEN |
---|
7842 | iend = get_n_comp( prtcl ) |
---|
7843 | ELSE |
---|
7844 | STOP 'bin_mixrat: Error in itype' |
---|
7845 | ENDIF |
---|
7846 | |
---|
7847 | mconc = 0.0_wp |
---|
7848 | |
---|
7849 | DO c = ibin, iend*nbins+ibin, nbins !< every nbins'th element |
---|
7850 | mconc = mconc + aerosol_mass(c)%conc(:,j,i) |
---|
7851 | ENDDO |
---|
7852 | |
---|
7853 | END SUBROUTINE bin_mixrat |
---|
7854 | |
---|
7855 | !------------------------------------------------------------------------------! |
---|
7856 | !> Description: |
---|
7857 | !> ------------ |
---|
7858 | !> Define aerosol fluxes: constant or read from a from file |
---|
7859 | !------------------------------------------------------------------------------! |
---|
7860 | SUBROUTINE salsa_set_source |
---|
7861 | |
---|
7862 | ! USE date_and_time_mod, & |
---|
7863 | ! ONLY: index_dd, index_hh, index_mm |
---|
7864 | #if defined( __netcdf ) |
---|
7865 | USE NETCDF |
---|
7866 | |
---|
7867 | USE netcdf_data_input_mod, & |
---|
7868 | ONLY: get_attribute, netcdf_data_input_get_dimension_length, & |
---|
7869 | get_variable, open_read_file |
---|
7870 | |
---|
7871 | USE surface_mod, & |
---|
7872 | ONLY: surf_def_h, surf_lsm_h, surf_usm_h |
---|
7873 | |
---|
7874 | IMPLICIT NONE |
---|
7875 | |
---|
7876 | INTEGER(iwp), PARAMETER :: ndm = 3 !< number of default modes |
---|
7877 | INTEGER(iwp), PARAMETER :: ndc = 4 !< number of default categories |
---|
7878 | |
---|
7879 | CHARACTER (LEN=10) :: unita !< Unit of aerosol fluxes |
---|
7880 | CHARACTER (LEN=10) :: unitg !< Unit of gaseous fluxes |
---|
7881 | INTEGER(iwp) :: b !< loop index: aerosol number bins |
---|
7882 | INTEGER(iwp) :: c !< loop index: aerosol chemical components |
---|
7883 | INTEGER(iwp) :: ee !< loop index: end |
---|
7884 | INTEGER(iwp), ALLOCATABLE, DIMENSION(:) :: eci !< emission category index |
---|
7885 | INTEGER(iwp) :: g !< loop index: gaseous tracers |
---|
7886 | INTEGER(iwp) :: i !< loop index: x-direction |
---|
7887 | INTEGER(iwp) :: id_faero !< NetCDF id of aerosol source input file |
---|
7888 | INTEGER(iwp) :: id_fchem !< NetCDF id of aerosol source input file |
---|
7889 | INTEGER(iwp) :: id_sa !< NetCDF id of variable: source |
---|
7890 | INTEGER(iwp) :: j !< loop index: y-direction |
---|
7891 | INTEGER(iwp) :: k !< loop index: z-direction |
---|
7892 | INTEGER(iwp) :: kg !< loop index: z-direction (gases) |
---|
7893 | INTEGER(iwp) :: n_dt !< number of time steps in the emission file |
---|
7894 | INTEGER(iwp) :: nc_stat !< local variable for storing the result of |
---|
7895 | !< netCDF calls for error message handling |
---|
7896 | INTEGER(iwp) :: nb_file !< Number of grid-points in file (bins) |
---|
7897 | INTEGER(iwp) :: ncat !< Number of emission categories |
---|
7898 | INTEGER(iwp) :: ng_file !< Number of grid-points in file (gases) |
---|
7899 | INTEGER(iwp) :: num_vars !< number of variables in input file |
---|
7900 | INTEGER(iwp) :: nz_file !< number of grid-points in file |
---|
7901 | INTEGER(iwp) :: n !< loop index |
---|
7902 | INTEGER(iwp) :: ni !< loop index |
---|
7903 | INTEGER(iwp) :: ss !< loop index |
---|
7904 | LOGICAL :: netcdf_extend = .FALSE. !< Flag indicating wether netcdf |
---|
7905 | !< topography input file or not |
---|
7906 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: dum_var_4d !< variable for |
---|
7907 | !< temporary data |
---|
7908 | REAL(wp) :: fillval !< fill value |
---|
7909 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
7910 | REAL(wp), DIMENSION(nbins) :: nsect_emission !< sectional emission (lod1) |
---|
7911 | REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: pm_emission !< aerosol mass |
---|
7912 | !< emission (lod1) |
---|
7913 | REAL(wp), DIMENSION(nbins) :: source_ijka !< aerosol source at (k,j,i) |
---|
7914 | ! |
---|
7915 | !-- The default size distribution and mass composition per emission category: |
---|
7916 | !-- 1 = traffic, 2 = road dust, 3 = wood combustion, 4 = other |
---|
7917 | !-- Mass fractions: H2SO4, OC, BC, DU, SS, HNO3, NH3 |
---|
7918 | CHARACTER(LEN=15), DIMENSION(ndc) :: cat_name_table = &!< emission category |
---|
7919 | (/'road traffic ','road dust ',& |
---|
7920 | 'wood combustion','other '/) |
---|
7921 | REAL(wp), DIMENSION(ndc) :: avg_density !< average density |
---|
7922 | REAL(wp), DIMENSION(ndc) :: conversion_factor !< unit conversion factor |
---|
7923 | !< for aerosol emissions |
---|
7924 | REAL(wp), DIMENSION(ndm), PARAMETER :: dpg_table = & !< mean diameter (mum) |
---|
7925 | (/ 13.5E-3_wp, 1.4_wp, 5.4E-2_wp/) |
---|
7926 | REAL(wp), DIMENSION(ndm) :: ntot_table |
---|
7927 | REAL(wp), DIMENSION(maxspec,ndc), PARAMETER :: mass_fraction_table = & |
---|
7928 | RESHAPE( (/ 0.04_wp, 0.48_wp, 0.48_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
7929 | 0.0_wp, 0.05_wp, 0.0_wp, 0.95_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
7930 | 0.0_wp, 0.5_wp, 0.5_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
7931 | 0.0_wp, 0.5_wp, 0.5_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp & |
---|
7932 | /), (/maxspec,ndc/) ) |
---|
7933 | REAL(wp), DIMENSION(ndm,ndc), PARAMETER :: PMfrac_table = & !< rel. mass |
---|
7934 | RESHAPE( (/ 0.016_wp, 0.000_wp, 0.984_wp, & |
---|
7935 | 0.000_wp, 1.000_wp, 0.000_wp, & |
---|
7936 | 0.000_wp, 0.000_wp, 1.000_wp, & |
---|
7937 | 1.000_wp, 0.000_wp, 1.000_wp & |
---|
7938 | /), (/ndm,ndc/) ) |
---|
7939 | REAL(wp), DIMENSION(ndm), PARAMETER :: sigmag_table = & !< mode std |
---|
7940 | (/1.6_wp, 1.4_wp, 1.7_wp/) |
---|
7941 | avg_density = 1.0_wp |
---|
7942 | nb_file = 0 |
---|
7943 | ng_file = 0 |
---|
7944 | nsect_emission = 0.0_wp |
---|
7945 | nz_file = 0 |
---|
7946 | source_ijka = 0.0_wp |
---|
7947 | ! |
---|
7948 | !-- First gases, if needed: |
---|
7949 | IF ( .NOT. salsa_gases_from_chem ) THEN |
---|
7950 | ! |
---|
7951 | !-- Read sources from PIDS_CHEM |
---|
7952 | INQUIRE( FILE='PIDS_CHEM' // TRIM( coupling_char ), EXIST=netcdf_extend ) |
---|
7953 | IF ( .NOT. netcdf_extend ) THEN |
---|
7954 | message_string = 'Input file '// TRIM( 'PIDS_CHEM' ) // & |
---|
7955 | TRIM( coupling_char ) // ' for SALSA missing!' |
---|
7956 | CALL message( 'salsa_mod: salsa_set_source', 'SA0027', 1, 2, 0, 6, 0 ) |
---|
7957 | ENDIF ! netcdf_extend |
---|
7958 | |
---|
7959 | CALL location_message( ' salsa_set_source: NOTE! Gaseous emissions'//& |
---|
7960 | ' should be provided with following emission indices:'// & |
---|
7961 | ' 1=H2SO4, 2=HNO3, 3=NH3, 4=OCNV, 5=OCSV', .TRUE. ) |
---|
7962 | CALL location_message( ' salsa_set_source: No time dependency for '//& |
---|
7963 | 'gaseous emissions. Use emission_values '// & |
---|
7964 | 'directly.', .TRUE. ) |
---|
7965 | ! |
---|
7966 | !-- Open PIDS_CHEM in read-only mode |
---|
7967 | CALL open_read_file( 'PIDS_CHEM' // TRIM( coupling_char ), id_fchem ) |
---|
7968 | ! |
---|
7969 | !-- Inquire the level of detail (lod) |
---|
7970 | CALL get_attribute( id_fchem, 'lod', lod_gases, .FALSE., & |
---|
7971 | "emission_values" ) |
---|
7972 | |
---|
7973 | IF ( lod_gases == 2 ) THEN |
---|
7974 | ! |
---|
7975 | !-- Index of gaseous compounds |
---|
7976 | CALL netcdf_data_input_get_dimension_length( id_fchem, ng_file, "nspecies" ) |
---|
7977 | IF ( ng_file < 5 ) THEN |
---|
7978 | message_string = 'Some gaseous emissions missing.' |
---|
7979 | CALL message( 'salsa_mod: salsa_set_source', 'SA0041', & |
---|
7980 | 1, 2, 0, 6, 0 ) |
---|
7981 | ENDIF |
---|
7982 | ! |
---|
7983 | !-- Get number of emission categories |
---|
7984 | CALL netcdf_data_input_get_dimension_length( id_fchem, ncat, "ncat" ) |
---|
7985 | ! |
---|
7986 | !-- Inquire the unit of gaseous fluxes |
---|
7987 | CALL get_attribute( id_fchem, 'units', unitg, .FALSE., & |
---|
7988 | "emission_values") |
---|
7989 | ! |
---|
7990 | !-- Inquire the fill value |
---|
7991 | CALL get_attribute( id_fchem, '_FillValue', fillval, .FALSE., & |
---|
7992 | "emission_values" ) |
---|
7993 | ! |
---|
7994 | !-- Read surface emission data (x,y) PE-wise |
---|
7995 | ALLOCATE( dum_var_4d(ng_file,ncat,nys:nyn,nxl:nxr) ) |
---|
7996 | CALL get_variable( id_fchem, 'emission_values', dum_var_4d, nxl, nxr,& |
---|
7997 | nys, nyn, 0, ncat-1, 0, ng_file-1 ) |
---|
7998 | DO g = 1, ngast |
---|
7999 | ALLOCATE( salsa_gas(g)%source(ncat,nys:nyn,nxl:nxr) ) |
---|
8000 | salsa_gas(g)%source = 0.0_wp |
---|
8001 | salsa_gas(g)%source = salsa_gas(g)%source + dum_var_4d(g,:,:,:) |
---|
8002 | ENDDO |
---|
8003 | ! |
---|
8004 | !-- Set surface fluxes of gaseous compounds on horizontal surfaces. |
---|
8005 | !-- Set fluxes only for either default, land or urban surface. |
---|
8006 | IF ( .NOT. land_surface .AND. .NOT. urban_surface ) THEN |
---|
8007 | CALL set_gas_flux( surf_def_h(0), ncat, unitg ) |
---|
8008 | ELSE |
---|
8009 | CALL set_gas_flux( surf_lsm_h, ncat, unitg ) |
---|
8010 | CALL set_gas_flux( surf_usm_h, ncat, unitg ) |
---|
8011 | ENDIF |
---|
8012 | |
---|
8013 | DEALLOCATE( dum_var_4d ) |
---|
8014 | DO g = 1, ngast |
---|
8015 | DEALLOCATE( salsa_gas(g)%source ) |
---|
8016 | ENDDO |
---|
8017 | ELSE |
---|
8018 | message_string = 'Input file PIDS_CHEM needs to have lod = 2 when '//& |
---|
8019 | 'SALSA is applied but not the chemistry module!' |
---|
8020 | CALL message( 'salsa_mod: salsa_set_source', 'SA0039', 1, 2, 0, 6, 0 ) |
---|
8021 | ENDIF |
---|
8022 | ENDIF |
---|
8023 | ! |
---|
8024 | !-- Read sources from PIDS_SALSA |
---|
8025 | INQUIRE( FILE='PIDS_SALSA' // TRIM( coupling_char ), EXIST=netcdf_extend ) |
---|
8026 | IF ( .NOT. netcdf_extend ) THEN |
---|
8027 | message_string = 'Input file '// TRIM( 'PIDS_SALSA' ) // & |
---|
8028 | TRIM( coupling_char ) // ' for SALSA missing!' |
---|
8029 | CALL message( 'salsa_mod: salsa_set_source', 'SA0034', 1, 2, 0, 6, 0 ) |
---|
8030 | ENDIF ! netcdf_extend |
---|
8031 | ! |
---|
8032 | !-- Open file in read-only mode |
---|
8033 | CALL open_read_file( 'PIDS_SALSA' // TRIM( coupling_char ), id_faero ) |
---|
8034 | ! |
---|
8035 | !-- Get number of emission categories and their indices |
---|
8036 | CALL netcdf_data_input_get_dimension_length( id_faero, ncat, "ncat" ) |
---|
8037 | ! |
---|
8038 | !-- Get emission category indices |
---|
8039 | ALLOCATE( eci(1:ncat) ) |
---|
8040 | CALL get_variable( id_faero, 'emission_category_index', eci ) |
---|
8041 | ! |
---|
8042 | !-- Inquire the level of detail (lod) |
---|
8043 | CALL get_attribute( id_faero, 'lod', lod_aero, .FALSE., & |
---|
8044 | "aerosol_emission_values" ) |
---|
8045 | |
---|
8046 | IF ( lod_aero < 3 .AND. ibc_salsa_b == 0 ) THEN |
---|
8047 | message_string = 'lod1/2 for aerosol emissions requires '// & |
---|
8048 | 'bc_salsa_b = "Neumann"' |
---|
8049 | CALL message( 'salsa_mod: salsa_set_source','SA0025', 1, 2, 0, 6, 0 ) |
---|
8050 | ENDIF |
---|
8051 | ! |
---|
8052 | !-- Inquire the fill value |
---|
8053 | CALL get_attribute( id_faero, '_FillValue', fillval, .FALSE., & |
---|
8054 | "aerosol_emission_values" ) |
---|
8055 | ! |
---|
8056 | !-- Aerosol chemical composition: |
---|
8057 | ALLOCATE( emission_mass_fracs(1:ncat,1:maxspec) ) |
---|
8058 | emission_mass_fracs = 0.0_wp |
---|
8059 | !-- Chemical composition: 1: H2SO4 (sulphuric acid), 2: OC (organic carbon), |
---|
8060 | !-- 3: BC (black carbon), 4: DU (dust), |
---|
8061 | !-- 5: SS (sea salt), 6: HNO3 (nitric acid), |
---|
8062 | !-- 7: NH3 (ammonia) |
---|
8063 | DO n = 1, ncat |
---|
8064 | IF ( lod_aero < 2 ) THEN |
---|
8065 | emission_mass_fracs(n,:) = mass_fraction_table(:,n) |
---|
8066 | ELSE |
---|
8067 | CALL get_variable( id_faero, "emission_mass_fracs", & |
---|
8068 | emission_mass_fracs(n,:) ) |
---|
8069 | ENDIF |
---|
8070 | ! |
---|
8071 | !-- If the chemical component is not activated, set its mass fraction to 0 |
---|
8072 | !-- to avoid inbalance between number and mass flux |
---|
8073 | IF ( iso4 < 0 ) emission_mass_fracs(n,1) = 0.0_wp |
---|
8074 | IF ( ioc < 0 ) emission_mass_fracs(n,2) = 0.0_wp |
---|
8075 | IF ( ibc < 0 ) emission_mass_fracs(n,3) = 0.0_wp |
---|
8076 | IF ( idu < 0 ) emission_mass_fracs(n,4) = 0.0_wp |
---|
8077 | IF ( iss < 0 ) emission_mass_fracs(n,5) = 0.0_wp |
---|
8078 | IF ( ino < 0 ) emission_mass_fracs(n,6) = 0.0_wp |
---|
8079 | IF ( inh < 0 ) emission_mass_fracs(n,7) = 0.0_wp |
---|
8080 | !-- Then normalise the mass fraction so that SUM = 1 |
---|
8081 | emission_mass_fracs(n,:) = emission_mass_fracs(n,:) / & |
---|
8082 | SUM( emission_mass_fracs(n,:) ) |
---|
8083 | ENDDO |
---|
8084 | |
---|
8085 | IF ( lod_aero > 1 ) THEN |
---|
8086 | ! |
---|
8087 | !-- Aerosol geometric mean diameter |
---|
8088 | CALL netcdf_data_input_get_dimension_length( id_faero, nb_file, 'Dmid' ) |
---|
8089 | IF ( nb_file /= nbins ) THEN |
---|
8090 | message_string = 'The number of size bins in aerosol input data '// & |
---|
8091 | 'does not correspond to the model set-up' |
---|
8092 | CALL message( 'salsa_mod: salsa_set_source','SA0040', 1, 2, 0, 6, 0 ) |
---|
8093 | ENDIF |
---|
8094 | ENDIF |
---|
8095 | |
---|
8096 | IF ( lod_aero < 3 ) THEN |
---|
8097 | CALL location_message( ' salsa_set_source: No time dependency for '//& |
---|
8098 | 'aerosol emissions. Use aerosol_emission_values'//& |
---|
8099 | ' directly.', .TRUE. ) |
---|
8100 | ! |
---|
8101 | !-- Allocate source arrays |
---|
8102 | DO b = 1, nbins |
---|
8103 | ALLOCATE( aerosol_number(b)%source(1:ncat,nys:nyn,nxl:nxr) ) |
---|
8104 | aerosol_number(b)%source = 0.0_wp |
---|
8105 | ENDDO |
---|
8106 | DO c = 1, ncc_tot*nbins |
---|
8107 | ALLOCATE( aerosol_mass(c)%source(1:ncat,nys:nyn,nxl:nxr) ) |
---|
8108 | aerosol_mass(c)%source = 0.0_wp |
---|
8109 | ENDDO |
---|
8110 | |
---|
8111 | IF ( lod_aero == 1 ) THEN |
---|
8112 | DO n = 1, ncat |
---|
8113 | avg_density(n) = emission_mass_fracs(n,1) * arhoh2so4 + & |
---|
8114 | emission_mass_fracs(n,2) * arhooc + & |
---|
8115 | emission_mass_fracs(n,3) * arhobc + & |
---|
8116 | emission_mass_fracs(n,4) * arhodu + & |
---|
8117 | emission_mass_fracs(n,5) * arhoss + & |
---|
8118 | emission_mass_fracs(n,6) * arhohno3 + & |
---|
8119 | emission_mass_fracs(n,7) * arhonh3 |
---|
8120 | ENDDO |
---|
8121 | ! |
---|
8122 | !-- Emission unit |
---|
8123 | CALL get_attribute( id_faero, 'units', unita, .FALSE., & |
---|
8124 | "aerosol_emission_values") |
---|
8125 | conversion_factor = 1.0_wp |
---|
8126 | IF ( unita == 'kg/m2/yr' ) THEN |
---|
8127 | conversion_factor = 3.170979e-8_wp / avg_density |
---|
8128 | ELSEIF ( unita == 'g/m2/yr' ) THEN |
---|
8129 | conversion_factor = 3.170979e-8_wp * 1.0E-3_wp / avg_density |
---|
8130 | ELSEIF ( unita == 'kg/m2/s' ) THEN |
---|
8131 | conversion_factor = 1.0_wp / avg_density |
---|
8132 | ELSEIF ( unita == 'g/m2/s' ) THEN |
---|
8133 | conversion_factor = 1.0E-3_wp / avg_density |
---|
8134 | ELSE |
---|
8135 | message_string = 'unknown unit for aerosol emissions: ' & |
---|
8136 | // TRIM( unita ) // ' (lod1)' |
---|
8137 | CALL message( 'salsa_mod: salsa_set_source','SA0035', & |
---|
8138 | 1, 2, 0, 6, 0 ) |
---|
8139 | ENDIF |
---|
8140 | ! |
---|
8141 | !-- Read surface emission data (x,y) PE-wise |
---|
8142 | ALLOCATE( pm_emission(ncat,nys:nyn,nxl:nxr) ) |
---|
8143 | CALL get_variable( id_faero, 'aerosol_emission_values', pm_emission, & |
---|
8144 | nxl, nxr, nys, nyn, 0, ncat-1 ) |
---|
8145 | DO ni = 1, SIZE( eci ) |
---|
8146 | n = eci(ni) |
---|
8147 | ! |
---|
8148 | !-- Calculate the number concentration of a log-normal size |
---|
8149 | !-- distribution following Jacobson (2005): Eq 13.25. |
---|
8150 | ntot_table = 6.0_wp * PMfrac_table(:,n) / ( pi * dpg_table**3 * & |
---|
8151 | EXP( 4.5_wp * LOG( sigmag_table )**2 ) ) * 1.0E+12_wp |
---|
8152 | ! |
---|
8153 | !-- Sectional size distibution from a log-normal one |
---|
8154 | CALL size_distribution( ntot_table, dpg_table, sigmag_table, & |
---|
8155 | nsect_emission ) |
---|
8156 | DO b = 1, nbins |
---|
8157 | aerosol_number(b)%source(ni,:,:) = & |
---|
8158 | aerosol_number(b)%source(ni,:,:) + & |
---|
8159 | pm_emission(ni,:,:) * conversion_factor(n) & |
---|
8160 | * nsect_emission(b) |
---|
8161 | ENDDO |
---|
8162 | ENDDO |
---|
8163 | ELSEIF ( lod_aero == 2 ) THEN |
---|
8164 | ! |
---|
8165 | !-- Read surface emission data (x,y) PE-wise |
---|
8166 | ALLOCATE( dum_var_4d(nb_file,ncat,nys:nyn,nxl:nxr) ) |
---|
8167 | CALL get_variable( id_faero, 'aerosol_emission_values', dum_var_4d, & |
---|
8168 | nxl, nxr, nys, nyn, 0, ncat-1, 0, nb_file-1 ) |
---|
8169 | DO b = 1, nbins |
---|
8170 | aerosol_number(b)%source = dum_var_4d(b,:,:,:) |
---|
8171 | ENDDO |
---|
8172 | DEALLOCATE( dum_var_4d ) |
---|
8173 | ENDIF |
---|
8174 | ! |
---|
8175 | !-- Set surface fluxes of aerosol number and mass on horizontal surfaces. |
---|
8176 | !-- Set fluxes only for either default, land or urban surface. |
---|
8177 | IF ( .NOT. land_surface .AND. .NOT. urban_surface ) THEN |
---|
8178 | CALL set_flux( surf_def_h(0), ncat ) |
---|
8179 | ELSE |
---|
8180 | CALL set_flux( surf_usm_h, ncat ) |
---|
8181 | CALL set_flux( surf_lsm_h, ncat ) |
---|
8182 | ENDIF |
---|
8183 | |
---|
8184 | ELSEIF ( lod_aero == 3 ) THEN |
---|
8185 | ! |
---|
8186 | !-- Inquire aerosol emission rate per bin (#/(m3s)) |
---|
8187 | nc_stat = NF90_INQ_VARID( id_faero, "aerosol_emission_values", id_sa ) |
---|
8188 | |
---|
8189 | ! |
---|
8190 | !-- Emission time step |
---|
8191 | CALL netcdf_data_input_get_dimension_length( id_faero, n_dt, 'dt_emission' ) |
---|
8192 | IF ( n_dt > 1 ) THEN |
---|
8193 | CALL location_message( ' salsa_set_source: hourly emission data'//& |
---|
8194 | ' provided but currently the value of the '// & |
---|
8195 | ' first hour is applied.', .TRUE. ) |
---|
8196 | ENDIF |
---|
8197 | ! |
---|
8198 | !-- Allocate source arrays |
---|
8199 | DO b = 1, nbins |
---|
8200 | ALLOCATE( aerosol_number(b)%source(nzb:nzt+1,nys:nyn,nxl:nxr) ) |
---|
8201 | aerosol_number(b)%source = 0.0_wp |
---|
8202 | ENDDO |
---|
8203 | DO c = 1, ncc_tot*nbins |
---|
8204 | ALLOCATE( aerosol_mass(c)%source(nzb:nzt+1,nys:nyn,nxl:nxr) ) |
---|
8205 | aerosol_mass(c)%source = 0.0_wp |
---|
8206 | ENDDO |
---|
8207 | ! |
---|
8208 | !-- Get dimension of z-axis: |
---|
8209 | CALL netcdf_data_input_get_dimension_length( id_faero, nz_file, 'z' ) |
