!> @file radiation_model_mod.f90
!------------------------------------------------------------------------------!
! This file is part of the PALM model system.
!
! PALM is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
! A PARTICULAR PURPOSE. See the GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along with
! PALM. If not, see .
!
! Copyright 2015-2019 Institute of Computer Science of the
! Czech Academy of Sciences, Prague
! Copyright 2015-2019 Czech Technical University in Prague
! Copyright 1997-2019 Leibniz Universitaet Hannover
!------------------------------------------------------------------------------!
!
! Current revisions:
! ------------------
!
!
! Former revisions:
! -----------------
! $Id: radiation_model_mod.f90 4238 2019-09-25 16:06:01Z suehring $
! Modify check in order to avoid equality comparisons of floating points
!
! 4227 2019-09-10 18:04:34Z gronemeier
! implement new palm_date_time_mod
!
! 4226 2019-09-10 17:03:24Z suehring
! - Netcdf input routine for dimension length renamed
! - Define time variable for external radiation input relative to time_utc_init
!
! 4210 2019-09-02 13:07:09Z suehring
! - Revise steering of splitting diffuse and direct radiation
! - Bugfixes in checks
! - Optimize mapping of radiation components onto 2D arrays, avoid unnecessary
! operations
!
! 4208 2019-09-02 09:01:07Z suehring
! Bugfix in accessing albedo_pars in the clear-sky branch
! (merge from branch resler)
!
! 4198 2019-08-29 15:17:48Z gronemeier
! Prohibit execution of radiation model if rotation_angle is not zero
!
! 4197 2019-08-29 14:33:32Z suehring
! Revise steering of surface albedo initialization when albedo_pars is provided
!
! 4190 2019-08-27 15:42:37Z suehring
! Implement external radiation forcing also for level-of-detail = 2
! (horizontally 2D radiation)
!
! 4188 2019-08-26 14:15:47Z suehring
! Minor adjustment in error message
!
! 4187 2019-08-26 12:43:15Z suehring
! - Take external radiation from root domain dynamic input if not provided for
! each nested domain
! - Combine MPI_ALLREDUCE calls to reduce mpi overhead
!
! 4182 2019-08-22 15:20:23Z scharf
! Corrected "Former revisions" section
!
! 4179 2019-08-21 11:16:12Z suehring
! Remove debug prints
!
! 4178 2019-08-21 11:13:06Z suehring
! External radiation forcing implemented.
!
! 4168 2019-08-16 13:50:17Z suehring
! Replace function get_topography_top_index by topo_top_ind
!
! 4157 2019-08-14 09:19:12Z suehring
! Give informative message on raytracing distance only by core zero
!
! 4148 2019-08-08 11:26:00Z suehring
! Comments added
!
! 4134 2019-08-02 18:39:57Z suehring
! Bugfix in formatted write statement
!
! 4127 2019-07-30 14:47:10Z suehring
! Remove unused pch_index (merge from branch resler)
!
! 4089 2019-07-11 14:30:27Z suehring
! - Correct level 2 initialization of spectral albedos in rrtmg branch, long- and
! shortwave albedos were mixed-up.
! - Change order of albedo_pars so that it is now consistent with the defined
! order of albedo_pars in PIDS
!
! 4069 2019-07-01 14:05:51Z Giersch
! Masked output running index mid has been introduced as a local variable to
! avoid runtime error (Loop variable has been modified) in time_integration
!
! 4067 2019-07-01 13:29:25Z suehring
! Bugfix, pass dummy string to MPI_INFO_SET (J. Resler)
!
! 4039 2019-06-18 10:32:41Z suehring
! Bugfix for masked data output
!
! 4008 2019-05-30 09:50:11Z moh.hefny
! Bugfix in check variable when a variable's string is less than 3
! characters is processed. All variables now are checked if they
! belong to radiation
!
! 3992 2019-05-22 16:49:38Z suehring
! Bugfix in rrtmg radiation branch in a nested run when the lowest prognistic
! grid points in a child domain are all inside topography
!
! 3987 2019-05-22 09:52:13Z kanani
! Introduce alternative switch for debug output during timestepping
!
! 3943 2019-05-02 09:50:41Z maronga
! Missing blank characteer added.
!
! 3900 2019-04-16 15:17:43Z suehring
! Fixed initialization problem
!
! 3885 2019-04-11 11:29:34Z kanani
! Changes related to global restructuring of location messages and introduction
! of additional debug messages
!
! 3881 2019-04-10 09:31:22Z suehring
! Output of albedo and emissivity moved from USM, bugfixes in initialization
! of albedo
!
! 3861 2019-04-04 06:27:41Z maronga
! Bugfix: factor of 4.0 required instead of 3.0 in calculation of rad_lw_out_change_0
!
! 3859 2019-04-03 20:30:31Z maronga
! Added some descriptions
!
! 3847 2019-04-01 14:51:44Z suehring
! Implement check for dt_radiation (must be > 0)
!
! 3846 2019-04-01 13:55:30Z suehring
! unused variable removed
!
! 3814 2019-03-26 08:40:31Z pavelkrc
! Change zenith(0:0) and others to scalar.
! Code review.
! Rename exported nzu, nzp and related variables due to name conflict
!
! 3771 2019-02-28 12:19:33Z raasch
! rrtmg preprocessor for directives moved/added, save attribute added to temporary
! pointers to avoid compiler warnings about outlived pointer targets,
! statement added to avoid compiler warning about unused variable
!
! 3769 2019-02-28 10:16:49Z moh.hefny
! removed unused variables and subroutine radiation_radflux_gridbox
!
! 3767 2019-02-27 08:18:02Z raasch
! unused variable for file index removed from rrd-subroutines parameter list
!
! 3760 2019-02-21 18:47:35Z moh.hefny
! Bugfix: initialized simulated_time before calculating solar position
! to enable restart option with reading in SVF from file(s).
!
! 3754 2019-02-19 17:02:26Z kanani
! (resler, pavelkrc)
! Bugfixes: add further required MRT factors to read/write_svf,
! fix for aggregating view factors to eliminate local noise in reflected
! irradiance at mutually close surfaces (corners, presence of trees) in the
! angular discretization scheme.
!
! 3752 2019-02-19 09:37:22Z resler
! added read/write number of MRT factors to the respective routines
!
! 3705 2019-01-29 19:56:39Z suehring
! Make variables that are sampled in virtual measurement module public
!
! 3704 2019-01-29 19:51:41Z suehring
! Some interface calls moved to module_interface + cleanup
!
! 3667 2019-01-10 14:26:24Z schwenkel
! Modified check for rrtmg input files
!
! 3655 2019-01-07 16:51:22Z knoop
! nopointer option removed
!
! 1496 2014-12-02 17:25:50Z maronga
! Initial revision
!
!
! Description:
! ------------
!> Radiation models and interfaces
!> @todo Replace dz(1) appropriatly to account for grid stretching
!> @todo move variable definitions used in radiation_init only to the subroutine
!> as they are no longer required after initialization.
!> @todo Output of full column vertical profiles used in RRTMG
!> @todo Output of other rrtm arrays (such as volume mixing ratios)
!> @todo Check for mis-used NINT() calls in raytrace_2d
!> RESULT: Original was correct (carefully verified formula), the change
!> to INT broke raytracing -- P. Krc
!> @todo Optimize radiation_tendency routines
!> @todo Consider rotated model domains (rotation_angle/=0.0)
!>
!> @note Many variables have a leading dummy dimension (0:0) in order to
!> match the assume-size shape expected by the RRTMG model.
!------------------------------------------------------------------------------!
