1 | !> @file radiation_model_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 2015-2018 Czech Technical University in Prague |
---|
18 | ! Copyright 2015-2018 Institute of Computer Science of the |
---|
19 | ! Czech Academy of Sciences, Prague |
---|
20 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
21 | !------------------------------------------------------------------------------! |
---|
22 | ! |
---|
23 | ! Current revisions: |
---|
24 | ! ------------------ |
---|
25 | ! |
---|
26 | ! |
---|
27 | ! Former revisions: |
---|
28 | ! ----------------- |
---|
29 | ! $Id: radiation_model_mod.f90 3156 2018-07-19 16:30:54Z knoop $ |
---|
30 | ! Bugfix: replaced usage of the pt array with the surf%pt_surface array |
---|
31 | ! |
---|
32 | ! 3137 2018-07-17 06:44:21Z maronga |
---|
33 | ! String length for trace_names fixed |
---|
34 | ! |
---|
35 | ! 3127 2018-07-15 08:01:25Z maronga |
---|
36 | ! A few pavement parameters updated. |
---|
37 | ! |
---|
38 | ! 3123 2018-07-12 16:21:53Z suehring |
---|
39 | ! Correct working precision for INTEGER number |
---|
40 | ! |
---|
41 | ! 3122 2018-07-11 21:46:41Z maronga |
---|
42 | ! Bugfix: maximum distance for raytracing was set to -999 m by default, |
---|
43 | ! effectively switching off all surface reflections when max_raytracing_dist |
---|
44 | ! was not explicitly set in namelist |
---|
45 | ! |
---|
46 | ! 3117 2018-07-11 09:59:11Z maronga |
---|
47 | ! Bugfix: water vapor was not transfered to RRTMG when cloud_physics = .F. |
---|
48 | ! Bugfix: changed the calculation of RRTMG boundary conditions (Mohamed Salim) |
---|
49 | ! Bugfix: dry residual atmosphere is replaced by standard RRTMG atmosphere |
---|
50 | ! |
---|
51 | ! 3116 2018-07-10 14:31:58Z suehring |
---|
52 | ! Output of long/shortwave radiation at surface |
---|
53 | ! |
---|
54 | ! 3107 2018-07-06 15:55:51Z suehring |
---|
55 | ! Bugfix, missing index for dz |
---|
56 | ! |
---|
57 | ! 3066 2018-06-12 08:55:55Z Giersch |
---|
58 | ! Error message revised |
---|
59 | ! |
---|
60 | ! 3065 2018-06-12 07:03:02Z Giersch |
---|
61 | ! dz was replaced by dz(1), error message concerning vertical stretching was |
---|
62 | ! added |
---|
63 | ! |
---|
64 | ! 3049 2018-05-29 13:52:36Z Giersch |
---|
65 | ! Error messages revised |
---|
66 | ! |
---|
67 | ! 3045 2018-05-28 07:55:41Z Giersch |
---|
68 | ! Error message revised |
---|
69 | ! |
---|
70 | ! 3026 2018-05-22 10:30:53Z schwenkel |
---|
71 | ! Changed the name specific humidity to mixing ratio, since we are computing |
---|
72 | ! mixing ratios. |
---|
73 | ! |
---|
74 | ! 3016 2018-05-09 10:53:37Z Giersch |
---|
75 | ! Revised structure of reading svf data according to PALM coding standard: |
---|
76 | ! svf_code_field/len and fsvf removed, error messages PA0493 and PA0494 added, |
---|
77 | ! allocation status of output arrays checked. |
---|
78 | ! |
---|
79 | ! 3014 2018-05-09 08:42:38Z maronga |
---|
80 | ! Introduced plant canopy height similar to urban canopy height to limit |
---|
81 | ! the memory requirement to allocate lad. |
---|
82 | ! Deactivated automatic setting of minimum raytracing distance. |
---|
83 | ! |
---|
84 | ! 3004 2018-04-27 12:33:25Z Giersch |
---|
85 | ! Further allocation checks implemented (averaged data will be assigned to fill |
---|
86 | ! values if no allocation happened so far) |
---|
87 | ! |
---|
88 | ! 2995 2018-04-19 12:13:16Z Giersch |
---|
89 | ! IF-statement in radiation_init removed so that the calculation of radiative |
---|
90 | ! fluxes at model start is done in any case, bugfix in |
---|
91 | ! radiation_presimulate_solar_pos (end_time is the sum of end_time and the |
---|
92 | ! spinup_time specified in the p3d_file ), list of variables/fields that have |
---|
93 | ! to be written out or read in case of restarts has been extended |
---|
94 | ! |
---|
95 | ! 2977 2018-04-17 10:27:57Z kanani |
---|
96 | ! Implement changes from branch radiation (r2948-2971) with minor modifications, |
---|
97 | ! plus some formatting. |
---|
98 | ! (moh.hefny): |
---|
99 | ! - replaced plant_canopy by npcbl to check tree existence to avoid weird |
---|
100 | ! allocation of related arrays (after domain decomposition some domains |
---|
101 | ! contains no trees although plant_canopy (global parameter) is still TRUE). |
---|
102 | ! - added a namelist parameter to force RTM settings |
---|
103 | ! - enabled the option to switch radiation reflections off |
---|
104 | ! - renamed surf_reflections to surface_reflections |
---|
105 | ! - removed average_radiation flag from the namelist (now it is implicitly set |
---|
106 | ! in init_3d_model according to RTM) |
---|
107 | ! - edited read and write sky view factors and CSF routines to account for |
---|
108 | ! the sub-domains which may not contain any of them |
---|
109 | ! |
---|
110 | ! 2967 2018-04-13 11:22:08Z raasch |
---|
111 | ! bugfix: missing parallel cpp-directives added |
---|
112 | ! |
---|
113 | ! 2964 2018-04-12 16:04:03Z Giersch |
---|
114 | ! Error message PA0491 has been introduced which could be previously found in |
---|
115 | ! check_open. The variable numprocs_previous_run is only known in case of |
---|
116 | ! initializing_actions == read_restart_data |
---|
117 | ! |
---|
118 | ! 2963 2018-04-12 14:47:44Z suehring |
---|
119 | ! - Introduce index for vegetation/wall, pavement/green-wall and water/window |
---|
120 | ! surfaces, for clearer access of surface fraction, albedo, emissivity, etc. . |
---|
121 | ! - Minor bugfix in initialization of albedo for window surfaces |
---|
122 | ! |
---|
123 | ! 2944 2018-04-03 16:20:18Z suehring |
---|
124 | ! Fixed bad commit |
---|
125 | ! |
---|
126 | ! 2943 2018-04-03 16:17:10Z suehring |
---|
127 | ! No read of nsurfl from SVF file since it is calculated in |
---|
128 | ! radiation_interaction_init, |
---|
129 | ! allocation of arrays in radiation_read_svf only if not yet allocated, |
---|
130 | ! update of 2920 revision comment. |
---|
131 | ! |
---|
132 | ! 2932 2018-03-26 09:39:22Z maronga |
---|
133 | ! renamed radiation_par to radiation_parameters |
---|
134 | ! |
---|
135 | ! 2930 2018-03-23 16:30:46Z suehring |
---|
136 | ! Remove default surfaces from radiation model, does not make much sense to |
---|
137 | ! apply radiation model without energy-balance solvers; Further, add check for |
---|
138 | ! this. |
---|
139 | ! |
---|
140 | ! 2920 2018-03-22 11:22:01Z kanani |
---|
141 | ! - Bugfix: Initialize pcbl array (=-1) |
---|
142 | ! RTM version 2.0 (Jaroslav Resler, Pavel Krc, Mohamed Salim): |
---|
143 | ! - new major version of radiation interactions |
---|
144 | ! - substantially enhanced performance and scalability |
---|
145 | ! - processing of direct and diffuse solar radiation separated from reflected |
---|
146 | ! radiation, removed virtual surfaces |
---|
147 | ! - new type of sky discretization by azimuth and elevation angles |
---|
148 | ! - diffuse radiation processed cumulatively using sky view factor |
---|
149 | ! - used precalculated apparent solar positions for direct irradiance |
---|
150 | ! - added new 2D raytracing process for processing whole vertical column at once |
---|
151 | ! to increase memory efficiency and decrease number of MPI RMA operations |
---|
152 | ! - enabled limiting the number of view factors between surfaces by the distance |
---|
153 | ! and value |
---|
154 | ! - fixing issues induced by transferring radiation interactions from |
---|
155 | ! urban_surface_mod to radiation_mod |
---|
156 | ! - bugfixes and other minor enhancements |
---|
157 | ! |
---|
158 | ! 2906 2018-03-19 08:56:40Z Giersch |
---|
159 | ! NAMELIST paramter read/write_svf_on_init have been removed, functions |
---|
160 | ! check_open and close_file are used now for opening/closing files related to |
---|
161 | ! svf data, adjusted unit number and error numbers |
---|
162 | ! |
---|
163 | ! 2894 2018-03-15 09:17:58Z Giersch |
---|
164 | ! Calculations of the index range of the subdomain on file which overlaps with |
---|
165 | ! the current subdomain are already done in read_restart_data_mod |
---|
166 | ! radiation_read_restart_data was renamed to radiation_rrd_local and |
---|
167 | ! radiation_last_actions was renamed to radiation_wrd_local, variable named |
---|
168 | ! found has been introduced for checking if restart data was found, reading |
---|
169 | ! of restart strings has been moved completely to read_restart_data_mod, |
---|
170 | ! radiation_rrd_local is already inside the overlap loop programmed in |
---|
171 | ! read_restart_data_mod, the marker *** end rad *** is not necessary anymore, |
---|
172 | ! strings and their respective lengths are written out and read now in case of |
---|
173 | ! restart runs to get rid of prescribed character lengths (Giersch) |
---|
174 | ! |
---|
175 | ! 2809 2018-02-15 09:55:58Z suehring |
---|
176 | ! Bugfix for gfortran: Replace the function C_SIZEOF with STORAGE_SIZE |
---|
177 | ! |
---|
178 | ! 2753 2018-01-16 14:16:49Z suehring |
---|
179 | ! Tile approach for spectral albedo implemented. |
---|
180 | ! |
---|
181 | ! 2746 2018-01-15 12:06:04Z suehring |
---|
182 | ! Move flag plant canopy to modules |
---|
183 | ! |
---|
184 | ! 2724 2018-01-05 12:12:38Z maronga |
---|
185 | ! Set default of average_radiation to .FALSE. |
---|
186 | ! |
---|
187 | ! 2723 2018-01-05 09:27:03Z maronga |
---|
188 | ! Bugfix in calculation of rad_lw_out (clear-sky). First grid level was used |
---|
189 | ! instead of the surface value |
---|
190 | ! |
---|
191 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
192 | ! Corrected "Former revisions" section |
---|
193 | ! |
---|
194 | ! 2707 2017-12-18 18:34:46Z suehring |
---|
195 | ! Changes from last commit documented |
---|
196 | ! |
---|
197 | ! 2706 2017-12-18 18:33:49Z suehring |
---|
198 | ! Bugfix, in average radiation case calculate exner function before using it. |
---|
199 | ! |
---|
200 | ! 2701 2017-12-15 15:40:50Z suehring |
---|
201 | ! Changes from last commit documented |
---|
202 | ! |
---|
203 | ! 2698 2017-12-14 18:46:24Z suehring |
---|
204 | ! Bugfix in get_topography_top_index |
---|
205 | ! |
---|
206 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
207 | ! - Change in file header (GPL part) |
---|
208 | ! - Improved reading/writing of SVF from/to file (BM) |
---|
209 | ! - Bugfixes concerning RRTMG as well as average_radiation options (M. Salim) |
---|
210 | ! - Revised initialization of surface albedo and some minor bugfixes (MS) |
---|
211 | ! - Update net radiation after running radiation interaction routine (MS) |
---|
212 | ! - Revisions from M Salim included |
---|
213 | ! - Adjustment to topography and surface structure (MS) |
---|
214 | ! - Initialization of albedo and surface emissivity via input file (MS) |
---|
215 | ! - albedo_pars extended (MS) |
---|
216 | ! |
---|
217 | ! 2604 2017-11-06 13:29:00Z schwenkel |
---|
218 | ! bugfix for calculation of effective radius using morrison microphysics |
---|
219 | ! |
---|
220 | ! 2601 2017-11-02 16:22:46Z scharf |
---|
221 | ! added emissivity to namelist |
---|
222 | ! |
---|
223 | ! 2575 2017-10-24 09:57:58Z maronga |
---|
224 | ! Bugfix: calculation of shortwave and longwave albedos for RRTMG swapped |
---|
225 | ! |
---|
226 | ! 2547 2017-10-16 12:41:56Z schwenkel |
---|
227 | ! extended by cloud_droplets option, minor bugfix and correct calculation of |
---|
228 | ! cloud droplet number concentration |
---|
229 | ! |
---|
230 | ! 2544 2017-10-13 18:09:32Z maronga |
---|
231 | ! Moved date and time quantitis to separate module date_and_time_mod |
---|
232 | ! |
---|
233 | ! 2512 2017-10-04 08:26:59Z raasch |
---|
234 | ! upper bounds of cross section and 3d output changed from nx+1,ny+1 to nx,ny |
---|
235 | ! no output of ghost layer data |
---|
236 | ! |
---|
237 | ! 2504 2017-09-27 10:36:13Z maronga |
---|
238 | ! Updates pavement types and albedo parameters |
---|
239 | ! |
---|
240 | ! 2328 2017-08-03 12:34:22Z maronga |
---|
241 | ! Emissivity can now be set individually for each pixel. |
---|
242 | ! Albedo type can be inferred from land surface model. |
---|
243 | ! Added default albedo type for bare soil |
---|
244 | ! |
---|
245 | ! 2318 2017-07-20 17:27:44Z suehring |
---|
246 | ! Get topography top index via Function call |
---|
247 | ! |
---|
248 | ! 2317 2017-07-20 17:27:19Z suehring |
---|
249 | ! Improved syntax layout |
---|
250 | ! |
---|
251 | ! 2298 2017-06-29 09:28:18Z raasch |
---|
252 | ! type of write_binary changed from CHARACTER to LOGICAL |
---|
253 | ! |
---|
254 | ! 2296 2017-06-28 07:53:56Z maronga |
---|
255 | ! Added output of rad_sw_out for radiation_scheme = 'constant' |
---|
256 | ! |
---|
257 | ! 2270 2017-06-09 12:18:47Z maronga |
---|
258 | ! Numbering changed (2 timeseries removed) |
---|
259 | ! |
---|
260 | ! 2249 2017-06-06 13:58:01Z sward |
---|
261 | ! Allow for RRTMG runs without humidity/cloud physics |
---|
262 | ! |
---|
263 | ! 2248 2017-06-06 13:52:54Z sward |
---|
264 | ! Error no changed |
---|
265 | ! |
---|
266 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
267 | ! |
---|
268 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
269 | ! Adjustments to new topography concept |
---|
270 | ! Bugfix in read restart |
---|
271 | ! |
---|
272 | ! 2200 2017-04-11 11:37:51Z suehring |
---|
273 | ! Bugfix in call of exchange_horiz_2d and read restart data |
---|
274 | ! |
---|
275 | ! 2163 2017-03-01 13:23:15Z schwenkel |
---|
276 | ! Bugfix in radiation_check_data_output |
---|
277 | ! |
---|
278 | ! 2157 2017-02-22 15:10:35Z suehring |
---|
279 | ! Bugfix in read_restart data |
---|
280 | ! |
---|
281 | ! 2011 2016-09-19 17:29:57Z kanani |
---|
282 | ! Removed CALL of auxiliary SUBROUTINE get_usm_info, |
---|
283 | ! flag urban_surface is now defined in module control_parameters. |
---|
284 | ! |
---|
285 | ! 2007 2016-08-24 15:47:17Z kanani |
---|
286 | ! Added calculation of solar directional vector for new urban surface |
---|
287 | ! model, |
---|
288 | ! accounted for urban_surface model in radiation_check_parameters, |
---|
289 | ! correction of comments for zenith angle. |
---|
290 | ! |
---|
291 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
292 | ! Forced header and separation lines into 80 columns |
---|
293 | ! |
---|
294 | ! 1976 2016-07-27 13:28:04Z maronga |
---|
295 | ! Output of 2D/3D/masked data is now directly done within this module. The |
---|
296 | ! radiation schemes have been simplified for better usability so that |
---|
297 | ! rad_lw_in, rad_lw_out, rad_sw_in, and rad_sw_out are available independent of |
---|
298 | ! the radiation code used. |
---|
299 | ! |
---|
300 | ! 1856 2016-04-13 12:56:17Z maronga |
---|
301 | ! Bugfix: allocation of rad_lw_out for radiation_scheme = 'clear-sky' |
---|
302 | ! |
---|
303 | ! 1853 2016-04-11 09:00:35Z maronga |
---|
304 | ! Added routine for radiation_scheme = constant. |
---|
305 | ! |
---|
306 | ! 1849 2016-04-08 11:33:18Z hoffmann |
---|
307 | ! Adapted for modularization of microphysics |
---|
308 | ! |
---|
309 | ! 1826 2016-04-07 12:01:39Z maronga |
---|
310 | ! Further modularization. |
---|
311 | ! |
---|
312 | ! 1788 2016-03-10 11:01:04Z maronga |
---|
313 | ! Added new albedo class for pavements / roads. |
---|
314 | ! |
---|
315 | ! 1783 2016-03-06 18:36:17Z raasch |
---|
316 | ! palm-netcdf-module removed in order to avoid a circular module dependency, |
---|
317 | ! netcdf-variables moved to netcdf-module, new routine netcdf_handle_error_rad |
---|
318 | ! added |
---|
319 | ! |
---|
320 | ! 1757 2016-02-22 15:49:32Z maronga |
---|
321 | ! Added parameter unscheduled_radiation_calls. Bugfix: interpolation of sounding |
---|
322 | ! profiles for pressure and temperature above the LES domain. |
---|
323 | ! |
---|
324 | ! 1709 2015-11-04 14:47:01Z maronga |
---|
325 | ! Bugfix: set initial value for rrtm_lwuflx_dt to zero, small formatting |
---|
326 | ! corrections |
---|
327 | ! |
---|
328 | ! 1701 2015-11-02 07:43:04Z maronga |
---|
329 | ! Bugfixes: wrong index for output of timeseries, setting of nz_snd_end |
---|
330 | ! |
---|
331 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
332 | ! Added option for spin-up runs without radiation (skip_time_do_radiation). Bugfix |
---|
333 | ! in calculation of pressure profiles. Bugfix in calculation of trace gas profiles. |
---|
334 | ! Added output of radiative heating rates. |
---|
335 | ! |
---|
336 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
337 | ! Code annotations made doxygen readable |
---|
338 | ! |
---|
339 | ! 1606 2015-06-29 10:43:37Z maronga |
---|
340 | ! Added preprocessor directive __netcdf to allow for compiling without netCDF. |
---|
341 | ! Note, however, that RRTMG cannot be used without netCDF. |
---|
342 | ! |
---|
343 | ! 1590 2015-05-08 13:56:27Z maronga |
---|
344 | ! Bugfix: definition of character strings requires same length for all elements |
---|
345 | ! |
---|
346 | ! 1587 2015-05-04 14:19:01Z maronga |
---|
347 | ! Added albedo class for snow |
---|
348 | ! |
---|
349 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
350 | ! Added support for RRTMG |
---|
351 | ! |
---|
352 | ! 1571 2015-03-12 16:12:49Z maronga |
---|
353 | ! Added missing KIND attribute. Removed upper-case variable names |
---|
354 | ! |
---|
355 | ! 1551 2015-03-03 14:18:16Z maronga |
---|
356 | ! Added support for data output. Various variables have been renamed. Added |
---|
357 | ! interface for different radiation schemes (currently: clear-sky, constant, and |
---|
358 | ! RRTM (not yet implemented). |
---|
359 | ! |
---|
360 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
361 | ! Initial revision |
---|
362 | ! |
---|
363 | ! |
---|
364 | ! Description: |
---|
365 | ! ------------ |
---|
366 | !> Radiation models and interfaces |
---|
367 | !> @todo Replace dz(1) appropriatly to account for grid stretching |
---|
368 | !> @todo move variable definitions used in radiation_init only to the subroutine |
---|
369 | !> as they are no longer required after initialization. |
---|
370 | !> @todo Output of full column vertical profiles used in RRTMG |
---|
371 | !> @todo Output of other rrtm arrays (such as volume mixing ratios) |
---|
372 | !> @todo Adapt for use with topography |
---|
373 | !> @todo Optimize radiation_tendency routines |
---|
374 | !> |
---|
375 | !> @note Many variables have a leading dummy dimension (0:0) in order to |
---|
376 | !> match the assume-size shape expected by the RRTMG model. |
---|
377 | !------------------------------------------------------------------------------! |
---|
378 | MODULE radiation_model_mod |
---|
379 | |
---|
380 | USE arrays_3d, & |
---|
381 | ONLY: dzw, hyp, nc, pt, q, ql, zu, zw |
---|
382 | |
---|
383 | USE calc_mean_profile_mod, & |
---|
384 | ONLY: calc_mean_profile |
---|
385 | |
---|
386 | USE cloud_parameters, & |
---|
387 | ONLY: cp, l_d_cp, l_v, r_d, rho_l |
---|
388 | |
---|
389 | USE constants, & |
---|
390 | ONLY: pi |
---|
391 | |
---|
392 | USE control_parameters, & |
---|
393 | ONLY: cloud_droplets, cloud_physics, coupling_char, dz, g, & |
---|
394 | humidity, & |
---|
395 | initializing_actions, io_blocks, io_group, & |
---|
396 | latitude, longitude, large_scale_forcing, lsf_surf, & |
---|
397 | message_string, microphysics_morrison, plant_canopy, pt_surface,& |
---|
398 | rho_surface, surface_pressure, time_since_reference_point, & |
---|
399 | urban_surface, land_surface, end_time, spinup_time, dt_spinup |
---|
400 | |
---|
401 | USE cpulog, & |
---|
402 | ONLY: cpu_log, log_point, log_point_s |
---|
403 | |
---|
404 | USE grid_variables, & |
---|
405 | ONLY: ddx, ddy, dx, dy |
---|
406 | |
---|
407 | USE date_and_time_mod, & |
---|
408 | ONLY: calc_date_and_time, d_hours_day, d_seconds_hour, day_of_year, & |
---|
409 | d_seconds_year, day_of_year_init, time_utc_init, time_utc |
---|
410 | |
---|
411 | USE indices, & |
---|
412 | ONLY: nnx, nny, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
413 | nzb, nzt |
---|
414 | |
---|
415 | USE, INTRINSIC :: iso_c_binding |
---|
416 | |
---|
417 | USE kinds |
---|
418 | |
---|
419 | USE microphysics_mod, & |
---|
420 | ONLY: na_init, nc_const, sigma_gc |
---|
421 | |
---|
422 | #if defined ( __netcdf ) |
---|
423 | USE NETCDF |
---|
424 | #endif |
---|
425 | |
---|
426 | USE netcdf_data_input_mod, & |
---|
427 | ONLY: albedo_type_f, albedo_pars_f, building_type_f, pavement_type_f, & |
---|
428 | vegetation_type_f, water_type_f |
---|
429 | |
---|
430 | USE plant_canopy_model_mod, & |
---|
431 | ONLY: lad_s, pc_heating_rate, pc_transpiration_rate |
---|
432 | |
---|
433 | USE pegrid |
---|
434 | |
---|
435 | #if defined ( __rrtmg ) |
---|
436 | USE parrrsw, & |
---|
437 | ONLY: naerec, nbndsw |
---|
438 | |
---|
439 | USE parrrtm, & |
---|
440 | ONLY: nbndlw |
---|
441 | |
---|
442 | USE rrtmg_lw_init, & |
---|
443 | ONLY: rrtmg_lw_ini |
---|
444 | |
---|
445 | USE rrtmg_sw_init, & |
---|
446 | ONLY: rrtmg_sw_ini |
---|
447 | |
---|
448 | USE rrtmg_lw_rad, & |
---|
449 | ONLY: rrtmg_lw |
---|
450 | |
---|
451 | USE rrtmg_sw_rad, & |
---|
452 | ONLY: rrtmg_sw |
---|
453 | #endif |
---|
454 | USE statistics, & |
---|
455 | ONLY: hom |
---|
456 | |
---|
457 | USE surface_mod, & |
---|
458 | ONLY: get_topography_top_index, get_topography_top_index_ji, & |
---|
459 | ind_pav_green, ind_veg_wall, ind_wat_win, & |
---|
460 | surf_lsm_h, surf_lsm_v, surf_type, surf_usm_h, surf_usm_v |
---|
461 | |
---|
462 | IMPLICIT NONE |
---|
463 | |
---|
464 | CHARACTER(10) :: radiation_scheme = 'clear-sky' ! 'constant', 'clear-sky', or 'rrtmg' |
---|
465 | |
---|
466 | ! |
---|
467 | !-- Predefined Land surface classes (albedo_type) after Briegleb (1992) |
---|
468 | CHARACTER(37), DIMENSION(0:33), PARAMETER :: albedo_type_name = (/ & |
---|
469 | 'user defined ', & ! 0 |
---|
470 | 'ocean ', & ! 1 |
---|
471 | 'mixed farming, tall grassland ', & ! 2 |
---|
472 | 'tall/medium grassland ', & ! 3 |
---|
473 | 'evergreen shrubland ', & ! 4 |
---|
474 | 'short grassland/meadow/shrubland ', & ! 5 |
---|
475 | 'evergreen needleleaf forest ', & ! 6 |
---|
476 | 'mixed deciduous evergreen forest ', & ! 7 |
---|
477 | 'deciduous forest ', & ! 8 |
---|
478 | 'tropical evergreen broadleaved forest', & ! 9 |
---|
479 | 'medium/tall grassland/woodland ', & ! 10 |
---|
480 | 'desert, sandy ', & ! 11 |
---|
481 | 'desert, rocky ', & ! 12 |
---|
482 | 'tundra ', & ! 13 |
---|
483 | 'land ice ', & ! 14 |
---|
484 | 'sea ice ', & ! 15 |
---|
485 | 'snow ', & ! 16 |
---|
486 | 'bare soil ', & ! 17 |
---|
487 | 'asphalt/concrete mix ', & ! 18 |
---|
488 | 'asphalt (asphalt concrete) ', & ! 19 |
---|
489 | 'concrete (Portland concrete) ', & ! 20 |
---|
490 | 'sett ', & ! 21 |
---|
491 | 'paving stones ', & ! 22 |
---|
492 | 'cobblestone ', & ! 23 |
---|
493 | 'metal ', & ! 24 |
---|
494 | 'wood ', & ! 25 |
---|
495 | 'gravel ', & ! 26 |
---|
496 | 'fine gravel ', & ! 27 |
---|
497 | 'pebblestone ', & ! 28 |
---|
498 | 'woodchips ', & ! 29 |
---|
499 | 'tartan (sports) ', & ! 30 |
---|
500 | 'artifical turf (sports) ', & ! 31 |
---|
501 | 'clay (sports) ', & ! 32 |
---|
502 | 'building (dummy) ' & ! 33 |
---|
503 | /) |
---|
504 | |
---|
505 | INTEGER(iwp) :: albedo_type = 9999999, & !< Albedo surface type |
---|
506 | dots_rad = 0 !< starting index for timeseries output |
---|
507 | |
---|
508 | LOGICAL :: unscheduled_radiation_calls = .TRUE., & !< flag parameter indicating whether additional calls of the radiation code are allowed |
---|
509 | constant_albedo = .FALSE., & !< flag parameter indicating whether the albedo may change depending on zenith |
---|
510 | force_radiation_call = .FALSE., & !< flag parameter for unscheduled radiation calls |
---|
511 | lw_radiation = .TRUE., & !< flag parameter indicating whether longwave radiation shall be calculated |
---|
512 | radiation = .FALSE., & !< flag parameter indicating whether the radiation model is used |
---|
513 | sun_up = .TRUE., & !< flag parameter indicating whether the sun is up or down |
---|
514 | sw_radiation = .TRUE., & !< flag parameter indicating whether shortwave radiation shall be calculated |
---|
515 | sun_direction = .FALSE., & !< flag parameter indicating whether solar direction shall be calculated |
---|
516 | average_radiation = .FALSE., & !< flag to set the calculation of radiation averaging for the domain |
---|
517 | radiation_interactions = .FALSE., & !< flag to activiate RTM (TRUE only if vertical urban/land surface and trees exist) |
---|
518 | surface_reflections = .TRUE., & !< flag to switch the calculation of radiation interaction between surfaces. |
---|
519 | !< When it switched off, only the effect of buildings and trees shadow will |
---|
520 | !< will be considered. However fewer SVFs are expected. |
---|
521 | radiation_interactions_on = .TRUE. !< namelist flag to force RTM activiation regardless to vertical urban/land surface and trees |
---|
522 | |
---|
523 | |
---|
524 | REAL(wp), PARAMETER :: sigma_sb = 5.67037321E-8_wp, & !< Stefan-Boltzmann constant |
---|
525 | solar_constant = 1368.0_wp !< solar constant at top of atmosphere |
---|
526 | |
---|
527 | REAL(wp) :: albedo = 9999999.9_wp, & !< NAMELIST alpha |
---|
528 | albedo_lw_dif = 9999999.9_wp, & !< NAMELIST aldif |
---|
529 | albedo_lw_dir = 9999999.9_wp, & !< NAMELIST aldir |
---|
530 | albedo_sw_dif = 9999999.9_wp, & !< NAMELIST asdif |
---|
531 | albedo_sw_dir = 9999999.9_wp, & !< NAMELIST asdir |
---|
532 | decl_1, & !< declination coef. 1 |
---|
533 | decl_2, & !< declination coef. 2 |
---|
534 | decl_3, & !< declination coef. 3 |
---|
535 | dt_radiation = 0.0_wp, & !< radiation model timestep |
---|
536 | emissivity = 9999999.9_wp, & !< NAMELIST surface emissivity |
---|
537 | lon = 0.0_wp, & !< longitude in radians |
---|
538 | lat = 0.0_wp, & !< latitude in radians |
---|
539 | net_radiation = 0.0_wp, & !< net radiation at surface |
---|
540 | skip_time_do_radiation = 0.0_wp, & !< Radiation model is not called before this time |
---|
541 | sky_trans, & !< sky transmissivity |
---|
542 | time_radiation = 0.0_wp !< time since last call of radiation code |
---|
543 | |
---|
544 | |
---|
545 | REAL(wp), DIMENSION(0:0) :: zenith, & !< cosine of solar zenith angle |
---|
546 | sun_dir_lat, & !< solar directional vector in latitudes |
---|
547 | sun_dir_lon !< solar directional vector in longitudes |
---|
548 | |
---|
549 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_net_av !< average of net radiation (rad_net) at surface |
---|
550 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_lw_in_xy_av !< average of incoming longwave radiation at surface |
---|
551 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_lw_out_xy_av !< average of outgoing longwave radiation at surface |
---|
552 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_xy_av !< average of incoming shortwave radiation at surface |
---|
553 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_out_xy_av !< average of outgoing shortwave radiation at surface |
---|
554 | ! |
---|
555 | !-- Land surface albedos for solar zenith angle of 60° after Briegleb (1992) |
---|
556 | !-- (shortwave, longwave, broadband): sw, lw, bb, |
---|
557 | REAL(wp), DIMENSION(0:2,1:33), PARAMETER :: albedo_pars = RESHAPE( (/& |
---|
558 | 0.06_wp, 0.06_wp, 0.06_wp, & ! 1 |
---|
559 | 0.09_wp, 0.28_wp, 0.19_wp, & ! 2 |
---|
560 | 0.11_wp, 0.33_wp, 0.23_wp, & ! 3 |
---|
561 | 0.11_wp, 0.33_wp, 0.23_wp, & ! 4 |
---|
562 | 0.14_wp, 0.34_wp, 0.25_wp, & ! 5 |
---|
563 | 0.06_wp, 0.22_wp, 0.14_wp, & ! 6 |
---|
564 | 0.06_wp, 0.27_wp, 0.17_wp, & ! 7 |
---|
565 | 0.06_wp, 0.31_wp, 0.19_wp, & ! 8 |
---|
566 | 0.06_wp, 0.22_wp, 0.14_wp, & ! 9 |
---|
567 | 0.06_wp, 0.28_wp, 0.18_wp, & ! 10 |
---|
568 | 0.35_wp, 0.51_wp, 0.43_wp, & ! 11 |
---|
569 | 0.24_wp, 0.40_wp, 0.32_wp, & ! 12 |
---|
570 | 0.10_wp, 0.27_wp, 0.19_wp, & ! 13 |
---|
571 | 0.90_wp, 0.65_wp, 0.77_wp, & ! 14 |
---|
572 | 0.90_wp, 0.65_wp, 0.77_wp, & ! 15 |
---|
573 | 0.95_wp, 0.70_wp, 0.82_wp, & ! 16 |
---|
574 | 0.08_wp, 0.08_wp, 0.08_wp, & ! 17 |
---|
575 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 18 |
---|
576 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 19 |
---|
577 | 0.30_wp, 0.30_wp, 0.30_wp, & ! 20 |
---|
578 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 21 |
---|
579 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 22 |
---|
580 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 23 |
---|
581 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 24 |
---|
582 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 25 |
---|
583 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 26 |
---|
584 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 27 |
---|
585 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 28 |
---|
586 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 29 |
---|
587 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 30 |
---|
588 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 31 |
---|
589 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 32 |
---|
590 | 0.17_wp, 0.17_wp, 0.17_wp & ! 33 |
---|
591 | /), (/ 3, 33 /) ) |
---|
592 | |
---|
593 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: & |
---|
594 | rad_lw_cs_hr, & !< longwave clear sky radiation heating rate (K/s) |
---|
595 | rad_lw_cs_hr_av, & !< average of rad_lw_cs_hr |
---|
596 | rad_lw_hr, & !< longwave radiation heating rate (K/s) |
---|
597 | rad_lw_hr_av, & !< average of rad_sw_hr |
---|
598 | rad_lw_in, & !< incoming longwave radiation (W/m2) |
---|
599 | rad_lw_in_av, & !< average of rad_lw_in |
---|
600 | rad_lw_out, & !< outgoing longwave radiation (W/m2) |
---|
601 | rad_lw_out_av, & !< average of rad_lw_out |
---|
602 | rad_sw_cs_hr, & !< shortwave clear sky radiation heating rate (K/s) |
---|
603 | rad_sw_cs_hr_av, & !< average of rad_sw_cs_hr |
---|
604 | rad_sw_hr, & !< shortwave radiation heating rate (K/s) |
---|
605 | rad_sw_hr_av, & !< average of rad_sw_hr |
---|
606 | rad_sw_in, & !< incoming shortwave radiation (W/m2) |
---|
607 | rad_sw_in_av, & !< average of rad_sw_in |
---|
608 | rad_sw_out, & !< outgoing shortwave radiation (W/m2) |
---|
609 | rad_sw_out_av !< average of rad_sw_out |
---|
610 | |
---|
611 | |
---|
612 | ! |
---|
613 | !-- Variables and parameters used in RRTMG only |
---|
614 | #if defined ( __rrtmg ) |
---|
615 | CHARACTER(LEN=12) :: rrtm_input_file = "RAD_SND_DATA" !< name of the NetCDF input file (sounding data) |
---|
616 | |
---|
617 | |
---|
618 | ! |
---|
619 | !-- Flag parameters for RRTMGS (should not be changed) |
---|
620 | INTEGER(iwp), PARAMETER :: rrtm_idrv = 1, & !< flag for longwave upward flux calculation option (0,1) |
---|
621 | rrtm_inflglw = 2, & !< flag for lw cloud optical properties (0,1,2) |
---|
622 | rrtm_iceflglw = 0, & !< flag for lw ice particle specifications (0,1,2,3) |
---|
623 | rrtm_liqflglw = 1, & !< flag for lw liquid droplet specifications |
---|
624 | rrtm_inflgsw = 2, & !< flag for sw cloud optical properties (0,1,2) |
---|
625 | rrtm_iceflgsw = 0, & !< flag for sw ice particle specifications (0,1,2,3) |
---|
626 | rrtm_liqflgsw = 1 !< flag for sw liquid droplet specifications |
---|
627 | |
---|
628 | ! |
---|
629 | !-- The following variables should be only changed with care, as this will |
---|
630 | !-- require further setting of some variables, which is currently not |
---|
631 | !-- implemented (aerosols, ice phase). |
---|
632 | INTEGER(iwp) :: nzt_rad, & !< upper vertical limit for radiation calculations |
---|
633 | rrtm_icld = 0, & !< cloud flag (0: clear sky column, 1: cloudy column) |
---|
634 | rrtm_iaer = 0 !< aerosol option flag (0: no aerosol layers, for lw only: 6 (requires setting of rrtm_sw_ecaer), 10: one or more aerosol layers (not implemented) |
---|
635 | |
---|
636 | INTEGER(iwp) :: nc_stat !< local variable for storin the result of netCDF calls for error message handling |
---|
637 | |
---|
638 | LOGICAL :: snd_exists = .FALSE. !< flag parameter to check whether a user-defined input files exists |
---|
639 | |
---|
640 | REAL(wp), PARAMETER :: mol_mass_air_d_wv = 1.607793_wp !< molecular weight dry air / water vapor |
---|
641 | |
---|
642 | REAL(wp), DIMENSION(:), ALLOCATABLE :: hyp_snd, & !< hypostatic pressure from sounding data (hPa) |
---|
643 | rrtm_tsfc, & !< dummy array for storing surface temperature |
---|
644 | t_snd !< actual temperature from sounding data (hPa) |
---|
645 | |
---|
646 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rrtm_ccl4vmr, & !< CCL4 volume mixing ratio (g/mol) |
---|
647 | rrtm_cfc11vmr, & !< CFC11 volume mixing ratio (g/mol) |
---|
648 | rrtm_cfc12vmr, & !< CFC12 volume mixing ratio (g/mol) |
---|
649 | rrtm_cfc22vmr, & !< CFC22 volume mixing ratio (g/mol) |
---|
650 | rrtm_ch4vmr, & !< CH4 volume mixing ratio |
---|
651 | rrtm_cicewp, & !< in-cloud ice water path (g/m²) |
---|
652 | rrtm_cldfr, & !< cloud fraction (0,1) |
---|
653 | rrtm_cliqwp, & !< in-cloud liquid water path (g/m²) |
---|
654 | rrtm_co2vmr, & !< CO2 volume mixing ratio (g/mol) |
---|
655 | rrtm_emis, & !< surface emissivity (0-1) |
---|
656 | rrtm_h2ovmr, & !< H2O volume mixing ratio |
---|
657 | rrtm_n2ovmr, & !< N2O volume mixing ratio |
---|
658 | rrtm_o2vmr, & !< O2 volume mixing ratio |
---|
659 | rrtm_o3vmr, & !< O3 volume mixing ratio |
---|
660 | rrtm_play, & !< pressure layers (hPa, zu-grid) |
---|
661 | rrtm_plev, & !< pressure layers (hPa, zw-grid) |
---|
662 | rrtm_reice, & !< cloud ice effective radius (microns) |
---|
663 | rrtm_reliq, & !< cloud water drop effective radius (microns) |
---|
664 | rrtm_tlay, & !< actual temperature (K, zu-grid) |
---|
665 | rrtm_tlev, & !< actual temperature (K, zw-grid) |
---|
666 | rrtm_lwdflx, & !< RRTM output of incoming longwave radiation flux (W/m2) |
---|
667 | rrtm_lwdflxc, & !< RRTM output of outgoing clear sky longwave radiation flux (W/m2) |
---|
668 | rrtm_lwuflx, & !< RRTM output of outgoing longwave radiation flux (W/m2) |
---|
669 | rrtm_lwuflxc, & !< RRTM output of incoming clear sky longwave radiation flux (W/m2) |
---|
670 | rrtm_lwuflx_dt, & !< RRTM output of incoming clear sky longwave radiation flux (W/m2) |
---|
671 | rrtm_lwuflxc_dt,& !< RRTM output of outgoing clear sky longwave radiation flux (W/m2) |
---|
672 | rrtm_lwhr, & !< RRTM output of longwave radiation heating rate (K/d) |
---|
673 | rrtm_lwhrc, & !< RRTM output of incoming longwave clear sky radiation heating rate (K/d) |
---|
674 | rrtm_swdflx, & !< RRTM output of incoming shortwave radiation flux (W/m2) |
---|
675 | rrtm_swdflxc, & !< RRTM output of outgoing clear sky shortwave radiation flux (W/m2) |
---|
676 | rrtm_swuflx, & !< RRTM output of outgoing shortwave radiation flux (W/m2) |
---|
677 | rrtm_swuflxc, & !< RRTM output of incoming clear sky shortwave radiation flux (W/m2) |
---|
678 | rrtm_swhr, & !< RRTM output of shortwave radiation heating rate (K/d) |
---|
679 | rrtm_swhrc !< RRTM output of incoming shortwave clear sky radiation heating rate (K/d) |
---|
680 | |
---|
681 | |
---|
682 | REAL(wp), DIMENSION(1) :: rrtm_aldif, & !< surface albedo for longwave diffuse radiation |
---|
683 | rrtm_aldir, & !< surface albedo for longwave direct radiation |
---|
684 | rrtm_asdif, & !< surface albedo for shortwave diffuse radiation |
---|
685 | rrtm_asdir !< surface albedo for shortwave direct radiation |
---|
686 | |
---|
687 | ! |
---|
688 | !-- Definition of arrays that are currently not used for calling RRTMG (due to setting of flag parameters) |
---|
689 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: rad_lw_cs_in, & !< incoming clear sky longwave radiation (W/m2) (not used) |
---|
690 | rad_lw_cs_out, & !< outgoing clear sky longwave radiation (W/m2) (not used) |
---|
691 | rad_sw_cs_in, & !< incoming clear sky shortwave radiation (W/m2) (not used) |
---|
692 | rad_sw_cs_out, & !< outgoing clear sky shortwave radiation (W/m2) (not used) |
---|
693 | rrtm_lw_tauaer, & !< lw aerosol optical depth |
---|
694 | rrtm_lw_taucld, & !< lw in-cloud optical depth |
---|
695 | rrtm_sw_taucld, & !< sw in-cloud optical depth |
---|
696 | rrtm_sw_ssacld, & !< sw in-cloud single scattering albedo |
---|
697 | rrtm_sw_asmcld, & !< sw in-cloud asymmetry parameter |
---|
698 | rrtm_sw_fsfcld, & !< sw in-cloud forward scattering fraction |
---|
699 | rrtm_sw_tauaer, & !< sw aerosol optical depth |
---|
700 | rrtm_sw_ssaaer, & !< sw aerosol single scattering albedo |
---|
701 | rrtm_sw_asmaer, & !< sw aerosol asymmetry parameter |
---|
702 | rrtm_sw_ecaer !< sw aerosol optical detph at 0.55 microns (rrtm_iaer = 6 only) |
---|
703 | |
---|
704 | #endif |
---|
705 | ! |
---|
706 | !-- Parameters of urban and land surface models |
---|
707 | INTEGER(iwp) :: nzu !< number of layers of urban surface (will be calculated) |
---|
708 | INTEGER(iwp) :: nzp !< number of layers of plant canopy (will be calculated) |
---|
709 | INTEGER(iwp) :: nzub,nzut !< bottom and top layer of urban surface (will be calculated) |
---|
710 | INTEGER(iwp) :: nzpt !< top layer of plant canopy (will be calculated) |
---|
711 | !-- parameters of urban and land surface models |
---|
712 | INTEGER(iwp), PARAMETER :: nzut_free = 3 !< number of free layers above top of of topography |
---|
713 | INTEGER(iwp), PARAMETER :: ndsvf = 2 !< number of dimensions of real values in SVF |
---|
714 | INTEGER(iwp), PARAMETER :: idsvf = 2 !< number of dimensions of integer values in SVF |
---|
715 | INTEGER(iwp), PARAMETER :: ndcsf = 2 !< number of dimensions of real values in CSF |
---|
716 | INTEGER(iwp), PARAMETER :: idcsf = 2 !< number of dimensions of integer values in CSF |
---|
717 | INTEGER(iwp), PARAMETER :: kdcsf = 4 !< number of dimensions of integer values in CSF calculation array |
---|
718 | INTEGER(iwp), PARAMETER :: id = 1 !< position of d-index in surfl and surf |
---|
719 | INTEGER(iwp), PARAMETER :: iz = 2 !< position of k-index in surfl and surf |
---|
720 | INTEGER(iwp), PARAMETER :: iy = 3 !< position of j-index in surfl and surf |
---|
721 | INTEGER(iwp), PARAMETER :: ix = 4 !< position of i-index in surfl and surf |
---|
722 | |
---|
723 | INTEGER(iwp), PARAMETER :: nsurf_type = 16 !< number of surf types incl. phys.(land+urban) & (atm.,sky,boundary) surfaces - 1 |
---|
724 | |
---|
725 | INTEGER(iwp), PARAMETER :: iup_u = 0 !< 0 - index of urban upward surface (ground or roof) |
---|
726 | INTEGER(iwp), PARAMETER :: idown_u = 1 !< 1 - index of urban downward surface (overhanging) |
---|
727 | INTEGER(iwp), PARAMETER :: inorth_u = 2 !< 2 - index of urban northward facing wall |
---|
728 | INTEGER(iwp), PARAMETER :: isouth_u = 3 !< 3 - index of urban southward facing wall |
---|
729 | INTEGER(iwp), PARAMETER :: ieast_u = 4 !< 4 - index of urban eastward facing wall |
---|
730 | INTEGER(iwp), PARAMETER :: iwest_u = 5 !< 5 - index of urban westward facing wall |
---|
731 | |
---|
732 | INTEGER(iwp), PARAMETER :: iup_l = 6 !< 6 - index of land upward surface (ground or roof) |
---|
733 | INTEGER(iwp), PARAMETER :: inorth_l = 7 !< 7 - index of land northward facing wall |
---|
734 | INTEGER(iwp), PARAMETER :: isouth_l = 8 !< 8 - index of land southward facing wall |
---|
735 | INTEGER(iwp), PARAMETER :: ieast_l = 9 !< 9 - index of land eastward facing wall |
---|
736 | INTEGER(iwp), PARAMETER :: iwest_l = 10 !< 10- index of land westward facing wall |
---|
737 | |
---|
738 | INTEGER(iwp), PARAMETER :: iup_a = 11 !< 11- index of atm. cell ubward virtual surface |
---|
739 | INTEGER(iwp), PARAMETER :: idown_a = 12 !< 12- index of atm. cell downward virtual surface |
---|
740 | INTEGER(iwp), PARAMETER :: inorth_a = 13 !< 13- index of atm. cell northward facing virtual surface |
---|
741 | INTEGER(iwp), PARAMETER :: isouth_a = 14 !< 14- index of atm. cell southward facing virtual surface |
---|
742 | INTEGER(iwp), PARAMETER :: ieast_a = 15 !< 15- index of atm. cell eastward facing virtual surface |
---|
743 | INTEGER(iwp), PARAMETER :: iwest_a = 16 !< 16- index of atm. cell westward facing virtual surface |
---|
744 | |
---|
745 | INTEGER(iwp), DIMENSION(0:nsurf_type), PARAMETER :: idir = (/0, 0,0, 0,1,-1,0,0, 0,1,-1,0, 0,0, 0,1,-1/) !< surface normal direction x indices |
---|
746 | INTEGER(iwp), DIMENSION(0:nsurf_type), PARAMETER :: jdir = (/0, 0,1,-1,0, 0,0,1,-1,0, 0,0, 0,1,-1,0, 0/) !< surface normal direction y indices |
---|
747 | INTEGER(iwp), DIMENSION(0:nsurf_type), PARAMETER :: kdir = (/1,-1,0, 0,0, 0,1,0, 0,0, 0,1,-1,0, 0,0, 0/) !< surface normal direction z indices |
---|
748 | !< parameter but set in the code |
---|
749 | |
---|
750 | |
---|
751 | !-- indices and sizes of urban and land surface models |
---|
752 | INTEGER(iwp) :: startland !< start index of block of land and roof surfaces |
---|
753 | INTEGER(iwp) :: endland !< end index of block of land and roof surfaces |
---|
754 | INTEGER(iwp) :: nlands !< number of land and roof surfaces in local processor |
---|
755 | INTEGER(iwp) :: startwall !< start index of block of wall surfaces |
---|
756 | INTEGER(iwp) :: endwall !< end index of block of wall surfaces |
---|
757 | INTEGER(iwp) :: nwalls !< number of wall surfaces in local processor |
---|
758 | |
---|
759 | !-- indices and sizes of urban and land surface models |
---|
760 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: surfl !< coordinates of i-th local surface in local grid - surfl[:,k] = [d, z, y, x] |
---|
761 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: surf !< coordinates of i-th surface in grid - surf[:,k] = [d, z, y, x] |
---|
762 | INTEGER(iwp) :: nsurfl !< number of all surfaces in local processor |
---|
763 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nsurfs !< array of number of all surfaces in individual processors |
---|
764 | INTEGER(iwp) :: nsurf !< global number of surfaces in index array of surfaces (nsurf = proc nsurfs) |
---|
765 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: surfstart !< starts of blocks of surfaces for individual processors in array surf |
---|
766 | !< respective block for particular processor is surfstart[iproc]+1 : surfstart[iproc+1] |
---|
767 | |
---|
768 | !-- block variables needed for calculation of the plant canopy model inside the urban surface model |
---|
769 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pct !< top layer of the plant canopy |
---|
770 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch !< heights of the plant canopy |
---|
771 | INTEGER(iwp) :: npcbl = 0 !< number of the plant canopy gridboxes in local processor |
---|
772 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pcbl !< k,j,i coordinates of l-th local plant canopy box pcbl[:,l] = [k, j, i] |
---|
773 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinsw !< array of absorbed sw radiation for local plant canopy box |
---|
774 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinswdir !< array of absorbed direct sw radiation for local plant canopy box |
---|
775 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinswdif !< array of absorbed diffusion sw radiation for local plant canopy box |
---|
776 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinlw !< array of absorbed lw radiation for local plant canopy box |
---|
777 | |
---|
778 | !-- configuration parameters (they can be setup in PALM config) |
---|
779 | LOGICAL :: split_diffusion_radiation = .TRUE. !< split direct and diffusion dw radiation |
---|
780 | !< (.F. in case the radiation model already does it) |
---|
781 | LOGICAL :: rma_lad_raytrace = .FALSE. !< use MPI RMA to access LAD for raytracing (instead of global array) |
---|
782 | LOGICAL :: mrt_factors = .FALSE. !< whether to generate MRT factor files during init |
---|
783 | INTEGER(iwp) :: nrefsteps = 0 !< number of reflection steps to perform |
---|
784 | REAL(wp), PARAMETER :: ext_coef = 0.6_wp !< extinction coefficient (a.k.a. alpha) |
---|
785 | INTEGER(iwp), PARAMETER :: rad_version_len = 10 !< length of identification string of rad version |
---|
786 | CHARACTER(rad_version_len), PARAMETER :: rad_version = 'RAD v. 1.1' !< identification of version of binary svf and restart files |
---|
787 | INTEGER(iwp) :: raytrace_discrete_elevs = 40 !< number of discretization steps for elevation (nadir to zenith) |
---|
788 | INTEGER(iwp) :: raytrace_discrete_azims = 80 !< number of discretization steps for azimuth (out of 360 degrees) |
---|
789 | REAL(wp) :: max_raytracing_dist = -999.0_wp !< maximum distance for raytracing (in metres) |
---|
790 | REAL(wp) :: min_irrf_value = 1e-6_wp !< minimum potential irradiance factor value for raytracing |
---|
791 | REAL(wp), DIMENSION(1:30) :: svfnorm_report_thresh = 1e21_wp !< thresholds of SVF normalization values to report |
---|
792 | INTEGER(iwp) :: svfnorm_report_num !< number of SVF normalization thresholds to report |
---|
793 | |
---|
794 | !-- radiation related arrays to be used in radiation_interaction routine |
---|
795 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_dir !< direct sw radiation |
---|
796 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_diff !< diffusion sw radiation |
---|
797 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_lw_in_diff !< diffusion lw radiation |
---|
798 | |
---|
799 | !-- parameters required for RRTMG lower boundary condition |
---|
800 | REAL(wp) :: albedo_urb !< albedo value retuned to RRTMG boundary cond. |
---|
801 | REAL(wp) :: emissivity_urb !< emissivity value retuned to RRTMG boundary cond. |
---|
802 | REAL(wp) :: t_rad_urb !< temperature value retuned to RRTMG boundary cond. |
---|
803 | |
---|
804 | !-- type for calculation of svf |
---|
805 | TYPE t_svf |
---|
806 | INTEGER(iwp) :: isurflt !< |
---|
807 | INTEGER(iwp) :: isurfs !< |
---|
808 | REAL(wp) :: rsvf !< |
---|
809 | REAL(wp) :: rtransp !< |
---|
810 | END TYPE |
---|
811 | |
---|
812 | !-- type for calculation of csf |
---|
813 | TYPE t_csf |
---|
814 | INTEGER(iwp) :: ip !< |
---|
815 | INTEGER(iwp) :: itx !< |
---|
816 | INTEGER(iwp) :: ity !< |
---|
817 | INTEGER(iwp) :: itz !< |
---|
818 | INTEGER(iwp) :: isurfs !< |
---|
819 | REAL(wp) :: rsvf !< |
---|
820 | REAL(wp) :: rtransp !< |
---|
821 | END TYPE |
---|
822 | |
---|
823 | !-- arrays storing the values of USM |
---|
824 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: svfsurf !< svfsurf[:,isvf] = index of source and target surface for svf[isvf] |
---|
825 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: svf !< array of shape view factors+direct irradiation factors for local surfaces |
---|
826 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfins !< array of sw radiation falling to local surface after i-th reflection |
---|
827 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinl !< array of lw radiation for local surface after i-th reflection |
---|
828 | |
---|
829 | REAL(wp), DIMENSION(:), ALLOCATABLE :: skyvf !< array of sky view factor for each local surface |
---|
830 | REAL(wp), DIMENSION(:), ALLOCATABLE :: skyvft !< array of sky view factor including transparency for each local surface |
---|
831 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dsitrans !< dsidir[isvfl,i] = path transmittance of i-th |
---|
832 | !< direction of direct solar irradiance per target surface |
---|
833 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dsitransc !< dtto per plant canopy box |
---|
834 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dsidir !< dsidir[:,i] = unit vector of i-th |
---|
835 | !< direction of direct solar irradiance |
---|
836 | INTEGER(iwp) :: ndsidir !< number of apparent solar directions used |
---|
837 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: dsidir_rev !< dsidir_rev[ielev,iazim] = i for dsidir or -1 if not present |
---|
838 | |
---|
839 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinsw !< array of sw radiation falling to local surface including radiation from reflections |
---|
840 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlw !< array of lw radiation falling to local surface including radiation from reflections |
---|
841 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdir !< array of direct sw radiation falling to local surface |
---|
842 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdif !< array of diffuse sw radiation from sky and model boundary falling to local surface |
---|
843 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwdif !< array of diffuse lw radiation from sky and model boundary falling to local surface |
---|
844 | |
---|
845 | !< Outward radiation is only valid for nonvirtual surfaces |
---|
846 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsl !< array of reflected sw radiation for local surface in i-th reflection |
---|
847 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutll !< array of reflected + emitted lw radiation for local surface in i-th reflection |
---|
848 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfouts !< array of reflected sw radiation for all surfaces in i-th reflection |
---|
849 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutl !< array of reflected + emitted lw radiation for all surfaces in i-th reflection |
---|
850 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsw !< array of total sw radiation outgoing from nonvirtual surfaces surfaces after all reflection |
---|
851 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutlw !< array of total lw radiation outgoing from nonvirtual surfaces surfaces after all reflection |
---|
852 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfhf !< array of total radiation flux incoming to minus outgoing from local surface |
---|
853 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfemitlwl !< array of emitted lw radiation for local surface used to calculate effective surface temperature for radiation model |
---|
854 | |
---|
855 | !-- block variables needed for calculation of the plant canopy model inside the urban surface model |
---|
856 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: csfsurf !< csfsurf[:,icsf] = index of target surface and csf grid index for csf[icsf] |
---|
857 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: csf !< array of plant canopy sink fators + direct irradiation factors (transparency) |
---|
858 | REAL(wp), DIMENSION(:,:,:), POINTER :: sub_lad !< subset of lad_s within urban surface, transformed to plain Z coordinate |
---|
859 | REAL(wp), DIMENSION(:), POINTER :: sub_lad_g !< sub_lad globalized (used to avoid MPI RMA calls in raytracing) |
---|
860 | REAL(wp) :: prototype_lad !< prototype leaf area density for computing effective optical depth |
---|
861 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nzterr, plantt !< temporary global arrays for raytracing |
---|
862 | INTEGER(iwp) :: plantt_max |
---|
863 | |
---|
864 | !-- arrays and variables for calculation of svf and csf |
---|
865 | TYPE(t_svf), DIMENSION(:), POINTER :: asvf !< pointer to growing svc array |
---|
866 | TYPE(t_csf), DIMENSION(:), POINTER :: acsf !< pointer to growing csf array |