---|
8210 | ! |
---|
8211 | !-- Read surface emission data (x,y) PE-wise |
---|
8212 | DO i = nxl, nxr |
---|
8213 | DO j = nys, nyn |
---|
8214 | DO k = 0, nz_file-1 |
---|
8215 | ! |
---|
8216 | !-- Predetermine flag to mask topography |
---|
8217 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST(wall_flags_0(k,j,i), 0 )) |
---|
8218 | ! |
---|
8219 | !-- No sources inside buildings ! |
---|
8220 | IF ( flag == 0.0_wp ) CYCLE |
---|
8221 | ! |
---|
8222 | !-- Read volume source: |
---|
8223 | nc_stat = NF90_GET_VAR( id_faero, id_sa, source_ijka, & |
---|
8224 | start = (/ i+1, j+1, k+1, 1, 1 /), & |
---|
8225 | count = (/ 1, 1, 1, 1, nb_file /) ) |
---|
8226 | IF ( nc_stat /= NF90_NOERR ) THEN |
---|
8227 | message_string = 'error in aerosol emissions: lod3' |
---|
8228 | CALL message( 'salsa_mod: salsa_set_source','SA0038', 1, 2, & |
---|
8229 | 0, 6, 0 ) |
---|
8230 | ENDIF |
---|
8231 | ! |
---|
8232 | !-- Set mass fluxes. First bins include only SO4 and/or OC. Call |
---|
8233 | !-- subroutine set_mass_source for larger bins. |
---|
8234 | ! |
---|
8235 | !-- Sulphate and organic carbon |
---|
8236 | IF ( iso4 > 0 .AND. ioc > 0 ) THEN |
---|
8237 | !-- First sulphate: |
---|
8238 | ss = ( iso4 - 1 ) * nbins + in1a ! start |
---|
8239 | ee = ( iso4 - 1 ) * nbins + fn1a ! end |
---|
8240 | b = in1a |
---|
8241 | DO c = ss, ee |
---|
8242 | IF ( source_ijka(b) /= fillval ) & |
---|
8243 | aerosol_mass(c)%source(k,j,i) = & |
---|
8244 | aerosol_mass(c)%source(k,j,i) + & |
---|
8245 | emission_mass_fracs(1,1) / ( emission_mass_fracs(1,1) & |
---|
8246 | + emission_mass_fracs(1,2) ) * source_ijka(b) * & |
---|
8247 | aero(b)%core * arhoh2so4 |
---|
8248 | b = b+1 |
---|
8249 | ENDDO |
---|
8250 | !-- Then organic carbon: |
---|
8251 | ss = ( ioc - 1 ) * nbins + in1a ! start |
---|
8252 | ee = ( ioc - 1 ) * nbins + fn1a ! end |
---|
8253 | b = in1a |
---|
8254 | DO c = ss, ee |
---|
8255 | IF ( source_ijka(b) /= fillval ) & |
---|
8256 | aerosol_mass(c)%source(k,j,i) = & |
---|
8257 | aerosol_mass(c)%source(k,j,i) + & |
---|
8258 | emission_mass_fracs(1,2) / ( emission_mass_fracs(1,1) & |
---|
8259 | + emission_mass_fracs(1,2) ) * source_ijka(b) * & |
---|
8260 | aero(b)%core * arhooc |
---|
8261 | b = b+1 |
---|
8262 | ENDDO |
---|
8263 | |
---|
8264 | CALL set_mass_source( k, j, i, iso4, & |
---|
8265 | emission_mass_fracs(1,1), arhoh2so4, & |
---|
8266 | source_ijka, fillval ) |
---|
8267 | CALL set_mass_source( k, j, i, ioc, emission_mass_fracs(1,2),& |
---|
8268 | arhooc, source_ijka, fillval ) |
---|
8269 | !-- Only sulphate: |
---|
8270 | ELSEIF ( iso4 > 0 .AND. ioc < 0 ) THEN |
---|
8271 | ss = ( iso4 - 1 ) * nbins + in1a ! start |
---|
8272 | ee = ( iso4 - 1 ) * nbins + fn1a ! end |
---|
8273 | b = in1a |
---|
8274 | DO c = ss, ee |
---|
8275 | IF ( source_ijka(b) /= fillval ) & |
---|
8276 | aerosol_mass(c)%source(k,j,i) = & |
---|
8277 | aerosol_mass(c)%source(k,j,i) + source_ijka(b) * & |
---|
8278 | aero(b)%core * arhoh2so4 |
---|
8279 | b = b+1 |
---|
8280 | ENDDO |
---|
8281 | CALL set_mass_source( k, j, i, iso4, & |
---|
8282 | emission_mass_fracs(1,1), arhoh2so4, & |
---|
8283 | source_ijka, fillval ) |
---|
8284 | !-- Only organic carbon: |
---|
8285 | ELSEIF ( iso4 < 0 .AND. ioc > 0 ) THEN |
---|
8286 | ss = ( ioc - 1 ) * nbins + in1a ! start |
---|
8287 | ee = ( ioc - 1 ) * nbins + fn1a ! end |
---|
8288 | b = in1a |
---|
8289 | DO c = ss, ee |
---|
8290 | IF ( source_ijka(b) /= fillval ) & |
---|
8291 | aerosol_mass(c)%source(k,j,i) = & |
---|
8292 | aerosol_mass(c)%source(k,j,i) + source_ijka(b) * & |
---|
8293 | aero(b)%core * arhooc |
---|
8294 | b = b+1 |
---|
8295 | ENDDO |
---|
8296 | CALL set_mass_source( k, j, i, ioc, emission_mass_fracs(1,2),& |
---|
8297 | arhooc, source_ijka, fillval ) |
---|
8298 | ENDIF |
---|
8299 | !-- Black carbon |
---|
8300 | IF ( ibc > 0 ) THEN |
---|
8301 | CALL set_mass_source( k, j, i, ibc, emission_mass_fracs(1,3),& |
---|
8302 | arhobc, source_ijka, fillval ) |
---|
8303 | ENDIF |
---|
8304 | !-- Dust |
---|
8305 | IF ( idu > 0 ) THEN |
---|
8306 | CALL set_mass_source( k, j, i, idu, emission_mass_fracs(1,4),& |
---|
8307 | arhodu, source_ijka, fillval ) |
---|
8308 | ENDIF |
---|
8309 | !-- Sea salt |
---|
8310 | IF ( iss > 0 ) THEN |
---|
8311 | CALL set_mass_source( k, j, i, iss, emission_mass_fracs(1,5),& |
---|
8312 | arhoss, source_ijka, fillval ) |
---|
8313 | ENDIF |
---|
8314 | !-- Nitric acid |
---|
8315 | IF ( ino > 0 ) THEN |
---|
8316 | CALL set_mass_source( k, j, i, ino, emission_mass_fracs(1,6),& |
---|
8317 | arhohno3, source_ijka, fillval ) |
---|
8318 | ENDIF |
---|
8319 | !-- Ammonia |
---|
8320 | IF ( inh > 0 ) THEN |
---|
8321 | CALL set_mass_source( k, j, i, inh, emission_mass_fracs(1,7),& |
---|
8322 | arhonh3, source_ijka, fillval ) |
---|
8323 | ENDIF |
---|
8324 | ! |
---|
8325 | !-- Save aerosol number sources in the end |
---|
8326 | DO b = 1, nbins |
---|
8327 | IF ( source_ijka(b) /= fillval ) & |
---|
8328 | aerosol_number(b)%source(k,j,i) = & |
---|
8329 | aerosol_number(b)%source(k,j,i) + source_ijka(b) |
---|
8330 | ENDDO |
---|
8331 | ENDDO ! k |
---|
8332 | ENDDO ! j |
---|
8333 | ENDDO ! i |
---|
8334 | |
---|
8335 | ELSE |
---|
8336 | message_string = 'NetCDF attribute lod is not set properly.' |
---|
8337 | CALL message( 'salsa_mod: salsa_set_source','SA0026', 1, 2, 0, 6, 0 ) |
---|
8338 | ENDIF |
---|
8339 | |
---|
8340 | #endif |
---|
8341 | END SUBROUTINE salsa_set_source |
---|
8342 | |
---|
8343 | !------------------------------------------------------------------------------! |
---|
8344 | ! Description: |
---|
8345 | ! ------------ |
---|
8346 | !> Sets the gaseous fluxes |
---|
8347 | !------------------------------------------------------------------------------! |
---|
8348 | SUBROUTINE set_gas_flux( surface, ncat_emission, unit ) |
---|
8349 | |
---|
8350 | USE arrays_3d, & |
---|
8351 | ONLY: dzw, hyp, pt, rho_air_zw |
---|
8352 | |
---|
8353 | USE grid_variables, & |
---|
8354 | ONLY: dx, dy |
---|
8355 | |
---|
8356 | USE surface_mod, & |
---|
8357 | ONLY: surf_type |
---|
8358 | |
---|
8359 | IMPLICIT NONE |
---|
8360 | |
---|
8361 | CHARACTER(LEN=*) :: unit !< flux unit in the input file |
---|
8362 | INTEGER(iwp) :: ncat_emission !< number of emission categories |
---|
8363 | TYPE(surf_type), INTENT(inout) :: surface !< respective surface type |
---|
8364 | INTEGER(iwp) :: g !< loop index |
---|
8365 | INTEGER(iwp) :: i !< loop index |
---|
8366 | INTEGER(iwp) :: j !< loop index |
---|
8367 | INTEGER(iwp) :: k !< loop index |
---|
8368 | INTEGER(iwp) :: m !< running index for surface elements |
---|
8369 | INTEGER(iwp) :: n !< running index for emission categories |
---|
8370 | REAL(wp), DIMENSION(ngast) :: conversion_factor |
---|
8371 | |
---|
8372 | conversion_factor = 1.0_wp |
---|
8373 | |
---|
8374 | DO m = 1, surface%ns |
---|
8375 | ! |
---|
8376 | !-- Get indices of respective grid point |
---|
8377 | i = surface%i(m) |
---|
8378 | j = surface%j(m) |
---|
8379 | k = surface%k(m) |
---|
8380 | |
---|
8381 | IF ( unit == '#/m2/s' ) THEN |
---|
8382 | conversion_factor = 1.0_wp |
---|
8383 | ELSEIF ( unit == 'g/m2/s' ) THEN |
---|
8384 | conversion_factor(1) = avo / ( amh2so4 * 1000.0_wp ) |
---|
8385 | conversion_factor(2) = avo / ( amhno3 * 1000.0_wp ) |
---|
8386 | conversion_factor(3) = avo / ( amnh3 * 1000.0_wp ) |
---|
8387 | conversion_factor(4) = avo / ( amoc * 1000.0_wp ) |
---|
8388 | conversion_factor(5) = avo / ( amoc * 1000.0_wp ) |
---|
8389 | ELSEIF ( unit == 'ppm/m2/s' ) THEN |
---|
8390 | conversion_factor = for_ppm_to_nconc * hyp(k) / pt(k,j,i) * ( hyp(k) & |
---|
8391 | / 100000.0_wp )**0.286_wp * dx * dy * dzw(k) |
---|
8392 | ELSEIF ( unit == 'mumol/m2/s' ) THEN |
---|
8393 | conversion_factor = 1.0E-6_wp * avo |
---|
8394 | ELSE |
---|
8395 | message_string = 'Unknown unit for gaseous emissions!' |
---|
8396 | CALL message( 'salsa_mod: set_gas_flux', 'SA0031', 1, 2, 0, 6, 0 ) |
---|
8397 | ENDIF |
---|
8398 | |
---|
8399 | DO n = 1, ncat_emission |
---|
8400 | DO g = 1, ngast |
---|
8401 | IF ( .NOT. salsa_gas(g)%source(n,j,i) > 0.0_wp ) THEN |
---|
8402 | salsa_gas(g)%source(n,j,i) = 0.0_wp |
---|
8403 | CYCLE |
---|
8404 | ENDIF |
---|
8405 | surface%gtsws(m,g) = surface%gtsws(m,g) + & |
---|
8406 | salsa_gas(g)%source(n,j,i) * rho_air_zw(k-1) & |
---|
8407 | * conversion_factor(g) |
---|
8408 | ENDDO |
---|
8409 | ENDDO |
---|
8410 | ENDDO |
---|
8411 | |
---|
8412 | END SUBROUTINE set_gas_flux |
---|
8413 | |
---|
8414 | |
---|
8415 | !------------------------------------------------------------------------------! |
---|
8416 | ! Description: |
---|
8417 | ! ------------ |
---|
8418 | !> Sets the aerosol flux to aerosol arrays in 2a and 2b. |
---|
8419 | !------------------------------------------------------------------------------! |
---|
8420 | SUBROUTINE set_flux( surface, ncat_emission ) |
---|
8421 | |
---|
8422 | USE arrays_3d, & |
---|
8423 | ONLY: hyp, pt, rho_air_zw |
---|
8424 | |
---|
8425 | USE surface_mod, & |
---|
8426 | ONLY: surf_type |
---|
8427 | |
---|
8428 | IMPLICIT NONE |
---|
8429 | |
---|
8430 | INTEGER(iwp) :: ncat_emission !< number of emission categories |
---|
8431 | TYPE(surf_type), INTENT(inout) :: surface !< respective surface type |
---|
8432 | INTEGER(iwp) :: b !< loop index |
---|
8433 | INTEGER(iwp) :: ee !< loop index |
---|
8434 | INTEGER(iwp) :: g !< loop index |
---|
8435 | INTEGER(iwp) :: i !< loop index |
---|
8436 | INTEGER(iwp) :: j !< loop index |
---|
8437 | INTEGER(iwp) :: k !< loop index |
---|
8438 | INTEGER(iwp) :: m !< running index for surface elements |
---|
8439 | INTEGER(iwp) :: n !< loop index for emission categories |
---|
8440 | INTEGER(iwp) :: c !< loop index |
---|
8441 | INTEGER(iwp) :: ss !< loop index |
---|
8442 | |
---|
8443 | DO m = 1, surface%ns |
---|
8444 | ! |
---|
8445 | !-- Get indices of respective grid point |
---|
8446 | i = surface%i(m) |
---|
8447 | j = surface%j(m) |
---|
8448 | k = surface%k(m) |
---|
8449 | |
---|
8450 | DO n = 1, ncat_emission |
---|
8451 | DO b = 1, nbins |
---|
8452 | IF ( aerosol_number(b)%source(n,j,i) < 0.0_wp ) THEN |
---|
8453 | aerosol_number(b)%source(n,j,i) = 0.0_wp |
---|
8454 | CYCLE |
---|
8455 | ENDIF |
---|
8456 | ! |
---|
8457 | !-- Set mass fluxes. First bins include only SO4 and/or OC. |
---|
8458 | |
---|
8459 | IF ( b <= fn1a ) THEN |
---|
8460 | ! |
---|
8461 | !-- Both sulphate and organic carbon |
---|
8462 | IF ( iso4 > 0 .AND. ioc > 0 ) THEN |
---|
8463 | |
---|
8464 | c = ( iso4 - 1 ) * nbins + b |
---|
8465 | surface%amsws(m,c) = surface%amsws(m,c) + & |
---|
8466 | emission_mass_fracs(n,1) / & |
---|
8467 | ( emission_mass_fracs(n,1) + & |
---|
8468 | emission_mass_fracs(n,2) ) * & |
---|
8469 | aerosol_number(b)%source(n,j,i) * & |
---|
8470 | api6 * aero(b)%dmid**3.0_wp * & |
---|
8471 | arhoh2so4 * rho_air_zw(k-1) |
---|
8472 | aerosol_mass(c)%source(n,j,i) = & |
---|
8473 | aerosol_mass(c)%source(n,j,i) + surface%amsws(m,c) |
---|
8474 | c = ( ioc - 1 ) * nbins + b |
---|
8475 | surface%amsws(m,c) = surface%amsws(m,c) + & |
---|
8476 | emission_mass_fracs(n,2) / & |
---|
8477 | ( emission_mass_fracs(n,1) + & |
---|
8478 | emission_mass_fracs(n,2) ) * & |
---|
8479 | aerosol_number(b)%source(n,j,i) * & |
---|
8480 | api6 * aero(b)%dmid**3.0_wp * arhooc & |
---|
8481 | * rho_air_zw(k-1) |
---|
8482 | aerosol_mass(c)%source(n,j,i) = & |
---|
8483 | aerosol_mass(c)%source(n,j,i) + surface%amsws(m,c) |
---|
8484 | ! |
---|
8485 | !-- Only sulphates |
---|
8486 | ELSEIF ( iso4 > 0 .AND. ioc < 0 ) THEN |
---|
8487 | c = ( iso4 - 1 ) * nbins + b |
---|
8488 | surface%amsws(m,c) = surface%amsws(m,c) + & |
---|
8489 | aerosol_number(b)%source(n,j,i) * api6 & |
---|
8490 | * aero(b)%dmid**3.0_wp * arhoh2so4 & |
---|
8491 | * rho_air_zw(k-1) |
---|
8492 | aerosol_mass(c)%source(n,j,i) = & |
---|
8493 | aerosol_mass(c)%source(n,j,i) + surface%amsws(m,c) |
---|
8494 | ! |
---|
8495 | !-- Only organic carbon |
---|
8496 | ELSEIF ( iso4 < 0 .AND. ioc > 0 ) THEN |
---|
8497 | c = ( ioc - 1 ) * nbins + b |
---|
8498 | surface%amsws(m,c) = surface%amsws(m,c) + & |
---|
8499 | aerosol_number(b)%source(n,j,i) * api6 & |
---|
8500 | * aero(b)%dmid**3.0_wp * arhooc & |
---|
8501 | * rho_air_zw(k-1) |
---|
8502 | aerosol_mass(c)%source(n,j,i) = & |
---|
8503 | aerosol_mass(c)%source(n,j,i) + surface%amsws(m,c) |
---|
8504 | ENDIF |
---|
8505 | |
---|
8506 | ELSEIF ( b > fn1a ) THEN |
---|
8507 | ! |
---|
8508 | !-- Sulphate |
---|
8509 | IF ( iso4 > 0 ) THEN |
---|
8510 | CALL set_mass_flux( surface, m, b, iso4, n, & |
---|
8511 | emission_mass_fracs(n,1), arhoh2so4, & |
---|
8512 | aerosol_number(b)%source(n,j,i) ) |
---|
8513 | ENDIF |
---|
8514 | ! |
---|
8515 | !-- Organic carbon |
---|
8516 | IF ( ioc > 0 ) THEN |
---|
8517 | CALL set_mass_flux( surface, m, b, ioc, n, & |
---|
8518 | emission_mass_fracs(n,2), arhooc, & |
---|
8519 | aerosol_number(b)%source(n,j,i) ) |
---|
8520 | ENDIF |
---|
8521 | ! |
---|
8522 | !-- Black carbon |
---|
8523 | IF ( ibc > 0 ) THEN |
---|
8524 | CALL set_mass_flux( surface, m, b, ibc, n, & |
---|
8525 | emission_mass_fracs(n,3), arhobc, & |
---|
8526 | aerosol_number(b)%source(n,j,i) ) |
---|
8527 | ENDIF |
---|
8528 | ! |
---|
8529 | !-- Dust |
---|
8530 | IF ( idu > 0 ) THEN |
---|
8531 | CALL set_mass_flux( surface, m, b, idu, n, & |
---|
8532 | emission_mass_fracs(n,4), arhodu, & |
---|
8533 | aerosol_number(b)%source(n,j,i) ) |
---|
8534 | ENDIF |
---|
8535 | ! |
---|
8536 | !-- Sea salt |
---|
8537 | IF ( iss > 0 ) THEN |
---|
8538 | CALL set_mass_flux( surface, m, b, iss, n, & |
---|
8539 | emission_mass_fracs(n,5), arhoss, & |
---|
8540 | aerosol_number(b)%source(n,j,i) ) |
---|
8541 | ENDIF |
---|
8542 | ! |
---|
8543 | !-- Nitric acid |
---|
8544 | IF ( ino > 0 ) THEN |
---|
8545 | CALL set_mass_flux( surface, m, b, ino, n, & |
---|
8546 | emission_mass_fracs(n,6), arhohno3, & |
---|
8547 | aerosol_number(b)%source(n,j,i) ) |
---|
8548 | ENDIF |
---|
8549 | ! |
---|
8550 | !-- Ammonia |
---|
8551 | IF ( inh > 0 ) THEN |
---|
8552 | CALL set_mass_flux( surface, m, b, inh, n, & |
---|
8553 | emission_mass_fracs(n,7), arhonh3, & |
---|
8554 | aerosol_number(b)%source(n,j,i) ) |
---|
8555 | ENDIF |
---|
8556 | |
---|
8557 | ENDIF |
---|
8558 | ! |
---|
8559 | !-- Save number fluxes in the end |
---|
8560 | surface%answs(m,b) = surface%answs(m,b) + & |
---|
8561 | aerosol_number(b)%source(n,j,i) * rho_air_zw(k-1) |
---|
8562 | aerosol_number(b)%source(n,j,i) = surface%answs(m,b) |
---|
8563 | ENDDO |
---|
8564 | |
---|
8565 | ENDDO |
---|
8566 | |
---|
8567 | ENDDO |
---|
8568 | |
---|
8569 | END SUBROUTINE set_flux |
---|
8570 | |
---|
8571 | !------------------------------------------------------------------------------! |
---|
8572 | ! Description: |
---|
8573 | ! ------------ |
---|
8574 | !> Sets the mass emissions to aerosol arrays in 2a and 2b. |
---|
8575 | !------------------------------------------------------------------------------! |
---|
8576 | SUBROUTINE set_mass_flux( surface, surf_num, b, ispec, n, mass_frac, prho, & |
---|
8577 | nsource ) |
---|
8578 | |
---|
8579 | USE arrays_3d, & |
---|
8580 | ONLY: rho_air_zw |
---|
8581 | |
---|
8582 | USE surface_mod, & |
---|
8583 | ONLY: surf_type |
---|
8584 | |
---|
8585 | IMPLICIT NONE |
---|
8586 | |
---|
8587 | INTEGER(iwp), INTENT(in) :: b !< Aerosol size bin index |
---|
8588 | INTEGER(iwp), INTENT(in) :: ispec !< Aerosol species index |
---|
8589 | INTEGER(iwp), INTENT(in) :: n !< emission category number |
---|
8590 | INTEGER(iwp), INTENT(in) :: surf_num !< index surface elements |
---|
8591 | REAL(wp), INTENT(in) :: mass_frac !< mass fraction of a chemical |
---|
8592 | !< compound in all bins |
---|
8593 | REAL(wp), INTENT(in) :: nsource !< number source (#/m2/s) |
---|
8594 | REAL(wp), INTENT(in) :: prho !< Aerosol density |
---|
8595 | TYPE(surf_type), INTENT(inout) :: surface !< respective surface type |
---|
8596 | |
---|
8597 | INTEGER(iwp) :: ee !< index: end |
---|
8598 | INTEGER(iwp) :: i !< loop index |
---|
8599 | INTEGER(iwp) :: j !< loop index |
---|
8600 | INTEGER(iwp) :: k !< loop index |
---|
8601 | INTEGER(iwp) :: c !< loop index |
---|
8602 | INTEGER(iwp) :: ss !<index: start |
---|
8603 | |
---|
8604 | ! |
---|
8605 | !-- Get indices of respective grid point |
---|
8606 | i = surface%i(surf_num) |
---|
8607 | j = surface%j(surf_num) |
---|
8608 | k = surface%k(surf_num) |
---|
8609 | ! |
---|
8610 | !-- Subrange 2a: |
---|
8611 | c = ( ispec - 1 ) * nbins + b |
---|
8612 | surface%amsws(surf_num,c) = surface%amsws(surf_num,c) + mass_frac * nsource& |
---|
8613 | * aero(b)%core * prho * rho_air_zw(k-1) |
---|
8614 | aerosol_mass(c)%source(n,j,i) = aerosol_mass(c)%source(n,j,i) + & |
---|
8615 | surface%amsws(surf_num,c) |
---|
8616 | ! |
---|
8617 | !-- Subrange 2b: |
---|
8618 | IF ( .NOT. no_insoluble ) THEN |
---|
8619 | WRITE(*,*) 'All emissions are soluble!' |
---|
8620 | ENDIF |
---|
8621 | |
---|
8622 | END SUBROUTINE set_mass_flux |
---|
8623 | |
---|
8624 | !------------------------------------------------------------------------------! |
---|
8625 | ! Description: |
---|
8626 | ! ------------ |
---|
8627 | !> Sets the mass sources to aerosol arrays in 2a and 2b. |
---|
8628 | !------------------------------------------------------------------------------! |
---|
8629 | SUBROUTINE set_mass_source( k, j, i, ispec, mass_frac, prho, nsource, fillval ) |
---|
8630 | |
---|
8631 | USE surface_mod, & |
---|
8632 | ONLY: surf_type |
---|
8633 | |
---|
8634 | IMPLICIT NONE |
---|
8635 | |
---|
8636 | INTEGER(iwp), INTENT(in) :: ispec !< Aerosol species index |
---|
8637 | REAL(wp), INTENT(in) :: fillval !< _FillValue in the NetCDF file |
---|
8638 | REAL(wp), INTENT(in) :: mass_frac !< mass fraction of a chemical |
---|
8639 | !< compound in all bins |
---|
8640 | REAL(wp), INTENT(in), DIMENSION(:) :: nsource !< number source |
---|
8641 | REAL(wp), INTENT(in) :: prho !< Aerosol density |
---|
8642 | |
---|
8643 | INTEGER(iwp) :: b !< loop index |
---|
8644 | INTEGER(iwp) :: ee !< index: end |
---|
8645 | INTEGER(iwp) :: i !< loop index |
---|
8646 | INTEGER(iwp) :: j !< loop index |
---|
8647 | INTEGER(iwp) :: k !< loop index |