MODULE radiation_model_mod
USE arrays_3d, &
ONLY: dzw, hyp, nc, pt, p, q, ql, u, v, w, zu, zw, exner, d_exner
USE basic_constants_and_equations_mod, &
ONLY: c_p, g, lv_d_cp, l_v, pi, r_d, rho_l, solar_constant, sigma_sb, &
barometric_formula
USE calc_mean_profile_mod, &
ONLY: calc_mean_profile
USE control_parameters, &
ONLY: cloud_droplets, coupling_char, &
debug_output, debug_output_timestep, debug_string, &
dt_3d, &
dz, dt_spinup, end_time, &
humidity, &
initializing_actions, io_blocks, io_group, &
land_surface, large_scale_forcing, &
latitude, longitude, lsf_surf, &
message_string, plant_canopy, pt_surface, &
rho_surface, simulated_time, spinup_time, surface_pressure, &
read_svf, write_svf, &
time_since_reference_point, urban_surface, varnamelength
USE cpulog, &
ONLY: cpu_log, log_point, log_point_s
USE grid_variables, &
ONLY: ddx, ddy, dx, dy
USE indices, &
ONLY: nnx, nny, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, &
nzb, nzt, topo_top_ind
USE, INTRINSIC :: iso_c_binding
USE kinds
USE bulk_cloud_model_mod, &
ONLY: bulk_cloud_model, microphysics_morrison, na_init, nc_const, sigma_gc
#if defined ( __netcdf )
USE NETCDF
#endif
USE netcdf_data_input_mod, &
ONLY: albedo_type_f, &
albedo_pars_f, &
building_type_f, &
pavement_type_f, &
vegetation_type_f, &
water_type_f, &
char_fill, &
char_lod, &
check_existence, &
close_input_file, &
get_attribute, &
get_dimension_length, &
get_variable, &
inquire_num_variables, &
inquire_variable_names, &
input_file_dynamic, &
input_pids_dynamic, &
num_var_pids, &
pids_id, &
open_read_file, &
real_1d_3d, &
vars_pids
USE palm_date_time_mod, &
ONLY: date_time_str_len, get_date_time, &
hours_per_day, seconds_per_hour
USE plant_canopy_model_mod, &
ONLY: lad_s, pc_heating_rate, pc_transpiration_rate, pc_latent_rate, &
plant_canopy_transpiration, pcm_calc_transpiration_rate
USE pegrid
#if defined ( __rrtmg )
USE parrrsw, &
ONLY: naerec, nbndsw
USE parrrtm, &
ONLY: nbndlw
USE rrtmg_lw_init, &
ONLY: rrtmg_lw_ini
USE rrtmg_sw_init, &
ONLY: rrtmg_sw_ini
USE rrtmg_lw_rad, &
ONLY: rrtmg_lw
USE rrtmg_sw_rad, &
ONLY: rrtmg_sw
#endif
USE statistics, &
ONLY: hom
USE surface_mod, &
ONLY: ind_pav_green, ind_veg_wall, ind_wat_win, &
surf_lsm_h, surf_lsm_v, surf_type, surf_usm_h, surf_usm_v, &
vertical_surfaces_exist
IMPLICIT NONE
CHARACTER(10) :: radiation_scheme = 'clear-sky' ! 'constant', 'clear-sky', or 'rrtmg'
!
!-- Predefined Land surface classes (albedo_type) after Briegleb (1992)
CHARACTER(37), DIMENSION(0:33), PARAMETER :: albedo_type_name = (/ &
'user defined ', & ! 0
'ocean ', & ! 1
'mixed farming, tall grassland ', & ! 2
'tall/medium grassland ', & ! 3
'evergreen shrubland ', & ! 4
'short grassland/meadow/shrubland ', & ! 5
'evergreen needleleaf forest ', & ! 6
'mixed deciduous evergreen forest ', & ! 7
'deciduous forest ', & ! 8
'tropical evergreen broadleaved forest', & ! 9
'medium/tall grassland/woodland ', & ! 10
'desert, sandy ', & ! 11
'desert, rocky ', & ! 12
'tundra ', & ! 13
'land ice ', & ! 14
'sea ice ', & ! 15
'snow ', & ! 16
'bare soil ', & ! 17
'asphalt/concrete mix ', & ! 18
'asphalt (asphalt concrete) ', & ! 19
'concrete (Portland concrete) ', & ! 20
'sett ', & ! 21
'paving stones ', & ! 22
'cobblestone ', & ! 23
'metal ', & ! 24
'wood ', & ! 25
'gravel ', & ! 26
'fine gravel ', & ! 27
'pebblestone ', & ! 28
'woodchips ', & ! 29
'tartan (sports) ', & ! 30
'artifical turf (sports) ', & ! 31
'clay (sports) ', & ! 32
'building (dummy) ' & ! 33
/)
INTEGER(iwp) :: albedo_type = 9999999_iwp, & !< Albedo surface type
dots_rad = 0_iwp !< starting index for timeseries output
LOGICAL :: unscheduled_radiation_calls = .TRUE., & !< flag parameter indicating whether additional calls of the radiation code are allowed
constant_albedo = .FALSE., & !< flag parameter indicating whether the albedo may change depending on zenith
force_radiation_call = .FALSE., & !< flag parameter for unscheduled radiation calls
lw_radiation = .TRUE., & !< flag parameter indicating whether longwave radiation shall be calculated
radiation = .FALSE., & !< flag parameter indicating whether the radiation model is used
sun_up = .TRUE., & !< flag parameter indicating whether the sun is up or down
sw_radiation = .TRUE., & !< flag parameter indicating whether shortwave radiation shall be calculated
sun_direction = .FALSE., & !< flag parameter indicating whether solar direction shall be calculated
average_radiation = .FALSE., & !< flag to set the calculation of radiation averaging for the domain
radiation_interactions = .FALSE., & !< flag to activiate RTM (TRUE only if vertical urban/land surface and trees exist)
surface_reflections = .TRUE., & !< flag to switch the calculation of radiation interaction between surfaces.
!< When it switched off, only the effect of buildings and trees shadow
!< will be considered. However fewer SVFs are expected.
radiation_interactions_on = .TRUE. !< namelist flag to force RTM activiation regardless to vertical urban/land surface and trees
REAL(wp) :: albedo = 9999999.9_wp, & !< NAMELIST alpha
albedo_lw_dif = 9999999.9_wp, & !< NAMELIST aldif
albedo_lw_dir = 9999999.9_wp, & !< NAMELIST aldir
albedo_sw_dif = 9999999.9_wp, & !< NAMELIST asdif
albedo_sw_dir = 9999999.9_wp, & !< NAMELIST asdir
decl_1, & !< declination coef. 1
decl_2, & !< declination coef. 2
decl_3, & !< declination coef. 3
dt_radiation = 0.0_wp, & !< radiation model timestep
emissivity = 9999999.9_wp, & !< NAMELIST surface emissivity
lon = 0.0_wp, & !< longitude in radians
lat = 0.0_wp, & !< latitude in radians
net_radiation = 0.0_wp, & !< net radiation at surface
skip_time_do_radiation = 0.0_wp, & !< Radiation model is not called before this time
sky_trans, & !< sky transmissivity
time_radiation = 0.0_wp !< time since last call of radiation code
INTEGER(iwp) :: day_of_year !< day of the current year
REAL(wp) :: cos_zenith !< cosine of solar zenith angle, also z-coordinate of solar unit vector
REAL(wp) :: d_hours_day !< 1 / hours-per-day
REAL(wp) :: d_seconds_hour !< 1 / seconds-per-hour
REAL(wp) :: second_of_day !< second of the current day
REAL(wp) :: sun_dir_lat !< y-coordinate of solar unit vector
REAL(wp) :: sun_dir_lon !< x-coordinate of solar unit vector
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_net_av !< average of net radiation (rad_net) at surface
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_lw_in_xy_av !< average of incoming longwave radiation at surface
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_lw_out_xy_av !< average of outgoing longwave radiation at surface
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_xy_av !< average of incoming shortwave radiation at surface
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_out_xy_av !< average of outgoing shortwave radiation at surface
REAL(wp), PARAMETER :: emissivity_atm_clsky = 0.8_wp !< emissivity of the clear-sky atmosphere
!