---|
867 | TYPE(t_svf), DIMENSION(:), ALLOCATABLE, TARGET :: asvf1, asvf2 !< realizations of svf array |
---|
868 | TYPE(t_csf), DIMENSION(:), ALLOCATABLE, TARGET :: acsf1, acsf2 !< realizations of csf array |
---|
869 | INTEGER(iwp) :: nsvfla !< dimmension of array allocated for storage of svf in local processor |
---|
870 | INTEGER(iwp) :: ncsfla !< dimmension of array allocated for storage of csf in local processor |
---|
871 | INTEGER(iwp) :: msvf, mcsf !< mod for swapping the growing array |
---|
872 | INTEGER(iwp), PARAMETER :: gasize = 10000 !< initial size of growing arrays |
---|
873 | REAL(wp) :: dist_max_svf = -9999.0 !< maximum distance to calculate the minimum svf to be considered. It is |
---|
874 | !< used to avoid very small SVFs resulting from too far surfaces with mutual visibility |
---|
875 | INTEGER(iwp) :: nsvfl !< number of svf for local processor |
---|
876 | INTEGER(iwp) :: ncsfl !< no. of csf in local processor |
---|
877 | !< needed only during calc_svf but must be here because it is |
---|
878 | !< shared between subroutines calc_svf and raytrace |
---|
879 | INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: gridpcbl !< index of local pcb[k,j,i] |
---|
880 | |
---|
881 | !-- temporary arrays for calculation of csf in raytracing |
---|
882 | INTEGER(iwp) :: maxboxesg !< max number of boxes ray can cross in the domain |
---|
883 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: boxes !< coordinates of gridboxes being crossed by ray |
---|
884 | REAL(wp), DIMENSION(:), ALLOCATABLE :: crlens !< array of crossing lengths of ray for particular grid boxes |
---|
885 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: lad_ip !< array of numbers of process where lad is stored |
---|
886 | #if defined( __parallel ) |
---|
887 | INTEGER(kind=MPI_ADDRESS_KIND), & |
---|
888 | DIMENSION(:), ALLOCATABLE :: lad_disp !< array of displaycements of lad in local array of proc lad_ip |
---|
889 | #endif |
---|
890 | REAL(wp), DIMENSION(:), ALLOCATABLE :: lad_s_ray !< array of received lad_s for appropriate gridboxes crossed by ray |
---|
891 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: rt2_track |
---|
892 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rt2_track_lad |
---|
893 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rt2_track_dist |
---|
894 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rt2_dist |
---|
895 | |
---|
896 | |
---|
897 | |
---|
898 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
899 | !-- Energy balance variables |
---|
900 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
901 | !-- parameters of the land, roof and wall surfaces |
---|
902 | REAL(wp), DIMENSION(:), ALLOCATABLE :: albedo_surf !< albedo of the surface |
---|
903 | REAL(wp), DIMENSION(:), ALLOCATABLE :: emiss_surf !< emissivity of the wall surface |
---|
904 | |
---|
905 | |
---|
906 | INTERFACE radiation_check_data_output |
---|
907 | MODULE PROCEDURE radiation_check_data_output |
---|
908 | END INTERFACE radiation_check_data_output |
---|
909 | |
---|
910 | INTERFACE radiation_check_data_output_pr |
---|
911 | MODULE PROCEDURE radiation_check_data_output_pr |
---|
912 | END INTERFACE radiation_check_data_output_pr |
---|
913 | |
---|
914 | INTERFACE radiation_check_parameters |
---|
915 | MODULE PROCEDURE radiation_check_parameters |
---|
916 | END INTERFACE radiation_check_parameters |
---|
917 | |
---|
918 | INTERFACE radiation_clearsky |
---|
919 | MODULE PROCEDURE radiation_clearsky |
---|
920 | END INTERFACE radiation_clearsky |
---|
921 | |
---|
922 | INTERFACE radiation_constant |
---|
923 | MODULE PROCEDURE radiation_constant |
---|
924 | END INTERFACE radiation_constant |
---|
925 | |
---|
926 | INTERFACE radiation_control |
---|
927 | MODULE PROCEDURE radiation_control |
---|
928 | END INTERFACE radiation_control |
---|
929 | |
---|
930 | INTERFACE radiation_3d_data_averaging |
---|
931 | MODULE PROCEDURE radiation_3d_data_averaging |
---|
932 | END INTERFACE radiation_3d_data_averaging |
---|
933 | |
---|
934 | INTERFACE radiation_data_output_2d |
---|
935 | MODULE PROCEDURE radiation_data_output_2d |
---|
936 | END INTERFACE radiation_data_output_2d |
---|
937 | |
---|
938 | INTERFACE radiation_data_output_3d |
---|
939 | MODULE PROCEDURE radiation_data_output_3d |
---|
940 | END INTERFACE radiation_data_output_3d |
---|
941 | |
---|
942 | INTERFACE radiation_data_output_mask |
---|
943 | MODULE PROCEDURE radiation_data_output_mask |
---|
944 | END INTERFACE radiation_data_output_mask |
---|
945 | |
---|
946 | INTERFACE radiation_define_netcdf_grid |
---|
947 | MODULE PROCEDURE radiation_define_netcdf_grid |
---|
948 | END INTERFACE radiation_define_netcdf_grid |
---|
949 | |
---|
950 | INTERFACE radiation_header |
---|
951 | MODULE PROCEDURE radiation_header |
---|
952 | END INTERFACE radiation_header |
---|
953 | |
---|
954 | INTERFACE radiation_init |
---|
955 | MODULE PROCEDURE radiation_init |
---|
956 | END INTERFACE radiation_init |
---|
957 | |
---|
958 | INTERFACE radiation_parin |
---|
959 | MODULE PROCEDURE radiation_parin |
---|
960 | END INTERFACE radiation_parin |
---|
961 | |
---|
962 | INTERFACE radiation_rrtmg |
---|
963 | MODULE PROCEDURE radiation_rrtmg |
---|
964 | END INTERFACE radiation_rrtmg |
---|
965 | |
---|
966 | INTERFACE radiation_tendency |
---|
967 | MODULE PROCEDURE radiation_tendency |
---|
968 | MODULE PROCEDURE radiation_tendency_ij |
---|
969 | END INTERFACE radiation_tendency |
---|
970 | |
---|
971 | INTERFACE radiation_rrd_local |
---|
972 | MODULE PROCEDURE radiation_rrd_local |
---|
973 | END INTERFACE radiation_rrd_local |
---|
974 | |
---|
975 | INTERFACE radiation_wrd_local |
---|
976 | MODULE PROCEDURE radiation_wrd_local |
---|
977 | END INTERFACE radiation_wrd_local |
---|
978 | |
---|
979 | INTERFACE radiation_interaction |
---|
980 | MODULE PROCEDURE radiation_interaction |
---|
981 | END INTERFACE radiation_interaction |
---|
982 | |
---|
983 | INTERFACE radiation_interaction_init |
---|
984 | MODULE PROCEDURE radiation_interaction_init |
---|
985 | END INTERFACE radiation_interaction_init |
---|
986 | |
---|
987 | INTERFACE radiation_presimulate_solar_pos |
---|
988 | MODULE PROCEDURE radiation_presimulate_solar_pos |
---|
989 | END INTERFACE radiation_presimulate_solar_pos |
---|
990 | |
---|
991 | INTERFACE radiation_radflux_gridbox |
---|
992 | MODULE PROCEDURE radiation_radflux_gridbox |
---|
993 | END INTERFACE radiation_radflux_gridbox |
---|
994 | |
---|
995 | INTERFACE radiation_calc_svf |
---|
996 | MODULE PROCEDURE radiation_calc_svf |
---|
997 | END INTERFACE radiation_calc_svf |
---|
998 | |
---|
999 | INTERFACE radiation_write_svf |
---|
1000 | MODULE PROCEDURE radiation_write_svf |
---|
1001 | END INTERFACE radiation_write_svf |
---|
1002 | |
---|
1003 | INTERFACE radiation_read_svf |
---|
1004 | MODULE PROCEDURE radiation_read_svf |
---|
1005 | END INTERFACE radiation_read_svf |
---|
1006 | |
---|
1007 | |
---|
1008 | SAVE |
---|
1009 | |
---|
1010 | PRIVATE |
---|
1011 | |
---|
1012 | ! |
---|
1013 | !-- Public functions / NEEDS SORTING |
---|
1014 | PUBLIC radiation_check_data_output, radiation_check_data_output_pr, & |
---|
1015 | radiation_check_parameters, radiation_control, & |
---|
1016 | radiation_header, radiation_init, radiation_parin, & |
---|
1017 | radiation_3d_data_averaging, radiation_tendency, & |
---|
1018 | radiation_data_output_2d, radiation_data_output_3d, & |
---|
1019 | radiation_define_netcdf_grid, radiation_wrd_local, & |
---|
1020 | radiation_rrd_local, radiation_data_output_mask, & |
---|
1021 | radiation_radflux_gridbox, radiation_calc_svf, radiation_write_svf, & |
---|
1022 | radiation_interaction, radiation_interaction_init, & |
---|
1023 | radiation_read_svf, radiation_presimulate_solar_pos |
---|
1024 | |
---|
1025 | |
---|
1026 | |
---|
1027 | ! |
---|
1028 | !-- Public variables and constants / NEEDS SORTING |
---|
1029 | PUBLIC albedo, albedo_type, decl_1, decl_2, decl_3, dots_rad, dt_radiation,& |
---|
1030 | emissivity, force_radiation_call, & |
---|
1031 | lat, lon, rad_net_av, radiation, radiation_scheme, rad_lw_in, & |
---|
1032 | rad_lw_in_av, rad_lw_out, rad_lw_out_av, & |
---|
1033 | rad_lw_cs_hr, rad_lw_cs_hr_av, rad_lw_hr, rad_lw_hr_av, rad_sw_in, & |
---|
1034 | rad_sw_in_av, rad_sw_out, rad_sw_out_av, rad_sw_cs_hr, & |
---|
1035 | rad_sw_cs_hr_av, rad_sw_hr, rad_sw_hr_av, sigma_sb, solar_constant, & |
---|
1036 | skip_time_do_radiation, time_radiation, unscheduled_radiation_calls,& |
---|
1037 | zenith, calc_zenith, sun_direction, sun_dir_lat, sun_dir_lon, & |
---|
1038 | split_diffusion_radiation, & |
---|
1039 | nrefsteps, mrt_factors, dist_max_svf, nsvfl, svf, & |
---|
1040 | svfsurf, surfinsw, surfinlw, surfins, surfinl, surfinswdir, & |
---|
1041 | surfinswdif, surfoutsw, surfoutlw, surfinlwdif, rad_sw_in_dir, & |
---|
1042 | rad_sw_in_diff, rad_lw_in_diff, surfouts, surfoutl, surfoutsl, & |
---|
1043 | surfoutll, idir, jdir, kdir, id, iz, iy, ix, nsurfs, surfstart, & |
---|
1044 | surf, surfl, nsurfl, pcbinswdir, pcbinswdif, pcbinsw, pcbinlw, & |
---|
1045 | iup_u, inorth_u, isouth_u, ieast_u, iwest_u, & |
---|
1046 | iup_l, inorth_l, isouth_l, ieast_l, iwest_l, & |
---|
1047 | nsurf_type, nzub, nzut, nzu, pch, nsurf, & |
---|
1048 | iup_a, idown_a, inorth_a, isouth_a, ieast_a, iwest_a, & |
---|
1049 | idsvf, ndsvf, idcsf, ndcsf, kdcsf, pct, & |
---|
1050 | radiation_interactions, startwall, startland, endland, endwall, & |
---|
1051 | skyvf, skyvft, radiation_interactions_on, average_radiation |
---|
1052 | |
---|
1053 | #if defined ( __rrtmg ) |
---|
1054 | PUBLIC rrtm_aldif, rrtm_aldir, rrtm_asdif, rrtm_asdir |
---|
1055 | #endif |
---|
1056 | |
---|
1057 | CONTAINS |
---|
1058 | |
---|
1059 | |
---|
1060 | !------------------------------------------------------------------------------! |
---|
1061 | ! Description: |
---|
1062 | ! ------------ |
---|
1063 | !> This subroutine controls the calls of the radiation schemes |
---|
1064 | !------------------------------------------------------------------------------! |
---|
1065 | SUBROUTINE radiation_control |
---|
1066 | |
---|
1067 | |
---|
1068 | IMPLICIT NONE |
---|
1069 | |
---|
1070 | |
---|
1071 | SELECT CASE ( TRIM( radiation_scheme ) ) |
---|
1072 | |
---|
1073 | CASE ( 'constant' ) |
---|
1074 | CALL radiation_constant |
---|
1075 | |
---|
1076 | CASE ( 'clear-sky' ) |
---|
1077 | CALL radiation_clearsky |
---|
1078 | |
---|
1079 | CASE ( 'rrtmg' ) |
---|
1080 | CALL radiation_rrtmg |
---|
1081 | |
---|
1082 | CASE DEFAULT |
---|
1083 | |
---|
1084 | END SELECT |
---|
1085 | |
---|
1086 | |
---|
1087 | END SUBROUTINE radiation_control |
---|
1088 | |
---|
1089 | !------------------------------------------------------------------------------! |
---|
1090 | ! Description: |
---|
1091 | ! ------------ |
---|
1092 | !> Check data output for radiation model |
---|
1093 | !------------------------------------------------------------------------------! |
---|
1094 | SUBROUTINE radiation_check_data_output( var, unit, i, ilen, k ) |
---|
1095 | |
---|
1096 | |
---|
1097 | USE control_parameters, & |
---|
1098 | ONLY: data_output, message_string |
---|
1099 | |
---|
1100 | IMPLICIT NONE |
---|
1101 | |
---|
1102 | CHARACTER (LEN=*) :: unit !< |
---|
1103 | CHARACTER (LEN=*) :: var !< |
---|
1104 | |
---|
1105 | INTEGER(iwp) :: i |
---|
1106 | INTEGER(iwp) :: ilen |
---|
1107 | INTEGER(iwp) :: k |
---|
1108 | |
---|
1109 | SELECT CASE ( TRIM( var ) ) |
---|
1110 | |
---|
1111 | CASE ( 'rad_lw_cs_hr', 'rad_lw_hr', 'rad_sw_cs_hr', 'rad_sw_hr' ) |
---|
1112 | IF ( .NOT. radiation .OR. radiation_scheme /= 'rrtmg' ) THEN |
---|
1113 | message_string = '"output of "' // TRIM( var ) // '" requi' // & |
---|
1114 | 'res radiation = .TRUE. and ' // & |
---|
1115 | 'radiation_scheme = "rrtmg"' |
---|
1116 | CALL message( 'check_parameters', 'PA0406', 1, 2, 0, 6, 0 ) |
---|
1117 | ENDIF |
---|
1118 | unit = 'K/h' |
---|
1119 | |
---|
1120 | CASE ( 'rad_net*', 'rrtm_aldif*', 'rrtm_aldir*', 'rrtm_asdif*', & |
---|
1121 | 'rrtm_asdir*', 'rad_lw_in*', 'rad_lw_out*', 'rad_sw_in*', & |
---|
1122 | 'rad_sw_out*') |
---|
1123 | IF ( k == 0 .OR. data_output(i)(ilen-2:ilen) /= '_xy' ) THEN |
---|
1124 | message_string = 'illegal value for data_output: "' // & |
---|
1125 | TRIM( var ) // '" & only 2d-horizontal ' // & |
---|
1126 | 'cross sections are allowed for this value' |
---|
1127 | CALL message( 'check_parameters', 'PA0111', 1, 2, 0, 6, 0 ) |
---|
1128 | ENDIF |
---|
1129 | IF ( .NOT. radiation .OR. radiation_scheme /= "rrtmg" ) THEN |
---|
1130 | IF ( TRIM( var ) == 'rrtm_aldif*' .OR. & |
---|
1131 | TRIM( var ) == 'rrtm_aldir*' .OR. & |
---|
1132 | TRIM( var ) == 'rrtm_asdif*' .OR. & |
---|
1133 | TRIM( var ) == 'rrtm_asdir*' ) & |
---|
1134 | THEN |
---|
1135 | message_string = 'output of "' // TRIM( var ) // '" require'& |
---|
1136 | // 's radiation = .TRUE. and radiation_sch'& |
---|
1137 | // 'eme = "rrtmg"' |
---|
1138 | CALL message( 'check_parameters', 'PA0409', 1, 2, 0, 6, 0 ) |
---|
1139 | ENDIF |
---|
1140 | ENDIF |
---|
1141 | |
---|
1142 | IF ( TRIM( var ) == 'rad_net*' ) unit = 'W/m2' |
---|
1143 | IF ( TRIM( var ) == 'rad_lw_in*' ) unit = 'W/m2' |
---|
1144 | IF ( TRIM( var ) == 'rad_lw_out*' ) unit = 'W/m2' |
---|
1145 | IF ( TRIM( var ) == 'rad_sw_in*' ) unit = 'W/m2' |
---|
1146 | IF ( TRIM( var ) == 'rad_sw_out*' ) unit = 'W/m2' |
---|
1147 | IF ( TRIM( var ) == 'rrtm_aldif*' ) unit = '' |
---|
1148 | IF ( TRIM( var ) == 'rrtm_aldir*' ) unit = '' |
---|
1149 | IF ( TRIM( var ) == 'rrtm_asdif*' ) unit = '' |
---|
1150 | IF ( TRIM( var ) == 'rrtm_asdir*' ) unit = '' |
---|
1151 | |
---|
1152 | CASE DEFAULT |
---|
1153 | unit = 'illegal' |
---|
1154 | |
---|
1155 | END SELECT |
---|
1156 | |
---|
1157 | |
---|
1158 | END SUBROUTINE radiation_check_data_output |
---|
1159 | |
---|
1160 | !------------------------------------------------------------------------------! |
---|
1161 | ! Description: |
---|
1162 | ! ------------ |
---|
1163 | !> Check data output of profiles for radiation model |
---|
1164 | !------------------------------------------------------------------------------! |
---|
1165 | SUBROUTINE radiation_check_data_output_pr( variable, var_count, unit, & |
---|
1166 | dopr_unit ) |
---|
1167 | |
---|
1168 | USE arrays_3d, & |
---|
1169 | ONLY: zu |
---|
1170 | |
---|
1171 | USE control_parameters, & |
---|
1172 | ONLY: data_output_pr, message_string |
---|
1173 | |
---|
1174 | USE indices |
---|
1175 | |
---|
1176 | USE profil_parameter |
---|
1177 | |
---|
1178 | USE statistics |
---|
1179 | |
---|
1180 | IMPLICIT NONE |
---|
1181 | |
---|
1182 | CHARACTER (LEN=*) :: unit !< |
---|
1183 | CHARACTER (LEN=*) :: variable !< |
---|
1184 | CHARACTER (LEN=*) :: dopr_unit !< local value of dopr_unit |
---|
1185 | |
---|
1186 | INTEGER(iwp) :: user_pr_index !< |
---|
1187 | INTEGER(iwp) :: var_count !< |
---|
1188 | |
---|
1189 | SELECT CASE ( TRIM( variable ) ) |
---|
1190 | |
---|
1191 | CASE ( 'rad_net' ) |
---|
1192 | IF ( ( .NOT. radiation ) .OR. radiation_scheme == 'constant' )& |
---|
1193 | THEN |
---|
1194 | message_string = 'data_output_pr = ' // & |
---|
1195 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
1196 | 'not available for radiation = .FALSE. or ' //& |
---|
1197 | 'radiation_scheme = "constant"' |
---|
1198 | CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 ) |
---|
1199 | ELSE |
---|
1200 | dopr_index(var_count) = 99 |
---|
1201 | dopr_unit = 'W/m2' |
---|
1202 | hom(:,2,99,:) = SPREAD( zw, 2, statistic_regions+1 ) |
---|
1203 | unit = dopr_unit |
---|
1204 | ENDIF |
---|
1205 | |
---|
1206 | CASE ( 'rad_lw_in' ) |
---|
1207 | IF ( ( .NOT. radiation) .OR. radiation_scheme == 'constant' ) & |
---|
1208 | THEN |
---|
1209 | message_string = 'data_output_pr = ' // & |
---|
1210 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
1211 | 'not available for radiation = .FALSE. or ' //& |
---|
1212 | 'radiation_scheme = "constant"' |
---|
1213 | CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 ) |
---|
1214 | ELSE |
---|
1215 | dopr_index(var_count) = 100 |
---|
1216 | dopr_unit = 'W/m2' |
---|
1217 | hom(:,2,100,:) = SPREAD( zw, 2, statistic_regions+1 ) |
---|
1218 | unit = dopr_unit |
---|
1219 | ENDIF |
---|
1220 | |
---|
1221 | CASE ( 'rad_lw_out' ) |
---|
1222 | IF ( ( .NOT. radiation ) .OR. radiation_scheme == 'constant' ) & |
---|
1223 | THEN |
---|
1224 | message_string = 'data_output_pr = ' // & |
---|
1225 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
1226 | 'not available for radiation = .FALSE. or ' //& |
---|
1227 | 'radiation_scheme = "constant"' |
---|
1228 | CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 ) |
---|
1229 | ELSE |
---|
1230 | dopr_index(var_count) = 101 |
---|
1231 | dopr_unit = 'W/m2' |
---|
1232 | hom(:,2,101,:) = SPREAD( zw, 2, statistic_regions+1 ) |
---|
1233 | unit = dopr_unit |
---|
1234 | ENDIF |
---|
1235 | |
---|
1236 | CASE ( 'rad_sw_in' ) |
---|
1237 | IF ( ( .NOT. radiation ) .OR. radiation_scheme == 'constant' ) & |
---|
1238 | THEN |
---|
1239 | message_string = 'data_output_pr = ' // & |
---|
1240 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
1241 | 'not available for radiation = .FALSE. or ' //& |
---|
1242 | 'radiation_scheme = "constant"' |
---|
1243 | CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 ) |
---|
1244 | ELSE |
---|
1245 | dopr_index(var_count) = 102 |
---|
1246 | dopr_unit = 'W/m2' |
---|
1247 | hom(:,2,102,:) = SPREAD( zw, 2, statistic_regions+1 ) |
---|
1248 | unit = dopr_unit |
---|
1249 | ENDIF |
---|
1250 | |
---|
1251 | CASE ( 'rad_sw_out') |
---|
1252 | IF ( ( .NOT. radiation ) .OR. radiation_scheme == 'constant' )& |
---|
1253 | THEN |
---|
1254 | message_string = 'data_output_pr = ' // & |
---|
1255 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
1256 | 'not available for radiation = .FALSE. or ' //& |
---|
1257 | 'radiation_scheme = "constant"' |
---|
1258 | CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 ) |
---|
1259 | ELSE |
---|
1260 | dopr_index(var_count) = 103 |
---|
1261 | dopr_unit = 'W/m2' |
---|
1262 | hom(:,2,103,:) = SPREAD( zw, 2, statistic_regions+1 ) |
---|
1263 | unit = dopr_unit |
---|
1264 | ENDIF |
---|
1265 | |
---|
1266 | CASE ( 'rad_lw_cs_hr' ) |
---|
1267 | IF ( ( .NOT. radiation ) .OR. radiation_scheme /= 'rrtmg' ) & |
---|
1268 | THEN |
---|
1269 | message_string = 'data_output_pr = ' // & |
---|
1270 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
1271 | 'not available for radiation = .FALSE. or ' //& |
---|
1272 | 'radiation_scheme /= "rrtmg"' |
---|
1273 | CALL message( 'check_parameters', 'PA0413', 1, 2, 0, 6, 0 ) |
---|
1274 | ELSE |
---|
1275 | dopr_index(var_count) = 104 |
---|
1276 | dopr_unit = 'K/h' |
---|
1277 | hom(:,2,104,:) = SPREAD( zu, 2, statistic_regions+1 ) |
---|
1278 | unit = dopr_unit |
---|
1279 | ENDIF |
---|
1280 | |
---|
1281 | CASE ( 'rad_lw_hr' ) |
---|
1282 | IF ( ( .NOT. radiation ) .OR. radiation_scheme /= 'rrtmg' ) & |
---|
1283 | THEN |
---|
1284 | message_string = 'data_output_pr = ' // & |
---|
1285 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
1286 | 'not available for radiation = .FALSE. or ' //& |
---|
1287 | 'radiation_scheme /= "rrtmg"' |
---|
1288 | CALL message( 'check_parameters', 'PA0413', 1, 2, 0, 6, 0 ) |
---|
1289 | ELSE |
---|
1290 | dopr_index(var_count) = 105 |
---|
1291 | dopr_unit = 'K/h' |
---|
1292 | hom(:,2,105,:) = SPREAD( zu, 2, statistic_regions+1 ) |
---|
1293 | unit = dopr_unit |
---|
1294 | ENDIF |
---|
1295 | |
---|
1296 | CASE ( 'rad_sw_cs_hr' ) |
---|
1297 | IF ( ( .NOT. radiation ) .OR. radiation_scheme /= 'rrtmg' ) & |
---|
1298 | THEN |
---|
1299 | message_string = 'data_output_pr = ' // & |
---|
1300 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
1301 | 'not available for radiation = .FALSE. or ' //& |
---|
1302 | 'radiation_scheme /= "rrtmg"' |
---|
1303 | CALL message( 'check_parameters', 'PA0413', 1, 2, 0, 6, 0 ) |
---|
1304 | ELSE |
---|
1305 | dopr_index(var_count) = 106 |
---|
1306 | dopr_unit = 'K/h' |
---|
1307 | hom(:,2,106,:) = SPREAD( zu, 2, statistic_regions+1 ) |
---|
1308 | unit = dopr_unit |
---|
1309 | ENDIF |
---|
1310 | |
---|
1311 | CASE ( 'rad_sw_hr' ) |
---|
1312 | IF ( ( .NOT. radiation ) .OR. radiation_scheme /= 'rrtmg' ) & |
---|
1313 | THEN |
---|
1314 | message_string = 'data_output_pr = ' // & |
---|
1315 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
1316 | 'not available for radiation = .FALSE. or ' //& |
---|
1317 | 'radiation_scheme /= "rrtmg"' |
---|
1318 | CALL message( 'check_parameters', 'PA0413', 1, 2, 0, 6, 0 ) |
---|
1319 | ELSE |
---|
1320 | dopr_index(var_count) = 107 |
---|
1321 | dopr_unit = 'K/h' |
---|
1322 | hom(:,2,107,:) = SPREAD( zu, 2, statistic_regions+1 ) |
---|
1323 | unit = dopr_unit |
---|
1324 | ENDIF |
---|
1325 | |
---|
1326 | |
---|
1327 | CASE DEFAULT |
---|
1328 | unit = 'illegal' |
---|
1329 | |
---|
1330 | END SELECT |
---|
1331 | |
---|
1332 | |
---|
1333 | END SUBROUTINE radiation_check_data_output_pr |
---|
1334 | |
---|
1335 | |
---|
1336 | !------------------------------------------------------------------------------! |
---|
1337 | ! Description: |
---|
1338 | ! ------------ |
---|
1339 | !> Check parameters routine for radiation model |
---|
1340 | !------------------------------------------------------------------------------! |
---|
1341 | SUBROUTINE radiation_check_parameters |
---|
1342 | |
---|
1343 | USE control_parameters, & |
---|
1344 | ONLY: land_surface, message_string, topography, urban_surface |
---|
1345 | |
---|
1346 | USE netcdf_data_input_mod, & |
---|
1347 | ONLY: input_pids_static |
---|
1348 | |
---|
1349 | IMPLICIT NONE |
---|
1350 | |
---|
1351 | ! |
---|
1352 | !-- In case no urban-surface or land-surface model is applied, usage of |
---|
1353 | !-- a radiation model make no sense. |
---|
1354 | IF ( .NOT. land_surface .AND. .NOT. urban_surface ) THEN |
---|
1355 | message_string = 'Usage of radiation module is only allowed if ' // & |
---|
1356 | 'land-surface and/or urban-surface model is applied.' |
---|
1357 | CALL message( 'check_parameters', 'PA0486', 1, 2, 0, 6, 0 ) |
---|
1358 | ENDIF |
---|
1359 | |
---|
1360 | IF ( radiation_scheme /= 'constant' .AND. & |
---|
1361 | radiation_scheme /= 'clear-sky' .AND. & |
---|
1362 | radiation_scheme /= 'rrtmg' ) THEN |
---|
1363 | message_string = 'unknown radiation_scheme = '// & |
---|
1364 | TRIM( radiation_scheme ) |
---|
1365 | CALL message( 'check_parameters', 'PA0405', 1, 2, 0, 6, 0 ) |
---|
1366 | ELSEIF ( radiation_scheme == 'rrtmg' ) THEN |
---|
1367 | #if ! defined ( __rrtmg ) |
---|
1368 | message_string = 'radiation_scheme = "rrtmg" requires ' // & |
---|
1369 | 'compilation of PALM with pre-processor ' // & |
---|
1370 | 'directive -D__rrtmg' |
---|
1371 | CALL message( 'check_parameters', 'PA0407', 1, 2, 0, 6, 0 ) |
---|
1372 | #endif |
---|
1373 | #if defined ( __rrtmg ) && ! defined( __netcdf ) |
---|
1374 | message_string = 'radiation_scheme = "rrtmg" requires ' // & |
---|
1375 | 'the use of NetCDF (preprocessor directive ' // & |
---|
1376 | '-D__netcdf' |
---|
1377 | CALL message( 'check_parameters', 'PA0412', 1, 2, 0, 6, 0 ) |
---|
1378 | #endif |
---|
1379 | |
---|
1380 | ENDIF |
---|
1381 | ! |
---|
1382 | !-- Checks performed only if data is given via namelist only. |
---|
1383 | IF ( .NOT. input_pids_static ) THEN |
---|
1384 | IF ( albedo_type == 0 .AND. albedo == 9999999.9_wp .AND. & |
---|
1385 | radiation_scheme == 'clear-sky') THEN |
---|
1386 | message_string = 'radiation_scheme = "clear-sky" in combination'//& |
---|
1387 | 'with albedo_type = 0 requires setting of'// & |
---|
1388 | 'albedo /= 9999999.9' |
---|
1389 | CALL message( 'check_parameters', 'PA0410', 1, 2, 0, 6, 0 ) |
---|
1390 | ENDIF |
---|
1391 | |
---|
1392 | IF ( albedo_type == 0 .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
1393 | ( albedo_lw_dif == 9999999.9_wp .OR. albedo_lw_dir == 9999999.9_wp& |
---|
1394 | .OR. albedo_sw_dif == 9999999.9_wp .OR. albedo_sw_dir == 9999999.9_wp& |
---|
1395 | ) ) THEN |
---|
1396 | message_string = 'radiation_scheme = "rrtmg" in combination' // & |
---|
1397 | 'with albedo_type = 0 requires setting of ' // & |
---|
1398 | 'albedo_lw_dif /= 9999999.9' // & |
---|
1399 | 'albedo_lw_dir /= 9999999.9' // & |
---|
1400 | 'albedo_sw_dif /= 9999999.9 and' // & |
---|
1401 | 'albedo_sw_dir /= 9999999.9' |
---|
1402 | CALL message( 'check_parameters', 'PA0411', 1, 2, 0, 6, 0 ) |
---|
1403 | ENDIF |
---|
1404 | ENDIF |
---|
1405 | |
---|
1406 | ! |
---|
1407 | !-- Incialize svf normalization reporting histogram |
---|
1408 | svfnorm_report_num = 1 |
---|
1409 | DO WHILE ( svfnorm_report_thresh(svfnorm_report_num) < 1e20_wp & |
---|
1410 | .AND. svfnorm_report_num <= 30 ) |
---|
1411 | svfnorm_report_num = svfnorm_report_num + 1 |
---|
1412 | ENDDO |
---|
1413 | svfnorm_report_num = svfnorm_report_num - 1 |
---|
1414 | |
---|
1415 | |
---|
1416 | |
---|
1417 | END SUBROUTINE radiation_check_parameters |
---|
1418 | |
---|
1419 | |
---|
1420 | !------------------------------------------------------------------------------! |
---|
1421 | ! Description: |
---|
1422 | ! ------------ |
---|
1423 | !> Initialization of the radiation model |
---|
1424 | !------------------------------------------------------------------------------! |
---|
1425 | SUBROUTINE radiation_init |
---|
1426 | |
---|
1427 | IMPLICIT NONE |
---|
1428 | |
---|
1429 | INTEGER(iwp) :: i !< running index x-direction |
---|
1430 | INTEGER(iwp) :: ind_type !< running index for subgrid-surface tiles |
---|
1431 | INTEGER(iwp) :: ioff !< offset in x between surface element reference grid point in atmosphere and actual surface |
---|
1432 | INTEGER(iwp) :: j !< running index y-direction |
---|
1433 | INTEGER(iwp) :: joff !< offset in y between surface element reference grid point in atmosphere and actual surface |
---|
1434 | INTEGER(iwp) :: l !< running index for orientation of vertical surfaces |
---|
1435 | INTEGER(iwp) :: m !< running index for surface elements |
---|
1436 | |
---|
1437 | ! |
---|
1438 | !-- Allocate array for storing the surface net radiation |
---|
1439 | IF ( .NOT. ALLOCATED ( surf_lsm_h%rad_net ) .AND. & |
---|
1440 | surf_lsm_h%ns > 0 ) THEN |
---|
1441 | ALLOCATE( surf_lsm_h%rad_net(1:surf_lsm_h%ns) ) |
---|
1442 | surf_lsm_h%rad_net = 0.0_wp |
---|
1443 | ENDIF |
---|
1444 | IF ( .NOT. ALLOCATED ( surf_usm_h%rad_net ) .AND. & |
---|
1445 | surf_usm_h%ns > 0 ) THEN |
---|
1446 | ALLOCATE( surf_usm_h%rad_net(1:surf_usm_h%ns) ) |
---|
1447 | surf_usm_h%rad_net = 0.0_wp |
---|
1448 | ENDIF |
---|
1449 | DO l = 0, 3 |
---|
1450 | IF ( .NOT. ALLOCATED ( surf_lsm_v(l)%rad_net ) .AND. & |
---|
1451 | surf_lsm_v(l)%ns > 0 ) THEN |
---|
1452 | ALLOCATE( surf_lsm_v(l)%rad_net(1:surf_lsm_v(l)%ns) ) |
---|
1453 | surf_lsm_v(l)%rad_net = 0.0_wp |
---|
1454 | ENDIF |
---|
1455 | IF ( .NOT. ALLOCATED ( surf_usm_v(l)%rad_net ) .AND. & |
---|
1456 | surf_usm_v(l)%ns > 0 ) THEN |
---|
1457 | ALLOCATE( surf_usm_v(l)%rad_net(1:surf_usm_v(l)%ns) ) |
---|
1458 | surf_usm_v(l)%rad_net = 0.0_wp |
---|
1459 | ENDIF |
---|
1460 | ENDDO |
---|
1461 | |
---|
1462 | |
---|
1463 | ! |
---|
1464 | !-- Allocate array for storing the surface longwave (out) radiation change |
---|
1465 | IF ( .NOT. ALLOCATED ( surf_lsm_h%rad_lw_out_change_0 ) .AND. & |
---|
1466 | surf_lsm_h%ns > 0 ) THEN |
---|
1467 | ALLOCATE( surf_lsm_h%rad_lw_out_change_0(1:surf_lsm_h%ns) ) |
---|
1468 | surf_lsm_h%rad_lw_out_change_0 = 0.0_wp |
---|
1469 | ENDIF |
---|
1470 | IF ( .NOT. ALLOCATED ( surf_usm_h%rad_lw_out_change_0 ) .AND. & |
---|
1471 | surf_usm_h%ns > 0 ) THEN |
---|
1472 | ALLOCATE( surf_usm_h%rad_lw_out_change_0(1:surf_usm_h%ns) ) |
---|
1473 | surf_usm_h%rad_lw_out_change_0 = 0.0_wp |
---|
1474 | ENDIF |
---|
1475 | DO l = 0, 3 |
---|
1476 | IF ( .NOT. ALLOCATED ( surf_lsm_v(l)%rad_lw_out_change_0 ) .AND. & |
---|
1477 | surf_lsm_v(l)%ns > 0 ) THEN |
---|
1478 | ALLOCATE( surf_lsm_v(l)%rad_lw_out_change_0(1:surf_lsm_v(l)%ns) ) |
---|
1479 | surf_lsm_v(l)%rad_lw_out_change_0 = 0.0_wp |
---|
1480 | ENDIF |
---|
1481 | IF ( .NOT. ALLOCATED ( surf_usm_v(l)%rad_lw_out_change_0 ) .AND. & |
---|
1482 | surf_usm_v(l)%ns > 0 ) THEN |
---|
1483 | ALLOCATE( surf_usm_v(l)%rad_lw_out_change_0(1:surf_usm_v(l)%ns) ) |
---|
1484 | surf_usm_v(l)%rad_lw_out_change_0 = 0.0_wp |
---|
1485 | ENDIF |
---|
1486 | ENDDO |
---|
1487 | |
---|
1488 | ! |
---|
1489 | !-- Allocate surface arrays for incoming/outgoing short/longwave radiation |
---|
1490 | IF ( .NOT. ALLOCATED ( surf_lsm_h%rad_sw_in ) .AND. & |
---|
1491 | surf_lsm_h%ns > 0 ) THEN |
---|
1492 | ALLOCATE( surf_lsm_h%rad_sw_in(1:surf_lsm_h%ns) ) |
---|
1493 | ALLOCATE( surf_lsm_h%rad_sw_out(1:surf_lsm_h%ns) ) |
---|
1494 | ALLOCATE( surf_lsm_h%rad_lw_in(1:surf_lsm_h%ns) ) |
---|
1495 | ALLOCATE( surf_lsm_h%rad_lw_out(1:surf_lsm_h%ns) ) |
---|
1496 | surf_lsm_h%rad_sw_in = 0.0_wp |
---|
1497 | surf_lsm_h%rad_sw_out = 0.0_wp |
---|
1498 | surf_lsm_h%rad_lw_in = 0.0_wp |
---|
1499 | surf_lsm_h%rad_lw_out = 0.0_wp |
---|
1500 | ENDIF |
---|
1501 | IF ( .NOT. ALLOCATED ( surf_usm_h%rad_sw_in ) .AND. & |
---|
1502 | surf_usm_h%ns > 0 ) THEN |
---|
1503 | ALLOCATE( surf_usm_h%rad_sw_in(1:surf_usm_h%ns) ) |
---|
1504 | ALLOCATE( surf_usm_h%rad_sw_out(1:surf_usm_h%ns) ) |
---|
1505 | ALLOCATE( surf_usm_h%rad_lw_in(1:surf_usm_h%ns) ) |
---|
1506 | ALLOCATE( surf_usm_h%rad_lw_out(1:surf_usm_h%ns) ) |
---|
1507 | surf_usm_h%rad_sw_in = 0.0_wp |
---|
1508 | surf_usm_h%rad_sw_out = 0.0_wp |
---|
1509 | surf_usm_h%rad_lw_in = 0.0_wp |
---|
1510 | surf_usm_h%rad_lw_out = 0.0_wp |
---|
1511 | ENDIF |
---|
1512 | DO l = 0, 3 |
---|
1513 | IF ( .NOT. ALLOCATED ( surf_lsm_v(l)%rad_sw_in ) .AND. & |
---|
1514 | surf_lsm_v(l)%ns > 0 ) THEN |
---|
1515 | ALLOCATE( surf_lsm_v(l)%rad_sw_in(1:surf_lsm_v(l)%ns) ) |
---|
1516 | ALLOCATE( surf_lsm_v(l)%rad_sw_out(1:surf_lsm_v(l)%ns) ) |
---|
1517 | ALLOCATE( surf_lsm_v(l)%rad_lw_in(1:surf_lsm_v(l)%ns) ) |
---|
1518 | ALLOCATE( surf_lsm_v(l)%rad_lw_out(1:surf_lsm_v(l)%ns) ) |
---|
1519 | surf_lsm_v(l)%rad_sw_in = 0.0_wp |
---|
1520 | surf_lsm_v(l)%rad_sw_out = 0.0_wp |
---|
1521 | surf_lsm_v(l)%rad_lw_in = 0.0_wp |
---|
1522 | surf_lsm_v(l)%rad_lw_out = 0.0_wp |
---|
1523 | ENDIF |
---|
1524 | IF ( .NOT. ALLOCATED ( surf_usm_v(l)%rad_sw_in ) .AND. & |
---|
1525 | surf_usm_v(l)%ns > 0 ) THEN |
---|
1526 | ALLOCATE( surf_usm_v(l)%rad_sw_in(1:surf_usm_v(l)%ns) ) |
---|
1527 | ALLOCATE( surf_usm_v(l)%rad_sw_out(1:surf_usm_v(l)%ns) ) |
---|
1528 | ALLOCATE( surf_usm_v(l)%rad_lw_in(1:surf_usm_v(l)%ns) ) |
---|
1529 | ALLOCATE( surf_usm_v(l)%rad_lw_out(1:surf_usm_v(l)%ns) ) |
---|
1530 | surf_usm_v(l)%rad_sw_in = 0.0_wp |
---|
1531 | surf_usm_v(l)%rad_sw_out = 0.0_wp |
---|
1532 | surf_usm_v(l)%rad_lw_in = 0.0_wp |
---|
1533 | surf_usm_v(l)%rad_lw_out = 0.0_wp |
---|
1534 | ENDIF |
---|
1535 | ENDDO |
---|
1536 | ! |
---|
1537 | !-- Fix net radiation in case of radiation_scheme = 'constant' |
---|
1538 | IF ( radiation_scheme == 'constant' ) THEN |
---|
1539 | IF ( ALLOCATED( surf_lsm_h%rad_net ) ) & |
---|
1540 | surf_lsm_h%rad_net = net_radiation |
---|
1541 | IF ( ALLOCATED( surf_usm_h%rad_net ) ) & |
---|
1542 | surf_usm_h%rad_net = net_radiation |
---|
1543 | ! |
---|
1544 | !-- Todo: weight with inclination angle |
---|
1545 | DO l = 0, 3 |
---|
1546 | IF ( ALLOCATED( surf_lsm_v(l)%rad_net ) ) & |
---|
1547 | surf_lsm_v(l)%rad_net = net_radiation |
---|
1548 | IF ( ALLOCATED( surf_usm_v(l)%rad_net ) ) & |
---|
1549 | surf_usm_v(l)%rad_net = net_radiation |
---|
1550 | ENDDO |
---|
1551 | ! radiation = .FALSE. |
---|
1552 | ! |
---|
1553 | !-- Calculate orbital constants |
---|
1554 | ELSE |
---|
1555 | decl_1 = SIN(23.45_wp * pi / 180.0_wp) |
---|
1556 | decl_2 = 2.0_wp * pi / 365.0_wp |
---|
1557 | decl_3 = decl_2 * 81.0_wp |
---|
1558 | lat = latitude * pi / 180.0_wp |
---|
1559 | lon = longitude * pi / 180.0_wp |
---|
1560 | ENDIF |
---|
1561 | |
---|
1562 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
1563 | radiation_scheme == 'constant') THEN |
---|
1564 | |
---|
1565 | |
---|
1566 | ! |
---|
1567 | !-- Allocate arrays for incoming/outgoing short/longwave radiation |
---|
1568 | IF ( .NOT. ALLOCATED ( rad_sw_in ) ) THEN |
---|
1569 | ALLOCATE ( rad_sw_in(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
1570 | ENDIF |
---|
1571 | IF ( .NOT. ALLOCATED ( rad_sw_out ) ) THEN |
---|
1572 | ALLOCATE ( rad_sw_out(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
1573 | ENDIF |
---|
1574 | |
---|
1575 | IF ( .NOT. ALLOCATED ( rad_lw_in ) ) THEN |
---|
1576 | ALLOCATE ( rad_lw_in(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
1577 | ENDIF |
---|
1578 | IF ( .NOT. ALLOCATED ( rad_lw_out ) ) THEN |
---|
1579 | ALLOCATE ( rad_lw_out(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
1580 | ENDIF |
---|
1581 | |
---|
1582 | ! |
---|
1583 | !-- Allocate average arrays for incoming/outgoing short/longwave radiation |
---|
1584 | IF ( .NOT. ALLOCATED ( rad_sw_in_av ) ) THEN |
---|
1585 | ALLOCATE ( rad_sw_in_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
1586 | ENDIF |
---|
1587 | IF ( .NOT. ALLOCATED ( rad_sw_out_av ) ) THEN |
---|
1588 | ALLOCATE ( rad_sw_out_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
1589 | ENDIF |
---|
1590 | |
---|
1591 | IF ( .NOT. ALLOCATED ( rad_lw_in_av ) ) THEN |
---|
1592 | ALLOCATE ( rad_lw_in_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
1593 | ENDIF |
---|
1594 | IF ( .NOT. ALLOCATED ( rad_lw_out_av ) ) THEN |
---|
1595 | ALLOCATE ( rad_lw_out_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
1596 | ENDIF |
---|
1597 | ! |
---|
1598 | !-- Allocate arrays for broadband albedo, and level 1 initialization |
---|
1599 | !-- via namelist paramter, unless already allocated. |
---|
1600 | IF ( .NOT. ALLOCATED(surf_lsm_h%albedo) ) THEN |
---|
1601 | ALLOCATE( surf_lsm_h%albedo(0:2,1:surf_lsm_h%ns) ) |
---|
1602 | surf_lsm_h%albedo = albedo |
---|
1603 | ENDIF |
---|
1604 | IF ( .NOT. ALLOCATED(surf_usm_h%albedo) ) THEN |
---|
1605 | ALLOCATE( surf_usm_h%albedo(0:2,1:surf_usm_h%ns) ) |
---|
1606 | surf_usm_h%albedo = albedo |
---|
1607 | ENDIF |
---|
1608 | |
---|
1609 | DO l = 0, 3 |
---|
1610 | IF ( .NOT. ALLOCATED( surf_lsm_v(l)%albedo ) ) THEN |
---|
1611 | ALLOCATE( surf_lsm_v(l)%albedo(0:2,1:surf_lsm_v(l)%ns) ) |
---|
1612 | surf_lsm_v(l)%albedo = albedo |
---|
1613 | ENDIF |
---|
1614 | IF ( .NOT. ALLOCATED( surf_usm_v(l)%albedo ) ) THEN |
---|
1615 | ALLOCATE( surf_usm_v(l)%albedo(0:2,1:surf_usm_v(l)%ns) ) |
---|
1616 | surf_usm_v(l)%albedo = albedo |
---|
1617 | ENDIF |
---|
1618 | ENDDO |
---|
1619 | ! |
---|
1620 | !-- Level 2 initialization of broadband albedo via given albedo_type. |
---|
1621 | !-- Only if albedo_type is non-zero |
---|
1622 | DO m = 1, surf_lsm_h%ns |
---|
1623 | IF ( surf_lsm_h%albedo_type(ind_veg_wall,m) /= 0 ) & |
---|
1624 | surf_lsm_h%albedo(ind_veg_wall,m) = & |
---|
1625 | albedo_pars(2,surf_lsm_h%albedo_type(ind_veg_wall,m)) |
---|
1626 | IF ( surf_lsm_h%albedo_type(ind_pav_green,m) /= 0 ) & |
---|
1627 | surf_lsm_h%albedo(ind_pav_green,m) = & |
---|
1628 | albedo_pars(2,surf_lsm_h%albedo_type(ind_pav_green,m)) |
---|
1629 | IF ( surf_lsm_h%albedo_type(ind_wat_win,m) /= 0 ) & |
---|
1630 | surf_lsm_h%albedo(ind_wat_win,m) = & |
---|
1631 | albedo_pars(2,surf_lsm_h%albedo_type(ind_wat_win,m)) |
---|
1632 | ENDDO |
---|
1633 | DO m = 1, surf_usm_h%ns |
---|
1634 | IF ( surf_usm_h%albedo_type(ind_veg_wall,m) /= 0 ) & |
---|
1635 | surf_usm_h%albedo(ind_veg_wall,m) = & |
---|
1636 | albedo_pars(2,surf_usm_h%albedo_type(ind_veg_wall,m)) |
---|
1637 | IF ( surf_usm_h%albedo_type(ind_pav_green,m) /= 0 ) & |
---|
1638 | surf_usm_h%albedo(ind_pav_green,m) = & |
---|
1639 | albedo_pars(2,surf_usm_h%albedo_type(ind_pav_green,m)) |
---|
1640 | IF ( surf_usm_h%albedo_type(ind_wat_win,m) /= 0 ) & |
---|
1641 | surf_usm_h%albedo(ind_wat_win,m) = & |
---|
1642 | albedo_pars(2,surf_usm_h%albedo_type(ind_wat_win,m)) |
---|
1643 | ENDDO |
---|
1644 | |
---|
1645 | DO l = 0, 3 |
---|
1646 | DO m = 1, surf_lsm_v(l)%ns |
---|
1647 | IF ( surf_lsm_v(l)%albedo_type(ind_veg_wall,m) /= 0 ) & |
---|
1648 | surf_lsm_v(l)%albedo(ind_veg_wall,m) = & |
---|
1649 | albedo_pars(2,surf_lsm_v(l)%albedo_type(ind_veg_wall,m)) |
---|
1650 | IF ( surf_lsm_v(l)%albedo_type(ind_pav_green,m) /= 0 ) & |
---|
1651 | surf_lsm_v(l)%albedo(ind_pav_green,m) = & |
---|
1652 | albedo_pars(2,surf_lsm_v(l)%albedo_type(ind_pav_green,m)) |
---|
1653 | IF ( surf_lsm_v(l)%albedo_type(ind_wat_win,m) /= 0 ) & |
---|
1654 | surf_lsm_v(l)%albedo(ind_wat_win,m) = & |
---|
1655 | albedo_pars(2,surf_lsm_v(l)%albedo_type(ind_wat_win,m)) |
---|
1656 | ENDDO |
---|
1657 | DO m = 1, surf_usm_v(l)%ns |
---|
1658 | IF ( surf_usm_v(l)%albedo_type(ind_veg_wall,m) /= 0 ) & |
---|
1659 | surf_usm_v(l)%albedo(ind_veg_wall,m) = & |
---|
1660 | albedo_pars(2,surf_usm_v(l)%albedo_type(ind_veg_wall,m)) |
---|
1661 | IF ( surf_usm_v(l)%albedo_type(ind_pav_green,m) /= 0 ) & |
---|
1662 | surf_usm_v(l)%albedo(ind_pav_green,m) = & |
---|
1663 | albedo_pars(2,surf_usm_v(l)%albedo_type(ind_pav_green,m)) |
---|
1664 | IF ( surf_usm_v(l)%albedo_type(ind_wat_win,m) /= 0 ) & |
---|
1665 | surf_usm_v(l)%albedo(ind_wat_win,m) = & |
---|
1666 | albedo_pars(2,surf_usm_v(l)%albedo_type(ind_wat_win,m)) |
---|
1667 | ENDDO |
---|
1668 | ENDDO |
---|
1669 | |
---|
1670 | ! |
---|
1671 | !-- Level 3 initialization at grid points where albedo type is zero. |
---|
1672 | !-- This case, albedo is taken from file. In case of constant radiation |
---|
1673 | !-- or clear sky, only broadband albedo is given. |
---|
1674 | IF ( albedo_pars_f%from_file ) THEN |
---|
1675 | ! |
---|
1676 | !-- Horizontal surfaces |
---|
1677 | DO m = 1, surf_lsm_h%ns |
---|
1678 | i = surf_lsm_h%i(m) |
---|
1679 | j = surf_lsm_h%j(m) |
---|
1680 | IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill ) THEN |
---|
1681 | IF ( surf_lsm_h%albedo_type(ind_veg_wall,m) == 0 ) & |
---|
1682 | surf_lsm_h%albedo(ind_veg_wall,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
1683 | IF ( surf_lsm_h%albedo_type(ind_pav_green,m) == 0 ) & |
---|
1684 | surf_lsm_h%albedo(ind_pav_green,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
1685 | IF ( surf_lsm_h%albedo_type(ind_wat_win,m) == 0 ) & |
---|
1686 | surf_lsm_h%albedo(ind_wat_win,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
1687 | ENDIF |
---|
1688 | ENDDO |
---|
1689 | DO m = 1, surf_usm_h%ns |
---|
1690 | i = surf_usm_h%i(m) |
---|
1691 | j = surf_usm_h%j(m) |
---|
1692 | IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill ) THEN |
---|
1693 | IF ( surf_usm_h%albedo_type(ind_veg_wall,m) == 0 ) & |
---|
1694 | surf_usm_h%albedo(ind_veg_wall,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
1695 | IF ( surf_usm_h%albedo_type(ind_pav_green,m) == 0 ) & |
---|
1696 | surf_usm_h%albedo(ind_pav_green,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
1697 | IF ( surf_usm_h%albedo_type(ind_wat_win,m) == 0 ) & |
---|
1698 | surf_usm_h%albedo(ind_wat_win,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
1699 | ENDIF |
---|
1700 | ENDDO |
---|
1701 | ! |
---|
1702 | !-- Vertical surfaces |
---|
1703 | DO l = 0, 3 |
---|
1704 | |
---|
1705 | ioff = surf_lsm_v(l)%ioff |
---|
1706 | joff = surf_lsm_v(l)%joff |
---|
1707 | DO m = 1, surf_lsm_v(l)%ns |
---|
1708 | i = surf_lsm_v(l)%i(m) + ioff |
---|
1709 | j = surf_lsm_v(l)%j(m) + joff |
---|
1710 | IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill ) THEN |
---|
1711 | IF ( surf_lsm_v(l)%albedo_type(ind_veg_wall,m) == 0 ) & |
---|
1712 | surf_lsm_v(l)%albedo(ind_veg_wall,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
1713 | IF ( surf_lsm_v(l)%albedo_type(ind_pav_green,m) == 0 ) & |
---|
1714 | surf_lsm_v(l)%albedo(ind_pav_green,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
1715 | IF ( surf_lsm_v(l)%albedo_type(ind_wat_win,m) == 0 ) & |
---|
1716 | surf_lsm_v(l)%albedo(ind_wat_win,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
1717 | ENDIF |
---|
1718 | ENDDO |
---|
1719 | |
---|
1720 | ioff = surf_usm_v(l)%ioff |
---|
1721 | joff = surf_usm_v(l)%joff |
---|
1722 | DO m = 1, surf_usm_h%ns |
---|
1723 | i = surf_usm_h%i(m) + joff |
---|
1724 | j = surf_usm_h%j(m) + joff |
---|
1725 | IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill ) THEN |
---|
1726 | IF ( surf_usm_v(l)%albedo_type(ind_veg_wall,m) == 0 ) & |
---|
1727 | surf_usm_v(l)%albedo(ind_veg_wall,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
1728 | IF ( surf_usm_v(l)%albedo_type(ind_pav_green,m) == 0 ) & |
---|
1729 | surf_usm_v(l)%albedo(ind_pav_green,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
1730 | IF ( surf_usm_v(l)%albedo_type(ind_wat_win,m) == 0 ) & |
---|
1731 | surf_lsm_v(l)%albedo(ind_wat_win,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
1732 | ENDIF |
---|
1733 | ENDDO |
---|
1734 | ENDDO |
---|
1735 | |
---|
1736 | ENDIF |
---|
1737 | ! |
---|
1738 | !-- Initialization actions for RRTMG |
---|
1739 | ELSEIF ( radiation_scheme == 'rrtmg' ) THEN |
---|
1740 | #if defined ( __rrtmg ) |
---|
1741 | ! |
---|
1742 | !-- Allocate albedos for short/longwave radiation, horizontal surfaces |
---|
1743 | !-- for wall/green/window (USM) or vegetation/pavement/water surfaces |
---|
1744 | !-- (LSM). |
---|
1745 | ALLOCATE ( surf_lsm_h%aldif(0:2,1:surf_lsm_h%ns) ) |
---|
1746 | ALLOCATE ( surf_lsm_h%aldir(0:2,1:surf_lsm_h%ns) ) |
---|
1747 | ALLOCATE ( surf_lsm_h%asdif(0:2,1:surf_lsm_h%ns) ) |
---|
1748 | ALLOCATE ( surf_lsm_h%asdir(0:2,1:surf_lsm_h%ns) ) |
---|
1749 | ALLOCATE ( surf_lsm_h%rrtm_aldif(0:2,1:surf_lsm_h%ns) ) |
---|
1750 | ALLOCATE ( surf_lsm_h%rrtm_aldir(0:2,1:surf_lsm_h%ns) ) |
---|
1751 | ALLOCATE ( surf_lsm_h%rrtm_asdif(0:2,1:surf_lsm_h%ns) ) |
---|
1752 | ALLOCATE ( surf_lsm_h%rrtm_asdir(0:2,1:surf_lsm_h%ns) ) |
---|
1753 | |
---|
1754 | ALLOCATE ( surf_usm_h%aldif(0:2,1:surf_usm_h%ns) ) |
---|
1755 | ALLOCATE ( surf_usm_h%aldir(0:2,1:surf_usm_h%ns) ) |
---|
1756 | ALLOCATE ( surf_usm_h%asdif(0:2,1:surf_usm_h%ns) ) |
---|
1757 | ALLOCATE ( surf_usm_h%asdir(0:2,1:surf_usm_h%ns) ) |
---|
1758 | ALLOCATE ( surf_usm_h%rrtm_aldif(0:2,1:surf_usm_h%ns) ) |
---|
1759 | ALLOCATE ( surf_usm_h%rrtm_aldir(0:2,1:surf_usm_h%ns) ) |
---|
1760 | ALLOCATE ( surf_usm_h%rrtm_asdif(0:2,1:surf_usm_h%ns) ) |
---|
1761 | ALLOCATE ( surf_usm_h%rrtm_asdir(0:2,1:surf_usm_h%ns) ) |
---|
1762 | |
---|
1763 | ! |
---|
1764 | !-- Allocate broadband albedo (temporary for the current radiation |
---|
1765 | !-- implementations) |
---|
1766 | IF ( .NOT. ALLOCATED(surf_lsm_h%albedo) ) & |
---|
1767 | ALLOCATE( surf_lsm_h%albedo(0:2,1:surf_lsm_h%ns) ) |
---|
1768 | IF ( .NOT. ALLOCATED(surf_usm_h%albedo) ) & |
---|
1769 | ALLOCATE( surf_usm_h%albedo(0:2,1:surf_usm_h%ns) ) |
---|
1770 | |
---|
1771 | ! |
---|
1772 | !-- Allocate albedos for short/longwave radiation, vertical surfaces |
---|
1773 | DO l = 0, 3 |
---|
1774 | |
---|
1775 | ALLOCATE ( surf_lsm_v(l)%aldif(0:2,1:surf_lsm_v(l)%ns) ) |
---|
1776 | ALLOCATE ( surf_lsm_v(l)%aldir(0:2,1:surf_lsm_v(l)%ns) ) |
---|
1777 | ALLOCATE ( surf_lsm_v(l)%asdif(0:2,1:surf_lsm_v(l)%ns) ) |
---|
1778 | ALLOCATE ( surf_lsm_v(l)%asdir(0:2,1:surf_lsm_v(l)%ns) ) |
---|
1779 | |
---|
1780 | ALLOCATE ( surf_lsm_v(l)%rrtm_aldif(0:2,1:surf_lsm_v(l)%ns) ) |
---|
1781 | ALLOCATE ( surf_lsm_v(l)%rrtm_aldir(0:2,1:surf_lsm_v(l)%ns) ) |
---|
1782 | ALLOCATE ( surf_lsm_v(l)%rrtm_asdif(0:2,1:surf_lsm_v(l)%ns) ) |
---|
1783 | ALLOCATE ( surf_lsm_v(l)%rrtm_asdir(0:2,1:surf_lsm_v(l)%ns) ) |
---|
1784 | |
---|
1785 | ALLOCATE ( surf_usm_v(l)%aldif(0:2,1:surf_usm_v(l)%ns) ) |
---|
1786 | ALLOCATE ( surf_usm_v(l)%aldir(0:2,1:surf_usm_v(l)%ns) ) |
---|
1787 | ALLOCATE ( surf_usm_v(l)%asdif(0:2,1:surf_usm_v(l)%ns) ) |
---|
1788 | ALLOCATE ( surf_usm_v(l)%asdir(0:2,1:surf_usm_v(l)%ns) ) |
---|
1789 | |
---|
1790 | ALLOCATE ( surf_usm_v(l)%rrtm_aldif(0:2,1:surf_usm_v(l)%ns) ) |
---|
1791 | ALLOCATE ( surf_usm_v(l)%rrtm_aldir(0:2,1:surf_usm_v(l)%ns) ) |
---|
1792 | ALLOCATE ( surf_usm_v(l)%rrtm_asdif(0:2,1:surf_usm_v(l)%ns) ) |
---|
1793 | ALLOCATE ( surf_usm_v(l)%rrtm_asdir(0:2,1:surf_usm_v(l)%ns) ) |
---|
1794 | ! |
---|
1795 | !-- Allocate broadband albedo (temporary for the current radiation |
---|
1796 | !-- implementations) |
---|
1797 | IF ( .NOT. ALLOCATED( surf_lsm_v(l)%albedo ) ) & |
---|
1798 | ALLOCATE( surf_lsm_v(l)%albedo(0:2,1:surf_lsm_v(l)%ns) ) |
---|
1799 | IF ( .NOT. ALLOCATED( surf_usm_v(l)%albedo ) ) & |
---|
1800 | ALLOCATE( surf_usm_v(l)%albedo(0:2,1:surf_usm_v(l)%ns) ) |
---|
1801 | |
---|
1802 | ENDDO |
---|
1803 | ! |
---|
1804 | !-- Level 1 initialization of spectral albedos via namelist |
---|
1805 | !-- paramters. Please note, this case all surface tiles are initialized |
---|
1806 | !-- the same. |
---|
1807 | IF ( surf_lsm_h%ns > 0 ) THEN |
---|
1808 | surf_lsm_h%aldif = albedo_lw_dif |
---|
1809 | surf_lsm_h%aldir = albedo_lw_dir |
---|
1810 | surf_lsm_h%asdif = albedo_sw_dif |
---|
1811 | surf_lsm_h%asdir = albedo_sw_dir |
---|
1812 | surf_lsm_h%albedo = albedo_sw_dif |
---|
1813 | ENDIF |
---|
1814 | IF ( surf_usm_h%ns > 0 ) THEN |
---|
1815 | surf_usm_h%aldif = albedo_lw_dif |
---|
1816 | surf_usm_h%aldir = albedo_lw_dir |
---|
1817 | surf_usm_h%asdif = albedo_sw_dif |
---|
1818 | surf_usm_h%asdir = albedo_sw_dir |
---|
1819 | surf_usm_h%albedo = albedo_sw_dif |
---|
1820 | ENDIF |
---|
1821 | |
---|
1822 | DO l = 0, 3 |
---|
1823 | |
---|
1824 | IF ( surf_lsm_v(l)%ns > 0 ) THEN |
---|
1825 | surf_lsm_v(l)%aldif = albedo_lw_dif |
---|
1826 | surf_lsm_v(l)%aldir = albedo_lw_dir |
---|
1827 | surf_lsm_v(l)%asdif = albedo_sw_dif |
---|
1828 | surf_lsm_v(l)%asdir = albedo_sw_dir |
---|
1829 | surf_lsm_v(l)%albedo = albedo_sw_dif |
---|
1830 | ENDIF |
---|
1831 | |
---|
1832 | IF ( surf_usm_v(l)%ns > 0 ) THEN |
---|
1833 | surf_usm_v(l)%aldif = albedo_lw_dif |
---|
1834 | surf_usm_v(l)%aldir = albedo_lw_dir |
---|
1835 | surf_usm_v(l)%asdif = albedo_sw_dif |
---|
1836 | surf_usm_v(l)%asdir = albedo_sw_dir |
---|
1837 | surf_usm_v(l)%albedo = albedo_sw_dif |
---|
1838 | ENDIF |
---|
1839 | ENDDO |
---|
1840 | |
---|
1841 | ! |
---|
1842 | !-- Level 2 initialization of spectral albedos via albedo_type. |
---|
1843 | !-- Please note, for natural- and urban-type surfaces, a tile approach |
---|
1844 | !-- is applied so that the resulting albedo is calculated via the weighted |
---|
1845 | !-- average of respective surface fractions. |
---|
1846 | DO m = 1, surf_lsm_h%ns |
---|
1847 | ! |
---|
1848 | !-- Spectral albedos for vegetation/pavement/water surfaces |
---|
1849 | DO ind_type = 0, 2 |
---|
1850 | IF ( surf_lsm_h%albedo_type(ind_type,m) /= 0 ) THEN |
---|
1851 | surf_lsm_h%aldif(ind_type,m) = & |
---|
1852 | albedo_pars(0,surf_lsm_h%albedo_type(ind_type,m)) |
---|
1853 | surf_lsm_h%asdif(ind_type,m) = & |
---|
1854 | albedo_pars(1,surf_lsm_h%albedo_type(ind_type,m)) |
---|
1855 | surf_lsm_h%aldir(ind_type,m) = & |
---|
1856 | albedo_pars(0,surf_lsm_h%albedo_type(ind_type,m)) |
---|
1857 | surf_lsm_h%asdir(ind_type,m) = & |
---|
1858 | albedo_pars(1,surf_lsm_h%albedo_type(ind_type,m)) |
---|
1859 | surf_lsm_h%albedo(ind_type,m) = & |
---|
1860 | albedo_pars(2,surf_lsm_h%albedo_type(ind_type,m)) |
---|
1861 | ENDIF |
---|
1862 | ENDDO |
---|
1863 | |
---|
1864 | ENDDO |
---|
1865 | |
---|
1866 | DO m = 1, surf_usm_h%ns |
---|
1867 | ! |
---|
1868 | !-- Spectral albedos for wall/green/window surfaces |
---|
1869 | DO ind_type = 0, 2 |
---|
1870 | IF ( surf_usm_h%albedo_type(ind_type,m) /= 0 ) THEN |
---|
1871 | surf_usm_h%aldif(ind_type,m) = & |
---|
1872 | albedo_pars(0,surf_usm_h%albedo_type(ind_type,m)) |
---|
1873 | surf_usm_h%asdif(ind_type,m) = & |
---|
1874 | albedo_pars(1,surf_usm_h%albedo_type(ind_type,m)) |
---|
1875 | surf_usm_h%aldir(ind_type,m) = & |
---|
1876 | albedo_pars(0,surf_usm_h%albedo_type(ind_type,m)) |
---|
1877 | surf_usm_h%asdir(ind_type,m) = & |
---|
1878 | albedo_pars(1,surf_usm_h%albedo_type(ind_type,m)) |
---|
1879 | surf_usm_h%albedo(ind_type,m) = & |
---|
1880 | albedo_pars(2,surf_usm_h%albedo_type(ind_type,m)) |
---|
1881 | ENDIF |
---|
1882 | ENDDO |
---|
1883 | |
---|
1884 | ENDDO |
---|
1885 | |
---|
1886 | DO l = 0, 3 |
---|
1887 | |
---|
1888 | DO m = 1, surf_lsm_v(l)%ns |
---|
1889 | ! |
---|
1890 | !-- Spectral albedos for vegetation/pavement/water surfaces |
---|
1891 | DO ind_type = 0, 2 |
---|
1892 | IF ( surf_lsm_v(l)%albedo_type(ind_type,m) /= 0 ) THEN |
---|
1893 | surf_lsm_v(l)%aldif(ind_type,m) = & |
---|
1894 | albedo_pars(0,surf_lsm_v(l)%albedo_type(ind_type,m)) |
---|
1895 | surf_lsm_v(l)%asdif(ind_type,m) = & |
---|
1896 | albedo_pars(1,surf_lsm_v(l)%albedo_type(ind_type,m)) |
---|
1897 | surf_lsm_v(l)%aldir(ind_type,m) = & |
---|
1898 | albedo_pars(0,surf_lsm_v(l)%albedo_type(ind_type,m)) |
---|
1899 | surf_lsm_v(l)%asdir(ind_type,m) = & |
---|
1900 | albedo_pars(1,surf_lsm_v(l)%albedo_type(ind_type,m)) |
---|
1901 | surf_lsm_v(l)%albedo(ind_type,m) = & |
---|
1902 | albedo_pars(2,surf_lsm_v(l)%albedo_type(ind_type,m)) |
---|
1903 | ENDIF |
---|
1904 | ENDDO |
---|
1905 | ENDDO |
---|
1906 | |
---|
1907 | DO m = 1, surf_usm_v(l)%ns |
---|
1908 | ! |
---|
1909 | !-- Spectral albedos for wall/green/window surfaces |
---|
1910 | DO ind_type = 0, 2 |
---|
1911 | IF ( surf_usm_v(l)%albedo_type(ind_type,m) /= 0 ) THEN |
---|
1912 | surf_usm_v(l)%aldif(ind_type,m) = & |
---|
1913 | albedo_pars(0,surf_usm_v(l)%albedo_type(ind_type,m)) |
---|
1914 | surf_usm_v(l)%asdif(ind_type,m) = & |
---|
1915 | albedo_pars(1,surf_usm_v(l)%albedo_type(ind_type,m)) |
---|
1916 | surf_usm_v(l)%aldir(ind_type,m) = & |
---|
1917 | albedo_pars(0,surf_usm_v(l)%albedo_type(ind_type,m)) |
---|
1918 | surf_usm_v(l)%asdir(ind_type,m) = & |
---|
1919 | albedo_pars(1,surf_usm_v(l)%albedo_type(ind_type,m)) |
---|
1920 | surf_usm_v(l)%albedo(ind_type,m) = & |
---|
1921 | albedo_pars(2,surf_usm_v(l)%albedo_type(ind_type,m)) |
---|
1922 | ENDIF |
---|
1923 | ENDDO |
---|
1924 | |
---|
1925 | ENDDO |
---|
1926 | ENDDO |
---|
1927 | ! |
---|
1928 | !-- Level 3 initialization at grid points where albedo type is zero. |
---|
1929 | !-- This case, spectral albedos are taken from file if available |
---|
1930 | IF ( albedo_pars_f%from_file ) THEN |
---|
1931 | ! |
---|
1932 | !-- Horizontal |
---|
1933 | DO m = 1, surf_lsm_h%ns |
---|
1934 | i = surf_lsm_h%i(m) |
---|
1935 | j = surf_lsm_h%j(m) |
---|
1936 | ! |
---|
1937 | !-- Spectral albedos for vegetation/pavement/water surfaces |
---|
1938 | DO ind_type = 0, 2 |
---|
1939 | IF ( surf_lsm_h%albedo_type(ind_type,m) == 0 ) THEN |
---|
1940 | IF ( albedo_pars_f%pars_xy(1,j,i) /= albedo_pars_f%fill )& |
---|
1941 | surf_lsm_h%albedo(ind_type,m) = & |
---|
1942 | albedo_pars_f%pars_xy(1,j,i) |
---|
1943 | IF ( albedo_pars_f%pars_xy(1,j,i) /= albedo_pars_f%fill )& |
---|
1944 | surf_lsm_h%aldir(ind_type,m) = & |