---|
8648 | INTEGER(iwp) :: c !< loop index |
---|
8649 | INTEGER(iwp) :: ss !<index: start |
---|
8650 | ! |
---|
8651 | !-- Subrange 2a: |
---|
8652 | ss = ( ispec - 1 ) * nbins + in2a |
---|
8653 | ee = ( ispec - 1 ) * nbins + fn2a |
---|
8654 | b = in2a |
---|
8655 | DO c = ss, ee |
---|
8656 | IF ( nsource(b) /= fillval ) THEN |
---|
8657 | aerosol_mass(c)%source(k,j,i) = aerosol_mass(c)%source(k,j,i) + & |
---|
8658 | mass_frac * nsource(b) * aero(b)%core * & |
---|
8659 | prho |
---|
8660 | ENDIF |
---|
8661 | b = b+1 |
---|
8662 | ENDDO |
---|
8663 | ! |
---|
8664 | !-- Subrange 2b: |
---|
8665 | IF ( .NOT. no_insoluble ) THEN |
---|
8666 | WRITE(*,*) 'All sources are soluble!' |
---|
8667 | ENDIF |
---|
8668 | |
---|
8669 | END SUBROUTINE set_mass_source |
---|
8670 | |
---|
8671 | !------------------------------------------------------------------------------! |
---|
8672 | ! Description: |
---|
8673 | ! ------------ |
---|
8674 | !> Check data output for salsa. |
---|
8675 | !------------------------------------------------------------------------------! |
---|
8676 | SUBROUTINE salsa_check_data_output( var, unit ) |
---|
8677 | |
---|
8678 | USE control_parameters, & |
---|
8679 | ONLY: message_string |
---|
8680 | |
---|
8681 | IMPLICIT NONE |
---|
8682 | |
---|
8683 | CHARACTER (LEN=*) :: unit !< |
---|
8684 | CHARACTER (LEN=*) :: var !< |
---|
8685 | |
---|
8686 | SELECT CASE ( TRIM( var ) ) |
---|
8687 | |
---|
8688 | CASE ( 'g_H2SO4', 'g_HNO3', 'g_NH3', 'g_OCNV', 'g_OCSV', & |
---|
8689 | 'N_bin1', 'N_bin2', 'N_bin3', 'N_bin4', 'N_bin5', 'N_bin6', & |
---|
8690 | 'N_bin7', 'N_bin8', 'N_bin9', 'N_bin10', 'N_bin11', 'N_bin12', & |
---|
8691 | 'Ntot' ) |
---|
8692 | IF ( .NOT. salsa ) THEN |
---|
8693 | message_string = 'output of "' // TRIM( var ) // '" requi' // & |
---|
8694 | 'res salsa = .TRUE.' |
---|
8695 | CALL message( 'check_parameters', 'SA0006', 1, 2, 0, 6, 0 ) |
---|
8696 | ENDIF |
---|
8697 | unit = '#/m3' |
---|
8698 | |
---|
8699 | CASE ( 'LDSA' ) |
---|
8700 | IF ( .NOT. salsa ) THEN |
---|
8701 | message_string = 'output of "' // TRIM( var ) // '" requi' // & |
---|
8702 | 'res salsa = .TRUE.' |
---|
8703 | CALL message( 'check_parameters', 'SA0003', 1, 2, 0, 6, 0 ) |
---|
8704 | ENDIF |
---|
8705 | unit = 'mum2/cm3' |
---|
8706 | |
---|
8707 | CASE ( 'm_bin1', 'm_bin2', 'm_bin3', 'm_bin4', 'm_bin5', 'm_bin6', & |
---|
8708 | 'm_bin7', 'm_bin8', 'm_bin9', 'm_bin10', 'm_bin11', 'm_bin12', & |
---|
8709 | 'PM2.5', 'PM10', 's_BC', 's_DU', 's_H2O', 's_NH', & |
---|
8710 | 's_NO', 's_OC', 's_SO4', 's_SS' ) |
---|
8711 | IF ( .NOT. salsa ) THEN |
---|
8712 | message_string = 'output of "' // TRIM( var ) // '" requi' // & |
---|
8713 | 'res salsa = .TRUE.' |
---|
8714 | CALL message( 'check_parameters', 'SA0001', 1, 2, 0, 6, 0 ) |
---|
8715 | ENDIF |
---|
8716 | unit = 'kg/m3' |
---|
8717 | |
---|
8718 | CASE DEFAULT |
---|
8719 | unit = 'illegal' |
---|
8720 | |
---|
8721 | END SELECT |
---|
8722 | |
---|
8723 | END SUBROUTINE salsa_check_data_output |
---|
8724 | |
---|
8725 | !------------------------------------------------------------------------------! |
---|
8726 | ! |
---|
8727 | ! Description: |
---|
8728 | ! ------------ |
---|
8729 | !> Subroutine for averaging 3D data |
---|
8730 | !------------------------------------------------------------------------------! |
---|
8731 | SUBROUTINE salsa_3d_data_averaging( mode, variable ) |
---|
8732 | |
---|
8733 | |
---|
8734 | USE control_parameters |
---|
8735 | |
---|
8736 | USE indices |
---|
8737 | |
---|
8738 | USE kinds |
---|
8739 | |
---|
8740 | IMPLICIT NONE |
---|
8741 | |
---|
8742 | CHARACTER (LEN=*) :: mode !< |
---|
8743 | CHARACTER (LEN=*) :: variable !< |
---|
8744 | |
---|
8745 | INTEGER(iwp) :: b !< |
---|
8746 | INTEGER(iwp) :: c !< |
---|
8747 | INTEGER(iwp) :: i !< |
---|
8748 | INTEGER(iwp) :: icc !< |
---|
8749 | INTEGER(iwp) :: j !< |
---|
8750 | INTEGER(iwp) :: k !< |
---|
8751 | |
---|
8752 | REAL(wp) :: df !< For calculating LDSA: fraction of particles |
---|
8753 | !< depositing in the alveolar (or tracheobronchial) |
---|
8754 | !< region of the lung. Depends on the particle size |
---|
8755 | REAL(wp) :: mean_d !< Particle diameter in micrometres |
---|
8756 | REAL(wp) :: nc !< Particle number concentration in units 1/cm**3 |
---|
8757 | REAL(wp) :: temp_bin !< |
---|
8758 | REAL(wp), DIMENSION(:,:,:), POINTER :: to_be_resorted !< points to |
---|
8759 | !< selected output variable |
---|
8760 | |
---|
8761 | temp_bin = 0.0_wp |
---|
8762 | |
---|
8763 | IF ( mode == 'allocate' ) THEN |
---|
8764 | |
---|
8765 | SELECT CASE ( TRIM( variable ) ) |
---|
8766 | |
---|
8767 | CASE ( 'g_H2SO4' ) |
---|
8768 | IF ( .NOT. ALLOCATED( g_H2SO4_av ) ) THEN |
---|
8769 | ALLOCATE( g_H2SO4_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8770 | ENDIF |
---|
8771 | g_H2SO4_av = 0.0_wp |
---|
8772 | |
---|
8773 | CASE ( 'g_HNO3' ) |
---|
8774 | IF ( .NOT. ALLOCATED( g_HNO3_av ) ) THEN |
---|
8775 | ALLOCATE( g_HNO3_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8776 | ENDIF |
---|
8777 | g_HNO3_av = 0.0_wp |
---|
8778 | |
---|
8779 | CASE ( 'g_NH3' ) |
---|
8780 | IF ( .NOT. ALLOCATED( g_NH3_av ) ) THEN |
---|
8781 | ALLOCATE( g_NH3_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8782 | ENDIF |
---|
8783 | g_NH3_av = 0.0_wp |
---|
8784 | |
---|
8785 | CASE ( 'g_OCNV' ) |
---|
8786 | IF ( .NOT. ALLOCATED( g_OCNV_av ) ) THEN |
---|
8787 | ALLOCATE( g_OCNV_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8788 | ENDIF |
---|
8789 | g_OCNV_av = 0.0_wp |
---|
8790 | |
---|
8791 | CASE ( 'g_OCSV' ) |
---|
8792 | IF ( .NOT. ALLOCATED( g_OCSV_av ) ) THEN |
---|
8793 | ALLOCATE( g_OCSV_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8794 | ENDIF |
---|
8795 | g_OCSV_av = 0.0_wp |
---|
8796 | |
---|
8797 | CASE ( 'LDSA' ) |
---|
8798 | IF ( .NOT. ALLOCATED( LDSA_av ) ) THEN |
---|
8799 | ALLOCATE( LDSA_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8800 | ENDIF |
---|
8801 | LDSA_av = 0.0_wp |
---|
8802 | |
---|
8803 | CASE ( 'N_bin1', 'N_bin2', 'N_bin3', 'N_bin4', 'N_bin5', 'N_bin6', & |
---|
8804 | 'N_bin7', 'N_bin8', 'N_bin9', 'N_bin10', 'N_bin11', 'N_bin12' ) |
---|
8805 | IF ( .NOT. ALLOCATED( Nbins_av ) ) THEN |
---|
8806 | ALLOCATE( Nbins_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins) ) |
---|
8807 | ENDIF |
---|
8808 | Nbins_av = 0.0_wp |
---|
8809 | |
---|
8810 | CASE ( 'Ntot' ) |
---|
8811 | IF ( .NOT. ALLOCATED( Ntot_av ) ) THEN |
---|
8812 | ALLOCATE( Ntot_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8813 | ENDIF |
---|
8814 | Ntot_av = 0.0_wp |
---|
8815 | |
---|
8816 | CASE ( 'm_bin1', 'm_bin2', 'm_bin3', 'm_bin4', 'm_bin5', 'm_bin6', & |
---|
8817 | 'm_bin7', 'm_bin8', 'm_bin9', 'm_bin10', 'm_bin11', 'm_bin12' ) |
---|
8818 | IF ( .NOT. ALLOCATED( mbins_av ) ) THEN |
---|
8819 | ALLOCATE( mbins_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nbins) ) |
---|
8820 | ENDIF |
---|
8821 | mbins_av = 0.0_wp |
---|
8822 | |
---|
8823 | CASE ( 'PM2.5' ) |
---|
8824 | IF ( .NOT. ALLOCATED( PM25_av ) ) THEN |
---|
8825 | ALLOCATE( PM25_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8826 | ENDIF |
---|
8827 | PM25_av = 0.0_wp |
---|
8828 | |
---|
8829 | CASE ( 'PM10' ) |
---|
8830 | IF ( .NOT. ALLOCATED( PM10_av ) ) THEN |
---|
8831 | ALLOCATE( PM10_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8832 | ENDIF |
---|
8833 | PM10_av = 0.0_wp |
---|
8834 | |
---|
8835 | CASE ( 's_BC' ) |
---|
8836 | IF ( .NOT. ALLOCATED( s_BC_av ) ) THEN |
---|
8837 | ALLOCATE( s_BC_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8838 | ENDIF |
---|
8839 | s_BC_av = 0.0_wp |
---|
8840 | |
---|
8841 | CASE ( 's_DU' ) |
---|
8842 | IF ( .NOT. ALLOCATED( s_DU_av ) ) THEN |
---|
8843 | ALLOCATE( s_DU_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8844 | ENDIF |
---|
8845 | s_DU_av = 0.0_wp |
---|
8846 | |
---|
8847 | CASE ( 's_H2O' ) |
---|
8848 | IF ( .NOT. ALLOCATED( s_H2O_av ) ) THEN |
---|
8849 | ALLOCATE( s_H2O_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8850 | ENDIF |
---|
8851 | s_H2O_av = 0.0_wp |
---|
8852 | |
---|
8853 | CASE ( 's_NH' ) |
---|
8854 | IF ( .NOT. ALLOCATED( s_NH_av ) ) THEN |
---|
8855 | ALLOCATE( s_NH_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8856 | ENDIF |
---|
8857 | s_NH_av = 0.0_wp |
---|
8858 | |
---|
8859 | CASE ( 's_NO' ) |
---|
8860 | IF ( .NOT. ALLOCATED( s_NO_av ) ) THEN |
---|
8861 | ALLOCATE( s_NO_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8862 | ENDIF |
---|
8863 | s_NO_av = 0.0_wp |
---|
8864 | |
---|
8865 | CASE ( 's_OC' ) |
---|
8866 | IF ( .NOT. ALLOCATED( s_OC_av ) ) THEN |
---|
8867 | ALLOCATE( s_OC_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8868 | ENDIF |
---|
8869 | s_OC_av = 0.0_wp |
---|
8870 | |
---|
8871 | CASE ( 's_SO4' ) |
---|
8872 | IF ( .NOT. ALLOCATED( s_SO4_av ) ) THEN |
---|
8873 | ALLOCATE( s_SO4_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8874 | ENDIF |
---|
8875 | s_SO4_av = 0.0_wp |
---|
8876 | |
---|
8877 | CASE ( 's_SS' ) |
---|
8878 | IF ( .NOT. ALLOCATED( s_SS_av ) ) THEN |
---|
8879 | ALLOCATE( s_SS_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8880 | ENDIF |
---|
8881 | s_SS_av = 0.0_wp |
---|
8882 | |
---|
8883 | CASE DEFAULT |
---|
8884 | CONTINUE |
---|
8885 | |
---|
8886 | END SELECT |
---|
8887 | |
---|
8888 | ELSEIF ( mode == 'sum' ) THEN |
---|
8889 | |
---|
8890 | SELECT CASE ( TRIM( variable ) ) |
---|
8891 | |
---|
8892 | CASE ( 'g_H2SO4', 'g_HNO3', 'g_NH3', 'g_OCNV', 'g_OCSV' ) |
---|
8893 | IF ( TRIM( variable(3:) ) == 'H2SO4' ) THEN |
---|
8894 | icc = 1 |
---|
8895 | to_be_resorted => g_H2SO4_av |
---|
8896 | ELSEIF ( TRIM( variable(3:) ) == 'HNO3' ) THEN |
---|
8897 | icc = 2 |
---|
8898 | to_be_resorted => g_HNO3_av |
---|
8899 | ELSEIF ( TRIM( variable(3:) ) == 'NH3' ) THEN |
---|
8900 | icc = 3 |
---|
8901 | to_be_resorted => g_NH3_av |
---|
8902 | ELSEIF ( TRIM( variable(3:) ) == 'OCNV' ) THEN |
---|
8903 | icc = 4 |
---|
8904 | to_be_resorted => g_OCNV_av |
---|
8905 | ELSEIF ( TRIM( variable(3:) ) == 'OCSV' ) THEN |
---|
8906 | icc = 5 |
---|
8907 | to_be_resorted => g_OCSV_av |
---|
8908 | ENDIF |
---|
8909 | DO i = nxlg, nxrg |
---|
8910 | DO j = nysg, nyng |
---|
8911 | DO k = nzb, nzt+1 |
---|
8912 | to_be_resorted(k,j,i) = to_be_resorted(k,j,i) + & |
---|
8913 | salsa_gas(icc)%conc(k,j,i) |
---|
8914 | ENDDO |
---|
8915 | ENDDO |
---|
8916 | ENDDO |
---|
8917 | |
---|
8918 | CASE ( 'LDSA' ) |
---|
8919 | DO i = nxlg, nxrg |
---|
8920 | DO j = nysg, nyng |
---|
8921 | DO k = nzb, nzt+1 |
---|
8922 | temp_bin = 0.0_wp |
---|
8923 | DO b = 1, nbins |
---|
8924 | ! |
---|
8925 | !-- Diameter in micrometres |
---|
8926 | mean_d = 1.0E+6_wp * Ra_dry(k,j,i,b) * 2.0_wp |
---|
8927 | ! |
---|
8928 | !-- Deposition factor: alveolar (use Ra_dry) |
---|
8929 | df = ( 0.01555_wp / mean_d ) * ( EXP( -0.416_wp * & |
---|
8930 | ( LOG( mean_d ) + 2.84_wp )**2.0_wp ) & |
---|
8931 | + 19.11_wp * EXP( -0.482_wp * & |
---|
8932 | ( LOG( mean_d ) - 1.362_wp )**2.0_wp ) ) |
---|
8933 | ! |
---|
8934 | !-- Number concentration in 1/cm3 |
---|
8935 | nc = 1.0E-6_wp * aerosol_number(b)%conc(k,j,i) |
---|
8936 | ! |
---|
8937 | !-- Lung-deposited surface area LDSA (units mum2/cm3) |
---|
8938 | temp_bin = temp_bin + pi * mean_d**2.0_wp * df * nc |
---|
8939 | ENDDO |
---|
8940 | LDSA_av(k,j,i) = LDSA_av(k,j,i) + temp_bin |
---|
8941 | ENDDO |
---|
8942 | ENDDO |
---|
8943 | ENDDO |
---|
8944 | |
---|
8945 | CASE ( 'N_bin1', 'N_bin2', 'N_bin3', 'N_bin4', 'N_bin5', 'N_bin6', & |
---|
8946 | 'N_bin7', 'N_bin8', 'N_bin9', 'N_bin10', 'N_bin11', 'N_bin12' ) |
---|
8947 | DO i = nxlg, nxrg |
---|
8948 | DO j = nysg, nyng |
---|
8949 | DO k = nzb, nzt+1 |
---|
8950 | DO b = 1, nbins |
---|
8951 | Nbins_av(k,j,i,b) = Nbins_av(k,j,i,b) + & |
---|
8952 | aerosol_number(b)%conc(k,j,i) |
---|
8953 | ENDDO |
---|
8954 | ENDDO |
---|
8955 | ENDDO |
---|
8956 | ENDDO |
---|
8957 | |
---|
8958 | CASE ( 'Ntot' ) |
---|
8959 | DO i = nxlg, nxrg |
---|
8960 | DO j = nysg, nyng |
---|
8961 | DO k = nzb, nzt+1 |
---|
8962 | DO b = 1, nbins |
---|
8963 | Ntot_av(k,j,i) = Ntot_av(k,j,i) + & |
---|
8964 | aerosol_number(b)%conc(k,j,i) |
---|
8965 | ENDDO |
---|
8966 | ENDDO |
---|
8967 | ENDDO |
---|
8968 | ENDDO |
---|
8969 | |
---|
8970 | CASE ( 'm_bin1', 'm_bin2', 'm_bin3', 'm_bin4', 'm_bin5', 'm_bin6', & |
---|
8971 | 'm_bin7', 'm_bin8', 'm_bin9', 'm_bin10', 'm_bin11', 'm_bin12' ) |
---|
8972 | DO i = nxlg, nxrg |
---|
8973 | DO j = nysg, nyng |
---|
8974 | DO k = nzb, nzt+1 |
---|
8975 | DO b = 1, nbins |
---|
8976 | DO c = b, nbins*ncc_tot, nbins |
---|
8977 | mbins_av(k,j,i,b) = mbins_av(k,j,i,b) + & |
---|
8978 | aerosol_mass(c)%conc(k,j,i) |
---|
8979 | ENDDO |
---|
8980 | ENDDO |
---|
8981 | ENDDO |
---|
8982 | ENDDO |
---|
8983 | ENDDO |
---|
8984 | |
---|
8985 | CASE ( 'PM2.5' ) |
---|
8986 | DO i = nxlg, nxrg |
---|
8987 | DO j = nysg, nyng |
---|
8988 | DO k = nzb, nzt+1 |
---|
8989 | temp_bin = 0.0_wp |
---|
8990 | DO b = 1, nbins |
---|
8991 | IF ( 2.0_wp * Ra_dry(k,j,i,b) <= 2.5E-6_wp ) THEN |
---|
8992 | DO c = b, nbins*ncc, nbins |
---|
8993 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
8994 | ENDDO |
---|
8995 | ENDIF |
---|
8996 | ENDDO |
---|
8997 | PM25_av(k,j,i) = PM25_av(k,j,i) + temp_bin |
---|
8998 | ENDDO |
---|
8999 | ENDDO |
---|
9000 | ENDDO |
---|
9001 | |
---|
9002 | CASE ( 'PM10' ) |
---|
9003 | DO i = nxlg, nxrg |
---|
9004 | DO j = nysg, nyng |
---|
9005 | DO k = nzb, nzt+1 |
---|
9006 | temp_bin = 0.0_wp |
---|
9007 | DO b = 1, nbins |
---|
9008 | IF ( 2.0_wp * Ra_dry(k,j,i,b) <= 10.0E-6_wp ) THEN |
---|
9009 | DO c = b, nbins*ncc, nbins |
---|
9010 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9011 | ENDDO |
---|
9012 | ENDIF |
---|
9013 | ENDDO |
---|
9014 | PM10_av(k,j,i) = PM10_av(k,j,i) + temp_bin |
---|
9015 | ENDDO |
---|
9016 | ENDDO |
---|
9017 | ENDDO |
---|
9018 | |
---|
9019 | CASE ( 's_BC', 's_DU', 's_H2O', 's_NH', 's_NO', 's_OC', 's_SO4', & |
---|
9020 | 's_SS' ) |
---|
9021 | IF ( is_used( prtcl, TRIM( variable(3:) ) ) ) THEN |
---|
9022 | icc = get_index( prtcl, TRIM( variable(3:) ) ) |
---|
9023 | IF ( TRIM( variable(3:) ) == 'BC' ) to_be_resorted => s_BC_av |
---|
9024 | IF ( TRIM( variable(3:) ) == 'DU' ) to_be_resorted => s_DU_av |
---|
9025 | IF ( TRIM( variable(3:) ) == 'NH' ) to_be_resorted => s_NH_av |
---|
9026 | IF ( TRIM( variable(3:) ) == 'NO' ) to_be_resorted => s_NO_av |
---|
9027 | IF ( TRIM( variable(3:) ) == 'OC' ) to_be_resorted => s_OC_av |
---|
9028 | IF ( TRIM( variable(3:) ) == 'SO4' ) to_be_resorted => s_SO4_av |
---|
9029 | IF ( TRIM( variable(3:) ) == 'SS' ) to_be_resorted => s_SS_av |
---|
9030 | DO i = nxlg, nxrg |
---|
9031 | DO j = nysg, nyng |
---|
9032 | DO k = nzb, nzt+1 |
---|
9033 | DO c = ( icc-1 )*nbins+1, icc*nbins |
---|
9034 | to_be_resorted(k,j,i) = to_be_resorted(k,j,i) + & |
---|
9035 | aerosol_mass(c)%conc(k,j,i) |
---|
9036 | ENDDO |
---|
9037 | ENDDO |
---|
9038 | ENDDO |
---|
9039 | ENDDO |
---|
9040 | ENDIF |
---|
9041 | |
---|
9042 | CASE DEFAULT |
---|
9043 | CONTINUE |
---|
9044 | |
---|
9045 | END SELECT |
---|
9046 | |
---|
9047 | ELSEIF ( mode == 'average' ) THEN |
---|
9048 | |
---|
9049 | SELECT CASE ( TRIM( variable ) ) |
---|
9050 | |
---|
9051 | CASE ( 'g_H2SO4', 'g_HNO3', 'g_NH3', 'g_OCNV', 'g_OCSV' ) |
---|
9052 | IF ( TRIM( variable(3:) ) == 'H2SO4' ) THEN |
---|
9053 | icc = 1 |
---|
9054 | to_be_resorted => g_H2SO4_av |
---|
9055 | ELSEIF ( TRIM( variable(3:) ) == 'HNO3' ) THEN |
---|
9056 | icc = 2 |
---|
9057 | to_be_resorted => g_HNO3_av |
---|
9058 | ELSEIF ( TRIM( variable(3:) ) == 'NH3' ) THEN |
---|
9059 | icc = 3 |
---|
9060 | to_be_resorted => g_NH3_av |
---|
9061 | ELSEIF ( TRIM( variable(3:) ) == 'OCNV' ) THEN |
---|
9062 | icc = 4 |
---|
9063 | to_be_resorted => g_OCNV_av |
---|
9064 | ELSEIF ( TRIM( variable(3:) ) == 'OCSV' ) THEN |
---|
9065 | icc = 5 |
---|
9066 | to_be_resorted => g_OCSV_av |
---|
9067 | ENDIF |
---|
9068 | DO i = nxlg, nxrg |
---|
9069 | DO j = nysg, nyng |
---|
9070 | DO k = nzb, nzt+1 |
---|
9071 | to_be_resorted(k,j,i) = to_be_resorted(k,j,i) & |
---|
9072 | / REAL( average_count_3d, KIND=wp ) |
---|
9073 | ENDDO |
---|
9074 | ENDDO |
---|
9075 | ENDDO |
---|
9076 | |
---|
9077 | CASE ( 'LDSA' ) |
---|
9078 | DO i = nxlg, nxrg |
---|
9079 | DO j = nysg, nyng |
---|
9080 | DO k = nzb, nzt+1 |
---|
9081 | LDSA_av(k,j,i) = LDSA_av(k,j,i) & |
---|
9082 | / REAL( average_count_3d, KIND=wp ) |
---|
9083 | ENDDO |
---|
9084 | ENDDO |
---|
9085 | ENDDO |
---|
9086 | |
---|
9087 | CASE ( 'N_bin1', 'N_bin2', 'N_bin3', 'N_bin4', 'N_bin5', 'N_bin6', & |
---|
9088 | 'N_bin7', 'N_bin8', 'N_bin9', 'N_bin10', 'N_bin11', 'N_bin12' ) |
---|
9089 | DO i = nxlg, nxrg |
---|
9090 | DO j = nysg, nyng |
---|
9091 | DO k = nzb, nzt+1 |
---|
9092 | DO b = 1, nbins |
---|
9093 | Nbins_av(k,j,i,b) = Nbins_av(k,j,i,b) & |
---|
9094 | / REAL( average_count_3d, KIND=wp ) |
---|
9095 | ENDDO |
---|
9096 | ENDDO |
---|
9097 | ENDDO |
---|
9098 | ENDDO |
---|
9099 | |
---|
9100 | CASE ( 'Ntot' ) |
---|
9101 | DO i = nxlg, nxrg |
---|
9102 | DO j = nysg, nyng |
---|
9103 | DO k = nzb, nzt+1 |
---|
9104 | Ntot_av(k,j,i) = Ntot_av(k,j,i) & |
---|
9105 | / REAL( average_count_3d, KIND=wp ) |
---|
9106 | ENDDO |
---|
9107 | ENDDO |
---|
9108 | ENDDO |
---|
9109 | |
---|
9110 | CASE ( 'm_bin1', 'm_bin2', 'm_bin3', 'm_bin4', 'm_bin5', 'm_bin6', & |
---|
9111 | 'm_bin7', 'm_bin8', 'm_bin9', 'm_bin10', 'm_bin11', 'm_bin12' ) |
---|
9112 | DO i = nxlg, nxrg |
---|
9113 | DO j = nysg, nyng |
---|
9114 | DO k = nzb, nzt+1 |
---|
9115 | DO b = 1, nbins |
---|
9116 | DO c = b, nbins*ncc, nbins |
---|
9117 | mbins_av(k,j,i,b) = mbins_av(k,j,i,b) & |
---|
9118 | / REAL( average_count_3d, KIND=wp ) |
---|
9119 | ENDDO |
---|
9120 | ENDDO |
---|
9121 | ENDDO |
---|
9122 | ENDDO |
---|
9123 | ENDDO |
---|
9124 | |
---|
9125 | CASE ( 'PM2.5' ) |
---|
9126 | DO i = nxlg, nxrg |
---|
9127 | DO j = nysg, nyng |
---|
9128 | DO k = nzb, nzt+1 |
---|
9129 | PM25_av(k,j,i) = PM25_av(k,j,i) & |
---|
9130 | / REAL( average_count_3d, KIND=wp ) |
---|
9131 | ENDDO |
---|
9132 | ENDDO |
---|
9133 | ENDDO |
---|
9134 | |
---|
9135 | CASE ( 'PM10' ) |
---|