!-- Land surface albedos for solar zenith angle of 60degree after Briegleb (1992)
!-- (broadband, longwave, shortwave ): bb, lw, sw,
REAL(wp), DIMENSION(0:2,1:33), PARAMETER :: albedo_pars = RESHAPE( (/&
0.06_wp, 0.06_wp, 0.06_wp, & ! 1
0.19_wp, 0.28_wp, 0.09_wp, & ! 2
0.23_wp, 0.33_wp, 0.11_wp, & ! 3
0.23_wp, 0.33_wp, 0.11_wp, & ! 4
0.25_wp, 0.34_wp, 0.14_wp, & ! 5
0.14_wp, 0.22_wp, 0.06_wp, & ! 6
0.17_wp, 0.27_wp, 0.06_wp, & ! 7
0.19_wp, 0.31_wp, 0.06_wp, & ! 8
0.14_wp, 0.22_wp, 0.06_wp, & ! 9
0.18_wp, 0.28_wp, 0.06_wp, & ! 10
0.43_wp, 0.51_wp, 0.35_wp, & ! 11
0.32_wp, 0.40_wp, 0.24_wp, & ! 12
0.19_wp, 0.27_wp, 0.10_wp, & ! 13
0.77_wp, 0.65_wp, 0.90_wp, & ! 14
0.77_wp, 0.65_wp, 0.90_wp, & ! 15
0.82_wp, 0.70_wp, 0.95_wp, & ! 16
0.08_wp, 0.08_wp, 0.08_wp, & ! 17
0.17_wp, 0.17_wp, 0.17_wp, & ! 18
0.17_wp, 0.17_wp, 0.17_wp, & ! 19
0.30_wp, 0.30_wp, 0.30_wp, & ! 20
0.17_wp, 0.17_wp, 0.17_wp, & ! 21
0.17_wp, 0.17_wp, 0.17_wp, & ! 22
0.17_wp, 0.17_wp, 0.17_wp, & ! 23
0.17_wp, 0.17_wp, 0.17_wp, & ! 24
0.17_wp, 0.17_wp, 0.17_wp, & ! 25
0.17_wp, 0.17_wp, 0.17_wp, & ! 26
0.17_wp, 0.17_wp, 0.17_wp, & ! 27
0.17_wp, 0.17_wp, 0.17_wp, & ! 28
0.17_wp, 0.17_wp, 0.17_wp, & ! 29
0.17_wp, 0.17_wp, 0.17_wp, & ! 30
0.17_wp, 0.17_wp, 0.17_wp, & ! 31
0.17_wp, 0.17_wp, 0.17_wp, & ! 32
0.17_wp, 0.17_wp, 0.17_wp & ! 33
/), (/ 3, 33 /) )
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: &
rad_lw_cs_hr, & !< longwave clear sky radiation heating rate (K/s)
rad_lw_cs_hr_av, & !< average of rad_lw_cs_hr
rad_lw_hr, & !< longwave radiation heating rate (K/s)
rad_lw_hr_av, & !< average of rad_sw_hr
rad_lw_in, & !< incoming longwave radiation (W/m2)
rad_lw_in_av, & !< average of rad_lw_in
rad_lw_out, & !< outgoing longwave radiation (W/m2)
rad_lw_out_av, & !< average of rad_lw_out
rad_sw_cs_hr, & !< shortwave clear sky radiation heating rate (K/s)
rad_sw_cs_hr_av, & !< average of rad_sw_cs_hr
rad_sw_hr, & !< shortwave radiation heating rate (K/s)
rad_sw_hr_av, & !< average of rad_sw_hr
rad_sw_in, & !< incoming shortwave radiation (W/m2)
rad_sw_in_av, & !< average of rad_sw_in
rad_sw_out, & !< outgoing shortwave radiation (W/m2)
rad_sw_out_av !< average of rad_sw_out
!
!-- Variables and parameters used in RRTMG only
#if defined ( __rrtmg )
CHARACTER(LEN=12) :: rrtm_input_file = "RAD_SND_DATA" !< name of the NetCDF input file (sounding data)
!
!-- Flag parameters to be passed to RRTMG (should not be changed until ice phase in clouds is allowed)
INTEGER(iwp), PARAMETER :: rrtm_idrv = 1, & !< flag for longwave upward flux calculation option (0,1)
rrtm_inflglw = 2, & !< flag for lw cloud optical properties (0,1,2)
rrtm_iceflglw = 0, & !< flag for lw ice particle specifications (0,1,2,3)
rrtm_liqflglw = 1, & !< flag for lw liquid droplet specifications
rrtm_inflgsw = 2, & !< flag for sw cloud optical properties (0,1,2)
rrtm_iceflgsw = 0, & !< flag for sw ice particle specifications (0,1,2,3)
rrtm_liqflgsw = 1 !< flag for sw liquid droplet specifications
!
!-- The following variables should be only changed with care, as this will
!-- require further setting of some variables, which is currently not
!-- implemented (aerosols, ice phase).
INTEGER(iwp) :: nzt_rad, & !< upper vertical limit for radiation calculations
rrtm_icld = 0, & !< cloud flag (0: clear sky column, 1: cloudy column)
rrtm_iaer = 0 !< aerosol option flag (0: no aerosol layers, for lw only: 6 (requires setting of rrtm_sw_ecaer), 10: one or more aerosol layers (not implemented)
INTEGER(iwp) :: nc_stat !< local variable for storin the result of netCDF calls for error message handling
LOGICAL :: snd_exists = .FALSE. !< flag parameter to check whether a user-defined input files exists
LOGICAL :: sw_exists = .FALSE. !< flag parameter to check whether that required rrtmg sw file exists
LOGICAL :: lw_exists = .FALSE. !< flag parameter to check whether that required rrtmg lw file exists
REAL(wp), PARAMETER :: mol_mass_air_d_wv = 1.607793_wp !< molecular weight dry air / water vapor
REAL(wp), DIMENSION(:), ALLOCATABLE :: hyp_snd, & !< hypostatic pressure from sounding data (hPa)
rrtm_tsfc, & !< dummy array for storing surface temperature
t_snd !< actual temperature from sounding data (hPa)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rrtm_ccl4vmr, & !< CCL4 volume mixing ratio (g/mol)
rrtm_cfc11vmr, & !< CFC11 volume mixing ratio (g/mol)
rrtm_cfc12vmr, & !< CFC12 volume mixing ratio (g/mol)
rrtm_cfc22vmr, & !< CFC22 volume mixing ratio (g/mol)
rrtm_ch4vmr, & !< CH4 volume mixing ratio
rrtm_cicewp, & !< in-cloud ice water path (g/m2)
rrtm_cldfr, & !< cloud fraction (0,1)
rrtm_cliqwp, & !< in-cloud liquid water path (g/m2)
rrtm_co2vmr, & !< CO2 volume mixing ratio (g/mol)
rrtm_emis, & !< surface emissivity (0-1)
rrtm_h2ovmr, & !< H2O volume mixing ratio
rrtm_n2ovmr, & !< N2O volume mixing ratio
rrtm_o2vmr, & !< O2 volume mixing ratio
rrtm_o3vmr, & !< O3 volume mixing ratio
rrtm_play, & !< pressure layers (hPa, zu-grid)
rrtm_plev, & !< pressure layers (hPa, zw-grid)
rrtm_reice, & !< cloud ice effective radius (microns)
rrtm_reliq, & !< cloud water drop effective radius (microns)
rrtm_tlay, & !< actual temperature (K, zu-grid)
rrtm_tlev, & !< actual temperature (K, zw-grid)
rrtm_lwdflx, & !< RRTM output of incoming longwave radiation flux (W/m2)
rrtm_lwdflxc, & !< RRTM output of outgoing clear sky longwave radiation flux (W/m2)
rrtm_lwuflx, & !< RRTM output of outgoing longwave radiation flux (W/m2)
rrtm_lwuflxc, & !< RRTM output of incoming clear sky longwave radiation flux (W/m2)
rrtm_lwuflx_dt, & !< RRTM output of incoming clear sky longwave radiation flux (W/m2)
rrtm_lwuflxc_dt,& !< RRTM output of outgoing clear sky longwave radiation flux (W/m2)
rrtm_lwhr, & !< RRTM output of longwave radiation heating rate (K/d)
rrtm_lwhrc, & !< RRTM output of incoming longwave clear sky radiation heating rate (K/d)
rrtm_swdflx, & !< RRTM output of incoming shortwave radiation flux (W/m2)
rrtm_swdflxc, & !< RRTM output of outgoing clear sky shortwave radiation flux (W/m2)
rrtm_swuflx, & !< RRTM output of outgoing shortwave radiation flux (W/m2)
rrtm_swuflxc, & !< RRTM output of incoming clear sky shortwave radiation flux (W/m2)
rrtm_swhr, & !< RRTM output of shortwave radiation heating rate (K/d)
rrtm_swhrc, & !< RRTM output of incoming shortwave clear sky radiation heating rate (K/d)
rrtm_dirdflux, & !< RRTM output of incoming direct shortwave (W/m2)
rrtm_difdflux !< RRTM output of incoming diffuse shortwave (W/m2)
REAL(wp), DIMENSION(1) :: rrtm_aldif, & !< surface albedo for longwave diffuse radiation
rrtm_aldir, & !< surface albedo for longwave direct radiation
rrtm_asdif, & !< surface albedo for shortwave diffuse radiation
rrtm_asdir !< surface albedo for shortwave direct radiation
!
!-- Definition of arrays that are currently not used for calling RRTMG (due to setting of flag parameters)
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: rad_lw_cs_in, & !< incoming clear sky longwave radiation (W/m2) (not used)
rad_lw_cs_out, & !< outgoing clear sky longwave radiation (W/m2) (not used)
rad_sw_cs_in, & !< incoming clear sky shortwave radiation (W/m2) (not used)
rad_sw_cs_out, & !< outgoing clear sky shortwave radiation (W/m2) (not used)
rrtm_lw_tauaer, & !< lw aerosol optical depth
rrtm_lw_taucld, & !< lw in-cloud optical depth
rrtm_sw_taucld, & !< sw in-cloud optical depth
rrtm_sw_ssacld, & !< sw in-cloud single scattering albedo
rrtm_sw_asmcld, & !< sw in-cloud asymmetry parameter
rrtm_sw_fsfcld, & !< sw in-cloud forward scattering fraction
rrtm_sw_tauaer, & !< sw aerosol optical depth
rrtm_sw_ssaaer, & !< sw aerosol single scattering albedo
rrtm_sw_asmaer, & !< sw aerosol asymmetry parameter
rrtm_sw_ecaer !< sw aerosol optical detph at 0.55 microns (rrtm_iaer = 6 only)
#endif
!