---|
1945 | albedo_pars_f%pars_xy(1,j,i) |
---|
1946 | IF ( albedo_pars_f%pars_xy(2,j,i) /= albedo_pars_f%fill )& |
---|
1947 | surf_lsm_h%aldif(ind_type,m) = & |
---|
1948 | albedo_pars_f%pars_xy(2,j,i) |
---|
1949 | IF ( albedo_pars_f%pars_xy(3,j,i) /= albedo_pars_f%fill )& |
---|
1950 | surf_lsm_h%asdir(ind_type,m) = & |
---|
1951 | albedo_pars_f%pars_xy(3,j,i) |
---|
1952 | IF ( albedo_pars_f%pars_xy(4,j,i) /= albedo_pars_f%fill )& |
---|
1953 | surf_lsm_h%asdif(ind_type,m) = & |
---|
1954 | albedo_pars_f%pars_xy(4,j,i) |
---|
1955 | ENDIF |
---|
1956 | ENDDO |
---|
1957 | ENDDO |
---|
1958 | |
---|
1959 | DO m = 1, surf_usm_h%ns |
---|
1960 | i = surf_usm_h%i(m) |
---|
1961 | j = surf_usm_h%j(m) |
---|
1962 | ! |
---|
1963 | !-- Spectral albedos for wall/green/window surfaces |
---|
1964 | DO ind_type = 0, 2 |
---|
1965 | IF ( surf_usm_h%albedo_type(ind_type,m) == 0 ) THEN |
---|
1966 | IF ( albedo_pars_f%pars_xy(1,j,i) /= albedo_pars_f%fill )& |
---|
1967 | surf_usm_h%albedo(ind_type,m) = & |
---|
1968 | albedo_pars_f%pars_xy(1,j,i) |
---|
1969 | IF ( albedo_pars_f%pars_xy(1,j,i) /= albedo_pars_f%fill )& |
---|
1970 | surf_usm_h%aldir(ind_type,m) = & |
---|
1971 | albedo_pars_f%pars_xy(1,j,i) |
---|
1972 | IF ( albedo_pars_f%pars_xy(2,j,i) /= albedo_pars_f%fill )& |
---|
1973 | surf_usm_h%aldif(ind_type,m) = & |
---|
1974 | albedo_pars_f%pars_xy(2,j,i) |
---|
1975 | IF ( albedo_pars_f%pars_xy(3,j,i) /= albedo_pars_f%fill )& |
---|
1976 | surf_usm_h%asdir(ind_type,m) = & |
---|
1977 | albedo_pars_f%pars_xy(3,j,i) |
---|
1978 | IF ( albedo_pars_f%pars_xy(4,j,i) /= albedo_pars_f%fill )& |
---|
1979 | surf_usm_h%asdif(ind_type,m) = & |
---|
1980 | albedo_pars_f%pars_xy(4,j,i) |
---|
1981 | ENDIF |
---|
1982 | ENDDO |
---|
1983 | |
---|
1984 | ENDDO |
---|
1985 | ! |
---|
1986 | !-- Vertical |
---|
1987 | DO l = 0, 3 |
---|
1988 | ioff = surf_lsm_v(l)%ioff |
---|
1989 | joff = surf_lsm_v(l)%joff |
---|
1990 | |
---|
1991 | DO m = 1, surf_lsm_v(l)%ns |
---|
1992 | i = surf_lsm_v(l)%i(m) |
---|
1993 | j = surf_lsm_v(l)%j(m) |
---|
1994 | ! |
---|
1995 | !-- Spectral albedos for vegetation/pavement/water surfaces |
---|
1996 | DO ind_type = 0, 2 |
---|
1997 | IF ( surf_lsm_v(l)%albedo_type(ind_type,m) == 0 ) THEN |
---|
1998 | IF ( albedo_pars_f%pars_xy(1,j+joff,i+ioff) /= & |
---|
1999 | albedo_pars_f%fill ) & |
---|
2000 | surf_lsm_v(l)%albedo(ind_type,m) = & |
---|
2001 | albedo_pars_f%pars_xy(1,j+joff,i+ioff) |
---|
2002 | IF ( albedo_pars_f%pars_xy(1,j+joff,i+ioff) /= & |
---|
2003 | albedo_pars_f%fill ) & |
---|
2004 | surf_lsm_v(l)%aldir(ind_type,m) = & |
---|
2005 | albedo_pars_f%pars_xy(1,j+joff,i+ioff) |
---|
2006 | IF ( albedo_pars_f%pars_xy(2,j+joff,i+ioff) /= & |
---|
2007 | albedo_pars_f%fill ) & |
---|
2008 | surf_lsm_v(l)%aldif(ind_type,m) = & |
---|
2009 | albedo_pars_f%pars_xy(2,j+joff,i+ioff) |
---|
2010 | IF ( albedo_pars_f%pars_xy(3,j+joff,i+ioff) /= & |
---|
2011 | albedo_pars_f%fill ) & |
---|
2012 | surf_lsm_v(l)%asdir(ind_type,m) = & |
---|
2013 | albedo_pars_f%pars_xy(3,j+joff,i+ioff) |
---|
2014 | IF ( albedo_pars_f%pars_xy(4,j+joff,i+ioff) /= & |
---|
2015 | albedo_pars_f%fill ) & |
---|
2016 | surf_lsm_v(l)%asdif(ind_type,m) = & |
---|
2017 | albedo_pars_f%pars_xy(4,j+joff,i+ioff) |
---|
2018 | ENDIF |
---|
2019 | ENDDO |
---|
2020 | ENDDO |
---|
2021 | |
---|
2022 | ioff = surf_usm_v(l)%ioff |
---|
2023 | joff = surf_usm_v(l)%joff |
---|
2024 | |
---|
2025 | DO m = 1, surf_usm_v(l)%ns |
---|
2026 | i = surf_usm_v(l)%i(m) |
---|
2027 | j = surf_usm_v(l)%j(m) |
---|
2028 | ! |
---|
2029 | !-- Spectral albedos for wall/green/window surfaces |
---|
2030 | DO ind_type = 0, 2 |
---|
2031 | IF ( surf_usm_v(l)%albedo_type(ind_type,m) == 0 ) THEN |
---|
2032 | IF ( albedo_pars_f%pars_xy(1,j+joff,i+ioff) /= & |
---|
2033 | albedo_pars_f%fill ) & |
---|
2034 | surf_usm_v(l)%albedo(ind_type,m) = & |
---|
2035 | albedo_pars_f%pars_xy(1,j+joff,i+ioff) |
---|
2036 | IF ( albedo_pars_f%pars_xy(1,j+joff,i+ioff) /= & |
---|
2037 | albedo_pars_f%fill ) & |
---|
2038 | surf_usm_v(l)%aldir(ind_type,m) = & |
---|
2039 | albedo_pars_f%pars_xy(1,j+joff,i+ioff) |
---|
2040 | IF ( albedo_pars_f%pars_xy(2,j+joff,i+ioff) /= & |
---|
2041 | albedo_pars_f%fill ) & |
---|
2042 | surf_usm_v(l)%aldif(ind_type,m) = & |
---|
2043 | albedo_pars_f%pars_xy(2,j+joff,i+ioff) |
---|
2044 | IF ( albedo_pars_f%pars_xy(3,j+joff,i+ioff) /= & |
---|
2045 | albedo_pars_f%fill ) & |
---|
2046 | surf_usm_v(l)%asdir(ind_type,m) = & |
---|
2047 | albedo_pars_f%pars_xy(3,j+joff,i+ioff) |
---|
2048 | IF ( albedo_pars_f%pars_xy(4,j+joff,i+ioff) /= & |
---|
2049 | albedo_pars_f%fill ) & |
---|
2050 | surf_usm_v(l)%asdif(ind_type,m) = & |
---|
2051 | albedo_pars_f%pars_xy(4,j+joff,i+ioff) |
---|
2052 | ENDIF |
---|
2053 | ENDDO |
---|
2054 | |
---|
2055 | ENDDO |
---|
2056 | ENDDO |
---|
2057 | |
---|
2058 | ENDIF |
---|
2059 | |
---|
2060 | ! |
---|
2061 | !-- Calculate initial values of current (cosine of) the zenith angle and |
---|
2062 | !-- whether the sun is up |
---|
2063 | CALL calc_zenith |
---|
2064 | ! |
---|
2065 | !-- Calculate initial surface albedo for different surfaces |
---|
2066 | IF ( .NOT. constant_albedo ) THEN |
---|
2067 | ! |
---|
2068 | !-- Horizontally aligned natural and urban surfaces |
---|
2069 | CALL calc_albedo( surf_lsm_h ) |
---|
2070 | CALL calc_albedo( surf_usm_h ) |
---|
2071 | ! |
---|
2072 | !-- Vertically aligned natural and urban surfaces |
---|
2073 | DO l = 0, 3 |
---|
2074 | CALL calc_albedo( surf_lsm_v(l) ) |
---|
2075 | CALL calc_albedo( surf_usm_v(l) ) |
---|
2076 | ENDDO |
---|
2077 | ELSE |
---|
2078 | ! |
---|
2079 | !-- Initialize sun-inclination independent spectral albedos |
---|
2080 | !-- Horizontal surfaces |
---|
2081 | IF ( surf_lsm_h%ns > 0 ) THEN |
---|
2082 | surf_lsm_h%rrtm_aldir = surf_lsm_h%aldir |
---|
2083 | surf_lsm_h%rrtm_asdir = surf_lsm_h%asdir |
---|
2084 | surf_lsm_h%rrtm_aldif = surf_lsm_h%aldif |
---|
2085 | surf_lsm_h%rrtm_asdif = surf_lsm_h%asdif |
---|
2086 | ENDIF |
---|
2087 | IF ( surf_usm_h%ns > 0 ) THEN |
---|
2088 | surf_usm_h%rrtm_aldir = surf_usm_h%aldir |
---|
2089 | surf_usm_h%rrtm_asdir = surf_usm_h%asdir |
---|
2090 | surf_usm_h%rrtm_aldif = surf_usm_h%aldif |
---|
2091 | surf_usm_h%rrtm_asdif = surf_usm_h%asdif |
---|
2092 | ENDIF |
---|
2093 | ! |
---|
2094 | !-- Vertical surfaces |
---|
2095 | DO l = 0, 3 |
---|
2096 | IF ( surf_lsm_v(l)%ns > 0 ) THEN |
---|
2097 | surf_lsm_v(l)%rrtm_aldir = surf_lsm_v(l)%aldir |
---|
2098 | surf_lsm_v(l)%rrtm_asdir = surf_lsm_v(l)%asdir |
---|
2099 | surf_lsm_v(l)%rrtm_aldif = surf_lsm_v(l)%aldif |
---|
2100 | surf_lsm_v(l)%rrtm_asdif = surf_lsm_v(l)%asdif |
---|
2101 | ENDIF |
---|
2102 | IF ( surf_usm_v(l)%ns > 0 ) THEN |
---|
2103 | surf_usm_v(l)%rrtm_aldir = surf_usm_v(l)%aldir |
---|
2104 | surf_usm_v(l)%rrtm_asdir = surf_usm_v(l)%asdir |
---|
2105 | surf_usm_v(l)%rrtm_aldif = surf_usm_v(l)%aldif |
---|
2106 | surf_usm_v(l)%rrtm_asdif = surf_usm_v(l)%asdif |
---|
2107 | ENDIF |
---|
2108 | ENDDO |
---|
2109 | |
---|
2110 | ENDIF |
---|
2111 | |
---|
2112 | ! |
---|
2113 | !-- Allocate 3d arrays of radiative fluxes and heating rates |
---|
2114 | IF ( .NOT. ALLOCATED ( rad_sw_in ) ) THEN |
---|
2115 | ALLOCATE ( rad_sw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2116 | rad_sw_in = 0.0_wp |
---|
2117 | ENDIF |
---|
2118 | |
---|
2119 | IF ( .NOT. ALLOCATED ( rad_sw_in_av ) ) THEN |
---|
2120 | ALLOCATE ( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2121 | ENDIF |
---|
2122 | |
---|
2123 | IF ( .NOT. ALLOCATED ( rad_sw_out ) ) THEN |
---|
2124 | ALLOCATE ( rad_sw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2125 | rad_sw_out = 0.0_wp |
---|
2126 | ENDIF |
---|
2127 | |
---|
2128 | IF ( .NOT. ALLOCATED ( rad_sw_out_av ) ) THEN |
---|
2129 | ALLOCATE ( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2130 | ENDIF |
---|
2131 | |
---|
2132 | IF ( .NOT. ALLOCATED ( rad_sw_hr ) ) THEN |
---|
2133 | ALLOCATE ( rad_sw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2134 | rad_sw_hr = 0.0_wp |
---|
2135 | ENDIF |
---|
2136 | |
---|
2137 | IF ( .NOT. ALLOCATED ( rad_sw_hr_av ) ) THEN |
---|
2138 | ALLOCATE ( rad_sw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2139 | rad_sw_hr_av = 0.0_wp |
---|
2140 | ENDIF |
---|
2141 | |
---|
2142 | IF ( .NOT. ALLOCATED ( rad_sw_cs_hr ) ) THEN |
---|
2143 | ALLOCATE ( rad_sw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2144 | rad_sw_cs_hr = 0.0_wp |
---|
2145 | ENDIF |
---|
2146 | |
---|
2147 | IF ( .NOT. ALLOCATED ( rad_sw_cs_hr_av ) ) THEN |
---|
2148 | ALLOCATE ( rad_sw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2149 | rad_sw_cs_hr_av = 0.0_wp |
---|
2150 | ENDIF |
---|
2151 | |
---|
2152 | IF ( .NOT. ALLOCATED ( rad_lw_in ) ) THEN |
---|
2153 | ALLOCATE ( rad_lw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2154 | rad_lw_in = 0.0_wp |
---|
2155 | ENDIF |
---|
2156 | |
---|
2157 | IF ( .NOT. ALLOCATED ( rad_lw_in_av ) ) THEN |
---|
2158 | ALLOCATE ( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2159 | ENDIF |
---|
2160 | |
---|
2161 | IF ( .NOT. ALLOCATED ( rad_lw_out ) ) THEN |
---|
2162 | ALLOCATE ( rad_lw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2163 | rad_lw_out = 0.0_wp |
---|
2164 | ENDIF |
---|
2165 | |
---|
2166 | IF ( .NOT. ALLOCATED ( rad_lw_out_av ) ) THEN |
---|
2167 | ALLOCATE ( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2168 | ENDIF |
---|
2169 | |
---|
2170 | IF ( .NOT. ALLOCATED ( rad_lw_hr ) ) THEN |
---|
2171 | ALLOCATE ( rad_lw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2172 | rad_lw_hr = 0.0_wp |
---|
2173 | ENDIF |
---|
2174 | |
---|
2175 | IF ( .NOT. ALLOCATED ( rad_lw_hr_av ) ) THEN |
---|
2176 | ALLOCATE ( rad_lw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2177 | rad_lw_hr_av = 0.0_wp |
---|
2178 | ENDIF |
---|
2179 | |
---|
2180 | IF ( .NOT. ALLOCATED ( rad_lw_cs_hr ) ) THEN |
---|
2181 | ALLOCATE ( rad_lw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2182 | rad_lw_cs_hr = 0.0_wp |
---|
2183 | ENDIF |
---|
2184 | |
---|
2185 | IF ( .NOT. ALLOCATED ( rad_lw_cs_hr_av ) ) THEN |
---|
2186 | ALLOCATE ( rad_lw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2187 | rad_lw_cs_hr_av = 0.0_wp |
---|
2188 | ENDIF |
---|
2189 | |
---|
2190 | ALLOCATE ( rad_sw_cs_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2191 | ALLOCATE ( rad_sw_cs_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2192 | rad_sw_cs_in = 0.0_wp |
---|
2193 | rad_sw_cs_out = 0.0_wp |
---|
2194 | |
---|
2195 | ALLOCATE ( rad_lw_cs_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2196 | ALLOCATE ( rad_lw_cs_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2197 | rad_lw_cs_in = 0.0_wp |
---|
2198 | rad_lw_cs_out = 0.0_wp |
---|
2199 | |
---|
2200 | ! |
---|
2201 | !-- Allocate 1-element array for surface temperature |
---|
2202 | !-- (RRTMG anticipates an array as passed argument). |
---|
2203 | ALLOCATE ( rrtm_tsfc(1) ) |
---|
2204 | ! |
---|
2205 | !-- Allocate surface emissivity. |
---|
2206 | !-- Values will be given directly before calling rrtm_lw. |
---|
2207 | ALLOCATE ( rrtm_emis(0:0,1:nbndlw+1) ) |
---|
2208 | |
---|
2209 | ! |
---|
2210 | !-- Initialize RRTMG |
---|
2211 | IF ( lw_radiation ) CALL rrtmg_lw_ini ( cp ) |
---|
2212 | IF ( sw_radiation ) CALL rrtmg_sw_ini ( cp ) |
---|
2213 | |
---|
2214 | ! |
---|
2215 | !-- Set input files for RRTMG |
---|
2216 | INQUIRE(FILE="RAD_SND_DATA", EXIST=snd_exists) |
---|
2217 | IF ( .NOT. snd_exists ) THEN |
---|
2218 | rrtm_input_file = "rrtmg_lw.nc" |
---|
2219 | ENDIF |
---|
2220 | |
---|
2221 | ! |
---|
2222 | !-- Read vertical layers for RRTMG from sounding data |
---|
2223 | !-- The routine provides nzt_rad, hyp_snd(1:nzt_rad), |
---|
2224 | !-- t_snd(nzt+2:nzt_rad), rrtm_play(1:nzt_rad), rrtm_plev(1_nzt_rad+1), |
---|
2225 | !-- rrtm_tlay(nzt+2:nzt_rad), rrtm_tlev(nzt+2:nzt_rad+1) |
---|
2226 | CALL read_sounding_data |
---|
2227 | |
---|
2228 | ! |
---|
2229 | !-- Read trace gas profiles from file. This routine provides |
---|
2230 | !-- the rrtm_ arrays (1:nzt_rad+1) |
---|
2231 | CALL read_trace_gas_data |
---|
2232 | #endif |
---|
2233 | ENDIF |
---|
2234 | |
---|
2235 | ! |
---|
2236 | !-- Perform user actions if required |
---|
2237 | CALL user_init_radiation |
---|
2238 | |
---|
2239 | ! |
---|
2240 | !-- Calculate radiative fluxes at model start |
---|
2241 | SELECT CASE ( TRIM( radiation_scheme ) ) |
---|
2242 | |
---|
2243 | CASE ( 'rrtmg' ) |
---|
2244 | CALL radiation_rrtmg |
---|
2245 | |
---|
2246 | CASE ( 'clear-sky' ) |
---|
2247 | CALL radiation_clearsky |
---|
2248 | |
---|
2249 | CASE ( 'constant' ) |
---|
2250 | CALL radiation_constant |
---|
2251 | |
---|
2252 | CASE DEFAULT |
---|
2253 | |
---|
2254 | END SELECT |
---|
2255 | |
---|
2256 | RETURN |
---|
2257 | |
---|
2258 | END SUBROUTINE radiation_init |
---|
2259 | |
---|
2260 | |
---|
2261 | !------------------------------------------------------------------------------! |
---|
2262 | ! Description: |
---|
2263 | ! ------------ |
---|
2264 | !> A simple clear sky radiation model |
---|
2265 | !------------------------------------------------------------------------------! |
---|
2266 | SUBROUTINE radiation_clearsky |
---|
2267 | |
---|
2268 | |
---|
2269 | IMPLICIT NONE |
---|
2270 | |
---|
2271 | INTEGER(iwp) :: l !< running index for surface orientation |
---|
2272 | |
---|
2273 | REAL(wp) :: exn !< Exner functions at surface |
---|
2274 | REAL(wp) :: exn1 !< Exner functions at first grid level or at urban layer top |
---|
2275 | REAL(wp) :: pt1 !< potential temperature at first grid level or mean value at urban layer top |
---|
2276 | REAL(wp) :: pt1_l !< potential temperature at first grid level or mean value at urban layer top at local subdomain |
---|
2277 | REAL(wp) :: ql1 !< liquid water mixing ratio at first grid level or mean value at urban layer top |
---|
2278 | REAL(wp) :: ql1_l !< liquid water mixing ratio at first grid level or mean value at urban layer top at local subdomain |
---|
2279 | |
---|
2280 | TYPE(surf_type), POINTER :: surf !< pointer on respective surface type, used to generalize routine |
---|
2281 | |
---|
2282 | ! |
---|
2283 | !-- Calculate current zenith angle |
---|
2284 | CALL calc_zenith |
---|
2285 | |
---|
2286 | ! |
---|
2287 | !-- Calculate sky transmissivity |
---|
2288 | sky_trans = 0.6_wp + 0.2_wp * zenith(0) |
---|
2289 | |
---|
2290 | ! |
---|
2291 | !-- Calculate value of the Exner function at model surface |
---|
2292 | exn = (surface_pressure / 1000.0_wp )**0.286_wp |
---|
2293 | ! |
---|
2294 | !-- In case averaged radiation is used, calculate mean temperature and |
---|
2295 | !-- liquid water mixing ratio at the urban-layer top. |
---|
2296 | IF ( average_radiation ) THEN |
---|
2297 | pt1 = 0.0_wp |
---|
2298 | IF ( cloud_physics ) ql1 = 0.0_wp |
---|
2299 | |
---|
2300 | pt1_l = SUM( pt(nzut,nys:nyn,nxl:nxr) ) |
---|
2301 | IF ( cloud_physics ) ql1_l = SUM( ql(nzut,nys:nyn,nxl:nxr) ) |
---|
2302 | |
---|
2303 | #if defined( __parallel ) |
---|
2304 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2305 | CALL MPI_ALLREDUCE( pt1_l, pt1, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2306 | IF ( cloud_physics ) & |
---|
2307 | CALL MPI_ALLREDUCE( ql1_l, ql1, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2308 | #else |
---|
2309 | pt1 = pt1_l |
---|
2310 | IF ( cloud_physics ) ql1 = ql1_l |
---|
2311 | #endif |
---|
2312 | |
---|
2313 | exn1 = ( hyp(nzut) / 100000.0_wp )**0.286_wp |
---|
2314 | IF ( cloud_physics ) pt1 = pt1 + l_d_cp / exn1 * ql1 |
---|
2315 | ! |
---|
2316 | !-- Finally, divide by number of grid points |
---|
2317 | pt1 = pt1 / REAL( ( nx + 1 ) * ( ny + 1 ), KIND=wp ) |
---|
2318 | ENDIF |
---|
2319 | ! |
---|
2320 | !-- Call clear-sky calculation for each surface orientation. |
---|
2321 | !-- First, horizontal surfaces |
---|
2322 | surf => surf_lsm_h |
---|
2323 | CALL radiation_clearsky_surf |
---|
2324 | surf => surf_usm_h |
---|
2325 | CALL radiation_clearsky_surf |
---|
2326 | ! |
---|
2327 | !-- Vertical surfaces |
---|
2328 | DO l = 0, 3 |
---|
2329 | surf => surf_lsm_v(l) |
---|
2330 | CALL radiation_clearsky_surf |
---|
2331 | surf => surf_usm_v(l) |
---|
2332 | CALL radiation_clearsky_surf |
---|
2333 | ENDDO |
---|
2334 | |
---|
2335 | CONTAINS |
---|
2336 | |
---|
2337 | SUBROUTINE radiation_clearsky_surf |
---|
2338 | |
---|
2339 | IMPLICIT NONE |
---|
2340 | |
---|
2341 | INTEGER(iwp) :: i !< index x-direction |
---|
2342 | INTEGER(iwp) :: j !< index y-direction |
---|
2343 | INTEGER(iwp) :: k !< index z-direction |
---|
2344 | INTEGER(iwp) :: m !< running index for surface elements |
---|
2345 | |
---|
2346 | IF ( surf%ns < 1 ) RETURN |
---|
2347 | |
---|
2348 | ! |
---|
2349 | !-- Calculate radiation fluxes and net radiation (rad_net) assuming |
---|
2350 | !-- homogeneous urban radiation conditions. |
---|
2351 | IF ( average_radiation ) THEN |
---|
2352 | |
---|
2353 | k = nzut |
---|
2354 | |
---|
2355 | exn1 = ( hyp(k+1) / 100000.0_wp )**0.286_wp |
---|
2356 | |
---|
2357 | surf%rad_sw_in = solar_constant * sky_trans * zenith(0) |
---|
2358 | surf%rad_sw_out = albedo_urb * surf%rad_sw_in |
---|
2359 | |
---|
2360 | surf%rad_lw_in = 0.8_wp * sigma_sb * (pt1 * exn1)**4 |
---|
2361 | |
---|
2362 | surf%rad_lw_out = emissivity_urb * sigma_sb * (t_rad_urb)**4 & |
---|
2363 | + (1.0_wp - emissivity_urb) * surf%rad_lw_in |
---|
2364 | |
---|
2365 | surf%rad_net = surf%rad_sw_in - surf%rad_sw_out & |
---|
2366 | + surf%rad_lw_in - surf%rad_lw_out |
---|
2367 | |
---|
2368 | surf%rad_lw_out_change_0 = 3.0_wp * emissivity_urb * sigma_sb & |
---|
2369 | * (t_rad_urb)**3 |
---|
2370 | |
---|
2371 | ! |
---|
2372 | !-- Calculate radiation fluxes and net radiation (rad_net) for each surface |
---|
2373 | !-- element. |
---|
2374 | ELSE |
---|
2375 | |
---|
2376 | DO m = 1, surf%ns |
---|
2377 | i = surf%i(m) |
---|
2378 | j = surf%j(m) |
---|
2379 | k = surf%k(m) |
---|
2380 | |
---|
2381 | exn1 = (hyp(k) / 100000.0_wp )**0.286_wp |
---|
2382 | |
---|
2383 | surf%rad_sw_in(m) = solar_constant * sky_trans * zenith(0) |
---|
2384 | |
---|
2385 | ! |
---|
2386 | !-- Weighted average according to surface fraction. |
---|
2387 | !-- ATTENTION: when radiation interactions are switched on the |
---|
2388 | !-- calculated fluxes below are not actually used as they are |
---|
2389 | !-- overwritten in radiation_interaction. |
---|
2390 | surf%rad_sw_out(m) = ( surf%frac(ind_veg_wall,m) * & |
---|
2391 | surf%albedo(ind_veg_wall,m) & |
---|
2392 | + surf%frac(ind_pav_green,m) * & |
---|
2393 | surf%albedo(ind_pav_green,m) & |
---|
2394 | + surf%frac(ind_wat_win,m) * & |
---|
2395 | surf%albedo(ind_wat_win,m) ) & |
---|
2396 | * surf%rad_sw_in(m) |
---|
2397 | |
---|
2398 | surf%rad_lw_out(m) = ( surf%frac(ind_veg_wall,m) * & |
---|
2399 | surf%emissivity(ind_veg_wall,m) & |
---|
2400 | + surf%frac(ind_pav_green,m) * & |
---|
2401 | surf%emissivity(ind_pav_green,m) & |
---|
2402 | + surf%frac(ind_wat_win,m) * & |
---|
2403 | surf%emissivity(ind_wat_win,m) & |
---|
2404 | ) & |
---|
2405 | * sigma_sb & |
---|
2406 | * ( surf%pt_surface(m) * exn )**4 |
---|
2407 | |
---|
2408 | surf%rad_lw_out_change_0(m) = & |
---|
2409 | ( surf%frac(ind_veg_wall,m) * & |
---|
2410 | surf%emissivity(ind_veg_wall,m) & |
---|
2411 | + surf%frac(ind_pav_green,m) * & |
---|
2412 | surf%emissivity(ind_pav_green,m) & |
---|
2413 | + surf%frac(ind_wat_win,m) * & |
---|
2414 | surf%emissivity(ind_wat_win,m) & |
---|
2415 | ) * 3.0_wp * sigma_sb & |
---|
2416 | * ( surf%pt_surface(m) * exn )** 3 |
---|
2417 | |
---|
2418 | |
---|
2419 | IF ( cloud_physics ) THEN |
---|
2420 | pt1 = pt(k,j,i) + l_d_cp / exn1 * ql(k,j,i) |
---|
2421 | surf%rad_lw_in(m) = 0.8_wp * sigma_sb * (pt1 * exn1)**4 |
---|
2422 | ELSE |
---|
2423 | surf%rad_lw_in(m) = 0.8_wp * sigma_sb * (pt(k,j,i) * exn1)**4 |
---|
2424 | ENDIF |
---|
2425 | |
---|
2426 | surf%rad_net(m) = surf%rad_sw_in(m) - surf%rad_sw_out(m) & |
---|
2427 | + surf%rad_lw_in(m) - surf%rad_lw_out(m) |
---|
2428 | |
---|
2429 | ENDDO |
---|
2430 | |
---|
2431 | ENDIF |
---|
2432 | |
---|
2433 | ! |
---|
2434 | !-- Fill out values in radiation arrays |
---|
2435 | DO m = 1, surf%ns |
---|
2436 | i = surf%i(m) |
---|
2437 | j = surf%j(m) |
---|
2438 | rad_sw_in(0,j,i) = surf%rad_sw_in(m) |
---|
2439 | rad_sw_out(0,j,i) = surf%rad_sw_out(m) |
---|
2440 | rad_lw_in(0,j,i) = surf%rad_lw_in(m) |
---|
2441 | rad_lw_out(0,j,i) = surf%rad_lw_out(m) |
---|
2442 | ENDDO |
---|
2443 | |
---|
2444 | END SUBROUTINE radiation_clearsky_surf |
---|
2445 | |
---|
2446 | END SUBROUTINE radiation_clearsky |
---|
2447 | |
---|
2448 | |
---|
2449 | !------------------------------------------------------------------------------! |
---|
2450 | ! Description: |
---|
2451 | ! ------------ |
---|
2452 | !> This scheme keeps the prescribed net radiation constant during the run |
---|
2453 | !------------------------------------------------------------------------------! |
---|
2454 | SUBROUTINE radiation_constant |
---|
2455 | |
---|
2456 | |
---|
2457 | IMPLICIT NONE |
---|
2458 | |
---|
2459 | INTEGER(iwp) :: l !< running index for surface orientation |
---|
2460 | |
---|
2461 | REAL(wp) :: exn !< Exner functions at surface |
---|
2462 | REAL(wp) :: exn1 !< Exner functions at first grid level |
---|
2463 | REAL(wp) :: pt1 !< potential temperature at first grid level or mean value at urban layer top |
---|
2464 | REAL(wp) :: pt1_l !< potential temperature at first grid level or mean value at urban layer top at local subdomain |
---|
2465 | REAL(wp) :: ql1 !< liquid water mixing ratio at first grid level or mean value at urban layer top |
---|
2466 | REAL(wp) :: ql1_l !< liquid water mixing ratio at first grid level or mean value at urban layer top at local subdomain |
---|
2467 | |
---|
2468 | TYPE(surf_type), POINTER :: surf !< pointer on respective surface type, used to generalize routine |
---|
2469 | |
---|
2470 | ! |
---|
2471 | !-- Calculate value of the Exner function |
---|
2472 | exn = (surface_pressure / 1000.0_wp )**0.286_wp |
---|
2473 | ! |
---|
2474 | !-- In case averaged radiation is used, calculate mean temperature and |
---|
2475 | !-- liquid water mixing ratio at the urban-layer top. |
---|
2476 | IF ( average_radiation ) THEN |
---|
2477 | pt1 = 0.0_wp |
---|
2478 | IF ( cloud_physics ) ql1 = 0.0_wp |
---|
2479 | |
---|
2480 | pt1_l = SUM( pt(nzut,nys:nyn,nxl:nxr) ) |
---|
2481 | IF ( cloud_physics ) ql1_l = SUM( ql(nzut,nys:nyn,nxl:nxr) ) |
---|
2482 | |
---|
2483 | #if defined( __parallel ) |
---|
2484 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2485 | CALL MPI_ALLREDUCE( pt1_l, pt1, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2486 | IF ( cloud_physics ) & |
---|
2487 | CALL MPI_ALLREDUCE( ql1_l, ql1, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2488 | #else |
---|
2489 | pt1 = pt1_l |
---|
2490 | IF ( cloud_physics ) ql1 = ql1_l |
---|
2491 | #endif |
---|
2492 | IF ( cloud_physics ) pt1 = pt1 + l_d_cp / exn1 * ql1 |
---|
2493 | ! |
---|
2494 | !-- Finally, divide by number of grid points |
---|
2495 | pt1 = pt1 / REAL( ( nx + 1 ) * ( ny + 1 ), KIND=wp ) |
---|
2496 | ENDIF |
---|
2497 | |
---|
2498 | ! |
---|
2499 | !-- First, horizontal surfaces |
---|
2500 | surf => surf_lsm_h |
---|
2501 | CALL radiation_constant_surf |
---|
2502 | surf => surf_usm_h |
---|
2503 | CALL radiation_constant_surf |
---|
2504 | ! |
---|
2505 | !-- Vertical surfaces |
---|
2506 | DO l = 0, 3 |
---|
2507 | surf => surf_lsm_v(l) |
---|
2508 | CALL radiation_constant_surf |
---|
2509 | surf => surf_usm_v(l) |
---|
2510 | CALL radiation_constant_surf |
---|
2511 | ENDDO |
---|
2512 | |
---|
2513 | CONTAINS |
---|
2514 | |
---|
2515 | SUBROUTINE radiation_constant_surf |
---|
2516 | |
---|
2517 | IMPLICIT NONE |
---|
2518 | |
---|
2519 | INTEGER(iwp) :: i !< index x-direction |
---|
2520 | INTEGER(iwp) :: ioff !< offset between surface element and adjacent grid point along x |
---|
2521 | INTEGER(iwp) :: j !< index y-direction |
---|
2522 | INTEGER(iwp) :: joff !< offset between surface element and adjacent grid point along y |
---|
2523 | INTEGER(iwp) :: k !< index z-direction |
---|
2524 | INTEGER(iwp) :: koff !< offset between surface element and adjacent grid point along z |
---|
2525 | INTEGER(iwp) :: m !< running index for surface elements |
---|
2526 | |
---|
2527 | IF ( surf%ns < 1 ) RETURN |
---|
2528 | |
---|
2529 | !-- Calculate homogenoeus urban radiation fluxes |
---|
2530 | IF ( average_radiation ) THEN |
---|
2531 | |
---|
2532 | ! set height above canopy |
---|
2533 | k = nzut |
---|
2534 | |
---|
2535 | surf%rad_net = net_radiation |
---|
2536 | ! MS: Wyh k + 1 ? |
---|
2537 | exn1 = (hyp(k+1) / 100000.0_wp )**0.286_wp |
---|
2538 | |
---|
2539 | surf%rad_lw_in = 0.8_wp * sigma_sb * (pt1 * exn1)**4 |
---|
2540 | |
---|
2541 | surf%rad_lw_out = emissivity_urb * sigma_sb * (t_rad_urb)**4 & |
---|
2542 | + ( 10.0_wp - emissivity_urb ) & ! shouldn't be this a bulk value -- emissivity_urb? |
---|
2543 | * surf%rad_lw_in |
---|
2544 | |
---|
2545 | surf%rad_lw_out_change_0 = 3.0_wp * emissivity_urb * sigma_sb & |
---|
2546 | * t_rad_urb**3 |
---|
2547 | |
---|
2548 | surf%rad_sw_in = ( surf%rad_net - surf%rad_lw_in & |
---|
2549 | + surf%rad_lw_out ) & |
---|
2550 | / ( 1.0_wp - albedo_urb ) |
---|
2551 | |
---|
2552 | surf%rad_sw_out = albedo_urb * surf%rad_sw_in |
---|
2553 | |
---|
2554 | ! |
---|
2555 | !-- Calculate radiation fluxes for each surface element |
---|
2556 | ELSE |
---|
2557 | ! |
---|
2558 | !-- Determine index offset between surface element and adjacent |
---|
2559 | !-- atmospheric grid point |
---|
2560 | ioff = surf%ioff |
---|
2561 | joff = surf%joff |
---|
2562 | koff = surf%koff |
---|
2563 | |
---|
2564 | ! |
---|
2565 | !-- Prescribe net radiation and estimate the remaining radiative fluxes |
---|
2566 | DO m = 1, surf%ns |
---|
2567 | i = surf%i(m) |
---|
2568 | j = surf%j(m) |
---|
2569 | k = surf%k(m) |
---|
2570 | |
---|
2571 | surf%rad_net(m) = net_radiation |
---|
2572 | |
---|
2573 | exn1 = (hyp(k) / 100000.0_wp )**0.286_wp |
---|
2574 | |
---|
2575 | IF ( cloud_physics ) THEN |
---|
2576 | pt1 = pt(k,j,i) + l_d_cp / exn1 * ql(k,j,i) |
---|
2577 | surf%rad_lw_in(m) = 0.8_wp * sigma_sb * (pt1 * exn1)**4 |
---|
2578 | ELSE |
---|
2579 | surf%rad_lw_in(m) = 0.8_wp * sigma_sb * & |
---|
2580 | ( pt(k,j,i) * exn1 )**4 |
---|
2581 | ENDIF |
---|
2582 | |
---|
2583 | ! |
---|
2584 | !-- Weighted average according to surface fraction. |
---|
2585 | surf%rad_lw_out(m) = ( surf%frac(ind_veg_wall,m) * & |
---|
2586 | surf%emissivity(ind_veg_wall,m) & |
---|
2587 | + surf%frac(ind_pav_green,m) * & |
---|
2588 | surf%emissivity(ind_pav_green,m) & |
---|
2589 | + surf%frac(ind_wat_win,m) * & |
---|
2590 | surf%emissivity(ind_wat_win,m) & |
---|
2591 | ) & |
---|
2592 | * sigma_sb & |
---|
2593 | * ( surf%pt_surface(m) * exn )**4 |
---|
2594 | |
---|
2595 | surf%rad_sw_in(m) = ( surf%rad_net(m) - surf%rad_lw_in(m) & |
---|
2596 | + surf%rad_lw_out(m) ) & |
---|
2597 | / ( 1.0_wp - & |
---|
2598 | ( surf%frac(ind_veg_wall,m) * & |
---|
2599 | surf%albedo(ind_veg_wall,m) & |
---|
2600 | + surf%frac(ind_pav_green,m) * & |
---|
2601 | surf%albedo(ind_pav_green,m) & |
---|
2602 | + surf%frac(ind_wat_win,m) * & |
---|
2603 | surf%albedo(ind_wat_win,m) ) & |
---|
2604 | ) |
---|
2605 | |
---|
2606 | surf%rad_sw_out(m) = ( surf%frac(ind_veg_wall,m) * & |
---|
2607 | surf%albedo(ind_veg_wall,m) & |
---|
2608 | + surf%frac(ind_pav_green,m) * & |
---|
2609 | surf%albedo(ind_pav_green,m) & |
---|
2610 | + surf%frac(ind_wat_win,m) * & |
---|
2611 | surf%albedo(ind_wat_win,m) ) & |
---|
2612 | * surf%rad_sw_in(m) |
---|
2613 | |
---|
2614 | ENDDO |
---|
2615 | |
---|
2616 | ENDIF |
---|
2617 | |
---|
2618 | ! |
---|
2619 | !-- Fill out values in radiation arrays |
---|
2620 | DO m = 1, surf%ns |
---|
2621 | i = surf%i(m) |
---|
2622 | j = surf%j(m) |
---|
2623 | rad_sw_in(0,j,i) = surf%rad_sw_in(m) |
---|
2624 | rad_sw_out(0,j,i) = surf%rad_sw_out(m) |
---|
2625 | rad_lw_in(0,j,i) = surf%rad_lw_in(m) |
---|
2626 | rad_lw_out(0,j,i) = surf%rad_lw_out(m) |
---|
2627 | ENDDO |
---|
2628 | |
---|
2629 | END SUBROUTINE radiation_constant_surf |
---|
2630 | |
---|
2631 | |
---|
2632 | END SUBROUTINE radiation_constant |
---|
2633 | |
---|
2634 | !------------------------------------------------------------------------------! |
---|
2635 | ! Description: |
---|
2636 | ! ------------ |
---|
2637 | !> Header output for radiation model |
---|
2638 | !------------------------------------------------------------------------------! |
---|
2639 | SUBROUTINE radiation_header ( io ) |
---|
2640 | |
---|
2641 | |
---|
2642 | IMPLICIT NONE |
---|
2643 | |
---|
2644 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
2645 | |
---|
2646 | |
---|
2647 | |
---|
2648 | ! |
---|
2649 | !-- Write radiation model header |
---|
2650 | WRITE( io, 3 ) |
---|
2651 | |
---|
2652 | IF ( radiation_scheme == "constant" ) THEN |
---|
2653 | WRITE( io, 4 ) net_radiation |
---|
2654 | ELSEIF ( radiation_scheme == "clear-sky" ) THEN |
---|
2655 | WRITE( io, 5 ) |
---|
2656 | ELSEIF ( radiation_scheme == "rrtmg" ) THEN |
---|
2657 | WRITE( io, 6 ) |
---|
2658 | IF ( .NOT. lw_radiation ) WRITE( io, 10 ) |
---|
2659 | IF ( .NOT. sw_radiation ) WRITE( io, 11 ) |
---|
2660 | ENDIF |
---|
2661 | |
---|
2662 | IF ( albedo_type_f%from_file .OR. vegetation_type_f%from_file .OR. & |
---|
2663 | pavement_type_f%from_file .OR. water_type_f%from_file .OR. & |
---|
2664 | building_type_f%from_file ) THEN |
---|
2665 | WRITE( io, 13 ) |
---|
2666 | ELSE |
---|
2667 | IF ( albedo_type == 0 ) THEN |
---|
2668 | WRITE( io, 7 ) albedo |
---|
2669 | ELSE |
---|
2670 | WRITE( io, 8 ) TRIM( albedo_type_name(albedo_type) ) |
---|
2671 | ENDIF |
---|
2672 | ENDIF |
---|
2673 | IF ( constant_albedo ) THEN |
---|
2674 | WRITE( io, 9 ) |
---|
2675 | ENDIF |
---|
2676 | |
---|
2677 | WRITE( io, 12 ) dt_radiation |
---|
2678 | |
---|
2679 | |
---|
2680 | 3 FORMAT (//' Radiation model information:'/ & |
---|
2681 | ' ----------------------------'/) |
---|
2682 | 4 FORMAT (' --> Using constant net radiation: net_radiation = ', F6.2, & |
---|
2683 | // 'W/m**2') |
---|
2684 | 5 FORMAT (' --> Simple radiation scheme for clear sky is used (no clouds,',& |
---|
2685 | ' default)') |
---|
2686 | 6 FORMAT (' --> RRTMG scheme is used') |
---|
2687 | 7 FORMAT (/' User-specific surface albedo: albedo =', F6.3) |
---|
2688 | 8 FORMAT (/' Albedo is set for land surface type: ', A) |
---|
2689 | 9 FORMAT (/' --> Albedo is fixed during the run') |
---|
2690 | 10 FORMAT (/' --> Longwave radiation is disabled') |
---|
2691 | 11 FORMAT (/' --> Shortwave radiation is disabled.') |
---|
2692 | 12 FORMAT (' Timestep: dt_radiation = ', F6.2, ' s') |
---|
2693 | 13 FORMAT (/' Albedo is set individually for each xy-location, according ' & |
---|
2694 | 'to given surface type.') |
---|
2695 | |
---|
2696 | |
---|
2697 | END SUBROUTINE radiation_header |
---|
2698 | |
---|
2699 | |
---|
2700 | !------------------------------------------------------------------------------! |
---|
2701 | ! Description: |
---|
2702 | ! ------------ |
---|
2703 | !> Parin for &radiation_parameters for radiation model |
---|
2704 | !------------------------------------------------------------------------------! |
---|
2705 | SUBROUTINE radiation_parin |
---|
2706 | |
---|
2707 | |
---|
2708 | IMPLICIT NONE |
---|
2709 | |
---|
2710 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
2711 | |
---|
2712 | NAMELIST /radiation_par/ albedo, albedo_type, albedo_lw_dir, & |
---|
2713 | albedo_lw_dif, albedo_sw_dir, albedo_sw_dif, & |
---|
2714 | constant_albedo, dt_radiation, emissivity, & |
---|
2715 | lw_radiation, net_radiation, & |
---|
2716 | radiation_scheme, skip_time_do_radiation, & |
---|
2717 | sw_radiation, unscheduled_radiation_calls, & |
---|
2718 | split_diffusion_radiation, & |
---|
2719 | max_raytracing_dist, min_irrf_value, & |
---|
2720 | nrefsteps, mrt_factors, rma_lad_raytrace, & |
---|
2721 | dist_max_svf, & |
---|
2722 | surface_reflections, svfnorm_report_thresh, & |
---|
2723 | radiation_interactions_on |
---|
2724 | |
---|
2725 | NAMELIST /radiation_parameters/ albedo, albedo_type, albedo_lw_dir, & |
---|
2726 | albedo_lw_dif, albedo_sw_dir, albedo_sw_dif, & |
---|
2727 | constant_albedo, dt_radiation, emissivity, & |
---|
2728 | lw_radiation, net_radiation, & |
---|
2729 | radiation_scheme, skip_time_do_radiation, & |
---|
2730 | sw_radiation, unscheduled_radiation_calls, & |
---|
2731 | split_diffusion_radiation, & |
---|
2732 | max_raytracing_dist, min_irrf_value, & |
---|
2733 | nrefsteps, mrt_factors, rma_lad_raytrace, & |
---|
2734 | dist_max_svf, & |
---|
2735 | surface_reflections, svfnorm_report_thresh, & |
---|
2736 | radiation_interactions_on |
---|
2737 | |
---|
2738 | line = ' ' |
---|
2739 | |
---|
2740 | ! |
---|
2741 | !-- Try to find radiation model namelist |
---|
2742 | REWIND ( 11 ) |
---|
2743 | line = ' ' |
---|
2744 | DO WHILE ( INDEX( line, '&radiation_parameters' ) == 0 ) |
---|
2745 | READ ( 11, '(A)', END=10 ) line |
---|
2746 | ENDDO |
---|
2747 | BACKSPACE ( 11 ) |
---|
2748 | |
---|
2749 | ! |
---|
2750 | !-- Read user-defined namelist |
---|
2751 | READ ( 11, radiation_parameters ) |
---|
2752 | |
---|
2753 | ! |
---|
2754 | !-- Set flag that indicates that the radiation model is switched on |
---|
2755 | radiation = .TRUE. |
---|
2756 | |
---|
2757 | GOTO 12 |
---|
2758 | ! |
---|
2759 | !-- Try to find old namelist |
---|
2760 | 10 REWIND ( 11 ) |
---|
2761 | line = ' ' |
---|
2762 | DO WHILE ( INDEX( line, '&radiation_par' ) == 0 ) |
---|
2763 | READ ( 11, '(A)', END=12 ) line |
---|
2764 | ENDDO |
---|
2765 | BACKSPACE ( 11 ) |
---|
2766 | |
---|
2767 | ! |
---|
2768 | !-- Read user-defined namelist |
---|
2769 | READ ( 11, radiation_par ) |
---|
2770 | |
---|
2771 | message_string = 'namelist radiation_par is deprecated and will be ' // & |
---|
2772 | 'removed in near future. Please use namelist ' // & |
---|
2773 | 'radiation_parameters instead' |
---|
2774 | CALL message( 'radiation_parin', 'PA0487', 0, 1, 0, 6, 0 ) |
---|
2775 | |
---|
2776 | |
---|
2777 | ! |
---|
2778 | !-- Set flag that indicates that the radiation model is switched on |
---|
2779 | radiation = .TRUE. |
---|
2780 | |
---|
2781 | IF ( .NOT. radiation_interactions_on .AND. surface_reflections ) THEN |
---|
2782 | message_string = 'surface_reflections is allowed only when ' // & |
---|
2783 | 'radiation_interactions_on is set to TRUE' |
---|
2784 | CALL message( 'radiation_parin', 'PA0293',1, 2, 0, 6, 0 ) |
---|
2785 | ENDIF |
---|
2786 | |
---|
2787 | 12 CONTINUE |
---|
2788 | |
---|
2789 | END SUBROUTINE radiation_parin |
---|
2790 | |
---|
2791 | |
---|
2792 | !------------------------------------------------------------------------------! |
---|
2793 | ! Description: |
---|
2794 | ! ------------ |
---|
2795 | !> Implementation of the RRTMG radiation_scheme |
---|
2796 | !------------------------------------------------------------------------------! |
---|
2797 | SUBROUTINE radiation_rrtmg |
---|
2798 | |
---|
2799 | USE indices, & |
---|
2800 | ONLY: nbgp |
---|
2801 | |
---|
2802 | USE particle_attributes, & |
---|
2803 | ONLY: grid_particles, number_of_particles, particles, & |
---|
2804 | particle_advection_start, prt_count |
---|
2805 | |
---|
2806 | IMPLICIT NONE |
---|
2807 | |
---|
2808 | #if defined ( __rrtmg ) |
---|
2809 | |
---|
2810 | INTEGER(iwp) :: i, j, k, l, m, n !< loop indices |
---|
2811 | INTEGER(iwp) :: k_topo !< topography top index |
---|
2812 | |
---|
2813 | REAL(wp) :: nc_rad, & !< number concentration of cloud droplets |
---|
2814 | s_r2, & !< weighted sum over all droplets with r^2 |
---|
2815 | s_r3 !< weighted sum over all droplets with r^3 |
---|
2816 | |
---|
2817 | REAL(wp), DIMENSION(0:nzt+1) :: pt_av, q_av, ql_av |
---|
2818 | ! |
---|
2819 | !-- Just dummy arguments |
---|
2820 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: rrtm_lw_taucld_dum, & |
---|
2821 | rrtm_lw_tauaer_dum, & |
---|
2822 | rrtm_sw_taucld_dum, & |
---|
2823 | rrtm_sw_ssacld_dum, & |
---|
2824 | rrtm_sw_asmcld_dum, & |
---|
2825 | rrtm_sw_fsfcld_dum, & |
---|
2826 | rrtm_sw_tauaer_dum, & |
---|
2827 | rrtm_sw_ssaaer_dum, & |
---|
2828 | rrtm_sw_asmaer_dum, & |
---|
2829 | rrtm_sw_ecaer_dum |
---|
2830 | |
---|
2831 | ! |
---|
2832 | !-- Calculate current (cosine of) zenith angle and whether the sun is up |
---|
2833 | CALL calc_zenith |
---|
2834 | ! |
---|
2835 | !-- Calculate surface albedo. In case average radiation is applied, |
---|
2836 | !-- this is not required. |
---|
2837 | IF ( .NOT. constant_albedo ) THEN |
---|
2838 | ! |
---|
2839 | !-- Horizontally aligned default, natural and urban surfaces |
---|
2840 | CALL calc_albedo( surf_lsm_h ) |
---|
2841 | CALL calc_albedo( surf_usm_h ) |
---|
2842 | ! |
---|
2843 | !-- Vertically aligned default, natural and urban surfaces |
---|
2844 | DO l = 0, 3 |
---|
2845 | CALL calc_albedo( surf_lsm_v(l) ) |
---|
2846 | CALL calc_albedo( surf_usm_v(l) ) |
---|
2847 | ENDDO |
---|
2848 | ENDIF |
---|
2849 | |
---|
2850 | ! |
---|
2851 | !-- Prepare input data for RRTMG |
---|
2852 | |
---|
2853 | ! |
---|
2854 | !-- In case of large scale forcing with surface data, calculate new pressure |
---|
2855 | !-- profile. nzt_rad might be modified by these calls and all required arrays |
---|
2856 | !-- will then be re-allocated |
---|
2857 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
2858 | CALL read_sounding_data |
---|
2859 | CALL read_trace_gas_data |
---|
2860 | ENDIF |
---|
2861 | |
---|
2862 | |
---|
2863 | IF ( average_radiation ) THEN |
---|
2864 | |
---|
2865 | rrtm_asdir(1) = albedo_urb |
---|
2866 | rrtm_asdif(1) = albedo_urb |
---|
2867 | rrtm_aldir(1) = albedo_urb |
---|
2868 | rrtm_aldif(1) = albedo_urb |
---|
2869 | |
---|
2870 | rrtm_emis = emissivity_urb |
---|
2871 | ! |
---|
2872 | !-- Calculate mean pt profile. Actually, only one height level is required. |
---|
2873 | CALL calc_mean_profile( pt, 4 ) |
---|
2874 | pt_av = hom(:, 1, 4, 0) |
---|
2875 | |
---|
2876 | IF ( humidity ) THEN |
---|
2877 | CALL calc_mean_profile( q, 41 ) |
---|
2878 | q_av = hom(:, 1, 41, 0) |
---|
2879 | ENDIF |
---|
2880 | ! |
---|
2881 | !-- Prepare profiles of temperature and H2O volume mixing ratio |
---|
2882 | rrtm_tlev(0,nzb+1) = t_rad_urb |
---|
2883 | |
---|
2884 | IF ( cloud_physics ) THEN |
---|
2885 | |
---|
2886 | CALL calc_mean_profile( ql, 54 ) |
---|
2887 | ! average ql is now in hom(:, 1, 54, 0) |
---|
2888 | ql_av = hom(:, 1, 54, 0) |
---|
2889 | |
---|
2890 | DO k = nzb+1, nzt+1 |
---|
2891 | rrtm_tlay(0,k) = pt_av(k) * ( (hyp(k) ) / 100000._wp & |
---|
2892 | )**.286_wp + l_d_cp * ql_av(k) |
---|
2893 | rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * (q_av(k) - ql_av(k)) |
---|
2894 | ENDDO |
---|
2895 | ELSE |
---|
2896 | DO k = nzb+1, nzt+1 |
---|
2897 | rrtm_tlay(0,k) = pt_av(k) * ( (hyp(k) ) / 100000._wp & |
---|
2898 | )**.286_wp |
---|
2899 | ENDDO |
---|
2900 | |
---|
2901 | IF ( humidity ) THEN |
---|
2902 | DO k = nzb+1, nzt+1 |
---|
2903 | rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * q_av(k) |
---|
2904 | ENDDO |
---|
2905 | ELSE |
---|
2906 | rrtm_h2ovmr(0,nzb+1:nzt+1) = 0.0_wp |
---|
2907 | ENDIF |
---|
2908 | ENDIF |
---|
2909 | |
---|
2910 | ! |
---|
2911 | !-- Avoid temperature/humidity jumps at the top of the LES domain by |
---|
2912 | !-- linear interpolation from nzt+2 to nzt+7 |
---|
2913 | DO k = nzt+2, nzt+7 |
---|
2914 | rrtm_tlay(0,k) = rrtm_tlay(0,nzt+1) & |
---|
2915 | + ( rrtm_tlay(0,nzt+8) - rrtm_tlay(0,nzt+1) ) & |
---|
2916 | / ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) ) & |
---|
2917 | * ( rrtm_play(0,k) - rrtm_play(0,nzt+1) ) |
---|
2918 | |
---|
2919 | rrtm_h2ovmr(0,k) = rrtm_h2ovmr(0,nzt+1) & |
---|
2920 | + ( rrtm_h2ovmr(0,nzt+8) - rrtm_h2ovmr(0,nzt+1) )& |
---|
2921 | / ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) )& |
---|
2922 | * ( rrtm_play(0,k) - rrtm_play(0,nzt+1) ) |
---|
2923 | |
---|
2924 | ENDDO |
---|
2925 | |
---|
2926 | !-- Linear interpolate to zw grid |
---|
2927 | DO k = nzb+2, nzt+8 |
---|
2928 | rrtm_tlev(0,k) = rrtm_tlay(0,k-1) + (rrtm_tlay(0,k) - & |
---|
2929 | rrtm_tlay(0,k-1)) & |
---|
2930 | / ( rrtm_play(0,k) - rrtm_play(0,k-1) ) & |
---|
2931 | * ( rrtm_plev(0,k) - rrtm_play(0,k-1) ) |
---|
2932 | ENDDO |
---|
2933 | |
---|
2934 | |
---|
2935 | ! |
---|
2936 | !-- Calculate liquid water path and cloud fraction for each column. |
---|
2937 | !-- Note that LWP is required in g/m² instead of kg/kg m. |
---|
2938 | rrtm_cldfr = 0.0_wp |
---|
2939 | rrtm_reliq = 0.0_wp |
---|
2940 | rrtm_cliqwp = 0.0_wp |
---|
2941 | rrtm_icld = 0 |
---|
2942 | |
---|
2943 | IF ( cloud_physics ) THEN |
---|
2944 | DO k = nzb+1, nzt+1 |
---|
2945 | rrtm_cliqwp(0,k) = ql_av(k) * 1000._wp * & |
---|
2946 | (rrtm_plev(0,k) - rrtm_plev(0,k+1)) & |
---|
2947 | * 100._wp / g |
---|
2948 | |
---|
2949 | IF ( rrtm_cliqwp(0,k) > 0._wp ) THEN |
---|
2950 | rrtm_cldfr(0,k) = 1._wp |
---|
2951 | IF ( rrtm_icld == 0 ) rrtm_icld = 1 |
---|
2952 | |
---|
2953 | ! |
---|
2954 | !-- Calculate cloud droplet effective radius |
---|
2955 | IF ( cloud_physics ) THEN |
---|
2956 | rrtm_reliq(0,k) = 1.0E6_wp * ( 3._wp * ql_av(k) & |
---|
2957 | * rho_surface & |
---|
2958 | / ( 4._wp * pi * nc_const * rho_l )& |
---|
2959 | )**.33333333333333_wp & |
---|
2960 | * EXP( LOG( sigma_gc )**2 ) |
---|
2961 | |
---|
2962 | ENDIF |
---|
2963 | |
---|
2964 | ! |
---|
2965 | !-- Limit effective radius |
---|
2966 | IF ( rrtm_reliq(0,k) > 0.0_wp ) THEN |
---|
2967 | rrtm_reliq(0,k) = MAX(rrtm_reliq(0,k),2.5_wp) |
---|
2968 | rrtm_reliq(0,k) = MIN(rrtm_reliq(0,k),60.0_wp) |
---|
2969 | ENDIF |
---|
2970 | ENDIF |
---|
2971 | ENDDO |
---|
2972 | ENDIF |
---|
2973 | |
---|
2974 | ! |
---|
2975 | !-- Set surface temperature |
---|
2976 | rrtm_tsfc = t_rad_urb |
---|
2977 | |
---|
2978 | IF ( lw_radiation ) THEN |
---|
2979 | CALL rrtmg_lw( 1, nzt_rad , rrtm_icld , rrtm_idrv ,& |
---|
2980 | rrtm_play , rrtm_plev , rrtm_tlay , rrtm_tlev ,& |
---|
2981 | rrtm_tsfc , rrtm_h2ovmr , rrtm_o3vmr , rrtm_co2vmr ,& |
---|
2982 | rrtm_ch4vmr , rrtm_n2ovmr , rrtm_o2vmr , rrtm_cfc11vmr ,& |
---|
2983 | rrtm_cfc12vmr , rrtm_cfc22vmr, rrtm_ccl4vmr , rrtm_emis ,& |
---|
2984 | rrtm_inflglw , rrtm_iceflglw, rrtm_liqflglw, rrtm_cldfr ,& |
---|
2985 | rrtm_lw_taucld , rrtm_cicewp , rrtm_cliqwp , rrtm_reice ,& |
---|
2986 | rrtm_reliq , rrtm_lw_tauaer, & |
---|
2987 | rrtm_lwuflx , rrtm_lwdflx , rrtm_lwhr , & |
---|
2988 | rrtm_lwuflxc , rrtm_lwdflxc , rrtm_lwhrc , & |
---|
2989 | rrtm_lwuflx_dt , rrtm_lwuflxc_dt ) |
---|
2990 | |
---|
2991 | ! |
---|
2992 | !-- Save fluxes |
---|
2993 | DO k = nzb, nzt+1 |
---|
2994 | rad_lw_in(k,:,:) = rrtm_lwdflx(0,k) |
---|
2995 | rad_lw_out(k,:,:) = rrtm_lwuflx(0,k) |
---|
2996 | ENDDO |
---|
2997 | |
---|
2998 | ! |
---|
2999 | !-- Save heating rates (convert from K/d to K/h) |
---|
3000 | DO k = nzb+1, nzt+1 |
---|
3001 | rad_lw_hr(k,:,:) = rrtm_lwhr(0,k) * d_hours_day |
---|
3002 | rad_lw_cs_hr(k,:,:) = rrtm_lwhrc(0,k) * d_hours_day |
---|
3003 | ENDDO |
---|
3004 | |
---|
3005 | ! |
---|
3006 | !-- Save surface radiative fluxes and change in LW heating rate |
---|
3007 | !-- onto respective surface elements |
---|
3008 | !-- Horizontal surfaces |
---|
3009 | IF ( surf_lsm_h%ns > 0 ) THEN |
---|
3010 | surf_lsm_h%rad_lw_in = rrtm_lwdflx(0,nzb) |
---|
3011 | surf_lsm_h%rad_lw_out = rrtm_lwuflx(0,nzb) |
---|
3012 | surf_lsm_h%rad_lw_out_change_0 = rrtm_lwuflx_dt(0,nzb) |
---|
3013 | ENDIF |
---|
3014 | IF ( surf_usm_h%ns > 0 ) THEN |
---|
3015 | surf_usm_h%rad_lw_in = rrtm_lwdflx(0,nzb) |
---|
3016 | surf_usm_h%rad_lw_out = rrtm_lwuflx(0,nzb) |
---|
3017 | surf_usm_h%rad_lw_out_change_0 = rrtm_lwuflx_dt(0,nzb) |
---|
3018 | ENDIF |
---|
3019 | ! |
---|
3020 | !-- Vertical surfaces. |
---|
3021 | DO l = 0, 3 |
---|
3022 | IF ( surf_lsm_v(l)%ns > 0 ) THEN |
---|
3023 | surf_lsm_v(l)%rad_lw_in = rrtm_lwdflx(0,nzb) |
---|
3024 | surf_lsm_v(l)%rad_lw_out = rrtm_lwuflx(0,nzb) |
---|
3025 | surf_lsm_v(l)%rad_lw_out_change_0 = rrtm_lwuflx_dt(0,nzb) |
---|
3026 | ENDIF |
---|
3027 | IF ( surf_usm_v(l)%ns > 0 ) THEN |
---|
3028 | surf_usm_v(l)%rad_lw_in = rrtm_lwdflx(0,nzb) |
---|
3029 | surf_usm_v(l)%rad_lw_out = rrtm_lwuflx(0,nzb) |
---|
3030 | surf_usm_v(l)%rad_lw_out_change_0 = rrtm_lwuflx_dt(0,nzb) |
---|
3031 | ENDIF |
---|
3032 | ENDDO |
---|
3033 | |
---|
3034 | ENDIF |
---|
3035 | |
---|
3036 | IF ( sw_radiation .AND. sun_up ) THEN |
---|
3037 | CALL rrtmg_sw( 1, nzt_rad , rrtm_icld , rrtm_iaer ,& |
---|
3038 | rrtm_play , rrtm_plev , rrtm_tlay , rrtm_tlev ,& |
---|
3039 | rrtm_tsfc , rrtm_h2ovmr , rrtm_o3vmr , rrtm_co2vmr ,& |
---|
3040 | rrtm_ch4vmr , rrtm_n2ovmr , rrtm_o2vmr , rrtm_asdir ,& |
---|
3041 | rrtm_asdif , rrtm_aldir , rrtm_aldif , zenith, & |
---|
3042 | 0.0_wp , day_of_year , solar_constant, rrtm_inflgsw,& |
---|
3043 | rrtm_iceflgsw , rrtm_liqflgsw, rrtm_cldfr , rrtm_sw_taucld ,& |
---|
3044 | rrtm_sw_ssacld , rrtm_sw_asmcld, rrtm_sw_fsfcld, rrtm_cicewp ,& |
---|
3045 | rrtm_cliqwp , rrtm_reice , rrtm_reliq , rrtm_sw_tauaer ,& |
---|
3046 | rrtm_sw_ssaaer , rrtm_sw_asmaer , rrtm_sw_ecaer , & |
---|
3047 | rrtm_swuflx , rrtm_swdflx , rrtm_swhr , & |
---|
3048 | rrtm_swuflxc , rrtm_swdflxc , rrtm_swhrc ) |
---|
3049 | |
---|
3050 | ! |
---|
3051 | !-- Save fluxes |
---|
3052 | DO k = nzb, nzt+1 |
---|
3053 | rad_sw_in(k,:,:) = rrtm_swdflx(0,k) |
---|
3054 | rad_sw_out(k,:,:) = rrtm_swuflx(0,k) |
---|
3055 | ENDDO |
---|
3056 | |
---|
3057 | ! |
---|
3058 | !-- Save heating rates (convert from K/d to K/s) |
---|
3059 | DO k = nzb+1, nzt+1 |
---|
3060 | rad_sw_hr(k,:,:) = rrtm_swhr(0,k) * d_hours_day |
---|
3061 | rad_sw_cs_hr(k,:,:) = rrtm_swhrc(0,k) * d_hours_day |
---|
3062 | ENDDO |
---|
3063 | |
---|
3064 | ! |
---|
3065 | !-- Save surface radiative fluxes onto respective surface elements |
---|
3066 | !-- Horizontal surfaces |
---|
3067 | IF ( surf_lsm_h%ns > 0 ) THEN |
---|
3068 | surf_lsm_h%rad_sw_in = rrtm_swdflx(0,nzb) |
---|
3069 | surf_lsm_h%rad_sw_out = rrtm_swuflx(0,nzb) |
---|
3070 | ENDIF |
---|
3071 | IF ( surf_usm_h%ns > 0 ) THEN |
---|
3072 | surf_usm_h%rad_sw_in = rrtm_swdflx(0,nzb) |
---|
3073 | surf_usm_h%rad_sw_out = rrtm_swuflx(0,nzb) |
---|
3074 | ENDIF |
---|
3075 | ! |
---|
3076 | !-- Vertical surfaces. Fluxes are obtain at respective vertical |
---|
3077 | !-- level of the surface element |
---|
3078 | DO l = 0, 3 |
---|
3079 | IF ( surf_lsm_v(l)%ns > 0 ) THEN |
---|
3080 | surf_lsm_v(l)%rad_sw_in = rrtm_swdflx(0,nzb) |
---|
3081 | surf_lsm_v(l)%rad_sw_out = rrtm_swuflx(0,nzb) |
---|
3082 | ENDIF |
---|
3083 | IF ( surf_usm_v(l)%ns > 0 ) THEN |
---|
3084 | surf_usm_v(l)%rad_sw_in = rrtm_swdflx(0,nzb) |
---|
3085 | surf_usm_v(l)%rad_sw_out = rrtm_swuflx(0,nzb) |
---|
3086 | ENDIF |
---|
3087 | ENDDO |
---|
3088 | |
---|
3089 | ENDIF |
---|
3090 | ! |
---|
3091 | !-- RRTMG is called for each (j,i) grid point separately, starting at the |
---|
3092 | !-- highest topography level |
---|
3093 | ELSE |
---|
3094 | ! |
---|
3095 | !-- Loop over all grid points |
---|
3096 | DO i = nxl, nxr |
---|
3097 | DO j = nys, nyn |
---|
3098 | |
---|
3099 | ! |
---|
3100 | !-- Prepare profiles of temperature and H2O volume mixing ratio |
---|
3101 | DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i) |
---|
3102 | rrtm_tlev(0,nzb+1) = surf_lsm_h%pt_surface(m) * & |
---|
3103 | ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
3104 | ENDDO |
---|
3105 | DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i) |
---|
3106 | rrtm_tlev(0,nzb+1) = surf_usm_h%pt_surface(m) * & |
---|
3107 | ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
3108 | ENDDO |
---|
3109 | |
---|
3110 | |
---|
3111 | IF ( cloud_physics ) THEN |
---|
3112 | DO k = nzb+1, nzt+1 |
---|
3113 | rrtm_tlay(0,k) = pt(k,j,i) * ( (hyp(k) ) / 100000.0_wp & |
---|
3114 | )**0.286_wp + l_d_cp * ql(k,j,i) |
---|
3115 | rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * (q(k,j,i) - ql(k,j,i)) |
---|
3116 | ENDDO |
---|
3117 | ELSE |
---|
3118 | DO k = nzb+1, nzt+1 |
---|
3119 | rrtm_tlay(0,k) = pt(k,j,i) * ( (hyp(k) ) / 100000.0_wp & |
---|
3120 | )**0.286_wp |
---|
3121 | ENDDO |
---|
3122 | |
---|
3123 | IF ( humidity ) THEN |
---|
3124 | DO k = nzb+1, nzt+1 |
---|
3125 | rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * q(k,j,i) |
---|
3126 | ENDDO |
---|
3127 | ELSE |
---|
3128 | rrtm_h2ovmr(0,nzb+1:nzt+1) = 0.0_wp |
---|
3129 | ENDIF |
---|
3130 | ENDIF |
---|
3131 | |
---|
3132 | ! |
---|
3133 | !-- Avoid temperature/humidity jumps at the top of the LES domain by |
---|
3134 | !-- linear interpolation from nzt+2 to nzt+7 |
---|
3135 | DO k = nzt+2, nzt+7 |
---|
3136 | rrtm_tlay(0,k) = rrtm_tlay(0,nzt+1) & |
---|
3137 | + ( rrtm_tlay(0,nzt+8) - rrtm_tlay(0,nzt+1) ) & |
---|
3138 | / ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) ) & |
---|
3139 | * ( rrtm_play(0,k) - rrtm_play(0,nzt+1) ) |
---|
3140 | |
---|
3141 | rrtm_h2ovmr(0,k) = rrtm_h2ovmr(0,nzt+1) & |
---|
3142 | + ( rrtm_h2ovmr(0,nzt+8) - rrtm_h2ovmr(0,nzt+1) )& |
---|
3143 | / ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) )& |
---|
3144 | * ( rrtm_play(0,k) - rrtm_play(0,nzt+1) ) |
---|
3145 | |
---|
3146 | ENDDO |
---|
3147 | |
---|
3148 | !-- Linear interpolate to zw grid |
---|
3149 | DO k = nzb+2, nzt+8 |
---|
3150 | rrtm_tlev(0,k) = rrtm_tlay(0,k-1) + (rrtm_tlay(0,k) - & |
---|
3151 | rrtm_tlay(0,k-1)) & |
---|
3152 | / ( rrtm_play(0,k) - rrtm_play(0,k-1) ) & |
---|
3153 | * ( rrtm_plev(0,k) - rrtm_play(0,k-1) ) |
---|
3154 | ENDDO |
---|
3155 | |
---|
3156 | |
---|
3157 | ! |
---|
3158 | !-- Calculate liquid water path and cloud fraction for each column. |
---|
3159 | !-- Note that LWP is required in g/m² instead of kg/kg m. |
---|
3160 | rrtm_cldfr = 0.0_wp |
---|
3161 | rrtm_reliq = 0.0_wp |
---|
3162 | rrtm_cliqwp = 0.0_wp |
---|
3163 | rrtm_icld = 0 |
---|
3164 | |
---|
3165 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
3166 | DO k = nzb+1, nzt+1 |
---|
3167 | rrtm_cliqwp(0,k) = ql(k,j,i) * 1000.0_wp * & |
---|
3168 | (rrtm_plev(0,k) - rrtm_plev(0,k+1)) & |
---|
3169 | * 100.0_wp / g |
---|
3170 | |
---|
3171 | IF ( rrtm_cliqwp(0,k) > 0.0_wp ) THEN |
---|
3172 | rrtm_cldfr(0,k) = 1.0_wp |
---|
3173 | IF ( rrtm_icld == 0 ) rrtm_icld = 1 |
---|
3174 | |
---|
3175 | ! |
---|
3176 | !-- Calculate cloud droplet effective radius |
---|
3177 | IF ( cloud_physics ) THEN |
---|
3178 | ! |
---|
3179 | !-- Calculete effective droplet radius. In case of using |
---|
3180 | !-- cloud_scheme = 'morrison' and a non reasonable number |
---|
3181 | !-- of cloud droplets the inital aerosol number |
---|
3182 | !-- concentration is considered. |
---|
3183 | IF ( microphysics_morrison ) THEN |
---|
3184 | IF ( nc(k,j,i) > 1.0E-20_wp ) THEN |
---|
3185 | nc_rad = nc(k,j,i) |
---|