9136 | DO i = nxlg, nxrg |
---|
9137 | DO j = nysg, nyng |
---|
9138 | DO k = nzb, nzt+1 |
---|
9139 | PM10_av(k,j,i) = PM10_av(k,j,i) & |
---|
9140 | / REAL( average_count_3d, KIND=wp ) |
---|
9141 | ENDDO |
---|
9142 | ENDDO |
---|
9143 | ENDDO |
---|
9144 | |
---|
9145 | CASE ( 's_BC', 's_DU', 's_H2O', 's_NH', 's_NO', 's_OC', 's_SO4', & |
---|
9146 | 's_SS' ) |
---|
9147 | IF ( is_used( prtcl, TRIM( variable(3:) ) ) ) THEN |
---|
9148 | icc = get_index( prtcl, TRIM( variable(3:) ) ) |
---|
9149 | IF ( TRIM( variable(3:) ) == 'BC' ) to_be_resorted => s_BC_av |
---|
9150 | IF ( TRIM( variable(3:) ) == 'DU' ) to_be_resorted => s_DU_av |
---|
9151 | IF ( TRIM( variable(3:) ) == 'NH' ) to_be_resorted => s_NH_av |
---|
9152 | IF ( TRIM( variable(3:) ) == 'NO' ) to_be_resorted => s_NO_av |
---|
9153 | IF ( TRIM( variable(3:) ) == 'OC' ) to_be_resorted => s_OC_av |
---|
9154 | IF ( TRIM( variable(3:) ) == 'SO4' ) to_be_resorted => s_SO4_av |
---|
9155 | IF ( TRIM( variable(3:) ) == 'SS' ) to_be_resorted => s_SS_av |
---|
9156 | DO i = nxlg, nxrg |
---|
9157 | DO j = nysg, nyng |
---|
9158 | DO k = nzb, nzt+1 |
---|
9159 | to_be_resorted(k,j,i) = to_be_resorted(k,j,i) & |
---|
9160 | / REAL( average_count_3d, KIND=wp ) |
---|
9161 | ENDDO |
---|
9162 | ENDDO |
---|
9163 | ENDDO |
---|
9164 | ENDIF |
---|
9165 | |
---|
9166 | END SELECT |
---|
9167 | |
---|
9168 | ENDIF |
---|
9169 | |
---|
9170 | END SUBROUTINE salsa_3d_data_averaging |
---|
9171 | |
---|
9172 | |
---|
9173 | !------------------------------------------------------------------------------! |
---|
9174 | ! |
---|
9175 | ! Description: |
---|
9176 | ! ------------ |
---|
9177 | !> Subroutine defining 2D output variables |
---|
9178 | !------------------------------------------------------------------------------! |
---|
9179 | SUBROUTINE salsa_data_output_2d( av, variable, found, grid, mode, & |
---|
9180 | local_pf, two_d ) |
---|
9181 | |
---|
9182 | USE indices |
---|
9183 | |
---|
9184 | USE kinds |
---|
9185 | |
---|
9186 | IMPLICIT NONE |
---|
9187 | |
---|
9188 | CHARACTER (LEN=*) :: grid !< |
---|
9189 | CHARACTER (LEN=*) :: mode !< |
---|
9190 | CHARACTER (LEN=*) :: variable !< |
---|
9191 | CHARACTER (LEN=5) :: vari !< trimmed format of variable |
---|
9192 | |
---|
9193 | INTEGER(iwp) :: av !< |
---|
9194 | INTEGER(iwp) :: b !< |
---|
9195 | INTEGER(iwp) :: c !< |
---|
9196 | INTEGER(iwp) :: i !< |
---|
9197 | INTEGER(iwp) :: icc !< index of a chemical compound |
---|
9198 | INTEGER(iwp) :: j !< |
---|
9199 | INTEGER(iwp) :: k !< |
---|
9200 | |
---|
9201 | LOGICAL :: found !< |
---|
9202 | LOGICAL :: two_d !< flag parameter that indicates 2D variables |
---|
9203 | !< (horizontal cross sections) |
---|
9204 | |
---|
9205 | REAL(wp) :: df !< For calculating LDSA: fraction of particles |
---|
9206 | !< depositing in the alveolar (or tracheobronchial) |
---|
9207 | !< region of the lung. Depends on the particle size |
---|
9208 | REAL(wp) :: mean_d !< Particle diameter in micrometres |
---|
9209 | REAL(wp) :: nc !< Particle number concentration in units 1/cm**3 |
---|
9210 | REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb:nzt+1) :: local_pf !< local |
---|
9211 | !< array to which output data is resorted to |
---|
9212 | REAL(wp) :: temp_bin !< |
---|
9213 | REAL(wp), DIMENSION(:,:,:), POINTER :: to_be_resorted !< points to |
---|
9214 | !< selected output variable |
---|
9215 | |
---|
9216 | found = .TRUE. |
---|
9217 | temp_bin = 0.0_wp |
---|
9218 | |
---|
9219 | IF ( TRIM( variable(1:2) ) == 'g_' ) THEN |
---|
9220 | vari = TRIM( variable( 3:LEN( TRIM( variable ) ) - 3 ) ) |
---|
9221 | IF ( av == 0 ) THEN |
---|
9222 | IF ( vari == 'H2SO4') icc = 1 |
---|
9223 | IF ( vari == 'HNO3') icc = 2 |
---|
9224 | IF ( vari == 'NH3') icc = 3 |
---|
9225 | IF ( vari == 'OCNV') icc = 4 |
---|
9226 | IF ( vari == 'OCSV') icc = 5 |
---|
9227 | DO i = nxl, nxr |
---|
9228 | DO j = nys, nyn |
---|
9229 | DO k = nzb, nzt+1 |
---|
9230 | local_pf(i,j,k) = MERGE( salsa_gas(icc)%conc(k,j,i), & |
---|
9231 | REAL( -999.0_wp, KIND = wp ), & |
---|
9232 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9233 | ENDDO |
---|
9234 | ENDDO |
---|
9235 | ENDDO |
---|
9236 | ELSE |
---|
9237 | IF ( vari == 'H2SO4' ) to_be_resorted => g_H2SO4_av |
---|
9238 | IF ( vari == 'HNO3' ) to_be_resorted => g_HNO3_av |
---|
9239 | IF ( vari == 'NH3' ) to_be_resorted => g_NH3_av |
---|
9240 | IF ( vari == 'OCNV' ) to_be_resorted => g_OCNV_av |
---|
9241 | IF ( vari == 'OCSV' ) to_be_resorted => g_OCSV_av |
---|
9242 | DO i = nxl, nxr |
---|
9243 | DO j = nys, nyn |
---|
9244 | DO k = nzb, nzt+1 |
---|
9245 | local_pf(i,j,k) = MERGE( to_be_resorted(k,j,i), & |
---|
9246 | REAL( -999.0_wp, KIND = wp ), & |
---|
9247 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9248 | ENDDO |
---|
9249 | ENDDO |
---|
9250 | ENDDO |
---|
9251 | ENDIF |
---|
9252 | |
---|
9253 | IF ( mode == 'xy' ) grid = 'zu' |
---|
9254 | |
---|
9255 | ELSEIF ( TRIM( variable(1:4) ) == 'LDSA' ) THEN |
---|
9256 | IF ( av == 0 ) THEN |
---|
9257 | DO i = nxl, nxr |
---|
9258 | DO j = nys, nyn |
---|
9259 | DO k = nzb, nzt+1 |
---|
9260 | temp_bin = 0.0_wp |
---|
9261 | DO b = 1, nbins |
---|
9262 | ! |
---|
9263 | !-- Diameter in micrometres |
---|
9264 | mean_d = 1.0E+6_wp * Ra_dry(k,j,i,b) * 2.0_wp |
---|
9265 | ! |
---|
9266 | !-- Deposition factor: alveolar |
---|
9267 | df = ( 0.01555_wp / mean_d ) * ( EXP( -0.416_wp * ( LOG( & |
---|
9268 | mean_d ) + 2.84_wp )**2.0_wp ) + 19.11_wp * EXP( & |
---|
9269 | -0.482_wp * ( LOG( mean_d ) - 1.362_wp )**2.0_wp ) ) |
---|
9270 | ! |
---|
9271 | !-- Number concentration in 1/cm3 |
---|
9272 | nc = 1.0E-6_wp * aerosol_number(b)%conc(k,j,i) |
---|
9273 | ! |
---|
9274 | !-- Lung-deposited surface area LDSA (units mum2/cm3) |
---|
9275 | temp_bin = temp_bin + pi * mean_d**2.0_wp * df * nc |
---|
9276 | ENDDO |
---|
9277 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9278 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9279 | ENDDO |
---|
9280 | ENDDO |
---|
9281 | ENDDO |
---|
9282 | ELSE |
---|
9283 | DO i = nxl, nxr |
---|
9284 | DO j = nys, nyn |
---|
9285 | DO k = nzb, nzt+1 |
---|
9286 | local_pf(i,j,k) = MERGE( LDSA_av(k,j,i), REAL( -999.0_wp, & |
---|
9287 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9288 | ENDDO |
---|
9289 | ENDDO |
---|
9290 | ENDDO |
---|
9291 | ENDIF |
---|
9292 | |
---|
9293 | IF ( mode == 'xy' ) grid = 'zu' |
---|
9294 | |
---|
9295 | ELSEIF ( TRIM( variable(1:6) ) == 'N_bin1' ) THEN |
---|
9296 | IF ( av == 0 ) THEN |
---|
9297 | DO i = nxl, nxr |
---|
9298 | DO j = nys, nyn |
---|
9299 | DO k = nzb, nzt+1 |
---|
9300 | local_pf(i,j,k) = MERGE( aerosol_number(1)%conc(k,j,i), & |
---|
9301 | REAL( -999.0_wp, KIND = wp ), & |
---|
9302 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9303 | ENDDO |
---|
9304 | ENDDO |
---|
9305 | ENDDO |
---|
9306 | ELSE |
---|
9307 | DO i = nxl, nxr |
---|
9308 | DO j = nys, nyn |
---|
9309 | DO k = nzb, nzt+1 |
---|
9310 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,1), & |
---|
9311 | REAL( -999.0_wp, KIND = wp ), & |
---|
9312 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9313 | ENDDO |
---|
9314 | ENDDO |
---|
9315 | ENDDO |
---|
9316 | ENDIF |
---|
9317 | |
---|
9318 | ELSEIF ( TRIM( variable(1:6) ) == 'N_bin2' ) THEN |
---|
9319 | IF ( av == 0 ) THEN |
---|
9320 | DO i = nxl, nxr |
---|
9321 | DO j = nys, nyn |
---|
9322 | DO k = nzb, nzt+1 |
---|
9323 | local_pf(i,j,k) = MERGE( aerosol_number(2)%conc(k,j,i), & |
---|
9324 | REAL( -999.0_wp, KIND = wp ), & |
---|
9325 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9326 | ENDDO |
---|
9327 | ENDDO |
---|
9328 | ENDDO |
---|
9329 | ELSE |
---|
9330 | DO i = nxl, nxr |
---|
9331 | DO j = nys, nyn |
---|
9332 | DO k = nzb, nzt+1 |
---|
9333 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,2), & |
---|
9334 | REAL( -999.0_wp, KIND = wp ), & |
---|
9335 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9336 | ENDDO |
---|
9337 | ENDDO |
---|
9338 | ENDDO |
---|
9339 | ENDIF |
---|
9340 | |
---|
9341 | ELSEIF ( TRIM( variable(1:6) ) == 'N_bin3' ) THEN |
---|
9342 | IF ( av == 0 ) THEN |
---|
9343 | DO i = nxl, nxr |
---|
9344 | DO j = nys, nyn |
---|
9345 | DO k = nzb, nzt+1 |
---|
9346 | local_pf(i,j,k) = MERGE( aerosol_number(3)%conc(k,j,i), & |
---|
9347 | REAL( -999.0_wp, KIND = wp ), & |
---|
9348 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9349 | ENDDO |
---|
9350 | ENDDO |
---|
9351 | ENDDO |
---|
9352 | ELSE |
---|
9353 | DO i = nxl, nxr |
---|
9354 | DO j = nys, nyn |
---|
9355 | DO k = nzb, nzt+1 |
---|
9356 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,3), & |
---|
9357 | REAL( -999.0_wp, KIND = wp ), & |
---|
9358 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9359 | ENDDO |
---|
9360 | ENDDO |
---|
9361 | ENDDO |
---|
9362 | ENDIF |
---|
9363 | |
---|
9364 | ELSEIF ( TRIM( variable(1:6) ) == 'N_bin4' ) THEN |
---|
9365 | IF ( av == 0 ) THEN |
---|
9366 | DO i = nxl, nxr |
---|
9367 | DO j = nys, nyn |
---|
9368 | DO k = nzb, nzt+1 |
---|
9369 | local_pf(i,j,k) = MERGE( aerosol_number(4)%conc(k,j,i), & |
---|
9370 | REAL( -999.0_wp, KIND = wp ), & |
---|
9371 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9372 | ENDDO |
---|
9373 | ENDDO |
---|
9374 | ENDDO |
---|
9375 | ELSE |
---|
9376 | DO i = nxl, nxr |
---|
9377 | DO j = nys, nyn |
---|
9378 | DO k = nzb, nzt+1 |
---|
9379 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,4), & |
---|
9380 | REAL( -999.0_wp, KIND = wp ), & |
---|
9381 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9382 | ENDDO |
---|
9383 | ENDDO |
---|
9384 | ENDDO |
---|
9385 | ENDIF |
---|
9386 | |
---|
9387 | ELSEIF ( TRIM( variable(1:6) ) == 'N_bin5' ) THEN |
---|
9388 | IF ( av == 0 ) THEN |
---|
9389 | DO i = nxl, nxr |
---|
9390 | DO j = nys, nyn |
---|
9391 | DO k = nzb, nzt+1 |
---|
9392 | local_pf(i,j,k) = MERGE( aerosol_number(5)%conc(k,j,i), & |
---|
9393 | REAL( -999.0_wp, KIND = wp ), & |
---|
9394 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9395 | ENDDO |
---|
9396 | ENDDO |
---|
9397 | ENDDO |
---|
9398 | ELSE |
---|
9399 | DO i = nxl, nxr |
---|
9400 | DO j = nys, nyn |
---|
9401 | DO k = nzb, nzt+1 |
---|
9402 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,5), & |
---|
9403 | REAL( -999.0_wp, KIND = wp ), & |
---|
9404 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9405 | ENDDO |
---|
9406 | ENDDO |
---|
9407 | ENDDO |
---|
9408 | ENDIF |
---|
9409 | |
---|
9410 | ELSEIF ( TRIM( variable(1:6) ) == 'N_bin6' ) THEN |
---|
9411 | IF ( av == 0 ) THEN |
---|
9412 | DO i = nxl, nxr |
---|
9413 | DO j = nys, nyn |
---|
9414 | DO k = nzb, nzt+1 |
---|
9415 | local_pf(i,j,k) = MERGE( aerosol_number(6)%conc(k,j,i), & |
---|
9416 | REAL( -999.0_wp, KIND = wp ), & |
---|
9417 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9418 | ENDDO |
---|
9419 | ENDDO |
---|
9420 | ENDDO |
---|
9421 | ELSE |
---|
9422 | DO i = nxl, nxr |
---|
9423 | DO j = nys, nyn |
---|
9424 | DO k = nzb, nzt+1 |
---|
9425 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,6), & |
---|
9426 | REAL( -999.0_wp, KIND = wp ), & |
---|
9427 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9428 | ENDDO |
---|
9429 | ENDDO |
---|
9430 | ENDDO |
---|
9431 | ENDIF |
---|
9432 | |
---|
9433 | ELSEIF ( TRIM( variable(1:6) ) == 'N_bin7' ) THEN |
---|
9434 | IF ( av == 0 ) THEN |
---|
9435 | DO i = nxl, nxr |
---|
9436 | DO j = nys, nyn |
---|
9437 | DO k = nzb, nzt+1 |
---|
9438 | local_pf(i,j,k) = MERGE( aerosol_number(7)%conc(k,j,i), & |
---|
9439 | REAL( -999.0_wp, KIND = wp ), & |
---|
9440 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9441 | ENDDO |
---|
9442 | ENDDO |
---|
9443 | ENDDO |
---|
9444 | ELSE |
---|
9445 | DO i = nxl, nxr |
---|
9446 | DO j = nys, nyn |
---|
9447 | DO k = nzb, nzt+1 |
---|
9448 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,7), & |
---|
9449 | REAL( -999.0_wp, KIND = wp ), & |
---|
9450 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9451 | ENDDO |
---|
9452 | ENDDO |
---|
9453 | ENDDO |
---|
9454 | ENDIF |
---|
9455 | |
---|
9456 | ELSEIF ( TRIM( variable(1:6) ) == 'N_bin8' ) THEN |
---|
9457 | IF ( av == 0 ) THEN |
---|
9458 | DO i = nxl, nxr |
---|
9459 | DO j = nys, nyn |
---|
9460 | DO k = nzb, nzt+1 |
---|
9461 | local_pf(i,j,k) = MERGE( aerosol_number(8)%conc(k,j,i), & |
---|
9462 | REAL( -999.0_wp, KIND = wp ), & |
---|
9463 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9464 | ENDDO |
---|
9465 | ENDDO |
---|
9466 | ENDDO |
---|
9467 | ELSE |
---|
9468 | DO i = nxl, nxr |
---|
9469 | DO j = nys, nyn |
---|
9470 | DO k = nzb, nzt+1 |
---|
9471 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,8), & |
---|
9472 | REAL( -999.0_wp, KIND = wp ), & |
---|
9473 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9474 | ENDDO |
---|
9475 | ENDDO |
---|
9476 | ENDDO |
---|
9477 | ENDIF |
---|
9478 | |
---|
9479 | ELSEIF ( TRIM( variable(1:6) ) == 'N_bin9' ) THEN |
---|
9480 | IF ( av == 0 ) THEN |
---|
9481 | DO i = nxl, nxr |
---|
9482 | DO j = nys, nyn |
---|
9483 | DO k = nzb, nzt+1 |
---|
9484 | local_pf(i,j,k) = MERGE( aerosol_number(9)%conc(k,j,i), & |
---|
9485 | REAL( -999.0_wp, KIND = wp ), & |
---|
9486 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9487 | ENDDO |
---|
9488 | ENDDO |
---|
9489 | ENDDO |
---|
9490 | ELSE |
---|
9491 | DO i = nxl, nxr |
---|
9492 | DO j = nys, nyn |
---|
9493 | DO k = nzb, nzt+1 |
---|
9494 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,9), & |
---|
9495 | REAL( -999.0_wp, KIND = wp ), & |
---|
9496 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9497 | ENDDO |
---|
9498 | ENDDO |
---|
9499 | ENDDO |
---|
9500 | ENDIF |
---|
9501 | |
---|
9502 | ELSEIF ( TRIM( variable(1:7) ) == 'N_bin10' ) THEN |
---|
9503 | IF ( av == 0 ) THEN |
---|
9504 | DO i = nxl, nxr |
---|
9505 | DO j = nys, nyn |
---|
9506 | DO k = nzb, nzt+1 |
---|
9507 | local_pf(i,j,k) = MERGE( aerosol_number(10)%conc(k,j,i), & |
---|
9508 | REAL( -999.0_wp, KIND = wp ), & |
---|
9509 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9510 | ENDDO |
---|
9511 | ENDDO |
---|
9512 | ENDDO |
---|
9513 | ELSE |
---|
9514 | DO i = nxl, nxr |
---|
9515 | DO j = nys, nyn |
---|
9516 | DO k = nzb, nzt+1 |
---|
9517 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,10), & |
---|
9518 | REAL( -999.0_wp, KIND = wp ), & |
---|
9519 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9520 | ENDDO |
---|
9521 | ENDDO |
---|
9522 | ENDDO |
---|
9523 | ENDIF |
---|
9524 | |
---|
9525 | ELSEIF ( TRIM( variable(1:7) ) == 'N_bin11' ) THEN |
---|
9526 | IF ( av == 0 ) THEN |
---|
9527 | DO i = nxl, nxr |
---|
9528 | DO j = nys, nyn |
---|
9529 | DO k = nzb, nzt+1 |
---|
9530 | local_pf(i,j,k) = MERGE( aerosol_number(11)%conc(k,j,i), & |
---|
9531 | REAL( -999.0_wp, KIND = wp ), & |
---|
9532 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9533 | ENDDO |
---|
9534 | ENDDO |
---|
9535 | ENDDO |
---|
9536 | ELSE |
---|
9537 | DO i = nxl, nxr |
---|
9538 | DO j = nys, nyn |
---|
9539 | DO k = nzb, nzt+1 |
---|
9540 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,11), & |
---|
9541 | REAL( -999.0_wp, KIND = wp ), & |
---|
9542 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9543 | ENDDO |
---|
9544 | ENDDO |
---|
9545 | ENDDO |
---|
9546 | ENDIF |
---|
9547 | |
---|
9548 | ELSEIF ( TRIM( variable(1:7) ) == 'N_bin12' ) THEN |
---|
9549 | IF ( av == 0 ) THEN |
---|
9550 | DO i = nxl, nxr |
---|
9551 | DO j = nys, nyn |
---|
9552 | DO k = nzb, nzt+1 |
---|
9553 | local_pf(i,j,k) = MERGE( aerosol_number(12)%conc(k,j,i), & |
---|
9554 | REAL( -999.0_wp, KIND = wp ), & |
---|
9555 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9556 | ENDDO |
---|
9557 | ENDDO |
---|
9558 | ENDDO |
---|
9559 | ELSE |
---|
9560 | DO i = nxl, nxr |
---|
9561 | DO j = nys, nyn |
---|
9562 | DO k = nzb, nzt+1 |
---|
9563 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,12), & |
---|
9564 | REAL( -999.0_wp, KIND = wp ), & |
---|
9565 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9566 | ENDDO |
---|
9567 | ENDDO |
---|
9568 | ENDDO |
---|
9569 | ENDIF |
---|
9570 | |
---|
9571 | ELSEIF ( TRIM( variable(1:4) ) == 'Ntot' ) THEN |
---|
9572 | IF ( av == 0 ) THEN |
---|
9573 | DO i = nxl, nxr |
---|
9574 | DO j = nys, nyn |
---|
9575 | DO k = nzb, nzt+1 |
---|
9576 | temp_bin = 0.0_wp |
---|
9577 | DO b = 1, nbins |
---|
9578 | temp_bin = temp_bin + aerosol_number(b)%conc(k,j,i) |
---|
9579 | ENDDO |
---|
9580 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9581 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9582 | ENDDO |
---|
9583 | ENDDO |
---|
9584 | ENDDO |
---|
9585 | ELSE |
---|
9586 | DO i = nxl, nxr |
---|
9587 | DO j = nys, nyn |
---|
9588 | DO k = nzb, nzt+1 |
---|
9589 | local_pf(i,j,k) = MERGE( Ntot_av(k,j,i), REAL( -999.0_wp, & |
---|
9590 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9591 | ENDDO |
---|
9592 | ENDDO |
---|
9593 | ENDDO |
---|
9594 | ENDIF |
---|
9595 | |
---|
9596 | IF ( mode == 'xy' ) grid = 'zu' |
---|
9597 | |
---|
9598 | |
---|
9599 | ELSEIF ( TRIM( variable(1:6) ) == 'm_bin1' ) THEN |
---|
9600 | IF ( av == 0 ) THEN |
---|
9601 | DO i = nxl, nxr |
---|
9602 | DO j = nys, nyn |
---|
9603 | DO k = nzb, nzt+1 |
---|
9604 | temp_bin = 0.0_wp |
---|
9605 | DO c = 1, ncc_tot*nbins, nbins |
---|
9606 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9607 | ENDDO |
---|
9608 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9609 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9610 | ENDDO |
---|
9611 | ENDDO |
---|
9612 | ENDDO |
---|
9613 | ELSE |
---|
9614 | DO i = nxl, nxr |
---|
9615 | DO j = nys, nyn |
---|
9616 | DO k = nzb, nzt+1 |
---|
9617 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,1), REAL( -999.0_wp,& |
---|
9618 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9619 | ENDDO |
---|
9620 | ENDDO |
---|
9621 | ENDDO |
---|
9622 | ENDIF |
---|
9623 | |
---|
9624 | ELSEIF ( TRIM( variable(1:6) ) == 'm_bin2' ) THEN |
---|
9625 | IF ( av == 0 ) THEN |
---|
9626 | DO i = nxl, nxr |
---|
9627 | DO j = nys, nyn |
---|
9628 | DO k = nzb, nzt+1 |
---|
9629 | temp_bin = 0.0_wp |
---|
9630 | DO c = 2, ncc_tot*nbins, nbins |
---|
9631 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9632 | ENDDO |