!-- Parameters of urban and land surface models
INTEGER(iwp) :: nz_urban !< number of layers of urban surface (will be calculated)
INTEGER(iwp) :: nz_plant !< number of layers of plant canopy (will be calculated)
INTEGER(iwp) :: nz_urban_b !< bottom layer of urban surface (will be calculated)
INTEGER(iwp) :: nz_urban_t !< top layer of urban surface (will be calculated)
INTEGER(iwp) :: nz_plant_t !< top layer of plant canopy (will be calculated)
!-- parameters of urban and land surface models
INTEGER(iwp), PARAMETER :: nzut_free = 3 !< number of free layers above top of of topography
INTEGER(iwp), PARAMETER :: ndsvf = 2 !< number of dimensions of real values in SVF
INTEGER(iwp), PARAMETER :: idsvf = 2 !< number of dimensions of integer values in SVF
INTEGER(iwp), PARAMETER :: ndcsf = 1 !< number of dimensions of real values in CSF
INTEGER(iwp), PARAMETER :: idcsf = 2 !< number of dimensions of integer values in CSF
INTEGER(iwp), PARAMETER :: kdcsf = 4 !< number of dimensions of integer values in CSF calculation array
INTEGER(iwp), PARAMETER :: id = 1 !< position of d-index in surfl and surf
INTEGER(iwp), PARAMETER :: iz = 2 !< position of k-index in surfl and surf
INTEGER(iwp), PARAMETER :: iy = 3 !< position of j-index in surfl and surf
INTEGER(iwp), PARAMETER :: ix = 4 !< position of i-index in surfl and surf
INTEGER(iwp), PARAMETER :: im = 5 !< position of surface m-index in surfl and surf
INTEGER(iwp), PARAMETER :: nidx_surf = 5 !< number of indices in surfl and surf
INTEGER(iwp), PARAMETER :: nsurf_type = 10 !< number of surf types incl. phys.(land+urban) & (atm.,sky,boundary) surfaces - 1
INTEGER(iwp), PARAMETER :: iup_u = 0 !< 0 - index of urban upward surface (ground or roof)
INTEGER(iwp), PARAMETER :: idown_u = 1 !< 1 - index of urban downward surface (overhanging)
INTEGER(iwp), PARAMETER :: inorth_u = 2 !< 2 - index of urban northward facing wall
INTEGER(iwp), PARAMETER :: isouth_u = 3 !< 3 - index of urban southward facing wall
INTEGER(iwp), PARAMETER :: ieast_u = 4 !< 4 - index of urban eastward facing wall
INTEGER(iwp), PARAMETER :: iwest_u = 5 !< 5 - index of urban westward facing wall
INTEGER(iwp), PARAMETER :: iup_l = 6 !< 6 - index of land upward surface (ground or roof)
INTEGER(iwp), PARAMETER :: inorth_l = 7 !< 7 - index of land northward facing wall
INTEGER(iwp), PARAMETER :: isouth_l = 8 !< 8 - index of land southward facing wall
INTEGER(iwp), PARAMETER :: ieast_l = 9 !< 9 - index of land eastward facing wall
INTEGER(iwp), PARAMETER :: iwest_l = 10 !< 10- index of land westward facing wall
INTEGER(iwp), DIMENSION(0:nsurf_type), PARAMETER :: idir = (/0, 0,0, 0,1,-1,0,0, 0,1,-1/) !< surface normal direction x indices
INTEGER(iwp), DIMENSION(0:nsurf_type), PARAMETER :: jdir = (/0, 0,1,-1,0, 0,0,1,-1,0, 0/) !< surface normal direction y indices
INTEGER(iwp), DIMENSION(0:nsurf_type), PARAMETER :: kdir = (/1,-1,0, 0,0, 0,1,0, 0,0, 0/) !< surface normal direction z indices
REAL(wp), DIMENSION(0:nsurf_type) :: facearea !< area of single face in respective
!< direction (will be calc'd)
!-- indices and sizes of urban and land surface models
INTEGER(iwp) :: startland !< start index of block of land and roof surfaces
INTEGER(iwp) :: endland !< end index of block of land and roof surfaces
INTEGER(iwp) :: nlands !< number of land and roof surfaces in local processor
INTEGER(iwp) :: startwall !< start index of block of wall surfaces
INTEGER(iwp) :: endwall !< end index of block of wall surfaces
INTEGER(iwp) :: nwalls !< number of wall surfaces in local processor
!-- indices needed for RTM netcdf output subroutines
INTEGER(iwp), PARAMETER :: nd = 5
CHARACTER(LEN=6), DIMENSION(0:nd-1), PARAMETER :: dirname = (/ '_roof ', '_south', '_north', '_west ', '_east ' /)
INTEGER(iwp), DIMENSION(0:nd-1), PARAMETER :: dirint_u = (/ iup_u, isouth_u, inorth_u, iwest_u, ieast_u /)
INTEGER(iwp), DIMENSION(0:nd-1), PARAMETER :: dirint_l = (/ iup_l, isouth_l, inorth_l, iwest_l, ieast_l /)
INTEGER(iwp), DIMENSION(0:nd-1) :: dirstart
INTEGER(iwp), DIMENSION(0:nd-1) :: dirend
!-- indices and sizes of urban and land surface models
INTEGER(iwp), DIMENSION(:,:), POINTER :: surfl !< coordinates of i-th local surface in local grid - surfl[:,k] = [d, z, y, x, m]
INTEGER(iwp), DIMENSION(:), ALLOCATABLE,TARGET :: surfl_linear !< dtto (linearly allocated array)
INTEGER(iwp), DIMENSION(:,:), POINTER :: surf !< coordinates of i-th surface in grid - surf[:,k] = [d, z, y, x, m]
INTEGER(iwp), DIMENSION(:), ALLOCATABLE,TARGET :: surf_linear !< dtto (linearly allocated array)
INTEGER(iwp) :: nsurfl !< number of all surfaces in local processor
INTEGER(iwp), DIMENSION(:), ALLOCATABLE,TARGET :: nsurfs !< array of number of all surfaces in individual processors
INTEGER(iwp) :: nsurf !< global number of surfaces in index array of surfaces (nsurf = proc nsurfs)
INTEGER(iwp), DIMENSION(:), ALLOCATABLE,TARGET :: surfstart !< starts of blocks of surfaces for individual processors in array surf (indexed from 1)
!< respective block for particular processor is surfstart[iproc+1]+1 : surfstart[iproc+1]+nsurfs[iproc+1]
!-- block variables needed for calculation of the plant canopy model inside the urban surface model
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pct !< top layer of the plant canopy
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch !< heights of the plant canopy
INTEGER(iwp) :: npcbl = 0 !< number of the plant canopy gridboxes in local processor
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pcbl !< k,j,i coordinates of l-th local plant canopy box pcbl[:,l] = [k, j, i]
REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinsw !< array of absorbed sw radiation for local plant canopy box
REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinswdir !< array of absorbed direct sw radiation for local plant canopy box
REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinswdif !< array of absorbed diffusion sw radiation for local plant canopy box
REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinlw !< array of absorbed lw radiation for local plant canopy box
!-- configuration parameters (they can be setup in PALM config)
LOGICAL :: raytrace_mpi_rma = .TRUE. !< use MPI RMA to access LAD and gridsurf from remote processes during raytracing
LOGICAL :: rad_angular_discretization = .TRUE.!< whether to use fixed resolution discretization of view factors for
!< reflected radiation (as opposed to all mutually visible pairs)
LOGICAL :: plant_lw_interact = .TRUE. !< whether plant canopy interacts with LW radiation (in addition to SW)
INTEGER(iwp) :: mrt_nlevels = 0 !< number of vertical boxes above surface for which to calculate MRT
LOGICAL :: mrt_skip_roof = .TRUE. !< do not calculate MRT above roof surfaces
LOGICAL :: mrt_include_sw = .TRUE. !< should MRT calculation include SW radiation as well?
LOGICAL :: mrt_geom_human = .TRUE. !< MRT direction weights simulate human body instead of a sphere
INTEGER(iwp) :: nrefsteps = 3 !< number of reflection steps to perform
REAL(wp), PARAMETER :: ext_coef = 0.6_wp !< extinction coefficient (a.k.a. alpha)
INTEGER(iwp), PARAMETER :: rad_version_len = 10 !< length of identification string of rad version
CHARACTER(rad_version_len), PARAMETER :: rad_version = 'RAD v. 3.0' !< identification of version of binary svf and restart files
INTEGER(iwp) :: raytrace_discrete_elevs = 40 !< number of discretization steps for elevation (nadir to zenith)
INTEGER(iwp) :: raytrace_discrete_azims = 80 !< number of discretization steps for azimuth (out of 360 degrees)
REAL(wp) :: max_raytracing_dist = -999.0_wp !< maximum distance for raytracing (in metres)
REAL(wp) :: min_irrf_value = 1e-6_wp !< minimum potential irradiance factor value for raytracing
REAL(wp), DIMENSION(1:30) :: svfnorm_report_thresh = 1e21_wp !< thresholds of SVF normalization values to report
INTEGER(iwp) :: svfnorm_report_num !< number of SVF normalization thresholds to report
!-- radiation related arrays to be used in radiation_interaction routine
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_dir !< direct sw radiation
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_diff !< diffusion sw radiation
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_lw_in_diff !< diffusion lw radiation
!-- parameters required for RRTMG lower boundary condition
REAL(wp) :: albedo_urb !< albedo value retuned to RRTMG boundary cond.