3186 | ELSE |
---|
3187 | nc_rad = na_init |
---|
3188 | ENDIF |
---|
3189 | ELSE |
---|
3190 | nc_rad = nc_const |
---|
3191 | ENDIF |
---|
3192 | |
---|
3193 | rrtm_reliq(0,k) = 1.0E6_wp * ( 3.0_wp * ql(k,j,i) & |
---|
3194 | * rho_surface & |
---|
3195 | / ( 4.0_wp * pi * nc_rad * rho_l ) & |
---|
3196 | )**0.33333333333333_wp & |
---|
3197 | * EXP( LOG( sigma_gc )**2 ) |
---|
3198 | |
---|
3199 | ELSEIF ( cloud_droplets ) THEN |
---|
3200 | number_of_particles = prt_count(k,j,i) |
---|
3201 | |
---|
3202 | IF (number_of_particles <= 0) CYCLE |
---|
3203 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
3204 | s_r2 = 0.0_wp |
---|
3205 | s_r3 = 0.0_wp |
---|
3206 | |
---|
3207 | DO n = 1, number_of_particles |
---|
3208 | IF ( particles(n)%particle_mask ) THEN |
---|
3209 | s_r2 = s_r2 + particles(n)%radius**2 * & |
---|
3210 | particles(n)%weight_factor |
---|
3211 | s_r3 = s_r3 + particles(n)%radius**3 * & |
---|
3212 | particles(n)%weight_factor |
---|
3213 | ENDIF |
---|
3214 | ENDDO |
---|
3215 | |
---|
3216 | IF ( s_r2 > 0.0_wp ) rrtm_reliq(0,k) = s_r3 / s_r2 |
---|
3217 | |
---|
3218 | ENDIF |
---|
3219 | |
---|
3220 | ! |
---|
3221 | !-- Limit effective radius |
---|
3222 | IF ( rrtm_reliq(0,k) > 0.0_wp ) THEN |
---|
3223 | rrtm_reliq(0,k) = MAX(rrtm_reliq(0,k),2.5_wp) |
---|
3224 | rrtm_reliq(0,k) = MIN(rrtm_reliq(0,k),60.0_wp) |
---|
3225 | ENDIF |
---|
3226 | ENDIF |
---|
3227 | ENDDO |
---|
3228 | ENDIF |
---|
3229 | |
---|
3230 | ! |
---|
3231 | !-- Write surface emissivity and surface temperature at current |
---|
3232 | !-- surface element on RRTMG-shaped array. |
---|
3233 | !-- Please note, as RRTMG is a single column model, surface attributes |
---|
3234 | !-- are only obtained from horizontally aligned surfaces (for |
---|
3235 | !-- simplicity). Taking surface attributes from horizontal and |
---|
3236 | !-- vertical walls would lead to multiple solutions. |
---|
3237 | !-- Moreover, for natural- and urban-type surfaces, several surface |
---|
3238 | !-- classes can exist at a surface element next to each other. |
---|
3239 | !-- To obtain bulk parameters, apply a weighted average for these |
---|
3240 | !-- surfaces. |
---|
3241 | DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i) |
---|
3242 | rrtm_emis = surf_lsm_h%frac(ind_veg_wall,m) * & |
---|
3243 | surf_lsm_h%emissivity(ind_veg_wall,m) + & |
---|
3244 | surf_lsm_h%frac(ind_pav_green,m) * & |
---|
3245 | surf_lsm_h%emissivity(ind_pav_green,m) + & |
---|
3246 | surf_lsm_h%frac(ind_wat_win,m) * & |
---|
3247 | surf_lsm_h%emissivity(ind_wat_win,m) |
---|
3248 | rrtm_tsfc = surf_lsm_h%pt_surface(m) * & |
---|
3249 | (surface_pressure / 1000.0_wp )**0.286_wp |
---|
3250 | ENDDO |
---|
3251 | DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i) |
---|
3252 | rrtm_emis = surf_usm_h%frac(ind_veg_wall,m) * & |
---|
3253 | surf_usm_h%emissivity(ind_veg_wall,m) + & |
---|
3254 | surf_usm_h%frac(ind_pav_green,m) * & |
---|
3255 | surf_usm_h%emissivity(ind_pav_green,m) + & |
---|
3256 | surf_usm_h%frac(ind_wat_win,m) * & |
---|
3257 | surf_usm_h%emissivity(ind_wat_win,m) |
---|
3258 | rrtm_tsfc = surf_usm_h%pt_surface(m) * & |
---|
3259 | (surface_pressure / 1000.0_wp )**0.286_wp |
---|
3260 | ENDDO |
---|
3261 | ! |
---|
3262 | !-- Obtain topography top index (lower bound of RRTMG) |
---|
3263 | k_topo = get_topography_top_index_ji( j, i, 's' ) |
---|
3264 | |
---|
3265 | IF ( lw_radiation ) THEN |
---|
3266 | ! |
---|
3267 | !-- Due to technical reasons, copy optical depth to dummy arguments |
---|
3268 | !-- which are allocated on the exact size as the rrtmg_lw is called. |
---|
3269 | !-- As one dimesion is allocated with zero size, compiler complains |
---|
3270 | !-- that rank of the array does not match that of the |
---|
3271 | !-- assumed-shaped arguments in the RRTMG library. In order to |
---|
3272 | !-- avoid this, write to dummy arguments and give pass the entire |
---|
3273 | !-- dummy array. Seems to be the only existing work-around. |
---|
3274 | ALLOCATE( rrtm_lw_taucld_dum(1:nbndlw+1,0:0,k_topo+1:nzt_rad+1) ) |
---|
3275 | ALLOCATE( rrtm_lw_tauaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndlw+1) ) |
---|
3276 | |
---|
3277 | rrtm_lw_taucld_dum = & |
---|
3278 | rrtm_lw_taucld(1:nbndlw+1,0:0,k_topo+1:nzt_rad+1) |
---|
3279 | rrtm_lw_tauaer_dum = & |
---|
3280 | rrtm_lw_tauaer(0:0,k_topo+1:nzt_rad+1,1:nbndlw+1) |
---|
3281 | |
---|
3282 | CALL rrtmg_lw( 1, & |
---|
3283 | nzt_rad-k_topo, & |
---|
3284 | rrtm_icld, & |
---|
3285 | rrtm_idrv, & |
---|
3286 | rrtm_play(:,k_topo+1:nzt_rad+1), & |
---|
3287 | rrtm_plev(:,k_topo+1:nzt_rad+2), & |
---|
3288 | rrtm_tlay(:,k_topo+1:nzt_rad+1), & |
---|
3289 | rrtm_tlev(:,k_topo+1:nzt_rad+2), & |
---|
3290 | rrtm_tsfc, & |
---|
3291 | rrtm_h2ovmr(:,k_topo+1:nzt_rad+1), & |
---|
3292 | rrtm_o3vmr(:,k_topo+1:nzt_rad+1), & |
---|
3293 | rrtm_co2vmr(:,k_topo+1:nzt_rad+1), & |
---|
3294 | rrtm_ch4vmr(:,k_topo+1:nzt_rad+1), & |
---|
3295 | rrtm_n2ovmr(:,k_topo+1:nzt_rad+1), & |
---|
3296 | rrtm_o2vmr(:,k_topo+1:nzt_rad+1), & |
---|
3297 | rrtm_cfc11vmr(:,k_topo+1:nzt_rad+1), & |
---|
3298 | rrtm_cfc12vmr(:,k_topo+1:nzt_rad+1), & |
---|
3299 | rrtm_cfc22vmr(:,k_topo+1:nzt_rad+1), & |
---|
3300 | rrtm_ccl4vmr(:,k_topo+1:nzt_rad+1), & |
---|
3301 | rrtm_emis, & |
---|
3302 | rrtm_inflglw, & |
---|
3303 | rrtm_iceflglw, & |
---|
3304 | rrtm_liqflglw, & |
---|
3305 | rrtm_cldfr(:,k_topo+1:nzt_rad+1), & |
---|
3306 | rrtm_lw_taucld_dum, & |
---|
3307 | rrtm_cicewp(:,k_topo+1:nzt_rad+1), & |
---|
3308 | rrtm_cliqwp(:,k_topo+1:nzt_rad+1), & |
---|
3309 | rrtm_reice(:,k_topo+1:nzt_rad+1), & |
---|
3310 | rrtm_reliq(:,k_topo+1:nzt_rad+1), & |
---|
3311 | rrtm_lw_tauaer_dum, & |
---|
3312 | rrtm_lwuflx(:,k_topo:nzt_rad+1), & |
---|
3313 | rrtm_lwdflx(:,k_topo:nzt_rad+1), & |
---|
3314 | rrtm_lwhr(:,k_topo+1:nzt_rad+1), & |
---|
3315 | rrtm_lwuflxc(:,k_topo:nzt_rad+1), & |
---|
3316 | rrtm_lwdflxc(:,k_topo:nzt_rad+1), & |
---|
3317 | rrtm_lwhrc(:,k_topo+1:nzt_rad+1), & |
---|
3318 | rrtm_lwuflx_dt(:,k_topo:nzt_rad+1), & |
---|
3319 | rrtm_lwuflxc_dt(:,k_topo:nzt_rad+1) ) |
---|
3320 | |
---|
3321 | DEALLOCATE ( rrtm_lw_taucld_dum ) |
---|
3322 | DEALLOCATE ( rrtm_lw_tauaer_dum ) |
---|
3323 | ! |
---|
3324 | !-- Save fluxes |
---|
3325 | DO k = k_topo, nzt+1 |
---|
3326 | rad_lw_in(k,j,i) = rrtm_lwdflx(0,k) |
---|
3327 | rad_lw_out(k,j,i) = rrtm_lwuflx(0,k) |
---|
3328 | ENDDO |
---|
3329 | |
---|
3330 | ! |
---|
3331 | !-- Save heating rates (convert from K/d to K/h) |
---|
3332 | DO k = k_topo+1, nzt+1 |
---|
3333 | rad_lw_hr(k,j,i) = rrtm_lwhr(0,k) * d_hours_day |
---|
3334 | rad_lw_cs_hr(k,j,i) = rrtm_lwhrc(0,k) * d_hours_day |
---|
3335 | ENDDO |
---|
3336 | |
---|
3337 | ! |
---|
3338 | !-- Save surface radiative fluxes and change in LW heating rate |
---|
3339 | !-- onto respective surface elements |
---|
3340 | !-- Horizontal surfaces |
---|
3341 | DO m = surf_lsm_h%start_index(j,i), & |
---|
3342 | surf_lsm_h%end_index(j,i) |
---|
3343 | surf_lsm_h%rad_lw_in(m) = rrtm_lwdflx(0,k_topo) |
---|
3344 | surf_lsm_h%rad_lw_out(m) = rrtm_lwuflx(0,k_topo) |
---|
3345 | surf_lsm_h%rad_lw_out_change_0(m) = rrtm_lwuflx_dt(0,k_topo) |
---|
3346 | ENDDO |
---|
3347 | DO m = surf_usm_h%start_index(j,i), & |
---|
3348 | surf_usm_h%end_index(j,i) |
---|
3349 | surf_usm_h%rad_lw_in(m) = rrtm_lwdflx(0,k_topo) |
---|
3350 | surf_usm_h%rad_lw_out(m) = rrtm_lwuflx(0,k_topo) |
---|
3351 | surf_usm_h%rad_lw_out_change_0(m) = rrtm_lwuflx_dt(0,k_topo) |
---|
3352 | ENDDO |
---|
3353 | ! |
---|
3354 | !-- Vertical surfaces. Fluxes are obtain at vertical level of the |
---|
3355 | !-- respective surface element |
---|
3356 | DO l = 0, 3 |
---|
3357 | DO m = surf_lsm_v(l)%start_index(j,i), & |
---|
3358 | surf_lsm_v(l)%end_index(j,i) |
---|
3359 | k = surf_lsm_v(l)%k(m) |
---|
3360 | surf_lsm_v(l)%rad_lw_in(m) = rrtm_lwdflx(0,k) |
---|
3361 | surf_lsm_v(l)%rad_lw_out(m) = rrtm_lwuflx(0,k) |
---|
3362 | surf_lsm_v(l)%rad_lw_out_change_0(m) = rrtm_lwuflx_dt(0,k) |
---|
3363 | ENDDO |
---|
3364 | DO m = surf_usm_v(l)%start_index(j,i), & |
---|
3365 | surf_usm_v(l)%end_index(j,i) |
---|
3366 | k = surf_usm_v(l)%k(m) |
---|
3367 | surf_usm_v(l)%rad_lw_in(m) = rrtm_lwdflx(0,k) |
---|
3368 | surf_usm_v(l)%rad_lw_out(m) = rrtm_lwuflx(0,k) |
---|
3369 | surf_usm_v(l)%rad_lw_out_change_0(m) = rrtm_lwuflx_dt(0,k) |
---|
3370 | ENDDO |
---|
3371 | ENDDO |
---|
3372 | |
---|
3373 | ENDIF |
---|
3374 | |
---|
3375 | IF ( sw_radiation .AND. sun_up ) THEN |
---|
3376 | ! |
---|
3377 | !-- Get albedo for direct/diffusive long/shortwave radiation at |
---|
3378 | !-- current (y,x)-location from surface variables. |
---|
3379 | !-- Only obtain it from horizontal surfaces, as RRTMG is a single |
---|
3380 | !-- column model |
---|
3381 | !-- (Please note, only one loop will entered, controlled by |
---|
3382 | !-- start-end index.) |
---|
3383 | DO m = surf_lsm_h%start_index(j,i), & |
---|
3384 | surf_lsm_h%end_index(j,i) |
---|
3385 | rrtm_asdir(1) = SUM( surf_lsm_h%frac(:,m) * & |
---|
3386 | surf_lsm_h%rrtm_asdir(:,m) ) |
---|
3387 | rrtm_asdif(1) = SUM( surf_lsm_h%frac(:,m) * & |
---|
3388 | surf_lsm_h%rrtm_asdif(:,m) ) |
---|
3389 | rrtm_aldir(1) = SUM( surf_lsm_h%frac(:,m) * & |
---|
3390 | surf_lsm_h%rrtm_aldir(:,m) ) |
---|
3391 | rrtm_aldif(1) = SUM( surf_lsm_h%frac(:,m) * & |
---|
3392 | surf_lsm_h%rrtm_aldif(:,m) ) |
---|
3393 | ENDDO |
---|
3394 | DO m = surf_usm_h%start_index(j,i), & |
---|
3395 | surf_usm_h%end_index(j,i) |
---|
3396 | rrtm_asdir(1) = SUM( surf_usm_h%frac(:,m) * & |
---|
3397 | surf_usm_h%rrtm_asdir(:,m) ) |
---|
3398 | rrtm_asdif(1) = SUM( surf_usm_h%frac(:,m) * & |
---|
3399 | surf_usm_h%rrtm_asdif(:,m) ) |
---|
3400 | rrtm_aldir(1) = SUM( surf_usm_h%frac(:,m) * & |
---|
3401 | surf_usm_h%rrtm_aldir(:,m) ) |
---|
3402 | rrtm_aldif(1) = SUM( surf_usm_h%frac(:,m) * & |
---|
3403 | surf_usm_h%rrtm_aldif(:,m) ) |
---|
3404 | ENDDO |
---|
3405 | ! |
---|
3406 | !-- Due to technical reasons, copy optical depths and other |
---|
3407 | !-- to dummy arguments which are allocated on the exact size as the |
---|
3408 | !-- rrtmg_sw is called. |
---|
3409 | !-- As one dimesion is allocated with zero size, compiler complains |
---|
3410 | !-- that rank of the array does not match that of the |
---|
3411 | !-- assumed-shaped arguments in the RRTMG library. In order to |
---|
3412 | !-- avoid this, write to dummy arguments and give pass the entire |
---|
3413 | !-- dummy array. Seems to be the only existing work-around. |
---|
3414 | ALLOCATE( rrtm_sw_taucld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) ) |
---|
3415 | ALLOCATE( rrtm_sw_ssacld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) ) |
---|
3416 | ALLOCATE( rrtm_sw_asmcld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) ) |
---|
3417 | ALLOCATE( rrtm_sw_fsfcld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) ) |
---|
3418 | ALLOCATE( rrtm_sw_tauaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) ) |
---|
3419 | ALLOCATE( rrtm_sw_ssaaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) ) |
---|
3420 | ALLOCATE( rrtm_sw_asmaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) ) |
---|
3421 | ALLOCATE( rrtm_sw_ecaer_dum(0:0,k_topo+1:nzt_rad+1,1:naerec+1) ) |
---|
3422 | |
---|
3423 | rrtm_sw_taucld_dum = rrtm_sw_taucld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) |
---|
3424 | rrtm_sw_ssacld_dum = rrtm_sw_ssacld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) |
---|
3425 | rrtm_sw_asmcld_dum = rrtm_sw_asmcld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) |
---|
3426 | rrtm_sw_fsfcld_dum = rrtm_sw_fsfcld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) |
---|
3427 | rrtm_sw_tauaer_dum = rrtm_sw_tauaer(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) |
---|
3428 | rrtm_sw_ssaaer_dum = rrtm_sw_ssaaer(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) |
---|
3429 | rrtm_sw_asmaer_dum = rrtm_sw_asmaer(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) |
---|
3430 | rrtm_sw_ecaer_dum = rrtm_sw_ecaer(0:0,k_topo+1:nzt_rad+1,1:naerec+1) |
---|
3431 | |
---|
3432 | CALL rrtmg_sw( 1, & |
---|
3433 | nzt_rad-k_topo, & |
---|
3434 | rrtm_icld, & |
---|
3435 | rrtm_iaer, & |
---|
3436 | rrtm_play(:,k_topo+1:nzt_rad+1), & |
---|
3437 | rrtm_plev(:,k_topo+1:nzt_rad+2), & |
---|
3438 | rrtm_tlay(:,k_topo+1:nzt_rad+1), & |
---|
3439 | rrtm_tlev(:,k_topo+1:nzt_rad+2), & |
---|
3440 | rrtm_tsfc, & |
---|
3441 | rrtm_h2ovmr(:,k_topo+1:nzt_rad+1), & |
---|
3442 | rrtm_o3vmr(:,k_topo+1:nzt_rad+1), & |
---|
3443 | rrtm_co2vmr(:,k_topo+1:nzt_rad+1), & |
---|
3444 | rrtm_ch4vmr(:,k_topo+1:nzt_rad+1), & |
---|
3445 | rrtm_n2ovmr(:,k_topo+1:nzt_rad+1), & |
---|
3446 | rrtm_o2vmr(:,k_topo+1:nzt_rad+1), & |
---|
3447 | rrtm_asdir, & |
---|
3448 | rrtm_asdif, & |
---|
3449 | rrtm_aldir, & |
---|
3450 | rrtm_aldif, & |
---|
3451 | zenith, & |
---|
3452 | 0.0_wp, & |
---|
3453 | day_of_year, & |
---|
3454 | solar_constant, & |
---|
3455 | rrtm_inflgsw, & |
---|
3456 | rrtm_iceflgsw, & |
---|
3457 | rrtm_liqflgsw, & |
---|
3458 | rrtm_cldfr(:,k_topo+1:nzt_rad+1), & |
---|
3459 | rrtm_sw_taucld_dum, & |
---|
3460 | rrtm_sw_ssacld_dum, & |
---|
3461 | rrtm_sw_asmcld_dum, & |
---|
3462 | rrtm_sw_fsfcld_dum, & |
---|
3463 | rrtm_cicewp(:,k_topo+1:nzt_rad+1), & |
---|
3464 | rrtm_cliqwp(:,k_topo+1:nzt_rad+1), & |
---|
3465 | rrtm_reice(:,k_topo+1:nzt_rad+1), & |
---|
3466 | rrtm_reliq(:,k_topo+1:nzt_rad+1), & |
---|
3467 | rrtm_sw_tauaer_dum, & |
---|
3468 | rrtm_sw_ssaaer_dum, & |
---|
3469 | rrtm_sw_asmaer_dum, & |
---|
3470 | rrtm_sw_ecaer_dum, & |
---|
3471 | rrtm_swuflx(:,k_topo:nzt_rad+1), & |
---|
3472 | rrtm_swdflx(:,k_topo:nzt_rad+1), & |
---|
3473 | rrtm_swhr(:,k_topo+1:nzt_rad+1), & |
---|
3474 | rrtm_swuflxc(:,k_topo:nzt_rad+1), & |
---|
3475 | rrtm_swdflxc(:,k_topo:nzt_rad+1), & |
---|
3476 | rrtm_swhrc(:,k_topo+1:nzt_rad+1) ) |
---|
3477 | |
---|
3478 | DEALLOCATE( rrtm_sw_taucld_dum ) |
---|
3479 | DEALLOCATE( rrtm_sw_ssacld_dum ) |
---|
3480 | DEALLOCATE( rrtm_sw_asmcld_dum ) |
---|
3481 | DEALLOCATE( rrtm_sw_fsfcld_dum ) |
---|
3482 | DEALLOCATE( rrtm_sw_tauaer_dum ) |
---|
3483 | DEALLOCATE( rrtm_sw_ssaaer_dum ) |
---|
3484 | DEALLOCATE( rrtm_sw_asmaer_dum ) |
---|
3485 | DEALLOCATE( rrtm_sw_ecaer_dum ) |
---|
3486 | ! |
---|
3487 | !-- Save fluxes |
---|
3488 | DO k = nzb, nzt+1 |
---|
3489 | rad_sw_in(k,j,i) = rrtm_swdflx(0,k) |
---|
3490 | rad_sw_out(k,j,i) = rrtm_swuflx(0,k) |
---|
3491 | ENDDO |
---|
3492 | ! |
---|
3493 | !-- Save heating rates (convert from K/d to K/s) |
---|
3494 | DO k = nzb+1, nzt+1 |
---|
3495 | rad_sw_hr(k,j,i) = rrtm_swhr(0,k) * d_hours_day |
---|
3496 | rad_sw_cs_hr(k,j,i) = rrtm_swhrc(0,k) * d_hours_day |
---|
3497 | ENDDO |
---|
3498 | |
---|
3499 | ! |
---|
3500 | !-- Save surface radiative fluxes onto respective surface elements |
---|
3501 | !-- Horizontal surfaces |
---|
3502 | DO m = surf_lsm_h%start_index(j,i), & |
---|
3503 | surf_lsm_h%end_index(j,i) |
---|
3504 | surf_lsm_h%rad_sw_in(m) = rrtm_swdflx(0,k_topo) |
---|
3505 | surf_lsm_h%rad_sw_out(m) = rrtm_swuflx(0,k_topo) |
---|
3506 | ENDDO |
---|
3507 | DO m = surf_usm_h%start_index(j,i), & |
---|
3508 | surf_usm_h%end_index(j,i) |
---|
3509 | surf_usm_h%rad_sw_in(m) = rrtm_swdflx(0,k_topo) |
---|
3510 | surf_usm_h%rad_sw_out(m) = rrtm_swuflx(0,k_topo) |
---|
3511 | ENDDO |
---|
3512 | ! |
---|
3513 | !-- Vertical surfaces. Fluxes are obtain at respective vertical |
---|
3514 | !-- level of the surface element |
---|
3515 | DO l = 0, 3 |
---|
3516 | DO m = surf_lsm_v(l)%start_index(j,i), & |
---|
3517 | surf_lsm_v(l)%end_index(j,i) |
---|
3518 | k = surf_lsm_v(l)%k(m) |
---|
3519 | surf_lsm_v(l)%rad_sw_in(m) = rrtm_swdflx(0,k) |
---|
3520 | surf_lsm_v(l)%rad_sw_out(m) = rrtm_swuflx(0,k) |
---|
3521 | ENDDO |
---|
3522 | DO m = surf_usm_v(l)%start_index(j,i), & |
---|
3523 | surf_usm_v(l)%end_index(j,i) |
---|
3524 | k = surf_usm_v(l)%k(m) |
---|
3525 | surf_usm_v(l)%rad_sw_in(m) = rrtm_swdflx(0,k) |
---|
3526 | surf_usm_v(l)%rad_sw_out(m) = rrtm_swuflx(0,k) |
---|
3527 | ENDDO |
---|
3528 | ENDDO |
---|
3529 | |
---|
3530 | ENDIF |
---|
3531 | |
---|
3532 | ENDDO |
---|
3533 | ENDDO |
---|
3534 | |
---|
3535 | ENDIF |
---|
3536 | ! |
---|
3537 | !-- Finally, calculate surface net radiation for surface elements. |
---|
3538 | !-- First, for horizontal surfaces |
---|
3539 | DO m = 1, surf_lsm_h%ns |
---|
3540 | surf_lsm_h%rad_net(m) = surf_lsm_h%rad_sw_in(m) & |
---|
3541 | - surf_lsm_h%rad_sw_out(m) & |
---|
3542 | + surf_lsm_h%rad_lw_in(m) & |
---|
3543 | - surf_lsm_h%rad_lw_out(m) |
---|
3544 | ENDDO |
---|
3545 | DO m = 1, surf_usm_h%ns |
---|
3546 | surf_usm_h%rad_net(m) = surf_usm_h%rad_sw_in(m) & |
---|
3547 | - surf_usm_h%rad_sw_out(m) & |
---|
3548 | + surf_usm_h%rad_lw_in(m) & |
---|
3549 | - surf_usm_h%rad_lw_out(m) |
---|
3550 | ENDDO |
---|
3551 | ! |
---|
3552 | !-- Vertical surfaces. |
---|
3553 | !-- Todo: weight with azimuth and zenith angle according to their orientation! |
---|
3554 | DO l = 0, 3 |
---|
3555 | DO m = 1, surf_lsm_v(l)%ns |
---|
3556 | surf_lsm_v(l)%rad_net(m) = surf_lsm_v(l)%rad_sw_in(m) & |
---|
3557 | - surf_lsm_v(l)%rad_sw_out(m) & |
---|
3558 | + surf_lsm_v(l)%rad_lw_in(m) & |
---|
3559 | - surf_lsm_v(l)%rad_lw_out(m) |
---|
3560 | ENDDO |
---|
3561 | DO m = 1, surf_usm_v(l)%ns |
---|
3562 | surf_usm_v(l)%rad_net(m) = surf_usm_v(l)%rad_sw_in(m) & |
---|
3563 | - surf_usm_v(l)%rad_sw_out(m) & |
---|
3564 | + surf_usm_v(l)%rad_lw_in(m) & |
---|
3565 | - surf_usm_v(l)%rad_lw_out(m) |
---|
3566 | ENDDO |
---|
3567 | ENDDO |
---|
3568 | |
---|
3569 | |
---|
3570 | CALL exchange_horiz( rad_lw_in, nbgp ) |
---|
3571 | CALL exchange_horiz( rad_lw_out, nbgp ) |
---|
3572 | CALL exchange_horiz( rad_lw_hr, nbgp ) |
---|
3573 | CALL exchange_horiz( rad_lw_cs_hr, nbgp ) |
---|
3574 | |
---|
3575 | CALL exchange_horiz( rad_sw_in, nbgp ) |
---|
3576 | CALL exchange_horiz( rad_sw_out, nbgp ) |
---|
3577 | CALL exchange_horiz( rad_sw_hr, nbgp ) |
---|
3578 | CALL exchange_horiz( rad_sw_cs_hr, nbgp ) |
---|
3579 | |
---|
3580 | #endif |
---|
3581 | |
---|
3582 | END SUBROUTINE radiation_rrtmg |
---|
3583 | |
---|
3584 | |
---|
3585 | !------------------------------------------------------------------------------! |
---|
3586 | ! Description: |
---|
3587 | ! ------------ |
---|
3588 | !> Calculate the cosine of the zenith angle (variable is called zenith) |
---|
3589 | !------------------------------------------------------------------------------! |
---|
3590 | SUBROUTINE calc_zenith |
---|
3591 | |
---|
3592 | IMPLICIT NONE |
---|
3593 | |
---|
3594 | REAL(wp) :: declination, & !< solar declination angle |
---|
3595 | hour_angle !< solar hour angle |
---|
3596 | ! |
---|
3597 | !-- Calculate current day and time based on the initial values and simulation |
---|
3598 | !-- time |
---|
3599 | CALL calc_date_and_time |
---|
3600 | |
---|
3601 | ! |
---|
3602 | !-- Calculate solar declination and hour angle |
---|
3603 | declination = ASIN( decl_1 * SIN(decl_2 * REAL(day_of_year, KIND=wp) - decl_3) ) |
---|
3604 | hour_angle = 2.0_wp * pi * (time_utc / 86400.0_wp) + lon - pi |
---|
3605 | |
---|
3606 | ! |
---|
3607 | !-- Calculate cosine of solar zenith angle |
---|
3608 | zenith(0) = SIN(lat) * SIN(declination) + COS(lat) * COS(declination) & |
---|
3609 | * COS(hour_angle) |
---|
3610 | zenith(0) = MAX(0.0_wp,zenith(0)) |
---|
3611 | |
---|
3612 | ! |
---|
3613 | !-- Calculate solar directional vector |
---|
3614 | IF ( sun_direction ) THEN |
---|
3615 | |
---|
3616 | ! |
---|
3617 | !-- Direction in longitudes equals to sin(solar_azimuth) * sin(zenith) |
---|
3618 | sun_dir_lon(0) = -SIN(hour_angle) * COS(declination) |
---|
3619 | |
---|
3620 | ! |
---|
3621 | !-- Direction in latitues equals to cos(solar_azimuth) * sin(zenith) |
---|
3622 | sun_dir_lat(0) = SIN(declination) * COS(lat) - COS(hour_angle) & |
---|
3623 | * COS(declination) * SIN(lat) |
---|
3624 | ENDIF |
---|
3625 | |
---|
3626 | ! |
---|
3627 | !-- Check if the sun is up (otheriwse shortwave calculations can be skipped) |
---|
3628 | IF ( zenith(0) > 0.0_wp ) THEN |
---|
3629 | sun_up = .TRUE. |
---|
3630 | ELSE |
---|
3631 | sun_up = .FALSE. |
---|
3632 | END IF |
---|
3633 | |
---|
3634 | END SUBROUTINE calc_zenith |
---|
3635 | |
---|
3636 | #if defined ( __rrtmg ) && defined ( __netcdf ) |
---|
3637 | !------------------------------------------------------------------------------! |
---|
3638 | ! Description: |
---|
3639 | ! ------------ |
---|
3640 | !> Calculates surface albedo components based on Briegleb (1992) and |
---|
3641 | !> Briegleb et al. (1986) |
---|
3642 | !------------------------------------------------------------------------------! |
---|
3643 | SUBROUTINE calc_albedo( surf ) |
---|
3644 | |
---|
3645 | IMPLICIT NONE |
---|
3646 | |
---|
3647 | INTEGER(iwp) :: ind_type !< running index surface tiles |
---|
3648 | INTEGER(iwp) :: m !< running index surface elements |
---|
3649 | |
---|
3650 | TYPE(surf_type) :: surf !< treated surfaces |
---|
3651 | |
---|
3652 | IF ( sun_up .AND. .NOT. average_radiation ) THEN |
---|
3653 | |
---|
3654 | DO m = 1, surf%ns |
---|
3655 | ! |
---|
3656 | !-- Loop over surface elements |
---|
3657 | DO ind_type = 0, SIZE( surf%albedo_type, 1 ) - 1 |
---|
3658 | |
---|
3659 | ! |
---|
3660 | !-- Ocean |
---|
3661 | IF ( surf%albedo_type(ind_type,m) == 1 ) THEN |
---|
3662 | surf%rrtm_aldir(ind_type,m) = 0.026_wp / & |
---|
3663 | ( zenith(0)**1.7_wp + 0.065_wp )& |
---|
3664 | + 0.15_wp * ( zenith(0) - 0.1_wp ) & |
---|
3665 | * ( zenith(0) - 0.5_wp ) & |
---|
3666 | * ( zenith(0) - 1.0_wp ) |
---|
3667 | surf%rrtm_asdir(ind_type,m) = surf%rrtm_aldir(ind_type,m) |
---|
3668 | ! |
---|
3669 | !-- Snow |
---|
3670 | ELSEIF ( surf%albedo_type(ind_type,m) == 16 ) THEN |
---|
3671 | IF ( zenith(0) < 0.5_wp ) THEN |
---|
3672 | surf%rrtm_aldir(ind_type,m) = & |
---|
3673 | 0.5_wp * ( 1.0_wp - surf%aldif(ind_type,m) ) & |
---|
3674 | * ( 3.0_wp / ( 1.0_wp + 4.0_wp & |
---|
3675 | * zenith(0) ) ) - 1.0_wp |
---|
3676 | surf%rrtm_asdir(ind_type,m) = & |
---|
3677 | 0.5_wp * ( 1.0_wp - surf%asdif(ind_type,m) ) & |
---|
3678 | * ( 3.0_wp / ( 1.0_wp + 4.0_wp & |
---|
3679 | * zenith(0) ) ) - 1.0_wp |
---|
3680 | |
---|
3681 | surf%rrtm_aldir(ind_type,m) = & |
---|
3682 | MIN(0.98_wp, surf%rrtm_aldir(ind_type,m)) |
---|
3683 | surf%rrtm_asdir(ind_type,m) = & |
---|
3684 | MIN(0.98_wp, surf%rrtm_asdir(ind_type,m)) |
---|
3685 | ELSE |
---|
3686 | surf%rrtm_aldir(ind_type,m) = surf%aldif(ind_type,m) |
---|
3687 | surf%rrtm_asdir(ind_type,m) = surf%asdif(ind_type,m) |
---|
3688 | ENDIF |
---|
3689 | ! |
---|
3690 | !-- Sea ice |
---|
3691 | ELSEIF ( surf%albedo_type(ind_type,m) == 15 ) THEN |
---|
3692 | surf%rrtm_aldir(ind_type,m) = surf%aldif(ind_type,m) |
---|
3693 | surf%rrtm_asdir(ind_type,m) = surf%asdif(ind_type,m) |
---|
3694 | |
---|
3695 | ! |
---|
3696 | !-- Asphalt |
---|
3697 | ELSEIF ( surf%albedo_type(ind_type,m) == 17 ) THEN |
---|
3698 | surf%rrtm_aldir(ind_type,m) = surf%aldif(ind_type,m) |
---|
3699 | surf%rrtm_asdir(ind_type,m) = surf%asdif(ind_type,m) |
---|
3700 | |
---|
3701 | |
---|
3702 | ! |
---|
3703 | !-- Bare soil |
---|
3704 | ELSEIF ( surf%albedo_type(ind_type,m) == 18 ) THEN |
---|
3705 | surf%rrtm_aldir(ind_type,m) = surf%aldif(ind_type,m) |
---|
3706 | surf%rrtm_asdir(ind_type,m) = surf%asdif(ind_type,m) |
---|
3707 | |
---|
3708 | ! |
---|
3709 | !-- Land surfaces |
---|
3710 | ELSE |
---|
3711 | SELECT CASE ( surf%albedo_type(ind_type,m) ) |
---|
3712 | |
---|
3713 | ! |
---|
3714 | !-- Surface types with strong zenith dependence |
---|
3715 | CASE ( 1, 2, 3, 4, 11, 12, 13 ) |
---|
3716 | surf%rrtm_aldir(ind_type,m) = & |
---|
3717 | surf%aldif(ind_type,m) * 1.4_wp / & |
---|
3718 | ( 1.0_wp + 0.8_wp * zenith(0) ) |
---|
3719 | surf%rrtm_asdir(ind_type,m) = & |
---|
3720 | surf%asdif(ind_type,m) * 1.4_wp / & |
---|
3721 | ( 1.0_wp + 0.8_wp * zenith(0) ) |
---|
3722 | ! |
---|
3723 | !-- Surface types with weak zenith dependence |
---|
3724 | CASE ( 5, 6, 7, 8, 9, 10, 14 ) |
---|
3725 | surf%rrtm_aldir(ind_type,m) = & |
---|
3726 | surf%aldif(ind_type,m) * 1.1_wp / & |
---|
3727 | ( 1.0_wp + 0.2_wp * zenith(0) ) |
---|
3728 | surf%rrtm_asdir(ind_type,m) = & |
---|
3729 | surf%asdif(ind_type,m) * 1.1_wp / & |
---|
3730 | ( 1.0_wp + 0.2_wp * zenith(0) ) |
---|
3731 | |
---|
3732 | CASE DEFAULT |
---|
3733 | |
---|
3734 | END SELECT |
---|
3735 | ENDIF |
---|
3736 | ! |
---|
3737 | !-- Diffusive albedo is taken from Table 2 |
---|
3738 | surf%rrtm_aldif(ind_type,m) = surf%aldif(ind_type,m) |
---|
3739 | surf%rrtm_asdif(ind_type,m) = surf%asdif(ind_type,m) |
---|
3740 | ENDDO |
---|
3741 | ENDDO |
---|
3742 | ! |
---|
3743 | !-- Set albedo in case of average radiation |
---|
3744 | ELSEIF ( sun_up .AND. average_radiation ) THEN |
---|
3745 | surf%rrtm_asdir = albedo_urb |
---|
3746 | surf%rrtm_asdif = albedo_urb |
---|
3747 | surf%rrtm_aldir = albedo_urb |
---|
3748 | surf%rrtm_aldif = albedo_urb |
---|
3749 | ! |
---|
3750 | !-- Darkness |
---|
3751 | ELSE |
---|
3752 | surf%rrtm_aldir = 0.0_wp |
---|
3753 | surf%rrtm_asdir = 0.0_wp |
---|
3754 | surf%rrtm_aldif = 0.0_wp |
---|
3755 | surf%rrtm_asdif = 0.0_wp |
---|
3756 | ENDIF |
---|
3757 | |
---|
3758 | END SUBROUTINE calc_albedo |
---|
3759 | |
---|
3760 | !------------------------------------------------------------------------------! |
---|
3761 | ! Description: |
---|
3762 | ! ------------ |
---|
3763 | !> Read sounding data (pressure and temperature) from RADIATION_DATA. |
---|
3764 | !------------------------------------------------------------------------------! |
---|
3765 | SUBROUTINE read_sounding_data |
---|
3766 | |
---|
3767 | IMPLICIT NONE |
---|
3768 | |
---|
3769 | INTEGER(iwp) :: id, & !< NetCDF id of input file |
---|
3770 | id_dim_zrad, & !< pressure level id in the NetCDF file |
---|
3771 | id_var, & !< NetCDF variable id |
---|
3772 | k, & !< loop index |
---|
3773 | nz_snd, & !< number of vertical levels in the sounding data |
---|
3774 | nz_snd_start, & !< start vertical index for sounding data to be used |
---|
3775 | nz_snd_end !< end vertical index for souding data to be used |
---|
3776 | |
---|
3777 | REAL(wp) :: t_surface !< actual surface temperature |
---|
3778 | |
---|
3779 | REAL(wp), DIMENSION(:), ALLOCATABLE :: hyp_snd_tmp, & !< temporary hydrostatic pressure profile (sounding) |
---|
3780 | t_snd_tmp !< temporary temperature profile (sounding) |
---|
3781 | |
---|
3782 | ! |
---|
3783 | !-- In case of updates, deallocate arrays first (sufficient to check one |
---|
3784 | !-- array as the others are automatically allocated). This is required |
---|
3785 | !-- because nzt_rad might change during the update |
---|
3786 | IF ( ALLOCATED ( hyp_snd ) ) THEN |
---|
3787 | DEALLOCATE( hyp_snd ) |
---|
3788 | DEALLOCATE( t_snd ) |
---|
3789 | DEALLOCATE ( rrtm_play ) |
---|
3790 | DEALLOCATE ( rrtm_plev ) |
---|
3791 | DEALLOCATE ( rrtm_tlay ) |
---|
3792 | DEALLOCATE ( rrtm_tlev ) |
---|
3793 | |
---|
3794 | DEALLOCATE ( rrtm_cicewp ) |
---|
3795 | DEALLOCATE ( rrtm_cldfr ) |
---|
3796 | DEALLOCATE ( rrtm_cliqwp ) |
---|
3797 | DEALLOCATE ( rrtm_reice ) |
---|
3798 | DEALLOCATE ( rrtm_reliq ) |
---|
3799 | DEALLOCATE ( rrtm_lw_taucld ) |
---|
3800 | DEALLOCATE ( rrtm_lw_tauaer ) |
---|
3801 | |
---|
3802 | DEALLOCATE ( rrtm_lwdflx ) |
---|
3803 | DEALLOCATE ( rrtm_lwdflxc ) |
---|
3804 | DEALLOCATE ( rrtm_lwuflx ) |
---|
3805 | DEALLOCATE ( rrtm_lwuflxc ) |
---|
3806 | DEALLOCATE ( rrtm_lwuflx_dt ) |
---|
3807 | DEALLOCATE ( rrtm_lwuflxc_dt ) |
---|
3808 | DEALLOCATE ( rrtm_lwhr ) |
---|
3809 | DEALLOCATE ( rrtm_lwhrc ) |
---|
3810 | |
---|
3811 | DEALLOCATE ( rrtm_sw_taucld ) |
---|
3812 | DEALLOCATE ( rrtm_sw_ssacld ) |
---|
3813 | DEALLOCATE ( rrtm_sw_asmcld ) |
---|
3814 | DEALLOCATE ( rrtm_sw_fsfcld ) |
---|
3815 | DEALLOCATE ( rrtm_sw_tauaer ) |
---|
3816 | DEALLOCATE ( rrtm_sw_ssaaer ) |
---|
3817 | DEALLOCATE ( rrtm_sw_asmaer ) |
---|
3818 | DEALLOCATE ( rrtm_sw_ecaer ) |
---|
3819 | |
---|
3820 | DEALLOCATE ( rrtm_swdflx ) |
---|
3821 | DEALLOCATE ( rrtm_swdflxc ) |
---|
3822 | DEALLOCATE ( rrtm_swuflx ) |
---|
3823 | DEALLOCATE ( rrtm_swuflxc ) |
---|
3824 | DEALLOCATE ( rrtm_swhr ) |
---|
3825 | DEALLOCATE ( rrtm_swhrc ) |
---|
3826 | |
---|
3827 | ENDIF |
---|
3828 | |
---|
3829 | ! |
---|
3830 | !-- Open file for reading |
---|
3831 | nc_stat = NF90_OPEN( rrtm_input_file, NF90_NOWRITE, id ) |
---|
3832 | CALL netcdf_handle_error_rad( 'read_sounding_data', 549 ) |
---|
3833 | |
---|
3834 | ! |
---|
3835 | !-- Inquire dimension of z axis and save in nz_snd |
---|
3836 | nc_stat = NF90_INQ_DIMID( id, "Pressure", id_dim_zrad ) |
---|
3837 | nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim_zrad, len = nz_snd ) |
---|
3838 | CALL netcdf_handle_error_rad( 'read_sounding_data', 551 ) |
---|
3839 | |
---|
3840 | ! |
---|
3841 | ! !-- Allocate temporary array for storing pressure data |
---|
3842 | ALLOCATE( hyp_snd_tmp(1:nz_snd) ) |
---|
3843 | hyp_snd_tmp = 0.0_wp |
---|
3844 | |
---|
3845 | |
---|
3846 | !-- Read pressure from file |
---|
3847 | nc_stat = NF90_INQ_VARID( id, "Pressure", id_var ) |
---|
3848 | nc_stat = NF90_GET_VAR( id, id_var, hyp_snd_tmp(:), start = (/1/), & |
---|
3849 | count = (/nz_snd/) ) |
---|
3850 | CALL netcdf_handle_error_rad( 'read_sounding_data', 552 ) |
---|
3851 | |
---|
3852 | ! |
---|
3853 | !-- Allocate temporary array for storing temperature data |
---|
3854 | ALLOCATE( t_snd_tmp(1:nz_snd) ) |
---|
3855 | t_snd_tmp = 0.0_wp |
---|
3856 | |
---|
3857 | ! |
---|
3858 | !-- Read temperature from file |
---|
3859 | nc_stat = NF90_INQ_VARID( id, "ReferenceTemperature", id_var ) |
---|
3860 | nc_stat = NF90_GET_VAR( id, id_var, t_snd_tmp(:), start = (/1/), & |
---|
3861 | count = (/nz_snd/) ) |
---|
3862 | CALL netcdf_handle_error_rad( 'read_sounding_data', 553 ) |
---|
3863 | |
---|
3864 | ! |
---|
3865 | !-- Calculate start of sounding data |
---|
3866 | nz_snd_start = nz_snd + 1 |
---|
3867 | nz_snd_end = nz_snd + 1 |
---|
3868 | |
---|
3869 | ! |
---|
3870 | !-- Start filling vertical dimension at 10hPa above the model domain (hyp is |
---|
3871 | !-- in Pa, hyp_snd in hPa). |
---|
3872 | DO k = 1, nz_snd |
---|
3873 | IF ( hyp_snd_tmp(k) < ( hyp(nzt+1) - 1000.0_wp) * 0.01_wp ) THEN |
---|
3874 | nz_snd_start = k |
---|
3875 | EXIT |
---|
3876 | END IF |
---|
3877 | END DO |
---|
3878 | |
---|
3879 | IF ( nz_snd_start <= nz_snd ) THEN |
---|
3880 | nz_snd_end = nz_snd |
---|
3881 | END IF |
---|
3882 | |
---|
3883 | |
---|
3884 | ! |
---|
3885 | !-- Calculate of total grid points for RRTMG calculations |
---|
3886 | nzt_rad = nzt + nz_snd_end - nz_snd_start + 1 |
---|
3887 | |
---|
3888 | ! |
---|
3889 | !-- Save data above LES domain in hyp_snd, t_snd |
---|
3890 | ALLOCATE( hyp_snd(nzb+1:nzt_rad) ) |
---|
3891 | ALLOCATE( t_snd(nzb+1:nzt_rad) ) |
---|
3892 | hyp_snd = 0.0_wp |
---|
3893 | t_snd = 0.0_wp |
---|
3894 | |
---|
3895 | hyp_snd(nzt+2:nzt_rad) = hyp_snd_tmp(nz_snd_start+1:nz_snd_end) |
---|
3896 | t_snd(nzt+2:nzt_rad) = t_snd_tmp(nz_snd_start+1:nz_snd_end) |
---|
3897 | |
---|
3898 | nc_stat = NF90_CLOSE( id ) |
---|
3899 | |
---|
3900 | ! |
---|
3901 | !-- Calculate pressure levels on zu and zw grid. Sounding data is added at |
---|
3902 | !-- top of the LES domain. This routine does not consider horizontal or |
---|
3903 | !-- vertical variability of pressure and temperature |
---|
3904 | ALLOCATE ( rrtm_play(0:0,nzb+1:nzt_rad+1) ) |
---|
3905 | ALLOCATE ( rrtm_plev(0:0,nzb+1:nzt_rad+2) ) |
---|
3906 | |
---|
3907 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
3908 | DO k = nzb+1, nzt+1 |
---|
3909 | rrtm_play(0,k) = hyp(k) * 0.01_wp |
---|
3910 | rrtm_plev(0,k) = surface_pressure * ( (t_surface - g/cp * zw(k-1)) / & |
---|
3911 | t_surface )**(1.0_wp/0.286_wp) |
---|
3912 | ENDDO |
---|
3913 | |
---|
3914 | DO k = nzt+2, nzt_rad |
---|
3915 | rrtm_play(0,k) = hyp_snd(k) |
---|
3916 | rrtm_plev(0,k) = 0.5_wp * ( rrtm_play(0,k) + rrtm_play(0,k-1) ) |
---|
3917 | ENDDO |
---|
3918 | rrtm_plev(0,nzt_rad+1) = MAX( 0.5 * hyp_snd(nzt_rad), & |
---|
3919 | 1.5 * hyp_snd(nzt_rad) & |
---|
3920 | - 0.5 * hyp_snd(nzt_rad-1) ) |
---|
3921 | rrtm_plev(0,nzt_rad+2) = MIN( 1.0E-4_wp, & |
---|
3922 | 0.25_wp * rrtm_plev(0,nzt_rad+1) ) |
---|
3923 | |
---|
3924 | rrtm_play(0,nzt_rad+1) = 0.5 * rrtm_plev(0,nzt_rad+1) |
---|
3925 | |
---|
3926 | ! |
---|
3927 | !-- Calculate temperature/humidity levels at top of the LES domain. |
---|
3928 | !-- Currently, the temperature is taken from sounding data (might lead to a |
---|
3929 | !-- temperature jump at interface. To do: Humidity is currently not |
---|
3930 | !-- calculated above the LES domain. |
---|
3931 | ALLOCATE ( rrtm_tlay(0:0,nzb+1:nzt_rad+1) ) |
---|
3932 | ALLOCATE ( rrtm_tlev(0:0,nzb+1:nzt_rad+2) ) |
---|
3933 | |
---|
3934 | DO k = nzt+8, nzt_rad |
---|
3935 | rrtm_tlay(0,k) = t_snd(k) |
---|
3936 | ENDDO |
---|
3937 | rrtm_tlay(0,nzt_rad+1) = 2.0_wp * rrtm_tlay(0,nzt_rad) & |
---|
3938 | - rrtm_tlay(0,nzt_rad-1) |
---|
3939 | DO k = nzt+9, nzt_rad+1 |
---|
3940 | rrtm_tlev(0,k) = rrtm_tlay(0,k-1) + (rrtm_tlay(0,k) & |
---|
3941 | - rrtm_tlay(0,k-1)) & |
---|
3942 | / ( rrtm_play(0,k) - rrtm_play(0,k-1) ) & |
---|
3943 | * ( rrtm_plev(0,k) - rrtm_play(0,k-1) ) |
---|
3944 | ENDDO |
---|
3945 | |
---|
3946 | rrtm_tlev(0,nzt_rad+2) = 2.0_wp * rrtm_tlay(0,nzt_rad+1) & |
---|
3947 | - rrtm_tlev(0,nzt_rad) |
---|
3948 | ! |
---|
3949 | !-- Allocate remaining RRTMG arrays |
---|
3950 | ALLOCATE ( rrtm_cicewp(0:0,nzb+1:nzt_rad+1) ) |
---|
3951 | ALLOCATE ( rrtm_cldfr(0:0,nzb+1:nzt_rad+1) ) |
---|
3952 | ALLOCATE ( rrtm_cliqwp(0:0,nzb+1:nzt_rad+1) ) |
---|
3953 | ALLOCATE ( rrtm_reice(0:0,nzb+1:nzt_rad+1) ) |
---|
3954 | ALLOCATE ( rrtm_reliq(0:0,nzb+1:nzt_rad+1) ) |
---|
3955 | ALLOCATE ( rrtm_lw_taucld(1:nbndlw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
3956 | ALLOCATE ( rrtm_lw_tauaer(0:0,nzb+1:nzt_rad+1,1:nbndlw+1) ) |
---|
3957 | ALLOCATE ( rrtm_sw_taucld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
3958 | ALLOCATE ( rrtm_sw_ssacld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
3959 | ALLOCATE ( rrtm_sw_asmcld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
3960 | ALLOCATE ( rrtm_sw_fsfcld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
3961 | ALLOCATE ( rrtm_sw_tauaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) ) |
---|
3962 | ALLOCATE ( rrtm_sw_ssaaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) ) |
---|
3963 | ALLOCATE ( rrtm_sw_asmaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) ) |
---|
3964 | ALLOCATE ( rrtm_sw_ecaer(0:0,nzb+1:nzt_rad+1,1:naerec+1) ) |
---|
3965 | |
---|
3966 | ! |
---|
3967 | !-- The ice phase is currently not considered in PALM |
---|
3968 | rrtm_cicewp = 0.0_wp |
---|
3969 | rrtm_reice = 0.0_wp |
---|
3970 | |
---|
3971 | ! |
---|
3972 | !-- Set other parameters (move to NAMELIST parameters in the future) |
---|
3973 | rrtm_lw_tauaer = 0.0_wp |
---|
3974 | rrtm_lw_taucld = 0.0_wp |
---|
3975 | rrtm_sw_taucld = 0.0_wp |
---|
3976 | rrtm_sw_ssacld = 0.0_wp |
---|
3977 | rrtm_sw_asmcld = 0.0_wp |
---|
3978 | rrtm_sw_fsfcld = 0.0_wp |
---|
3979 | rrtm_sw_tauaer = 0.0_wp |
---|
3980 | rrtm_sw_ssaaer = 0.0_wp |
---|
3981 | rrtm_sw_asmaer = 0.0_wp |
---|
3982 | rrtm_sw_ecaer = 0.0_wp |
---|
3983 | |
---|
3984 | |
---|
3985 | ALLOCATE ( rrtm_swdflx(0:0,nzb:nzt_rad+1) ) |
---|
3986 | ALLOCATE ( rrtm_swuflx(0:0,nzb:nzt_rad+1) ) |
---|
3987 | ALLOCATE ( rrtm_swhr(0:0,nzb+1:nzt_rad+1) ) |
---|
3988 | ALLOCATE ( rrtm_swuflxc(0:0,nzb:nzt_rad+1) ) |
---|
3989 | ALLOCATE ( rrtm_swdflxc(0:0,nzb:nzt_rad+1) ) |
---|
3990 | ALLOCATE ( rrtm_swhrc(0:0,nzb+1:nzt_rad+1) ) |
---|
3991 | |
---|
3992 | rrtm_swdflx = 0.0_wp |
---|
3993 | rrtm_swuflx = 0.0_wp |
---|
3994 | rrtm_swhr = 0.0_wp |
---|
3995 | rrtm_swuflxc = 0.0_wp |
---|
3996 | rrtm_swdflxc = 0.0_wp |
---|
3997 | rrtm_swhrc = 0.0_wp |
---|
3998 | |
---|
3999 | ALLOCATE ( rrtm_lwdflx(0:0,nzb:nzt_rad+1) ) |
---|
4000 | ALLOCATE ( rrtm_lwuflx(0:0,nzb:nzt_rad+1) ) |
---|
4001 | ALLOCATE ( rrtm_lwhr(0:0,nzb+1:nzt_rad+1) ) |
---|
4002 | ALLOCATE ( rrtm_lwuflxc(0:0,nzb:nzt_rad+1) ) |
---|
4003 | ALLOCATE ( rrtm_lwdflxc(0:0,nzb:nzt_rad+1) ) |
---|
4004 | ALLOCATE ( rrtm_lwhrc(0:0,nzb+1:nzt_rad+1) ) |
---|
4005 | |
---|
4006 | rrtm_lwdflx = 0.0_wp |
---|
4007 | rrtm_lwuflx = 0.0_wp |
---|
4008 | rrtm_lwhr = 0.0_wp |
---|
4009 | rrtm_lwuflxc = 0.0_wp |
---|
4010 | rrtm_lwdflxc = 0.0_wp |
---|
4011 | rrtm_lwhrc = 0.0_wp |
---|
4012 | |
---|
4013 | ALLOCATE ( rrtm_lwuflx_dt(0:0,nzb:nzt_rad+1) ) |
---|
4014 | ALLOCATE ( rrtm_lwuflxc_dt(0:0,nzb:nzt_rad+1) ) |
---|
4015 | |
---|
4016 | rrtm_lwuflx_dt = 0.0_wp |
---|
4017 | rrtm_lwuflxc_dt = 0.0_wp |
---|
4018 | |
---|
4019 | END SUBROUTINE read_sounding_data |
---|
4020 | |
---|
4021 | |
---|
4022 | !------------------------------------------------------------------------------! |
---|
4023 | ! Description: |
---|
4024 | ! ------------ |
---|
4025 | !> Read trace gas data from file |
---|
4026 | !------------------------------------------------------------------------------! |
---|
4027 | SUBROUTINE read_trace_gas_data |
---|
4028 | |
---|
4029 | USE rrsw_ncpar |
---|
4030 | |
---|
4031 | IMPLICIT NONE |
---|
4032 | |
---|
4033 | INTEGER(iwp), PARAMETER :: num_trace_gases = 10 !< number of trace gases (absorbers) |
---|
4034 | |
---|
4035 | CHARACTER(LEN=5), DIMENSION(num_trace_gases), PARAMETER :: & !< trace gas names |
---|
4036 | trace_names = (/'O3 ', 'CO2 ', 'CH4 ', 'N2O ', 'O2 ', & |
---|
4037 | 'CFC11', 'CFC12', 'CFC22', 'CCL4 ', 'H2O '/) |
---|
4038 | |
---|
4039 | INTEGER(iwp) :: id, & !< NetCDF id |
---|
4040 | k, & !< loop index |
---|
4041 | m, & !< loop index |
---|
4042 | n, & !< loop index |
---|
4043 | nabs, & !< number of absorbers |
---|
4044 | np, & !< number of pressure levels |
---|
4045 | id_abs, & !< NetCDF id of the respective absorber |
---|
4046 | id_dim, & !< NetCDF id of asborber's dimension |
---|
4047 | id_var !< NetCDf id ot the absorber |
---|
4048 | |
---|
4049 | REAL(wp) :: p_mls_l, p_mls_u, p_wgt_l, p_wgt_u, p_mls_m |
---|
4050 | |
---|
4051 | |
---|
4052 | REAL(wp), DIMENSION(:), ALLOCATABLE :: p_mls, & !< pressure levels for the absorbers |
---|
4053 | rrtm_play_tmp, & !< temporary array for pressure zu-levels |
---|
4054 | rrtm_plev_tmp, & !< temporary array for pressure zw-levels |
---|
4055 | trace_path_tmp !< temporary array for storing trace gas path data |
---|
4056 | |
---|
4057 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: trace_mls, & !< array for storing the absorber amounts |
---|
4058 | trace_mls_path, & !< array for storing trace gas path data |
---|
4059 | trace_mls_tmp !< temporary array for storing trace gas data |
---|
4060 | |
---|
4061 | |
---|
4062 | ! |
---|
4063 | !-- In case of updates, deallocate arrays first (sufficient to check one |
---|
4064 | !-- array as the others are automatically allocated) |
---|
4065 | IF ( ALLOCATED ( rrtm_o3vmr ) ) THEN |
---|
4066 | DEALLOCATE ( rrtm_o3vmr ) |
---|
4067 | DEALLOCATE ( rrtm_co2vmr ) |
---|
4068 | DEALLOCATE ( rrtm_ch4vmr ) |
---|
4069 | DEALLOCATE ( rrtm_n2ovmr ) |
---|
4070 | DEALLOCATE ( rrtm_o2vmr ) |
---|
4071 | DEALLOCATE ( rrtm_cfc11vmr ) |
---|
4072 | DEALLOCATE ( rrtm_cfc12vmr ) |
---|
4073 | DEALLOCATE ( rrtm_cfc22vmr ) |
---|
4074 | DEALLOCATE ( rrtm_ccl4vmr ) |
---|
4075 | DEALLOCATE ( rrtm_h2ovmr ) |
---|
4076 | ENDIF |
---|
4077 | |
---|
4078 | ! |
---|
4079 | !-- Allocate trace gas profiles |
---|
4080 | ALLOCATE ( rrtm_o3vmr(0:0,1:nzt_rad+1) ) |
---|
4081 | ALLOCATE ( rrtm_co2vmr(0:0,1:nzt_rad+1) ) |
---|
4082 | ALLOCATE ( rrtm_ch4vmr(0:0,1:nzt_rad+1) ) |
---|
4083 | ALLOCATE ( rrtm_n2ovmr(0:0,1:nzt_rad+1) ) |
---|
4084 | ALLOCATE ( rrtm_o2vmr(0:0,1:nzt_rad+1) ) |
---|
4085 | ALLOCATE ( rrtm_cfc11vmr(0:0,1:nzt_rad+1) ) |
---|
4086 | ALLOCATE ( rrtm_cfc12vmr(0:0,1:nzt_rad+1) ) |
---|
4087 | ALLOCATE ( rrtm_cfc22vmr(0:0,1:nzt_rad+1) ) |
---|
4088 | ALLOCATE ( rrtm_ccl4vmr(0:0,1:nzt_rad+1) ) |
---|
4089 | ALLOCATE ( rrtm_h2ovmr(0:0,1:nzt_rad+1) ) |
---|
4090 | |
---|
4091 | ! |
---|
4092 | !-- Open file for reading |
---|
4093 | nc_stat = NF90_OPEN( rrtm_input_file, NF90_NOWRITE, id ) |
---|
4094 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 549 ) |
---|
4095 | ! |
---|
4096 | !-- Inquire dimension ids and dimensions |
---|
4097 | nc_stat = NF90_INQ_DIMID( id, "Pressure", id_dim ) |
---|
4098 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
4099 | nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim, len = np) |
---|
4100 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
4101 | |
---|
4102 | nc_stat = NF90_INQ_DIMID( id, "Absorber", id_dim ) |
---|
4103 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
4104 | nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim, len = nabs ) |
---|
4105 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
4106 | |
---|
4107 | |
---|
4108 | ! |
---|
4109 | !-- Allocate pressure, and trace gas arrays |
---|
4110 | ALLOCATE( p_mls(1:np) ) |
---|
4111 | ALLOCATE( trace_mls(1:num_trace_gases,1:np) ) |
---|
4112 | ALLOCATE( trace_mls_tmp(1:nabs,1:np) ) |
---|
4113 | |
---|
4114 | |
---|
4115 | nc_stat = NF90_INQ_VARID( id, "Pressure", id_var ) |
---|
4116 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
4117 | nc_stat = NF90_GET_VAR( id, id_var, p_mls ) |
---|
4118 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
4119 | |
---|
4120 | nc_stat = NF90_INQ_VARID( id, "AbsorberAmountMLS", id_var ) |
---|
4121 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
4122 | nc_stat = NF90_GET_VAR( id, id_var, trace_mls_tmp ) |
---|
4123 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
4124 | |
---|
4125 | |
---|
4126 | ! |
---|
4127 | !-- Write absorber amounts (mls) to trace_mls |
---|
4128 | DO n = 1, num_trace_gases |
---|
4129 | CALL getAbsorberIndex( TRIM( trace_names(n) ), id_abs ) |
---|
4130 | |
---|
4131 | trace_mls(n,1:np) = trace_mls_tmp(id_abs,1:np) |
---|
4132 | |
---|
4133 | ! |
---|
4134 | !-- Replace missing values by zero |
---|
4135 | WHERE ( trace_mls(n,:) > 2.0_wp ) |
---|
4136 | trace_mls(n,:) = 0.0_wp |
---|
4137 | END WHERE |
---|
4138 | END DO |
---|
4139 | |
---|
4140 | DEALLOCATE ( trace_mls_tmp ) |
---|
4141 | |
---|
4142 | nc_stat = NF90_CLOSE( id ) |
---|
4143 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 551 ) |
---|
4144 | |
---|
4145 | ! |
---|
4146 | !-- Add extra pressure level for calculations of the trace gas paths |
---|
4147 | ALLOCATE ( rrtm_play_tmp(1:nzt_rad+1) ) |
---|
4148 | ALLOCATE ( rrtm_plev_tmp(1:nzt_rad+2) ) |
---|
4149 | |
---|
4150 | rrtm_play_tmp(1:nzt_rad) = rrtm_play(0,1:nzt_rad) |
---|
4151 | rrtm_plev_tmp(1:nzt_rad+1) = rrtm_plev(0,1:nzt_rad+1) |
---|
4152 | rrtm_play_tmp(nzt_rad+1) = rrtm_plev(0,nzt_rad+1) * 0.5_wp |
---|
4153 | rrtm_plev_tmp(nzt_rad+2) = MIN( 1.0E-4_wp, 0.25_wp & |
---|
4154 | * rrtm_plev(0,nzt_rad+1) ) |
---|
4155 | |
---|
4156 | ! |
---|
4157 | !-- Calculate trace gas path (zero at surface) with interpolation to the |
---|
4158 | !-- sounding levels |
---|
4159 | ALLOCATE ( trace_mls_path(1:nzt_rad+2,1:num_trace_gases) ) |
---|
4160 | |
---|
4161 | trace_mls_path(nzb+1,:) = 0.0_wp |
---|
4162 | |
---|
4163 | DO k = nzb+2, nzt_rad+2 |
---|
4164 | DO m = 1, num_trace_gases |
---|
4165 | trace_mls_path(k,m) = trace_mls_path(k-1,m) |
---|
4166 | |
---|
4167 | ! |
---|
4168 | !-- When the pressure level is higher than the trace gas pressure |
---|
4169 | !-- level, assume that |
---|
4170 | IF ( rrtm_plev_tmp(k-1) > p_mls(1) ) THEN |
---|
4171 | |
---|
4172 | trace_mls_path(k,m) = trace_mls_path(k,m) + trace_mls(m,1) & |
---|
4173 | * ( rrtm_plev_tmp(k-1) & |
---|
4174 | - MAX( p_mls(1), rrtm_plev_tmp(k) ) & |
---|
4175 | ) / g |
---|
4176 | ENDIF |
---|
4177 | |
---|
4178 | ! |
---|
4179 | !-- Integrate for each sounding level from the contributing p_mls |
---|
4180 | !-- levels |
---|
4181 | DO n = 2, np |
---|
4182 | ! |
---|
4183 | !-- Limit p_mls so that it is within the model level |
---|
4184 | p_mls_u = MIN( rrtm_plev_tmp(k-1), & |
---|
4185 | MAX( rrtm_plev_tmp(k), p_mls(n) ) ) |
---|
4186 | p_mls_l = MIN( rrtm_plev_tmp(k-1), & |
---|
4187 | MAX( rrtm_plev_tmp(k), p_mls(n-1) ) ) |
---|
4188 | |
---|
4189 | IF ( p_mls_l > p_mls_u ) THEN |
---|
4190 | |
---|
4191 | ! |
---|
4192 | !-- Calculate weights for interpolation |
---|
4193 | p_mls_m = 0.5_wp * (p_mls_l + p_mls_u) |
---|
4194 | p_wgt_u = (p_mls(n-1) - p_mls_m) / (p_mls(n-1) - p_mls(n)) |
---|
4195 | p_wgt_l = (p_mls_m - p_mls(n)) / (p_mls(n-1) - p_mls(n)) |
---|
4196 | |
---|
4197 | ! |
---|
4198 | !-- Add level to trace gas path |
---|
4199 | trace_mls_path(k,m) = trace_mls_path(k,m) & |
---|
4200 | + ( p_wgt_u * trace_mls(m,n) & |
---|
4201 | + p_wgt_l * trace_mls(m,n-1) ) & |
---|
4202 | * (p_mls_l - p_mls_u) / g |
---|
4203 | ENDIF |
---|
4204 | ENDDO |
---|
4205 | |
---|
4206 | IF ( rrtm_plev_tmp(k) < p_mls(np) ) THEN |
---|
4207 | trace_mls_path(k,m) = trace_mls_path(k,m) + trace_mls(m,np) & |
---|
4208 | * ( MIN( rrtm_plev_tmp(k-1), p_mls(np) ) & |
---|
4209 | - rrtm_plev_tmp(k) & |
---|
4210 | ) / g |
---|
4211 | ENDIF |
---|
4212 | ENDDO |
---|
4213 | ENDDO |
---|
4214 | |
---|
4215 | |
---|
4216 | ! |
---|
4217 | !-- Prepare trace gas path profiles |
---|
4218 | ALLOCATE ( trace_path_tmp(1:nzt_rad+1) ) |
---|
4219 | |
---|
4220 | DO m = 1, num_trace_gases |
---|
4221 | |
---|
4222 | trace_path_tmp(1:nzt_rad+1) = ( trace_mls_path(2:nzt_rad+2,m) & |
---|
4223 | - trace_mls_path(1:nzt_rad+1,m) ) * g & |
---|
4224 | / ( rrtm_plev_tmp(1:nzt_rad+1) & |
---|
4225 | - rrtm_plev_tmp(2:nzt_rad+2) ) |
---|
4226 | |
---|
4227 | ! |
---|
4228 | !-- Save trace gas paths to the respective arrays |
---|
4229 | SELECT CASE ( TRIM( trace_names(m) ) ) |
---|
4230 | |
---|
4231 | CASE ( 'O3' ) |
---|
4232 | |
---|
4233 | rrtm_o3vmr(0,:) = trace_path_tmp(:) |
---|
4234 | |
---|
4235 | CASE ( 'CO2' ) |
---|
4236 | |
---|
4237 | rrtm_co2vmr(0,:) = trace_path_tmp(:) |
---|
4238 | |
---|
4239 | CASE ( 'CH4' ) |
---|
4240 | |
---|
4241 | rrtm_ch4vmr(0,:) = trace_path_tmp(:) |
---|
4242 | |
---|
4243 | CASE ( 'N2O' ) |
---|
4244 | |
---|
4245 | rrtm_n2ovmr(0,:) = trace_path_tmp(:) |
---|
4246 | |
---|
4247 | CASE ( 'O2' ) |
---|
4248 | |
---|
4249 | rrtm_o2vmr(0,:) = trace_path_tmp(:) |
---|
4250 | |
---|
4251 | CASE ( 'CFC11' ) |
---|
4252 | |
---|
4253 | rrtm_cfc11vmr(0,:) = trace_path_tmp(:) |
---|
4254 | |
---|
4255 | CASE ( 'CFC12' ) |
---|
4256 | |
---|
4257 | rrtm_cfc12vmr(0,:) = trace_path_tmp(:) |
---|
4258 | |
---|
4259 | CASE ( 'CFC22' ) |
---|
4260 | |
---|
4261 | rrtm_cfc22vmr(0,:) = trace_path_tmp(:) |
---|
4262 | |
---|
4263 | CASE ( 'CCL4' ) |
---|
4264 | |
---|
4265 | rrtm_ccl4vmr(0,:) = trace_path_tmp(:) |
---|
4266 | |
---|
4267 | CASE ( 'H2O' ) |
---|
4268 | |
---|
4269 | rrtm_h2ovmr(0,:) = trace_path_tmp(:) |
---|
4270 | |
---|
4271 | CASE DEFAULT |
---|
4272 | |
---|
4273 | END SELECT |
---|
4274 | |
---|
4275 | ENDDO |
---|
4276 | |
---|
4277 | DEALLOCATE ( trace_path_tmp ) |
---|
4278 | DEALLOCATE ( trace_mls_path ) |
---|
4279 | DEALLOCATE ( rrtm_play_tmp ) |
---|
4280 | DEALLOCATE ( rrtm_plev_tmp ) |
---|
4281 | DEALLOCATE ( trace_mls ) |
---|
4282 | DEALLOCATE ( p_mls ) |
---|
4283 | |
---|
4284 | END SUBROUTINE read_trace_gas_data |
---|
4285 | |
---|
4286 | |
---|
4287 | SUBROUTINE netcdf_handle_error_rad( routine_name, errno ) |
---|
4288 | |
---|
4289 | USE control_parameters, & |
---|
4290 | ONLY: message_string |
---|
4291 | |
---|
4292 | USE NETCDF |
---|
4293 | |
---|
4294 | USE pegrid |
---|
4295 | |
---|
4296 | IMPLICIT NONE |
---|
4297 | |
---|
4298 | CHARACTER(LEN=6) :: message_identifier |
---|
4299 | CHARACTER(LEN=*) :: routine_name |
---|
4300 | |
---|
4301 | INTEGER(iwp) :: errno |
---|
4302 | |
---|
4303 | IF ( nc_stat /= NF90_NOERR ) THEN |
---|
4304 | |
---|
4305 | WRITE( message_identifier, '(''NC'',I4.4)' ) errno |
---|
4306 | message_string = TRIM( NF90_STRERROR( nc_stat ) ) |
---|
4307 | |
---|
4308 | CALL message( routine_name, message_identifier, 2, 2, 0, 6, 1 ) |
---|
4309 | |
---|
4310 | ENDIF |
---|
4311 | |
---|
4312 | END SUBROUTINE netcdf_handle_error_rad |
---|
4313 | #endif |
---|
4314 | |
---|
4315 | |
---|
4316 | !------------------------------------------------------------------------------! |
---|
4317 | ! Description: |
---|
4318 | ! ------------ |
---|
4319 | !> Calculate temperature tendency due to radiative cooling/heating. |
---|
4320 | !> Cache-optimized version. |
---|
4321 | !------------------------------------------------------------------------------! |
---|
4322 | SUBROUTINE radiation_tendency_ij ( i, j, tend ) |
---|
4323 | |
---|
4324 | USE cloud_parameters, & |
---|
4325 | ONLY: pt_d_t |
---|
4326 | |
---|
4327 | IMPLICIT NONE |
---|
4328 | |
---|
4329 | INTEGER(iwp) :: i, j, k !< loop indices |
---|
4330 | |
---|
4331 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: tend !< pt tendency term |
---|
4332 | |
---|
4333 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
4334 | #if defined ( __rrtmg ) |
---|
4335 | ! |
---|
4336 | !-- Calculate tendency based on heating rate |
---|
4337 | DO k = nzb+1, nzt+1 |
---|
4338 | tend(k,j,i) = tend(k,j,i) + (rad_lw_hr(k,j,i) + rad_sw_hr(k,j,i)) & |
---|
4339 | * pt_d_t(k) * d_seconds_hour |
---|
4340 | ENDDO |
---|
4341 | #endif |
---|
4342 | ENDIF |
---|
4343 | |
---|
4344 | END SUBROUTINE radiation_tendency_ij |
---|
4345 | |
---|
4346 | |
---|
4347 | !------------------------------------------------------------------------------! |
---|
4348 | ! Description: |
---|
4349 | ! ------------ |
---|
4350 | !> Calculate temperature tendency due to radiative cooling/heating. |
---|
4351 | !> Vector-optimized version |
---|
4352 | !------------------------------------------------------------------------------! |
---|
4353 | SUBROUTINE radiation_tendency ( tend ) |
---|
4354 | |
---|
4355 | USE cloud_parameters, & |
---|
4356 | ONLY: pt_d_t |
---|
4357 | |
---|
4358 | USE indices, & |
---|
4359 | ONLY: nxl, nxr, nyn, nys |
---|
4360 | |
---|
4361 | IMPLICIT NONE |
---|
4362 | |
---|
4363 | INTEGER(iwp) :: i, j, k !< loop indices |
---|
4364 | |
---|
4365 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: tend !< pt tendency term |
---|
4366 | |
---|
4367 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
4368 | #if defined ( __rrtmg ) |
---|
4369 | ! |
---|
4370 | !-- Calculate tendency based on heating rate |
---|
4371 | DO i = nxl, nxr |
---|
4372 | DO j = nys, nyn |
---|
4373 | DO k = nzb+1, nzt+1 |
---|
4374 | tend(k,j,i) = tend(k,j,i) + ( rad_lw_hr(k,j,i) & |
---|
4375 | + rad_sw_hr(k,j,i) ) * pt_d_t(k) & |
---|
4376 | * d_seconds_hour |
---|
4377 | ENDDO |
---|
4378 | ENDDO |
---|
4379 | ENDDO |
---|
4380 | #endif |
---|
4381 | ENDIF |
---|
4382 | |
---|
4383 | |
---|
4384 | END SUBROUTINE radiation_tendency |
---|
4385 | |
---|