---|
9633 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9634 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9635 | ENDDO |
---|
9636 | ENDDO |
---|
9637 | ENDDO |
---|
9638 | ELSE |
---|
9639 | DO i = nxl, nxr |
---|
9640 | DO j = nys, nyn |
---|
9641 | DO k = nzb, nzt+1 |
---|
9642 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,2), REAL( -999.0_wp,& |
---|
9643 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9644 | ENDDO |
---|
9645 | ENDDO |
---|
9646 | ENDDO |
---|
9647 | ENDIF |
---|
9648 | |
---|
9649 | ELSEIF ( TRIM( variable(1:6) ) == 'm_bin3' ) THEN |
---|
9650 | IF ( av == 0 ) THEN |
---|
9651 | DO i = nxl, nxr |
---|
9652 | DO j = nys, nyn |
---|
9653 | DO k = nzb, nzt+1 |
---|
9654 | temp_bin = 0.0_wp |
---|
9655 | DO c = 3, ncc_tot*nbins, nbins |
---|
9656 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9657 | ENDDO |
---|
9658 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9659 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9660 | ENDDO |
---|
9661 | ENDDO |
---|
9662 | ENDDO |
---|
9663 | ELSE |
---|
9664 | DO i = nxl, nxr |
---|
9665 | DO j = nys, nyn |
---|
9666 | DO k = nzb, nzt+1 |
---|
9667 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,3), REAL( -999.0_wp,& |
---|
9668 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9669 | ENDDO |
---|
9670 | ENDDO |
---|
9671 | ENDDO |
---|
9672 | ENDIF |
---|
9673 | |
---|
9674 | ELSEIF ( TRIM( variable(1:6) ) == 'm_bin4' ) THEN |
---|
9675 | IF ( av == 0 ) THEN |
---|
9676 | DO i = nxl, nxr |
---|
9677 | DO j = nys, nyn |
---|
9678 | DO k = nzb, nzt+1 |
---|
9679 | temp_bin = 0.0_wp |
---|
9680 | DO c = 4, ncc_tot*nbins, nbins |
---|
9681 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9682 | ENDDO |
---|
9683 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9684 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9685 | ENDDO |
---|
9686 | ENDDO |
---|
9687 | ENDDO |
---|
9688 | ELSE |
---|
9689 | DO i = nxl, nxr |
---|
9690 | DO j = nys, nyn |
---|
9691 | DO k = nzb, nzt+1 |
---|
9692 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,4), REAL( -999.0_wp,& |
---|
9693 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9694 | ENDDO |
---|
9695 | ENDDO |
---|
9696 | ENDDO |
---|
9697 | ENDIF |
---|
9698 | |
---|
9699 | ELSEIF ( TRIM( variable(1:6) ) == 'm_bin5' ) THEN |
---|
9700 | IF ( av == 0 ) THEN |
---|
9701 | DO i = nxl, nxr |
---|
9702 | DO j = nys, nyn |
---|
9703 | DO k = nzb, nzt+1 |
---|
9704 | temp_bin = 0.0_wp |
---|
9705 | DO c = 5, ncc_tot*nbins, nbins |
---|
9706 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9707 | ENDDO |
---|
9708 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9709 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9710 | ENDDO |
---|
9711 | ENDDO |
---|
9712 | ENDDO |
---|
9713 | ELSE |
---|
9714 | DO i = nxl, nxr |
---|
9715 | DO j = nys, nyn |
---|
9716 | DO k = nzb, nzt+1 |
---|
9717 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,5), REAL( -999.0_wp,& |
---|
9718 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9719 | ENDDO |
---|
9720 | ENDDO |
---|
9721 | ENDDO |
---|
9722 | ENDIF |
---|
9723 | |
---|
9724 | ELSEIF ( TRIM( variable(1:6) ) == 'm_bin6' ) THEN |
---|
9725 | IF ( av == 0 ) THEN |
---|
9726 | DO i = nxl, nxr |
---|
9727 | DO j = nys, nyn |
---|
9728 | DO k = nzb, nzt+1 |
---|
9729 | temp_bin = 0.0_wp |
---|
9730 | DO c = 6, ncc_tot*nbins, nbins |
---|
9731 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9732 | ENDDO |
---|
9733 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9734 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9735 | ENDDO |
---|
9736 | ENDDO |
---|
9737 | ENDDO |
---|
9738 | ELSE |
---|
9739 | DO i = nxl, nxr |
---|
9740 | DO j = nys, nyn |
---|
9741 | DO k = nzb, nzt+1 |
---|
9742 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,6), REAL( -999.0_wp,& |
---|
9743 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9744 | ENDDO |
---|
9745 | ENDDO |
---|
9746 | ENDDO |
---|
9747 | ENDIF |
---|
9748 | |
---|
9749 | ELSEIF ( TRIM( variable(1:6) ) == 'm_bin7' ) THEN |
---|
9750 | IF ( av == 0 ) THEN |
---|
9751 | DO i = nxl, nxr |
---|
9752 | DO j = nys, nyn |
---|
9753 | DO k = nzb, nzt+1 |
---|
9754 | temp_bin = 0.0_wp |
---|
9755 | DO c = 7, ncc_tot*nbins, nbins |
---|
9756 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9757 | ENDDO |
---|
9758 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9759 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9760 | ENDDO |
---|
9761 | ENDDO |
---|
9762 | ENDDO |
---|
9763 | ELSE |
---|
9764 | DO i = nxl, nxr |
---|
9765 | DO j = nys, nyn |
---|
9766 | DO k = nzb, nzt+1 |
---|
9767 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,7), REAL( -999.0_wp,& |
---|
9768 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9769 | ENDDO |
---|
9770 | ENDDO |
---|
9771 | ENDDO |
---|
9772 | ENDIF |
---|
9773 | |
---|
9774 | ELSEIF ( TRIM( variable(1:6) ) == 'm_bin8' ) THEN |
---|
9775 | IF ( av == 0 ) THEN |
---|
9776 | DO i = nxl, nxr |
---|
9777 | DO j = nys, nyn |
---|
9778 | DO k = nzb, nzt+1 |
---|
9779 | temp_bin = 0.0_wp |
---|
9780 | DO c = 8, ncc_tot*nbins, nbins |
---|
9781 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9782 | ENDDO |
---|
9783 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9784 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9785 | ENDDO |
---|
9786 | ENDDO |
---|
9787 | ENDDO |
---|
9788 | ELSE |
---|
9789 | DO i = nxl, nxr |
---|
9790 | DO j = nys, nyn |
---|
9791 | DO k = nzb, nzt+1 |
---|
9792 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,8), REAL( -999.0_wp,& |
---|
9793 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9794 | ENDDO |
---|
9795 | ENDDO |
---|
9796 | ENDDO |
---|
9797 | ENDIF |
---|
9798 | |
---|
9799 | ELSEIF ( TRIM( variable(1:6) ) == 'm_bin9' ) THEN |
---|
9800 | IF ( av == 0 ) THEN |
---|
9801 | DO i = nxl, nxr |
---|
9802 | DO j = nys, nyn |
---|
9803 | DO k = nzb, nzt+1 |
---|
9804 | temp_bin = 0.0_wp |
---|
9805 | DO c = 9, ncc_tot*nbins, nbins |
---|
9806 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9807 | ENDDO |
---|
9808 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9809 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9810 | ENDDO |
---|
9811 | ENDDO |
---|
9812 | ENDDO |
---|
9813 | ELSE |
---|
9814 | DO i = nxl, nxr |
---|
9815 | DO j = nys, nyn |
---|
9816 | DO k = nzb, nzt+1 |
---|
9817 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,9), REAL( -999.0_wp,& |
---|
9818 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9819 | ENDDO |
---|
9820 | ENDDO |
---|
9821 | ENDDO |
---|
9822 | ENDIF |
---|
9823 | |
---|
9824 | ELSEIF ( TRIM( variable(1:7) ) == 'm_bin10' ) THEN |
---|
9825 | IF ( av == 0 ) THEN |
---|
9826 | DO i = nxl, nxr |
---|
9827 | DO j = nys, nyn |
---|
9828 | DO k = nzb, nzt+1 |
---|
9829 | temp_bin = 0.0_wp |
---|
9830 | DO c = 10, ncc_tot*nbins, nbins |
---|
9831 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9832 | ENDDO |
---|
9833 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9834 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9835 | ENDDO |
---|
9836 | ENDDO |
---|
9837 | ENDDO |
---|
9838 | ELSE |
---|
9839 | DO i = nxl, nxr |
---|
9840 | DO j = nys, nyn |
---|
9841 | DO k = nzb, nzt+1 |
---|
9842 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,10), REAL( & |
---|
9843 | -999.0_wp, KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9844 | ENDDO |
---|
9845 | ENDDO |
---|
9846 | ENDDO |
---|
9847 | ENDIF |
---|
9848 | |
---|
9849 | ELSEIF ( TRIM( variable(1:7) ) == 'm_bin11' ) THEN |
---|
9850 | IF ( av == 0 ) THEN |
---|
9851 | DO i = nxl, nxr |
---|
9852 | DO j = nys, nyn |
---|
9853 | DO k = nzb, nzt+1 |
---|
9854 | temp_bin = 0.0_wp |
---|
9855 | DO c = 11, ncc_tot*nbins, nbins |
---|
9856 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9857 | ENDDO |
---|
9858 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9859 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9860 | ENDDO |
---|
9861 | ENDDO |
---|
9862 | ENDDO |
---|
9863 | ELSE |
---|
9864 | DO i = nxl, nxr |
---|
9865 | DO j = nys, nyn |
---|
9866 | DO k = nzb, nzt+1 |
---|
9867 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,11), REAL( & |
---|
9868 | -999.0_wp, KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9869 | ENDDO |
---|
9870 | ENDDO |
---|
9871 | ENDDO |
---|
9872 | ENDIF |
---|
9873 | |
---|
9874 | ELSEIF ( TRIM( variable(1:7) ) == 'm_bin12' ) THEN |
---|
9875 | IF ( av == 0 ) THEN |
---|
9876 | DO i = nxl, nxr |
---|
9877 | DO j = nys, nyn |
---|
9878 | DO k = nzb, nzt+1 |
---|
9879 | temp_bin = 0.0_wp |
---|
9880 | DO c = 12, ncc_tot*nbins, nbins |
---|
9881 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9882 | ENDDO |
---|
9883 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9884 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9885 | ENDDO |
---|
9886 | ENDDO |
---|
9887 | ENDDO |
---|
9888 | ELSE |
---|
9889 | DO i = nxl, nxr |
---|
9890 | DO j = nys, nyn |
---|
9891 | DO k = nzb, nzt+1 |
---|
9892 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,12), REAL( & |
---|
9893 | -999.0_wp, KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9894 | ENDDO |
---|
9895 | ENDDO |
---|
9896 | ENDDO |
---|
9897 | ENDIF |
---|
9898 | |
---|
9899 | ELSEIF ( TRIM( variable(1:5) ) == 'PM2.5' ) THEN |
---|
9900 | IF ( av == 0 ) THEN |
---|
9901 | DO i = nxl, nxr |
---|
9902 | DO j = nys, nyn |
---|
9903 | DO k = nzb, nzt+1 |
---|
9904 | temp_bin = 0.0_wp |
---|
9905 | DO b = 1, nbins |
---|
9906 | IF ( 2.0_wp * Ra_dry(k,j,i,b) <= 2.5E-6_wp ) THEN |
---|
9907 | DO c = b, nbins*ncc, nbins |
---|
9908 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9909 | ENDDO |
---|
9910 | ENDIF |
---|
9911 | ENDDO |
---|
9912 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9913 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9914 | ENDDO |
---|
9915 | ENDDO |
---|
9916 | ENDDO |
---|
9917 | ELSE |
---|
9918 | DO i = nxl, nxr |
---|
9919 | DO j = nys, nyn |
---|
9920 | DO k = nzb, nzt+1 |
---|
9921 | local_pf(i,j,k) = MERGE( PM25_av(k,j,i), REAL( -999.0_wp, & |
---|
9922 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9923 | ENDDO |
---|
9924 | ENDDO |
---|
9925 | ENDDO |
---|
9926 | ENDIF |
---|
9927 | |
---|
9928 | IF ( mode == 'xy' ) grid = 'zu' |
---|
9929 | |
---|
9930 | |
---|
9931 | ELSEIF ( TRIM( variable(1:4) ) == 'PM10' ) THEN |
---|
9932 | IF ( av == 0 ) THEN |
---|
9933 | DO i = nxl, nxr |
---|
9934 | DO j = nys, nyn |
---|
9935 | DO k = nzb, nzt+1 |
---|
9936 | temp_bin = 0.0_wp |
---|
9937 | DO b = 1, nbins |
---|
9938 | IF ( 2.0_wp * Ra_dry(k,j,i,b) <= 10.0E-6_wp ) THEN |
---|
9939 | DO c = b, nbins*ncc, nbins |
---|
9940 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9941 | ENDDO |
---|
9942 | ENDIF |
---|
9943 | ENDDO |
---|
9944 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9945 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9946 | ENDDO |
---|
9947 | ENDDO |
---|
9948 | ENDDO |
---|
9949 | ELSE |
---|
9950 | DO i = nxl, nxr |
---|
9951 | DO j = nys, nyn |
---|
9952 | DO k = nzb, nzt+1 |
---|
9953 | local_pf(i,j,k) = MERGE( PM10_av(k,j,i), REAL( -999.0_wp, & |
---|
9954 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9955 | ENDDO |
---|
9956 | ENDDO |
---|
9957 | ENDDO |
---|
9958 | ENDIF |
---|
9959 | |
---|
9960 | IF ( mode == 'xy' ) grid = 'zu' |
---|
9961 | |
---|
9962 | ELSEIF ( TRIM( variable(1:2) ) == 's_' ) THEN |
---|
9963 | vari = TRIM( variable( 3:LEN( TRIM( variable ) ) - 3 ) ) |
---|
9964 | IF ( is_used( prtcl, vari ) ) THEN |
---|
9965 | icc = get_index( prtcl, vari ) |
---|
9966 | IF ( av == 0 ) THEN |
---|
9967 | DO i = nxl, nxr |
---|
9968 | DO j = nys, nyn |
---|
9969 | DO k = nzb, nzt+1 |
---|
9970 | temp_bin = 0.0_wp |
---|
9971 | DO c = ( icc-1 )*nbins+1, icc*nbins, 1 |
---|
9972 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
9973 | ENDDO |
---|
9974 | local_pf(i,j,k) = MERGE( temp_bin, REAL( -999.0_wp, & |
---|
9975 | KIND = wp ), BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9976 | ENDDO |
---|
9977 | ENDDO |
---|
9978 | ENDDO |
---|
9979 | ELSE |
---|
9980 | IF ( vari == 'BC' ) to_be_resorted => s_BC_av |
---|
9981 | IF ( vari == 'DU' ) to_be_resorted => s_DU_av |
---|
9982 | IF ( vari == 'NH' ) to_be_resorted => s_NH_av |
---|
9983 | IF ( vari == 'NO' ) to_be_resorted => s_NO_av |
---|
9984 | IF ( vari == 'OC' ) to_be_resorted => s_OC_av |
---|
9985 | IF ( vari == 'SO4' ) to_be_resorted => s_SO4_av |
---|
9986 | IF ( vari == 'SS' ) to_be_resorted => s_SS_av |
---|
9987 | DO i = nxl, nxr |
---|
9988 | DO j = nys, nyn |
---|
9989 | DO k = nzb, nzt+1 |
---|
9990 | local_pf(i,j,k) = MERGE( to_be_resorted(k,j,i), & |
---|
9991 | REAL( -999.0_wp, KIND = wp ), & |
---|
9992 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
9993 | ENDDO |
---|
9994 | ENDDO |
---|
9995 | ENDDO |
---|
9996 | ENDIF |
---|
9997 | ELSE |
---|
9998 | local_pf = 0.0_wp |
---|
9999 | ENDIF |
---|
10000 | |
---|
10001 | IF ( mode == 'xy' ) grid = 'zu' |
---|
10002 | |
---|
10003 | ELSE |
---|
10004 | found = .FALSE. |
---|
10005 | grid = 'none' |
---|
10006 | |
---|
10007 | ENDIF |
---|
10008 | |
---|
10009 | END SUBROUTINE salsa_data_output_2d |
---|
10010 | |
---|
10011 | |
---|
10012 | !------------------------------------------------------------------------------! |
---|
10013 | ! |
---|
10014 | ! Description: |
---|
10015 | ! ------------ |
---|
10016 | !> Subroutine defining 3D output variables |
---|
10017 | !------------------------------------------------------------------------------! |
---|
10018 | SUBROUTINE salsa_data_output_3d( av, variable, found, local_pf ) |
---|
10019 | |
---|
10020 | USE indices |
---|
10021 | |
---|
10022 | USE kinds |
---|
10023 | |
---|
10024 | IMPLICIT NONE |
---|
10025 | |
---|
10026 | CHARACTER (LEN=*), INTENT(in) :: variable !< |
---|
10027 | |
---|
10028 | INTEGER(iwp) :: av !< |
---|
10029 | INTEGER(iwp) :: c !< |
---|
10030 | INTEGER(iwp) :: i !< |
---|
10031 | INTEGER(iwp) :: icc !< index of a chemical compound |
---|
10032 | INTEGER(iwp) :: j !< |
---|
10033 | INTEGER(iwp) :: k !< |
---|
10034 | INTEGER(iwp) :: n !< |
---|
10035 | |
---|
10036 | LOGICAL :: found !< |
---|
10037 | REAL(wp) :: df !< For calculating LDSA: fraction of particles |
---|
10038 | !< depositing in the alveolar (or tracheobronchial) |
---|
10039 | !< region of the lung. Depends on the particle size |
---|
10040 | REAL(wp) :: mean_d !< Particle diameter in micrometres |
---|
10041 | REAL(wp) :: nc !< Particle number concentration in units 1/cm**3 |
---|
10042 | |
---|
10043 | REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb:nzt+1) :: local_pf !< local |
---|
10044 | !< array to which output data is resorted to |
---|
10045 | REAL(wp) :: temp_bin !< |
---|
10046 | REAL(wp), DIMENSION(:,:,:), POINTER :: to_be_resorted !< points to |
---|
10047 | !< selected output variable |
---|
10048 | |
---|
10049 | found = .TRUE. |
---|
10050 | temp_bin = 0.0_wp |
---|
10051 | |
---|
10052 | SELECT CASE ( TRIM( variable ) ) |
---|
10053 | |
---|
10054 | CASE ( 'g_H2SO4', 'g_HNO3', 'g_NH3', 'g_OCNV', 'g_OCSV' ) |
---|
10055 | IF ( av == 0 ) THEN |
---|
10056 | IF ( TRIM( variable ) == 'g_H2SO4') icc = 1 |
---|
10057 | IF ( TRIM( variable ) == 'g_HNO3') icc = 2 |
---|
10058 | IF ( TRIM( variable ) == 'g_NH3') icc = 3 |
---|
10059 | IF ( TRIM( variable ) == 'g_OCNV') icc = 4 |
---|
10060 | IF ( TRIM( variable ) == 'g_OCSV') icc = 5 |
---|
10061 | |
---|
10062 | DO i = nxl, nxr |
---|
10063 | DO j = nys, nyn |
---|
10064 | DO k = nzb, nzt+1 |
---|
10065 | local_pf(i,j,k) = MERGE( salsa_gas(icc)%conc(k,j,i), & |
---|
10066 | REAL( -999.0_wp, KIND = wp ), & |
---|
10067 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10068 | ENDDO |
---|
10069 | ENDDO |
---|
10070 | ENDDO |
---|
10071 | ELSE |
---|
10072 | IF ( TRIM( variable(3:) ) == 'H2SO4' ) to_be_resorted => g_H2SO4_av |
---|
10073 | IF ( TRIM( variable(3:) ) == 'HNO3' ) to_be_resorted => g_HNO3_av |
---|
10074 | IF ( TRIM( variable(3:) ) == 'NH3' ) to_be_resorted => g_NH3_av |
---|
10075 | IF ( TRIM( variable(3:) ) == 'OCNV' ) to_be_resorted => g_OCNV_av |
---|
10076 | IF ( TRIM( variable(3:) ) == 'OCSV' ) to_be_resorted => g_OCSV_av |
---|
10077 | DO i = nxl, nxr |
---|
10078 | DO j = nys, nyn |
---|
10079 | DO k = nzb, nzt+1 |
---|
10080 | local_pf(i,j,k) = MERGE( to_be_resorted(k,j,i), & |
---|
10081 | REAL( -999.0_wp, KIND = wp ), & |
---|
10082 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10083 | ENDDO |
---|
10084 | ENDDO |
---|
10085 | ENDDO |
---|
10086 | ENDIF |
---|
10087 | |
---|
10088 | CASE ( 'LDSA' ) |
---|
10089 | IF ( av == 0 ) THEN |
---|
10090 | DO i = nxl, nxr |
---|
10091 | DO j = nys, nyn |
---|
10092 | DO k = nzb, nzt+1 |
---|
10093 | temp_bin = 0.0_wp |
---|
10094 | DO n = 1, nbins |
---|
10095 | ! |
---|
10096 | !-- Diameter in micrometres |
---|
10097 | mean_d = 1.0E+6_wp * Ra_dry(k,j,i,n) * 2.0_wp |
---|
10098 | ! |
---|
10099 | !-- Deposition factor: alveolar |
---|
10100 | df = ( 0.01555_wp / mean_d ) * ( EXP( -0.416_wp * & |
---|
10101 | ( LOG( mean_d ) + 2.84_wp )**2.0_wp ) & |
---|
10102 | + 19.11_wp * EXP( -0.482_wp * & |
---|
10103 | ( LOG( mean_d ) - 1.362_wp )**2.0_wp ) ) |
---|
10104 | ! |
---|
10105 | !-- Number concentration in 1/cm3 |
---|
10106 | nc = 1.0E-6_wp * aerosol_number(n)%conc(k,j,i) |
---|
10107 | ! |
---|
10108 | !-- Lung-deposited surface area LDSA (units mum2/cm3) |
---|
10109 | temp_bin = temp_bin + pi * mean_d**2.0_wp * df * nc |
---|
10110 | ENDDO |
---|
10111 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10112 | REAL( -999.0_wp, KIND = wp ), & |
---|
10113 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10114 | ENDDO |
---|
10115 | ENDDO |
---|
10116 | ENDDO |
---|
10117 | ELSE |
---|
10118 | DO i = nxl, nxr |
---|
10119 | DO j = nys, nyn |
---|
10120 | DO k = nzb, nzt+1 |
---|
10121 | local_pf(i,j,k) = MERGE( LDSA_av(k,j,i), & |
---|
10122 | REAL( -999.0_wp, KIND = wp ), & |
---|
10123 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10124 | ENDDO |
---|
10125 | ENDDO |
---|
10126 | ENDDO |
---|
10127 | ENDIF |
---|
10128 | |
---|
10129 | CASE ( 'Ntot' ) |
---|
10130 | IF ( av == 0 ) THEN |
---|
10131 | DO i = nxl, nxr |
---|