REAL(wp) :: emissivity_urb !< emissivity value retuned to RRTMG boundary cond.
REAL(wp) :: t_rad_urb !< temperature value retuned to RRTMG boundary cond.
!-- type for calculation of svf
TYPE t_svf
INTEGER(iwp) :: isurflt !<
INTEGER(iwp) :: isurfs !<
REAL(wp) :: rsvf !<
REAL(wp) :: rtransp !<
END TYPE
!-- type for calculation of csf
TYPE t_csf
INTEGER(iwp) :: ip !<
INTEGER(iwp) :: itx !<
INTEGER(iwp) :: ity !<
INTEGER(iwp) :: itz !<
INTEGER(iwp) :: isurfs !< Idx of source face / -1 for sky
REAL(wp) :: rcvf !< Canopy view factor for faces /
!< canopy sink factor for sky (-1)
END TYPE
!-- arrays storing the values of USM
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: svfsurf !< svfsurf[:,isvf] = index of target and source surface for svf[isvf]
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: svf !< array of shape view factors+direct irradiation factors for local surfaces
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfins !< array of sw radiation falling to local surface after i-th reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinl !< array of lw radiation for local surface after i-th reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: skyvf !< array of sky view factor for each local surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: skyvft !< array of sky view factor including transparency for each local surface
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dsitrans !< dsidir[isvfl,i] = path transmittance of i-th
!< direction of direct solar irradiance per target surface
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dsitransc !< dtto per plant canopy box
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dsidir !< dsidir[:,i] = unit vector of i-th
!< direction of direct solar irradiance
INTEGER(iwp) :: ndsidir !< number of apparent solar directions used
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: dsidir_rev !< dsidir_rev[ielev,iazim] = i for dsidir or -1 if not present
INTEGER(iwp) :: nmrtbl !< No. of local grid boxes for which MRT is calculated
INTEGER(iwp) :: nmrtf !< number of MRT factors for local processor
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: mrtbl !< coordinates of i-th local MRT box - surfl[:,i] = [z, y, x]
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: mrtfsurf !< mrtfsurf[:,imrtf] = index of target MRT box and source surface for mrtf[imrtf]
REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtf !< array of MRT factors for each local MRT box
REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtft !< array of MRT factors including transparency for each local MRT box
REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtsky !< array of sky view factor for each local MRT box
REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtskyt !< array of sky view factor including transparency for each local MRT box
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: mrtdsit !< array of direct solar transparencies for each local MRT box
REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtinsw !< mean SW radiant flux for each MRT box
REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtinlw !< mean LW radiant flux for each MRT box
REAL(wp), DIMENSION(:), ALLOCATABLE :: mrt !< mean radiant temperature for each MRT box
REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtinsw_av !< time average mean SW radiant flux for each MRT box
REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtinlw_av !< time average mean LW radiant flux for each MRT box
REAL(wp), DIMENSION(:), ALLOCATABLE :: mrt_av !< time average mean radiant temperature for each MRT box
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinsw !< array of sw radiation falling to local surface including radiation from reflections
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlw !< array of lw radiation falling to local surface including radiation from reflections
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdir !< array of direct sw radiation falling to local surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdif !< array of diffuse sw radiation from sky and model boundary falling to local surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwdif !< array of diffuse lw radiation from sky and model boundary falling to local surface
!< Outward radiation is only valid for nonvirtual surfaces
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsl !< array of reflected sw radiation for local surface in i-th reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutll !< array of reflected + emitted lw radiation for local surface in i-th reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfouts !< array of reflected sw radiation for all surfaces in i-th reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutl !< array of reflected + emitted lw radiation for all surfaces in i-th reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlg !< global array of incoming lw radiation from plant canopy
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsw !< array of total sw radiation outgoing from nonvirtual surfaces surfaces after all reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutlw !< array of total lw radiation outgoing from nonvirtual surfaces surfaces after all reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfemitlwl !< array of emitted lw radiation for local surface used to calculate effective surface temperature for radiation model
!-- block variables needed for calculation of the plant canopy model inside the urban surface model
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: csfsurf !< csfsurf[:,icsf] = index of target surface and csf grid index for csf[icsf]
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: csf !< array of plant canopy sink fators + direct irradiation factors (transparency)
REAL(wp), DIMENSION(:,:,:), POINTER :: sub_lad !< subset of lad_s within urban surface, transformed to plain Z coordinate
REAL(wp), DIMENSION(:), POINTER :: sub_lad_g !< sub_lad globalized (used to avoid MPI RMA calls in raytracing)
REAL(wp) :: prototype_lad !< prototype leaf area density for computing effective optical depth
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nzterr, plantt !< temporary global arrays for raytracing
INTEGER(iwp) :: plantt_max
!-- arrays and variables for calculation of svf and csf
TYPE(t_svf), DIMENSION(:), POINTER :: asvf !< pointer to growing svc array
TYPE(t_csf), DIMENSION(:), POINTER :: acsf !< pointer to growing csf array
TYPE(t_svf), DIMENSION(:), POINTER :: amrtf !< pointer to growing mrtf array
TYPE(t_svf), DIMENSION(:), ALLOCATABLE, TARGET :: asvf1, asvf2 !< realizations of svf array
TYPE(t_csf), DIMENSION(:), ALLOCATABLE, TARGET :: acsf1, acsf2 !< realizations of csf array
TYPE(t_svf), DIMENSION(:), ALLOCATABLE, TARGET :: amrtf1, amrtf2 !< realizations of mftf array
INTEGER(iwp) :: nsvfla !< dimmension of array allocated for storage of svf in local processor
INTEGER(iwp) :: ncsfla !< dimmension of array allocated for storage of csf in local processor
INTEGER(iwp) :: nmrtfa !< dimmension of array allocated for storage of mrt
INTEGER(iwp) :: msvf, mcsf, mmrtf!< mod for swapping the growing array
INTEGER(iwp), PARAMETER :: gasize = 100000_iwp !< initial size of growing arrays
REAL(wp), PARAMETER :: grow_factor = 1.4_wp !< growth factor of growing arrays
INTEGER(iwp) :: nsvfl !< number of svf for local processor
INTEGER(iwp) :: ncsfl !< no. of csf in local processor
!< needed only during calc_svf but must be here because it is
!< shared between subroutines calc_svf and raytrace
INTEGER(iwp), DIMENSION(:,:,:,:), POINTER :: gridsurf !< reverse index of local surfl[d,k,j,i] (for case rad_angular_discretization)
INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: gridpcbl !< reverse index of local pcbl[k,j,i]
INTEGER(iwp), PARAMETER :: nsurf_type_u = 6 !< number of urban surf types (used in gridsurf)
!-- temporary arrays for calculation of csf in raytracing
INTEGER(iwp) :: maxboxesg !< max number of boxes ray can cross in the domain
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: boxes !< coordinates of gridboxes being crossed by ray
REAL(wp), DIMENSION(:), ALLOCATABLE :: crlens !< array of crossing lengths of ray for particular grid boxes
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: lad_ip !< array of numbers of process where lad is stored
#if defined( __parallel )
INTEGER(kind=MPI_ADDRESS_KIND), &
DIMENSION(:), ALLOCATABLE :: lad_disp !< array of displaycements of lad in local array of proc lad_ip
INTEGER(iwp) :: win_lad !< MPI RMA window for leaf area density
INTEGER(iwp) :: win_gridsurf !< MPI RMA window for reverse grid surface index
#endif
REAL(wp), DIMENSION(:), ALLOCATABLE :: lad_s_ray !< array of received lad_s for appropriate gridboxes crossed by ray
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: target_surfl
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: rt2_track
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rt2_track_lad
REAL(wp), DIMENSION(:), ALLOCATABLE :: rt2_track_dist
REAL(wp), DIMENSION(:), ALLOCATABLE :: rt2_dist
!-- arrays for time averages
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfradnet_av !< average of net radiation to local surface including radiation from reflections
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinsw_av !< average of sw radiation falling to local surface including radiation from reflections
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlw_av !< average of lw radiation falling to local surface including radiation from reflections
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdir_av !< average of direct sw radiation falling to local surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdif_av !< average of diffuse sw radiation from sky and model boundary falling to local surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwdif_av !< average of diffuse lw radiation from sky and model boundary falling to local surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswref_av !< average of sw radiation falling to surface from reflections
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwref_av !< average of lw radiation falling to surface from reflections
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsw_av !< average of total sw radiation outgoing from nonvirtual surfaces surfaces after all reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutlw_av !< average of total lw radiation outgoing from nonvirtual surfaces surfaces after all reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfins_av !< average of array of residua of sw radiation absorbed in surface after last reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinl_av !< average of array of residua of lw radiation absorbed in surface after last reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinlw_av !< Average of pcbinlw
REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinsw_av !< Average of pcbinsw
REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinswdir_av !< Average of pcbinswdir
REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinswdif_av !< Average of pcbinswdif
REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinswref_av !< Average of pcbinswref
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- Energy balance variables
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- parameters of the land, roof and wall surfaces
REAL(wp), DIMENSION(:), ALLOCATABLE :: albedo_surf !< albedo of the surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: emiss_surf !< emissivity of the wall surface
!