4386 | !------------------------------------------------------------------------------! |
---|
4387 | ! Description: |
---|
4388 | ! ------------ |
---|
4389 | !> This subroutine calculates interaction of the solar radiation |
---|
4390 | !> with urban and land surfaces and updates all surface heatfluxes. |
---|
4391 | !> It calculates also the required parameters for RRTMG lower BC. |
---|
4392 | !> |
---|
4393 | !> For more info. see Resler et al. 2017 |
---|
4394 | !> |
---|
4395 | !> The new version 2.0 was radically rewriten, the discretization scheme |
---|
4396 | !> has been changed. This new version significantly improves effectivity |
---|
4397 | !> of the paralelization and the scalability of the model. |
---|
4398 | !------------------------------------------------------------------------------! |
---|
4399 | |
---|
4400 | SUBROUTINE radiation_interaction |
---|
4401 | |
---|
4402 | IMPLICIT NONE |
---|
4403 | |
---|
4404 | INTEGER(iwp) :: i, j, k, kk, is, js, d, ku, refstep, m, mm, l, ll |
---|
4405 | INTEGER(iwp) :: nzubl, nzutl, isurf, isurfsrc, isvf, icsf, ipcgb |
---|
4406 | INTEGER(iwp) :: isd !< solar direction number |
---|
4407 | REAL(wp), DIMENSION(3,3) :: mrot !< grid rotation matrix (zyx) |
---|
4408 | REAL(wp), DIMENSION(3,0:nsurf_type):: vnorm !< face direction normal vectors (zyx) |
---|
4409 | REAL(wp), DIMENSION(3) :: sunorig !< grid rotated solar direction unit vector (zyx) |
---|
4410 | REAL(wp), DIMENSION(3) :: sunorig_grid !< grid squashed solar direction unit vector (zyx) |
---|
4411 | REAL(wp), DIMENSION(0:nsurf_type) :: costheta !< direct irradiance factor of solar angle |
---|
4412 | REAL(wp), DIMENSION(nzub:nzut) :: pchf_prep !< precalculated factor for canopy temperature tendency |
---|
4413 | REAL(wp), DIMENSION(nzub:nzut) :: pctf_prep !< precalculated factor for canopy transpiration tendency |
---|
4414 | REAL(wp), PARAMETER :: alpha = 0._wp !< grid rotation (TODO: add to namelist or remove) |
---|
4415 | REAL(wp) :: pc_box_area, pc_abs_frac, pc_abs_eff |
---|
4416 | INTEGER(iwp) :: pc_box_dimshift !< transform for best accuracy |
---|
4417 | INTEGER(iwp), DIMENSION(0:3) :: reorder = (/ 1, 0, 3, 2 /) |
---|
4418 | REAL(wp), DIMENSION(0:nsurf_type) :: facearea |
---|
4419 | REAL(wp) :: pabsswl = 0.0_wp !< total absorbed SW radiation energy in local processor (W) |
---|
4420 | REAL(wp) :: pabssw = 0.0_wp !< total absorbed SW radiation energy in all processors (W) |
---|
4421 | REAL(wp) :: pabslwl = 0.0_wp !< total absorbed LW radiation energy in local processor (W) |
---|
4422 | REAL(wp) :: pabslw = 0.0_wp !< total absorbed LW radiation energy in all processors (W) |
---|
4423 | REAL(wp) :: pemitlwl = 0.0_wp !< total emitted LW radiation energy in all processors (W) |
---|
4424 | REAL(wp) :: pemitlw = 0.0_wp !< total emitted LW radiation energy in all processors (W) |
---|
4425 | REAL(wp) :: pinswl = 0.0_wp !< total received SW radiation energy in local processor (W) |
---|
4426 | REAL(wp) :: pinsw = 0.0_wp !< total received SW radiation energy in all processor (W) |
---|
4427 | REAL(wp) :: pinlwl = 0.0_wp !< total received LW radiation energy in local processor (W) |
---|
4428 | REAL(wp) :: pinlw = 0.0_wp !< total received LW radiation energy in all processor (W) |
---|
4429 | REAL(wp) :: emiss_sum_surfl !< sum of emissisivity of surfaces in local processor |
---|
4430 | REAL(wp) :: emiss_sum_surf !< sum of emissisivity of surfaces in all processor |
---|
4431 | REAL(wp) :: area_surfl !< total area of surfaces in local processor |
---|
4432 | REAL(wp) :: area_surf !< total area of surfaces in all processor |
---|
4433 | REAL(wp) :: area_horl !< total horizontal area of domain in local processor |
---|
4434 | REAL(wp) :: area_hor !< total horizontal area of domain in all processor |
---|
4435 | |
---|
4436 | |
---|
4437 | |
---|
4438 | #if ! defined( __nopointer ) |
---|
4439 | IF ( plant_canopy ) THEN |
---|
4440 | pchf_prep(:) = r_d * (hyp(nzub:nzut) / 100000.0_wp)**0.286_wp & |
---|
4441 | / (cp * hyp(nzub:nzut) * dx*dy*dz(1)) !< equals to 1 / (rho * c_p * Vbox * T) |
---|
4442 | pctf_prep(:) = r_d * (hyp(nzub:nzut) / 100000.0_wp)**0.286_wp & |
---|
4443 | / (l_v * hyp(nzub:nzut) * dx*dy*dz(1)) |
---|
4444 | ENDIF |
---|
4445 | #endif |
---|
4446 | sun_direction = .TRUE. |
---|
4447 | CALL calc_zenith !< required also for diffusion radiation |
---|
4448 | |
---|
4449 | !-- prepare rotated normal vectors and irradiance factor |
---|
4450 | vnorm(1,:) = kdir(:) |
---|
4451 | vnorm(2,:) = jdir(:) |
---|
4452 | vnorm(3,:) = idir(:) |
---|
4453 | mrot(1, :) = (/ 1._wp, 0._wp, 0._wp /) |
---|
4454 | mrot(2, :) = (/ 0._wp, COS(alpha), SIN(alpha) /) |
---|
4455 | mrot(3, :) = (/ 0._wp, -SIN(alpha), COS(alpha) /) |
---|
4456 | sunorig = (/ zenith(0), sun_dir_lat, sun_dir_lon /) |
---|
4457 | sunorig = MATMUL(mrot, sunorig) |
---|
4458 | DO d = 0, nsurf_type |
---|
4459 | costheta(d) = DOT_PRODUCT(sunorig, vnorm(:,d)) |
---|
4460 | ENDDO |
---|
4461 | |
---|
4462 | IF ( zenith(0) > 0 ) THEN |
---|
4463 | !-- now we will "squash" the sunorig vector by grid box size in |
---|
4464 | !-- each dimension, so that this new direction vector will allow us |
---|
4465 | !-- to traverse the ray path within grid coordinates directly |
---|
4466 | sunorig_grid = (/ sunorig(1)/dz(1), sunorig(2)/dy, sunorig(3)/dx /) |
---|
4467 | !-- sunorig_grid = sunorig_grid / norm2(sunorig_grid) |
---|
4468 | sunorig_grid = sunorig_grid / SQRT(SUM(sunorig_grid**2)) |
---|
4469 | |
---|
4470 | IF ( npcbl > 0 ) THEN |
---|
4471 | !-- precompute effective box depth with prototype Leaf Area Density |
---|
4472 | pc_box_dimshift = MAXLOC(ABS(sunorig), 1) - 1 |
---|
4473 | CALL box_absorb(CSHIFT((/dz(1),dy,dx/), pc_box_dimshift), & |
---|
4474 | 60, prototype_lad, & |
---|
4475 | CSHIFT(ABS(sunorig), pc_box_dimshift), & |
---|
4476 | pc_box_area, pc_abs_frac) |
---|
4477 | pc_box_area = pc_box_area * ABS(sunorig(pc_box_dimshift+1) / sunorig(1)) |
---|
4478 | pc_abs_eff = LOG(1._wp - pc_abs_frac) / prototype_lad |
---|
4479 | ENDIF |
---|
4480 | ENDIF |
---|
4481 | |
---|
4482 | !-- split diffusion and direct part of the solar downward radiation |
---|
4483 | !-- comming from radiation model and store it in 2D arrays |
---|
4484 | !-- rad_sw_in_diff, rad_sw_in_dir and rad_lw_in_diff |
---|
4485 | IF ( split_diffusion_radiation ) THEN |
---|
4486 | CALL calc_diffusion_radiation |
---|
4487 | ELSE |
---|
4488 | rad_sw_in_diff = 0.0_wp |
---|
4489 | rad_sw_in_dir(:,:) = rad_sw_in(0,:,:) |
---|
4490 | rad_lw_in_diff(:,:) = rad_lw_in(0,:,:) |
---|
4491 | ENDIF |
---|
4492 | |
---|
4493 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4494 | !-- First pass: direct + diffuse irradiance + thermal |
---|
4495 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4496 | surfinswdir = 0._wp !nsurfl |
---|
4497 | surfins = 0._wp !nsurfl |
---|
4498 | surfinl = 0._wp !nsurfl |
---|
4499 | surfoutsl(:) = 0.0_wp !start-end |
---|
4500 | surfoutll(:) = 0.0_wp !start-end |
---|
4501 | |
---|
4502 | !-- Set up thermal radiation from surfaces |
---|
4503 | !-- emiss_surf is defined only for surfaces for which energy balance is calculated |
---|
4504 | !-- Workaround: reorder surface data type back on 1D array including all surfaces, |
---|
4505 | !-- which implies to reorder horizontal and vertical surfaces |
---|
4506 | ! |
---|
4507 | !-- Horizontal walls |
---|
4508 | mm = 1 |
---|
4509 | DO i = nxl, nxr |
---|
4510 | DO j = nys, nyn |
---|
4511 | !-- urban |
---|
4512 | DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i) |
---|
4513 | surfoutll(mm) = SUM ( surf_usm_h%frac(:,m) * & |
---|
4514 | surf_usm_h%emissivity(:,m) ) & |
---|
4515 | * sigma_sb & |
---|
4516 | * surf_usm_h%pt_surface(m)**4 |
---|
4517 | albedo_surf(mm) = SUM ( surf_usm_h%frac(:,m) * & |
---|
4518 | surf_usm_h%albedo(:,m) ) |
---|
4519 | emiss_surf(mm) = SUM ( surf_usm_h%frac(:,m) * & |
---|
4520 | surf_usm_h%emissivity(:,m) ) |
---|
4521 | mm = mm + 1 |
---|
4522 | ENDDO |
---|
4523 | !-- land |
---|
4524 | DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i) |
---|
4525 | surfoutll(mm) = SUM ( surf_lsm_h%frac(:,m) * & |
---|
4526 | surf_lsm_h%emissivity(:,m) ) & |
---|
4527 | * sigma_sb & |
---|
4528 | * surf_lsm_h%pt_surface(m)**4 |
---|
4529 | albedo_surf(mm) = SUM ( surf_lsm_h%frac(:,m) * & |
---|
4530 | surf_lsm_h%albedo(:,m) ) |
---|
4531 | emiss_surf(mm) = SUM ( surf_lsm_h%frac(:,m) * & |
---|
4532 | surf_lsm_h%emissivity(:,m) ) |
---|
4533 | mm = mm + 1 |
---|
4534 | ENDDO |
---|
4535 | ENDDO |
---|
4536 | ENDDO |
---|
4537 | ! |
---|
4538 | !-- Vertical walls |
---|
4539 | DO i = nxl, nxr |
---|
4540 | DO j = nys, nyn |
---|
4541 | DO ll = 0, 3 |
---|
4542 | l = reorder(ll) |
---|
4543 | !-- urban |
---|
4544 | DO m = surf_usm_v(l)%start_index(j,i), & |
---|
4545 | surf_usm_v(l)%end_index(j,i) |
---|
4546 | surfoutll(mm) = SUM ( surf_usm_v(l)%frac(:,m) * & |
---|
4547 | surf_usm_v(l)%emissivity(:,m) ) & |
---|
4548 | * sigma_sb & |
---|
4549 | * surf_usm_v(l)%pt_surface(m)**4 |
---|
4550 | albedo_surf(mm) = SUM ( surf_usm_v(l)%frac(:,m) * & |
---|
4551 | surf_usm_v(l)%albedo(:,m) ) |
---|
4552 | emiss_surf(mm) = SUM ( surf_usm_v(l)%frac(:,m) * & |
---|
4553 | surf_usm_v(l)%emissivity(:,m) ) |
---|
4554 | mm = mm + 1 |
---|
4555 | ENDDO |
---|
4556 | !-- land |
---|
4557 | DO m = surf_lsm_v(l)%start_index(j,i), & |
---|
4558 | surf_lsm_v(l)%end_index(j,i) |
---|
4559 | surfoutll(mm) = SUM ( surf_lsm_v(l)%frac(:,m) * & |
---|
4560 | surf_lsm_v(l)%emissivity(:,m) ) & |
---|
4561 | * sigma_sb & |
---|
4562 | * surf_lsm_v(l)%pt_surface(m)**4 |
---|
4563 | albedo_surf(mm) = SUM ( surf_lsm_v(l)%frac(:,m) * & |
---|
4564 | surf_lsm_v(l)%albedo(:,m) ) |
---|
4565 | emiss_surf(mm) = SUM ( surf_lsm_v(l)%frac(:,m) * & |
---|
4566 | surf_lsm_v(l)%emissivity(:,m) ) |
---|
4567 | mm = mm + 1 |
---|
4568 | ENDDO |
---|
4569 | ENDDO |
---|
4570 | ENDDO |
---|
4571 | ENDDO |
---|
4572 | |
---|
4573 | #if defined( __parallel ) |
---|
4574 | !-- might be optimized and gather only values relevant for current processor |
---|
4575 | CALL MPI_AllGatherv(surfoutll, nsurfl, MPI_REAL, & |
---|
4576 | surfoutl, nsurfs, surfstart, MPI_REAL, comm2d, ierr) !nsurf global |
---|
4577 | #else |
---|
4578 | surfoutl(:) = surfoutll(:) !nsurf global |
---|
4579 | #endif |
---|
4580 | |
---|
4581 | IF ( surface_reflections) THEN |
---|
4582 | DO isvf = 1, nsvfl |
---|
4583 | isurf = svfsurf(1, isvf) |
---|
4584 | k = surfl(iz, isurf) |
---|
4585 | j = surfl(iy, isurf) |
---|
4586 | i = surfl(ix, isurf) |
---|
4587 | isurfsrc = svfsurf(2, isvf) |
---|
4588 | ! |
---|
4589 | !-- For surface-to-surface factors we calculate thermal radiation in 1st pass |
---|
4590 | surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * surfoutl(isurfsrc) |
---|
4591 | ENDDO |
---|
4592 | ENDIF |
---|
4593 | |
---|
4594 | !-- diffuse radiation using sky view factor, TODO: homogeneous rad_*w_in_diff because now it depends on no. of processors |
---|
4595 | surfinswdif(:) = rad_sw_in_diff(nyn,nxl) * skyvft(:) |
---|
4596 | surfinlwdif(:) = rad_lw_in_diff(nyn,nxl) * skyvf(:) |
---|
4597 | |
---|
4598 | !-- direct radiation |
---|
4599 | IF ( zenith(0) > 0 ) THEN |
---|
4600 | !--Identify solar direction vector (discretized number) 1) |
---|
4601 | !-- |
---|
4602 | j = FLOOR(ACOS(zenith(0)) / pi * raytrace_discrete_elevs) |
---|
4603 | i = MODULO(NINT(ATAN2(sun_dir_lon(0), sun_dir_lat(0)) & |
---|
4604 | / (2._wp*pi) * raytrace_discrete_azims-.5_wp, iwp), & |
---|
4605 | raytrace_discrete_azims) |
---|
4606 | isd = dsidir_rev(j, i) |
---|
4607 | DO isurf = 1, nsurfl |
---|
4608 | surfinswdir(isurf) = rad_sw_in_dir(nyn,nxl) * costheta(surfl(id, isurf)) * dsitrans(isurf, isd) / zenith(0) |
---|
4609 | ENDDO |
---|
4610 | ENDIF |
---|
4611 | |
---|
4612 | IF ( npcbl > 0 ) THEN |
---|
4613 | |
---|
4614 | pcbinswdir(:) = 0._wp |
---|
4615 | pcbinswdif(:) = 0._wp |
---|
4616 | pcbinlw(:) = 0._wp !< will stay always 0 since we don't absorb lw anymore |
---|
4617 | ! |
---|
4618 | !-- pcsf first pass |
---|
4619 | DO icsf = 1, ncsfl |
---|
4620 | ipcgb = csfsurf(1, icsf) |
---|
4621 | i = pcbl(ix,ipcgb) |
---|
4622 | j = pcbl(iy,ipcgb) |
---|
4623 | k = pcbl(iz,ipcgb) |
---|
4624 | isurfsrc = csfsurf(2, icsf) |
---|
4625 | |
---|
4626 | IF ( isurfsrc == -1 ) THEN |
---|
4627 | !-- Diffuse rad from sky. |
---|
4628 | pcbinswdif(ipcgb) = csf(1,icsf) * csf(2,icsf) * rad_sw_in_diff(j,i) |
---|
4629 | |
---|
4630 | !--Direct rad |
---|
4631 | IF ( zenith(0) > 0 ) THEN |
---|
4632 | !--Estimate directed box absorption |
---|
4633 | pc_abs_frac = 1._wp - exp(pc_abs_eff * lad_s(k,j,i)) |
---|
4634 | |
---|
4635 | !--isd has already been established, see 1) |
---|
4636 | pcbinswdir(ipcgb) = rad_sw_in_dir(j, i) * pc_box_area & |
---|
4637 | * pc_abs_frac * dsitransc(ipcgb, isd) |
---|
4638 | ENDIF |
---|
4639 | |
---|
4640 | EXIT ! only isurfsrc=-1 is processed here |
---|
4641 | ENDIF |
---|
4642 | ENDDO |
---|
4643 | |
---|
4644 | pcbinsw(:) = pcbinswdir(:) + pcbinswdif(:) |
---|
4645 | ENDIF |
---|
4646 | surfins = surfinswdir + surfinswdif |
---|
4647 | surfinl = surfinl + surfinlwdif |
---|
4648 | surfinsw = surfins |
---|
4649 | surfinlw = surfinl |
---|
4650 | surfoutsw = 0.0_wp |
---|
4651 | surfoutlw = surfoutll |
---|
4652 | surfemitlwl = surfoutll |
---|
4653 | ! surfhf = surfinsw + surfinlw - surfoutsw - surfoutlw |
---|
4654 | |
---|
4655 | IF ( .NOT. surface_reflections ) THEN |
---|
4656 | ! |
---|
4657 | !-- Set nrefsteps to 0 to disable reflections |
---|
4658 | nrefsteps = 0 |
---|
4659 | surfoutsl = albedo_surf * surfins |
---|
4660 | surfoutll = (1._wp - emiss_surf) * surfinl |
---|
4661 | surfoutsw = surfoutsw + surfoutsl |
---|
4662 | surfoutlw = surfoutlw + surfoutll |
---|
4663 | ENDIF |
---|
4664 | |
---|
4665 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4666 | !-- Next passes - reflections |
---|
4667 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4668 | DO refstep = 1, nrefsteps |
---|
4669 | |
---|
4670 | surfoutsl = albedo_surf * surfins |
---|
4671 | !-- for non-transparent surfaces, longwave albedo is 1 - emissivity |
---|
4672 | surfoutll = (1._wp - emiss_surf) * surfinl |
---|
4673 | |
---|
4674 | #if defined( __parallel ) |
---|
4675 | CALL MPI_AllGatherv(surfoutsl, nsurfl, MPI_REAL, & |
---|
4676 | surfouts, nsurfs, surfstart, MPI_REAL, comm2d, ierr) |
---|
4677 | CALL MPI_AllGatherv(surfoutll, nsurfl, MPI_REAL, & |
---|
4678 | surfoutl, nsurfs, surfstart, MPI_REAL, comm2d, ierr) |
---|
4679 | #else |
---|
4680 | surfouts = surfoutsl |
---|
4681 | surfoutl = surfoutll |
---|
4682 | #endif |
---|
4683 | |
---|
4684 | !-- reset for next pass input |
---|
4685 | surfins = 0._wp |
---|
4686 | surfinl = 0._wp |
---|
4687 | |
---|
4688 | !-- reflected radiation |
---|
4689 | DO isvf = 1, nsvfl |
---|
4690 | isurf = svfsurf(1, isvf) |
---|
4691 | isurfsrc = svfsurf(2, isvf) |
---|
4692 | surfins(isurf) = surfins(isurf) + svf(1,isvf) * svf(2,isvf) * surfouts(isurfsrc) |
---|
4693 | surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * surfoutl(isurfsrc) |
---|
4694 | ENDDO |
---|
4695 | |
---|
4696 | !-- radiation absorbed by plant canopy |
---|
4697 | DO icsf = 1, ncsfl |
---|
4698 | ipcgb = csfsurf(1, icsf) |
---|
4699 | isurfsrc = csfsurf(2, icsf) |
---|
4700 | IF ( isurfsrc == -1 ) CYCLE ! sky->face only in 1st pass, not here |
---|
4701 | |
---|
4702 | pcbinsw(ipcgb) = pcbinsw(ipcgb) + csf(1,icsf) * csf(2,icsf) * surfouts(isurfsrc) |
---|
4703 | ENDDO |
---|
4704 | |
---|
4705 | surfinsw = surfinsw + surfins |
---|
4706 | surfinlw = surfinlw + surfinl |
---|
4707 | surfoutsw = surfoutsw + surfoutsl |
---|
4708 | surfoutlw = surfoutlw + surfoutll |
---|
4709 | ! surfhf = surfinsw + surfinlw - surfoutsw - surfoutlw |
---|
4710 | |
---|
4711 | ENDDO |
---|
4712 | |
---|
4713 | !-- push heat flux absorbed by plant canopy to respective 3D arrays |
---|
4714 | IF ( npcbl > 0 ) THEN |
---|
4715 | pc_heating_rate(:,:,:) = 0.0_wp |
---|
4716 | pc_transpiration_rate(:,:,:) = 0.0_wp |
---|
4717 | DO ipcgb = 1, npcbl |
---|
4718 | |
---|
4719 | j = pcbl(iy, ipcgb) |
---|
4720 | i = pcbl(ix, ipcgb) |
---|
4721 | k = pcbl(iz, ipcgb) |
---|
4722 | ! |
---|
4723 | !-- Following expression equals former kk = k - nzb_s_inner(j,i) |
---|
4724 | kk = k - get_topography_top_index_ji( j, i, 's' ) !- lad arrays are defined flat |
---|
4725 | pc_heating_rate(kk, j, i) = (pcbinsw(ipcgb) + pcbinlw(ipcgb)) & |
---|
4726 | * pchf_prep(k) * pt(k, j, i) !-- = dT/dt |
---|
4727 | |
---|
4728 | ! pc_transpiration_rate(kk,j,i) = 0.75_wp* (pcbinsw(ipcgb) + pcbinlw(ipcgb)) & |
---|
4729 | ! * pctf_prep(k) * pt(k, j, i) !-- = dq/dt |
---|
4730 | |
---|
4731 | ENDDO |
---|
4732 | ENDIF |
---|
4733 | ! |
---|
4734 | !-- Transfer radiation arrays required for energy balance to the respective data types |
---|
4735 | DO i = 1, nsurfl |
---|
4736 | m = surfl(5,i) |
---|
4737 | ! |
---|
4738 | !-- (1) Urban surfaces |
---|
4739 | !-- upward-facing |
---|
4740 | IF ( surfl(1,i) == iup_u ) THEN |
---|
4741 | surf_usm_h%rad_sw_in(m) = surfinsw(i) |
---|
4742 | surf_usm_h%rad_sw_out(m) = surfoutsw(i) |
---|
4743 | surf_usm_h%rad_lw_in(m) = surfinlw(i) |
---|
4744 | surf_usm_h%rad_lw_out(m) = surfoutlw(i) |
---|
4745 | surf_usm_h%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
4746 | surfinlw(i) - surfoutlw(i) |
---|
4747 | ! |
---|
4748 | !-- northward-facding |
---|
4749 | ELSEIF ( surfl(1,i) == inorth_u ) THEN |
---|
4750 | surf_usm_v(0)%rad_sw_in(m) = surfinsw(i) |
---|
4751 | surf_usm_v(0)%rad_sw_out(m) = surfoutsw(i) |
---|
4752 | surf_usm_v(0)%rad_lw_in(m) = surfinlw(i) |
---|
4753 | surf_usm_v(0)%rad_lw_out(m) = surfoutlw(i) |
---|
4754 | surf_usm_v(0)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
4755 | surfinlw(i) - surfoutlw(i) |
---|
4756 | ! |
---|
4757 | !-- southward-facding |
---|
4758 | ELSEIF ( surfl(1,i) == isouth_u ) THEN |
---|
4759 | surf_usm_v(1)%rad_sw_in(m) = surfinsw(i) |
---|
4760 | surf_usm_v(1)%rad_sw_out(m) = surfoutsw(i) |
---|
4761 | surf_usm_v(1)%rad_lw_in(m) = surfinlw(i) |
---|
4762 | surf_usm_v(1)%rad_lw_out(m) = surfoutlw(i) |
---|
4763 | surf_usm_v(1)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
4764 | surfinlw(i) - surfoutlw(i) |
---|
4765 | ! |
---|
4766 | !-- eastward-facing |
---|
4767 | ELSEIF ( surfl(1,i) == ieast_u ) THEN |
---|
4768 | surf_usm_v(2)%rad_sw_in(m) = surfinsw(i) |
---|
4769 | surf_usm_v(2)%rad_sw_out(m) = surfoutsw(i) |
---|
4770 | surf_usm_v(2)%rad_lw_in(m) = surfinlw(i) |
---|
4771 | surf_usm_v(2)%rad_lw_out(m) = surfoutlw(i) |
---|
4772 | surf_usm_v(2)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
4773 | surfinlw(i) - surfoutlw(i) |
---|
4774 | ! |
---|
4775 | !-- westward-facding |
---|
4776 | ELSEIF ( surfl(1,i) == iwest_u ) THEN |
---|
4777 | surf_usm_v(3)%rad_sw_in(m) = surfinsw(i) |
---|
4778 | surf_usm_v(3)%rad_sw_out(m) = surfoutsw(i) |
---|
4779 | surf_usm_v(3)%rad_lw_in(m) = surfinlw(i) |
---|
4780 | surf_usm_v(3)%rad_lw_out(m) = surfoutlw(i) |
---|
4781 | surf_usm_v(3)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
4782 | surfinlw(i) - surfoutlw(i) |
---|
4783 | ! |
---|
4784 | !-- (2) land surfaces |
---|
4785 | !-- upward-facing |
---|
4786 | ELSEIF ( surfl(1,i) == iup_l ) THEN |
---|
4787 | surf_lsm_h%rad_sw_in(m) = surfinsw(i) |
---|
4788 | surf_lsm_h%rad_sw_out(m) = surfoutsw(i) |
---|
4789 | surf_lsm_h%rad_lw_in(m) = surfinlw(i) |
---|
4790 | surf_lsm_h%rad_lw_out(m) = surfoutlw(i) |
---|
4791 | surf_lsm_h%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
4792 | surfinlw(i) - surfoutlw(i) |
---|
4793 | ! |
---|
4794 | !-- northward-facding |
---|
4795 | ELSEIF ( surfl(1,i) == inorth_l ) THEN |
---|
4796 | surf_lsm_v(0)%rad_sw_in(m) = surfinsw(i) |
---|
4797 | surf_lsm_v(0)%rad_sw_out(m) = surfoutsw(i) |
---|
4798 | surf_lsm_v(0)%rad_lw_in(m) = surfinlw(i) |
---|
4799 | surf_lsm_v(0)%rad_lw_out(m) = surfoutlw(i) |
---|
4800 | surf_lsm_v(0)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
4801 | surfinlw(i) - surfoutlw(i) |
---|
4802 | ! |
---|
4803 | !-- southward-facding |
---|
4804 | ELSEIF ( surfl(1,i) == isouth_l ) THEN |
---|
4805 | surf_lsm_v(1)%rad_sw_in(m) = surfinsw(i) |
---|
4806 | surf_lsm_v(1)%rad_sw_out(m) = surfoutsw(i) |
---|
4807 | surf_lsm_v(1)%rad_lw_in(m) = surfinlw(i) |
---|
4808 | surf_lsm_v(1)%rad_lw_out(m) = surfoutlw(i) |
---|
4809 | surf_lsm_v(1)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
4810 | surfinlw(i) - surfoutlw(i) |
---|
4811 | ! |
---|
4812 | !-- eastward-facing |
---|
4813 | ELSEIF ( surfl(1,i) == ieast_l ) THEN |
---|
4814 | surf_lsm_v(2)%rad_sw_in(m) = surfinsw(i) |
---|
4815 | surf_lsm_v(2)%rad_sw_out(m) = surfoutsw(i) |
---|
4816 | surf_lsm_v(2)%rad_lw_in(m) = surfinlw(i) |
---|
4817 | surf_lsm_v(2)%rad_lw_out(m) = surfoutlw(i) |
---|
4818 | surf_lsm_v(2)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
4819 | surfinlw(i) - surfoutlw(i) |
---|
4820 | ! |
---|
4821 | !-- westward-facing |
---|
4822 | ELSEIF ( surfl(1,i) == iwest_l ) THEN |
---|
4823 | surf_lsm_v(3)%rad_sw_in(m) = surfinsw(i) |
---|
4824 | surf_lsm_v(3)%rad_sw_out(m) = surfoutsw(i) |
---|
4825 | surf_lsm_v(3)%rad_lw_in(m) = surfinlw(i) |
---|
4826 | surf_lsm_v(3)%rad_lw_out(m) = surfoutlw(i) |
---|
4827 | surf_lsm_v(3)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
4828 | surfinlw(i) - surfoutlw(i) |
---|
4829 | ENDIF |
---|
4830 | |
---|
4831 | ENDDO |
---|
4832 | |
---|
4833 | DO m = 1, surf_usm_h%ns |
---|
4834 | surf_usm_h%surfhf(m) = surf_usm_h%rad_sw_in(m) + & |
---|
4835 | surf_usm_h%rad_lw_in(m) - & |
---|
4836 | surf_usm_h%rad_sw_out(m) - & |
---|
4837 | surf_usm_h%rad_lw_out(m) |
---|
4838 | ENDDO |
---|
4839 | DO m = 1, surf_lsm_h%ns |
---|
4840 | surf_lsm_h%surfhf(m) = surf_lsm_h%rad_sw_in(m) + & |
---|
4841 | surf_lsm_h%rad_lw_in(m) - & |
---|
4842 | surf_lsm_h%rad_sw_out(m) - & |
---|
4843 | surf_lsm_h%rad_lw_out(m) |
---|
4844 | ENDDO |
---|
4845 | |
---|
4846 | DO l = 0, 3 |
---|
4847 | !-- urban |
---|
4848 | DO m = 1, surf_usm_v(l)%ns |
---|
4849 | surf_usm_v(l)%surfhf(m) = surf_usm_v(l)%rad_sw_in(m) + & |
---|
4850 | surf_usm_v(l)%rad_lw_in(m) - & |
---|
4851 | surf_usm_v(l)%rad_sw_out(m) - & |
---|
4852 | surf_usm_v(l)%rad_lw_out(m) |
---|
4853 | ENDDO |
---|
4854 | !-- land |
---|
4855 | DO m = 1, surf_lsm_v(l)%ns |
---|
4856 | surf_lsm_v(l)%surfhf(m) = surf_lsm_v(l)%rad_sw_in(m) + & |
---|
4857 | surf_lsm_v(l)%rad_lw_in(m) - & |
---|
4858 | surf_lsm_v(l)%rad_sw_out(m) - & |
---|
4859 | surf_lsm_v(l)%rad_lw_out(m) |
---|
4860 | |
---|
4861 | ENDDO |
---|
4862 | ENDDO |
---|
4863 | ! |
---|
4864 | !-- Calculate the average temperature, albedo, and emissivity for urban/land |
---|
4865 | !-- domain when using average_radiation in the respective radiation model |
---|
4866 | |
---|
4867 | !-- Precalculate face areas for all face directions using normal vector |
---|
4868 | DO d = 0, nsurf_type |
---|
4869 | facearea(d) = 1._wp |
---|
4870 | IF ( idir(d) == 0 ) facearea(d) = facearea(d) * dx |
---|
4871 | IF ( jdir(d) == 0 ) facearea(d) = facearea(d) * dy |
---|
4872 | IF ( kdir(d) == 0 ) facearea(d) = facearea(d) * dz(1) |
---|
4873 | ENDDO |
---|
4874 | !-- calculate horizontal area |
---|
4875 | ! !!! ATTENTION!!! uniform grid is assumed here |
---|
4876 | area_hor = (nx+1) * (ny+1) * dx * dy |
---|
4877 | ! |
---|
4878 | !-- absorbed/received SW & LW and emitted LW energy of all physical |
---|
4879 | !-- surfaces (land and urban) in local processor |
---|
4880 | pinswl = 0._wp |
---|
4881 | pinlwl = 0._wp |
---|
4882 | pabsswl = 0._wp |
---|
4883 | pabslwl = 0._wp |
---|
4884 | pemitlwl = 0._wp |
---|
4885 | emiss_sum_surfl = 0._wp |
---|
4886 | area_surfl = 0._wp |
---|
4887 | DO i = 1, nsurfl |
---|
4888 | d = surfl(id, i) |
---|
4889 | !-- received SW & LW |
---|
4890 | pinswl = pinswl + (surfinswdir(i) + surfinswdif(i)) * facearea(d) |
---|
4891 | pinlwl = pinlwl + surfinlwdif(i) * facearea(d) |
---|
4892 | !-- absorbed SW & LW |
---|
4893 | pabsswl = pabsswl + (1._wp - albedo_surf(i)) * & |
---|
4894 | surfinsw(i) * facearea(d) |
---|
4895 | pabslwl = pabslwl + emiss_surf(i) * surfinlw(i) * facearea(d) |
---|
4896 | !-- emitted LW |
---|
4897 | pemitlwl = pemitlwl + surfemitlwl(i) * facearea(d) |
---|
4898 | !-- emissivity and area sum |
---|
4899 | emiss_sum_surfl = emiss_sum_surfl + emiss_surf(i) * facearea(d) |
---|
4900 | area_surfl = area_surfl + facearea(d) |
---|
4901 | END DO |
---|
4902 | ! |
---|
4903 | !-- add the absorbed SW energy by plant canopy |
---|
4904 | IF ( npcbl > 0 ) THEN |
---|
4905 | pabsswl = pabsswl + SUM(pcbinsw) |
---|
4906 | pabslwl = pabslwl + SUM(pcbinlw) |
---|
4907 | pinswl = pinswl + SUM(pcbinswdir) + SUM(pcbinswdif) |
---|
4908 | ENDIF |
---|
4909 | ! |
---|
4910 | !-- gather all rad flux energy in all processors |
---|
4911 | #if defined( __parallel ) |
---|
4912 | CALL MPI_ALLREDUCE( pinswl, pinsw, 1, MPI_REAL, MPI_SUM, comm2d, ierr) |
---|
4913 | CALL MPI_ALLREDUCE( pinlwl, pinlw, 1, MPI_REAL, MPI_SUM, comm2d, ierr) |
---|
4914 | CALL MPI_ALLREDUCE( pabsswl, pabssw, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
4915 | CALL MPI_ALLREDUCE( pabslwl, pabslw, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
4916 | CALL MPI_ALLREDUCE( pemitlwl, pemitlw, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
4917 | CALL MPI_ALLREDUCE( emiss_sum_surfl, emiss_sum_surf, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
4918 | CALL MPI_ALLREDUCE( area_surfl, area_surf, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
4919 | #else |
---|
4920 | pinsw = pinswl |
---|
4921 | pinlw = pinlwl |
---|
4922 | pabssw = pabsswl |
---|
4923 | pabslw = pabslwl |
---|
4924 | pemitlw = pemitlwl |
---|
4925 | emiss_sum_surf = emiss_sum_surfl |
---|
4926 | area_surf = area_surfl |
---|
4927 | #endif |
---|
4928 | |
---|
4929 | !-- (1) albedo |
---|
4930 | IF ( pinsw /= 0.0_wp ) & |
---|
4931 | albedo_urb = (pinsw - pabssw) / pinsw |
---|
4932 | !-- (2) average emmsivity |
---|
4933 | IF ( area_surf /= 0.0_wp ) & |
---|
4934 | emissivity_urb = emiss_sum_surf / area_surf |
---|
4935 | !-- (3) temperature |
---|
4936 | t_rad_urb = ( (pemitlw - pabslw + emissivity_urb*pinlw) / & |
---|
4937 | (emissivity_urb*sigma_sb * area_hor) )**0.25_wp |
---|
4938 | |
---|
4939 | CONTAINS |
---|
4940 | |
---|
4941 | !------------------------------------------------------------------------------! |
---|
4942 | !> Calculates radiation absorbed by box with given size and LAD. |
---|
4943 | !> |
---|
4944 | !> Simulates resol**2 rays (by equally spacing a bounding horizontal square |
---|
4945 | !> conatining all possible rays that would cross the box) and calculates |
---|
4946 | !> average transparency per ray. Returns fraction of absorbed radiation flux |
---|
4947 | !> and area for which this fraction is effective. |
---|
4948 | !------------------------------------------------------------------------------! |
---|
4949 | PURE SUBROUTINE box_absorb(boxsize, resol, dens, uvec, area, absorb) |
---|
4950 | IMPLICIT NONE |
---|
4951 | |
---|
4952 | REAL(wp), DIMENSION(3), INTENT(in) :: & |
---|
4953 | boxsize, & !< z, y, x size of box in m |
---|
4954 | uvec !< z, y, x unit vector of incoming flux |
---|
4955 | INTEGER(iwp), INTENT(in) :: & |
---|
4956 | resol !< No. of rays in x and y dimensions |
---|
4957 | REAL(wp), INTENT(in) :: & |
---|
4958 | dens !< box density (e.g. Leaf Area Density) |
---|
4959 | REAL(wp), INTENT(out) :: & |
---|
4960 | area, & !< horizontal area for flux absorbtion |
---|
4961 | absorb !< fraction of absorbed flux |
---|
4962 | REAL(wp) :: & |
---|
4963 | xshift, yshift, & |
---|
4964 | xmin, xmax, ymin, ymax, & |
---|
4965 | xorig, yorig, & |
---|
4966 | dx1, dy1, dz1, dx2, dy2, dz2, & |
---|
4967 | crdist, & |
---|
4968 | transp |
---|
4969 | INTEGER(iwp) :: & |
---|
4970 | i, j |
---|
4971 | |
---|
4972 | xshift = uvec(3) / uvec(1) * boxsize(1) |
---|
4973 | xmin = min(0._wp, -xshift) |
---|
4974 | xmax = boxsize(3) + max(0._wp, -xshift) |
---|
4975 | yshift = uvec(2) / uvec(1) * boxsize(1) |
---|
4976 | ymin = min(0._wp, -yshift) |
---|
4977 | ymax = boxsize(2) + max(0._wp, -yshift) |
---|
4978 | |
---|
4979 | transp = 0._wp |
---|
4980 | DO i = 1, resol |
---|
4981 | xorig = xmin + (xmax-xmin) * (i-.5_wp) / resol |
---|
4982 | DO j = 1, resol |
---|
4983 | yorig = ymin + (ymax-ymin) * (j-.5_wp) / resol |
---|
4984 | |
---|
4985 | dz1 = 0._wp |
---|
4986 | dz2 = boxsize(1)/uvec(1) |
---|
4987 | |
---|
4988 | IF ( uvec(2) > 0._wp ) THEN |
---|
4989 | dy1 = -yorig / uvec(2) !< crossing with y=0 |
---|
4990 | dy2 = (boxsize(2)-yorig) / uvec(2) !< crossing with y=boxsize(2) |
---|
4991 | ELSE !uvec(2)==0 |
---|
4992 | dy1 = -huge(1._wp) |
---|
4993 | dy2 = huge(1._wp) |
---|
4994 | ENDIF |
---|
4995 | |
---|
4996 | IF ( uvec(3) > 0._wp ) THEN |
---|
4997 | dx1 = -xorig / uvec(3) !< crossing with x=0 |
---|
4998 | dx2 = (boxsize(3)-xorig) / uvec(3) !< crossing with x=boxsize(3) |
---|
4999 | ELSE !uvec(3)==0 |
---|
5000 | dx1 = -huge(1._wp) |
---|
5001 | dx2 = huge(1._wp) |
---|
5002 | ENDIF |
---|
5003 | |
---|
5004 | crdist = max(0._wp, (min(dz2, dy2, dx2) - max(dz1, dy1, dx1))) |
---|
5005 | transp = transp + exp(-ext_coef * dens * crdist) |
---|
5006 | ENDDO |
---|
5007 | ENDDO |
---|
5008 | transp = transp / resol**2 |
---|
5009 | area = (boxsize(3)+xshift)*(boxsize(2)+yshift) |
---|
5010 | absorb = 1._wp - transp |
---|
5011 | |
---|
5012 | END SUBROUTINE box_absorb |
---|
5013 | |
---|
5014 | !------------------------------------------------------------------------------! |
---|
5015 | ! Description: |
---|
5016 | ! ------------ |
---|
5017 | !> This subroutine splits direct and diffusion dw radiation |
---|
5018 | !> It sould not be called in case the radiation model already does it |
---|
5019 | !> It follows <CITATION> |
---|
5020 | !------------------------------------------------------------------------------! |
---|
5021 | SUBROUTINE calc_diffusion_radiation |
---|
5022 | |
---|
5023 | REAL(wp), PARAMETER :: lowest_solarUp = 0.1_wp !< limit the sun elevation to protect stability of the calculation |
---|
5024 | INTEGER(iwp) :: i, j |
---|
5025 | REAL(wp) :: year_angle !< angle |
---|
5026 | REAL(wp) :: etr !< extraterestrial radiation |
---|
5027 | REAL(wp) :: corrected_solarUp !< corrected solar up radiation |
---|
5028 | REAL(wp) :: horizontalETR !< horizontal extraterestrial radiation |
---|
5029 | REAL(wp) :: clearnessIndex !< clearness index |
---|
5030 | REAL(wp) :: diff_frac !< diffusion fraction of the radiation |
---|
5031 | |
---|
5032 | |
---|
5033 | !-- Calculate current day and time based on the initial values and simulation time |
---|
5034 | year_angle = ( (day_of_year_init * 86400) + time_utc_init & |
---|
5035 | + time_since_reference_point ) * d_seconds_year & |
---|
5036 | * 2.0_wp * pi |
---|
5037 | |
---|
5038 | etr = solar_constant * (1.00011_wp + & |
---|
5039 | 0.034221_wp * cos(year_angle) + & |
---|
5040 | 0.001280_wp * sin(year_angle) + & |
---|
5041 | 0.000719_wp * cos(2.0_wp * year_angle) + & |
---|
5042 | 0.000077_wp * sin(2.0_wp * year_angle)) |
---|
5043 | |
---|
5044 | !-- |
---|
5045 | !-- Under a very low angle, we keep extraterestrial radiation at |
---|
5046 | !-- the last small value, therefore the clearness index will be pushed |
---|
5047 | !-- towards 0 while keeping full continuity. |
---|
5048 | !-- |
---|
5049 | IF ( zenith(0) <= lowest_solarUp ) THEN |
---|
5050 | corrected_solarUp = lowest_solarUp |
---|
5051 | ELSE |
---|
5052 | corrected_solarUp = zenith(0) |
---|
5053 | ENDIF |
---|
5054 | |
---|
5055 | horizontalETR = etr * corrected_solarUp |
---|
5056 | |
---|
5057 | DO i = nxl, nxr |
---|
5058 | DO j = nys, nyn |
---|
5059 | clearnessIndex = rad_sw_in(0,j,i) / horizontalETR |
---|
5060 | diff_frac = 1.0_wp / (1.0_wp + exp(-5.0033_wp + 8.6025_wp * clearnessIndex)) |
---|
5061 | rad_sw_in_diff(j,i) = rad_sw_in(0,j,i) * diff_frac |
---|
5062 | rad_sw_in_dir(j,i) = rad_sw_in(0,j,i) * (1.0_wp - diff_frac) |
---|
5063 | rad_lw_in_diff(j,i) = rad_lw_in(0,j,i) |
---|
5064 | ENDDO |
---|
5065 | ENDDO |
---|
5066 | |
---|
5067 | END SUBROUTINE calc_diffusion_radiation |
---|
5068 | |
---|
5069 | |
---|
5070 | END SUBROUTINE radiation_interaction |
---|
5071 | |
---|
5072 | !------------------------------------------------------------------------------! |
---|
5073 | ! Description: |
---|
5074 | ! ------------ |
---|
5075 | !> This subroutine initializes structures needed for radiative transfer |
---|
5076 | !> model. This model calculates transformation processes of the |
---|
5077 | !> radiation inside urban and land canopy layer. The module includes also |
---|
5078 | !> the interaction of the radiation with the resolved plant canopy. |
---|
5079 | !> |
---|
5080 | !> For more info. see Resler et al. 2017 |
---|
5081 | !> |
---|
5082 | !> The new version 2.0 was radically rewriten, the discretization scheme |
---|
5083 | !> has been changed. This new version significantly improves effectivity |
---|
5084 | !> of the paralelization and the scalability of the model. |
---|
5085 | !> |
---|
5086 | !------------------------------------------------------------------------------! |
---|
5087 | SUBROUTINE radiation_interaction_init |
---|
5088 | |
---|
5089 | USE control_parameters, & |
---|
5090 | ONLY: dz_stretch_level_start |
---|
5091 | |
---|
5092 | USE netcdf_data_input_mod, & |
---|
5093 | ONLY: leaf_area_density_f |
---|
5094 | |
---|
5095 | USE plant_canopy_model_mod, & |
---|
5096 | ONLY: pch_index, pc_heating_rate, lad_s |
---|
5097 | |
---|
5098 | IMPLICIT NONE |
---|
5099 | |
---|
5100 | INTEGER(iwp) :: i, j, k, d, l, ir, jr, ids, m |
---|
5101 | INTEGER(iwp) :: k_topo !< vertical index indicating topography top for given (j,i) |
---|
5102 | INTEGER(iwp) :: k_topo2 !< vertical index indicating topography top for given (j,i) |
---|
5103 | INTEGER(iwp) :: nzptl, nzubl, nzutl, isurf, ipcgb |
---|
5104 | INTEGER(iwp) :: procid |
---|
5105 | REAL(wp) :: mrl |
---|
5106 | |
---|
5107 | |
---|
5108 | !INTEGER(iwp), DIMENSION(1:4,inorth_b:iwest_b) :: ijdb !< start and end of the local domain border coordinates (set in code) |
---|
5109 | !LOGICAL, DIMENSION(inorth_b:iwest_b) :: isborder !< is PE on the border of the domain in four corresponding directions |
---|
5110 | |
---|
5111 | ! |
---|
5112 | !-- Find nzub, nzut, nzu via wall_flag_0 array (nzb_s_inner will be |
---|
5113 | !-- removed later). The following contruct finds the lowest / largest index |
---|
5114 | !-- for any upward-facing wall (see bit 12). |
---|
5115 | nzubl = MINVAL( get_topography_top_index( 's' ) ) |
---|
5116 | nzutl = MAXVAL( get_topography_top_index( 's' ) ) |
---|
5117 | |
---|
5118 | nzubl = MAX( nzubl, nzb ) |
---|
5119 | |
---|
5120 | IF ( plant_canopy ) THEN |
---|
5121 | !-- allocate needed arrays |
---|
5122 | ALLOCATE( pct(nys:nyn,nxl:nxr) ) |
---|
5123 | ALLOCATE( pch(nys:nyn,nxl:nxr) ) |
---|
5124 | |
---|
5125 | !-- calculate plant canopy height |
---|
5126 | npcbl = 0 |
---|
5127 | pct = 0 |
---|
5128 | pch = 0 |
---|
5129 | DO i = nxl, nxr |
---|
5130 | DO j = nys, nyn |
---|
5131 | ! |
---|
5132 | !-- Find topography top index |
---|
5133 | k_topo = get_topography_top_index_ji( j, i, 's' ) |
---|
5134 | |
---|
5135 | DO k = nzt+1, 0, -1 |
---|
5136 | IF ( lad_s(k,j,i) /= 0.0_wp ) THEN |
---|
5137 | !-- we are at the top of the pcs |
---|
5138 | pct(j,i) = k + k_topo |
---|
5139 | pch(j,i) = k |
---|
5140 | npcbl = npcbl + pch(j,i) |
---|
5141 | EXIT |
---|
5142 | ENDIF |
---|
5143 | ENDDO |
---|
5144 | ENDDO |
---|
5145 | ENDDO |
---|
5146 | |
---|
5147 | nzutl = MAX( nzutl, MAXVAL( pct ) ) |
---|
5148 | nzptl = MAXVAL( pct ) |
---|
5149 | !-- code of plant canopy model uses parameter pch_index |
---|
5150 | !-- we need to setup it here to right value |
---|
5151 | !-- (pch_index, lad_s and other arrays in PCM are defined flat) |
---|
5152 | pch_index = MERGE( leaf_area_density_f%nz - 1, MAXVAL( pch ), & |
---|
5153 | leaf_area_density_f%from_file ) |
---|
5154 | |
---|
5155 | prototype_lad = MAXVAL( lad_s ) * .9_wp !< better be *1.0 if lad is either 0 or maxval(lad) everywhere |
---|
5156 | IF ( prototype_lad <= 0._wp ) prototype_lad = .3_wp |
---|
5157 | !WRITE(message_string, '(a,f6.3)') 'Precomputing effective box optical ' & |
---|
5158 | ! // 'depth using prototype leaf area density = ', prototype_lad |
---|
5159 | !CALL message('usm_init_urban_surface', 'PA0520', 0, 0, -1, 6, 0) |
---|
5160 | ENDIF |
---|
5161 | |
---|
5162 | nzutl = MIN( nzutl + nzut_free, nzt ) |
---|
5163 | |
---|
5164 | #if defined( __parallel ) |
---|
5165 | CALL MPI_AllReduce(nzubl, nzub, 1, MPI_INTEGER, MPI_MIN, comm2d, ierr ) |
---|
5166 | CALL MPI_AllReduce(nzutl, nzut, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) |
---|
5167 | CALL MPI_AllReduce(nzptl, nzpt, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) |
---|
5168 | #else |
---|
5169 | nzub = nzubl |
---|
5170 | nzut = nzutl |
---|
5171 | nzpt = nzptl |
---|
5172 | #endif |
---|
5173 | ! |
---|
5174 | !-- Stretching (non-uniform grid spacing) is not considered in the radiation |
---|
5175 | !-- model. Therefore, vertical stretching has to be applied above the area |
---|
5176 | !-- where the parts of the radiation model which assume constant grid spacing |
---|
5177 | !-- are active. ABS (...) is required because the default value of |
---|
5178 | !-- dz_stretch_level_start is -9999999.9_wp (negative). |
---|
5179 | IF ( ABS( dz_stretch_level_start(1) ) <= zw(nzut) ) THEN |
---|
5180 | WRITE( message_string, * ) 'The lowest level where vertical ', & |
---|
5181 | 'stretching is applied have to be ', & |
---|
5182 | 'greater than ', zw(nzut) |
---|
5183 | CALL message( 'radiation_interaction_init', 'PA0496', 1, 2, 0, 6, 0 ) |
---|
5184 | ENDIF |
---|
5185 | ! |
---|
5186 | !-- global number of urban and plant layers |
---|
5187 | nzu = nzut - nzub + 1 |
---|
5188 | nzp = nzpt - nzub + 1 |
---|
5189 | ! |
---|
5190 | !-- check max_raytracing_dist relative to urban surface layer height |
---|
5191 | mrl = 2.0_wp * nzu * dz(1) |
---|
5192 | IF ( max_raytracing_dist == -999.0_wp ) THEN |
---|
5193 | max_raytracing_dist = mrl |
---|
5194 | ENDIF |
---|
5195 | ! IF ( max_raytracing_dist <= mrl ) THEN |
---|
5196 | ! IF ( max_raytracing_dist /= -999.0_wp ) THEN |
---|
5197 | ! !-- max_raytracing_dist too low |
---|
5198 | ! WRITE(message_string, '(a,f6.1)') 'Max_raytracing_dist too low, ' & |
---|
5199 | ! // 'override to value ', mrl |
---|
5200 | ! CALL message('radiation_interaction_init', 'PA0521', 0, 0, -1, 6, 0) |
---|
5201 | ! ENDIF |
---|
5202 | ! max_raytracing_dist = mrl |
---|
5203 | ! ENDIF |
---|
5204 | ! |
---|
5205 | !-- allocate urban surfaces grid |
---|
5206 | !-- calc number of surfaces in local proc |
---|
5207 | CALL location_message( ' calculation of indices for surfaces', .TRUE. ) |
---|
5208 | nsurfl = 0 |
---|
5209 | ! |
---|
5210 | !-- Number of horizontal surfaces including land- and roof surfaces in both USM and LSM. Note that |
---|
5211 | !-- All horizontal surface elements are already counted in surface_mod. |
---|
5212 | startland = 1 |
---|
5213 | nsurfl = surf_usm_h%ns + surf_lsm_h%ns |
---|
5214 | endland = nsurfl |
---|
5215 | nlands = endland - startland + 1 |
---|
5216 | |
---|
5217 | ! |
---|
5218 | !-- Number of vertical surfaces in both USM and LSM. Note that all vertical surface elements are |
---|
5219 | !-- already counted in surface_mod. |
---|
5220 | startwall = nsurfl+1 |
---|
5221 | DO i = 0,3 |
---|
5222 | nsurfl = nsurfl + surf_usm_v(i)%ns + surf_lsm_v(i)%ns |
---|
5223 | ENDDO |
---|
5224 | endwall = nsurfl |
---|
5225 | nwalls = endwall - startwall + 1 |
---|
5226 | |
---|
5227 | !-- fill gridpcbl and pcbl |
---|
5228 | IF ( npcbl > 0 ) THEN |
---|
5229 | ALLOCATE( pcbl(iz:ix, 1:npcbl) ) |
---|
5230 | ALLOCATE( gridpcbl(nzub:nzpt,nys:nyn,nxl:nxr) ) |
---|
5231 | pcbl = -1 |
---|
5232 | gridpcbl(:,:,:) = 0 |
---|
5233 | ipcgb = 0 |
---|
5234 | DO i = nxl, nxr |
---|
5235 | DO j = nys, nyn |
---|
5236 | ! |
---|
5237 | !-- Find topography top index |
---|
5238 | k_topo = get_topography_top_index_ji( j, i, 's' ) |
---|
5239 | |
---|
5240 | DO k = k_topo + 1, pct(j,i) |
---|
5241 | ipcgb = ipcgb + 1 |
---|
5242 | gridpcbl(k,j,i) = ipcgb |
---|
5243 | pcbl(:,ipcgb) = (/ k, j, i /) |
---|
5244 | ENDDO |
---|
5245 | ENDDO |
---|
5246 | ENDDO |
---|
5247 | ALLOCATE( pcbinsw( 1:npcbl ) ) |
---|
5248 | ALLOCATE( pcbinswdir( 1:npcbl ) ) |
---|
5249 | ALLOCATE( pcbinswdif( 1:npcbl ) ) |
---|
5250 | ALLOCATE( pcbinlw( 1:npcbl ) ) |
---|
5251 | ENDIF |
---|
5252 | |
---|
5253 | !-- fill surfl (the ordering of local surfaces given by the following |
---|
5254 | !-- cycles must not be altered, certain file input routines may depend |
---|
5255 | !-- on it) |
---|
5256 | ALLOCATE(surfl(5,nsurfl)) ! is it mecessary to allocate it with (5,nsurfl)? |
---|
5257 | isurf = 0 |
---|
5258 | |
---|
5259 | !-- add horizontal surface elements (land and urban surfaces) |
---|
5260 | !-- TODO: add urban overhanging surfaces (idown_u) |
---|
5261 | DO i = nxl, nxr |
---|
5262 | DO j = nys, nyn |
---|
5263 | DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i) |
---|
5264 | k = surf_usm_h%k(m) |
---|
5265 | |
---|
5266 | isurf = isurf + 1 |
---|
5267 | surfl(:,isurf) = (/iup_u,k,j,i,m/) |
---|
5268 | ENDDO |
---|
5269 | |
---|
5270 | DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i) |
---|
5271 | k = surf_lsm_h%k(m) |
---|
5272 | |
---|
5273 | isurf = isurf + 1 |
---|
5274 | surfl(:,isurf) = (/iup_l,k,j,i,m/) |
---|
5275 | ENDDO |
---|
5276 | |
---|
5277 | ENDDO |
---|
5278 | ENDDO |
---|
5279 | |
---|
5280 | !-- add vertical surface elements (land and urban surfaces) |
---|
5281 | !-- TODO: remove the hard coding of l = 0 to l = idirection |
---|
5282 | DO i = nxl, nxr |
---|
5283 | DO j = nys, nyn |
---|
5284 | l = 0 |
---|
5285 | DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i) |
---|
5286 | k = surf_usm_v(l)%k(m) |
---|
5287 | |
---|
5288 | isurf = isurf + 1 |
---|
5289 | surfl(:,isurf) = (/inorth_u,k,j,i,m/) |
---|
5290 | ENDDO |
---|
5291 | DO m = surf_lsm_v(l)%start_index(j,i), surf_lsm_v(l)%end_index(j,i) |
---|
5292 | k = surf_lsm_v(l)%k(m) |
---|
5293 | |
---|
5294 | isurf = isurf + 1 |
---|
5295 | surfl(:,isurf) = (/inorth_l,k,j,i,m/) |
---|
5296 | ENDDO |
---|
5297 | |
---|
5298 | l = 1 |
---|
5299 | DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i) |
---|
5300 | k = surf_usm_v(l)%k(m) |
---|
5301 | |
---|
5302 | isurf = isurf + 1 |
---|
5303 | surfl(:,isurf) = (/isouth_u,k,j,i,m/) |
---|
5304 | ENDDO |
---|
5305 | DO m = surf_lsm_v(l)%start_index(j,i), surf_lsm_v(l)%end_index(j,i) |
---|
5306 | k = surf_lsm_v(l)%k(m) |
---|
5307 | |
---|
5308 | isurf = isurf + 1 |
---|
5309 | surfl(:,isurf) = (/isouth_l,k,j,i,m/) |
---|
5310 | ENDDO |
---|
5311 | |
---|
5312 | l = 2 |
---|
5313 | DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i) |
---|
5314 | k = surf_usm_v(l)%k(m) |
---|
5315 | |
---|
5316 | isurf = isurf + 1 |
---|
5317 | surfl(:,isurf) = (/ieast_u,k,j,i,m/) |
---|
5318 | ENDDO |
---|
5319 | DO m = surf_lsm_v(l)%start_index(j,i), surf_lsm_v(l)%end_index(j,i) |
---|
5320 | k = surf_lsm_v(l)%k(m) |
---|
5321 | |
---|
5322 | isurf = isurf + 1 |
---|
5323 | surfl(:,isurf) = (/ieast_l,k,j,i,m/) |
---|
5324 | ENDDO |
---|
5325 | |
---|
5326 | l = 3 |
---|
5327 | DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i) |
---|
5328 | k = surf_usm_v(l)%k(m) |
---|
5329 | |
---|
5330 | isurf = isurf + 1 |
---|
5331 | surfl(:,isurf) = (/iwest_u,k,j,i,m/) |
---|
5332 | ENDDO |
---|
5333 | DO m = surf_lsm_v(l)%start_index(j,i), surf_lsm_v(l)%end_index(j,i) |
---|
5334 | k = surf_lsm_v(l)%k(m) |
---|
5335 | |
---|
5336 | isurf = isurf + 1 |
---|
5337 | surfl(:,isurf) = (/iwest_l,k,j,i,m/) |
---|
5338 | ENDDO |
---|
5339 | ENDDO |
---|
5340 | ENDDO |
---|
5341 | |
---|
5342 | ! |
---|
5343 | !-- broadband albedo of the land, roof and wall surface |
---|
5344 | !-- for domain border and sky set artifically to 1.0 |
---|
5345 | !-- what allows us to calculate heat flux leaving over |
---|
5346 | !-- side and top borders of the domain |
---|
5347 | ALLOCATE ( albedo_surf(nsurfl) ) |
---|
5348 | albedo_surf = 1.0_wp |
---|
5349 | ! |
---|
5350 | !-- Also allocate further array for emissivity with identical order of |
---|
5351 | !-- surface elements as radiation arrays. |
---|
5352 | ALLOCATE ( emiss_surf(nsurfl) ) |
---|
5353 | |
---|
5354 | |
---|
5355 | ! |
---|
5356 | !-- global array surf of indices of surfaces and displacement index array surfstart |
---|
5357 | ALLOCATE(nsurfs(0:numprocs-1)) |
---|
5358 | |
---|
5359 | #if defined( __parallel ) |
---|
5360 | CALL MPI_Allgather(nsurfl,1,MPI_INTEGER,nsurfs,1,MPI_INTEGER,comm2d,ierr) |
---|
5361 | #else |
---|
5362 | nsurfs(0) = nsurfl |
---|
5363 | #endif |
---|
5364 | ALLOCATE(surfstart(0:numprocs)) |
---|
5365 | k = 0 |
---|
5366 | DO i=0,numprocs-1 |
---|
5367 | surfstart(i) = k |
---|
5368 | k = k+nsurfs(i) |
---|
5369 | ENDDO |
---|
5370 | surfstart(numprocs) = k |
---|
5371 | nsurf = k |
---|
5372 | ALLOCATE(surf(5,nsurf)) |
---|
5373 | |
---|
5374 | #if defined( __parallel ) |
---|
5375 | CALL MPI_AllGatherv(surfl, nsurfl*5, MPI_INTEGER, surf, nsurfs*5, & |
---|
5376 | surfstart(0:numprocs-1)*5, MPI_INTEGER, comm2d, ierr) |
---|
5377 | #else |
---|
5378 | surf = surfl |
---|
5379 | #endif |
---|
5380 | |
---|
5381 | !-- |
---|
5382 | !-- allocation of the arrays for direct and diffusion radiation |
---|
5383 | CALL location_message( ' allocation of radiation arrays', .TRUE. ) |
---|
5384 | !-- rad_sw_in, rad_lw_in are computed in radiation model, |
---|
5385 | !-- splitting of direct and diffusion part is done |
---|
5386 | !-- in calc_diffusion_radiation for now |
---|
5387 | |
---|
5388 | ALLOCATE( rad_sw_in_dir(nysg:nyng,nxlg:nxrg) ) |
---|
5389 | ALLOCATE( rad_sw_in_diff(nysg:nyng,nxlg:nxrg) ) |
---|
5390 | ALLOCATE( rad_lw_in_diff(nysg:nyng,nxlg:nxrg) ) |
---|
5391 | rad_sw_in_dir = 0.0_wp |
---|
5392 | rad_sw_in_diff = 0.0_wp |
---|
5393 | rad_lw_in_diff = 0.0_wp |
---|
5394 | |
---|
5395 | !-- allocate radiation arrays |
---|
5396 | ALLOCATE( surfins(nsurfl) ) |
---|
5397 | ALLOCATE( surfinl(nsurfl) ) |
---|
5398 | ALLOCATE( surfinsw(nsurfl) ) |
---|
5399 | ALLOCATE( surfinlw(nsurfl) ) |
---|
5400 | ALLOCATE( surfinswdir(nsurfl) ) |
---|
5401 | ALLOCATE( surfinswdif(nsurfl) ) |
---|
5402 | ALLOCATE( surfinlwdif(nsurfl) ) |
---|
5403 | ALLOCATE( surfoutsl(nsurfl) ) |
---|
5404 | ALLOCATE( surfoutll(nsurfl) ) |
---|
5405 | ALLOCATE( surfoutsw(nsurfl) ) |
---|
5406 | ALLOCATE( surfoutlw(nsurfl) ) |
---|
5407 | ALLOCATE( surfouts(nsurf) ) |
---|
5408 | ALLOCATE( surfoutl(nsurf) ) |
---|
5409 | ALLOCATE( skyvf(nsurfl) ) |
---|
5410 | ALLOCATE( skyvft(nsurfl) ) |
---|
5411 | ALLOCATE( surfemitlwl(nsurfl) ) |
---|
5412 | |
---|
5413 | ! |
---|
5414 | !-- In case of average_radiation, aggregated surface albedo and emissivity, |
---|
5415 | !-- also set initial value for t_rad_urb. |
---|
5416 | !-- For now set an arbitrary initial value. |
---|
5417 | IF ( average_radiation ) THEN |
---|
5418 | albedo_urb = 0.1_wp |
---|
5419 | emissivity_urb = 0.9_wp |
---|
5420 | t_rad_urb = pt_surface |
---|
5421 | ENDIF |
---|
5422 | |
---|
5423 | END SUBROUTINE radiation_interaction_init |
---|
5424 | |
---|
5425 | !------------------------------------------------------------------------------! |
---|
5426 | ! Description: |
---|
5427 | ! ------------ |
---|
5428 | !> Calculates shape view factors (SVF), plant sink canopy factors (PCSF), |
---|
5429 | !> sky-view factors, discretized path for direct solar radiation, MRT factors |
---|
5430 | !> and other preprocessed data needed for radiation_interaction. |
---|
5431 | !------------------------------------------------------------------------------! |
---|
5432 | SUBROUTINE radiation_calc_svf |
---|
5433 | |
---|
5434 | IMPLICIT NONE |
---|
5435 | |
---|
5436 | INTEGER(iwp) :: i, j, k, l, d, ip, jp |
---|
5437 | INTEGER(iwp) :: isvf, ksvf, icsf, kcsf, npcsfl, isvf_surflt, imrtt, imrtf, ipcgb |
---|
5438 | INTEGER(iwp) :: sd, td, ioln, iproc |
---|
5439 | INTEGER(iwp) :: iaz, izn !< azimuth, zenith counters |
---|
5440 | INTEGER(iwp) :: naz, nzn !< azimuth, zenith num of steps |
---|
5441 | REAL(wp) :: az0, zn0 !< starting azimuth/zenith |
---|
5442 | REAL(wp) :: azs, zns !< azimuth/zenith cycle step |
---|
5443 | REAL(wp) :: az1, az2 !< relative azimuth of section borders |
---|
5444 | REAL(wp) :: azmid !< ray (center) azimuth |
---|
5445 | REAL(wp) :: horizon !< computed horizon height (tangent of elevation) |
---|
5446 | REAL(wp) :: azen !< zenith angle |
---|
5447 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zdirs !< directions in z (tangent of elevation) |
---|
5448 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zbdry !< zenith angle boundaries |
---|
5449 | REAL(wp), DIMENSION(:), ALLOCATABLE :: vffrac !< view factor fractions for individual rays |
---|
5450 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ztransp !< array of transparency in z steps |
---|
5451 | REAL(wp), DIMENSION(0:nsurf_type) :: facearea |
---|
5452 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nzterrl |
---|
5453 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: csflt, pcsflt |
---|
5454 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: kcsflt,kpcsflt |
---|
5455 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: icsflt,dcsflt,ipcsflt,dpcsflt |
---|
5456 | REAL(wp), DIMENSION(3) :: uv |
---|
5457 | LOGICAL :: visible |
---|
5458 | REAL(wp), DIMENSION(3) :: sa, ta !< real coordinates z,y,x of source and target |
---|
5459 | REAL(wp) :: transparency, rirrf, sqdist, svfsum |
---|
5460 | INTEGER(iwp) :: isurflt, isurfs, isurflt_prev |
---|
5461 | INTEGER(iwp) :: itx, ity, itz |
---|
5462 | INTEGER(idp) :: ray_skip_maxdist, ray_skip_minval !< skipped raytracing counts |
---|
5463 | INTEGER(iwp) :: max_track_len !< maximum 2d track length |
---|
5464 | CHARACTER(len=7) :: pid_char = '' |
---|
5465 | INTEGER(iwp) :: win_lad, minfo |
---|
5466 | REAL(wp), DIMENSION(:,:,:), POINTER :: lad_s_rma !< fortran pointer, but lower bounds are 1 |
---|
5467 | TYPE(c_ptr) :: lad_s_rma_p !< allocated c pointer |
---|
5468 | #if defined( __parallel ) |
---|
5469 | INTEGER(kind=MPI_ADDRESS_KIND) :: size_lad_rma |
---|
5470 | #endif |
---|
5471 | ! |
---|
5472 | INTEGER(iwp), DIMENSION(0:svfnorm_report_num) :: svfnorm_counts |
---|
5473 | CHARACTER(200) :: msg |
---|
5474 | |
---|
5475 | !-- calculation of the SVF |
---|
5476 | CALL location_message( ' calculation of SVF and CSF', .TRUE. ) |
---|
5477 | ! CALL radiation_write_debug_log('Start calculation of SVF and CSF') |
---|
5478 | |
---|
5479 | !-- precalculate face areas for different face directions using normal vector |
---|
5480 | DO d = 0, nsurf_type |
---|
5481 | facearea(d) = 1._wp |
---|
5482 | IF ( idir(d) == 0 ) facearea(d) = facearea(d) * dx |
---|
5483 | IF ( jdir(d) == 0 ) facearea(d) = facearea(d) * dy |