10132 | DO j = nys, nyn |
---|
10133 | DO k = nzb, nzt+1 |
---|
10134 | temp_bin = 0.0_wp |
---|
10135 | DO n = 1, nbins |
---|
10136 | temp_bin = temp_bin + aerosol_number(n)%conc(k,j,i) |
---|
10137 | ENDDO |
---|
10138 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10139 | REAL( -999.0_wp, KIND = wp ), & |
---|
10140 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10141 | ENDDO |
---|
10142 | ENDDO |
---|
10143 | ENDDO |
---|
10144 | ELSE |
---|
10145 | DO i = nxl, nxr |
---|
10146 | DO j = nys, nyn |
---|
10147 | DO k = nzb, nzt+1 |
---|
10148 | local_pf(i,j,k) = MERGE( Ntot_av(k,j,i), & |
---|
10149 | REAL( -999.0_wp, KIND = wp ), & |
---|
10150 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10151 | ENDDO |
---|
10152 | ENDDO |
---|
10153 | ENDDO |
---|
10154 | ENDIF |
---|
10155 | |
---|
10156 | CASE ( 'PM2.5' ) |
---|
10157 | IF ( av == 0 ) THEN |
---|
10158 | DO i = nxl, nxr |
---|
10159 | DO j = nys, nyn |
---|
10160 | DO k = nzb, nzt+1 |
---|
10161 | temp_bin = 0.0_wp |
---|
10162 | DO n = 1, nbins |
---|
10163 | IF ( 2.0_wp * Ra_dry(k,j,i,n) <= 2.5E-6_wp ) THEN |
---|
10164 | DO c = n, nbins*ncc, nbins |
---|
10165 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10166 | ENDDO |
---|
10167 | ENDIF |
---|
10168 | ENDDO |
---|
10169 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10170 | REAL( -999.0_wp, KIND = wp ), & |
---|
10171 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10172 | ENDDO |
---|
10173 | ENDDO |
---|
10174 | ENDDO |
---|
10175 | ELSE |
---|
10176 | DO i = nxl, nxr |
---|
10177 | DO j = nys, nyn |
---|
10178 | DO k = nzb, nzt+1 |
---|
10179 | local_pf(i,j,k) = MERGE( PM25_av(k,j,i), & |
---|
10180 | REAL( -999.0_wp, KIND = wp ), & |
---|
10181 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10182 | ENDDO |
---|
10183 | ENDDO |
---|
10184 | ENDDO |
---|
10185 | ENDIF |
---|
10186 | |
---|
10187 | CASE ( 'PM10' ) |
---|
10188 | IF ( av == 0 ) THEN |
---|
10189 | DO i = nxl, nxr |
---|
10190 | DO j = nys, nyn |
---|
10191 | DO k = nzb, nzt+1 |
---|
10192 | temp_bin = 0.0_wp |
---|
10193 | DO n = 1, nbins |
---|
10194 | IF ( 2.0_wp * Ra_dry(k,j,i,n) <= 10.0E-6_wp ) THEN |
---|
10195 | DO c = n, nbins*ncc, nbins |
---|
10196 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10197 | ENDDO |
---|
10198 | ENDIF |
---|
10199 | ENDDO |
---|
10200 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10201 | REAL( -999.0_wp, KIND = wp ), & |
---|
10202 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10203 | ENDDO |
---|
10204 | ENDDO |
---|
10205 | ENDDO |
---|
10206 | ELSE |
---|
10207 | DO i = nxl, nxr |
---|
10208 | DO j = nys, nyn |
---|
10209 | DO k = nzb, nzt+1 |
---|
10210 | local_pf(i,j,k) = MERGE( PM10_av(k,j,i), & |
---|
10211 | REAL( -999.0_wp, KIND = wp ), & |
---|
10212 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10213 | ENDDO |
---|
10214 | ENDDO |
---|
10215 | ENDDO |
---|
10216 | ENDIF |
---|
10217 | |
---|
10218 | CASE ( 'N_bin1' ) |
---|
10219 | IF ( av == 0 ) THEN |
---|
10220 | DO i = nxl, nxr |
---|
10221 | DO j = nys, nyn |
---|
10222 | DO k = nzb, nzt+1 |
---|
10223 | local_pf(i,j,k) = MERGE( aerosol_number(1)%conc(k,j,i), & |
---|
10224 | REAL( -999.0_wp, KIND = wp ), & |
---|
10225 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10226 | ENDDO |
---|
10227 | ENDDO |
---|
10228 | ENDDO |
---|
10229 | ELSE |
---|
10230 | DO i = nxl, nxr |
---|
10231 | DO j = nys, nyn |
---|
10232 | DO k = nzb, nzt+1 |
---|
10233 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,1), & |
---|
10234 | REAL( -999.0_wp, KIND = wp ), & |
---|
10235 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10236 | ENDDO |
---|
10237 | ENDDO |
---|
10238 | ENDDO |
---|
10239 | ENDIF |
---|
10240 | |
---|
10241 | CASE ( 'N_bin2' ) |
---|
10242 | IF ( av == 0 ) THEN |
---|
10243 | DO i = nxl, nxr |
---|
10244 | DO j = nys, nyn |
---|
10245 | DO k = nzb, nzt+1 |
---|
10246 | local_pf(i,j,k) = MERGE( aerosol_number(2)%conc(k,j,i), & |
---|
10247 | REAL( -999.0_wp, KIND = wp ), & |
---|
10248 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10249 | ENDDO |
---|
10250 | ENDDO |
---|
10251 | ENDDO |
---|
10252 | ELSE |
---|
10253 | DO i = nxl, nxr |
---|
10254 | DO j = nys, nyn |
---|
10255 | DO k = nzb, nzt+1 |
---|
10256 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,2), & |
---|
10257 | REAL( -999.0_wp, KIND = wp ), & |
---|
10258 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10259 | ENDDO |
---|
10260 | ENDDO |
---|
10261 | ENDDO |
---|
10262 | ENDIF |
---|
10263 | |
---|
10264 | CASE ( 'N_bin3' ) |
---|
10265 | IF ( av == 0 ) THEN |
---|
10266 | DO i = nxl, nxr |
---|
10267 | DO j = nys, nyn |
---|
10268 | DO k = nzb, nzt+1 |
---|
10269 | local_pf(i,j,k) = MERGE( aerosol_number(3)%conc(k,j,i), & |
---|
10270 | REAL( -999.0_wp, KIND = wp ), & |
---|
10271 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10272 | ENDDO |
---|
10273 | ENDDO |
---|
10274 | ENDDO |
---|
10275 | ELSE |
---|
10276 | DO i = nxl, nxr |
---|
10277 | DO j = nys, nyn |
---|
10278 | DO k = nzb, nzt+1 |
---|
10279 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,3), & |
---|
10280 | REAL( -999.0_wp, KIND = wp ), & |
---|
10281 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10282 | ENDDO |
---|
10283 | ENDDO |
---|
10284 | ENDDO |
---|
10285 | ENDIF |
---|
10286 | |
---|
10287 | CASE ( 'N_bin4' ) |
---|
10288 | IF ( av == 0 ) THEN |
---|
10289 | DO i = nxl, nxr |
---|
10290 | DO j = nys, nyn |
---|
10291 | DO k = nzb, nzt+1 |
---|
10292 | local_pf(i,j,k) = MERGE( aerosol_number(4)%conc(k,j,i), & |
---|
10293 | REAL( -999.0_wp, KIND = wp ), & |
---|
10294 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10295 | ENDDO |
---|
10296 | ENDDO |
---|
10297 | ENDDO |
---|
10298 | ELSE |
---|
10299 | DO i = nxl, nxr |
---|
10300 | DO j = nys, nyn |
---|
10301 | DO k = nzb, nzt+1 |
---|
10302 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,4), & |
---|
10303 | REAL( -999.0_wp, KIND = wp ), & |
---|
10304 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10305 | ENDDO |
---|
10306 | ENDDO |
---|
10307 | ENDDO |
---|
10308 | ENDIF |
---|
10309 | |
---|
10310 | CASE ( 'N_bin5' ) |
---|
10311 | IF ( av == 0 ) THEN |
---|
10312 | DO i = nxl, nxr |
---|
10313 | DO j = nys, nyn |
---|
10314 | DO k = nzb, nzt+1 |
---|
10315 | local_pf(i,j,k) = MERGE( aerosol_number(5)%conc(k,j,i), & |
---|
10316 | REAL( -999.0_wp, KIND = wp ), & |
---|
10317 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10318 | ENDDO |
---|
10319 | ENDDO |
---|
10320 | ENDDO |
---|
10321 | ELSE |
---|
10322 | DO i = nxl, nxr |
---|
10323 | DO j = nys, nyn |
---|
10324 | DO k = nzb, nzt+1 |
---|
10325 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,5), & |
---|
10326 | REAL( -999.0_wp, KIND = wp ), & |
---|
10327 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10328 | ENDDO |
---|
10329 | ENDDO |
---|
10330 | ENDDO |
---|
10331 | ENDIF |
---|
10332 | |
---|
10333 | CASE ( 'N_bin6' ) |
---|
10334 | IF ( av == 0 ) THEN |
---|
10335 | DO i = nxl, nxr |
---|
10336 | DO j = nys, nyn |
---|
10337 | DO k = nzb, nzt+1 |
---|
10338 | local_pf(i,j,k) = MERGE( aerosol_number(6)%conc(k,j,i), & |
---|
10339 | REAL( -999.0_wp, KIND = wp ), & |
---|
10340 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10341 | ENDDO |
---|
10342 | ENDDO |
---|
10343 | ENDDO |
---|
10344 | ELSE |
---|
10345 | DO i = nxl, nxr |
---|
10346 | DO j = nys, nyn |
---|
10347 | DO k = nzb, nzt+1 |
---|
10348 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,6), & |
---|
10349 | REAL( -999.0_wp, KIND = wp ), & |
---|
10350 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10351 | ENDDO |
---|
10352 | ENDDO |
---|
10353 | ENDDO |
---|
10354 | ENDIF |
---|
10355 | |
---|
10356 | CASE ( 'N_bin7' ) |
---|
10357 | IF ( av == 0 ) THEN |
---|
10358 | DO i = nxl, nxr |
---|
10359 | DO j = nys, nyn |
---|
10360 | DO k = nzb, nzt+1 |
---|
10361 | local_pf(i,j,k) = MERGE( aerosol_number(7)%conc(k,j,i), & |
---|
10362 | REAL( -999.0_wp, KIND = wp ), & |
---|
10363 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10364 | ENDDO |
---|
10365 | ENDDO |
---|
10366 | ENDDO |
---|
10367 | ELSE |
---|
10368 | DO i = nxl, nxr |
---|
10369 | DO j = nys, nyn |
---|
10370 | DO k = nzb, nzt+1 |
---|
10371 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,7), & |
---|
10372 | REAL( -999.0_wp, KIND = wp ), & |
---|
10373 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10374 | ENDDO |
---|
10375 | ENDDO |
---|
10376 | ENDDO |
---|
10377 | ENDIF |
---|
10378 | |
---|
10379 | CASE ( 'N_bin8' ) |
---|
10380 | IF ( av == 0 ) THEN |
---|
10381 | DO i = nxl, nxr |
---|
10382 | DO j = nys, nyn |
---|
10383 | DO k = nzb, nzt+1 |
---|
10384 | local_pf(i,j,k) = MERGE( aerosol_number(8)%conc(k,j,i), & |
---|
10385 | REAL( -999.0_wp, KIND = wp ), & |
---|
10386 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10387 | ENDDO |
---|
10388 | ENDDO |
---|
10389 | ENDDO |
---|
10390 | ELSE |
---|
10391 | DO i = nxl, nxr |
---|
10392 | DO j = nys, nyn |
---|
10393 | DO k = nzb, nzt+1 |
---|
10394 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,8), & |
---|
10395 | REAL( -999.0_wp, KIND = wp ), & |
---|
10396 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10397 | ENDDO |
---|
10398 | ENDDO |
---|
10399 | ENDDO |
---|
10400 | ENDIF |
---|
10401 | |
---|
10402 | CASE ( 'N_bin9' ) |
---|
10403 | IF ( av == 0 ) THEN |
---|
10404 | DO i = nxl, nxr |
---|
10405 | DO j = nys, nyn |
---|
10406 | DO k = nzb, nzt+1 |
---|
10407 | local_pf(i,j,k) = MERGE( aerosol_number(9)%conc(k,j,i), & |
---|
10408 | REAL( -999.0_wp, KIND = wp ), & |
---|
10409 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10410 | ENDDO |
---|
10411 | ENDDO |
---|
10412 | ENDDO |
---|
10413 | ELSE |
---|
10414 | DO i = nxl, nxr |
---|
10415 | DO j = nys, nyn |
---|
10416 | DO k = nzb, nzt+1 |
---|
10417 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,9), & |
---|
10418 | REAL( -999.0_wp, KIND = wp ), & |
---|
10419 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10420 | ENDDO |
---|
10421 | ENDDO |
---|
10422 | ENDDO |
---|
10423 | ENDIF |
---|
10424 | |
---|
10425 | CASE ( 'N_bin10' ) |
---|
10426 | IF ( av == 0 ) THEN |
---|
10427 | DO i = nxl, nxr |
---|
10428 | DO j = nys, nyn |
---|
10429 | DO k = nzb, nzt+1 |
---|
10430 | local_pf(i,j,k) = MERGE( aerosol_number(10)%conc(k,j,i), & |
---|
10431 | REAL( -999.0_wp, KIND = wp ), & |
---|
10432 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10433 | ENDDO |
---|
10434 | ENDDO |
---|
10435 | ENDDO |
---|
10436 | ELSE |
---|
10437 | DO i = nxl, nxr |
---|
10438 | DO j = nys, nyn |
---|
10439 | DO k = nzb, nzt+1 |
---|
10440 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,10), & |
---|
10441 | REAL( -999.0_wp, KIND = wp ), & |
---|
10442 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10443 | ENDDO |
---|
10444 | ENDDO |
---|
10445 | ENDDO |
---|
10446 | ENDIF |
---|
10447 | |
---|
10448 | CASE ( 'N_bin11' ) |
---|
10449 | IF ( av == 0 ) THEN |
---|
10450 | DO i = nxl, nxr |
---|
10451 | DO j = nys, nyn |
---|
10452 | DO k = nzb, nzt+1 |
---|
10453 | local_pf(i,j,k) = MERGE( aerosol_number(11)%conc(k,j,i), & |
---|
10454 | REAL( -999.0_wp, KIND = wp ), & |
---|
10455 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10456 | ENDDO |
---|
10457 | ENDDO |
---|
10458 | ENDDO |
---|
10459 | ELSE |
---|
10460 | DO i = nxl, nxr |
---|
10461 | DO j = nys, nyn |
---|
10462 | DO k = nzb, nzt+1 |
---|
10463 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,11), & |
---|
10464 | REAL( -999.0_wp, KIND = wp ), & |
---|
10465 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10466 | ENDDO |
---|
10467 | ENDDO |
---|
10468 | ENDDO |
---|
10469 | ENDIF |
---|
10470 | |
---|
10471 | CASE ( 'N_bin12' ) |
---|
10472 | IF ( av == 0 ) THEN |
---|
10473 | DO i = nxl, nxr |
---|
10474 | DO j = nys, nyn |
---|
10475 | DO k = nzb, nzt+1 |
---|
10476 | local_pf(i,j,k) = MERGE( aerosol_number(12)%conc(k,j,i), & |
---|
10477 | REAL( -999.0_wp, KIND = wp ), & |
---|
10478 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10479 | ENDDO |
---|
10480 | ENDDO |
---|
10481 | ENDDO |
---|
10482 | ELSE |
---|
10483 | DO i = nxl, nxr |
---|
10484 | DO j = nys, nyn |
---|
10485 | DO k = nzb, nzt+1 |
---|
10486 | local_pf(i,j,k) = MERGE( Nbins_av(k,j,i,12), & |
---|
10487 | REAL( -999.0_wp, KIND = wp ), & |
---|
10488 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10489 | ENDDO |
---|
10490 | ENDDO |
---|
10491 | ENDDO |
---|
10492 | ENDIF |
---|
10493 | |
---|
10494 | CASE ( 'm_bin1' ) |
---|
10495 | IF ( av == 0 ) THEN |
---|
10496 | DO i = nxl, nxr |
---|
10497 | DO j = nys, nyn |
---|
10498 | DO k = nzb, nzt+1 |
---|
10499 | temp_bin = 0.0_wp |
---|
10500 | DO c = 1, ncc_tot*nbins, nbins |
---|
10501 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10502 | ENDDO |
---|
10503 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10504 | REAL( -999.0_wp, KIND = wp ), & |
---|
10505 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10506 | ENDDO |
---|
10507 | ENDDO |
---|
10508 | ENDDO |
---|
10509 | ELSE |
---|
10510 | DO i = nxl, nxr |
---|
10511 | DO j = nys, nyn |
---|
10512 | DO k = nzb, nzt+1 |
---|
10513 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,1), & |
---|
10514 | REAL( -999.0_wp, KIND = wp ), & |
---|
10515 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10516 | ENDDO |
---|
10517 | ENDDO |
---|
10518 | ENDDO |
---|
10519 | ENDIF |
---|
10520 | |
---|
10521 | CASE ( 'm_bin2' ) |
---|
10522 | IF ( av == 0 ) THEN |
---|
10523 | DO i = nxl, nxr |
---|
10524 | DO j = nys, nyn |
---|
10525 | DO k = nzb, nzt+1 |
---|
10526 | temp_bin = 0.0_wp |
---|
10527 | DO c = 2, ncc_tot*nbins, nbins |
---|
10528 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10529 | ENDDO |
---|
10530 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10531 | REAL( -999.0_wp, KIND = wp ), & |
---|
10532 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10533 | ENDDO |
---|
10534 | ENDDO |
---|
10535 | ENDDO |
---|
10536 | ELSE |
---|
10537 | DO i = nxl, nxr |
---|
10538 | DO j = nys, nyn |
---|
10539 | DO k = nzb, nzt+1 |
---|
10540 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,2), & |
---|
10541 | REAL( -999.0_wp, KIND = wp ), & |
---|
10542 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10543 | ENDDO |
---|
10544 | ENDDO |
---|
10545 | ENDDO |
---|
10546 | ENDIF |
---|
10547 | |
---|
10548 | CASE ( 'm_bin3' ) |
---|
10549 | IF ( av == 0 ) THEN |
---|
10550 | DO i = nxl, nxr |
---|
10551 | DO j = nys, nyn |
---|
10552 | DO k = nzb, nzt+1 |
---|
10553 | temp_bin = 0.0_wp |
---|
10554 | DO c = 3, ncc_tot*nbins, nbins |
---|
10555 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10556 | ENDDO |
---|
10557 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10558 | REAL( -999.0_wp, KIND = wp ), & |
---|
10559 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10560 | ENDDO |
---|
10561 | ENDDO |
---|
10562 | ENDDO |
---|
10563 | ELSE |
---|
10564 | DO i = nxl, nxr |
---|
10565 | DO j = nys, nyn |
---|
10566 | DO k = nzb, nzt+1 |
---|
10567 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,3), & |
---|
10568 | REAL( -999.0_wp, KIND = wp ), & |
---|
10569 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10570 | ENDDO |
---|
10571 | ENDDO |
---|
10572 | ENDDO |
---|
10573 | ENDIF |
---|
10574 | |
---|
10575 | CASE ( 'm_bin4' ) |
---|
10576 | IF ( av == 0 ) THEN |
---|
10577 | DO i = nxl, nxr |
---|
10578 | DO j = nys, nyn |
---|
10579 | DO k = nzb, nzt+1 |
---|
10580 | temp_bin = 0.0_wp |
---|
10581 | DO c = 4, ncc_tot*nbins, nbins |
---|
10582 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10583 | ENDDO |
---|
10584 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10585 | REAL( -999.0_wp, KIND = wp ), & |
---|
10586 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10587 | ENDDO |
---|
10588 | ENDDO |
---|
10589 | ENDDO |
---|
10590 | ELSE |
---|
10591 | DO i = nxl, nxr |
---|
10592 | DO j = nys, nyn |
---|
10593 | DO k = nzb, nzt+1 |
---|
10594 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,4), & |
---|
10595 | REAL( -999.0_wp, KIND = wp ), & |
---|
10596 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10597 | ENDDO |
---|
10598 | ENDDO |
---|
10599 | ENDDO |
---|
10600 | ENDIF |
---|
10601 | |
---|
10602 | CASE ( 'm_bin5' ) |
---|
10603 | IF ( av == 0 ) THEN |
---|
10604 | DO i = nxl, nxr |
---|
10605 | DO j = nys, nyn |
---|
10606 | DO k = nzb, nzt+1 |
---|
10607 | temp_bin = 0.0_wp |
---|
10608 | DO c = 5, ncc_tot*nbins, nbins |
---|
10609 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10610 | ENDDO |
---|
10611 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10612 | REAL( -999.0_wp, KIND = wp ), & |
---|
10613 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10614 | ENDDO |
---|
10615 | ENDDO |
---|
10616 | ENDDO |
---|
10617 | ELSE |
---|
10618 | DO i = nxl, nxr |
---|
10619 | DO j = nys, nyn |
---|
10620 | DO k = nzb, nzt+1 |
---|
10621 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,5), & |
---|
10622 | REAL( -999.0_wp, KIND = wp ), & |
---|
10623 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10624 | ENDDO |
---|
10625 | ENDDO |
---|
10626 | ENDDO |
---|
10627 | ENDIF |
---|
10628 | |
---|
10629 | CASE ( 'm_bin6' ) |
---|
10630 | IF ( av == 0 ) THEN |
---|
10631 | DO i = nxl, nxr |
---|
10632 | DO j = nys, nyn |
---|
10633 | DO k = nzb, nzt+1 |
---|
10634 | temp_bin = 0.0_wp |
---|
10635 | DO c = 6, ncc_tot*nbins, nbins |
---|
10636 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10637 | ENDDO |
---|
10638 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10639 | REAL( -999.0_wp, KIND = wp ), & |
---|
10640 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10641 | ENDDO |
---|
10642 | ENDDO |
---|
10643 | ENDDO |
---|
10644 | ELSE |
---|
10645 | DO i = nxl, nxr |
---|
10646 | DO j = nys, nyn |
---|
10647 | DO k = nzb, nzt+1 |
---|
10648 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,6), & |
---|
10649 | REAL( -999.0_wp, KIND = wp ), & |
---|
10650 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10651 | ENDDO |
---|
10652 | ENDDO |
---|
10653 | ENDDO |
---|
10654 | ENDIF |
---|
10655 | |
---|
10656 | CASE ( 'm_bin7' ) |
---|
10657 | IF ( av == 0 ) THEN |
---|
10658 | DO i = nxl, nxr |