!-- External radiation. Depending on the given level of detail either a 1D or
!-- a 3D array will be allocated.
TYPE( real_1d_3d ) :: rad_lw_in_f !< external incoming longwave radiation, from observation or model
TYPE( real_1d_3d ) :: rad_sw_in_f !< external incoming shortwave radiation, from observation or model
TYPE( real_1d_3d ) :: rad_sw_in_dif_f !< external incoming shortwave radiation, diffuse part, from observation or model
TYPE( real_1d_3d ) :: time_rad_f !< time dimension for external radiation, from observation or model
INTERFACE radiation_check_data_output
MODULE PROCEDURE radiation_check_data_output
END INTERFACE radiation_check_data_output
INTERFACE radiation_check_data_output_ts
MODULE PROCEDURE radiation_check_data_output_ts
END INTERFACE radiation_check_data_output_ts
INTERFACE radiation_check_data_output_pr
MODULE PROCEDURE radiation_check_data_output_pr
END INTERFACE radiation_check_data_output_pr
INTERFACE radiation_check_parameters
MODULE PROCEDURE radiation_check_parameters
END INTERFACE radiation_check_parameters
INTERFACE radiation_clearsky
MODULE PROCEDURE radiation_clearsky
END INTERFACE radiation_clearsky
INTERFACE radiation_constant
MODULE PROCEDURE radiation_constant
END INTERFACE radiation_constant
INTERFACE radiation_control
MODULE PROCEDURE radiation_control
END INTERFACE radiation_control
INTERFACE radiation_3d_data_averaging
MODULE PROCEDURE radiation_3d_data_averaging
END INTERFACE radiation_3d_data_averaging
INTERFACE radiation_data_output_2d
MODULE PROCEDURE radiation_data_output_2d
END INTERFACE radiation_data_output_2d
INTERFACE radiation_data_output_3d
MODULE PROCEDURE radiation_data_output_3d
END INTERFACE radiation_data_output_3d
INTERFACE radiation_data_output_mask
MODULE PROCEDURE radiation_data_output_mask
END INTERFACE radiation_data_output_mask
INTERFACE radiation_define_netcdf_grid
MODULE PROCEDURE radiation_define_netcdf_grid
END INTERFACE radiation_define_netcdf_grid
INTERFACE radiation_header
MODULE PROCEDURE radiation_header
END INTERFACE radiation_header
INTERFACE radiation_init
MODULE PROCEDURE radiation_init
END INTERFACE radiation_init
INTERFACE radiation_parin
MODULE PROCEDURE radiation_parin
END INTERFACE radiation_parin
INTERFACE radiation_rrtmg
MODULE PROCEDURE radiation_rrtmg
END INTERFACE radiation_rrtmg
#if defined( __rrtmg )
INTERFACE radiation_tendency
MODULE PROCEDURE radiation_tendency
MODULE PROCEDURE radiation_tendency_ij
END INTERFACE radiation_tendency
#endif
INTERFACE radiation_rrd_local
MODULE PROCEDURE radiation_rrd_local
END INTERFACE radiation_rrd_local
INTERFACE radiation_wrd_local
MODULE PROCEDURE radiation_wrd_local
END INTERFACE radiation_wrd_local
INTERFACE radiation_interaction
MODULE PROCEDURE radiation_interaction
END INTERFACE radiation_interaction
INTERFACE radiation_interaction_init
MODULE PROCEDURE radiation_interaction_init
END INTERFACE radiation_interaction_init
INTERFACE radiation_presimulate_solar_pos
MODULE PROCEDURE radiation_presimulate_solar_pos
END INTERFACE radiation_presimulate_solar_pos
INTERFACE radiation_calc_svf
MODULE PROCEDURE radiation_calc_svf
END INTERFACE radiation_calc_svf
INTERFACE radiation_write_svf
MODULE PROCEDURE radiation_write_svf
END INTERFACE radiation_write_svf
INTERFACE radiation_read_svf
MODULE PROCEDURE radiation_read_svf
END INTERFACE radiation_read_svf
SAVE
PRIVATE
!
!-- Public functions / NEEDS SORTING
PUBLIC radiation_check_data_output, radiation_check_data_output_pr, &
radiation_check_data_output_ts, &
radiation_check_parameters, radiation_control, &
radiation_header, radiation_init, radiation_parin, &
radiation_3d_data_averaging, &
radiation_data_output_2d, radiation_data_output_3d, &
radiation_define_netcdf_grid, radiation_wrd_local, &
radiation_rrd_local, radiation_data_output_mask, &
radiation_calc_svf, radiation_write_svf, &
radiation_interaction, radiation_interaction_init, &
radiation_read_svf, radiation_presimulate_solar_pos
!
!-- Public variables and constants / NEEDS SORTING
PUBLIC albedo, albedo_type, decl_1, decl_2, decl_3, dots_rad, dt_radiation,&
emissivity, force_radiation_call, lat, lon, mrt_geom_human, &
mrt_include_sw, mrt_nlevels, mrtbl, mrtinsw, mrtinlw, nmrtbl, &
rad_net_av, radiation, radiation_scheme, rad_lw_in, &
rad_lw_in_av, rad_lw_out, rad_lw_out_av, &
rad_lw_cs_hr, rad_lw_cs_hr_av, rad_lw_hr, rad_lw_hr_av, rad_sw_in, &
rad_sw_in_av, rad_sw_out, rad_sw_out_av, rad_sw_cs_hr, &
rad_sw_cs_hr_av, rad_sw_hr, rad_sw_hr_av, solar_constant, &
skip_time_do_radiation, time_radiation, unscheduled_radiation_calls,&
cos_zenith, calc_zenith, sun_direction, sun_dir_lat, sun_dir_lon, &
idir, jdir, kdir, id, iz, iy, ix, &
iup_u, inorth_u, isouth_u, ieast_u, iwest_u, &
iup_l, inorth_l, isouth_l, ieast_l, iwest_l, &
nsurf_type, nz_urban_b, nz_urban_t, nz_urban, pch, nsurf, &
idsvf, ndsvf, idcsf, ndcsf, kdcsf, pct, &
radiation_interactions, startwall, startland, endland, endwall, &
skyvf, skyvft, radiation_interactions_on, average_radiation, &
rad_sw_in_diff, rad_sw_in_dir
#if defined ( __rrtmg )
PUBLIC radiation_tendency, rrtm_aldif, rrtm_aldir, rrtm_asdif, rrtm_asdir
#endif
CONTAINS
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This subroutine controls the calls of the radiation schemes
!------------------------------------------------------------------------------!
SUBROUTINE radiation_control
IMPLICIT NONE
IF ( debug_output_timestep ) CALL debug_message( 'radiation_control', 'start' )
SELECT CASE ( TRIM( radiation_scheme ) )
CASE ( 'constant' )
CALL radiation_constant
CASE ( 'clear-sky' )
CALL radiation_clearsky
CASE ( 'rrtmg' )
CALL radiation_rrtmg
CASE ( 'external' )
!
!-- During spinup apply clear-sky model
IF ( time_since_reference_point < 0.0_wp ) THEN
CALL radiation_clearsky
ELSE
CALL radiation_external
ENDIF
CASE DEFAULT
END SELECT
IF ( debug_output_timestep ) CALL debug_message( 'radiation_control', 'end' )
END SUBROUTINE radiation_control
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Check data output for radiation model
!------------------------------------------------------------------------------!