---|
5484 | IF ( kdir(d) == 0 ) facearea(d) = facearea(d) * dz(1) |
---|
5485 | ENDDO |
---|
5486 | |
---|
5487 | !-- initialize variables and temporary arrays for calculation of svf and csf |
---|
5488 | nsvfl = 0 |
---|
5489 | ncsfl = 0 |
---|
5490 | nsvfla = gasize |
---|
5491 | msvf = 1 |
---|
5492 | ALLOCATE( asvf1(nsvfla) ) |
---|
5493 | asvf => asvf1 |
---|
5494 | IF ( plant_canopy ) THEN |
---|
5495 | ncsfla = gasize |
---|
5496 | mcsf = 1 |
---|
5497 | ALLOCATE( acsf1(ncsfla) ) |
---|
5498 | acsf => acsf1 |
---|
5499 | ENDIF |
---|
5500 | ray_skip_maxdist = 0 |
---|
5501 | ray_skip_minval = 0 |
---|
5502 | |
---|
5503 | !-- initialize temporary terrain and plant canopy height arrays (global 2D array!) |
---|
5504 | ALLOCATE( nzterr(0:(nx+1)*(ny+1)-1) ) |
---|
5505 | #if defined( __parallel ) |
---|
5506 | ALLOCATE( nzterrl(nys:nyn,nxl:nxr) ) |
---|
5507 | nzterrl = get_topography_top_index( 's' ) |
---|
5508 | CALL MPI_AllGather( nzterrl, nnx*nny, MPI_INTEGER, & |
---|
5509 | nzterr, nnx*nny, MPI_INTEGER, comm2d, ierr ) |
---|
5510 | DEALLOCATE(nzterrl) |
---|
5511 | #else |
---|
5512 | nzterr = RESHAPE( get_topography_top_index( 's' ), (/(nx+1)*(ny+1)/) ) |
---|
5513 | #endif |
---|
5514 | IF ( plant_canopy ) THEN |
---|
5515 | ALLOCATE( plantt(0:(nx+1)*(ny+1)-1) ) |
---|
5516 | maxboxesg = nx + ny + nzp + 1 |
---|
5517 | max_track_len = nx + ny + 1 |
---|
5518 | !-- temporary arrays storing values for csf calculation during raytracing |
---|
5519 | ALLOCATE( boxes(3, maxboxesg) ) |
---|
5520 | ALLOCATE( crlens(maxboxesg) ) |
---|
5521 | |
---|
5522 | #if defined( __parallel ) |
---|
5523 | CALL MPI_AllGather( pct, nnx*nny, MPI_INTEGER, & |
---|
5524 | plantt, nnx*nny, MPI_INTEGER, comm2d, ierr ) |
---|
5525 | |
---|
5526 | !-- temporary arrays storing values for csf calculation during raytracing |
---|
5527 | ALLOCATE( lad_ip(maxboxesg) ) |
---|
5528 | ALLOCATE( lad_disp(maxboxesg) ) |
---|
5529 | |
---|
5530 | IF ( rma_lad_raytrace ) THEN |
---|
5531 | ALLOCATE( lad_s_ray(maxboxesg) ) |
---|
5532 | |
---|
5533 | ! set conditions for RMA communication |
---|
5534 | CALL MPI_Info_create(minfo, ierr) |
---|
5535 | CALL MPI_Info_set(minfo, 'accumulate_ordering', '', ierr) |
---|
5536 | CALL MPI_Info_set(minfo, 'accumulate_ops', 'same_op', ierr) |
---|
5537 | CALL MPI_Info_set(minfo, 'same_size', 'true', ierr) |
---|
5538 | CALL MPI_Info_set(minfo, 'same_disp_unit', 'true', ierr) |
---|
5539 | |
---|
5540 | !-- Allocate and initialize the MPI RMA window |
---|
5541 | !-- must be in accordance with allocation of lad_s in plant_canopy_model |
---|
5542 | !-- optimization of memory should be done |
---|
5543 | !-- Argument X of function STORAGE_SIZE(X) needs arbitrary REAL(wp) value, set to 1.0_wp for now |
---|
5544 | size_lad_rma = STORAGE_SIZE(1.0_wp)/8*nnx*nny*nzp |
---|
5545 | CALL MPI_Win_allocate(size_lad_rma, STORAGE_SIZE(1.0_wp)/8, minfo, comm2d, & |
---|
5546 | lad_s_rma_p, win_lad, ierr) |
---|
5547 | CALL c_f_pointer(lad_s_rma_p, lad_s_rma, (/ nzp, nny, nnx /)) |
---|
5548 | sub_lad(nzub:, nys:, nxl:) => lad_s_rma(:,:,:) |
---|
5549 | ELSE |
---|
5550 | ALLOCATE(sub_lad(nzub:nzpt, nys:nyn, nxl:nxr)) |
---|
5551 | ENDIF |
---|
5552 | #else |
---|
5553 | plantt = RESHAPE( pct(nys:nyn,nxl:nxr), (/(nx+1)*(ny+1)/) ) |
---|
5554 | ALLOCATE(sub_lad(nzub:nzpt, nys:nyn, nxl:nxr)) |
---|
5555 | #endif |
---|
5556 | plantt_max = MAXVAL(plantt) |
---|
5557 | ALLOCATE( rt2_track(2, max_track_len), rt2_track_lad(nzub:plantt_max, max_track_len), & |
---|
5558 | rt2_track_dist(0:max_track_len), rt2_dist(plantt_max-nzub+2) ) |
---|
5559 | |
---|
5560 | sub_lad(:,:,:) = 0._wp |
---|
5561 | DO i = nxl, nxr |
---|
5562 | DO j = nys, nyn |
---|
5563 | k = get_topography_top_index_ji( j, i, 's' ) |
---|
5564 | |
---|
5565 | sub_lad(k:nzpt, j, i) = lad_s(0:nzpt-k, j, i) |
---|
5566 | ENDDO |
---|
5567 | ENDDO |
---|
5568 | |
---|
5569 | #if defined( __parallel ) |
---|
5570 | IF ( rma_lad_raytrace ) THEN |
---|
5571 | CALL MPI_Info_free(minfo, ierr) |
---|
5572 | CALL MPI_Win_lock_all(0, win_lad, ierr) |
---|
5573 | ELSE |
---|
5574 | ALLOCATE( sub_lad_g(0:(nx+1)*(ny+1)*nzp-1) ) |
---|
5575 | CALL MPI_AllGather( sub_lad, nnx*nny*nzp, MPI_REAL, & |
---|
5576 | sub_lad_g, nnx*nny*nzp, MPI_REAL, comm2d, ierr ) |
---|
5577 | ENDIF |
---|
5578 | #endif |
---|
5579 | ENDIF |
---|
5580 | |
---|
5581 | IF ( mrt_factors ) THEN |
---|
5582 | OPEN(153, file='MRT_TARGETS', access='SEQUENTIAL', & |
---|
5583 | action='READ', status='OLD', form='FORMATTED', err=524) |
---|
5584 | OPEN(154, file='MRT_FACTORS'//myid_char, access='DIRECT', recl=(5*4+2*8), & |
---|
5585 | action='WRITE', status='REPLACE', form='UNFORMATTED', err=525) |
---|
5586 | imrtf = 1 |
---|
5587 | DO |
---|
5588 | READ(153, *, end=526, err=524) imrtt, i, j, k |
---|
5589 | IF ( i < nxl .OR. i > nxr & |
---|
5590 | .OR. j < nys .OR. j > nyn ) CYCLE |
---|
5591 | ta = (/ REAL(k), REAL(j), REAL(i) /) |
---|
5592 | |
---|
5593 | DO isurfs = 1, nsurf |
---|
5594 | IF ( .NOT. surface_facing(i, j, k, -1, & |
---|
5595 | surf(ix, isurfs), surf(iy, isurfs), & |
---|
5596 | surf(iz, isurfs), surf(id, isurfs)) ) THEN |
---|
5597 | CYCLE |
---|
5598 | ENDIF |
---|
5599 | |
---|
5600 | sd = surf(id, isurfs) |
---|
5601 | sa = (/ REAL(surf(iz, isurfs), wp) - 0.5_wp * kdir(sd), & |
---|
5602 | REAL(surf(iy, isurfs), wp) - 0.5_wp * jdir(sd), & |
---|
5603 | REAL(surf(ix, isurfs), wp) - 0.5_wp * idir(sd) /) |
---|
5604 | |
---|
5605 | !-- unit vector source -> target |
---|
5606 | uv = (/ (ta(1)-sa(1))*dz(1), (ta(2)-sa(2))*dy, (ta(3)-sa(3))*dx /) |
---|
5607 | sqdist = SUM(uv(:)**2) |
---|
5608 | uv = uv / SQRT(sqdist) |
---|
5609 | |
---|
5610 | !-- irradiance factor - see svf. Here we consider that target face is always normal, |
---|
5611 | !-- i.e. the second dot product equals 1 |
---|
5612 | rirrf = dot_product((/ kdir(sd), jdir(sd), idir(sd) /), uv) & |
---|
5613 | / (pi * sqdist) * facearea(sd) |
---|
5614 | |
---|
5615 | !-- raytrace while not creating any canopy sink factors |
---|
5616 | CALL raytrace(sa, ta, isurfs, rirrf, 1._wp, .FALSE., & |
---|
5617 | visible, transparency, win_lad) |
---|
5618 | IF ( .NOT. visible ) CYCLE |
---|
5619 | |
---|
5620 | !rsvf = rirrf * transparency |
---|
5621 | WRITE(154, rec=imrtf, err=525) INT(imrtt, kind=4), & |
---|
5622 | INT(surf(id, isurfs), kind=4), & |
---|
5623 | INT(surf(iz, isurfs), kind=4), & |
---|
5624 | INT(surf(iy, isurfs), kind=4), & |
---|
5625 | INT(surf(ix, isurfs), kind=4), & |
---|
5626 | REAL(rirrf, kind=8), REAL(transparency, kind=8) |
---|
5627 | imrtf = imrtf + 1 |
---|
5628 | |
---|
5629 | ENDDO !< isurfs |
---|
5630 | ENDDO !< MRT_TARGETS record |
---|
5631 | |
---|
5632 | 524 message_string = 'error reading file MRT_TARGETS' |
---|
5633 | CALL message( 'radiation_calc_svf', 'PA0524', 1, 2, 0, 6, 0 ) |
---|
5634 | |
---|
5635 | 525 message_string = 'error writing file MRT_FACTORS'//myid_char |
---|
5636 | CALL message( 'radiation_calc_svf', 'PA0525', 1, 2, 0, 6, 0 ) |
---|
5637 | |
---|
5638 | 526 CLOSE(153) |
---|
5639 | CLOSE(154) |
---|
5640 | ENDIF !< mrt_factors |
---|
5641 | |
---|
5642 | !--Directions opposite to face normals are not even calculated, |
---|
5643 | !--they must be preset to 0 |
---|
5644 | !-- |
---|
5645 | dsitrans(:,:) = 0._wp |
---|
5646 | |
---|
5647 | DO isurflt = 1, nsurfl |
---|
5648 | !-- determine face centers |
---|
5649 | td = surfl(id, isurflt) |
---|
5650 | ta = (/ REAL(surfl(iz, isurflt), wp) - 0.5_wp * kdir(td), & |
---|
5651 | REAL(surfl(iy, isurflt), wp) - 0.5_wp * jdir(td), & |
---|
5652 | REAL(surfl(ix, isurflt), wp) - 0.5_wp * idir(td) /) |
---|
5653 | |
---|
5654 | !--Calculate sky view factor and raytrace DSI paths |
---|
5655 | skyvf(isurflt) = 0._wp |
---|
5656 | skyvft(isurflt) = 0._wp |
---|
5657 | |
---|
5658 | !--Select a proper half-sphere for 2D raytracing |
---|
5659 | SELECT CASE ( td ) |
---|
5660 | CASE ( iup_u, iup_l ) |
---|
5661 | az0 = 0._wp |
---|
5662 | naz = raytrace_discrete_azims |
---|
5663 | azs = 2._wp * pi / REAL(naz, wp) |
---|
5664 | zn0 = 0._wp |
---|
5665 | nzn = raytrace_discrete_elevs / 2 |
---|
5666 | zns = pi / 2._wp / REAL(nzn, wp) |
---|
5667 | CASE ( isouth_u, isouth_l ) |
---|
5668 | az0 = pi / 2._wp |
---|
5669 | naz = raytrace_discrete_azims / 2 |
---|
5670 | azs = pi / REAL(naz, wp) |
---|
5671 | zn0 = 0._wp |
---|
5672 | nzn = raytrace_discrete_elevs |
---|
5673 | zns = pi / REAL(nzn, wp) |
---|
5674 | CASE ( inorth_u, inorth_l ) |
---|
5675 | az0 = - pi / 2._wp |
---|
5676 | naz = raytrace_discrete_azims / 2 |
---|
5677 | azs = pi / REAL(naz, wp) |
---|
5678 | zn0 = 0._wp |
---|
5679 | nzn = raytrace_discrete_elevs |
---|
5680 | zns = pi / REAL(nzn, wp) |
---|
5681 | CASE ( iwest_u, iwest_l ) |
---|
5682 | az0 = pi |
---|
5683 | naz = raytrace_discrete_azims / 2 |
---|
5684 | azs = pi / REAL(naz, wp) |
---|
5685 | zn0 = 0._wp |
---|
5686 | nzn = raytrace_discrete_elevs |
---|
5687 | zns = pi / REAL(nzn, wp) |
---|
5688 | CASE ( ieast_u, ieast_l ) |
---|
5689 | az0 = 0._wp |
---|
5690 | naz = raytrace_discrete_azims / 2 |
---|
5691 | azs = pi / REAL(naz, wp) |
---|
5692 | zn0 = 0._wp |
---|
5693 | nzn = raytrace_discrete_elevs |
---|
5694 | zns = pi / REAL(nzn, wp) |
---|
5695 | CASE DEFAULT |
---|
5696 | WRITE(message_string, *) 'ERROR: the surface type ', td, & |
---|
5697 | ' is not supported for calculating',& |
---|
5698 | ' SVF' |
---|
5699 | CALL message( 'radiation_calc_svf', 'PA0488', 1, 2, 0, 6, 0 ) |
---|
5700 | END SELECT |
---|
5701 | |
---|
5702 | ALLOCATE ( zdirs(1:nzn), zbdry(0:nzn), vffrac(1:nzn), ztransp(1:nzn) ) |
---|
5703 | zdirs(:) = (/( TAN(pi/2 - (zn0+(REAL(izn,wp)-.5_wp)*zns)), izn=1, nzn )/) |
---|
5704 | zbdry(:) = (/( zn0+REAL(izn,wp)*zns, izn=0, nzn )/) |
---|
5705 | IF ( td == iup_u .OR. td == iup_l ) THEN |
---|
5706 | !-- For horizontal target, vf fractions are constant per azimuth |
---|
5707 | vffrac(:) = (COS(2 * zbdry(0:nzn-1)) - COS(2 * zbdry(1:nzn))) / 2._wp / REAL(naz, wp) |
---|
5708 | !--sum of vffrac for all iaz equals 1, verified |
---|
5709 | ENDIF |
---|
5710 | |
---|
5711 | !--Calculate sky-view factor and direct solar visibility using 2D raytracing |
---|
5712 | DO iaz = 1, naz |
---|
5713 | azmid = az0 + (REAL(iaz, wp) - .5_wp) * azs |
---|
5714 | IF ( td /= iup_u .AND. td /= iup_l ) THEN |
---|
5715 | az2 = REAL(iaz, wp) * azs - pi/2._wp |
---|
5716 | az1 = az2 - azs |
---|
5717 | !TODO precalculate after 1st line |
---|
5718 | vffrac(:) = (SIN(az2) - SIN(az1)) & |
---|
5719 | * (zbdry(1:nzn) - zbdry(0:nzn-1) & |
---|
5720 | + SIN(zbdry(0:nzn-1))*COS(zbdry(0:nzn-1)) & |
---|
5721 | - SIN(zbdry(1:nzn))*COS(zbdry(1:nzn))) & |
---|
5722 | / (2._wp * pi) |
---|
5723 | !--sum of vffrac for all iaz equals 1, verified |
---|
5724 | ENDIF |
---|
5725 | CALL raytrace_2d(ta, (/ COS(azmid), SIN(azmid) /), zdirs, & |
---|
5726 | surfstart(myid) + isurflt, facearea(td), & |
---|
5727 | vffrac, .TRUE., .FALSE., win_lad, horizon,& |
---|
5728 | ztransp) !FIXME unit vect in grid units + zdirs |
---|
5729 | |
---|
5730 | azen = pi/2 - ATAN(horizon) |
---|
5731 | IF ( td == iup_u .OR. td == iup_l ) THEN |
---|
5732 | azen = MIN(azen, pi/2) !only above horizontal direction |
---|
5733 | skyvf(isurflt) = skyvf(isurflt) + (1._wp - COS(2*azen)) / & |
---|
5734 | (2._wp * raytrace_discrete_azims) |
---|
5735 | ELSE |
---|
5736 | skyvf(isurflt) = skyvf(isurflt) + (SIN(az2) - SIN(az1)) * & |
---|
5737 | (azen - SIN(azen)*COS(azen)) / (2._wp*pi) |
---|
5738 | ENDIF |
---|
5739 | skyvft(isurflt) = skyvft(isurflt) + SUM(ztransp(:) * vffrac(:)) |
---|
5740 | |
---|
5741 | !--Save direct solar transparency |
---|
5742 | j = MODULO(NINT(azmid/ & |
---|
5743 | (2._wp*pi)*raytrace_discrete_azims-.5_wp, iwp), & |
---|
5744 | raytrace_discrete_azims) |
---|
5745 | |
---|
5746 | DO k = 1, raytrace_discrete_elevs/2 |
---|
5747 | i = dsidir_rev(k-1, j) |
---|
5748 | IF ( i /= -1 ) dsitrans(isurflt, i) = ztransp(k) |
---|
5749 | ENDDO |
---|
5750 | ENDDO |
---|
5751 | |
---|
5752 | DEALLOCATE ( zdirs, zbdry, vffrac, ztransp ) |
---|
5753 | ! |
---|
5754 | !-- Following calculations only required for surface_reflections |
---|
5755 | IF ( surface_reflections ) THEN |
---|
5756 | |
---|
5757 | DO isurfs = 1, nsurf |
---|
5758 | IF ( .NOT. surface_facing(surfl(ix, isurflt), surfl(iy, isurflt), & |
---|
5759 | surfl(iz, isurflt), surfl(id, isurflt), & |
---|
5760 | surf(ix, isurfs), surf(iy, isurfs), & |
---|
5761 | surf(iz, isurfs), surf(id, isurfs)) ) THEN |
---|
5762 | CYCLE |
---|
5763 | ENDIF |
---|
5764 | |
---|
5765 | sd = surf(id, isurfs) |
---|
5766 | sa = (/ REAL(surf(iz, isurfs), wp) - 0.5_wp * kdir(sd), & |
---|
5767 | REAL(surf(iy, isurfs), wp) - 0.5_wp * jdir(sd), & |
---|
5768 | REAL(surf(ix, isurfs), wp) - 0.5_wp * idir(sd) /) |
---|
5769 | |
---|
5770 | !-- unit vector source -> target |
---|
5771 | uv = (/ (ta(1)-sa(1))*dz(1), (ta(2)-sa(2))*dy, (ta(3)-sa(3))*dx /) |
---|
5772 | sqdist = SUM(uv(:)**2) |
---|
5773 | uv = uv / SQRT(sqdist) |
---|
5774 | |
---|
5775 | !-- reject raytracing above max distance |
---|
5776 | IF ( SQRT(sqdist) > max_raytracing_dist ) THEN |
---|
5777 | ray_skip_maxdist = ray_skip_maxdist + 1 |
---|
5778 | CYCLE |
---|
5779 | ENDIF |
---|
5780 | |
---|
5781 | !-- irradiance factor (our unshaded shape view factor) = view factor per differential target area * source area |
---|
5782 | rirrf = dot_product((/ kdir(sd), jdir(sd), idir(sd) /), uv) & ! cosine of source normal and direction |
---|
5783 | * dot_product((/ kdir(td), jdir(td), idir(td) /), -uv) & ! cosine of target normal and reverse direction |
---|
5784 | / (pi * sqdist) & ! square of distance between centers |
---|
5785 | * facearea(sd) |
---|
5786 | |
---|
5787 | !-- reject raytracing for potentially too small view factor values |
---|
5788 | IF ( rirrf < min_irrf_value ) THEN |
---|
5789 | ray_skip_minval = ray_skip_minval + 1 |
---|
5790 | CYCLE |
---|
5791 | ENDIF |
---|
5792 | |
---|
5793 | !-- raytrace + process plant canopy sinks within |
---|
5794 | CALL raytrace(sa, ta, isurfs, rirrf, facearea(td), .TRUE., & |
---|
5795 | visible, transparency, win_lad) |
---|
5796 | |
---|
5797 | IF ( .NOT. visible ) CYCLE |
---|
5798 | ! rsvf = rirrf * transparency |
---|
5799 | |
---|
5800 | !-- write to the svf array |
---|
5801 | nsvfl = nsvfl + 1 |
---|
5802 | !-- check dimmension of asvf array and enlarge it if needed |
---|
5803 | IF ( nsvfla < nsvfl ) THEN |
---|
5804 | k = nsvfla * 2 |
---|
5805 | IF ( msvf == 0 ) THEN |
---|
5806 | msvf = 1 |
---|
5807 | ALLOCATE( asvf1(k) ) |
---|
5808 | asvf => asvf1 |
---|
5809 | asvf1(1:nsvfla) = asvf2 |
---|
5810 | DEALLOCATE( asvf2 ) |
---|
5811 | ELSE |
---|
5812 | msvf = 0 |
---|
5813 | ALLOCATE( asvf2(k) ) |
---|
5814 | asvf => asvf2 |
---|
5815 | asvf2(1:nsvfla) = asvf1 |
---|
5816 | DEALLOCATE( asvf1 ) |
---|
5817 | ENDIF |
---|
5818 | |
---|
5819 | ! WRITE(msg,'(A,3I12)') 'Grow asvf:',nsvfl,nsvfla,k |
---|
5820 | ! CALL radiation_write_debug_log( msg ) |
---|
5821 | |
---|
5822 | nsvfla = k |
---|
5823 | ENDIF |
---|
5824 | !-- write svf values into the array |
---|
5825 | asvf(nsvfl)%isurflt = isurflt |
---|
5826 | asvf(nsvfl)%isurfs = isurfs |
---|
5827 | asvf(nsvfl)%rsvf = rirrf !we postopne multiplication by transparency |
---|
5828 | asvf(nsvfl)%rtransp = transparency !a.k.a. Direct Irradiance Factor |
---|
5829 | ENDDO |
---|
5830 | ENDIF |
---|
5831 | ENDDO |
---|
5832 | |
---|
5833 | !--Raytrace to canopy boxes to fill dsitransc TODO optimize |
---|
5834 | !-- |
---|
5835 | dsitransc(:,:) = -999._wp !FIXME |
---|
5836 | az0 = 0._wp |
---|
5837 | naz = raytrace_discrete_azims |
---|
5838 | azs = 2._wp * pi / REAL(naz, wp) |
---|
5839 | zn0 = 0._wp |
---|
5840 | nzn = raytrace_discrete_elevs / 2 |
---|
5841 | zns = pi / 2._wp / REAL(nzn, wp) |
---|
5842 | ALLOCATE ( zdirs(1:nzn), vffrac(1:nzn), ztransp(1:nzn) ) |
---|
5843 | zdirs(:) = (/( TAN(pi/2 - (zn0+(REAL(izn,wp)-.5_wp)*zns)), izn=1, nzn )/) |
---|
5844 | vffrac(:) = 0._wp |
---|
5845 | |
---|
5846 | DO ipcgb = 1, npcbl |
---|
5847 | ta = (/ REAL(pcbl(iz, ipcgb), wp), & |
---|
5848 | REAL(pcbl(iy, ipcgb), wp), & |
---|
5849 | REAL(pcbl(ix, ipcgb), wp) /) |
---|
5850 | !--Calculate sky-view factor and direct solar visibility using 2D raytracing |
---|
5851 | DO iaz = 1, naz |
---|
5852 | azmid = az0 + (REAL(iaz, wp) - .5_wp) * azs |
---|
5853 | CALL raytrace_2d(ta, (/ COS(azmid), SIN(azmid) /), zdirs, & |
---|
5854 | -999, -999._wp, vffrac, .FALSE., .TRUE., & |
---|
5855 | win_lad, horizon, ztransp) !FIXME unit vect in grid units + zdirs |
---|
5856 | |
---|
5857 | !--Save direct solar transparency |
---|
5858 | j = MODULO(NINT(azmid/ & |
---|
5859 | (2._wp*pi)*raytrace_discrete_azims-.5_wp, iwp), & |
---|
5860 | raytrace_discrete_azims) |
---|
5861 | DO k = 1, raytrace_discrete_elevs/2 |
---|
5862 | i = dsidir_rev(k-1, j) |
---|
5863 | IF ( i /= -1 ) dsitransc(ipcgb, i) = ztransp(k) |
---|
5864 | ENDDO |
---|
5865 | ENDDO |
---|
5866 | ENDDO |
---|
5867 | DEALLOCATE ( zdirs, vffrac, ztransp ) |
---|
5868 | |
---|
5869 | ! CALL radiation_write_debug_log( 'End of calculation SVF' ) |
---|
5870 | ! WRITE(msg, *) 'Raytracing skipped for maximum distance of ', & |
---|
5871 | ! max_raytracing_dist, ' m on ', ray_skip_maxdist, ' pairs.' |
---|
5872 | ! CALL radiation_write_debug_log( msg ) |
---|
5873 | ! WRITE(msg, *) 'Raytracing skipped for minimum potential value of ', & |
---|
5874 | ! min_irrf_value , ' on ', ray_skip_minval, ' pairs.' |
---|
5875 | ! CALL radiation_write_debug_log( msg ) |
---|
5876 | |
---|
5877 | CALL location_message( ' waiting for completion of SVF and CSF calculation in all processes', .TRUE. ) |
---|
5878 | !-- deallocate temporary global arrays |
---|
5879 | DEALLOCATE(nzterr) |
---|
5880 | |
---|
5881 | IF ( plant_canopy ) THEN |
---|
5882 | !-- finalize mpi_rma communication and deallocate temporary arrays |
---|
5883 | #if defined( __parallel ) |
---|
5884 | IF ( rma_lad_raytrace ) THEN |
---|
5885 | CALL MPI_Win_flush_all(win_lad, ierr) |
---|
5886 | !-- unlock MPI window |
---|
5887 | CALL MPI_Win_unlock_all(win_lad, ierr) |
---|
5888 | !-- free MPI window |
---|
5889 | CALL MPI_Win_free(win_lad, ierr) |
---|
5890 | |
---|
5891 | !-- deallocate temporary arrays storing values for csf calculation during raytracing |
---|
5892 | DEALLOCATE( lad_s_ray ) |
---|
5893 | !-- sub_lad is the pointer to lad_s_rma in case of rma_lad_raytrace |
---|
5894 | !-- and must not be deallocated here |
---|
5895 | ELSE |
---|
5896 | DEALLOCATE(sub_lad) |
---|
5897 | DEALLOCATE(sub_lad_g) |
---|
5898 | ENDIF |
---|
5899 | #else |
---|
5900 | DEALLOCATE(sub_lad) |
---|
5901 | #endif |
---|
5902 | DEALLOCATE( boxes ) |
---|
5903 | DEALLOCATE( crlens ) |
---|
5904 | DEALLOCATE( plantt ) |
---|
5905 | DEALLOCATE( rt2_track, rt2_track_lad, rt2_track_dist, rt2_dist ) |
---|
5906 | ENDIF |
---|
5907 | |
---|
5908 | CALL location_message( ' calculation of the complete SVF array', .TRUE. ) |
---|
5909 | |
---|
5910 | ! CALL radiation_write_debug_log( 'Start SVF sort' ) |
---|
5911 | !-- sort svf ( a version of quicksort ) |
---|
5912 | CALL quicksort_svf(asvf,1,nsvfl) |
---|
5913 | |
---|
5914 | !< load svf from the structure array to plain arrays |
---|
5915 | ! CALL radiation_write_debug_log( 'Load svf from the structure array to plain arrays' ) |
---|
5916 | ALLOCATE( svf(ndsvf,nsvfl) ) |
---|
5917 | ALLOCATE( svfsurf(idsvf,nsvfl) ) |
---|
5918 | svfnorm_counts(:) = 0._wp |
---|
5919 | isurflt_prev = -1 |
---|
5920 | ksvf = 1 |
---|
5921 | svfsum = 0._wp |
---|
5922 | DO isvf = 1, nsvfl |
---|
5923 | !-- normalize svf per target face |
---|
5924 | IF ( asvf(ksvf)%isurflt /= isurflt_prev ) THEN |
---|
5925 | IF ( isurflt_prev /= -1 .AND. svfsum /= 0._wp ) THEN |
---|
5926 | !< update histogram of logged svf normalization values |
---|
5927 | i = searchsorted(svfnorm_report_thresh, svfsum / (1._wp-skyvf(isurflt_prev))) |
---|
5928 | svfnorm_counts(i) = svfnorm_counts(i) + 1 |
---|
5929 | |
---|
5930 | svf(1, isvf_surflt:isvf-1) = svf(1, isvf_surflt:isvf-1) / svfsum * (1._wp-skyvf(isurflt_prev)) |
---|
5931 | ENDIF |
---|
5932 | isurflt_prev = asvf(ksvf)%isurflt |
---|
5933 | isvf_surflt = isvf |
---|
5934 | svfsum = asvf(ksvf)%rsvf !?? / asvf(ksvf)%rtransp |
---|
5935 | ELSE |
---|
5936 | svfsum = svfsum + asvf(ksvf)%rsvf !?? / asvf(ksvf)%rtransp |
---|
5937 | ENDIF |
---|
5938 | |
---|
5939 | svf(:, isvf) = (/ asvf(ksvf)%rsvf, asvf(ksvf)%rtransp /) |
---|
5940 | svfsurf(:, isvf) = (/ asvf(ksvf)%isurflt, asvf(ksvf)%isurfs /) |
---|
5941 | |
---|
5942 | !-- next element |
---|
5943 | ksvf = ksvf + 1 |
---|
5944 | ENDDO |
---|
5945 | |
---|
5946 | IF ( isurflt_prev /= -1 .AND. svfsum /= 0._wp ) THEN |
---|
5947 | i = searchsorted(svfnorm_report_thresh, svfsum / (1._wp-skyvf(isurflt_prev))) |
---|
5948 | svfnorm_counts(i) = svfnorm_counts(i) + 1 |
---|
5949 | |
---|
5950 | svf(1, isvf_surflt:nsvfl) = svf(1, isvf_surflt:nsvfl) / svfsum * (1._wp-skyvf(isurflt_prev)) |
---|
5951 | ENDIF |
---|
5952 | !TODO we should be able to deallocate skyvf, from now on we only need skyvft |
---|
5953 | |
---|
5954 | !-- deallocate temporary asvf array |
---|
5955 | !-- DEALLOCATE(asvf) - ifort has a problem with deallocation of allocatable target |
---|
5956 | !-- via pointing pointer - we need to test original targets |
---|
5957 | IF ( ALLOCATED(asvf1) ) THEN |
---|
5958 | DEALLOCATE(asvf1) |
---|
5959 | ENDIF |
---|
5960 | IF ( ALLOCATED(asvf2) ) THEN |
---|
5961 | DEALLOCATE(asvf2) |
---|
5962 | ENDIF |
---|
5963 | |
---|
5964 | npcsfl = 0 |
---|
5965 | IF ( plant_canopy ) THEN |
---|
5966 | |
---|
5967 | CALL location_message( ' calculation of the complete CSF array', .TRUE. ) |
---|
5968 | ! CALL radiation_write_debug_log( 'Calculation of the complete CSF array' ) |
---|
5969 | !-- sort and merge csf for the last time, keeping the array size to minimum |
---|
5970 | CALL merge_and_grow_csf(-1) |
---|
5971 | |
---|
5972 | !-- aggregate csb among processors |
---|
5973 | !-- allocate necessary arrays |
---|
5974 | ALLOCATE( csflt(ndcsf,max(ncsfl,ndcsf)) ) |
---|
5975 | ALLOCATE( kcsflt(kdcsf,max(ncsfl,kdcsf)) ) |
---|
5976 | ALLOCATE( icsflt(0:numprocs-1) ) |
---|
5977 | ALLOCATE( dcsflt(0:numprocs-1) ) |
---|
5978 | ALLOCATE( ipcsflt(0:numprocs-1) ) |
---|
5979 | ALLOCATE( dpcsflt(0:numprocs-1) ) |
---|
5980 | |
---|
5981 | !-- fill out arrays of csf values and |
---|
5982 | !-- arrays of number of elements and displacements |
---|
5983 | !-- for particular precessors |
---|
5984 | icsflt = 0 |
---|
5985 | dcsflt = 0 |
---|
5986 | ip = -1 |
---|
5987 | j = -1 |
---|
5988 | d = 0 |
---|
5989 | DO kcsf = 1, ncsfl |
---|
5990 | j = j+1 |
---|
5991 | IF ( acsf(kcsf)%ip /= ip ) THEN |
---|
5992 | !-- new block of the processor |
---|
5993 | !-- number of elements of previous block |
---|
5994 | IF ( ip>=0) icsflt(ip) = j |
---|
5995 | d = d+j |
---|
5996 | !-- blank blocks |
---|
5997 | DO jp = ip+1, acsf(kcsf)%ip-1 |
---|
5998 | !-- number of elements is zero, displacement is equal to previous |
---|
5999 | icsflt(jp) = 0 |
---|
6000 | dcsflt(jp) = d |
---|
6001 | ENDDO |
---|
6002 | !-- the actual block |
---|
6003 | ip = acsf(kcsf)%ip |
---|
6004 | dcsflt(ip) = d |
---|
6005 | j = 0 |
---|
6006 | ENDIF |
---|
6007 | !-- fill out real values of rsvf, rtransp |
---|
6008 | csflt(1,kcsf) = acsf(kcsf)%rsvf |
---|
6009 | csflt(2,kcsf) = acsf(kcsf)%rtransp |
---|
6010 | !-- fill out integer values of itz,ity,itx,isurfs |
---|
6011 | kcsflt(1,kcsf) = acsf(kcsf)%itz |
---|
6012 | kcsflt(2,kcsf) = acsf(kcsf)%ity |
---|
6013 | kcsflt(3,kcsf) = acsf(kcsf)%itx |
---|
6014 | kcsflt(4,kcsf) = acsf(kcsf)%isurfs |
---|
6015 | ENDDO |
---|
6016 | !-- last blank blocks at the end of array |
---|
6017 | j = j+1 |
---|
6018 | IF ( ip>=0 ) icsflt(ip) = j |
---|
6019 | d = d+j |
---|
6020 | DO jp = ip+1, numprocs-1 |
---|
6021 | !-- number of elements is zero, displacement is equal to previous |
---|
6022 | icsflt(jp) = 0 |
---|
6023 | dcsflt(jp) = d |
---|
6024 | ENDDO |
---|
6025 | |
---|
6026 | !-- deallocate temporary acsf array |
---|
6027 | !-- DEALLOCATE(acsf) - ifort has a problem with deallocation of allocatable target |
---|
6028 | !-- via pointing pointer - we need to test original targets |
---|
6029 | IF ( ALLOCATED(acsf1) ) THEN |
---|
6030 | DEALLOCATE(acsf1) |
---|
6031 | ENDIF |
---|
6032 | IF ( ALLOCATED(acsf2) ) THEN |
---|
6033 | DEALLOCATE(acsf2) |
---|
6034 | ENDIF |
---|
6035 | |
---|
6036 | #if defined( __parallel ) |
---|
6037 | !-- scatter and gather the number of elements to and from all processor |
---|
6038 | !-- and calculate displacements |
---|
6039 | ! CALL radiation_write_debug_log( 'Scatter and gather the number of elements to and from all processor' ) |
---|
6040 | CALL MPI_AlltoAll(icsflt,1,MPI_INTEGER,ipcsflt,1,MPI_INTEGER,comm2d, ierr) |
---|
6041 | |
---|
6042 | npcsfl = SUM(ipcsflt) |
---|
6043 | d = 0 |
---|
6044 | DO i = 0, numprocs-1 |
---|
6045 | dpcsflt(i) = d |
---|
6046 | d = d + ipcsflt(i) |
---|
6047 | ENDDO |
---|
6048 | |
---|
6049 | !-- exchange csf fields between processors |
---|
6050 | ! CALL radiation_write_debug_log( 'Exchange csf fields between processors' ) |
---|
6051 | ALLOCATE( pcsflt(ndcsf,max(npcsfl,ndcsf)) ) |
---|
6052 | ALLOCATE( kpcsflt(kdcsf,max(npcsfl,kdcsf)) ) |
---|
6053 | CALL MPI_AlltoAllv(csflt, ndcsf*icsflt, ndcsf*dcsflt, MPI_REAL, & |
---|
6054 | pcsflt, ndcsf*ipcsflt, ndcsf*dpcsflt, MPI_REAL, comm2d, ierr) |
---|
6055 | CALL MPI_AlltoAllv(kcsflt, kdcsf*icsflt, kdcsf*dcsflt, MPI_INTEGER, & |
---|
6056 | kpcsflt, kdcsf*ipcsflt, kdcsf*dpcsflt, MPI_INTEGER, comm2d, ierr) |
---|
6057 | |
---|
6058 | #else |
---|
6059 | npcsfl = ncsfl |
---|
6060 | ALLOCATE( pcsflt(ndcsf,max(npcsfl,ndcsf)) ) |
---|
6061 | ALLOCATE( kpcsflt(kdcsf,max(npcsfl,kdcsf)) ) |
---|
6062 | pcsflt = csflt |
---|
6063 | kpcsflt = kcsflt |
---|
6064 | #endif |
---|
6065 | |
---|
6066 | !-- deallocate temporary arrays |
---|
6067 | DEALLOCATE( csflt ) |
---|
6068 | DEALLOCATE( kcsflt ) |
---|
6069 | DEALLOCATE( icsflt ) |
---|
6070 | DEALLOCATE( dcsflt ) |
---|
6071 | DEALLOCATE( ipcsflt ) |
---|
6072 | DEALLOCATE( dpcsflt ) |
---|
6073 | |
---|
6074 | !-- sort csf ( a version of quicksort ) |
---|
6075 | ! CALL radiation_write_debug_log( 'Sort csf' ) |
---|
6076 | CALL quicksort_csf2(kpcsflt, pcsflt, 1, npcsfl) |
---|
6077 | |
---|
6078 | !-- aggregate canopy sink factor records with identical box & source |
---|
6079 | !-- againg across all values from all processors |
---|
6080 | ! CALL radiation_write_debug_log( 'Aggregate canopy sink factor records with identical box' ) |
---|
6081 | |
---|
6082 | IF ( npcsfl > 0 ) THEN |
---|
6083 | icsf = 1 !< reading index |
---|
6084 | kcsf = 1 !< writing index |
---|
6085 | DO while (icsf < npcsfl) |
---|
6086 | !-- here kpcsf(kcsf) already has values from kpcsf(icsf) |
---|
6087 | IF ( kpcsflt(3,icsf) == kpcsflt(3,icsf+1) .AND. & |
---|
6088 | kpcsflt(2,icsf) == kpcsflt(2,icsf+1) .AND. & |
---|
6089 | kpcsflt(1,icsf) == kpcsflt(1,icsf+1) .AND. & |
---|
6090 | kpcsflt(4,icsf) == kpcsflt(4,icsf+1) ) THEN |
---|
6091 | !-- We could simply take either first or second rtransp, both are valid. As a very simple heuristic about which ray |
---|
6092 | !-- probably passes nearer the center of the target box, we choose DIF from the entry with greater CSF, since that |
---|
6093 | !-- might mean that the traced beam passes longer through the canopy box. |
---|
6094 | IF ( pcsflt(1,kcsf) < pcsflt(1,icsf+1) ) THEN |
---|
6095 | pcsflt(2,kcsf) = pcsflt(2,icsf+1) |
---|
6096 | ENDIF |
---|
6097 | pcsflt(1,kcsf) = pcsflt(1,kcsf) + pcsflt(1,icsf+1) |
---|
6098 | |
---|
6099 | !-- advance reading index, keep writing index |
---|
6100 | icsf = icsf + 1 |
---|
6101 | ELSE |
---|
6102 | !-- not identical, just advance and copy |
---|
6103 | icsf = icsf + 1 |
---|
6104 | kcsf = kcsf + 1 |
---|
6105 | kpcsflt(:,kcsf) = kpcsflt(:,icsf) |
---|
6106 | pcsflt(:,kcsf) = pcsflt(:,icsf) |
---|
6107 | ENDIF |
---|
6108 | ENDDO |
---|
6109 | !-- last written item is now also the last item in valid part of array |
---|
6110 | npcsfl = kcsf |
---|
6111 | ENDIF |
---|
6112 | |
---|
6113 | ncsfl = npcsfl |
---|
6114 | IF ( ncsfl > 0 ) THEN |
---|
6115 | ALLOCATE( csf(ndcsf,ncsfl) ) |
---|
6116 | ALLOCATE( csfsurf(idcsf,ncsfl) ) |
---|
6117 | DO icsf = 1, ncsfl |
---|
6118 | csf(:,icsf) = pcsflt(:,icsf) |
---|
6119 | csfsurf(1,icsf) = gridpcbl(kpcsflt(1,icsf),kpcsflt(2,icsf),kpcsflt(3,icsf)) |
---|
6120 | csfsurf(2,icsf) = kpcsflt(4,icsf) |
---|
6121 | ENDDO |
---|
6122 | ENDIF |
---|
6123 | |
---|
6124 | !-- deallocation of temporary arrays |
---|
6125 | DEALLOCATE( pcsflt ) |
---|
6126 | DEALLOCATE( kpcsflt ) |
---|
6127 | ! CALL radiation_write_debug_log( 'End of aggregate csf' ) |
---|
6128 | |
---|
6129 | ENDIF |
---|
6130 | |
---|
6131 | #if defined( __parallel ) |
---|
6132 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
6133 | #endif |
---|
6134 | ! CALL radiation_write_debug_log( 'End of radiation_calc_svf (after mpi_barrier)' ) |
---|
6135 | |
---|
6136 | RETURN |
---|
6137 | |
---|
6138 | 301 WRITE( message_string, * ) & |
---|
6139 | 'I/O error when processing shape view factors / ', & |
---|
6140 | 'plant canopy sink factors / direct irradiance factors.' |
---|
6141 | CALL message( 'init_urban_surface', 'PA0502', 2, 2, 0, 6, 0 ) |
---|
6142 | |
---|
6143 | END SUBROUTINE radiation_calc_svf |
---|
6144 | |
---|
6145 | |
---|
6146 | !------------------------------------------------------------------------------! |
---|
6147 | ! Description: |
---|
6148 | ! ------------ |
---|
6149 | !> Raytracing for detecting obstacles and calculating compound canopy sink |
---|
6150 | !> factors. (A simple obstacle detection would only need to process faces in |
---|
6151 | !> 3 dimensions without any ordering.) |
---|
6152 | !> Assumtions: |
---|
6153 | !> ----------- |
---|
6154 | !> 1. The ray always originates from a face midpoint (only one coordinate equals |
---|
6155 | !> *.5, i.e. wall) and doesn't travel parallel to the surface (that would mean |
---|
6156 | !> shape factor=0). Therefore, the ray may never travel exactly along a face |
---|
6157 | !> or an edge. |
---|
6158 | !> 2. From grid bottom to urban surface top the grid has to be *equidistant* |
---|
6159 | !> within each of the dimensions, including vertical (but the resolution |
---|
6160 | !> doesn't need to be the same in all three dimensions). |
---|
6161 | !------------------------------------------------------------------------------! |
---|
6162 | SUBROUTINE raytrace(src, targ, isrc, rirrf, atarg, create_csf, visible, transparency, win_lad) |
---|
6163 | IMPLICIT NONE |
---|
6164 | |
---|
6165 | REAL(wp), DIMENSION(3), INTENT(in) :: src, targ !< real coordinates z,y,x |
---|
6166 | INTEGER(iwp), INTENT(in) :: isrc !< index of source face for csf |
---|
6167 | REAL(wp), INTENT(in) :: rirrf !< irradiance factor for csf |
---|
6168 | REAL(wp), INTENT(in) :: atarg !< target surface area for csf |
---|
6169 | LOGICAL, INTENT(in) :: create_csf !< whether to generate new CSFs during raytracing |
---|
6170 | LOGICAL, INTENT(out) :: visible |
---|
6171 | REAL(wp), INTENT(out) :: transparency !< along whole path |
---|
6172 | INTEGER(iwp), INTENT(in) :: win_lad |
---|
6173 | INTEGER(iwp) :: i, j, k, d |
---|
6174 | INTEGER(iwp) :: seldim !< dimension to be incremented |
---|
6175 | INTEGER(iwp) :: ncsb !< no of written plant canopy sinkboxes |
---|
6176 | INTEGER(iwp) :: maxboxes !< max no of gridboxes visited |
---|
6177 | REAL(wp) :: distance !< euclidean along path |
---|
6178 | REAL(wp) :: crlen !< length of gridbox crossing |
---|
6179 | REAL(wp) :: lastdist !< beginning of current crossing |
---|
6180 | REAL(wp) :: nextdist !< end of current crossing |
---|
6181 | REAL(wp) :: realdist !< distance in meters per unit distance |
---|
6182 | REAL(wp) :: crmid !< midpoint of crossing |
---|
6183 | REAL(wp) :: cursink !< sink factor for current canopy box |
---|
6184 | REAL(wp), DIMENSION(3) :: delta !< path vector |
---|
6185 | REAL(wp), DIMENSION(3) :: uvect !< unit vector |
---|
6186 | REAL(wp), DIMENSION(3) :: dimnextdist !< distance for each dimension increments |
---|
6187 | INTEGER(iwp), DIMENSION(3) :: box !< gridbox being crossed |
---|
6188 | INTEGER(iwp), DIMENSION(3) :: dimnext !< next dimension increments along path |
---|
6189 | INTEGER(iwp), DIMENSION(3) :: dimdelta !< dimension direction = +- 1 |
---|
6190 | INTEGER(iwp) :: px, py !< number of processors in x and y dir before |
---|
6191 | !< the processor in the question |
---|
6192 | INTEGER(iwp) :: ip !< number of processor where gridbox reside |
---|
6193 | INTEGER(iwp) :: ig !< 1D index of gridbox in global 2D array |
---|
6194 | REAL(wp) :: lad_s_target !< recieved lad_s of particular grid box |
---|
6195 | REAL(wp), PARAMETER :: grow_factor = 1.5_wp !< factor of expansion of grow arrays |
---|
6196 | |
---|
6197 | ! |
---|
6198 | !-- Maximum number of gridboxes visited equals to maximum number of boundaries crossed in each dimension plus one. That's also |
---|
6199 | !-- the maximum number of plant canopy boxes written. We grow the acsf array accordingly using exponential factor. |
---|
6200 | maxboxes = SUM(ABS(NINT(targ, iwp) - NINT(src, iwp))) + 1 |
---|
6201 | IF ( plant_canopy .AND. ncsfl + maxboxes > ncsfla ) THEN |
---|
6202 | !-- use this code for growing by fixed exponential increments (equivalent to case where ncsfl always increases by 1) |
---|
6203 | !-- k = CEILING(grow_factor ** real(CEILING(log(real(ncsfl + maxboxes, kind=wp)) & |
---|
6204 | !-- / log(grow_factor)), kind=wp)) |
---|
6205 | !-- or use this code to simply always keep some extra space after growing |
---|
6206 | k = CEILING(REAL(ncsfl + maxboxes, kind=wp) * grow_factor) |
---|
6207 | |
---|
6208 | CALL merge_and_grow_csf(k) |
---|
6209 | ENDIF |
---|
6210 | |
---|
6211 | transparency = 1._wp |
---|
6212 | ncsb = 0 |
---|
6213 | |
---|
6214 | delta(:) = targ(:) - src(:) |
---|
6215 | distance = SQRT(SUM(delta(:)**2)) |
---|
6216 | IF ( distance == 0._wp ) THEN |
---|
6217 | visible = .TRUE. |
---|
6218 | RETURN |
---|
6219 | ENDIF |
---|
6220 | uvect(:) = delta(:) / distance |
---|
6221 | realdist = SQRT(SUM( (uvect(:)*(/dz(1),dy,dx/))**2 )) |
---|
6222 | |
---|
6223 | lastdist = 0._wp |
---|
6224 | |
---|
6225 | !-- Since all face coordinates have values *.5 and we'd like to use |
---|
6226 | !-- integers, all these have .5 added |
---|
6227 | DO d = 1, 3 |
---|
6228 | IF ( uvect(d) == 0._wp ) THEN |
---|
6229 | dimnext(d) = 999999999 |
---|
6230 | dimdelta(d) = 999999999 |
---|
6231 | dimnextdist(d) = 1.0E20_wp |
---|
6232 | ELSE IF ( uvect(d) > 0._wp ) THEN |
---|
6233 | dimnext(d) = CEILING(src(d) + .5_wp) |
---|
6234 | dimdelta(d) = 1 |
---|
6235 | dimnextdist(d) = (dimnext(d) - .5_wp - src(d)) / uvect(d) |
---|
6236 | ELSE |
---|
6237 | dimnext(d) = FLOOR(src(d) + .5_wp) |
---|
6238 | dimdelta(d) = -1 |
---|
6239 | dimnextdist(d) = (dimnext(d) - .5_wp - src(d)) / uvect(d) |
---|
6240 | ENDIF |
---|
6241 | ENDDO |
---|
6242 | |
---|
6243 | DO |
---|
6244 | !-- along what dimension will the next wall crossing be? |
---|
6245 | seldim = minloc(dimnextdist, 1) |
---|
6246 | nextdist = dimnextdist(seldim) |
---|
6247 | IF ( nextdist > distance ) nextdist = distance |
---|
6248 | |
---|
6249 | crlen = nextdist - lastdist |
---|
6250 | IF ( crlen > .001_wp ) THEN |
---|
6251 | crmid = (lastdist + nextdist) * .5_wp |
---|
6252 | box = NINT(src(:) + uvect(:) * crmid, iwp) |
---|
6253 | |
---|
6254 | !-- calculate index of the grid with global indices (box(2),box(3)) |
---|
6255 | !-- in the array nzterr and plantt and id of the coresponding processor |
---|
6256 | px = box(3)/nnx |
---|
6257 | py = box(2)/nny |
---|
6258 | ip = px*pdims(2)+py |
---|
6259 | ig = ip*nnx*nny + (box(3)-px*nnx)*nny + box(2)-py*nny |
---|
6260 | IF ( box(1) <= nzterr(ig) ) THEN |
---|
6261 | visible = .FALSE. |
---|
6262 | RETURN |
---|
6263 | ENDIF |
---|
6264 | |
---|
6265 | IF ( plant_canopy ) THEN |
---|
6266 | IF ( box(1) <= plantt(ig) ) THEN |
---|
6267 | ncsb = ncsb + 1 |
---|
6268 | boxes(:,ncsb) = box |
---|
6269 | crlens(ncsb) = crlen |
---|
6270 | #if defined( __parallel ) |
---|
6271 | lad_ip(ncsb) = ip |
---|
6272 | lad_disp(ncsb) = (box(3)-px*nnx)*(nny*nzp) + (box(2)-py*nny)*nzp + box(1)-nzub |
---|
6273 | #endif |
---|
6274 | ENDIF |
---|
6275 | ENDIF |
---|
6276 | ENDIF |
---|
6277 | |
---|
6278 | IF ( nextdist >= distance ) EXIT |
---|
6279 | lastdist = nextdist |
---|
6280 | dimnext(seldim) = dimnext(seldim) + dimdelta(seldim) |
---|
6281 | dimnextdist(seldim) = (dimnext(seldim) - .5_wp - src(seldim)) / uvect(seldim) |
---|
6282 | ENDDO |
---|
6283 | |
---|
6284 | IF ( plant_canopy ) THEN |
---|
6285 | #if defined( __parallel ) |
---|
6286 | IF ( rma_lad_raytrace ) THEN |
---|
6287 | !-- send requests for lad_s to appropriate processor |
---|
6288 | CALL cpu_log( log_point_s(77), 'rad_init_rma', 'start' ) |
---|
6289 | DO i = 1, ncsb |
---|
6290 | CALL MPI_Get(lad_s_ray(i), 1, MPI_REAL, lad_ip(i), lad_disp(i), & |
---|
6291 | 1, MPI_REAL, win_lad, ierr) |
---|
6292 | IF ( ierr /= 0 ) THEN |
---|
6293 | WRITE(message_string, *) 'MPI error ', ierr, ' at MPI_Get' |
---|
6294 | CALL message( 'raytrace', 'PA0519', 1, 2, 0, 6, 0 ) |
---|
6295 | ENDIF |
---|
6296 | ENDDO |
---|
6297 | |
---|
6298 | !-- wait for all pending local requests complete |
---|
6299 | CALL MPI_Win_flush_local_all(win_lad, ierr) |
---|
6300 | IF ( ierr /= 0 ) THEN |
---|
6301 | WRITE(message_string, *) 'MPI error ', ierr, ' at MPI_Win_flush_local_all' |
---|
6302 | CALL message( 'raytrace', 'PA0519', 1, 2, 0, 6, 0 ) |
---|
6303 | ENDIF |
---|
6304 | CALL cpu_log( log_point_s(77), 'rad_init_rma', 'stop' ) |
---|
6305 | |
---|
6306 | ENDIF |
---|
6307 | #endif |
---|
6308 | |
---|
6309 | !-- calculate csf and transparency |
---|
6310 | DO i = 1, ncsb |
---|
6311 | #if defined( __parallel ) |
---|
6312 | IF ( rma_lad_raytrace ) THEN |
---|
6313 | lad_s_target = lad_s_ray(i) |
---|
6314 | ELSE |
---|
6315 | lad_s_target = sub_lad_g(lad_ip(i)*nnx*nny*nzp + lad_disp(i)) |
---|
6316 | ENDIF |
---|
6317 | #else |
---|
6318 | lad_s_target = sub_lad(boxes(1,i),boxes(2,i),boxes(3,i)) |
---|
6319 | #endif |
---|
6320 | cursink = 1._wp - exp(-ext_coef * lad_s_target * crlens(i)*realdist) |
---|
6321 | |
---|
6322 | IF ( create_csf ) THEN |
---|
6323 | !-- write svf values into the array |
---|
6324 | ncsfl = ncsfl + 1 |
---|
6325 | acsf(ncsfl)%ip = lad_ip(i) |
---|
6326 | acsf(ncsfl)%itx = boxes(3,i) |
---|
6327 | acsf(ncsfl)%ity = boxes(2,i) |
---|
6328 | acsf(ncsfl)%itz = boxes(1,i) |
---|
6329 | acsf(ncsfl)%isurfs = isrc |
---|
6330 | acsf(ncsfl)%rsvf = REAL(cursink*rirrf*atarg, wp) !-- we postpone multiplication by transparency |
---|
6331 | acsf(ncsfl)%rtransp = REAL(transparency, wp) |
---|
6332 | ENDIF !< create_csf |
---|
6333 | |
---|
6334 | transparency = transparency * (1._wp - cursink) |
---|
6335 | |
---|
6336 | ENDDO |
---|
6337 | ENDIF |
---|
6338 | |
---|
6339 | visible = .TRUE. |
---|
6340 | |
---|
6341 | END SUBROUTINE raytrace |
---|
6342 | |
---|
6343 | |
---|
6344 | !------------------------------------------------------------------------------! |
---|
6345 | ! Description: |
---|
6346 | ! ------------ |
---|
6347 | !> A new, more efficient version of ray tracing algorithm that processes a whole |
---|
6348 | !> arc instead of a single ray. |
---|
6349 | !> |
---|
6350 | !> In all comments, horizon means tangent of horizon angle, i.e. |
---|
6351 | !> vertical_delta / horizontal_distance |
---|
6352 | !------------------------------------------------------------------------------! |
---|
6353 | SUBROUTINE raytrace_2d(origin, yxdir, zdirs, iorig, aorig, vffrac, & |
---|
6354 | create_csf, skip_1st_pcb, win_lad, horizon, & |
---|
6355 | transparency) |
---|
6356 | IMPLICIT NONE |
---|
6357 | |
---|
6358 | REAL(wp), DIMENSION(3), INTENT(IN) :: origin !< z,y,x coordinates of ray origin |
---|
6359 | REAL(wp), DIMENSION(2), INTENT(IN) :: yxdir !< y,x *unit* vector of ray direction (in grid units) |
---|
6360 | REAL(wp), DIMENSION(:), INTENT(IN) :: zdirs !< list of z directions to raytrace (z/hdist, in grid) |
---|
6361 | INTEGER(iwp), INTENT(in) :: iorig !< index of origin face for csf |
---|
6362 | REAL(wp), INTENT(in) :: aorig !< origin face area for csf |
---|
6363 | REAL(wp), DIMENSION(LBOUND(zdirs, 1):UBOUND(zdirs, 1)), INTENT(in) :: vffrac !< |
---|
6364 | !< view factor fractions of each ray for csf |
---|
6365 | LOGICAL, INTENT(in) :: create_csf !< whether to generate new CSFs during raytracing |
---|
6366 | LOGICAL, INTENT(in) :: skip_1st_pcb !< whether to skip first plant canopy box during raytracing |
---|
6367 | INTEGER(iwp), INTENT(in) :: win_lad !< leaf area density MPI window |
---|
6368 | REAL(wp), INTENT(OUT) :: horizon !< highest horizon found after raytracing (z/hdist) |
---|
6369 | REAL(wp), DIMENSION(LBOUND(zdirs, 1):UBOUND(zdirs, 1)), INTENT(OUT) :: transparency !< |
---|
6370 | !< transparencies of zdirs paths |
---|
6371 | !--INTEGER(iwp), DIMENSION(3, LBOUND(zdirs, 1):UBOUND(zdirs, 1)), INTENT(OUT) :: itarget !< |
---|
6372 | !< (z,y,x) coordinates of target faces for zdirs |
---|
6373 | INTEGER(iwp) :: i, k, l, d |
---|
6374 | INTEGER(iwp) :: seldim !< dimension to be incremented |
---|
6375 | REAL(wp), DIMENSION(2) :: yxorigin !< horizontal copy of origin (y,x) |
---|
6376 | REAL(wp) :: distance !< euclidean along path |
---|
6377 | REAL(wp) :: lastdist !< beginning of current crossing |
---|
6378 | REAL(wp) :: nextdist !< end of current crossing |
---|
6379 | REAL(wp) :: crmid !< midpoint of crossing |
---|
6380 | REAL(wp) :: horz_entry !< horizon at entry to column |
---|
6381 | REAL(wp) :: horz_exit !< horizon at exit from column |
---|
6382 | REAL(wp) :: bdydim !< boundary for current dimension |
---|
6383 | REAL(wp), DIMENSION(2) :: crossdist !< distances to boundary for dimensions |
---|
6384 | REAL(wp), DIMENSION(2) :: dimnextdist !< distance for each dimension increments |
---|
6385 | INTEGER(iwp), DIMENSION(2) :: column !< grid column being crossed |
---|
6386 | INTEGER(iwp), DIMENSION(2) :: dimnext !< next dimension increments along path |
---|
6387 | INTEGER(iwp), DIMENSION(2) :: dimdelta !< dimension direction = +- 1 |
---|
6388 | INTEGER(iwp) :: px, py !< number of processors in x and y dir before |
---|
6389 | !< the processor in the question |
---|
6390 | INTEGER(iwp) :: ip !< number of processor where gridbox reside |
---|
6391 | INTEGER(iwp) :: ig !< 1D index of gridbox in global 2D array |
---|
6392 | INTEGER(iwp) :: wcount !< RMA window item count |
---|
6393 | INTEGER(iwp) :: maxboxes !< max no of CSF created |
---|
6394 | INTEGER(iwp) :: nly !< maximum plant canopy height |
---|
6395 | INTEGER(iwp) :: ntrack |
---|
6396 | REAL(wp) :: zbottom, ztop !< urban surface boundary in real numbers |
---|
6397 | REAL(wp) :: zorig !< z coordinate of ray column entry |
---|
6398 | REAL(wp) :: zexit !< z coordinate of ray column exit |
---|
6399 | REAL(wp) :: qdist !< ratio of real distance to z coord difference |
---|
6400 | REAL(wp) :: dxxyy !< square of real horizontal distance |
---|
6401 | REAL(wp) :: curtrans !< transparency of current PC box crossing |
---|
6402 | INTEGER(iwp) :: zb0 |
---|
6403 | INTEGER(iwp) :: zb1 |
---|
6404 | INTEGER(iwp) :: nz |
---|
6405 | INTEGER(iwp) :: iz |
---|
6406 | INTEGER(iwp) :: zsgn |
---|
6407 | REAL(wp), PARAMETER :: grow_factor = 1.5_wp !< factor of expansion of grow arrays |
---|
6408 | |
---|
6409 | #if defined( __parallel ) |
---|
6410 | INTEGER(MPI_ADDRESS_KIND) :: wdisp !< RMA window displacement |
---|
6411 | #endif |
---|
6412 | |
---|
6413 | yxorigin(:) = origin(2:3) |
---|
6414 | transparency(:) = 1._wp !-- Pre-set the all rays to transparent before reducing |
---|
6415 | horizon = -HUGE(1._wp) |
---|
6416 | |
---|
6417 | !--Determine distance to boundary (in 2D xy) |
---|
6418 | IF ( yxdir(1) > 0._wp ) THEN |
---|
6419 | bdydim = ny + .5_wp !< north global boundary |
---|
6420 | crossdist(1) = (bdydim - yxorigin(1)) / yxdir(1) |
---|
6421 | ELSEIF ( yxdir(1) == 0._wp ) THEN |
---|
6422 | crossdist(1) = HUGE(1._wp) |
---|
6423 | ELSE |
---|
6424 | bdydim = -.5_wp !< south global boundary |
---|
6425 | crossdist(1) = (bdydim - yxorigin(1)) / yxdir(1) |
---|
6426 | ENDIF |
---|
6427 | |
---|
6428 | IF ( yxdir(2) >= 0._wp ) THEN |
---|
6429 | bdydim = nx + .5_wp !< east global boundary |
---|
6430 | crossdist(2) = (bdydim - yxorigin(2)) / yxdir(2) |
---|
6431 | ELSEIF ( yxdir(2) == 0._wp ) THEN |
---|
6432 | crossdist(2) = HUGE(1._wp) |
---|
6433 | ELSE |
---|
6434 | bdydim = -.5_wp !< west global boundary |
---|
6435 | crossdist(2) = (bdydim - yxorigin(2)) / yxdir(2) |
---|
6436 | ENDIF |
---|
6437 | distance = minval(crossdist, 1) |
---|
6438 | |
---|
6439 | IF ( plant_canopy ) THEN |
---|
6440 | rt2_track_dist(0) = 0._wp |
---|
6441 | rt2_track_lad(:,:) = 0._wp |
---|
6442 | nly = plantt_max - nzub + 1 |
---|
6443 | ENDIF |
---|
6444 | |
---|
6445 | lastdist = 0._wp |
---|
6446 | |
---|
6447 | !-- Since all face coordinates have values *.5 and we'd like to use |
---|
6448 | !-- integers, all these have .5 added |
---|
6449 | DO d = 1, 2 |
---|
6450 | IF ( yxdir(d) == 0._wp ) THEN |
---|
6451 | dimnext(d) = HUGE(1_iwp) |
---|
6452 | dimdelta(d) = HUGE(1_iwp) |
---|
6453 | dimnextdist(d) = HUGE(1._wp) |
---|
6454 | ELSE IF ( yxdir(d) > 0._wp ) THEN |
---|
6455 | dimnext(d) = FLOOR(yxorigin(d) + .5_wp) + 1 |
---|
6456 | dimdelta(d) = 1 |
---|
6457 | dimnextdist(d) = (dimnext(d) - .5_wp - yxorigin(d)) / yxdir(d) |
---|
6458 | ELSE |
---|
6459 | dimnext(d) = CEILING(yxorigin(d) + .5_wp) - 1 |
---|
6460 | dimdelta(d) = -1 |
---|
6461 | dimnextdist(d) = (dimnext(d) - .5_wp - yxorigin(d)) / yxdir(d) |
---|
6462 | ENDIF |
---|
6463 | ENDDO |
---|
6464 | |
---|
6465 | ntrack = 0 |
---|
6466 | DO |
---|
6467 | !-- along what dimension will the next wall crossing be? |
---|
6468 | seldim = minloc(dimnextdist, 1) |
---|
6469 | nextdist = dimnextdist(seldim) |
---|
6470 | IF ( nextdist > distance ) nextdist = distance |
---|
6471 | |
---|
6472 | IF ( nextdist > lastdist ) THEN |
---|
6473 | ntrack = ntrack + 1 |
---|
6474 | crmid = (lastdist + nextdist) * .5_wp |
---|
6475 | column = NINT(yxorigin(:) + yxdir(:) * crmid, iwp) |
---|
6476 | |
---|
6477 | !-- calculate index of the grid with global indices (column(1),column(2)) |
---|
6478 | !-- in the array nzterr and plantt and id of the coresponding processor |
---|
6479 | px = column(2)/nnx |
---|
6480 | py = column(1)/nny |
---|
6481 | ip = px*pdims(2)+py |
---|
6482 | ig = ip*nnx*nny + (column(2)-px*nnx)*nny + column(1)-py*nny |
---|
6483 | |
---|
6484 | IF ( lastdist == 0._wp ) THEN |
---|
6485 | horz_entry = -HUGE(1._wp) |
---|
6486 | ELSE |
---|
6487 | horz_entry = (nzterr(ig) - origin(1)) / lastdist |
---|
6488 | ENDIF |
---|
6489 | horz_exit = (nzterr(ig) - origin(1)) / nextdist |
---|
6490 | horizon = MAX(horizon, horz_entry, horz_exit) |
---|
6491 | |
---|
6492 | IF ( plant_canopy ) THEN |
---|
6493 | rt2_track(:, ntrack) = column(:) |
---|
6494 | rt2_track_dist(ntrack) = nextdist |
---|
6495 | ENDIF |
---|
6496 | ENDIF |
---|
6497 | |
---|
6498 | IF ( nextdist >= distance ) EXIT |
---|
6499 | lastdist = nextdist |
---|
6500 | dimnext(seldim) = dimnext(seldim) + dimdelta(seldim) |
---|
6501 | dimnextdist(seldim) = (dimnext(seldim) - .5_wp - yxorigin(seldim)) / yxdir(seldim) |
---|
6502 | ENDDO |
---|
6503 | |
---|
6504 | IF ( plant_canopy ) THEN |
---|
6505 | !--Request LAD WHERE applicable |
---|
6506 | !-- |
---|
6507 | #if defined( __parallel ) |
---|
6508 | IF ( rma_lad_raytrace ) THEN |
---|
6509 | !-- send requests for lad_s to appropriate processor |
---|
6510 | !CALL cpu_log( log_point_s(77), 'usm_init_rma', 'start' ) |
---|
6511 | DO i = 1, ntrack |
---|
6512 | px = rt2_track(2,i)/nnx |
---|
6513 | py = rt2_track(1,i)/nny |
---|
6514 | ip = px*pdims(2)+py |
---|
6515 | ig = ip*nnx*nny + (rt2_track(2,i)-px*nnx)*nny + rt2_track(1,i)-py*nny |
---|
6516 | IF ( plantt(ig) <= nzterr(ig) ) CYCLE |
---|
6517 | wdisp = (rt2_track(2,i)-px*nnx)*(nny*nzp) + (rt2_track(1,i)-py*nny)*nzp + nzterr(ig)+1-nzub |
---|
6518 | wcount = plantt(ig)-nzterr(ig) |
---|
6519 | ! TODO send request ASAP - even during raytracing |
---|
6520 | CALL MPI_Get(rt2_track_lad(nzterr(ig)+1:plantt(ig), i), wcount, MPI_REAL, ip, & |
---|
6521 | wdisp, wcount, MPI_REAL, win_lad, ierr) |
---|
6522 | IF ( ierr /= 0 ) THEN |
---|
6523 | WRITE(message_string, *) 'MPI error ', ierr, ' at MPI_Get' |
---|
6524 | CALL message( 'raytrace_2d', 'PA0526', 1, 2, 0, 6, 0 ) |
---|
6525 | ENDIF |
---|
6526 | ENDDO |
---|
6527 | |
---|
6528 | !-- wait for all pending local requests complete |
---|
6529 | ! TODO WAIT selectively for each column later when needed |
---|
6530 | CALL MPI_Win_flush_local_all(win_lad, ierr) |
---|
6531 | IF ( ierr /= 0 ) THEN |
---|
6532 | WRITE(message_string, *) 'MPI error ', ierr, ' at MPI_Win_flush_local_all' |
---|
6533 | CALL message( 'raytrace', 'PA0527', 1, 2, 0, 6, 0 ) |
---|
6534 | ENDIF |
---|
6535 | !CALL cpu_log( log_point_s(77), 'usm_init_rma', 'stop' ) |
---|
6536 | ELSE ! rma_lad_raytrace |
---|
6537 | DO i = 1, ntrack |
---|
6538 | px = rt2_track(2,i)/nnx |
---|
6539 | py = rt2_track(1,i)/nny |
---|
6540 | ip = px*pdims(2)+py |
---|
6541 | ig = ip*nnx*nny*nzp + (rt2_track(2,i)-px*nnx)*(nny*nzp) + (rt2_track(1,i)-py*nny)*nzp |
---|
6542 | rt2_track_lad(nzub:plantt_max, i) = sub_lad_g(ig:ig+nly-1) |
---|
6543 | ENDDO |
---|
6544 | ENDIF |
---|
6545 | #else |
---|
6546 | DO i = 1, ntrack |
---|
6547 | rt2_track_lad(nzub:plantt_max, i) = sub_lad(rt2_track(1,i), rt2_track(2,i), nzub:plantt_max) |
---|
6548 | ENDDO |
---|
6549 | #endif |
---|
6550 | |
---|
6551 | !--Skip the PCB around origin if requested |
---|
6552 | !-- |
---|
6553 | IF ( skip_1st_pcb ) THEN |
---|
6554 | rt2_track_lad(NINT(origin(1), iwp), 1) = 0._wp |
---|
6555 | ENDIF |
---|
6556 | |
---|
6557 | !--Assert that we have space allocated for CSFs |
---|
6558 | !-- |
---|
6559 | maxboxes = (ntrack + MAX(origin(1) - nzub, nzpt - origin(1))) * SIZE(zdirs, 1) |
---|
6560 | IF ( ncsfl + maxboxes > ncsfla ) THEN |
---|
6561 | !-- use this code for growing by fixed exponential increments (equivalent to case where ncsfl always increases by 1) |
---|
6562 | !-- k = CEILING(grow_factor ** real(CEILING(log(real(ncsfl + maxboxes, kind=wp)) & |
---|
6563 | !-- / log(grow_factor)), kind=wp)) |
---|
6564 | !-- or use this code to simply always keep some extra space after growing |
---|
6565 | k = CEILING(REAL(ncsfl + maxboxes, kind=wp) * grow_factor) |
---|
6566 | CALL merge_and_grow_csf(k) |
---|
6567 | ENDIF |
---|
6568 | |
---|
6569 | !--Calculate transparencies and store new CSFs |
---|
6570 | !-- |
---|
6571 | zbottom = REAL(nzub, wp) - .5_wp |
---|
6572 | ztop = REAL(plantt_max, wp) + .5_wp |
---|
6573 | |
---|
6574 | !--Reverse direction of radiation (face->sky), only when create_csf |