---|
10659 | DO j = nys, nyn |
---|
10660 | DO k = nzb, nzt+1 |
---|
10661 | temp_bin = 0.0_wp |
---|
10662 | DO c = 7, ncc_tot*nbins, nbins |
---|
10663 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10664 | ENDDO |
---|
10665 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10666 | REAL( -999.0_wp, KIND = wp ), & |
---|
10667 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10668 | ENDDO |
---|
10669 | ENDDO |
---|
10670 | ENDDO |
---|
10671 | ELSE |
---|
10672 | DO i = nxl, nxr |
---|
10673 | DO j = nys, nyn |
---|
10674 | DO k = nzb, nzt+1 |
---|
10675 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,7), & |
---|
10676 | REAL( -999.0_wp, KIND = wp ), & |
---|
10677 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10678 | ENDDO |
---|
10679 | ENDDO |
---|
10680 | ENDDO |
---|
10681 | ENDIF |
---|
10682 | |
---|
10683 | CASE ( 'm_bin8' ) |
---|
10684 | IF ( av == 0 ) THEN |
---|
10685 | DO i = nxl, nxr |
---|
10686 | DO j = nys, nyn |
---|
10687 | DO k = nzb, nzt+1 |
---|
10688 | temp_bin = 0.0_wp |
---|
10689 | DO c = 8, ncc_tot*nbins, nbins |
---|
10690 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10691 | ENDDO |
---|
10692 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10693 | REAL( -999.0_wp, KIND = wp ), & |
---|
10694 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10695 | ENDDO |
---|
10696 | ENDDO |
---|
10697 | ENDDO |
---|
10698 | ELSE |
---|
10699 | DO i = nxl, nxr |
---|
10700 | DO j = nys, nyn |
---|
10701 | DO k = nzb, nzt+1 |
---|
10702 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,8), & |
---|
10703 | REAL( -999.0_wp, KIND = wp ), & |
---|
10704 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10705 | ENDDO |
---|
10706 | ENDDO |
---|
10707 | ENDDO |
---|
10708 | ENDIF |
---|
10709 | |
---|
10710 | CASE ( 'm_bin9' ) |
---|
10711 | IF ( av == 0 ) THEN |
---|
10712 | DO i = nxl, nxr |
---|
10713 | DO j = nys, nyn |
---|
10714 | DO k = nzb, nzt+1 |
---|
10715 | temp_bin = 0.0_wp |
---|
10716 | DO c = 9, ncc_tot*nbins, nbins |
---|
10717 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10718 | ENDDO |
---|
10719 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10720 | REAL( -999.0_wp, KIND = wp ), & |
---|
10721 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10722 | ENDDO |
---|
10723 | ENDDO |
---|
10724 | ENDDO |
---|
10725 | ELSE |
---|
10726 | DO i = nxl, nxr |
---|
10727 | DO j = nys, nyn |
---|
10728 | DO k = nzb, nzt+1 |
---|
10729 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,9), & |
---|
10730 | REAL( -999.0_wp, KIND = wp ), & |
---|
10731 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10732 | ENDDO |
---|
10733 | ENDDO |
---|
10734 | ENDDO |
---|
10735 | ENDIF |
---|
10736 | |
---|
10737 | CASE ( 'm_bin10' ) |
---|
10738 | IF ( av == 0 ) THEN |
---|
10739 | DO i = nxl, nxr |
---|
10740 | DO j = nys, nyn |
---|
10741 | DO k = nzb, nzt+1 |
---|
10742 | temp_bin = 0.0_wp |
---|
10743 | DO c = 10, ncc_tot*nbins, nbins |
---|
10744 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10745 | ENDDO |
---|
10746 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10747 | REAL( -999.0_wp, KIND = wp ), & |
---|
10748 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10749 | ENDDO |
---|
10750 | ENDDO |
---|
10751 | ENDDO |
---|
10752 | ELSE |
---|
10753 | DO i = nxl, nxr |
---|
10754 | DO j = nys, nyn |
---|
10755 | DO k = nzb, nzt+1 |
---|
10756 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,10), & |
---|
10757 | REAL( -999.0_wp, KIND = wp ), & |
---|
10758 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10759 | ENDDO |
---|
10760 | ENDDO |
---|
10761 | ENDDO |
---|
10762 | ENDIF |
---|
10763 | |
---|
10764 | CASE ( 'm_bin11' ) |
---|
10765 | IF ( av == 0 ) THEN |
---|
10766 | DO i = nxl, nxr |
---|
10767 | DO j = nys, nyn |
---|
10768 | DO k = nzb, nzt+1 |
---|
10769 | temp_bin = 0.0_wp |
---|
10770 | DO c = 11, ncc_tot*nbins, nbins |
---|
10771 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10772 | ENDDO |
---|
10773 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10774 | REAL( -999.0_wp, KIND = wp ), & |
---|
10775 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10776 | ENDDO |
---|
10777 | ENDDO |
---|
10778 | ENDDO |
---|
10779 | ELSE |
---|
10780 | DO i = nxl, nxr |
---|
10781 | DO j = nys, nyn |
---|
10782 | DO k = nzb, nzt+1 |
---|
10783 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,11), & |
---|
10784 | REAL( -999.0_wp, KIND = wp ), & |
---|
10785 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10786 | ENDDO |
---|
10787 | ENDDO |
---|
10788 | ENDDO |
---|
10789 | ENDIF |
---|
10790 | |
---|
10791 | CASE ( 'm_bin12' ) |
---|
10792 | IF ( av == 0 ) THEN |
---|
10793 | DO i = nxl, nxr |
---|
10794 | DO j = nys, nyn |
---|
10795 | DO k = nzb, nzt+1 |
---|
10796 | temp_bin = 0.0_wp |
---|
10797 | DO c = 12, ncc_tot*nbins, nbins |
---|
10798 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10799 | ENDDO |
---|
10800 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10801 | REAL( -999.0_wp, KIND = wp ), & |
---|
10802 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10803 | ENDDO |
---|
10804 | ENDDO |
---|
10805 | ENDDO |
---|
10806 | ELSE |
---|
10807 | DO i = nxl, nxr |
---|
10808 | DO j = nys, nyn |
---|
10809 | DO k = nzb, nzt+1 |
---|
10810 | local_pf(i,j,k) = MERGE( mbins_av(k,j,i,12), & |
---|
10811 | REAL( -999.0_wp, KIND = wp ), & |
---|
10812 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10813 | ENDDO |
---|
10814 | ENDDO |
---|
10815 | ENDDO |
---|
10816 | ENDIF |
---|
10817 | |
---|
10818 | CASE ( 's_BC', 's_DU', 's_H2O', 's_NH', 's_NO', 's_OC', 's_SO4', 's_SS' ) |
---|
10819 | IF ( is_used( prtcl, TRIM( variable(3:) ) ) ) THEN |
---|
10820 | icc = get_index( prtcl, TRIM( variable(3:) ) ) |
---|
10821 | IF ( av == 0 ) THEN |
---|
10822 | DO i = nxl, nxr |
---|
10823 | DO j = nys, nyn |
---|
10824 | DO k = nzb, nzt+1 |
---|
10825 | temp_bin = 0.0_wp |
---|
10826 | DO c = ( icc-1 )*nbins+1, icc*nbins |
---|
10827 | temp_bin = temp_bin + aerosol_mass(c)%conc(k,j,i) |
---|
10828 | ENDDO |
---|
10829 | local_pf(i,j,k) = MERGE( temp_bin, & |
---|
10830 | REAL( -999.0_wp, KIND = wp ), & |
---|
10831 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10832 | ENDDO |
---|
10833 | ENDDO |
---|
10834 | ENDDO |
---|
10835 | ELSE |
---|
10836 | IF ( TRIM( variable(3:) ) == 'BC' ) to_be_resorted => s_BC_av |
---|
10837 | IF ( TRIM( variable(3:) ) == 'DU' ) to_be_resorted => s_DU_av |
---|
10838 | IF ( TRIM( variable(3:) ) == 'NH' ) to_be_resorted => s_NH_av |
---|
10839 | IF ( TRIM( variable(3:) ) == 'NO' ) to_be_resorted => s_NO_av |
---|
10840 | IF ( TRIM( variable(3:) ) == 'OC' ) to_be_resorted => s_OC_av |
---|
10841 | IF ( TRIM( variable(3:) ) == 'SO4' ) to_be_resorted => s_SO4_av |
---|
10842 | IF ( TRIM( variable(3:) ) == 'SS' ) to_be_resorted => s_SS_av |
---|
10843 | DO i = nxl, nxr |
---|
10844 | DO j = nys, nyn |
---|
10845 | DO k = nzb, nzt+1 |
---|
10846 | local_pf(i,j,k) = MERGE( to_be_resorted(k,j,i), & |
---|
10847 | REAL( -999.0_wp, KIND = wp ), & |
---|
10848 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
10849 | ENDDO |
---|
10850 | ENDDO |
---|
10851 | ENDDO |
---|
10852 | ENDIF |
---|
10853 | ENDIF |
---|
10854 | CASE DEFAULT |
---|
10855 | found = .FALSE. |
---|
10856 | |
---|
10857 | END SELECT |
---|
10858 | |
---|
10859 | END SUBROUTINE salsa_data_output_3d |
---|
10860 | |
---|
10861 | !------------------------------------------------------------------------------! |
---|
10862 | ! |
---|
10863 | ! Description: |
---|
10864 | ! ------------ |
---|
10865 | !> Subroutine defining mask output variables |
---|
10866 | !------------------------------------------------------------------------------! |
---|
10867 | SUBROUTINE salsa_data_output_mask( av, variable, found, local_pf ) |
---|
10868 | |
---|
10869 | USE control_parameters, & |
---|
10870 | ONLY: mask_size_l, mid |
---|
10871 | |
---|
10872 | IMPLICIT NONE |
---|
10873 | |
---|
10874 | CHARACTER (LEN=*) :: variable !< |
---|
10875 | |
---|
10876 | INTEGER(iwp) :: av !< |
---|
10877 | INTEGER(iwp) :: c !< |
---|
10878 | INTEGER(iwp) :: i !< |
---|
10879 | INTEGER(iwp) :: icc !< index of a chemical compound |
---|
10880 | INTEGER(iwp) :: j !< |
---|
10881 | INTEGER(iwp) :: k !< |
---|
10882 | INTEGER(iwp) :: n !< |
---|
10883 | |
---|
10884 | LOGICAL :: found !< |
---|
10885 | REAL(wp) :: df !< For calculating LDSA: fraction of particles |
---|
10886 | !< depositing in the alveolar (or tracheobronchial) |
---|
10887 | !< region of the lung. Depends on the particle size |
---|
10888 | REAL(wp) :: mean_d !< Particle diameter in micrometres |
---|
10889 | REAL(wp) :: nc !< Particle number concentration in units 1/cm**3 |
---|
10890 | |
---|
10891 | REAL(wp), & |
---|
10892 | DIMENSION(mask_size_l(mid,1),mask_size_l(mid,2),mask_size_l(mid,3)) :: & |
---|
10893 | local_pf !< |
---|
10894 | REAL(wp) :: temp_bin !< |
---|
10895 | REAL(wp), DIMENSION(:,:,:), POINTER :: to_be_resorted !< points to |
---|
10896 | !< selected output variable |
---|
10897 | |
---|
10898 | found = .TRUE. |
---|
10899 | temp_bin = 0.0_wp |
---|
10900 | |
---|
10901 | SELECT CASE ( TRIM( variable ) ) |
---|
10902 | |
---|
10903 | CASE ( 'g_H2SO4', 'g_HNO3', 'g_NH3', 'g_OCNV', 'g_OCSV' ) |
---|
10904 | IF ( av == 0 ) THEN |
---|
10905 | IF ( TRIM( variable ) == 'g_H2SO4') icc = 1 |
---|
10906 | IF ( TRIM( variable ) == 'g_HNO3') icc = 2 |
---|
10907 | IF ( TRIM( variable ) == 'g_NH3') icc = 3 |
---|
10908 | IF ( TRIM( variable ) == 'g_OCNV') icc = 4 |
---|
10909 | IF ( TRIM( variable ) == 'g_OCSV') icc = 5 |
---|
10910 | |
---|
10911 | DO i = 1, mask_size_l(mid,1) |
---|
10912 | DO j = 1, mask_size_l(mid,2) |
---|
10913 | DO k = 1, mask_size_l(mid,3) |
---|
10914 | local_pf(i,j,k) = salsa_gas(icc)%conc(mask_k(mid,k), & |
---|
10915 | mask_j(mid,j),mask_i(mid,i)) |
---|
10916 | ENDDO |
---|
10917 | ENDDO |
---|
10918 | ENDDO |
---|
10919 | ELSE |
---|
10920 | IF ( TRIM( variable(3:) ) == 'H2SO4' ) to_be_resorted => g_H2SO4_av |
---|
10921 | IF ( TRIM( variable(3:) ) == 'HNO3' ) to_be_resorted => g_HNO3_av |
---|
10922 | IF ( TRIM( variable(3:) ) == 'NH3' ) to_be_resorted => g_NH3_av |
---|
10923 | IF ( TRIM( variable(3:) ) == 'OCNV' ) to_be_resorted => g_OCNV_av |
---|
10924 | IF ( TRIM( variable(3:) ) == 'OCSV' ) to_be_resorted => g_OCSV_av |
---|
10925 | DO i = 1, mask_size_l(mid,1) |
---|
10926 | DO j = 1, mask_size_l(mid,2) |
---|
10927 | DO k = 1, mask_size_l(mid,3) |
---|
10928 | local_pf(i,j,k) = to_be_resorted(mask_k(mid,k), & |
---|
10929 | mask_j(mid,j),mask_i(mid,i)) |
---|
10930 | ENDDO |
---|
10931 | ENDDO |
---|
10932 | ENDDO |
---|
10933 | ENDIF |
---|
10934 | |
---|
10935 | CASE ( 'LDSA' ) |
---|
10936 | IF ( av == 0 ) THEN |
---|
10937 | DO i = 1, mask_size_l(mid,1) |
---|
10938 | DO j = 1, mask_size_l(mid,2) |
---|
10939 | DO k = 1, mask_size_l(mid,3) |
---|
10940 | temp_bin = 0.0_wp |
---|
10941 | DO n = 1, nbins |
---|
10942 | ! |
---|
10943 | !-- Diameter in micrometres |
---|
10944 | mean_d = 1.0E+6_wp * Ra_dry(mask_k(mid,k), & |
---|
10945 | mask_j(mid,j),mask_i(mid,i),n) * 2.0_wp |
---|
10946 | ! |
---|
10947 | !-- Deposition factor: alveolar (use Ra_dry for the size??) |
---|
10948 | df = ( 0.01555_wp / mean_d ) * ( EXP( -0.416_wp * & |
---|
10949 | ( LOG( mean_d ) + 2.84_wp )**2.0_wp ) & |
---|
10950 | + 19.11_wp * EXP( -0.482_wp * & |
---|
10951 | ( LOG( mean_d ) - 1.362_wp )**2.0_wp ) ) |
---|
10952 | ! |
---|
10953 | !-- Number concentration in 1/cm3 |
---|
10954 | nc = 1.0E-6_wp * aerosol_number(n)%conc(mask_k(mid,k),& |
---|
10955 | mask_j(mid,j),mask_i(mid,i)) |
---|
10956 | ! |
---|
10957 | !-- Lung-deposited surface area LDSA (units mum2/cm3) |
---|
10958 | temp_bin = temp_bin + pi * mean_d**2.0_wp * df * nc |
---|
10959 | ENDDO |
---|
10960 | local_pf(i,j,k) = temp_bin |
---|
10961 | ENDDO |
---|
10962 | ENDDO |
---|
10963 | ENDDO |
---|
10964 | ELSE |
---|
10965 | DO i = 1, mask_size_l(mid,1) |
---|
10966 | DO j = 1, mask_size_l(mid,2) |
---|
10967 | DO k = 1, mask_size_l(mid,3) |
---|
10968 | local_pf(i,j,k) = LDSA_av(mask_k(mid,k), & |
---|
10969 | mask_j(mid,j),mask_i(mid,i)) |
---|
10970 | ENDDO |
---|
10971 | ENDDO |
---|
10972 | ENDDO |
---|
10973 | ENDIF |
---|
10974 | |
---|
10975 | CASE ( 'Ntot' ) |
---|
10976 | IF ( av == 0 ) THEN |
---|
10977 | DO i = 1, mask_size_l(mid,1) |
---|
10978 | DO j = 1, mask_size_l(mid,2) |
---|
10979 | DO k = 1, mask_size_l(mid,3) |
---|
10980 | temp_bin = 0.0_wp |
---|
10981 | DO n = 1, nbins |
---|
10982 | temp_bin = temp_bin + aerosol_number(n)%conc( & |
---|
10983 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
10984 | ENDDO |
---|
10985 | local_pf(i,j,k) = temp_bin |
---|
10986 | ENDDO |
---|
10987 | ENDDO |
---|
10988 | ENDDO |
---|
10989 | ELSE |
---|
10990 | DO i = 1, mask_size_l(mid,1) |
---|
10991 | DO j = 1, mask_size_l(mid,2) |
---|
10992 | DO k = 1, mask_size_l(mid,3) |
---|
10993 | local_pf(i,j,k) = Ntot_av(mask_k(mid,k), & |
---|
10994 | mask_j(mid,j),mask_i(mid,i)) |
---|
10995 | ENDDO |
---|
10996 | ENDDO |
---|
10997 | ENDDO |
---|
10998 | ENDIF |
---|
10999 | |
---|
11000 | CASE ( 'PM2.5' ) |
---|
11001 | IF ( av == 0 ) THEN |
---|
11002 | DO i = 1, mask_size_l(mid,1) |
---|
11003 | DO j = 1, mask_size_l(mid,2) |
---|
11004 | DO k = 1, mask_size_l(mid,3) |
---|
11005 | temp_bin = 0.0_wp |
---|
11006 | DO n = 1, nbins |
---|
11007 | IF ( 2.0_wp * Ra_dry(mask_k(mid,k),mask_j(mid,j), & |
---|
11008 | mask_i(mid,i),n) <= 2.5E-6_wp ) THEN |
---|
11009 | DO c = n, nbins*ncc, nbins |
---|
11010 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11011 | mask_k(mid,k), mask_j(mid,j),mask_i(mid,i)) |
---|
11012 | ENDDO |
---|
11013 | ENDIF |
---|
11014 | ENDDO |
---|
11015 | local_pf(i,j,k) = temp_bin |
---|
11016 | ENDDO |
---|
11017 | ENDDO |
---|
11018 | ENDDO |
---|
11019 | ELSE |
---|
11020 | DO i = 1, mask_size_l(mid,1) |
---|
11021 | DO j = 1, mask_size_l(mid,2) |
---|
11022 | DO k = 1, mask_size_l(mid,3) |
---|
11023 | local_pf(i,j,k) = PM25_av(mask_k(mid,k), & |
---|
11024 | mask_j(mid,j),mask_i(mid,i)) |
---|
11025 | ENDDO |
---|
11026 | ENDDO |
---|
11027 | ENDDO |
---|
11028 | ENDIF |
---|
11029 | |
---|
11030 | CASE ( 'PM10' ) |
---|
11031 | IF ( av == 0 ) THEN |
---|
11032 | DO i = 1, mask_size_l(mid,1) |
---|
11033 | DO j = 1, mask_size_l(mid,2) |
---|
11034 | DO k = 1, mask_size_l(mid,3) |
---|
11035 | temp_bin = 0.0_wp |
---|
11036 | DO n = 1, nbins |
---|
11037 | IF ( 2.0_wp * Ra_dry(mask_k(mid,k),mask_j(mid,j), & |
---|
11038 | mask_i(mid,i),n) <= 10.0E-6_wp ) THEN |
---|
11039 | DO c = n, nbins*ncc, nbins |
---|
11040 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11041 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11042 | ENDDO |
---|
11043 | ENDIF |
---|
11044 | ENDDO |
---|
11045 | local_pf(i,j,k) = temp_bin |
---|
11046 | ENDDO |
---|
11047 | ENDDO |
---|
11048 | ENDDO |
---|
11049 | ELSE |
---|
11050 | DO i = 1, mask_size_l(mid,1) |
---|
11051 | DO j = 1, mask_size_l(mid,2) |
---|
11052 | DO k = 1, mask_size_l(mid,3) |
---|
11053 | local_pf(i,j,k) = PM10_av(mask_k(mid,k), & |
---|
11054 | mask_j(mid,j),mask_i(mid,i)) |
---|
11055 | ENDDO |
---|
11056 | ENDDO |
---|
11057 | ENDDO |
---|
11058 | ENDIF |
---|
11059 | |
---|
11060 | CASE ( 'N_bin1' ) |
---|
11061 | IF ( av == 0 ) THEN |
---|
11062 | DO i = 1, mask_size_l(mid,1) |
---|
11063 | DO j = 1, mask_size_l(mid,2) |
---|
11064 | DO k = 1, mask_size_l(mid,3) |
---|
11065 | local_pf(i,j,k) = aerosol_number(1)%conc(mask_k(mid,k), & |
---|
11066 | mask_j(mid,j),mask_i(mid,i)) |
---|
11067 | ENDDO |
---|
11068 | ENDDO |
---|
11069 | ENDDO |
---|
11070 | ELSE |
---|
11071 | DO i = 1, mask_size_l(mid,1) |
---|
11072 | DO j = 1, mask_size_l(mid,2) |
---|
11073 | DO k = 1, mask_size_l(mid,3) |
---|
11074 | local_pf(i,j,k) = Nbins_av(mask_k(mid,k), & |
---|
11075 | mask_j(mid,j),mask_i(mid,i),1) |
---|
11076 | ENDDO |
---|
11077 | ENDDO |
---|
11078 | ENDDO |
---|
11079 | ENDIF |
---|
11080 | |
---|
11081 | CASE ( 'N_bin2' ) |
---|
11082 | IF ( av == 0 ) THEN |
---|
11083 | DO i = 1, mask_size_l(mid,1) |
---|
11084 | DO j = 1, mask_size_l(mid,2) |
---|
11085 | DO k = 1, mask_size_l(mid,3) |
---|
11086 | local_pf(i,j,k) = aerosol_number(2)%conc(mask_k(mid,k), & |
---|
11087 | mask_j(mid,j),mask_i(mid,i)) |
---|
11088 | ENDDO |
---|
11089 | ENDDO |
---|
11090 | ENDDO |
---|
11091 | ELSE |
---|
11092 | DO i = 1, mask_size_l(mid,1) |
---|
11093 | DO j = 1, mask_size_l(mid,2) |
---|
11094 | DO k = 1, mask_size_l(mid,3) |
---|
11095 | local_pf(i,j,k) = Nbins_av(mask_k(mid,k), & |
---|
11096 | mask_j(mid,j),mask_i(mid,i),2) |
---|
11097 | ENDDO |
---|
11098 | ENDDO |
---|
11099 | ENDDO |
---|
11100 | ENDIF |
---|
11101 | |
---|
11102 | CASE ( 'N_bin3' ) |
---|
11103 | IF ( av == 0 ) THEN |
---|
11104 | DO i = 1, mask_size_l(mid,1) |
---|
11105 | DO j = 1, mask_size_l(mid,2) |
---|
11106 | DO k = 1, mask_size_l(mid,3) |
---|
11107 | local_pf(i,j,k) = aerosol_number(3)%conc(mask_k(mid,k), & |
---|
11108 | mask_j(mid,j),mask_i(mid,i)) |
---|
11109 | ENDDO |
---|
11110 | ENDDO |
---|
11111 | ENDDO |
---|
11112 | ELSE |
---|
11113 | DO i = 1, mask_size_l(mid,1) |
---|
11114 | DO j = 1, mask_size_l(mid,2) |
---|
11115 | DO k = 1, mask_size_l(mid,3) |
---|
11116 | local_pf(i,j,k) = Nbins_av(mask_k(mid,k), & |
---|
11117 | mask_j(mid,j),mask_i(mid,i),3) |
---|
11118 | ENDDO |
---|
11119 | ENDDO |
---|
11120 | ENDDO |
---|
11121 | ENDIF |
---|
11122 | |
---|
11123 | CASE ( 'N_bin4' ) |
---|
11124 | IF ( av == 0 ) THEN |
---|
11125 | DO i = 1, mask_size_l(mid,1) |
---|
11126 | DO j = 1, mask_size_l(mid,2) |
---|
11127 | DO k = 1, mask_size_l(mid,3) |
---|
11128 | local_pf(i,j,k) = aerosol_number(4)%conc(mask_k(mid,k), & |
---|
11129 | mask_j(mid,j),mask_i(mid,i)) |
---|
11130 | ENDDO |
---|
11131 | ENDDO |
---|
11132 | ENDDO |
---|
11133 | ELSE |
---|
11134 | DO i = 1, mask_size_l(mid,1) |
---|
11135 | DO j = 1, mask_size_l(mid,2) |
---|
11136 | DO k = 1, mask_size_l(mid,3) |
---|
11137 | local_pf(i,j,k) = Nbins_av(mask_k(mid,k), & |
---|
11138 | mask_j(mid,j),mask_i(mid,i),4) |
---|
11139 | ENDDO |
---|
11140 | ENDDO |
---|
11141 | ENDDO |
---|
11142 | ENDIF |
---|
11143 | |
---|
11144 | CASE ( 'N_bin5' ) |
---|
11145 | IF ( av == 0 ) THEN |