SUBROUTINE radiation_check_data_output( variable, unit, i, ilen, k )
USE control_parameters, &
ONLY: data_output, message_string
IMPLICIT NONE
CHARACTER (LEN=*) :: unit !<
CHARACTER (LEN=*) :: variable !<
INTEGER(iwp) :: i, k
INTEGER(iwp) :: ilen
CHARACTER(LEN=varnamelength) :: var !< TRIM(variable)
var = TRIM(variable)
IF ( len(var) < 3_iwp ) THEN
unit = 'illegal'
RETURN
ENDIF
IF ( var(1:3) /= 'rad' .AND. var(1:3) /= 'rtm' ) THEN
unit = 'illegal'
RETURN
ENDIF
!-- first process diractional variables
IF ( var(1:12) == 'rtm_rad_net_' .OR. var(1:13) == 'rtm_rad_insw_' .OR. &
var(1:13) == 'rtm_rad_inlw_' .OR. var(1:16) == 'rtm_rad_inswdir_' .OR. &
var(1:16) == 'rtm_rad_inswdif_' .OR. var(1:16) == 'rtm_rad_inswref_' .OR. &
var(1:16) == 'rtm_rad_inlwdif_' .OR. var(1:16) == 'rtm_rad_inlwref_' .OR. &
var(1:14) == 'rtm_rad_outsw_' .OR. var(1:14) == 'rtm_rad_outlw_' .OR. &
var(1:14) == 'rtm_rad_ressw_' .OR. var(1:14) == 'rtm_rad_reslw_' ) THEN
IF ( .NOT. radiation ) THEN
message_string = 'output of "' // TRIM( var ) // '" require'&
// 's radiation = .TRUE.'
CALL message( 'check_parameters', 'PA0509', 1, 2, 0, 6, 0 )
ENDIF
unit = 'W/m2'
ELSE IF ( var(1:7) == 'rtm_svf' .OR. var(1:7) == 'rtm_dif' .OR. &
var(1:9) == 'rtm_skyvf' .OR. var(1:9) == 'rtm_skyvft' .OR. &
var(1:12) == 'rtm_surfalb_' .OR. var(1:13) == 'rtm_surfemis_' ) THEN
IF ( .NOT. radiation ) THEN
message_string = 'output of "' // TRIM( var ) // '" require'&
// 's radiation = .TRUE.'
CALL message( 'check_parameters', 'PA0509', 1, 2, 0, 6, 0 )
ENDIF
unit = '1'
ELSE
!-- non-directional variables
SELECT CASE ( TRIM( var ) )
CASE ( 'rad_lw_cs_hr', 'rad_lw_hr', 'rad_lw_in', 'rad_lw_out', &
'rad_sw_cs_hr', 'rad_sw_hr', 'rad_sw_in', 'rad_sw_out' )
IF ( .NOT. radiation .OR. radiation_scheme /= 'rrtmg' ) THEN
message_string = '"output of "' // TRIM( var ) // '" requi' // &
'res radiation = .TRUE. and ' // &
'radiation_scheme = "rrtmg"'
CALL message( 'check_parameters', 'PA0406', 1, 2, 0, 6, 0 )
ENDIF
unit = 'K/h'
CASE ( 'rad_net*', 'rrtm_aldif*', 'rrtm_aldir*', 'rrtm_asdif*', &
'rrtm_asdir*', 'rad_lw_in*', 'rad_lw_out*', 'rad_sw_in*', &
'rad_sw_out*')
IF ( i == 0 .AND. ilen == 0 .AND. k == 0) THEN
! Workaround for masked output (calls with i=ilen=k=0)
unit = 'illegal'
RETURN
ENDIF
IF ( k == 0 .OR. data_output(i)(ilen-2:ilen) /= '_xy' ) THEN
message_string = 'illegal value for data_output: "' // &
TRIM( var ) // '" & only 2d-horizontal ' // &
'cross sections are allowed for this value'
CALL message( 'check_parameters', 'PA0111', 1, 2, 0, 6, 0 )
ENDIF
IF ( .NOT. radiation .OR. radiation_scheme /= "rrtmg" ) THEN
IF ( TRIM( var ) == 'rrtm_aldif*' .OR. &
TRIM( var ) == 'rrtm_aldir*' .OR. &
TRIM( var ) == 'rrtm_asdif*' .OR. &
TRIM( var ) == 'rrtm_asdir*' ) &
THEN
message_string = 'output of "' // TRIM( var ) // '" require'&
// 's radiation = .TRUE. and radiation_sch'&
// 'eme = "rrtmg"'
CALL message( 'check_parameters', 'PA0409', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
IF ( TRIM( var ) == 'rad_net*' ) unit = 'W/m2'
IF ( TRIM( var ) == 'rad_lw_in*' ) unit = 'W/m2'
IF ( TRIM( var ) == 'rad_lw_out*' ) unit = 'W/m2'
IF ( TRIM( var ) == 'rad_sw_in*' ) unit = 'W/m2'
IF ( TRIM( var ) == 'rad_sw_out*' ) unit = 'W/m2'
IF ( TRIM( var ) == 'rad_sw_in' ) unit = 'W/m2'
IF ( TRIM( var ) == 'rrtm_aldif*' ) unit = ''
IF ( TRIM( var ) == 'rrtm_aldir*' ) unit = ''
IF ( TRIM( var ) == 'rrtm_asdif*' ) unit = ''
IF ( TRIM( var ) == 'rrtm_asdir*' ) unit = ''
CASE ( 'rtm_rad_pc_inlw', 'rtm_rad_pc_insw', 'rtm_rad_pc_inswdir', &
'rtm_rad_pc_inswdif', 'rtm_rad_pc_inswref')
IF ( .NOT. radiation ) THEN
message_string = 'output of "' // TRIM( var ) // '" require'&
// 's radiation = .TRUE.'
CALL message( 'check_parameters', 'PA0509', 1, 2, 0, 6, 0 )
ENDIF
unit = 'W'
CASE ( 'rtm_mrt', 'rtm_mrt_sw', 'rtm_mrt_lw' )
IF ( i == 0 .AND. ilen == 0 .AND. k == 0) THEN
! Workaround for masked output (calls with i=ilen=k=0)
unit = 'illegal'
RETURN
ENDIF
IF ( .NOT. radiation ) THEN
message_string = 'output of "' // TRIM( var ) // '" require'&
// 's radiation = .TRUE.'
CALL message( 'check_parameters', 'PA0509', 1, 2, 0, 6, 0 )
ENDIF
IF ( mrt_nlevels == 0 ) THEN
message_string = 'output of "' // TRIM( var ) // '" require'&
// 's mrt_nlevels > 0'
CALL message( 'check_parameters', 'PA0510', 1, 2, 0, 6, 0 )
ENDIF
IF ( TRIM( var ) == 'rtm_mrt_sw' .AND. .NOT. mrt_include_sw ) THEN
message_string = 'output of "' // TRIM( var ) // '" require'&
// 's rtm_mrt_sw = .TRUE.'
CALL message( 'check_parameters', 'PA0511', 1, 2, 0, 6, 0 )
ENDIF
IF ( TRIM( var ) == 'rtm_mrt' ) THEN
unit = 'K'
ELSE
unit = 'W m-2'
ENDIF
CASE DEFAULT
unit = 'illegal'
END SELECT
ENDIF
END SUBROUTINE radiation_check_data_output
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Set module-specific timeseries units and labels
!------------------------------------------------------------------------------!
SUBROUTINE radiation_check_data_output_ts( dots_max, dots_num )
INTEGER(iwp), INTENT(IN) :: dots_max
INTEGER(iwp), INTENT(INOUT) :: dots_num
!
!-- Next line is just to avoid compiler warning about unused variable.
IF ( dots_max == 0 ) CONTINUE
!
!-- Temporary solution to add LSM and radiation time series to the default
!-- output
IF ( land_surface .OR. radiation ) THEN
IF ( TRIM( radiation_scheme ) == 'rrtmg' ) THEN
dots_num = dots_num + 15
ELSE
dots_num = dots_num + 11
ENDIF
ENDIF
END SUBROUTINE radiation_check_data_output_ts
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Check data output of profiles for radiation model
!------------------------------------------------------------------------------!