---|
6575 | !-- |
---|
6576 | IF ( create_csf ) THEN |
---|
6577 | DO i = 1, ntrack ! for each column |
---|
6578 | dxxyy = ((dy*yxdir(1))**2 + (dx*yxdir(2))**2) * (rt2_track_dist(i)-rt2_track_dist(i-1))**2 |
---|
6579 | px = rt2_track(2,i)/nnx |
---|
6580 | py = rt2_track(1,i)/nny |
---|
6581 | ip = px*pdims(2)+py |
---|
6582 | |
---|
6583 | DO k = LBOUND(zdirs, 1), UBOUND(zdirs, 1) ! for each ray |
---|
6584 | IF ( zdirs(k) <= horizon ) THEN |
---|
6585 | CYCLE |
---|
6586 | ENDIF |
---|
6587 | |
---|
6588 | zorig = REAL(origin(1), wp) + zdirs(k) * rt2_track_dist(i-1) |
---|
6589 | IF ( zorig <= zbottom .OR. zorig >= ztop ) CYCLE |
---|
6590 | |
---|
6591 | zsgn = INT(SIGN(1._wp, zdirs(k)), iwp) |
---|
6592 | rt2_dist(1) = 0._wp |
---|
6593 | IF ( zdirs(k) == 0._wp ) THEN ! ray is exactly horizontal |
---|
6594 | nz = 2 |
---|
6595 | rt2_dist(nz) = SQRT(dxxyy) |
---|
6596 | iz = NINT(zorig, iwp) |
---|
6597 | ELSE |
---|
6598 | zexit = MIN(MAX(REAL(origin(1), wp) + zdirs(k) * rt2_track_dist(i), zbottom), ztop) |
---|
6599 | |
---|
6600 | zb0 = FLOOR( zorig * zsgn - .5_wp) + 1 ! because it must be greater than orig |
---|
6601 | zb1 = CEILING(zexit * zsgn - .5_wp) - 1 ! because it must be smaller than exit |
---|
6602 | nz = MAX(zb1 - zb0 + 3, 2) |
---|
6603 | rt2_dist(nz) = SQRT(((zexit-zorig)*dz(1))**2 + dxxyy) |
---|
6604 | qdist = rt2_dist(nz) / (zexit-zorig) |
---|
6605 | rt2_dist(2:nz-1) = (/( ((REAL(l, wp) + .5_wp) * zsgn - zorig) * qdist , l = zb0, zb1 )/) |
---|
6606 | iz = zb0 * zsgn |
---|
6607 | ENDIF |
---|
6608 | |
---|
6609 | DO l = 2, nz |
---|
6610 | IF ( rt2_track_lad(iz, i) > 0._wp ) THEN |
---|
6611 | curtrans = exp(-ext_coef * rt2_track_lad(iz, i) * (rt2_dist(l)-rt2_dist(l-1))) |
---|
6612 | |
---|
6613 | ncsfl = ncsfl + 1 |
---|
6614 | acsf(ncsfl)%ip = ip |
---|
6615 | acsf(ncsfl)%itx = rt2_track(2,i) |
---|
6616 | acsf(ncsfl)%ity = rt2_track(1,i) |
---|
6617 | acsf(ncsfl)%itz = iz |
---|
6618 | acsf(ncsfl)%isurfs = iorig |
---|
6619 | acsf(ncsfl)%rsvf = REAL((1._wp - curtrans)*aorig*vffrac(k), wp) ! we postpone multiplication by transparency |
---|
6620 | acsf(ncsfl)%rtransp = REAL(transparency(k), wp) |
---|
6621 | |
---|
6622 | transparency(k) = transparency(k) * curtrans |
---|
6623 | ENDIF |
---|
6624 | iz = iz + zsgn |
---|
6625 | ENDDO ! l = 1, nz - 1 |
---|
6626 | ENDDO ! k = LBOUND(zdirs, 1), UBOUND(zdirs, 1) |
---|
6627 | ENDDO ! i = 1, ntrack |
---|
6628 | |
---|
6629 | transparency(:) = 1._wp !-- Reset all rays to transparent |
---|
6630 | ENDIF |
---|
6631 | |
---|
6632 | !-- Forward direction of radiation (sky->face), always |
---|
6633 | !-- |
---|
6634 | DO i = ntrack, 1, -1 ! for each column backwards |
---|
6635 | dxxyy = ((dy*yxdir(1))**2 + (dx*yxdir(2))**2) * (rt2_track_dist(i)-rt2_track_dist(i-1))**2 |
---|
6636 | px = rt2_track(2,i)/nnx |
---|
6637 | py = rt2_track(1,i)/nny |
---|
6638 | ip = px*pdims(2)+py |
---|
6639 | |
---|
6640 | DO k = LBOUND(zdirs, 1), UBOUND(zdirs, 1) ! for each ray |
---|
6641 | IF ( zdirs(k) <= horizon ) THEN |
---|
6642 | transparency(k) = 0._wp |
---|
6643 | CYCLE |
---|
6644 | ENDIF |
---|
6645 | |
---|
6646 | zexit = REAL(origin(1), wp) + zdirs(k) * rt2_track_dist(i-1) |
---|
6647 | IF ( zexit <= zbottom .OR. zexit >= ztop ) CYCLE |
---|
6648 | |
---|
6649 | zsgn = -INT(SIGN(1._wp, zdirs(k)), iwp) |
---|
6650 | rt2_dist(1) = 0._wp |
---|
6651 | IF ( zdirs(k) == 0._wp ) THEN ! ray is exactly horizontal |
---|
6652 | nz = 2 |
---|
6653 | rt2_dist(nz) = SQRT(dxxyy) |
---|
6654 | iz = NINT(zexit, iwp) |
---|
6655 | ELSE |
---|
6656 | zorig = MIN(MAX(REAL(origin(1), wp) + zdirs(k) * rt2_track_dist(i), zbottom), ztop) |
---|
6657 | |
---|
6658 | zb0 = FLOOR( zorig * zsgn - .5_wp) + 1 ! because it must be greater than orig |
---|
6659 | zb1 = CEILING(zexit * zsgn - .5_wp) - 1 ! because it must be smaller than exit |
---|
6660 | nz = MAX(zb1 - zb0 + 3, 2) |
---|
6661 | rt2_dist(nz) = SQRT(((zexit-zorig)*dz(1))**2 + dxxyy) |
---|
6662 | qdist = rt2_dist(nz) / (zexit-zorig) |
---|
6663 | rt2_dist(2:nz-1) = (/( ((REAL(l, wp) + .5_wp) * zsgn - zorig) * qdist , l = zb0, zb1 )/) |
---|
6664 | iz = zb0 * zsgn |
---|
6665 | ENDIF |
---|
6666 | |
---|
6667 | DO l = 2, nz |
---|
6668 | IF ( rt2_track_lad(iz, i) > 0._wp ) THEN |
---|
6669 | curtrans = exp(-ext_coef * rt2_track_lad(iz, i) * (rt2_dist(l)-rt2_dist(l-1))) |
---|
6670 | |
---|
6671 | IF ( create_csf ) THEN |
---|
6672 | ncsfl = ncsfl + 1 |
---|
6673 | acsf(ncsfl)%ip = ip |
---|
6674 | acsf(ncsfl)%itx = rt2_track(2,i) |
---|
6675 | acsf(ncsfl)%ity = rt2_track(1,i) |
---|
6676 | acsf(ncsfl)%itz = iz |
---|
6677 | acsf(ncsfl)%isurfs = -1 ! a special ID indicating sky |
---|
6678 | acsf(ncsfl)%rsvf = REAL((1._wp - curtrans)*aorig*vffrac(k), wp) ! we postpone multiplication by transparency |
---|
6679 | acsf(ncsfl)%rtransp = REAL(transparency(k), wp) |
---|
6680 | ENDIF !< create_csf |
---|
6681 | |
---|
6682 | transparency(k) = transparency(k) * curtrans |
---|
6683 | ENDIF |
---|
6684 | iz = iz + zsgn |
---|
6685 | ENDDO ! l = 1, nz - 1 |
---|
6686 | ENDDO ! k = LBOUND(zdirs, 1), UBOUND(zdirs, 1) |
---|
6687 | ENDDO ! i = 1, ntrack |
---|
6688 | |
---|
6689 | ELSE ! not plant_canopy |
---|
6690 | DO k = UBOUND(zdirs, 1), LBOUND(zdirs, 1), -1 ! TODO make more generic |
---|
6691 | IF ( zdirs(k) > horizon ) EXIT |
---|
6692 | transparency(k) = 0._wp |
---|
6693 | ENDDO |
---|
6694 | ENDIF |
---|
6695 | |
---|
6696 | END SUBROUTINE raytrace_2d |
---|
6697 | |
---|
6698 | |
---|
6699 | !------------------------------------------------------------------------------! |
---|
6700 | ! |
---|
6701 | ! Description: |
---|
6702 | ! ------------ |
---|
6703 | !> Calculates apparent solar positions for all timesteps and stores discretized |
---|
6704 | !> positions. |
---|
6705 | !------------------------------------------------------------------------------! |
---|
6706 | SUBROUTINE radiation_presimulate_solar_pos |
---|
6707 | IMPLICIT NONE |
---|
6708 | |
---|
6709 | INTEGER(iwp) :: it, i, j |
---|
6710 | REAL(wp) :: tsrp_prev |
---|
6711 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dsidir_tmp !< dsidir_tmp[:,i] = unit vector of i-th |
---|
6712 | !< appreant solar direction |
---|
6713 | |
---|
6714 | ALLOCATE ( dsidir_rev(0:raytrace_discrete_elevs/2-1, & |
---|
6715 | 0:raytrace_discrete_azims-1) ) |
---|
6716 | dsidir_rev(:,:) = -1 |
---|
6717 | ALLOCATE ( dsidir_tmp(3, & |
---|
6718 | raytrace_discrete_elevs/2*raytrace_discrete_azims) ) |
---|
6719 | ndsidir = 0 |
---|
6720 | |
---|
6721 | ! |
---|
6722 | !-- We will artificialy update time_since_reference_point and return to |
---|
6723 | !-- true value later |
---|
6724 | tsrp_prev = time_since_reference_point |
---|
6725 | sun_direction = .TRUE. |
---|
6726 | |
---|
6727 | ! |
---|
6728 | !-- Process spinup time if configured |
---|
6729 | IF ( spinup_time > 0._wp ) THEN |
---|
6730 | DO it = 0, CEILING(spinup_time / dt_spinup) |
---|
6731 | time_since_reference_point = -spinup_time + REAL(it, wp) * dt_spinup |
---|
6732 | CALL simulate_pos |
---|
6733 | ENDDO |
---|
6734 | ENDIF |
---|
6735 | ! |
---|
6736 | !-- Process simulation time |
---|
6737 | DO it = 0, CEILING(( end_time - spinup_time ) / dt_radiation) |
---|
6738 | time_since_reference_point = REAL(it, wp) * dt_radiation |
---|
6739 | CALL simulate_pos |
---|
6740 | ENDDO |
---|
6741 | |
---|
6742 | time_since_reference_point = tsrp_prev |
---|
6743 | |
---|
6744 | !-- Allocate global vars which depend on ndsidir |
---|
6745 | ALLOCATE ( dsidir ( 3, ndsidir ) ) |
---|
6746 | dsidir(:,:) = dsidir_tmp(:, 1:ndsidir) |
---|
6747 | DEALLOCATE ( dsidir_tmp ) |
---|
6748 | |
---|
6749 | ALLOCATE ( dsitrans(nsurfl, ndsidir) ) |
---|
6750 | ALLOCATE ( dsitransc(npcbl, ndsidir) ) |
---|
6751 | |
---|
6752 | WRITE ( message_string, * ) 'Precalculated', ndsidir, ' solar positions', & |
---|
6753 | 'from', it, ' timesteps.' |
---|
6754 | CALL message( 'radiation_presimulate_solar_pos', 'UI0013', 0, 0, 0, 6, 0 ) |
---|
6755 | |
---|
6756 | CONTAINS |
---|
6757 | |
---|
6758 | !------------------------------------------------------------------------! |
---|
6759 | ! Description: |
---|
6760 | ! ------------ |
---|
6761 | !> Simuates a single position |
---|
6762 | !------------------------------------------------------------------------! |
---|
6763 | SUBROUTINE simulate_pos |
---|
6764 | IMPLICIT NONE |
---|
6765 | ! |
---|
6766 | !-- Update apparent solar position based on modified t_s_r_p |
---|
6767 | CALL calc_zenith |
---|
6768 | IF ( zenith(0) > 0 ) THEN |
---|
6769 | !-- |
---|
6770 | !-- Identify solar direction vector (discretized number) 1) |
---|
6771 | i = MODULO(NINT(ATAN2(sun_dir_lon(0), sun_dir_lat(0)) & |
---|
6772 | / (2._wp*pi) * raytrace_discrete_azims-.5_wp, iwp), & |
---|
6773 | raytrace_discrete_azims) |
---|
6774 | j = FLOOR(ACOS(zenith(0)) / pi * raytrace_discrete_elevs) |
---|
6775 | IF ( dsidir_rev(j, i) == -1 ) THEN |
---|
6776 | ndsidir = ndsidir + 1 |
---|
6777 | dsidir_tmp(:, ndsidir) = & |
---|
6778 | (/ COS((REAL(j,wp)+.5_wp) * pi / raytrace_discrete_elevs), & |
---|
6779 | SIN((REAL(j,wp)+.5_wp) * pi / raytrace_discrete_elevs) & |
---|
6780 | * COS((REAL(i,wp)+.5_wp) * 2_wp*pi / raytrace_discrete_azims), & |
---|
6781 | SIN((REAL(j,wp)+.5_wp) * pi / raytrace_discrete_elevs) & |
---|
6782 | * SIN((REAL(i,wp)+.5_wp) * 2_wp*pi / raytrace_discrete_azims) /) |
---|
6783 | dsidir_rev(j, i) = ndsidir |
---|
6784 | ENDIF |
---|
6785 | ENDIF |
---|
6786 | END SUBROUTINE simulate_pos |
---|
6787 | |
---|
6788 | END SUBROUTINE radiation_presimulate_solar_pos |
---|
6789 | |
---|
6790 | |
---|
6791 | |
---|
6792 | !------------------------------------------------------------------------------! |
---|
6793 | ! Description: |
---|
6794 | ! ------------ |
---|
6795 | !> Determines whether two faces are oriented towards each other. Since the |
---|
6796 | !> surfaces follow the gird box surfaces, it checks first whether the two surfaces |
---|
6797 | !> are directed in the same direction, then it checks if the two surfaces are |
---|
6798 | !> located in confronted direction but facing away from each other, e.g. <--| |--> |
---|
6799 | !------------------------------------------------------------------------------! |
---|
6800 | PURE LOGICAL FUNCTION surface_facing(x, y, z, d, x2, y2, z2, d2) |
---|
6801 | IMPLICIT NONE |
---|
6802 | INTEGER(iwp), INTENT(in) :: x, y, z, d, x2, y2, z2, d2 |
---|
6803 | |
---|
6804 | surface_facing = .FALSE. |
---|
6805 | |
---|
6806 | !-- first check: are the two surfaces directed in the same direction |
---|
6807 | IF ( (d==iup_u .OR. d==iup_l .OR. d==iup_a ) & |
---|
6808 | .AND. (d2==iup_u .OR. d2==iup_l) ) RETURN |
---|
6809 | IF ( (d==isouth_u .OR. d==isouth_l .OR. d==isouth_a ) & |
---|
6810 | .AND. (d2==isouth_u .OR. d2==isouth_l) ) RETURN |
---|
6811 | IF ( (d==inorth_u .OR. d==inorth_l .OR. d==inorth_a ) & |
---|
6812 | .AND. (d2==inorth_u .OR. d2==inorth_l) ) RETURN |
---|
6813 | IF ( (d==iwest_u .OR. d==iwest_l .OR. d==iwest_a ) & |
---|
6814 | .AND. (d2==iwest_u .OR. d2==iwest_l ) ) RETURN |
---|
6815 | IF ( (d==ieast_u .OR. d==ieast_l .OR. d==ieast_a ) & |
---|
6816 | .AND. (d2==ieast_u .OR. d2==ieast_l ) ) RETURN |
---|
6817 | |
---|
6818 | !-- second check: are surfaces facing away from each other |
---|
6819 | SELECT CASE (d) |
---|
6820 | CASE (iup_u, iup_l, iup_a) !< upward facing surfaces |
---|
6821 | IF ( z2 < z ) RETURN |
---|
6822 | CASE (idown_a) !< downward facing surfaces |
---|
6823 | IF ( z2 > z ) RETURN |
---|
6824 | CASE (isouth_u, isouth_l, isouth_a) !< southward facing surfaces |
---|
6825 | IF ( y2 > y ) RETURN |
---|
6826 | CASE (inorth_u, inorth_l, inorth_a) !< northward facing surfaces |
---|
6827 | IF ( y2 < y ) RETURN |
---|
6828 | CASE (iwest_u, iwest_l, iwest_a) !< westward facing surfaces |
---|
6829 | IF ( x2 > x ) RETURN |
---|
6830 | CASE (ieast_u, ieast_l, ieast_a) !< eastward facing surfaces |
---|
6831 | IF ( x2 < x ) RETURN |
---|
6832 | END SELECT |
---|
6833 | |
---|
6834 | SELECT CASE (d2) |
---|
6835 | CASE (iup_u) !< ground, roof |
---|
6836 | IF ( z < z2 ) RETURN |
---|
6837 | CASE (isouth_u, isouth_l) !< south facing |
---|
6838 | IF ( y > y2 ) RETURN |
---|
6839 | CASE (inorth_u, inorth_l) !< north facing |
---|
6840 | IF ( y < y2 ) RETURN |
---|
6841 | CASE (iwest_u, iwest_l) !< west facing |
---|
6842 | IF ( x > x2 ) RETURN |
---|
6843 | CASE (ieast_u, ieast_l) !< east facing |
---|
6844 | IF ( x < x2 ) RETURN |
---|
6845 | CASE (-1) |
---|
6846 | CONTINUE |
---|
6847 | END SELECT |
---|
6848 | |
---|
6849 | surface_facing = .TRUE. |
---|
6850 | |
---|
6851 | END FUNCTION surface_facing |
---|
6852 | |
---|
6853 | |
---|
6854 | !------------------------------------------------------------------------------! |
---|
6855 | ! |
---|
6856 | ! Description: |
---|
6857 | ! ------------ |
---|
6858 | !> Soubroutine reads svf and svfsurf data from saved file |
---|
6859 | !> SVF means sky view factors and CSF means canopy sink factors |
---|
6860 | !------------------------------------------------------------------------------! |
---|
6861 | SUBROUTINE radiation_read_svf |
---|
6862 | |
---|
6863 | IMPLICIT NONE |
---|
6864 | |
---|
6865 | CHARACTER(rad_version_len) :: rad_version_field |
---|
6866 | |
---|
6867 | INTEGER(iwp) :: i |
---|
6868 | INTEGER(iwp) :: ndsidir_from_file = 0 |
---|
6869 | INTEGER(iwp) :: npcbl_from_file = 0 |
---|
6870 | INTEGER(iwp) :: nsurfl_from_file = 0 |
---|
6871 | |
---|
6872 | DO i = 0, io_blocks-1 |
---|
6873 | IF ( i == io_group ) THEN |
---|
6874 | |
---|
6875 | ! |
---|
6876 | !-- numprocs_previous_run is only known in case of reading restart |
---|
6877 | !-- data. If a new initial run which reads svf data is started the |
---|
6878 | !-- following query will be skipped |
---|
6879 | IF ( initializing_actions == 'read_restart_data' ) THEN |
---|
6880 | |
---|
6881 | IF ( numprocs_previous_run /= numprocs ) THEN |
---|
6882 | WRITE( message_string, * ) 'A different number of ', & |
---|
6883 | 'processors between the run ', & |
---|
6884 | 'that has written the svf data ',& |
---|
6885 | 'and the one that will read it ',& |
---|
6886 | 'is not allowed' |
---|
6887 | CALL message( 'check_open', 'PA0491', 1, 2, 0, 6, 0 ) |
---|
6888 | ENDIF |
---|
6889 | |
---|
6890 | ENDIF |
---|
6891 | |
---|
6892 | ! |
---|
6893 | !-- Open binary file |
---|
6894 | CALL check_open( 88 ) |
---|
6895 | |
---|
6896 | ! |
---|
6897 | !-- read and check version |
---|
6898 | READ ( 88 ) rad_version_field |
---|
6899 | IF ( TRIM(rad_version_field) /= TRIM(rad_version) ) THEN |
---|
6900 | WRITE( message_string, * ) 'Version of binary SVF file "', & |
---|
6901 | TRIM(rad_version_field), '" does not match ', & |
---|
6902 | 'the version of model "', TRIM(rad_version), '"' |
---|
6903 | CALL message( 'radiation_read_svf', 'PA0482', 1, 2, 0, 6, 0 ) |
---|
6904 | ENDIF |
---|
6905 | |
---|
6906 | ! |
---|
6907 | !-- read nsvfl, ncsfl, nsurfl |
---|
6908 | READ ( 88 ) nsvfl, ncsfl, nsurfl_from_file, npcbl_from_file, & |
---|
6909 | ndsidir_from_file |
---|
6910 | |
---|
6911 | IF ( nsvfl < 0 .OR. ncsfl < 0 ) THEN |
---|
6912 | WRITE( message_string, * ) 'Wrong number of SVF or CSF' |
---|
6913 | CALL message( 'radiation_read_svf', 'PA0483', 1, 2, 0, 6, 0 ) |
---|
6914 | ELSE |
---|
6915 | WRITE(message_string,*) ' Number of SVF, CSF, and nsurfl ',& |
---|
6916 | 'to read', nsvfl, ncsfl, & |
---|
6917 | nsurfl_from_file |
---|
6918 | CALL location_message( message_string, .TRUE. ) |
---|
6919 | ENDIF |
---|
6920 | |
---|
6921 | IF ( nsurfl_from_file /= nsurfl ) THEN |
---|
6922 | WRITE( message_string, * ) 'nsurfl from SVF file does not ', & |
---|
6923 | 'match calculated nsurfl from ', & |
---|
6924 | 'radiation_interaction_init' |
---|
6925 | CALL message( 'radiation_read_svf', 'PA0490', 1, 2, 0, 6, 0 ) |
---|
6926 | ENDIF |
---|
6927 | |
---|
6928 | IF ( npcbl_from_file /= npcbl ) THEN |
---|
6929 | WRITE( message_string, * ) 'npcbl from SVF file does not ', & |
---|
6930 | 'match calculated npcbl from ', & |
---|
6931 | 'radiation_interaction_init' |
---|
6932 | CALL message( 'radiation_read_svf', 'PA0493', 1, 2, 0, 6, 0 ) |
---|
6933 | ENDIF |
---|
6934 | |
---|
6935 | IF ( ndsidir_from_file /= ndsidir ) THEN |
---|
6936 | WRITE( message_string, * ) 'ndsidir from SVF file does not ', & |
---|
6937 | 'match calculated ndsidir from ', & |
---|
6938 | 'radiation_presimulate_solar_pos' |
---|
6939 | CALL message( 'radiation_read_svf', 'PA0494', 1, 2, 0, 6, 0 ) |
---|
6940 | ENDIF |
---|
6941 | |
---|
6942 | ! |
---|
6943 | !-- Arrays skyvf, skyvft, dsitrans and dsitransc are allready |
---|
6944 | !-- allocated in radiation_interaction_init and |
---|
6945 | !-- radiation_presimulate_solar_pos |
---|
6946 | IF ( nsurfl > 0 ) THEN |
---|
6947 | READ(88) skyvf |
---|
6948 | READ(88) skyvft |
---|
6949 | READ(88) dsitrans |
---|
6950 | ENDIF |
---|
6951 | |
---|
6952 | IF ( plant_canopy .AND. npcbl > 0 ) THEN |
---|
6953 | READ ( 88 ) dsitransc |
---|
6954 | ENDIF |
---|
6955 | |
---|
6956 | ! |
---|
6957 | !-- The allocation of svf, svfsurf, csf and csfsurf happens in routine |
---|
6958 | !-- radiation_calc_svf which is not called if the program enters |
---|
6959 | !-- radiation_read_svf. Therefore these arrays has to allocate in the |
---|
6960 | !-- following |
---|
6961 | IF ( nsvfl > 0 ) THEN |
---|
6962 | ALLOCATE( svf(ndsvf,nsvfl) ) |
---|
6963 | ALLOCATE( svfsurf(idsvf,nsvfl) ) |
---|
6964 | READ(88) svf |
---|
6965 | READ(88) svfsurf |
---|
6966 | ENDIF |
---|
6967 | |
---|
6968 | IF ( plant_canopy .AND. ncsfl > 0 ) THEN |
---|
6969 | ALLOCATE( csf(ndcsf,ncsfl) ) |
---|
6970 | ALLOCATE( csfsurf(idcsf,ncsfl) ) |
---|
6971 | READ(88) csf |
---|
6972 | READ(88) csfsurf |
---|
6973 | ENDIF |
---|
6974 | |
---|
6975 | ! |
---|
6976 | !-- Close binary file |
---|
6977 | CALL close_file( 88 ) |
---|
6978 | |
---|
6979 | ENDIF |
---|
6980 | #if defined( __parallel ) |
---|
6981 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
6982 | #endif |
---|
6983 | ENDDO |
---|
6984 | |
---|
6985 | END SUBROUTINE radiation_read_svf |
---|
6986 | |
---|
6987 | |
---|
6988 | !------------------------------------------------------------------------------! |
---|
6989 | ! |
---|
6990 | ! Description: |
---|
6991 | ! ------------ |
---|
6992 | !> Subroutine stores svf, svfsurf, csf and csfsurf data to a file. |
---|
6993 | !------------------------------------------------------------------------------! |
---|
6994 | SUBROUTINE radiation_write_svf |
---|
6995 | |
---|
6996 | IMPLICIT NONE |
---|
6997 | |
---|
6998 | INTEGER(iwp) :: i |
---|
6999 | |
---|
7000 | DO i = 0, io_blocks-1 |
---|
7001 | IF ( i == io_group ) THEN |
---|
7002 | ! |
---|
7003 | !-- Open binary file |
---|
7004 | CALL check_open( 89 ) |
---|
7005 | |
---|
7006 | WRITE ( 89 ) rad_version |
---|
7007 | WRITE ( 89 ) nsvfl, ncsfl, nsurfl, npcbl, ndsidir |
---|
7008 | IF ( nsurfl > 0 ) THEN |
---|
7009 | WRITE ( 89 ) skyvf |
---|
7010 | WRITE ( 89 ) skyvft |
---|
7011 | WRITE ( 89 ) dsitrans |
---|
7012 | ENDIF |
---|
7013 | IF ( npcbl > 0 ) THEN |
---|
7014 | WRITE ( 89 ) dsitransc |
---|
7015 | ENDIF |
---|
7016 | IF ( nsvfl > 0 ) THEN |
---|
7017 | WRITE ( 89 ) svf |
---|
7018 | WRITE ( 89 ) svfsurf |
---|
7019 | ENDIF |
---|
7020 | IF ( plant_canopy .AND. ncsfl > 0 ) THEN |
---|
7021 | WRITE ( 89 ) csf |
---|
7022 | WRITE ( 89 ) csfsurf |
---|
7023 | ENDIF |
---|
7024 | |
---|
7025 | ! |
---|
7026 | !-- Close binary file |
---|
7027 | CALL close_file( 89 ) |
---|
7028 | |
---|
7029 | ENDIF |
---|
7030 | #if defined( __parallel ) |
---|
7031 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
7032 | #endif |
---|
7033 | ENDDO |
---|
7034 | END SUBROUTINE radiation_write_svf |
---|
7035 | |
---|
7036 | !------------------------------------------------------------------------------! |
---|
7037 | ! |
---|
7038 | ! Description: |
---|
7039 | ! ------------ |
---|
7040 | !> Block of auxiliary subroutines: |
---|
7041 | !> 1. quicksort and corresponding comparison |
---|
7042 | !> 2. merge_and_grow_csf for implementation of "dynamical growing" |
---|
7043 | !> array for csf |
---|
7044 | !------------------------------------------------------------------------------! |
---|
7045 | PURE FUNCTION svf_lt(svf1,svf2) result (res) |
---|
7046 | TYPE (t_svf), INTENT(in) :: svf1,svf2 |
---|
7047 | LOGICAL :: res |
---|
7048 | IF ( svf1%isurflt < svf2%isurflt .OR. & |
---|
7049 | (svf1%isurflt == svf2%isurflt .AND. svf1%isurfs < svf2%isurfs) ) THEN |
---|
7050 | res = .TRUE. |
---|
7051 | ELSE |
---|
7052 | res = .FALSE. |
---|
7053 | ENDIF |
---|
7054 | END FUNCTION svf_lt |
---|
7055 | |
---|
7056 | |
---|
7057 | !-- quicksort.f -*-f90-*- |
---|
7058 | !-- Author: t-nissie, adaptation J.Resler |
---|
7059 | !-- License: GPLv3 |
---|
7060 | !-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea |
---|
7061 | RECURSIVE SUBROUTINE quicksort_svf(svfl, first, last) |
---|
7062 | IMPLICIT NONE |
---|
7063 | TYPE(t_svf), DIMENSION(:), INTENT(INOUT) :: svfl |
---|
7064 | INTEGER(iwp), INTENT(IN) :: first, last |
---|
7065 | TYPE(t_svf) :: x, t |
---|
7066 | INTEGER(iwp) :: i, j |
---|
7067 | |
---|
7068 | IF ( first>=last ) RETURN |
---|
7069 | x = svfl( (first+last) / 2 ) |
---|
7070 | i = first |
---|
7071 | j = last |
---|
7072 | DO |
---|
7073 | DO while ( svf_lt(svfl(i),x) ) |
---|
7074 | i=i+1 |
---|
7075 | ENDDO |
---|
7076 | DO while ( svf_lt(x,svfl(j)) ) |
---|
7077 | j=j-1 |
---|
7078 | ENDDO |
---|
7079 | IF ( i >= j ) EXIT |
---|
7080 | t = svfl(i); svfl(i) = svfl(j); svfl(j) = t |
---|
7081 | i=i+1 |
---|
7082 | j=j-1 |
---|
7083 | ENDDO |
---|
7084 | IF ( first < i-1 ) CALL quicksort_svf(svfl, first, i-1) |
---|
7085 | IF ( j+1 < last ) CALL quicksort_svf(svfl, j+1, last) |
---|
7086 | END SUBROUTINE quicksort_svf |
---|
7087 | |
---|
7088 | |
---|
7089 | PURE FUNCTION csf_lt(csf1,csf2) result (res) |
---|
7090 | TYPE (t_csf), INTENT(in) :: csf1,csf2 |
---|
7091 | LOGICAL :: res |
---|
7092 | IF ( csf1%ip < csf2%ip .OR. & |
---|
7093 | (csf1%ip == csf2%ip .AND. csf1%itx < csf2%itx) .OR. & |
---|
7094 | (csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity < csf2%ity) .OR. & |
---|
7095 | (csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity == csf2%ity .AND. & |
---|
7096 | csf1%itz < csf2%itz) .OR. & |
---|
7097 | (csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity == csf2%ity .AND. & |
---|
7098 | csf1%itz == csf2%itz .AND. csf1%isurfs < csf2%isurfs) ) THEN |
---|
7099 | res = .TRUE. |
---|
7100 | ELSE |
---|
7101 | res = .FALSE. |
---|
7102 | ENDIF |
---|
7103 | END FUNCTION csf_lt |
---|
7104 | |
---|
7105 | |
---|
7106 | !-- quicksort.f -*-f90-*- |
---|
7107 | !-- Author: t-nissie, adaptation J.Resler |
---|
7108 | !-- License: GPLv3 |
---|
7109 | !-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea |
---|
7110 | RECURSIVE SUBROUTINE quicksort_csf(csfl, first, last) |
---|
7111 | IMPLICIT NONE |
---|
7112 | TYPE(t_csf), DIMENSION(:), INTENT(INOUT) :: csfl |
---|
7113 | INTEGER(iwp), INTENT(IN) :: first, last |
---|
7114 | TYPE(t_csf) :: x, t |
---|
7115 | INTEGER(iwp) :: i, j |
---|
7116 | |
---|
7117 | IF ( first>=last ) RETURN |
---|
7118 | x = csfl( (first+last)/2 ) |
---|
7119 | i = first |
---|
7120 | j = last |
---|
7121 | DO |
---|
7122 | DO while ( csf_lt(csfl(i),x) ) |
---|
7123 | i=i+1 |
---|
7124 | ENDDO |
---|
7125 | DO while ( csf_lt(x,csfl(j)) ) |
---|
7126 | j=j-1 |
---|
7127 | ENDDO |
---|
7128 | IF ( i >= j ) EXIT |
---|
7129 | t = csfl(i); csfl(i) = csfl(j); csfl(j) = t |
---|
7130 | i=i+1 |
---|
7131 | j=j-1 |
---|
7132 | ENDDO |
---|
7133 | IF ( first < i-1 ) CALL quicksort_csf(csfl, first, i-1) |
---|
7134 | IF ( j+1 < last ) CALL quicksort_csf(csfl, j+1, last) |
---|
7135 | END SUBROUTINE quicksort_csf |
---|
7136 | |
---|
7137 | |
---|
7138 | SUBROUTINE merge_and_grow_csf(newsize) |
---|
7139 | INTEGER(iwp), INTENT(in) :: newsize !< new array size after grow, must be >= ncsfl |
---|
7140 | !< or -1 to shrink to minimum |
---|
7141 | INTEGER(iwp) :: iread, iwrite |
---|
7142 | TYPE(t_csf), DIMENSION(:), POINTER :: acsfnew |
---|
7143 | CHARACTER(100) :: msg |
---|
7144 | |
---|
7145 | IF ( newsize == -1 ) THEN |
---|
7146 | !-- merge in-place |
---|
7147 | acsfnew => acsf |
---|
7148 | ELSE |
---|
7149 | !-- allocate new array |
---|
7150 | IF ( mcsf == 0 ) THEN |
---|
7151 | ALLOCATE( acsf1(newsize) ) |
---|
7152 | acsfnew => acsf1 |
---|
7153 | ELSE |
---|
7154 | ALLOCATE( acsf2(newsize) ) |
---|
7155 | acsfnew => acsf2 |
---|
7156 | ENDIF |
---|
7157 | ENDIF |
---|
7158 | |
---|
7159 | IF ( ncsfl >= 1 ) THEN |
---|
7160 | !-- sort csf in place (quicksort) |
---|
7161 | CALL quicksort_csf(acsf,1,ncsfl) |
---|
7162 | |
---|
7163 | !-- while moving to a new array, aggregate canopy sink factor records with identical box & source |
---|
7164 | acsfnew(1) = acsf(1) |
---|
7165 | iwrite = 1 |
---|
7166 | DO iread = 2, ncsfl |
---|
7167 | !-- here acsf(kcsf) already has values from acsf(icsf) |
---|
7168 | IF ( acsfnew(iwrite)%itx == acsf(iread)%itx & |
---|
7169 | .AND. acsfnew(iwrite)%ity == acsf(iread)%ity & |
---|
7170 | .AND. acsfnew(iwrite)%itz == acsf(iread)%itz & |
---|
7171 | .AND. acsfnew(iwrite)%isurfs == acsf(iread)%isurfs ) THEN |
---|
7172 | !-- We could simply take either first or second rtransp, both are valid. As a very simple heuristic about which ray |
---|
7173 | !-- probably passes nearer the center of the target box, we choose DIF from the entry with greater CSF, since that |
---|
7174 | !-- might mean that the traced beam passes longer through the canopy box. |
---|
7175 | IF ( acsfnew(iwrite)%rsvf < acsf(iread)%rsvf ) THEN |
---|
7176 | acsfnew(iwrite)%rtransp = acsf(iread)%rtransp |
---|
7177 | ENDIF |
---|
7178 | acsfnew(iwrite)%rsvf = acsfnew(iwrite)%rsvf + acsf(iread)%rsvf |
---|
7179 | !-- advance reading index, keep writing index |
---|
7180 | ELSE |
---|
7181 | !-- not identical, just advance and copy |
---|
7182 | iwrite = iwrite + 1 |
---|
7183 | acsfnew(iwrite) = acsf(iread) |
---|
7184 | ENDIF |
---|
7185 | ENDDO |
---|
7186 | ncsfl = iwrite |
---|
7187 | ENDIF |
---|
7188 | |
---|
7189 | IF ( newsize == -1 ) THEN |
---|
7190 | !-- allocate new array and copy shrinked data |
---|
7191 | IF ( mcsf == 0 ) THEN |
---|
7192 | ALLOCATE( acsf1(ncsfl) ) |
---|
7193 | acsf1(1:ncsfl) = acsf2(1:ncsfl) |
---|
7194 | ELSE |
---|
7195 | ALLOCATE( acsf2(ncsfl) ) |
---|
7196 | acsf2(1:ncsfl) = acsf1(1:ncsfl) |
---|
7197 | ENDIF |
---|
7198 | ENDIF |
---|
7199 | |
---|
7200 | !-- deallocate old array |
---|
7201 | IF ( mcsf == 0 ) THEN |
---|
7202 | mcsf = 1 |
---|
7203 | acsf => acsf1 |
---|
7204 | DEALLOCATE( acsf2 ) |
---|
7205 | ELSE |
---|
7206 | mcsf = 0 |
---|
7207 | acsf => acsf2 |
---|
7208 | DEALLOCATE( acsf1 ) |
---|
7209 | ENDIF |
---|
7210 | ncsfla = newsize |
---|
7211 | |
---|
7212 | ! WRITE(msg,'(A,2I12)') 'Grow acsf2:',ncsfl,ncsfla |
---|
7213 | ! CALL radiation_write_debug_log( msg ) |
---|
7214 | |
---|
7215 | END SUBROUTINE merge_and_grow_csf |
---|
7216 | |
---|
7217 | |
---|
7218 | !-- quicksort.f -*-f90-*- |
---|
7219 | !-- Author: t-nissie, adaptation J.Resler |
---|
7220 | !-- License: GPLv3 |
---|
7221 | !-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea |
---|
7222 | RECURSIVE SUBROUTINE quicksort_csf2(kpcsflt, pcsflt, first, last) |
---|
7223 | IMPLICIT NONE |
---|
7224 | INTEGER(iwp), DIMENSION(:,:), INTENT(INOUT) :: kpcsflt |
---|
7225 | REAL(wp), DIMENSION(:,:), INTENT(INOUT) :: pcsflt |
---|
7226 | INTEGER(iwp), INTENT(IN) :: first, last |
---|
7227 | REAL(wp), DIMENSION(ndcsf) :: t2 |
---|
7228 | INTEGER(iwp), DIMENSION(kdcsf) :: x, t1 |
---|
7229 | INTEGER(iwp) :: i, j |
---|
7230 | |
---|
7231 | IF ( first>=last ) RETURN |
---|
7232 | x = kpcsflt(:, (first+last)/2 ) |
---|
7233 | i = first |
---|
7234 | j = last |
---|
7235 | DO |
---|
7236 | DO while ( csf_lt2(kpcsflt(:,i),x) ) |
---|
7237 | i=i+1 |
---|
7238 | ENDDO |
---|
7239 | DO while ( csf_lt2(x,kpcsflt(:,j)) ) |
---|
7240 | j=j-1 |
---|
7241 | ENDDO |
---|
7242 | IF ( i >= j ) EXIT |
---|
7243 | t1 = kpcsflt(:,i); kpcsflt(:,i) = kpcsflt(:,j); kpcsflt(:,j) = t1 |
---|
7244 | t2 = pcsflt(:,i); pcsflt(:,i) = pcsflt(:,j); pcsflt(:,j) = t2 |
---|
7245 | i=i+1 |
---|
7246 | j=j-1 |
---|
7247 | ENDDO |
---|
7248 | IF ( first < i-1 ) CALL quicksort_csf2(kpcsflt, pcsflt, first, i-1) |
---|
7249 | IF ( j+1 < last ) CALL quicksort_csf2(kpcsflt, pcsflt, j+1, last) |
---|
7250 | END SUBROUTINE quicksort_csf2 |
---|
7251 | |
---|
7252 | |
---|
7253 | PURE FUNCTION csf_lt2(item1, item2) result(res) |
---|
7254 | INTEGER(iwp), DIMENSION(kdcsf), INTENT(in) :: item1, item2 |
---|
7255 | LOGICAL :: res |
---|
7256 | res = ( (item1(3) < item2(3)) & |
---|
7257 | .OR. (item1(3) == item2(3) .AND. item1(2) < item2(2)) & |
---|
7258 | .OR. (item1(3) == item2(3) .AND. item1(2) == item2(2) .AND. item1(1) < item2(1)) & |
---|
7259 | .OR. (item1(3) == item2(3) .AND. item1(2) == item2(2) .AND. item1(1) == item2(1) & |
---|
7260 | .AND. item1(4) < item2(4)) ) |
---|
7261 | END FUNCTION csf_lt2 |
---|
7262 | |
---|
7263 | PURE FUNCTION searchsorted(athresh, val) result(ind) |
---|
7264 | REAL(wp), DIMENSION(:), INTENT(IN) :: athresh |
---|
7265 | REAL(wp), INTENT(IN) :: val |
---|
7266 | INTEGER(iwp) :: ind |
---|
7267 | INTEGER(iwp) :: i |
---|
7268 | |
---|
7269 | DO i = LBOUND(athresh, 1), UBOUND(athresh, 1) |
---|
7270 | IF ( val < athresh(i) ) THEN |
---|
7271 | ind = i - 1 |
---|
7272 | RETURN |
---|
7273 | ENDIF |
---|
7274 | ENDDO |
---|
7275 | ind = UBOUND(athresh, 1) |
---|
7276 | END FUNCTION searchsorted |
---|
7277 | |
---|
7278 | !------------------------------------------------------------------------------! |
---|
7279 | ! Description: |
---|
7280 | ! ------------ |
---|
7281 | ! |
---|
7282 | !> radiation_radflux_gridbox subroutine gives the sw and lw radiation fluxes at the |
---|
7283 | !> faces of a gridbox defined at i,j,k and located in the urban layer. |
---|
7284 | !> The total sw and the diffuse sw radiation as well as the lw radiation fluxes at |
---|
7285 | !> the gridbox 6 faces are stored in sw_gridbox, swd_gridbox, and lw_gridbox arrays, |
---|
7286 | !> respectively, in the following order: |
---|
7287 | !> up_face, down_face, north_face, south_face, east_face, west_face |
---|
7288 | !> |
---|
7289 | !> The subroutine reports also how successful was the search process via the parameter |
---|
7290 | !> i_feedback as follow: |
---|
7291 | !> - i_feedback = 1 : successful |
---|
7292 | !> - i_feedback = -1 : unsuccessful; the requisted point is outside the urban domain |
---|
7293 | !> - i_feedback = 0 : uncomplete; some gridbox faces fluxes are missing |
---|
7294 | !> |
---|
7295 | !> |
---|
7296 | !> It is called outside from usm_urban_surface_mod whenever the radiation fluxes |
---|
7297 | !> are needed. |
---|
7298 | !> |
---|
7299 | !> TODO: |
---|
7300 | !> - Compare performance when using some combination of the Fortran intrinsic |
---|
7301 | !> functions, e.g. MINLOC, MAXLOC, ALL, ANY and COUNT functions, which search |
---|
7302 | !> surfl array for elements meeting user-specified criterion, i.e. i,j,k |
---|
7303 | !> - Report non-found or incomplete radiation fluxes arrays , if any, at the |
---|
7304 | !> gridbox faces in an error message form |
---|
7305 | !> |
---|
7306 | !------------------------------------------------------------------------------! |
---|
7307 | SUBROUTINE radiation_radflux_gridbox(i,j,k,sw_gridbox,swd_gridbox,lw_gridbox,i_feedback) |
---|
7308 | |
---|
7309 | IMPLICIT NONE |
---|
7310 | |
---|
7311 | INTEGER(iwp), INTENT(in) :: i,j,k !< gridbox indices at which fluxes are required |
---|
7312 | INTEGER(iwp) :: ii,jj,kk,d !< surface indices and type |
---|
7313 | INTEGER(iwp) :: l !< surface id |
---|
7314 | REAL(wp) , DIMENSION(1:6), INTENT(out) :: sw_gridbox,lw_gridbox !< total sw and lw radiation fluxes of 6 faces of a gridbox, w/m2 |
---|
7315 | REAL(wp) , DIMENSION(1:6), INTENT(out) :: swd_gridbox !< diffuse sw radiation from sky and model boundary of 6 faces of a gridbox, w/m2 |
---|
7316 | INTEGER(iwp), INTENT(out) :: i_feedback !< feedback to report how the search was successful |
---|
7317 | |
---|
7318 | |
---|
7319 | !-- initialize variables |
---|
7320 | i_feedback = -999999 |
---|
7321 | sw_gridbox = -999999.9_wp |
---|
7322 | lw_gridbox = -999999.9_wp |
---|
7323 | swd_gridbox = -999999.9_wp |
---|
7324 | |
---|
7325 | !-- check the requisted grid indices |
---|
7326 | IF ( k < nzb .OR. k > nzut .OR. & |
---|
7327 | j < nysg .OR. j > nyng .OR. & |
---|
7328 | i < nxlg .OR. i > nxrg & |
---|
7329 | ) THEN |
---|
7330 | i_feedback = -1 |
---|
7331 | RETURN |
---|
7332 | ENDIF |
---|
7333 | |
---|
7334 | !-- search for the required grid and formulate the fluxes at the 6 gridbox faces |
---|
7335 | DO l = 1, nsurfl |
---|
7336 | ii = surfl(ix,l) |
---|
7337 | jj = surfl(iy,l) |
---|
7338 | kk = surfl(iz,l) |
---|
7339 | |
---|
7340 | IF ( ii == i .AND. jj == j .AND. kk == k ) THEN |
---|
7341 | d = surfl(id,l) |
---|
7342 | |
---|
7343 | SELECT CASE ( d ) |
---|
7344 | |
---|
7345 | CASE (iup_u,iup_l,iup_a) !- gridbox up_facing face |
---|
7346 | sw_gridbox(1) = surfinsw(l) |
---|
7347 | lw_gridbox(1) = surfinlw(l) |
---|
7348 | swd_gridbox(1) = surfinswdif(l) |
---|
7349 | |
---|
7350 | CASE (idown_a) !- gridbox down_facing face |
---|
7351 | sw_gridbox(2) = surfinsw(l) |
---|
7352 | lw_gridbox(2) = surfinlw(l) |
---|
7353 | swd_gridbox(2) = surfinswdif(l) |
---|
7354 | |
---|
7355 | CASE (inorth_u,inorth_l,inorth_a) !- gridbox north_facing face |
---|
7356 | sw_gridbox(3) = surfinsw(l) |
---|
7357 | lw_gridbox(3) = surfinlw(l) |
---|
7358 | swd_gridbox(3) = surfinswdif(l) |
---|
7359 | |
---|
7360 | CASE (isouth_u,isouth_l,isouth_a) !- gridbox south_facing face |
---|
7361 | sw_gridbox(4) = surfinsw(l) |
---|
7362 | lw_gridbox(4) = surfinlw(l) |
---|
7363 | swd_gridbox(4) = surfinswdif(l) |
---|
7364 | |
---|
7365 | CASE (ieast_u,ieast_l,ieast_a) !- gridbox east_facing face |
---|
7366 | sw_gridbox(5) = surfinsw(l) |
---|
7367 | lw_gridbox(5) = surfinlw(l) |
---|
7368 | swd_gridbox(5) = surfinswdif(l) |
---|
7369 | |
---|
7370 | CASE (iwest_u,iwest_l,iwest_a) !- gridbox west_facing face |
---|
7371 | sw_gridbox(6) = surfinsw(l) |
---|
7372 | lw_gridbox(6) = surfinlw(l) |
---|
7373 | swd_gridbox(6) = surfinswdif(l) |
---|
7374 | |
---|
7375 | END SELECT |
---|
7376 | |
---|
7377 | ENDIF |
---|
7378 | |
---|
7379 | IF ( ALL( sw_gridbox(:) /= -999999.9_wp ) ) EXIT |
---|
7380 | ENDDO |
---|
7381 | |
---|
7382 | !-- check the completeness of the fluxes at all gidbox faces |
---|
7383 | !-- TODO: report non-found or incomplete rad fluxes arrays in an error message form |
---|
7384 | IF ( ANY( sw_gridbox(:) <= -999999.9_wp ) .OR. & |
---|
7385 | ANY( swd_gridbox(:) <= -999999.9_wp ) .OR. & |
---|
7386 | ANY( lw_gridbox(:) <= -999999.9_wp ) ) THEN |
---|
7387 | i_feedback = 0 |
---|
7388 | ELSE |
---|
7389 | i_feedback = 1 |
---|
7390 | ENDIF |
---|
7391 | |
---|
7392 | RETURN |
---|
7393 | |
---|
7394 | END SUBROUTINE radiation_radflux_gridbox |
---|
7395 | |
---|
7396 | !------------------------------------------------------------------------------! |
---|
7397 | ! |
---|
7398 | ! Description: |
---|
7399 | ! ------------ |
---|
7400 | !> Subroutine for averaging 3D data |
---|
7401 | !------------------------------------------------------------------------------! |
---|
7402 | SUBROUTINE radiation_3d_data_averaging( mode, variable ) |
---|
7403 | |
---|
7404 | |
---|
7405 | USE control_parameters |
---|
7406 | |
---|
7407 | USE indices |
---|
7408 | |
---|
7409 | USE kinds |
---|
7410 | |
---|
7411 | IMPLICIT NONE |
---|
7412 | |
---|
7413 | CHARACTER (LEN=*) :: mode !< |
---|
7414 | CHARACTER (LEN=*) :: variable !< |
---|
7415 | |
---|
7416 | INTEGER(iwp) :: i !< |
---|
7417 | INTEGER(iwp) :: j !< |
---|
7418 | INTEGER(iwp) :: k !< |
---|
7419 | INTEGER(iwp) :: m !< index of current surface element |
---|
7420 | |
---|
7421 | IF ( mode == 'allocate' ) THEN |
---|
7422 | |
---|
7423 | SELECT CASE ( TRIM( variable ) ) |
---|
7424 | |
---|
7425 | CASE ( 'rad_net*' ) |
---|
7426 | IF ( .NOT. ALLOCATED( rad_net_av ) ) THEN |
---|
7427 | ALLOCATE( rad_net_av(nysg:nyng,nxlg:nxrg) ) |
---|
7428 | ENDIF |
---|
7429 | rad_net_av = 0.0_wp |
---|
7430 | |
---|
7431 | CASE ( 'rad_lw_in*' ) |
---|
7432 | IF ( .NOT. ALLOCATED( rad_lw_in_xy_av ) ) THEN |
---|
7433 | ALLOCATE( rad_lw_in_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
7434 | ENDIF |
---|
7435 | rad_lw_in_xy_av = 0.0_wp |
---|
7436 | |
---|
7437 | CASE ( 'rad_lw_out*' ) |
---|
7438 | IF ( .NOT. ALLOCATED( rad_lw_out_xy_av ) ) THEN |
---|
7439 | ALLOCATE( rad_lw_out_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
7440 | ENDIF |
---|
7441 | rad_lw_out_xy_av = 0.0_wp |
---|
7442 | |
---|
7443 | CASE ( 'rad_sw_in*' ) |
---|
7444 | IF ( .NOT. ALLOCATED( rad_sw_in_xy_av ) ) THEN |
---|
7445 | ALLOCATE( rad_sw_in_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
7446 | ENDIF |
---|
7447 | rad_sw_in_xy_av = 0.0_wp |
---|
7448 | |
---|
7449 | CASE ( 'rad_sw_out*' ) |
---|
7450 | IF ( .NOT. ALLOCATED( rad_sw_out_xy_av ) ) THEN |
---|
7451 | ALLOCATE( rad_sw_out_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
7452 | ENDIF |
---|
7453 | rad_sw_out_xy_av = 0.0_wp |
---|
7454 | |
---|
7455 | CASE ( 'rad_lw_in' ) |
---|
7456 | IF ( .NOT. ALLOCATED( rad_lw_in_av ) ) THEN |
---|
7457 | ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
7458 | ENDIF |
---|
7459 | rad_lw_in_av = 0.0_wp |
---|
7460 | |
---|
7461 | CASE ( 'rad_lw_out' ) |
---|
7462 | IF ( .NOT. ALLOCATED( rad_lw_out_av ) ) THEN |
---|
7463 | ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
7464 | ENDIF |
---|
7465 | rad_lw_out_av = 0.0_wp |
---|
7466 | |
---|
7467 | CASE ( 'rad_lw_cs_hr' ) |
---|
7468 | IF ( .NOT. ALLOCATED( rad_lw_cs_hr_av ) ) THEN |
---|
7469 | ALLOCATE( rad_lw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
7470 | ENDIF |
---|
7471 | rad_lw_cs_hr_av = 0.0_wp |
---|
7472 | |
---|
7473 | CASE ( 'rad_lw_hr' ) |
---|
7474 | IF ( .NOT. ALLOCATED( rad_lw_hr_av ) ) THEN |
---|
7475 | ALLOCATE( rad_lw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
7476 | ENDIF |
---|
7477 | rad_lw_hr_av = 0.0_wp |
---|
7478 | |
---|
7479 | CASE ( 'rad_sw_in' ) |
---|
7480 | IF ( .NOT. ALLOCATED( rad_sw_in_av ) ) THEN |
---|
7481 | ALLOCATE( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
7482 | ENDIF |
---|
7483 | rad_sw_in_av = 0.0_wp |
---|
7484 | |
---|
7485 | CASE ( 'rad_sw_out' ) |
---|
7486 | IF ( .NOT. ALLOCATED( rad_sw_out_av ) ) THEN |
---|
7487 | ALLOCATE( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
7488 | ENDIF |
---|
7489 | rad_sw_out_av = 0.0_wp |
---|
7490 | |
---|
7491 | CASE ( 'rad_sw_cs_hr' ) |
---|
7492 | IF ( .NOT. ALLOCATED( rad_sw_cs_hr_av ) ) THEN |
---|
7493 | ALLOCATE( rad_sw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
7494 | ENDIF |
---|
7495 | rad_sw_cs_hr_av = 0.0_wp |
---|
7496 | |
---|
7497 | CASE ( 'rad_sw_hr' ) |
---|
7498 | IF ( .NOT. ALLOCATED( rad_sw_hr_av ) ) THEN |
---|
7499 | ALLOCATE( rad_sw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
7500 | ENDIF |
---|
7501 | rad_sw_hr_av = 0.0_wp |
---|
7502 | |
---|
7503 | CASE DEFAULT |
---|
7504 | CONTINUE |
---|
7505 | |
---|
7506 | END SELECT |
---|
7507 | |
---|
7508 | ELSEIF ( mode == 'sum' ) THEN |
---|
7509 | |
---|
7510 | SELECT CASE ( TRIM( variable ) ) |
---|
7511 | |
---|
7512 | CASE ( 'rad_net*' ) |
---|
7513 | IF ( ALLOCATED( rad_net_av ) ) THEN |
---|
7514 | DO i = nxl, nxr |
---|
7515 | DO j = nys, nyn |
---|
7516 | DO m = surf_lsm_h%start_index(j,i), & |
---|
7517 | surf_lsm_h%end_index(j,i) |
---|
7518 | rad_net_av(j,i) = rad_net_av(j,i) + & |
---|
7519 | surf_lsm_h%rad_net(m) |
---|
7520 | ENDDO |
---|
7521 | DO m = surf_usm_h%start_index(j,i), & |
---|
7522 | surf_usm_h%end_index(j,i) |
---|
7523 | rad_net_av(j,i) = rad_net_av(j,i) + & |
---|
7524 | surf_usm_h%rad_net(m) |
---|
7525 | ENDDO |
---|
7526 | ENDDO |
---|
7527 | ENDDO |
---|
7528 | ENDIF |
---|
7529 | |
---|
7530 | CASE ( 'rad_lw_in*' ) |
---|
7531 | IF ( ALLOCATED( rad_lw_in_xy_av ) ) THEN |
---|
7532 | DO i = nxl, nxr |
---|
7533 | DO j = nys, nyn |
---|
7534 | DO m = surf_lsm_h%start_index(j,i), & |
---|
7535 | surf_lsm_h%end_index(j,i) |
---|
7536 | rad_lw_in_xy_av(j,i) = rad_lw_in_xy_av(j,i) + & |
---|
7537 | surf_lsm_h%rad_lw_in(m) |
---|
7538 | ENDDO |
---|
7539 | DO m = surf_usm_h%start_index(j,i), & |
---|
7540 | surf_usm_h%end_index(j,i) |
---|
7541 | rad_lw_in_xy_av(j,i) = rad_lw_in_xy_av(j,i) + & |
---|
7542 | surf_usm_h%rad_lw_in(m) |
---|
7543 | ENDDO |
---|
7544 | ENDDO |
---|
7545 | ENDDO |
---|
7546 | ENDIF |
---|
7547 | |
---|
7548 | CASE ( 'rad_lw_out*' ) |
---|
7549 | IF ( ALLOCATED( rad_lw_out_xy_av ) ) THEN |
---|
7550 | DO i = nxl, nxr |
---|
7551 | DO j = nys, nyn |
---|
7552 | DO m = surf_lsm_h%start_index(j,i), & |
---|
7553 | surf_lsm_h%end_index(j,i) |
---|
7554 | rad_lw_out_xy_av(j,i) = rad_lw_out_xy_av(j,i) + & |
---|
7555 | surf_lsm_h%rad_lw_out(m) |
---|
7556 | ENDDO |
---|
7557 | DO m = surf_usm_h%start_index(j,i), & |
---|
7558 | surf_usm_h%end_index(j,i) |
---|
7559 | rad_lw_out_xy_av(j,i) = rad_lw_out_xy_av(j,i) + & |
---|
7560 | surf_usm_h%rad_lw_out(m) |
---|
7561 | ENDDO |
---|
7562 | ENDDO |
---|
7563 | ENDDO |
---|
7564 | ENDIF |
---|
7565 | |
---|
7566 | CASE ( 'rad_sw_in*' ) |
---|
7567 | IF ( ALLOCATED( rad_sw_in_xy_av ) ) THEN |
---|
7568 | DO i = nxl, nxr |
---|
7569 | DO j = nys, nyn |
---|
7570 | DO m = surf_lsm_h%start_index(j,i), & |
---|
7571 | surf_lsm_h%end_index(j,i) |
---|
7572 | rad_sw_in_xy_av(j,i) = rad_sw_in_xy_av(j,i) + & |
---|
7573 | surf_lsm_h%rad_sw_in(m) |
---|
7574 | ENDDO |
---|
7575 | DO m = surf_usm_h%start_index(j,i), & |
---|
7576 | surf_usm_h%end_index(j,i) |
---|
7577 | rad_sw_in_xy_av(j,i) = rad_sw_in_xy_av(j,i) + & |
---|
7578 | surf_usm_h%rad_sw_in(m) |
---|
7579 | ENDDO |
---|
7580 | ENDDO |
---|
7581 | ENDDO |
---|
7582 | ENDIF |
---|
7583 | |
---|
7584 | CASE ( 'rad_sw_out*' ) |
---|
7585 | IF ( ALLOCATED( rad_sw_out_xy_av ) ) THEN |
---|
7586 | DO i = nxl, nxr |
---|
7587 | DO j = nys, nyn |
---|
7588 | DO m = surf_lsm_h%start_index(j,i), & |
---|
7589 | surf_lsm_h%end_index(j,i) |
---|
7590 | rad_sw_out_xy_av(j,i) = rad_sw_out_xy_av(j,i) + & |
---|
7591 | surf_lsm_h%rad_sw_out(m) |
---|
7592 | ENDDO |
---|
7593 | DO m = surf_usm_h%start_index(j,i), & |
---|
7594 | surf_usm_h%end_index(j,i) |
---|
7595 | rad_sw_out_xy_av(j,i) = rad_sw_out_xy_av(j,i) + & |
---|
7596 | surf_usm_h%rad_sw_out(m) |
---|
7597 | ENDDO |
---|
7598 | ENDDO |
---|
7599 | ENDDO |
---|
7600 | ENDIF |
---|
7601 | |
---|
7602 | CASE ( 'rad_lw_in' ) |
---|
7603 | IF ( ALLOCATED( rad_lw_in_av ) ) THEN |
---|
7604 | DO i = nxlg, nxrg |
---|
7605 | DO j = nysg, nyng |
---|
7606 | DO k = nzb, nzt+1 |
---|
7607 | rad_lw_in_av(k,j,i) = rad_lw_in_av(k,j,i) & |
---|
7608 | + rad_lw_in(k,j,i) |
---|
7609 | ENDDO |
---|
7610 | ENDDO |
---|
7611 | ENDDO |
---|
7612 | ENDIF |
---|
7613 | |
---|
7614 | CASE ( 'rad_lw_out' ) |
---|
7615 | IF ( ALLOCATED( rad_lw_out_av ) ) THEN |
---|
7616 | DO i = nxlg, nxrg |
---|
7617 | DO j = nysg, nyng |
---|
7618 | DO k = nzb, nzt+1 |
---|
7619 | rad_lw_out_av(k,j,i) = rad_lw_out_av(k,j,i) & |
---|
7620 | + rad_lw_out(k,j,i) |
---|
7621 | ENDDO |
---|
7622 | ENDDO |
---|
7623 | ENDDO |
---|
7624 | ENDIF |
---|
7625 | |
---|
7626 | CASE ( 'rad_lw_cs_hr' ) |
---|
7627 | IF ( ALLOCATED( rad_lw_cs_hr_av ) ) THEN |
---|
7628 | DO i = nxlg, nxrg |
---|
7629 | DO j = nysg, nyng |
---|
7630 | DO k = nzb, nzt+1 |
---|
7631 | rad_lw_cs_hr_av(k,j,i) = rad_lw_cs_hr_av(k,j,i) & |
---|
7632 | + rad_lw_cs_hr(k,j,i) |
---|
7633 | ENDDO |
---|
7634 | ENDDO |
---|
7635 | ENDDO |
---|
7636 | ENDIF |
---|
7637 | |
---|
7638 | CASE ( 'rad_lw_hr' ) |
---|
7639 | IF ( ALLOCATED( rad_lw_hr_av ) ) THEN |
---|
7640 | DO i = nxlg, nxrg |
---|
7641 | DO j = nysg, nyng |
---|
7642 | DO k = nzb, nzt+1 |
---|
7643 | rad_lw_hr_av(k,j,i) = rad_lw_hr_av(k,j,i) & |
---|
7644 | + rad_lw_hr(k,j,i) |
---|
7645 | ENDDO |
---|
7646 | ENDDO |
---|
7647 | ENDDO |
---|
7648 | ENDIF |
---|
7649 | |
---|
7650 | CASE ( 'rad_sw_in' ) |
---|
7651 | IF ( ALLOCATED( rad_sw_in_av ) ) THEN |
---|
7652 | DO i = nxlg, nxrg |
---|
7653 | DO j = nysg, nyng |
---|
7654 | DO k = nzb, nzt+1 |
---|
7655 | rad_sw_in_av(k,j,i) = rad_sw_in_av(k,j,i) & |
---|
7656 | + rad_sw_in(k,j,i) |
---|
7657 | ENDDO |
---|
7658 | ENDDO |
---|
7659 | ENDDO |
---|
7660 | ENDIF |
---|
7661 | |
---|
7662 | CASE ( 'rad_sw_out' ) |
---|
7663 | IF ( ALLOCATED( rad_sw_out_av ) ) THEN |
---|
7664 | DO i = nxlg, nxrg |
---|
7665 | DO j = nysg, nyng |
---|
7666 | DO k = nzb, nzt+1 |
---|
7667 | rad_sw_out_av(k,j,i) = rad_sw_out_av(k,j,i) & |
---|
7668 | + rad_sw_out(k,j,i) |
---|
7669 | ENDDO |
---|
7670 | ENDDO |
---|
7671 | ENDDO |
---|
7672 | ENDIF |
---|
7673 | |
---|
7674 | CASE ( 'rad_sw_cs_hr' ) |
---|
7675 | IF ( ALLOCATED( rad_sw_cs_hr_av ) ) THEN |
---|
7676 | DO i = nxlg, nxrg |
---|
7677 | DO j = nysg, nyng |
---|
7678 | DO k = nzb, nzt+1 |
---|
7679 | rad_sw_cs_hr_av(k,j,i) = rad_sw_cs_hr_av(k,j,i) & |
---|
7680 | + rad_sw_cs_hr(k,j,i) |
---|
7681 | ENDDO |
---|
7682 | ENDDO |
---|
7683 | ENDDO |
---|
7684 | ENDIF |
---|
7685 | |
---|
7686 | CASE ( 'rad_sw_hr' ) |
---|
7687 | IF ( ALLOCATED( rad_sw_hr_av ) ) THEN |
---|
7688 | DO i = nxlg, nxrg |
---|
7689 | DO j = nysg, nyng |
---|
7690 | DO k = nzb, nzt+1 |
---|
7691 | rad_sw_hr_av(k,j,i) = rad_sw_hr_av(k,j,i) & |
---|
7692 | + rad_sw_hr(k,j,i) |
---|
7693 | ENDDO |
---|
7694 | ENDDO |
---|
7695 | ENDDO |
---|
7696 | ENDIF |
---|
7697 | |
---|
7698 | CASE DEFAULT |
---|
7699 | CONTINUE |
---|
7700 | |
---|
7701 | END SELECT |
---|
7702 | |
---|
7703 | ELSEIF ( mode == 'average' ) THEN |
---|
7704 | |
---|
7705 | SELECT CASE ( TRIM( variable ) ) |
---|
7706 | |
---|
7707 | CASE ( 'rad_net*' ) |
---|
7708 | IF ( ALLOCATED( rad_net_av ) ) THEN |
---|
7709 | DO i = nxlg, nxrg |
---|
7710 | DO j = nysg, nyng |
---|
7711 | rad_net_av(j,i) = rad_net_av(j,i) & |
---|
7712 | / REAL( average_count_3d, KIND=wp ) |
---|
7713 | ENDDO |
---|
7714 | ENDDO |
---|
7715 | ENDIF |
---|
7716 | |
---|
7717 | CASE ( 'rad_lw_in*' ) |
---|
7718 | IF ( ALLOCATED( rad_lw_in_xy_av ) ) THEN |
---|
7719 | DO i = nxlg, nxrg |
---|
7720 | DO j = nysg, nyng |
---|
7721 | rad_lw_in_xy_av(j,i) = rad_lw_in_xy_av(j,i) & |
---|
7722 | / REAL( average_count_3d, KIND=wp ) |
---|
7723 | ENDDO |
---|
7724 | ENDDO |
---|
7725 | ENDIF |
---|
7726 | |
---|
7727 | CASE ( 'rad_lw_out*' ) |
---|
7728 | IF ( ALLOCATED( rad_lw_out_xy_av ) ) THEN |
---|
7729 | DO i = nxlg, nxrg |
---|
7730 | DO j = nysg, nyng |
---|
7731 | rad_lw_out_xy_av(j,i) = rad_lw_out_xy_av(j,i) & |
---|
7732 | / REAL( average_count_3d, KIND=wp ) |
---|
7733 | ENDDO |
---|
7734 | ENDDO |
---|
7735 | ENDIF |
---|
7736 | |
---|
7737 | CASE ( 'rad_sw_in*' ) |
---|
7738 | IF ( ALLOCATED( rad_sw_in_xy_av ) ) THEN |
---|
7739 | DO i = nxlg, nxrg |
---|
7740 | DO j = nysg, nyng |
---|
7741 | rad_sw_in_xy_av(j,i) = rad_sw_in_xy_av(j,i) & |
---|
7742 | / REAL( average_count_3d, KIND=wp ) |
---|
7743 | ENDDO |
---|
7744 | ENDDO |
---|
7745 | ENDIF |
---|
7746 | |
---|
7747 | CASE ( 'rad_sw_out*' ) |
---|
7748 | IF ( ALLOCATED( rad_sw_out_xy_av ) ) THEN |
---|
7749 | DO i = nxlg, nxrg |
---|
7750 | DO j = nysg, nyng |
---|
7751 | rad_sw_out_xy_av(j,i) = rad_sw_out_xy_av(j,i) & |
---|
7752 | / REAL( average_count_3d, KIND=wp ) |
---|
7753 | ENDDO |
---|
7754 | ENDDO |
---|
7755 | ENDIF |
---|
7756 | |
---|
7757 | CASE ( 'rad_lw_in' ) |
---|
7758 | IF ( ALLOCATED( rad_lw_in_av ) ) THEN |
---|
7759 | DO i = nxlg, nxrg |
---|
7760 | DO j = nysg, nyng |
---|
7761 | DO k = nzb, nzt+1 |
---|
7762 | rad_lw_in_av(k,j,i) = rad_lw_in_av(k,j,i) & |
---|
7763 | / REAL( average_count_3d, KIND=wp ) |
---|
7764 | ENDDO |
---|
7765 | ENDDO |
---|
7766 | ENDDO |
---|
7767 | ENDIF |
---|
7768 | |
---|
7769 | CASE ( 'rad_lw_out' ) |
---|
7770 | IF ( ALLOCATED( rad_lw_out_av ) ) THEN |
---|
7771 | DO i = nxlg, nxrg |
---|
7772 | DO j = nysg, nyng |
---|
7773 | DO k = nzb, nzt+1 |
---|
7774 | rad_lw_out_av(k,j,i) = rad_lw_out_av(k,j,i) & |
---|
7775 | / REAL( average_count_3d, KIND=wp ) |
---|
7776 | ENDDO |
---|
7777 | ENDDO |
---|
7778 | ENDDO |
---|
7779 | ENDIF |
---|
7780 | |
---|
7781 | CASE ( 'rad_lw_cs_hr' ) |
---|
7782 | IF ( ALLOCATED( rad_lw_cs_hr_av ) ) THEN |
---|
7783 | DO i = nxlg, nxrg |
---|
7784 | DO j = nysg, nyng |
---|
7785 | DO k = nzb, nzt+1 |
---|
7786 | rad_lw_cs_hr_av(k,j,i) = rad_lw_cs_hr_av(k,j,i) & |
---|
7787 | / REAL( average_count_3d, KIND=wp ) |
---|
7788 | ENDDO |
---|
7789 | ENDDO |
---|
7790 | ENDDO |
---|
7791 | ENDIF |
---|
7792 | |
---|
7793 | CASE ( 'rad_lw_hr' ) |
---|
7794 | IF ( ALLOCATED( rad_lw_hr_av ) ) THEN |
---|
7795 | DO i = nxlg, nxrg |
---|
7796 | DO j = nysg, nyng |
---|
7797 | DO k = nzb, nzt+1 |
---|
7798 | rad_lw_hr_av(k,j,i) = rad_lw_hr_av(k,j,i) & |
---|
7799 | / REAL( average_count_3d, KIND=wp ) |
---|
7800 | ENDDO |
---|
7801 | ENDDO |
---|
7802 | ENDDO |
---|
7803 | ENDIF |
---|
7804 | |
---|
7805 | CASE ( 'rad_sw_in' ) |
---|
7806 | IF ( ALLOCATED( rad_sw_in_av ) ) THEN |
---|
7807 | DO i = nxlg, nxrg |
---|
7808 | DO j = nysg, nyng |
---|
7809 | DO k = nzb, nzt+1 |
---|
7810 | rad_sw_in_av(k,j,i) = rad_sw_in_av(k,j,i) & |
---|
7811 | / REAL( average_count_3d, KIND=wp ) |
---|
7812 | ENDDO |
---|
7813 | ENDDO |
---|
7814 | ENDDO |
---|
7815 | ENDIF |
---|
7816 | |
---|
7817 | CASE ( 'rad_sw_out' ) |
---|
7818 | IF ( ALLOCATED( rad_sw_out_av ) ) THEN |
---|
7819 | DO i = nxlg, nxrg |
---|
7820 | DO j = nysg, nyng |
---|
7821 | DO k = nzb, nzt+1 |
---|
7822 | rad_sw_out_av(k,j,i) = rad_sw_out_av(k,j,i) & |
---|
7823 | / REAL( average_count_3d, KIND=wp ) |
---|
7824 | ENDDO |
---|
7825 | ENDDO |
---|
7826 | ENDDO |
---|
7827 | ENDIF |
---|
7828 | |
---|
7829 | CASE ( 'rad_sw_cs_hr' ) |
---|
7830 | IF ( ALLOCATED( rad_sw_cs_hr_av ) ) THEN |
---|
7831 | DO i = nxlg, nxrg |
---|
7832 | DO j = nysg, nyng |
---|
7833 | DO k = nzb, nzt+1 |
---|
7834 | rad_sw_cs_hr_av(k,j,i) = rad_sw_cs_hr_av(k,j,i) & |
---|
7835 | / REAL( average_count_3d, KIND=wp ) |
---|
7836 | ENDDO |
---|
7837 | ENDDO |
---|
7838 | ENDDO |
---|
7839 | ENDIF |
---|
7840 | |
---|
7841 | CASE ( 'rad_sw_hr' ) |
---|
7842 | IF ( ALLOCATED( rad_sw_hr_av ) ) THEN |
---|
7843 | DO i = nxlg, nxrg |
---|
7844 | DO j = nysg, nyng |
---|
7845 | DO k = nzb, nzt+1 |
---|
7846 | rad_sw_hr_av(k,j,i) = rad_sw_hr_av(k,j,i) & |
---|
7847 | / REAL( average_count_3d, KIND=wp ) |
---|
7848 | ENDDO |
---|
7849 | ENDDO |
---|
7850 | ENDDO |
---|
7851 | ENDIF |
---|
7852 | |
---|
7853 | END SELECT |
---|
7854 | |
---|
7855 | ENDIF |
---|
7856 | |
---|
7857 | END SUBROUTINE radiation_3d_data_averaging |
---|
7858 | |
---|
7859 | |
---|
7860 | !------------------------------------------------------------------------------! |
---|
7861 | ! |