---|
11146 | DO i = 1, mask_size_l(mid,1) |
---|
11147 | DO j = 1, mask_size_l(mid,2) |
---|
11148 | DO k = 1, mask_size_l(mid,3) |
---|
11149 | local_pf(i,j,k) = aerosol_number(5)%conc(mask_k(mid,k), & |
---|
11150 | mask_j(mid,j),mask_i(mid,i)) |
---|
11151 | ENDDO |
---|
11152 | ENDDO |
---|
11153 | ENDDO |
---|
11154 | ELSE |
---|
11155 | DO i = 1, mask_size_l(mid,1) |
---|
11156 | DO j = 1, mask_size_l(mid,2) |
---|
11157 | DO k = 1, mask_size_l(mid,3) |
---|
11158 | local_pf(i,j,k) = Nbins_av(mask_k(mid,k), & |
---|
11159 | mask_j(mid,j),mask_i(mid,i),5) |
---|
11160 | ENDDO |
---|
11161 | ENDDO |
---|
11162 | ENDDO |
---|
11163 | ENDIF |
---|
11164 | |
---|
11165 | CASE ( 'N_bin6' ) |
---|
11166 | IF ( av == 0 ) THEN |
---|
11167 | DO i = 1, mask_size_l(mid,1) |
---|
11168 | DO j = 1, mask_size_l(mid,2) |
---|
11169 | DO k = 1, mask_size_l(mid,3) |
---|
11170 | local_pf(i,j,k) = aerosol_number(6)%conc(mask_k(mid,k), & |
---|
11171 | mask_j(mid,j),mask_i(mid,i)) |
---|
11172 | ENDDO |
---|
11173 | ENDDO |
---|
11174 | ENDDO |
---|
11175 | ELSE |
---|
11176 | DO i = 1, mask_size_l(mid,1) |
---|
11177 | DO j = 1, mask_size_l(mid,2) |
---|
11178 | DO k = 1, mask_size_l(mid,3) |
---|
11179 | local_pf(i,j,k) = Nbins_av(mask_k(mid,k), & |
---|
11180 | mask_j(mid,j),mask_i(mid,i),6) |
---|
11181 | ENDDO |
---|
11182 | ENDDO |
---|
11183 | ENDDO |
---|
11184 | ENDIF |
---|
11185 | |
---|
11186 | CASE ( 'N_bin7' ) |
---|
11187 | IF ( av == 0 ) THEN |
---|
11188 | DO i = 1, mask_size_l(mid,1) |
---|
11189 | DO j = 1, mask_size_l(mid,2) |
---|
11190 | DO k = 1, mask_size_l(mid,3) |
---|
11191 | local_pf(i,j,k) = aerosol_number(7)%conc(mask_k(mid,k), & |
---|
11192 | mask_j(mid,j),mask_i(mid,i)) |
---|
11193 | ENDDO |
---|
11194 | ENDDO |
---|
11195 | ENDDO |
---|
11196 | ELSE |
---|
11197 | DO i = 1, mask_size_l(mid,1) |
---|
11198 | DO j = 1, mask_size_l(mid,2) |
---|
11199 | DO k = 1, mask_size_l(mid,3) |
---|
11200 | local_pf(i,j,k) = Nbins_av(mask_k(mid,k), & |
---|
11201 | mask_j(mid,j),mask_i(mid,i),7) |
---|
11202 | ENDDO |
---|
11203 | ENDDO |
---|
11204 | ENDDO |
---|
11205 | ENDIF |
---|
11206 | |
---|
11207 | CASE ( 'N_bin8' ) |
---|
11208 | IF ( av == 0 ) THEN |
---|
11209 | DO i = 1, mask_size_l(mid,1) |
---|
11210 | DO j = 1, mask_size_l(mid,2) |
---|
11211 | DO k = 1, mask_size_l(mid,3) |
---|
11212 | local_pf(i,j,k) = aerosol_number(8)%conc(mask_k(mid,k), & |
---|
11213 | mask_j(mid,j),mask_i(mid,i)) |
---|
11214 | ENDDO |
---|
11215 | ENDDO |
---|
11216 | ENDDO |
---|
11217 | ELSE |
---|
11218 | DO i = 1, mask_size_l(mid,1) |
---|
11219 | DO j = 1, mask_size_l(mid,2) |
---|
11220 | DO k = 1, mask_size_l(mid,3) |
---|
11221 | local_pf(i,j,k) = Nbins_av(mask_k(mid,k), & |
---|
11222 | mask_j(mid,j),mask_i(mid,i),8) |
---|
11223 | ENDDO |
---|
11224 | ENDDO |
---|
11225 | ENDDO |
---|
11226 | ENDIF |
---|
11227 | |
---|
11228 | CASE ( 'N_bin9' ) |
---|
11229 | IF ( av == 0 ) THEN |
---|
11230 | DO i = 1, mask_size_l(mid,1) |
---|
11231 | DO j = 1, mask_size_l(mid,2) |
---|
11232 | DO k = 1, mask_size_l(mid,3) |
---|
11233 | local_pf(i,j,k) = aerosol_number(9)%conc(mask_k(mid,k), & |
---|
11234 | mask_j(mid,j),mask_i(mid,i)) |
---|
11235 | ENDDO |
---|
11236 | ENDDO |
---|
11237 | ENDDO |
---|
11238 | ELSE |
---|
11239 | DO i = 1, mask_size_l(mid,1) |
---|
11240 | DO j = 1, mask_size_l(mid,2) |
---|
11241 | DO k = 1, mask_size_l(mid,3) |
---|
11242 | local_pf(i,j,k) = Nbins_av(mask_k(mid,k), & |
---|
11243 | mask_j(mid,j),mask_i(mid,i),9) |
---|
11244 | ENDDO |
---|
11245 | ENDDO |
---|
11246 | ENDDO |
---|
11247 | ENDIF |
---|
11248 | |
---|
11249 | CASE ( 'N_bin10' ) |
---|
11250 | IF ( av == 0 ) THEN |
---|
11251 | DO i = 1, mask_size_l(mid,1) |
---|
11252 | DO j = 1, mask_size_l(mid,2) |
---|
11253 | DO k = 1, mask_size_l(mid,3) |
---|
11254 | local_pf(i,j,k) = aerosol_number(10)%conc(mask_k(mid,k), & |
---|
11255 | mask_j(mid,j),mask_i(mid,i)) |
---|
11256 | ENDDO |
---|
11257 | ENDDO |
---|
11258 | ENDDO |
---|
11259 | ELSE |
---|
11260 | DO i = 1, mask_size_l(mid,1) |
---|
11261 | DO j = 1, mask_size_l(mid,2) |
---|
11262 | DO k = 1, mask_size_l(mid,3) |
---|
11263 | local_pf(i,j,k) = Nbins_av(mask_k(mid,k), & |
---|
11264 | mask_j(mid,j),mask_i(mid,i),10) |
---|
11265 | ENDDO |
---|
11266 | ENDDO |
---|
11267 | ENDDO |
---|
11268 | ENDIF |
---|
11269 | |
---|
11270 | CASE ( 'N_bin11' ) |
---|
11271 | IF ( av == 0 ) THEN |
---|
11272 | DO i = 1, mask_size_l(mid,1) |
---|
11273 | DO j = 1, mask_size_l(mid,2) |
---|
11274 | DO k = 1, mask_size_l(mid,3) |
---|
11275 | local_pf(i,j,k) = aerosol_number(11)%conc(mask_k(mid,k), & |
---|
11276 | mask_j(mid,j),mask_i(mid,i)) |
---|
11277 | ENDDO |
---|
11278 | ENDDO |
---|
11279 | ENDDO |
---|
11280 | ELSE |
---|
11281 | DO i = 1, mask_size_l(mid,1) |
---|
11282 | DO j = 1, mask_size_l(mid,2) |
---|
11283 | DO k = 1, mask_size_l(mid,3) |
---|
11284 | local_pf(i,j,k) = Nbins_av(mask_k(mid,k), & |
---|
11285 | mask_j(mid,j),mask_i(mid,i),11) |
---|
11286 | ENDDO |
---|
11287 | ENDDO |
---|
11288 | ENDDO |
---|
11289 | ENDIF |
---|
11290 | |
---|
11291 | CASE ( 'N_bin12' ) |
---|
11292 | IF ( av == 0 ) THEN |
---|
11293 | DO i = 1, mask_size_l(mid,1) |
---|
11294 | DO j = 1, mask_size_l(mid,2) |
---|
11295 | DO k = 1, mask_size_l(mid,3) |
---|
11296 | local_pf(i,j,k) = aerosol_number(12)%conc(mask_k(mid,k), & |
---|
11297 | mask_j(mid,j),mask_i(mid,i)) |
---|
11298 | ENDDO |
---|
11299 | ENDDO |
---|
11300 | ENDDO |
---|
11301 | ELSE |
---|
11302 | DO i = 1, mask_size_l(mid,1) |
---|
11303 | DO j = 1, mask_size_l(mid,2) |
---|
11304 | DO k = 1, mask_size_l(mid,3) |
---|
11305 | local_pf(i,j,k) = Nbins_av(mask_k(mid,k), & |
---|
11306 | mask_j(mid,j),mask_i(mid,i),12) |
---|
11307 | ENDDO |
---|
11308 | ENDDO |
---|
11309 | ENDDO |
---|
11310 | ENDIF |
---|
11311 | |
---|
11312 | CASE ( 'm_bin1' ) |
---|
11313 | IF ( av == 0 ) THEN |
---|
11314 | DO i = 1, mask_size_l(mid,1) |
---|
11315 | DO j = 1, mask_size_l(mid,2) |
---|
11316 | DO k = 1, mask_size_l(mid,3) |
---|
11317 | temp_bin = 0.0_wp |
---|
11318 | DO c = 1, ncc_tot*nbins, nbins |
---|
11319 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11320 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11321 | ENDDO |
---|
11322 | local_pf(i,j,k) = temp_bin |
---|
11323 | ENDDO |
---|
11324 | ENDDO |
---|
11325 | ENDDO |
---|
11326 | ELSE |
---|
11327 | DO i = 1, mask_size_l(mid,1) |
---|
11328 | DO j = 1, mask_size_l(mid,2) |
---|
11329 | DO k = 1, mask_size_l(mid,3) |
---|
11330 | local_pf(i,j,k) = mbins_av(mask_k(mid,k), & |
---|
11331 | mask_j(mid,j),mask_i(mid,i),1) |
---|
11332 | ENDDO |
---|
11333 | ENDDO |
---|
11334 | ENDDO |
---|
11335 | ENDIF |
---|
11336 | |
---|
11337 | CASE ( 'm_bin2' ) |
---|
11338 | IF ( av == 0 ) THEN |
---|
11339 | DO i = 1, mask_size_l(mid,1) |
---|
11340 | DO j = 1, mask_size_l(mid,2) |
---|
11341 | DO k = 1, mask_size_l(mid,3) |
---|
11342 | temp_bin = 0.0_wp |
---|
11343 | DO c = 2, ncc_tot*nbins, nbins |
---|
11344 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11345 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11346 | ENDDO |
---|
11347 | local_pf(i,j,k) = temp_bin |
---|
11348 | ENDDO |
---|
11349 | ENDDO |
---|
11350 | ENDDO |
---|
11351 | ELSE |
---|
11352 | DO i = 1, mask_size_l(mid,1) |
---|
11353 | DO j = 1, mask_size_l(mid,2) |
---|
11354 | DO k = 1, mask_size_l(mid,3) |
---|
11355 | local_pf(i,j,k) = mbins_av(mask_k(mid,k), & |
---|
11356 | mask_j(mid,j),mask_i(mid,i),2) |
---|
11357 | ENDDO |
---|
11358 | ENDDO |
---|
11359 | ENDDO |
---|
11360 | ENDIF |
---|
11361 | |
---|
11362 | CASE ( 'm_bin3' ) |
---|
11363 | IF ( av == 0 ) THEN |
---|
11364 | DO i = 1, mask_size_l(mid,1) |
---|
11365 | DO j = 1, mask_size_l(mid,2) |
---|
11366 | DO k = 1, mask_size_l(mid,3) |
---|
11367 | temp_bin = 0.0_wp |
---|
11368 | DO c = 3, ncc_tot*nbins, nbins |
---|
11369 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11370 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11371 | ENDDO |
---|
11372 | local_pf(i,j,k) = temp_bin |
---|
11373 | ENDDO |
---|
11374 | ENDDO |
---|
11375 | ENDDO |
---|
11376 | ELSE |
---|
11377 | DO i = 1, mask_size_l(mid,1) |
---|
11378 | DO j = 1, mask_size_l(mid,2) |
---|
11379 | DO k = 1, mask_size_l(mid,3) |
---|
11380 | local_pf(i,j,k) = mbins_av(mask_k(mid,k), & |
---|
11381 | mask_j(mid,j),mask_i(mid,i),3) |
---|
11382 | ENDDO |
---|
11383 | ENDDO |
---|
11384 | ENDDO |
---|
11385 | ENDIF |
---|
11386 | |
---|
11387 | CASE ( 'm_bin4' ) |
---|
11388 | IF ( av == 0 ) THEN |
---|
11389 | DO i = 1, mask_size_l(mid,1) |
---|
11390 | DO j = 1, mask_size_l(mid,2) |
---|
11391 | DO k = 1, mask_size_l(mid,3) |
---|
11392 | temp_bin = 0.0_wp |
---|
11393 | DO c = 4, ncc_tot*nbins, nbins |
---|
11394 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11395 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11396 | ENDDO |
---|
11397 | local_pf(i,j,k) = temp_bin |
---|
11398 | ENDDO |
---|
11399 | ENDDO |
---|
11400 | ENDDO |
---|
11401 | ELSE |
---|
11402 | DO i = 1, mask_size_l(mid,1) |
---|
11403 | DO j = 1, mask_size_l(mid,2) |
---|
11404 | DO k = 1, mask_size_l(mid,3) |
---|
11405 | local_pf(i,j,k) = mbins_av(mask_k(mid,k), & |
---|
11406 | mask_j(mid,j),mask_i(mid,i),4) |
---|
11407 | ENDDO |
---|
11408 | ENDDO |
---|
11409 | ENDDO |
---|
11410 | ENDIF |
---|
11411 | |
---|
11412 | CASE ( 'm_bin5' ) |
---|
11413 | IF ( av == 0 ) THEN |
---|
11414 | DO i = 1, mask_size_l(mid,1) |
---|
11415 | DO j = 1, mask_size_l(mid,2) |
---|
11416 | DO k = 1, mask_size_l(mid,3) |
---|
11417 | temp_bin = 0.0_wp |
---|
11418 | DO c = 5, ncc_tot*nbins, nbins |
---|
11419 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11420 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11421 | ENDDO |
---|
11422 | local_pf(i,j,k) = temp_bin |
---|
11423 | ENDDO |
---|
11424 | ENDDO |
---|
11425 | ENDDO |
---|
11426 | ELSE |
---|
11427 | DO i = 1, mask_size_l(mid,1) |
---|
11428 | DO j = 1, mask_size_l(mid,2) |
---|
11429 | DO k = 1, mask_size_l(mid,3) |
---|
11430 | local_pf(i,j,k) = mbins_av(mask_k(mid,k), & |
---|
11431 | mask_j(mid,j),mask_i(mid,i),5) |
---|
11432 | ENDDO |
---|
11433 | ENDDO |
---|
11434 | ENDDO |
---|
11435 | ENDIF |
---|
11436 | |
---|
11437 | CASE ( 'm_bin6' ) |
---|
11438 | IF ( av == 0 ) THEN |
---|
11439 | DO i = 1, mask_size_l(mid,1) |
---|
11440 | DO j = 1, mask_size_l(mid,2) |
---|
11441 | DO k = 1, mask_size_l(mid,3) |
---|
11442 | temp_bin = 0.0_wp |
---|
11443 | DO c = 6, ncc_tot*nbins, nbins |
---|
11444 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11445 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11446 | ENDDO |
---|
11447 | local_pf(i,j,k) = temp_bin |
---|
11448 | ENDDO |
---|
11449 | ENDDO |
---|
11450 | ENDDO |
---|
11451 | ELSE |
---|
11452 | DO i = 1, mask_size_l(mid,1) |
---|
11453 | DO j = 1, mask_size_l(mid,2) |
---|
11454 | DO k = 1, mask_size_l(mid,3) |
---|
11455 | local_pf(i,j,k) = mbins_av(mask_k(mid,k), & |
---|
11456 | mask_j(mid,j),mask_i(mid,i),6) |
---|
11457 | ENDDO |
---|
11458 | ENDDO |
---|
11459 | ENDDO |
---|
11460 | ENDIF |
---|
11461 | |
---|
11462 | CASE ( 'm_bin7' ) |
---|
11463 | IF ( av == 0 ) THEN |
---|
11464 | DO i = 1, mask_size_l(mid,1) |
---|
11465 | DO j = 1, mask_size_l(mid,2) |
---|
11466 | DO k = 1, mask_size_l(mid,3) |
---|
11467 | temp_bin = 0.0_wp |
---|
11468 | DO c = 7, ncc_tot*nbins, nbins |
---|
11469 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11470 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11471 | ENDDO |
---|
11472 | local_pf(i,j,k) = temp_bin |
---|
11473 | ENDDO |
---|
11474 | ENDDO |
---|
11475 | ENDDO |
---|
11476 | ELSE |
---|
11477 | DO i = 1, mask_size_l(mid,1) |
---|
11478 | DO j = 1, mask_size_l(mid,2) |
---|
11479 | DO k = 1, mask_size_l(mid,3) |
---|
11480 | local_pf(i,j,k) = mbins_av(mask_k(mid,k), & |
---|
11481 | mask_j(mid,j),mask_i(mid,i),7) |
---|
11482 | ENDDO |
---|
11483 | ENDDO |
---|
11484 | ENDDO |
---|
11485 | ENDIF |
---|
11486 | |
---|
11487 | CASE ( 'm_bin8' ) |
---|
11488 | IF ( av == 0 ) THEN |
---|
11489 | DO i = 1, mask_size_l(mid,1) |
---|
11490 | DO j = 1, mask_size_l(mid,2) |
---|
11491 | DO k = 1, mask_size_l(mid,3) |
---|
11492 | temp_bin = 0.0_wp |
---|
11493 | DO c = 8, ncc_tot*nbins, nbins |
---|
11494 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11495 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11496 | ENDDO |
---|
11497 | local_pf(i,j,k) = temp_bin |
---|
11498 | ENDDO |
---|
11499 | ENDDO |
---|
11500 | ENDDO |
---|
11501 | ELSE |
---|
11502 | DO i = 1, mask_size_l(mid,1) |
---|
11503 | DO j = 1, mask_size_l(mid,2) |
---|
11504 | DO k = 1, mask_size_l(mid,3) |
---|
11505 | local_pf(i,j,k) = mbins_av(mask_k(mid,k), & |
---|
11506 | mask_j(mid,j),mask_i(mid,i),8) |
---|
11507 | ENDDO |
---|
11508 | ENDDO |
---|
11509 | ENDDO |
---|
11510 | ENDIF |
---|
11511 | |
---|
11512 | CASE ( 'm_bin9' ) |
---|
11513 | IF ( av == 0 ) THEN |
---|
11514 | DO i = 1, mask_size_l(mid,1) |
---|
11515 | DO j = 1, mask_size_l(mid,2) |
---|
11516 | DO k = 1, mask_size_l(mid,3) |
---|
11517 | temp_bin = 0.0_wp |
---|
11518 | DO c = 9, ncc_tot*nbins, nbins |
---|
11519 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11520 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11521 | ENDDO |
---|
11522 | local_pf(i,j,k) = temp_bin |
---|
11523 | ENDDO |
---|
11524 | ENDDO |
---|
11525 | ENDDO |
---|
11526 | ELSE |
---|
11527 | DO i = 1, mask_size_l(mid,1) |
---|
11528 | DO j = 1, mask_size_l(mid,2) |
---|
11529 | DO k = 1, mask_size_l(mid,3) |
---|
11530 | local_pf(i,j,k) = mbins_av(mask_k(mid,k), & |
---|
11531 | mask_j(mid,j),mask_i(mid,i),9) |
---|
11532 | ENDDO |
---|
11533 | ENDDO |
---|
11534 | ENDDO |
---|
11535 | ENDIF |
---|
11536 | |
---|
11537 | CASE ( 'm_bin10' ) |
---|
11538 | IF ( av == 0 ) THEN |
---|
11539 | DO i = 1, mask_size_l(mid,1) |
---|
11540 | DO j = 1, mask_size_l(mid,2) |
---|
11541 | DO k = 1, mask_size_l(mid,3) |
---|
11542 | temp_bin = 0.0_wp |
---|
11543 | DO c = 10, ncc_tot*nbins, nbins |
---|
11544 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11545 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11546 | ENDDO |
---|
11547 | local_pf(i,j,k) = temp_bin |
---|
11548 | ENDDO |
---|
11549 | ENDDO |
---|
11550 | ENDDO |
---|
11551 | ELSE |
---|
11552 | DO i = 1, mask_size_l(mid,1) |
---|
11553 | DO j = 1, mask_size_l(mid,2) |
---|
11554 | DO k = 1, mask_size_l(mid,3) |
---|
11555 | local_pf(i,j,k) = mbins_av(mask_k(mid,k), & |
---|
11556 | mask_j(mid,j),mask_i(mid,i),10) |
---|
11557 | ENDDO |
---|
11558 | ENDDO |
---|
11559 | ENDDO |
---|
11560 | ENDIF |
---|
11561 | |
---|
11562 | CASE ( 'm_bin11' ) |
---|
11563 | IF ( av == 0 ) THEN |
---|
11564 | DO i = 1, mask_size_l(mid,1) |
---|
11565 | DO j = 1, mask_size_l(mid,2) |
---|
11566 | DO k = 1, mask_size_l(mid,3) |
---|
11567 | temp_bin = 0.0_wp |
---|
11568 | DO c = 11, ncc_tot*nbins, nbins |
---|
11569 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11570 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11571 | ENDDO |
---|
11572 | local_pf(i,j,k) = temp_bin |
---|
11573 | ENDDO |
---|
11574 | ENDDO |
---|
11575 | ENDDO |
---|
11576 | ELSE |
---|
11577 | DO i = 1, mask_size_l(mid,1) |
---|
11578 | DO j = 1, mask_size_l(mid,2) |
---|
11579 | DO k = 1, mask_size_l(mid,3) |
---|
11580 | local_pf(i,j,k) = mbins_av(mask_k(mid,k), & |
---|
11581 | mask_j(mid,j),mask_i(mid,i),11) |
---|
11582 | ENDDO |
---|
11583 | ENDDO |
---|
11584 | ENDDO |
---|
11585 | ENDIF |
---|
11586 | |
---|
11587 | CASE ( 'm_bin12' ) |
---|
11588 | IF ( av == 0 ) THEN |
---|
11589 | DO i = 1, mask_size_l(mid,1) |
---|
11590 | DO j = 1, mask_size_l(mid,2) |
---|
11591 | DO k = 1, mask_size_l(mid,3) |
---|
11592 | temp_bin = 0.0_wp |
---|
11593 | DO c = 12, ncc_tot*nbins, nbins |
---|
11594 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11595 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11596 | ENDDO |
---|
11597 | local_pf(i,j,k) = temp_bin |
---|
11598 | ENDDO |
---|
11599 | ENDDO |
---|
11600 | ENDDO |
---|
11601 | ELSE |
---|
11602 | DO i = 1, mask_size_l(mid,1) |
---|
11603 | DO j = 1, mask_size_l(mid,2) |
---|
11604 | DO k = 1, mask_size_l(mid,3) |
---|
11605 | local_pf(i,j,k) = mbins_av(mask_k(mid,k), & |
---|
11606 | mask_j(mid,j),mask_i(mid,i),12) |
---|
11607 | ENDDO |
---|
11608 | ENDDO |
---|
11609 | ENDDO |
---|
11610 | ENDIF |
---|
11611 | |
---|
11612 | CASE ( 's_BC', 's_DU', 's_NH', 's_NO', 's_OC', 's_SO4', 's_SS' ) |
---|
11613 | IF ( is_used( prtcl, TRIM( variable(3:) ) ) ) THEN |
---|
11614 | icc = get_index( prtcl, TRIM( variable(3:) ) ) |
---|
11615 | IF ( av == 0 ) THEN |
---|
11616 | DO i = 1, mask_size_l(mid,1) |
---|
11617 | DO j = 1, mask_size_l(mid,2) |
---|
11618 | DO k = 1, mask_size_l(mid,3) |
---|
11619 | temp_bin = 0.0_wp |
---|
11620 | DO c = ( icc-1 )*nbins+1, icc*nbins |
---|
11621 | temp_bin = temp_bin + aerosol_mass(c)%conc( & |
---|
11622 | mask_k(mid,k),mask_j(mid,j),mask_i(mid,i)) |
---|
11623 | ENDDO |
---|
11624 | local_pf(i,j,k) = temp_bin |
---|
11625 | ENDDO |
---|
11626 | ENDDO |
---|
11627 | ENDDO |
---|
11628 | ELSE |
---|
11629 | IF ( TRIM( variable(3:) ) == 'BC' ) to_be_resorted => s_BC_av |
---|
11630 | IF ( TRIM( variable(3:) ) == 'DU' ) to_be_resorted => s_DU_av |
---|
11631 | IF ( TRIM( variable(3:) ) == 'NH' ) to_be_resorted => s_NH_av |
---|
11632 | IF ( TRIM( variable(3:) ) == 'NO' ) to_be_resorted => s_NO_av |
---|
11633 | IF ( TRIM( variable(3:) ) == 'OC' ) to_be_resorted => s_OC_av |
---|
11634 | IF ( TRIM( variable(3:) ) == 'SO4' ) to_be_resorted => s_SO4_av |
---|
11635 | IF ( TRIM( variable(3:) ) == 'SS' ) to_be_resorted => s_SS_av |
---|
11636 | DO i = 1, mask_size_l(mid,1) |
---|
11637 | DO j = 1, mask_size_l(mid,2) |
---|
11638 | DO k = 1, mask_size_l(mid,3) |
---|
11639 | local_pf(i,j,k) = to_be_resorted(mask_k(mid,k), & |
---|
11640 | mask_j(mid,j),mask_i(mid,i)) |
---|
11641 | ENDDO |
---|
11642 | ENDDO |
---|
11643 | ENDDO |
---|
11644 | ENDIF |
---|
11645 | ENDIF |
---|
11646 | |
---|
11647 | CASE DEFAULT |
---|
11648 | found = .FALSE. |
---|
11649 | |
---|
11650 | END SELECT |
---|
11651 | |
---|
11652 | END SUBROUTINE salsa_data_output_mask |
---|
11653 | |
---|
11654 | |
---|
11655 | END MODULE salsa_mod |
---|