---|
7862 | ! Description: |
---|
7863 | ! ------------ |
---|
7864 | !> Subroutine defining appropriate grid for netcdf variables. |
---|
7865 | !> It is called out from subroutine netcdf. |
---|
7866 | !------------------------------------------------------------------------------! |
---|
7867 | SUBROUTINE radiation_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
7868 | |
---|
7869 | IMPLICIT NONE |
---|
7870 | |
---|
7871 | CHARACTER (LEN=*), INTENT(IN) :: var !< |
---|
7872 | LOGICAL, INTENT(OUT) :: found !< |
---|
7873 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< |
---|
7874 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< |
---|
7875 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< |
---|
7876 | |
---|
7877 | found = .TRUE. |
---|
7878 | |
---|
7879 | |
---|
7880 | ! |
---|
7881 | !-- Check for the grid |
---|
7882 | SELECT CASE ( TRIM( var ) ) |
---|
7883 | |
---|
7884 | CASE ( 'rad_lw_cs_hr', 'rad_lw_hr', 'rad_sw_cs_hr', 'rad_sw_hr', & |
---|
7885 | 'rad_lw_cs_hr_xy', 'rad_lw_hr_xy', 'rad_sw_cs_hr_xy', & |
---|
7886 | 'rad_sw_hr_xy', 'rad_lw_cs_hr_xz', 'rad_lw_hr_xz', & |
---|
7887 | 'rad_sw_cs_hr_xz', 'rad_sw_hr_xz', 'rad_lw_cs_hr_yz', & |
---|
7888 | 'rad_lw_hr_yz', 'rad_sw_cs_hr_yz', 'rad_sw_hr_yz' ) |
---|
7889 | grid_x = 'x' |
---|
7890 | grid_y = 'y' |
---|
7891 | grid_z = 'zu' |
---|
7892 | |
---|
7893 | CASE ( 'rad_lw_in', 'rad_lw_out', 'rad_sw_in', 'rad_sw_out', & |
---|
7894 | 'rad_lw_in_xy', 'rad_lw_out_xy', 'rad_sw_in_xy','rad_sw_out_xy', & |
---|
7895 | 'rad_lw_in_xz', 'rad_lw_out_xz', 'rad_sw_in_xz','rad_sw_out_xz', & |
---|
7896 | 'rad_lw_in_yz', 'rad_lw_out_yz', 'rad_sw_in_yz','rad_sw_out_yz' ) |
---|
7897 | grid_x = 'x' |
---|
7898 | grid_y = 'y' |
---|
7899 | grid_z = 'zw' |
---|
7900 | |
---|
7901 | |
---|
7902 | CASE DEFAULT |
---|
7903 | found = .FALSE. |
---|
7904 | grid_x = 'none' |
---|
7905 | grid_y = 'none' |
---|
7906 | grid_z = 'none' |
---|
7907 | |
---|
7908 | END SELECT |
---|
7909 | |
---|
7910 | END SUBROUTINE radiation_define_netcdf_grid |
---|
7911 | |
---|
7912 | !------------------------------------------------------------------------------! |
---|
7913 | ! |
---|
7914 | ! Description: |
---|
7915 | ! ------------ |
---|
7916 | !> Subroutine defining 3D output variables |
---|
7917 | !------------------------------------------------------------------------------! |
---|
7918 | SUBROUTINE radiation_data_output_2d( av, variable, found, grid, mode, & |
---|
7919 | local_pf, two_d, nzb_do, nzt_do ) |
---|
7920 | |
---|
7921 | USE indices |
---|
7922 | |
---|
7923 | USE kinds |
---|
7924 | |
---|
7925 | |
---|
7926 | IMPLICIT NONE |
---|
7927 | |
---|
7928 | CHARACTER (LEN=*) :: grid !< |
---|
7929 | CHARACTER (LEN=*) :: mode !< |
---|
7930 | CHARACTER (LEN=*) :: variable !< |
---|
7931 | |
---|
7932 | INTEGER(iwp) :: av !< |
---|
7933 | INTEGER(iwp) :: i !< |
---|
7934 | INTEGER(iwp) :: j !< |
---|
7935 | INTEGER(iwp) :: k !< |
---|
7936 | INTEGER(iwp) :: m !< index of surface element at grid point (j,i) |
---|
7937 | INTEGER(iwp) :: nzb_do !< |
---|
7938 | INTEGER(iwp) :: nzt_do !< |
---|
7939 | |
---|
7940 | LOGICAL :: found !< |
---|
7941 | LOGICAL :: two_d !< flag parameter that indicates 2D variables (horizontal cross sections) |
---|
7942 | |
---|
7943 | REAL(wp) :: fill_value = -999.0_wp !< value for the _FillValue attribute |
---|
7944 | |
---|
7945 | REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< |
---|
7946 | |
---|
7947 | found = .TRUE. |
---|
7948 | |
---|
7949 | SELECT CASE ( TRIM( variable ) ) |
---|
7950 | |
---|
7951 | CASE ( 'rad_net*_xy' ) ! 2d-array |
---|
7952 | IF ( av == 0 ) THEN |
---|
7953 | DO i = nxl, nxr |
---|
7954 | DO j = nys, nyn |
---|
7955 | ! |
---|
7956 | !-- Obtain rad_net from its respective surface type |
---|
7957 | !-- Natural-type surfaces |
---|
7958 | DO m = surf_lsm_h%start_index(j,i), & |
---|
7959 | surf_lsm_h%end_index(j,i) |
---|
7960 | local_pf(i,j,nzb+1) = surf_lsm_h%rad_net(m) |
---|
7961 | ENDDO |
---|
7962 | ! |
---|
7963 | !-- Urban-type surfaces |
---|
7964 | DO m = surf_usm_h%start_index(j,i), & |
---|
7965 | surf_usm_h%end_index(j,i) |
---|
7966 | local_pf(i,j,nzb+1) = surf_usm_h%rad_net(m) |
---|
7967 | ENDDO |
---|
7968 | ENDDO |
---|
7969 | ENDDO |
---|
7970 | ELSE |
---|
7971 | IF ( .NOT. ALLOCATED( rad_net_av ) ) THEN |
---|
7972 | ALLOCATE( rad_net_av(nysg:nyng,nxlg:nxrg) ) |
---|
7973 | rad_net_av = REAL( fill_value, KIND = wp ) |
---|
7974 | ENDIF |
---|
7975 | DO i = nxl, nxr |
---|
7976 | DO j = nys, nyn |
---|
7977 | local_pf(i,j,nzb+1) = rad_net_av(j,i) |
---|
7978 | ENDDO |
---|
7979 | ENDDO |
---|
7980 | ENDIF |
---|
7981 | two_d = .TRUE. |
---|
7982 | grid = 'zu1' |
---|
7983 | |
---|
7984 | CASE ( 'rad_lw_in*_xy' ) ! 2d-array |
---|
7985 | IF ( av == 0 ) THEN |
---|
7986 | DO i = nxl, nxr |
---|
7987 | DO j = nys, nyn |
---|
7988 | ! |
---|
7989 | !-- Obtain rad_net from its respective surface type |
---|
7990 | !-- Natural-type surfaces |
---|
7991 | DO m = surf_lsm_h%start_index(j,i), & |
---|
7992 | surf_lsm_h%end_index(j,i) |
---|
7993 | local_pf(i,j,nzb+1) = surf_lsm_h%rad_lw_in(m) |
---|
7994 | ENDDO |
---|
7995 | ! |
---|
7996 | !-- Urban-type surfaces |
---|
7997 | DO m = surf_usm_h%start_index(j,i), & |
---|
7998 | surf_usm_h%end_index(j,i) |
---|
7999 | local_pf(i,j,nzb+1) = surf_usm_h%rad_lw_in(m) |
---|
8000 | ENDDO |
---|
8001 | ENDDO |
---|
8002 | ENDDO |
---|
8003 | ELSE |
---|
8004 | IF ( .NOT. ALLOCATED( rad_lw_in_xy_av ) ) THEN |
---|
8005 | ALLOCATE( rad_lw_in_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
8006 | rad_lw_in_xy_av = REAL( fill_value, KIND = wp ) |
---|
8007 | ENDIF |
---|
8008 | DO i = nxl, nxr |
---|
8009 | DO j = nys, nyn |
---|
8010 | local_pf(i,j,nzb+1) = rad_lw_in_xy_av(j,i) |
---|
8011 | ENDDO |
---|
8012 | ENDDO |
---|
8013 | ENDIF |
---|
8014 | two_d = .TRUE. |
---|
8015 | grid = 'zu1' |
---|
8016 | |
---|
8017 | CASE ( 'rad_lw_out*_xy' ) ! 2d-array |
---|
8018 | IF ( av == 0 ) THEN |
---|
8019 | DO i = nxl, nxr |
---|
8020 | DO j = nys, nyn |
---|
8021 | ! |
---|
8022 | !-- Obtain rad_net from its respective surface type |
---|
8023 | !-- Natural-type surfaces |
---|
8024 | DO m = surf_lsm_h%start_index(j,i), & |
---|
8025 | surf_lsm_h%end_index(j,i) |
---|
8026 | local_pf(i,j,nzb+1) = surf_lsm_h%rad_lw_out(m) |
---|
8027 | ENDDO |
---|
8028 | ! |
---|
8029 | !-- Urban-type surfaces |
---|
8030 | DO m = surf_usm_h%start_index(j,i), & |
---|
8031 | surf_usm_h%end_index(j,i) |
---|
8032 | local_pf(i,j,nzb+1) = surf_usm_h%rad_lw_out(m) |
---|
8033 | ENDDO |
---|
8034 | ENDDO |
---|
8035 | ENDDO |
---|
8036 | ELSE |
---|
8037 | IF ( .NOT. ALLOCATED( rad_lw_out_xy_av ) ) THEN |
---|
8038 | ALLOCATE( rad_lw_out_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
8039 | rad_lw_out_xy_av = REAL( fill_value, KIND = wp ) |
---|
8040 | ENDIF |
---|
8041 | DO i = nxl, nxr |
---|
8042 | DO j = nys, nyn |
---|
8043 | local_pf(i,j,nzb+1) = rad_lw_out_xy_av(j,i) |
---|
8044 | ENDDO |
---|
8045 | ENDDO |
---|
8046 | ENDIF |
---|
8047 | two_d = .TRUE. |
---|
8048 | grid = 'zu1' |
---|
8049 | |
---|
8050 | CASE ( 'rad_sw_in*_xy' ) ! 2d-array |
---|
8051 | IF ( av == 0 ) THEN |
---|
8052 | DO i = nxl, nxr |
---|
8053 | DO j = nys, nyn |
---|
8054 | ! |
---|
8055 | !-- Obtain rad_net from its respective surface type |
---|
8056 | !-- Natural-type surfaces |
---|
8057 | DO m = surf_lsm_h%start_index(j,i), & |
---|
8058 | surf_lsm_h%end_index(j,i) |
---|
8059 | local_pf(i,j,nzb+1) = surf_lsm_h%rad_sw_in(m) |
---|
8060 | ENDDO |
---|
8061 | ! |
---|
8062 | !-- Urban-type surfaces |
---|
8063 | DO m = surf_usm_h%start_index(j,i), & |
---|
8064 | surf_usm_h%end_index(j,i) |
---|
8065 | local_pf(i,j,nzb+1) = surf_usm_h%rad_sw_in(m) |
---|
8066 | ENDDO |
---|
8067 | ENDDO |
---|
8068 | ENDDO |
---|
8069 | ELSE |
---|
8070 | IF ( .NOT. ALLOCATED( rad_sw_in_xy_av ) ) THEN |
---|
8071 | ALLOCATE( rad_sw_in_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
8072 | rad_sw_in_xy_av = REAL( fill_value, KIND = wp ) |
---|
8073 | ENDIF |
---|
8074 | DO i = nxl, nxr |
---|
8075 | DO j = nys, nyn |
---|
8076 | local_pf(i,j,nzb+1) = rad_sw_in_xy_av(j,i) |
---|
8077 | ENDDO |
---|
8078 | ENDDO |
---|
8079 | ENDIF |
---|
8080 | two_d = .TRUE. |
---|
8081 | grid = 'zu1' |
---|
8082 | |
---|
8083 | CASE ( 'rad_sw_out*_xy' ) ! 2d-array |
---|
8084 | IF ( av == 0 ) THEN |
---|
8085 | DO i = nxl, nxr |
---|
8086 | DO j = nys, nyn |
---|
8087 | ! |
---|
8088 | !-- Obtain rad_net from its respective surface type |
---|
8089 | !-- Natural-type surfaces |
---|
8090 | DO m = surf_lsm_h%start_index(j,i), & |
---|
8091 | surf_lsm_h%end_index(j,i) |
---|
8092 | local_pf(i,j,nzb+1) = surf_lsm_h%rad_sw_out(m) |
---|
8093 | ENDDO |
---|
8094 | ! |
---|
8095 | !-- Urban-type surfaces |
---|
8096 | DO m = surf_usm_h%start_index(j,i), & |
---|
8097 | surf_usm_h%end_index(j,i) |
---|
8098 | local_pf(i,j,nzb+1) = surf_usm_h%rad_sw_out(m) |
---|
8099 | ENDDO |
---|
8100 | ENDDO |
---|
8101 | ENDDO |
---|
8102 | ELSE |
---|
8103 | IF ( .NOT. ALLOCATED( rad_sw_out_xy_av ) ) THEN |
---|
8104 | ALLOCATE( rad_sw_out_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
8105 | rad_sw_out_xy_av = REAL( fill_value, KIND = wp ) |
---|
8106 | ENDIF |
---|
8107 | DO i = nxl, nxr |
---|
8108 | DO j = nys, nyn |
---|
8109 | local_pf(i,j,nzb+1) = rad_sw_out_xy_av(j,i) |
---|
8110 | ENDDO |
---|
8111 | ENDDO |
---|
8112 | ENDIF |
---|
8113 | two_d = .TRUE. |
---|
8114 | grid = 'zu1' |
---|
8115 | |
---|
8116 | CASE ( 'rad_lw_in_xy', 'rad_lw_in_xz', 'rad_lw_in_yz' ) |
---|
8117 | IF ( av == 0 ) THEN |
---|
8118 | DO i = nxl, nxr |
---|
8119 | DO j = nys, nyn |
---|
8120 | DO k = nzb_do, nzt_do |
---|
8121 | local_pf(i,j,k) = rad_lw_in(k,j,i) |
---|
8122 | ENDDO |
---|
8123 | ENDDO |
---|
8124 | ENDDO |
---|
8125 | ELSE |
---|
8126 | IF ( .NOT. ALLOCATED( rad_lw_in_av ) ) THEN |
---|
8127 | ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8128 | rad_lw_in_av = REAL( fill_value, KIND = wp ) |
---|
8129 | ENDIF |
---|
8130 | DO i = nxl, nxr |
---|
8131 | DO j = nys, nyn |
---|
8132 | DO k = nzb_do, nzt_do |
---|
8133 | local_pf(i,j,k) = rad_lw_in_av(k,j,i) |
---|
8134 | ENDDO |
---|
8135 | ENDDO |
---|
8136 | ENDDO |
---|
8137 | ENDIF |
---|
8138 | IF ( mode == 'xy' ) grid = 'zu' |
---|
8139 | |
---|
8140 | CASE ( 'rad_lw_out_xy', 'rad_lw_out_xz', 'rad_lw_out_yz' ) |
---|
8141 | IF ( av == 0 ) THEN |
---|
8142 | DO i = nxl, nxr |
---|
8143 | DO j = nys, nyn |
---|
8144 | DO k = nzb_do, nzt_do |
---|
8145 | local_pf(i,j,k) = rad_lw_out(k,j,i) |
---|
8146 | ENDDO |
---|
8147 | ENDDO |
---|
8148 | ENDDO |
---|
8149 | ELSE |
---|
8150 | IF ( .NOT. ALLOCATED( rad_lw_out_av ) ) THEN |
---|
8151 | ALLOCATE( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8152 | rad_lw_out_av = REAL( fill_value, KIND = wp ) |
---|
8153 | ENDIF |
---|
8154 | DO i = nxl, nxr |
---|
8155 | DO j = nys, nyn |
---|
8156 | DO k = nzb_do, nzt_do |
---|
8157 | local_pf(i,j,k) = rad_lw_out_av(k,j,i) |
---|
8158 | ENDDO |
---|
8159 | ENDDO |
---|
8160 | ENDDO |
---|
8161 | ENDIF |
---|
8162 | IF ( mode == 'xy' ) grid = 'zu' |
---|
8163 | |
---|
8164 | CASE ( 'rad_lw_cs_hr_xy', 'rad_lw_cs_hr_xz', 'rad_lw_cs_hr_yz' ) |
---|
8165 | IF ( av == 0 ) THEN |
---|
8166 | DO i = nxl, nxr |
---|
8167 | DO j = nys, nyn |
---|
8168 | DO k = nzb_do, nzt_do |
---|
8169 | local_pf(i,j,k) = rad_lw_cs_hr(k,j,i) |
---|
8170 | ENDDO |
---|
8171 | ENDDO |
---|
8172 | ENDDO |
---|
8173 | ELSE |
---|
8174 | IF ( .NOT. ALLOCATED( rad_lw_cs_hr_av ) ) THEN |
---|
8175 | ALLOCATE( rad_lw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8176 | rad_lw_cs_hr_av = REAL( fill_value, KIND = wp ) |
---|
8177 | ENDIF |
---|
8178 | DO i = nxl, nxr |
---|
8179 | DO j = nys, nyn |
---|
8180 | DO k = nzb_do, nzt_do |
---|
8181 | local_pf(i,j,k) = rad_lw_cs_hr_av(k,j,i) |
---|
8182 | ENDDO |
---|
8183 | ENDDO |
---|
8184 | ENDDO |
---|
8185 | ENDIF |
---|
8186 | IF ( mode == 'xy' ) grid = 'zw' |
---|
8187 | |
---|
8188 | CASE ( 'rad_lw_hr_xy', 'rad_lw_hr_xz', 'rad_lw_hr_yz' ) |
---|
8189 | IF ( av == 0 ) THEN |
---|
8190 | DO i = nxl, nxr |
---|
8191 | DO j = nys, nyn |
---|
8192 | DO k = nzb_do, nzt_do |
---|
8193 | local_pf(i,j,k) = rad_lw_hr(k,j,i) |
---|
8194 | ENDDO |
---|
8195 | ENDDO |
---|
8196 | ENDDO |
---|
8197 | ELSE |
---|
8198 | IF ( .NOT. ALLOCATED( rad_lw_hr_av ) ) THEN |
---|
8199 | ALLOCATE( rad_lw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8200 | rad_lw_hr_av= REAL( fill_value, KIND = wp ) |
---|
8201 | ENDIF |
---|
8202 | DO i = nxl, nxr |
---|
8203 | DO j = nys, nyn |
---|
8204 | DO k = nzb_do, nzt_do |
---|
8205 | local_pf(i,j,k) = rad_lw_hr_av(k,j,i) |
---|
8206 | ENDDO |
---|
8207 | ENDDO |
---|
8208 | ENDDO |
---|
8209 | ENDIF |
---|
8210 | IF ( mode == 'xy' ) grid = 'zw' |
---|
8211 | |
---|
8212 | CASE ( 'rad_sw_in_xy', 'rad_sw_in_xz', 'rad_sw_in_yz' ) |
---|
8213 | IF ( av == 0 ) THEN |
---|
8214 | DO i = nxl, nxr |
---|
8215 | DO j = nys, nyn |
---|
8216 | DO k = nzb_do, nzt_do |
---|
8217 | local_pf(i,j,k) = rad_sw_in(k,j,i) |
---|
8218 | ENDDO |
---|
8219 | ENDDO |
---|
8220 | ENDDO |
---|
8221 | ELSE |
---|
8222 | IF ( .NOT. ALLOCATED( rad_sw_in_av ) ) THEN |
---|
8223 | ALLOCATE( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8224 | rad_sw_in_av = REAL( fill_value, KIND = wp ) |
---|
8225 | ENDIF |
---|
8226 | DO i = nxl, nxr |
---|
8227 | DO j = nys, nyn |
---|
8228 | DO k = nzb_do, nzt_do |
---|
8229 | local_pf(i,j,k) = rad_sw_in_av(k,j,i) |
---|
8230 | ENDDO |
---|
8231 | ENDDO |
---|
8232 | ENDDO |
---|
8233 | ENDIF |
---|
8234 | IF ( mode == 'xy' ) grid = 'zu' |
---|
8235 | |
---|
8236 | CASE ( 'rad_sw_out_xy', 'rad_sw_out_xz', 'rad_sw_out_yz' ) |
---|
8237 | IF ( av == 0 ) THEN |
---|
8238 | DO i = nxl, nxr |
---|
8239 | DO j = nys, nyn |
---|
8240 | DO k = nzb_do, nzt_do |
---|
8241 | local_pf(i,j,k) = rad_sw_out(k,j,i) |
---|
8242 | ENDDO |
---|
8243 | ENDDO |
---|
8244 | ENDDO |
---|
8245 | ELSE |
---|
8246 | IF ( .NOT. ALLOCATED( rad_sw_out_av ) ) THEN |
---|
8247 | ALLOCATE( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8248 | rad_sw_out_av = REAL( fill_value, KIND = wp ) |
---|
8249 | ENDIF |
---|
8250 | DO i = nxl, nxr |
---|
8251 | DO j = nys, nyn |
---|
8252 | DO k = nzb, nzt+1 |
---|
8253 | local_pf(i,j,k) = rad_sw_out_av(k,j,i) |
---|
8254 | ENDDO |
---|
8255 | ENDDO |
---|
8256 | ENDDO |
---|
8257 | ENDIF |
---|
8258 | IF ( mode == 'xy' ) grid = 'zu' |
---|
8259 | |
---|
8260 | CASE ( 'rad_sw_cs_hr_xy', 'rad_sw_cs_hr_xz', 'rad_sw_cs_hr_yz' ) |
---|
8261 | IF ( av == 0 ) THEN |
---|
8262 | DO i = nxl, nxr |
---|
8263 | DO j = nys, nyn |
---|
8264 | DO k = nzb_do, nzt_do |
---|
8265 | local_pf(i,j,k) = rad_sw_cs_hr(k,j,i) |
---|
8266 | ENDDO |
---|
8267 | ENDDO |
---|
8268 | ENDDO |
---|
8269 | ELSE |
---|
8270 | IF ( .NOT. ALLOCATED( rad_sw_cs_hr_av ) ) THEN |
---|
8271 | ALLOCATE( rad_sw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8272 | rad_sw_cs_hr_av = REAL( fill_value, KIND = wp ) |
---|
8273 | ENDIF |
---|
8274 | DO i = nxl, nxr |
---|
8275 | DO j = nys, nyn |
---|
8276 | DO k = nzb_do, nzt_do |
---|
8277 | local_pf(i,j,k) = rad_sw_cs_hr_av(k,j,i) |
---|
8278 | ENDDO |
---|
8279 | ENDDO |
---|
8280 | ENDDO |
---|
8281 | ENDIF |
---|
8282 | IF ( mode == 'xy' ) grid = 'zw' |
---|
8283 | |
---|
8284 | CASE ( 'rad_sw_hr_xy', 'rad_sw_hr_xz', 'rad_sw_hr_yz' ) |
---|
8285 | IF ( av == 0 ) THEN |
---|
8286 | DO i = nxl, nxr |
---|
8287 | DO j = nys, nyn |
---|
8288 | DO k = nzb_do, nzt_do |
---|
8289 | local_pf(i,j,k) = rad_sw_hr(k,j,i) |
---|
8290 | ENDDO |
---|
8291 | ENDDO |
---|
8292 | ENDDO |
---|
8293 | ELSE |
---|
8294 | IF ( .NOT. ALLOCATED( rad_sw_hr_av ) ) THEN |
---|
8295 | ALLOCATE( rad_sw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8296 | rad_sw_hr_av = REAL( fill_value, KIND = wp ) |
---|
8297 | ENDIF |
---|
8298 | DO i = nxl, nxr |
---|
8299 | DO j = nys, nyn |
---|
8300 | DO k = nzb_do, nzt_do |
---|
8301 | local_pf(i,j,k) = rad_sw_hr_av(k,j,i) |
---|
8302 | ENDDO |
---|
8303 | ENDDO |
---|
8304 | ENDDO |
---|
8305 | ENDIF |
---|
8306 | IF ( mode == 'xy' ) grid = 'zw' |
---|
8307 | |
---|
8308 | CASE DEFAULT |
---|
8309 | found = .FALSE. |
---|
8310 | grid = 'none' |
---|
8311 | |
---|
8312 | END SELECT |
---|
8313 | |
---|
8314 | END SUBROUTINE radiation_data_output_2d |
---|
8315 | |
---|
8316 | |
---|
8317 | !------------------------------------------------------------------------------! |
---|
8318 | ! |
---|
8319 | ! Description: |
---|
8320 | ! ------------ |
---|
8321 | !> Subroutine defining 3D output variables |
---|
8322 | !------------------------------------------------------------------------------! |
---|
8323 | SUBROUTINE radiation_data_output_3d( av, variable, found, local_pf, nzb_do, nzt_do ) |
---|
8324 | |
---|
8325 | |
---|
8326 | USE indices |
---|
8327 | |
---|
8328 | USE kinds |
---|
8329 | |
---|
8330 | |
---|
8331 | IMPLICIT NONE |
---|
8332 | |
---|
8333 | CHARACTER (LEN=*) :: variable !< |
---|
8334 | |
---|
8335 | INTEGER(iwp) :: av !< |
---|
8336 | INTEGER(iwp) :: i !< |
---|
8337 | INTEGER(iwp) :: j !< |
---|
8338 | INTEGER(iwp) :: k !< |
---|
8339 | INTEGER(iwp) :: nzb_do !< |
---|
8340 | INTEGER(iwp) :: nzt_do !< |
---|
8341 | |
---|
8342 | LOGICAL :: found !< |
---|
8343 | |
---|
8344 | REAL(wp) :: fill_value = -999.0_wp !< value for the _FillValue attribute |
---|
8345 | |
---|
8346 | REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< |
---|
8347 | |
---|
8348 | |
---|
8349 | found = .TRUE. |
---|
8350 | |
---|
8351 | |
---|
8352 | SELECT CASE ( TRIM( variable ) ) |
---|
8353 | |
---|
8354 | CASE ( 'rad_sw_in' ) |
---|
8355 | IF ( av == 0 ) THEN |
---|
8356 | DO i = nxl, nxr |
---|
8357 | DO j = nys, nyn |
---|
8358 | DO k = nzb_do, nzt_do |
---|
8359 | local_pf(i,j,k) = rad_sw_in(k,j,i) |
---|
8360 | ENDDO |
---|
8361 | ENDDO |
---|
8362 | ENDDO |
---|
8363 | ELSE |
---|
8364 | IF ( .NOT. ALLOCATED( rad_sw_in_av ) ) THEN |
---|
8365 | ALLOCATE( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8366 | rad_sw_in_av = REAL( fill_value, KIND = wp ) |
---|
8367 | ENDIF |
---|
8368 | DO i = nxl, nxr |
---|
8369 | DO j = nys, nyn |
---|
8370 | DO k = nzb_do, nzt_do |
---|
8371 | local_pf(i,j,k) = rad_sw_in_av(k,j,i) |
---|
8372 | ENDDO |
---|
8373 | ENDDO |
---|
8374 | ENDDO |
---|
8375 | ENDIF |
---|
8376 | |
---|
8377 | CASE ( 'rad_sw_out' ) |
---|
8378 | IF ( av == 0 ) THEN |
---|
8379 | DO i = nxl, nxr |
---|
8380 | DO j = nys, nyn |
---|
8381 | DO k = nzb_do, nzt_do |
---|
8382 | local_pf(i,j,k) = rad_sw_out(k,j,i) |
---|
8383 | ENDDO |
---|
8384 | ENDDO |
---|
8385 | ENDDO |
---|
8386 | ELSE |
---|
8387 | IF ( .NOT. ALLOCATED( rad_sw_out_av ) ) THEN |
---|
8388 | ALLOCATE( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8389 | rad_sw_out_av = REAL( fill_value, KIND = wp ) |
---|
8390 | ENDIF |
---|
8391 | DO i = nxl, nxr |
---|
8392 | DO j = nys, nyn |
---|
8393 | DO k = nzb_do, nzt_do |
---|
8394 | local_pf(i,j,k) = rad_sw_out_av(k,j,i) |
---|
8395 | ENDDO |
---|
8396 | ENDDO |
---|
8397 | ENDDO |
---|
8398 | ENDIF |
---|
8399 | |
---|
8400 | CASE ( 'rad_sw_cs_hr' ) |
---|
8401 | IF ( av == 0 ) THEN |
---|
8402 | DO i = nxl, nxr |
---|
8403 | DO j = nys, nyn |
---|
8404 | DO k = nzb_do, nzt_do |
---|
8405 | local_pf(i,j,k) = rad_sw_cs_hr(k,j,i) |
---|
8406 | ENDDO |
---|
8407 | ENDDO |
---|
8408 | ENDDO |
---|
8409 | ELSE |
---|
8410 | IF ( .NOT. ALLOCATED( rad_sw_cs_hr_av ) ) THEN |
---|
8411 | ALLOCATE( rad_sw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8412 | rad_sw_cs_hr_av = REAL( fill_value, KIND = wp ) |
---|
8413 | ENDIF |
---|
8414 | DO i = nxl, nxr |
---|
8415 | DO j = nys, nyn |
---|
8416 | DO k = nzb_do, nzt_do |
---|
8417 | local_pf(i,j,k) = rad_sw_cs_hr_av(k,j,i) |
---|
8418 | ENDDO |
---|
8419 | ENDDO |
---|
8420 | ENDDO |
---|
8421 | ENDIF |
---|
8422 | |
---|
8423 | CASE ( 'rad_sw_hr' ) |
---|
8424 | IF ( av == 0 ) THEN |
---|
8425 | DO i = nxl, nxr |
---|
8426 | DO j = nys, nyn |
---|
8427 | DO k = nzb_do, nzt_do |
---|
8428 | local_pf(i,j,k) = rad_sw_hr(k,j,i) |
---|
8429 | ENDDO |
---|
8430 | ENDDO |
---|
8431 | ENDDO |
---|
8432 | ELSE |
---|
8433 | IF ( .NOT. ALLOCATED( rad_sw_hr_av ) ) THEN |
---|
8434 | ALLOCATE( rad_sw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8435 | rad_sw_hr_av = REAL( fill_value, KIND = wp ) |
---|
8436 | ENDIF |
---|
8437 | DO i = nxl, nxr |
---|
8438 | DO j = nys, nyn |
---|
8439 | DO k = nzb_do, nzt_do |
---|
8440 | local_pf(i,j,k) = rad_sw_hr_av(k,j,i) |
---|
8441 | ENDDO |
---|
8442 | ENDDO |
---|
8443 | ENDDO |
---|
8444 | ENDIF |
---|
8445 | |
---|
8446 | CASE ( 'rad_lw_in' ) |
---|
8447 | IF ( av == 0 ) THEN |
---|
8448 | DO i = nxl, nxr |
---|
8449 | DO j = nys, nyn |
---|
8450 | DO k = nzb_do, nzt_do |
---|
8451 | local_pf(i,j,k) = rad_lw_in(k,j,i) |
---|
8452 | ENDDO |
---|
8453 | ENDDO |
---|
8454 | ENDDO |
---|
8455 | ELSE |
---|
8456 | IF ( .NOT. ALLOCATED( rad_lw_in_av ) ) THEN |
---|
8457 | ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8458 | rad_lw_in_av = REAL( fill_value, KIND = wp ) |
---|
8459 | ENDIF |
---|
8460 | DO i = nxl, nxr |
---|
8461 | DO j = nys, nyn |
---|
8462 | DO k = nzb_do, nzt_do |
---|
8463 | local_pf(i,j,k) = rad_lw_in_av(k,j,i) |
---|
8464 | ENDDO |
---|
8465 | ENDDO |
---|
8466 | ENDDO |
---|
8467 | ENDIF |
---|
8468 | |
---|
8469 | CASE ( 'rad_lw_out' ) |
---|
8470 | IF ( av == 0 ) THEN |
---|
8471 | DO i = nxl, nxr |
---|
8472 | DO j = nys, nyn |
---|
8473 | DO k = nzb_do, nzt_do |
---|
8474 | local_pf(i,j,k) = rad_lw_out(k,j,i) |
---|
8475 | ENDDO |
---|
8476 | ENDDO |
---|
8477 | ENDDO |
---|
8478 | ELSE |
---|
8479 | IF ( .NOT. ALLOCATED( rad_lw_out_av ) ) THEN |
---|
8480 | ALLOCATE( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8481 | rad_lw_out_av = REAL( fill_value, KIND = wp ) |
---|
8482 | ENDIF |
---|
8483 | DO i = nxl, nxr |
---|
8484 | DO j = nys, nyn |
---|
8485 | DO k = nzb_do, nzt_do |
---|
8486 | local_pf(i,j,k) = rad_lw_out_av(k,j,i) |
---|
8487 | ENDDO |
---|
8488 | ENDDO |
---|
8489 | ENDDO |
---|
8490 | ENDIF |
---|
8491 | |
---|
8492 | CASE ( 'rad_lw_cs_hr' ) |
---|
8493 | IF ( av == 0 ) THEN |
---|
8494 | DO i = nxl, nxr |
---|
8495 | DO j = nys, nyn |
---|
8496 | DO k = nzb_do, nzt_do |
---|
8497 | local_pf(i,j,k) = rad_lw_cs_hr(k,j,i) |
---|
8498 | ENDDO |
---|
8499 | ENDDO |
---|
8500 | ENDDO |
---|
8501 | ELSE |
---|
8502 | IF ( .NOT. ALLOCATED( rad_lw_cs_hr_av ) ) THEN |
---|
8503 | ALLOCATE( rad_lw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8504 | rad_lw_cs_hr_av = REAL( fill_value, KIND = wp ) |
---|
8505 | ENDIF |
---|
8506 | DO i = nxl, nxr |
---|
8507 | DO j = nys, nyn |
---|
8508 | DO k = nzb_do, nzt_do |
---|
8509 | local_pf(i,j,k) = rad_lw_cs_hr_av(k,j,i) |
---|
8510 | ENDDO |
---|
8511 | ENDDO |
---|
8512 | ENDDO |
---|
8513 | ENDIF |
---|
8514 | |
---|
8515 | CASE ( 'rad_lw_hr' ) |
---|
8516 | IF ( av == 0 ) THEN |
---|
8517 | DO i = nxl, nxr |
---|
8518 | DO j = nys, nyn |
---|
8519 | DO k = nzb_do, nzt_do |
---|
8520 | local_pf(i,j,k) = rad_lw_hr(k,j,i) |
---|
8521 | ENDDO |
---|
8522 | ENDDO |
---|
8523 | ENDDO |
---|
8524 | ELSE |
---|
8525 | IF ( .NOT. ALLOCATED( rad_lw_hr_av ) ) THEN |
---|
8526 | ALLOCATE( rad_lw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8527 | rad_lw_hr_av = REAL( fill_value, KIND = wp ) |
---|
8528 | ENDIF |
---|
8529 | DO i = nxl, nxr |
---|
8530 | DO j = nys, nyn |
---|
8531 | DO k = nzb_do, nzt_do |
---|
8532 | local_pf(i,j,k) = rad_lw_hr_av(k,j,i) |
---|
8533 | ENDDO |
---|
8534 | ENDDO |
---|
8535 | ENDDO |
---|
8536 | ENDIF |
---|
8537 | |
---|
8538 | CASE DEFAULT |
---|
8539 | found = .FALSE. |
---|
8540 | |
---|
8541 | END SELECT |
---|
8542 | |
---|
8543 | |
---|
8544 | END SUBROUTINE radiation_data_output_3d |
---|
8545 | |
---|
8546 | !------------------------------------------------------------------------------! |
---|
8547 | ! |
---|
8548 | ! Description: |
---|
8549 | ! ------------ |
---|
8550 | !> Subroutine defining masked data output |
---|
8551 | !------------------------------------------------------------------------------! |
---|
8552 | SUBROUTINE radiation_data_output_mask( av, variable, found, local_pf ) |
---|
8553 | |
---|
8554 | USE control_parameters |
---|
8555 | |
---|
8556 | USE indices |
---|
8557 | |
---|
8558 | USE kinds |
---|
8559 | |
---|
8560 | |
---|
8561 | IMPLICIT NONE |
---|
8562 | |
---|
8563 | CHARACTER (LEN=*) :: variable !< |
---|
8564 | |
---|
8565 | INTEGER(iwp) :: av !< |
---|
8566 | INTEGER(iwp) :: i !< |
---|
8567 | INTEGER(iwp) :: j !< |
---|
8568 | INTEGER(iwp) :: k !< |
---|
8569 | |
---|
8570 | LOGICAL :: found !< |
---|
8571 | |
---|
8572 | REAL(wp), & |
---|
8573 | DIMENSION(mask_size_l(mid,1),mask_size_l(mid,2),mask_size_l(mid,3)) :: & |
---|
8574 | local_pf !< |
---|
8575 | |
---|
8576 | |
---|
8577 | found = .TRUE. |
---|
8578 | |
---|
8579 | SELECT CASE ( TRIM( variable ) ) |
---|
8580 | |
---|
8581 | |
---|
8582 | CASE ( 'rad_lw_in' ) |
---|
8583 | IF ( av == 0 ) THEN |
---|
8584 | DO i = 1, mask_size_l(mid,1) |
---|
8585 | DO j = 1, mask_size_l(mid,2) |
---|
8586 | DO k = 1, mask_size_l(mid,3) |
---|
8587 | local_pf(i,j,k) = rad_lw_in(mask_k(mid,k), & |
---|
8588 | mask_j(mid,j),mask_i(mid,i)) |
---|
8589 | ENDDO |
---|
8590 | ENDDO |
---|
8591 | ENDDO |
---|
8592 | ELSE |
---|
8593 | DO i = 1, mask_size_l(mid,1) |
---|
8594 | DO j = 1, mask_size_l(mid,2) |
---|
8595 | DO k = 1, mask_size_l(mid,3) |
---|
8596 | local_pf(i,j,k) = rad_lw_in_av(mask_k(mid,k), & |
---|
8597 | mask_j(mid,j),mask_i(mid,i)) |
---|
8598 | ENDDO |
---|
8599 | ENDDO |
---|
8600 | ENDDO |
---|
8601 | ENDIF |
---|
8602 | |
---|
8603 | CASE ( 'rad_lw_out' ) |
---|
8604 | IF ( av == 0 ) THEN |
---|
8605 | DO i = 1, mask_size_l(mid,1) |
---|
8606 | DO j = 1, mask_size_l(mid,2) |
---|
8607 | DO k = 1, mask_size_l(mid,3) |
---|
8608 | local_pf(i,j,k) = rad_lw_out(mask_k(mid,k), & |
---|
8609 | mask_j(mid,j),mask_i(mid,i)) |
---|
8610 | ENDDO |
---|
8611 | ENDDO |
---|
8612 | ENDDO |
---|
8613 | ELSE |
---|
8614 | DO i = 1, mask_size_l(mid,1) |
---|
8615 | DO j = 1, mask_size_l(mid,2) |
---|
8616 | DO k = 1, mask_size_l(mid,3) |
---|
8617 | local_pf(i,j,k) = rad_lw_out_av(mask_k(mid,k), & |
---|
8618 | mask_j(mid,j),mask_i(mid,i)) |
---|
8619 | ENDDO |
---|
8620 | ENDDO |
---|
8621 | ENDDO |
---|
8622 | ENDIF |
---|
8623 | |
---|
8624 | CASE ( 'rad_lw_cs_hr' ) |
---|
8625 | IF ( av == 0 ) THEN |
---|
8626 | DO i = 1, mask_size_l(mid,1) |
---|
8627 | DO j = 1, mask_size_l(mid,2) |
---|
8628 | DO k = 1, mask_size_l(mid,3) |
---|
8629 | local_pf(i,j,k) = rad_lw_cs_hr(mask_k(mid,k), & |
---|
8630 | mask_j(mid,j),mask_i(mid,i)) |
---|
8631 | ENDDO |
---|
8632 | ENDDO |
---|
8633 | ENDDO |
---|
8634 | ELSE |
---|
8635 | DO i = 1, mask_size_l(mid,1) |
---|
8636 | DO j = 1, mask_size_l(mid,2) |
---|
8637 | DO k = 1, mask_size_l(mid,3) |
---|
8638 | local_pf(i,j,k) = rad_lw_cs_hr_av(mask_k(mid,k), & |
---|
8639 | mask_j(mid,j),mask_i(mid,i)) |
---|
8640 | ENDDO |
---|
8641 | ENDDO |
---|
8642 | ENDDO |
---|
8643 | ENDIF |
---|
8644 | |
---|
8645 | CASE ( 'rad_lw_hr' ) |
---|
8646 | IF ( av == 0 ) THEN |
---|
8647 | DO i = 1, mask_size_l(mid,1) |
---|
8648 | DO j = 1, mask_size_l(mid,2) |
---|
8649 | DO k = 1, mask_size_l(mid,3) |
---|
8650 | local_pf(i,j,k) = rad_lw_hr(mask_k(mid,k), & |
---|
8651 | mask_j(mid,j),mask_i(mid,i)) |
---|
8652 | ENDDO |
---|
8653 | ENDDO |
---|
8654 | ENDDO |
---|
8655 | ELSE |
---|
8656 | DO i = 1, mask_size_l(mid,1) |
---|
8657 | DO j = 1, mask_size_l(mid,2) |
---|
8658 | DO k = 1, mask_size_l(mid,3) |
---|
8659 | local_pf(i,j,k) = rad_lw_hr_av(mask_k(mid,k), & |
---|
8660 | mask_j(mid,j),mask_i(mid,i)) |
---|
8661 | ENDDO |
---|
8662 | ENDDO |
---|
8663 | ENDDO |
---|
8664 | ENDIF |
---|
8665 | |
---|
8666 | CASE ( 'rad_sw_in' ) |
---|
8667 | IF ( av == 0 ) THEN |
---|
8668 | DO i = 1, mask_size_l(mid,1) |
---|
8669 | DO j = 1, mask_size_l(mid,2) |
---|
8670 | DO k = 1, mask_size_l(mid,3) |
---|
8671 | local_pf(i,j,k) = rad_sw_in(mask_k(mid,k), & |
---|
8672 | mask_j(mid,j),mask_i(mid,i)) |
---|
8673 | ENDDO |
---|
8674 | ENDDO |
---|
8675 | ENDDO |
---|
8676 | ELSE |
---|
8677 | DO i = 1, mask_size_l(mid,1) |
---|
8678 | DO j = 1, mask_size_l(mid,2) |
---|
8679 | DO k = 1, mask_size_l(mid,3) |
---|
8680 | local_pf(i,j,k) = rad_sw_in_av(mask_k(mid,k), & |
---|
8681 | mask_j(mid,j),mask_i(mid,i)) |
---|
8682 | ENDDO |
---|
8683 | ENDDO |
---|
8684 | ENDDO |
---|
8685 | ENDIF |
---|
8686 | |
---|
8687 | CASE ( 'rad_sw_out' ) |
---|
8688 | IF ( av == 0 ) THEN |
---|
8689 | DO i = 1, mask_size_l(mid,1) |
---|
8690 | DO j = 1, mask_size_l(mid,2) |
---|
8691 | DO k = 1, mask_size_l(mid,3) |
---|
8692 | local_pf(i,j,k) = rad_sw_out(mask_k(mid,k), & |
---|
8693 | mask_j(mid,j),mask_i(mid,i)) |
---|
8694 | ENDDO |
---|
8695 | ENDDO |
---|
8696 | ENDDO |
---|
8697 | ELSE |
---|
8698 | DO i = 1, mask_size_l(mid,1) |
---|
8699 | DO j = 1, mask_size_l(mid,2) |
---|
8700 | DO k = 1, mask_size_l(mid,3) |
---|
8701 | local_pf(i,j,k) = rad_sw_out_av(mask_k(mid,k), & |
---|
8702 | mask_j(mid,j),mask_i(mid,i)) |
---|
8703 | ENDDO |
---|
8704 | ENDDO |
---|
8705 | ENDDO |
---|
8706 | ENDIF |
---|
8707 | |
---|
8708 | CASE ( 'rad_sw_cs_hr' ) |
---|
8709 | IF ( av == 0 ) THEN |
---|
8710 | DO i = 1, mask_size_l(mid,1) |
---|
8711 | DO j = 1, mask_size_l(mid,2) |
---|
8712 | DO k = 1, mask_size_l(mid,3) |
---|
8713 | local_pf(i,j,k) = rad_sw_cs_hr(mask_k(mid,k), & |
---|
8714 | mask_j(mid,j),mask_i(mid,i)) |
---|
8715 | ENDDO |
---|
8716 | ENDDO |
---|
8717 | ENDDO |
---|
8718 | ELSE |
---|
8719 | DO i = 1, mask_size_l(mid,1) |
---|
8720 | DO j = 1, mask_size_l(mid,2) |
---|
8721 | DO k = 1, mask_size_l(mid,3) |
---|
8722 | local_pf(i,j,k) = rad_sw_cs_hr_av(mask_k(mid,k), & |
---|
8723 | mask_j(mid,j),mask_i(mid,i)) |
---|
8724 | ENDDO |
---|
8725 | ENDDO |
---|
8726 | ENDDO |
---|
8727 | ENDIF |
---|
8728 | |
---|
8729 | CASE ( 'rad_sw_hr' ) |
---|
8730 | IF ( av == 0 ) THEN |
---|
8731 | DO i = 1, mask_size_l(mid,1) |
---|
8732 | DO j = 1, mask_size_l(mid,2) |
---|
8733 | DO k = 1, mask_size_l(mid,3) |
---|
8734 | local_pf(i,j,k) = rad_sw_hr(mask_k(mid,k), & |
---|
8735 | mask_j(mid,j),mask_i(mid,i)) |
---|
8736 | ENDDO |
---|
8737 | ENDDO |
---|
8738 | ENDDO |
---|
8739 | ELSE |
---|
8740 | DO i = 1, mask_size_l(mid,1) |
---|
8741 | DO j = 1, mask_size_l(mid,2) |
---|
8742 | DO k = 1, mask_size_l(mid,3) |
---|
8743 | local_pf(i,j,k) = rad_sw_hr_av(mask_k(mid,k), & |
---|
8744 | mask_j(mid,j),mask_i(mid,i)) |
---|
8745 | ENDDO |
---|
8746 | ENDDO |
---|
8747 | ENDDO |
---|
8748 | ENDIF |
---|
8749 | |
---|
8750 | CASE DEFAULT |
---|
8751 | found = .FALSE. |
---|
8752 | |
---|
8753 | END SELECT |
---|
8754 | |
---|
8755 | |
---|
8756 | END SUBROUTINE radiation_data_output_mask |
---|
8757 | |
---|
8758 | |
---|
8759 | !------------------------------------------------------------------------------! |
---|
8760 | ! Description: |
---|
8761 | ! ------------ |
---|
8762 | !> Subroutine writes local (subdomain) restart data |
---|
8763 | !------------------------------------------------------------------------------! |
---|
8764 | SUBROUTINE radiation_wrd_local |
---|
8765 | |
---|
8766 | |
---|
8767 | IMPLICIT NONE |
---|
8768 | |
---|
8769 | |
---|
8770 | IF ( ALLOCATED( rad_net_av ) ) THEN |
---|
8771 | CALL wrd_write_string( 'rad_net_av' ) |
---|
8772 | WRITE ( 14 ) rad_net_av |
---|
8773 | ENDIF |
---|
8774 | |
---|
8775 | IF ( ALLOCATED( rad_lw_in_xy_av ) ) THEN |
---|
8776 | CALL wrd_write_string( 'rad_lw_in_xy_av' ) |
---|
8777 | WRITE ( 14 ) rad_lw_in_xy_av |
---|
8778 | ENDIF |
---|
8779 | |
---|
8780 | IF ( ALLOCATED( rad_lw_out_xy_av ) ) THEN |
---|
8781 | CALL wrd_write_string( 'rad_lw_out_xy_av' ) |
---|
8782 | WRITE ( 14 ) rad_lw_out_xy_av |
---|
8783 | ENDIF |
---|
8784 | |
---|
8785 | IF ( ALLOCATED( rad_sw_in_xy_av ) ) THEN |
---|
8786 | CALL wrd_write_string( 'rad_sw_in_xy_av' ) |
---|
8787 | WRITE ( 14 ) rad_sw_in_xy_av |
---|
8788 | ENDIF |
---|
8789 | |
---|
8790 | IF ( ALLOCATED( rad_sw_out_xy_av ) ) THEN |
---|
8791 | CALL wrd_write_string( 'rad_sw_out_xy_av' ) |
---|
8792 | WRITE ( 14 ) rad_sw_out_xy_av |
---|
8793 | ENDIF |
---|
8794 | |
---|
8795 | IF ( ALLOCATED( rad_lw_in ) ) THEN |
---|
8796 | CALL wrd_write_string( 'rad_lw_in' ) |
---|
8797 | WRITE ( 14 ) rad_lw_in |
---|
8798 | ENDIF |
---|
8799 | |
---|
8800 | IF ( ALLOCATED( rad_lw_in_av ) ) THEN |
---|
8801 | CALL wrd_write_string( 'rad_lw_in_av' ) |
---|
8802 | WRITE ( 14 ) rad_lw_in_av |
---|
8803 | ENDIF |
---|
8804 | |
---|
8805 | IF ( ALLOCATED( rad_lw_out ) ) THEN |
---|
8806 | CALL wrd_write_string( 'rad_lw_out' ) |
---|
8807 | WRITE ( 14 ) rad_lw_out |
---|
8808 | ENDIF |
---|
8809 | |
---|
8810 | IF ( ALLOCATED( rad_lw_out_av) ) THEN |
---|
8811 | CALL wrd_write_string( 'rad_lw_out_av' ) |
---|
8812 | WRITE ( 14 ) rad_lw_out_av |
---|
8813 | ENDIF |
---|
8814 | |
---|
8815 | IF ( ALLOCATED( rad_lw_cs_hr) ) THEN |
---|
8816 | CALL wrd_write_string( 'rad_lw_cs_hr' ) |
---|
8817 | WRITE ( 14 ) rad_lw_cs_hr |
---|
8818 | ENDIF |
---|
8819 | |
---|
8820 | IF ( ALLOCATED( rad_lw_cs_hr_av) ) THEN |
---|
8821 | CALL wrd_write_string( 'rad_lw_cs_hr_av' ) |
---|
8822 | WRITE ( 14 ) rad_lw_cs_hr_av |
---|
8823 | ENDIF |
---|
8824 | |
---|
8825 | IF ( ALLOCATED( rad_lw_hr) ) THEN |
---|
8826 | CALL wrd_write_string( 'rad_lw_hr' ) |
---|
8827 | WRITE ( 14 ) rad_lw_hr |
---|
8828 | ENDIF |
---|
8829 | |
---|
8830 | IF ( ALLOCATED( rad_lw_hr_av) ) THEN |
---|
8831 | CALL wrd_write_string( 'rad_lw_hr_av' ) |
---|
8832 | WRITE ( 14 ) rad_lw_hr_av |
---|
8833 | ENDIF |
---|
8834 | |
---|
8835 | IF ( ALLOCATED( rad_sw_in) ) THEN |
---|
8836 | CALL wrd_write_string( 'rad_sw_in' ) |
---|
8837 | WRITE ( 14 ) rad_sw_in |
---|
8838 | ENDIF |
---|
8839 | |
---|
8840 | IF ( ALLOCATED( rad_sw_in_av) ) THEN |
---|
8841 | CALL wrd_write_string( 'rad_sw_in_av' ) |
---|
8842 | WRITE ( 14 ) rad_sw_in_av |
---|
8843 | ENDIF |
---|
8844 | |
---|
8845 | IF ( ALLOCATED( rad_sw_out) ) THEN |
---|
8846 | CALL wrd_write_string( 'rad_sw_out' ) |
---|
8847 | WRITE ( 14 ) rad_sw_out |
---|
8848 | ENDIF |
---|
8849 | |
---|
8850 | IF ( ALLOCATED( rad_sw_out_av) ) THEN |
---|
8851 | CALL wrd_write_string( 'rad_sw_out_av' ) |
---|
8852 | WRITE ( 14 ) rad_sw_out_av |
---|
8853 | ENDIF |
---|
8854 | |
---|
8855 | IF ( ALLOCATED( rad_sw_cs_hr) ) THEN |
---|
8856 | CALL wrd_write_string( 'rad_sw_cs_hr' ) |
---|
8857 | WRITE ( 14 ) rad_sw_cs_hr |
---|
8858 | ENDIF |
---|
8859 | |
---|
8860 | IF ( ALLOCATED( rad_sw_cs_hr_av) ) THEN |
---|
8861 | CALL wrd_write_string( 'rad_sw_cs_hr_av' ) |
---|
8862 | WRITE ( 14 ) rad_sw_cs_hr_av |
---|
8863 | ENDIF |
---|
8864 | |
---|
8865 | IF ( ALLOCATED( rad_sw_hr) ) THEN |
---|
8866 | CALL wrd_write_string( 'rad_sw_hr' ) |
---|
8867 | WRITE ( 14 ) rad_sw_hr |
---|
8868 | ENDIF |
---|
8869 | |
---|
8870 | IF ( ALLOCATED( rad_sw_hr_av) ) THEN |
---|
8871 | CALL wrd_write_string( 'rad_sw_hr_av' ) |
---|
8872 | WRITE ( 14 ) rad_sw_hr_av |
---|
8873 | ENDIF |
---|
8874 | |
---|
8875 | |
---|
8876 | END SUBROUTINE radiation_wrd_local |
---|
8877 | |
---|
8878 | !------------------------------------------------------------------------------! |
---|
8879 | ! Description: |
---|
8880 | ! ------------ |
---|
8881 | !> Subroutine reads local (subdomain) restart data |
---|
8882 | !------------------------------------------------------------------------------! |
---|
8883 | SUBROUTINE radiation_rrd_local( i, k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, & |
---|
8884 | nxr_on_file, nynf, nync, nyn_on_file, nysf, & |
---|
8885 | nysc, nys_on_file, tmp_2d, tmp_3d, found ) |
---|
8886 | |
---|
8887 | |
---|
8888 | USE control_parameters |
---|
8889 | |
---|
8890 | USE indices |
---|
8891 | |
---|
8892 | USE kinds |
---|
8893 | |
---|
8894 | USE pegrid |
---|
8895 | |
---|
8896 | |
---|
8897 | IMPLICIT NONE |
---|
8898 | |
---|
8899 | INTEGER(iwp) :: i !< |
---|
8900 | INTEGER(iwp) :: k !< |
---|
8901 | INTEGER(iwp) :: nxlc !< |
---|
8902 | INTEGER(iwp) :: nxlf !< |
---|
8903 | INTEGER(iwp) :: nxl_on_file !< |
---|
8904 | INTEGER(iwp) :: nxrc !< |
---|
8905 | INTEGER(iwp) :: nxrf !< |
---|
8906 | INTEGER(iwp) :: nxr_on_file !< |
---|
8907 | INTEGER(iwp) :: nync !< |
---|
8908 | INTEGER(iwp) :: nynf !< |
---|
8909 | INTEGER(iwp) :: nyn_on_file !< |
---|
8910 | INTEGER(iwp) :: nysc !< |
---|
8911 | INTEGER(iwp) :: nysf !< |
---|
8912 | INTEGER(iwp) :: nys_on_file !< |
---|
8913 | |
---|
8914 | LOGICAL, INTENT(OUT) :: found |
---|
8915 | |
---|
8916 | REAL(wp), DIMENSION(nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_2d !< |
---|
8917 | |
---|
8918 | REAL(wp), DIMENSION(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d !< |
---|
8919 | |
---|
8920 | REAL(wp), DIMENSION(0:0,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d2 !< |
---|
8921 | |
---|
8922 | |
---|
8923 | found = .TRUE. |
---|
8924 | |
---|
8925 | |
---|
8926 | SELECT CASE ( restart_string(1:length) ) |
---|
8927 | |
---|
8928 | CASE ( 'rad_net_av' ) |
---|
8929 | IF ( .NOT. ALLOCATED( rad_net_av ) ) THEN |
---|
8930 | ALLOCATE( rad_net_av(nysg:nyng,nxlg:nxrg) ) |
---|
8931 | ENDIF |
---|
8932 | IF ( k == 1 ) READ ( 13 ) tmp_2d |
---|
8933 | rad_net_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
8934 | tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
8935 | |
---|
8936 | CASE ( 'rad_lw_in_xy_av' ) |
---|
8937 | IF ( .NOT. ALLOCATED( rad_lw_in_xy_av ) ) THEN |
---|
8938 | ALLOCATE( rad_lw_in_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
8939 | ENDIF |
---|
8940 | IF ( k == 1 ) READ ( 13 ) tmp_2d |
---|
8941 | rad_lw_in_xy_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
8942 | tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
8943 | |
---|
8944 | CASE ( 'rad_lw_out_xy_av' ) |
---|
8945 | IF ( .NOT. ALLOCATED( rad_lw_out_xy_av ) ) THEN |
---|
8946 | ALLOCATE( rad_lw_out_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
8947 | ENDIF |
---|
8948 | IF ( k == 1 ) READ ( 13 ) tmp_2d |
---|
8949 | rad_lw_out_xy_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
8950 | tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
8951 | |
---|
8952 | CASE ( 'rad_sw_in_xy_av' ) |
---|
8953 | IF ( .NOT. ALLOCATED( rad_sw_in_xy_av ) ) THEN |
---|
8954 | ALLOCATE( rad_sw_in_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
8955 | ENDIF |
---|
8956 | IF ( k == 1 ) READ ( 13 ) tmp_2d |
---|
8957 | rad_sw_in_xy_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
8958 | tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
8959 | |
---|
8960 | CASE ( 'rad_sw_out_xy_av' ) |
---|
8961 | IF ( .NOT. ALLOCATED( rad_sw_out_xy_av ) ) THEN |
---|
8962 | ALLOCATE( rad_sw_out_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
8963 | ENDIF |
---|
8964 | IF ( k == 1 ) READ ( 13 ) tmp_2d |
---|
8965 | rad_sw_out_xy_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
8966 | tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
8967 | |
---|
8968 | CASE ( 'rad_lw_in' ) |
---|
8969 | IF ( .NOT. ALLOCATED( rad_lw_in ) ) THEN |
---|
8970 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
8971 | radiation_scheme == 'constant') THEN |
---|
8972 | ALLOCATE( rad_lw_in(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
8973 | ELSE |
---|
8974 | ALLOCATE( rad_lw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8975 | ENDIF |
---|
8976 | ENDIF |
---|
8977 | IF ( k == 1 ) THEN |
---|
8978 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
8979 | radiation_scheme == 'constant') THEN |
---|
8980 | READ ( 13 ) tmp_3d2 |
---|
8981 | rad_lw_in(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
8982 | tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
8983 | ELSE |
---|
8984 | READ ( 13 ) tmp_3d |
---|
8985 | rad_lw_in(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
8986 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
8987 | ENDIF |
---|
8988 | ENDIF |
---|
8989 | |
---|
8990 | CASE ( 'rad_lw_in_av' ) |
---|
8991 | IF ( .NOT. ALLOCATED( rad_lw_in_av ) ) THEN |
---|
8992 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
8993 | radiation_scheme == 'constant') THEN |
---|
8994 | ALLOCATE( rad_lw_in_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
8995 | ELSE |
---|
8996 | ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
8997 | ENDIF |
---|
8998 | ENDIF |
---|
8999 | IF ( k == 1 ) THEN |
---|
9000 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
9001 | radiation_scheme == 'constant') THEN |
---|
9002 | READ ( 13 ) tmp_3d2 |
---|
9003 | rad_lw_in_av(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) =& |
---|
9004 | tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9005 | ELSE |
---|
9006 | READ ( 13 ) tmp_3d |
---|
9007 | rad_lw_in_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9008 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9009 | ENDIF |
---|
9010 | ENDIF |
---|
9011 | |
---|
9012 | CASE ( 'rad_lw_out' ) |
---|
9013 | IF ( .NOT. ALLOCATED( rad_lw_out ) ) THEN |
---|
9014 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
9015 | radiation_scheme == 'constant') THEN |
---|
9016 | ALLOCATE( rad_lw_out(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
9017 | ELSE |
---|
9018 | ALLOCATE( rad_lw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9019 | ENDIF |
---|
9020 | ENDIF |
---|
9021 | IF ( k == 1 ) THEN |
---|
9022 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
9023 | radiation_scheme == 'constant') THEN |
---|
9024 | READ ( 13 ) tmp_3d2 |
---|
9025 | rad_lw_out(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9026 | tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9027 | ELSE |
---|
9028 | READ ( 13 ) tmp_3d |
---|
9029 | rad_lw_out(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9030 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9031 | ENDIF |
---|
9032 | ENDIF |
---|
9033 | |
---|
9034 | CASE ( 'rad_lw_out_av' ) |
---|
9035 | IF ( .NOT. ALLOCATED( rad_lw_out_av ) ) THEN |
---|
9036 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
9037 | radiation_scheme == 'constant') THEN |
---|
9038 | ALLOCATE( rad_lw_out_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
9039 | ELSE |
---|
9040 | ALLOCATE( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9041 | ENDIF |
---|
9042 | ENDIF |
---|
9043 | IF ( k == 1 ) THEN |
---|
9044 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
9045 | radiation_scheme == 'constant') THEN |
---|
9046 | READ ( 13 ) tmp_3d2 |
---|
9047 | rad_lw_out_av(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) & |
---|
9048 | = tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9049 | ELSE |
---|
9050 | READ ( 13 ) tmp_3d |
---|
9051 | rad_lw_out_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9052 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9053 | ENDIF |
---|
9054 | ENDIF |
---|
9055 | |
---|
9056 | CASE ( 'rad_lw_cs_hr' ) |
---|
9057 | IF ( .NOT. ALLOCATED( rad_lw_cs_hr ) ) THEN |
---|
9058 | ALLOCATE( rad_lw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9059 | ENDIF |
---|
9060 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
9061 | rad_lw_cs_hr(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9062 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9063 | |
---|
9064 | CASE ( 'rad_lw_cs_hr_av' ) |
---|
9065 | IF ( .NOT. ALLOCATED( rad_lw_cs_hr_av ) ) THEN |
---|
9066 | ALLOCATE( rad_lw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9067 | ENDIF |
---|
9068 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
9069 | rad_lw_cs_hr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9070 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9071 | |
---|
9072 | CASE ( 'rad_lw_hr' ) |
---|
9073 | IF ( .NOT. ALLOCATED( rad_lw_hr ) ) THEN |
---|
9074 | ALLOCATE( rad_lw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9075 | ENDIF |
---|
9076 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
9077 | rad_lw_hr(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9078 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9079 | |
---|
9080 | CASE ( 'rad_lw_hr_av' ) |
---|
9081 | IF ( .NOT. ALLOCATED( rad_lw_hr_av ) ) THEN |
---|
9082 | ALLOCATE( rad_lw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9083 | ENDIF |
---|
9084 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
9085 | rad_lw_hr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9086 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9087 | |
---|
9088 | CASE ( 'rad_sw_in' ) |
---|
9089 | IF ( .NOT. ALLOCATED( rad_sw_in ) ) THEN |
---|
9090 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
9091 | radiation_scheme == 'constant') THEN |
---|
9092 | ALLOCATE( rad_sw_in(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
9093 | ELSE |
---|
9094 | ALLOCATE( rad_sw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9095 | ENDIF |
---|
9096 | ENDIF |
---|
9097 | IF ( k == 1 ) THEN |
---|
9098 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
9099 | radiation_scheme == 'constant') THEN |
---|
9100 | READ ( 13 ) tmp_3d2 |
---|
9101 | rad_sw_in(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9102 | tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9103 | ELSE |
---|
9104 | READ ( 13 ) tmp_3d |
---|
9105 | rad_sw_in(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9106 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9107 | ENDIF |
---|
9108 | ENDIF |
---|
9109 | |
---|
9110 | CASE ( 'rad_sw_in_av' ) |
---|
9111 | IF ( .NOT. ALLOCATED( rad_sw_in_av ) ) THEN |
---|
9112 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
9113 | radiation_scheme == 'constant') THEN |
---|
9114 | ALLOCATE( rad_sw_in_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
9115 | ELSE |
---|
9116 | ALLOCATE( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9117 | ENDIF |
---|
9118 | ENDIF |
---|
9119 | IF ( k == 1 ) THEN |
---|
9120 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
9121 | radiation_scheme == 'constant') THEN |
---|
9122 | READ ( 13 ) tmp_3d2 |
---|
9123 | rad_sw_in_av(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) =& |
---|
9124 | tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9125 | ELSE |
---|
9126 | READ ( 13 ) tmp_3d |
---|
9127 | rad_sw_in_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9128 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9129 | ENDIF |
---|
9130 | ENDIF |
---|
9131 | |
---|
9132 | CASE ( 'rad_sw_out' ) |
---|
9133 | IF ( .NOT. ALLOCATED( rad_sw_out ) ) THEN |
---|
9134 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
9135 | radiation_scheme == 'constant') THEN |
---|
9136 | ALLOCATE( rad_sw_out(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
9137 | ELSE |
---|
9138 | ALLOCATE( rad_sw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9139 | ENDIF |
---|
9140 | ENDIF |
---|
9141 | IF ( k == 1 ) THEN |
---|
9142 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
9143 | radiation_scheme == 'constant') THEN |
---|
9144 | READ ( 13 ) tmp_3d2 |
---|
9145 | rad_sw_out(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9146 | tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9147 | ELSE |
---|
9148 | READ ( 13 ) tmp_3d |
---|
9149 | rad_sw_out(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9150 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9151 | ENDIF |
---|
9152 | ENDIF |
---|
9153 | |
---|
9154 | CASE ( 'rad_sw_out_av' ) |
---|
9155 | IF ( .NOT. ALLOCATED( rad_sw_out_av ) ) THEN |
---|
9156 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
9157 | radiation_scheme == 'constant') THEN |
---|
9158 | ALLOCATE( rad_sw_out_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
9159 | ELSE |
---|
9160 | ALLOCATE( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9161 | ENDIF |
---|
9162 | ENDIF |
---|
9163 | IF ( k == 1 ) THEN |
---|
9164 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
9165 | radiation_scheme == 'constant') THEN |
---|
9166 | READ ( 13 ) tmp_3d2 |
---|
9167 | rad_sw_out_av(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) & |
---|
9168 | = tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9169 | ELSE |
---|
9170 | READ ( 13 ) tmp_3d |
---|
9171 | rad_sw_out_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9172 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9173 | ENDIF |
---|
9174 | ENDIF |
---|
9175 | |
---|
9176 | CASE ( 'rad_sw_cs_hr' ) |
---|
9177 | IF ( .NOT. ALLOCATED( rad_sw_cs_hr ) ) THEN |
---|
9178 | ALLOCATE( rad_sw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9179 | ENDIF |
---|
9180 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
9181 | rad_sw_cs_hr(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9182 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9183 | |
---|
9184 | CASE ( 'rad_sw_cs_hr_av' ) |
---|
9185 | IF ( .NOT. ALLOCATED( rad_sw_cs_hr_av ) ) THEN |
---|
9186 | ALLOCATE( rad_sw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9187 | ENDIF |
---|
9188 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
9189 | rad_sw_cs_hr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9190 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9191 | |
---|
9192 | CASE ( 'rad_sw_hr' ) |
---|
9193 | IF ( .NOT. ALLOCATED( rad_sw_hr ) ) THEN |
---|
9194 | ALLOCATE( rad_sw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9195 | ENDIF |
---|
9196 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
9197 | rad_sw_hr(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9198 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9199 | |
---|
9200 | CASE ( 'rad_sw_hr_av' ) |
---|
9201 | IF ( .NOT. ALLOCATED( rad_sw_hr_av ) ) THEN |
---|
9202 | ALLOCATE( rad_sw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
9203 | ENDIF |
---|
9204 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
9205 | rad_lw_hr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
9206 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
9207 | |
---|
9208 | CASE DEFAULT |
---|
9209 | |
---|
9210 | found = .FALSE. |
---|
9211 | |
---|
9212 | END SELECT |
---|
9213 | |
---|
9214 | END SUBROUTINE radiation_rrd_local |
---|
9215 | |
---|
9216 | !------------------------------------------------------------------------------! |
---|
9217 | ! Description: |
---|
9218 | ! ------------ |
---|
9219 | !> Subroutine writes debug information |
---|
9220 | !------------------------------------------------------------------------------! |
---|
9221 | SUBROUTINE radiation_write_debug_log ( message ) |
---|
9222 | !> it writes debug log with time stamp |
---|
9223 | CHARACTER(*) :: message |
---|
9224 | CHARACTER(15) :: dtc |
---|
9225 | CHARACTER(8) :: date |
---|
9226 | CHARACTER(10) :: time |
---|
9227 | CHARACTER(5) :: zone |
---|
9228 | CALL date_and_time(date, time, zone) |
---|
9229 | dtc = date(7:8)//','//time(1:2)//':'//time(3:4)//':'//time(5:10) |
---|
9230 | WRITE(9,'(2A)') dtc, TRIM(message) |
---|
9231 | FLUSH(9) |
---|
9232 | END SUBROUTINE radiation_write_debug_log |
---|
9233 | |
---|
9234 | END MODULE radiation_model_mod |
---|