SUBROUTINE radiation_check_data_output_pr( variable, var_count, unit, &
dopr_unit )
USE arrays_3d, &
ONLY: zu
USE control_parameters, &
ONLY: data_output_pr, message_string
USE indices
USE profil_parameter
USE statistics
IMPLICIT NONE
CHARACTER (LEN=*) :: unit !<
CHARACTER (LEN=*) :: variable !<
CHARACTER (LEN=*) :: dopr_unit !< local value of dopr_unit
INTEGER(iwp) :: var_count !<
SELECT CASE ( TRIM( variable ) )
CASE ( 'rad_net' )
IF ( ( .NOT. radiation ) .OR. radiation_scheme == 'constant' )&
THEN
message_string = 'data_output_pr = ' // &
TRIM( data_output_pr(var_count) ) // ' is' // &
'not available for radiation = .FALSE. or ' //&
'radiation_scheme = "constant"'
CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 )
ELSE
dopr_index(var_count) = 99
dopr_unit = 'W/m2'
hom(:,2,99,:) = SPREAD( zw, 2, statistic_regions+1 )
unit = dopr_unit
ENDIF
CASE ( 'rad_lw_in' )
IF ( ( .NOT. radiation) .OR. radiation_scheme == 'constant' ) &
THEN
message_string = 'data_output_pr = ' // &
TRIM( data_output_pr(var_count) ) // ' is' // &
'not available for radiation = .FALSE. or ' //&
'radiation_scheme = "constant"'
CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 )
ELSE
dopr_index(var_count) = 100
dopr_unit = 'W/m2'
hom(:,2,100,:) = SPREAD( zw, 2, statistic_regions+1 )
unit = dopr_unit
ENDIF
CASE ( 'rad_lw_out' )
IF ( ( .NOT. radiation ) .OR. radiation_scheme == 'constant' ) &
THEN
message_string = 'data_output_pr = ' // &
TRIM( data_output_pr(var_count) ) // ' is' // &
'not available for radiation = .FALSE. or ' //&
'radiation_scheme = "constant"'
CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 )
ELSE
dopr_index(var_count) = 101
dopr_unit = 'W/m2'
hom(:,2,101,:) = SPREAD( zw, 2, statistic_regions+1 )
unit = dopr_unit
ENDIF
CASE ( 'rad_sw_in' )
IF ( ( .NOT. radiation ) .OR. radiation_scheme == 'constant' ) &
THEN
message_string = 'data_output_pr = ' // &
TRIM( data_output_pr(var_count) ) // ' is' // &
'not available for radiation = .FALSE. or ' //&
'radiation_scheme = "constant"'
CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 )
ELSE
dopr_index(var_count) = 102
dopr_unit = 'W/m2'
hom(:,2,102,:) = SPREAD( zw, 2, statistic_regions+1 )
unit = dopr_unit
ENDIF
CASE ( 'rad_sw_out')
IF ( ( .NOT. radiation ) .OR. radiation_scheme == 'constant' )&
THEN
message_string = 'data_output_pr = ' // &
TRIM( data_output_pr(var_count) ) // ' is' // &
'not available for radiation = .FALSE. or ' //&
'radiation_scheme = "constant"'
CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 )
ELSE
dopr_index(var_count) = 103
dopr_unit = 'W/m2'
hom(:,2,103,:) = SPREAD( zw, 2, statistic_regions+1 )
unit = dopr_unit
ENDIF
CASE ( 'rad_lw_cs_hr' )
IF ( ( .NOT. radiation ) .OR. radiation_scheme /= 'rrtmg' ) &
THEN
message_string = 'data_output_pr = ' // &
TRIM( data_output_pr(var_count) ) // ' is' // &
'not available for radiation = .FALSE. or ' //&
'radiation_scheme /= "rrtmg"'
CALL message( 'check_parameters', 'PA0413', 1, 2, 0, 6, 0 )
ELSE
dopr_index(var_count) = 104
dopr_unit = 'K/h'
hom(:,2,104,:) = SPREAD( zu, 2, statistic_regions+1 )
unit = dopr_unit
ENDIF
CASE ( 'rad_lw_hr' )
IF ( ( .NOT. radiation ) .OR. radiation_scheme /= 'rrtmg' ) &
THEN
message_string = 'data_output_pr = ' // &
TRIM( data_output_pr(var_count) ) // ' is' // &
'not available for radiation = .FALSE. or ' //&
'radiation_scheme /= "rrtmg"'
CALL message( 'check_parameters', 'PA0413', 1, 2, 0, 6, 0 )
ELSE
dopr_index(var_count) = 105
dopr_unit = 'K/h'
hom(:,2,105,:) = SPREAD( zu, 2, statistic_regions+1 )
unit = dopr_unit
ENDIF
CASE ( 'rad_sw_cs_hr' )
IF ( ( .NOT. radiation ) .OR. radiation_scheme /= 'rrtmg' ) &
THEN
message_string = 'data_output_pr = ' // &
TRIM( data_output_pr(var_count) ) // ' is' // &
'not available for radiation = .FALSE. or ' //&
'radiation_scheme /= "rrtmg"'
CALL message( 'check_parameters', 'PA0413', 1, 2, 0, 6, 0 )
ELSE
dopr_index(var_count) = 106
dopr_unit = 'K/h'
hom(:,2,106,:) = SPREAD( zu, 2, statistic_regions+1 )
unit = dopr_unit
ENDIF
CASE ( 'rad_sw_hr' )
IF ( ( .NOT. radiation ) .OR. radiation_scheme /= 'rrtmg' ) &
THEN
message_string = 'data_output_pr = ' // &
TRIM( data_output_pr(var_count) ) // ' is' // &
'not available for radiation = .FALSE. or ' //&
'radiation_scheme /= "rrtmg"'
CALL message( 'check_parameters', 'PA0413', 1, 2, 0, 6, 0 )
ELSE
dopr_index(var_count) = 107
dopr_unit = 'K/h'
hom(:,2,107,:) = SPREAD( zu, 2, statistic_regions+1 )
unit = dopr_unit
ENDIF
CASE DEFAULT
unit = 'illegal'
END SELECT
END SUBROUTINE radiation_check_data_output_pr
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Check parameters routine for radiation model
!------------------------------------------------------------------------------!
SUBROUTINE radiation_check_parameters
USE control_parameters, &
ONLY: land_surface, message_string, rotation_angle, urban_surface
USE netcdf_data_input_mod, &
ONLY: input_pids_static
IMPLICIT NONE
!
!-- In case no urban-surface or land-surface model is applied, usage of
!-- a radiation model make no sense.
IF ( .NOT. land_surface .AND. .NOT. urban_surface ) THEN
message_string = 'Usage of radiation module is only allowed if ' // &
'land-surface and/or urban-surface model is applied.'
CALL message( 'check_parameters', 'PA0486', 1, 2, 0, 6, 0 )
ENDIF
IF ( radiation_scheme /= 'constant' .AND. &
radiation_scheme /= 'clear-sky' .AND. &
radiation_scheme /= 'rrtmg' .AND. &
radiation_scheme /= 'external' ) THEN
message_string = 'unknown radiation_scheme = '// &
TRIM( radiation_scheme )
CALL message( 'check_parameters', 'PA0405', 1, 2, 0, 6, 0 )
ELSEIF ( radiation_scheme == 'rrtmg' ) THEN
#if ! defined ( __rrtmg )
message_string = 'radiation_scheme = "rrtmg" requires ' // &
'compilation of PALM with pre-processor ' // &
'directive -D__rrtmg'
CALL message( 'check_parameters', 'PA0407', 1, 2, 0, 6, 0 )
#endif
#if defined ( __rrtmg ) && ! defined( __netcdf )
message_string = 'radiation_scheme = "rrtmg" requires ' // &
'the use of NetCDF (preprocessor directive ' // &
'-D__netcdf'
CALL message( 'check_parameters', 'PA0412', 1, 2, 0, 6, 0 )
#endif
ENDIF
!
!-- Checks performed only if data is given via namelist only.
IF ( .NOT. input_pids_static ) THEN
IF ( albedo_type == 0 .AND. albedo == 9999999.9_wp .AND. &
radiation_scheme == 'clear-sky') THEN
message_string = 'radiation_scheme = "clear-sky" in combination'//&
'with albedo_type = 0 requires setting of'// &
'albedo /= 9999999.9'
CALL message( 'check_parameters', 'PA0410', 1, 2, 0, 6, 0 )
ENDIF
IF ( albedo_type == 0 .AND. radiation_scheme == 'rrtmg' .AND. &
( albedo_lw_dif == 9999999.9_wp .OR. albedo_lw_dir == 9999999.9_wp&
.OR. albedo_sw_dif == 9999999.9_wp .OR. albedo_sw_dir == 9999999.9_wp&
) ) THEN
message_string = 'radiation_scheme = "rrtmg" in combination' // &
'with albedo_type = 0 requires setting of ' // &
'albedo_lw_dif /= 9999999.9' // &
'albedo_lw_dir /= 9999999.9' // &
'albedo_sw_dif /= 9999999.9 and' // &
'albedo_sw_dir /= 9999999.9'
CALL message( 'check_parameters', 'PA0411', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
!
!-- Parallel rad_angular_discretization without raytrace_mpi_rma is not implemented
#if defined( __parallel )
IF ( rad_angular_discretization .AND. .NOT. raytrace_mpi_rma ) THEN
message_string = 'rad_angular_discretization can only be used ' // &
'together with raytrace_mpi_rma or when ' // &
'no parallelization is applied.'
CALL message( 'check_parameters', 'PA0486', 1, 2, 0, 6, 0 )
ENDIF
#endif
IF ( cloud_droplets .AND. radiation_scheme == 'rrtmg' .AND. &
average_radiation ) THEN
message_string = 'average_radiation = .T. with radiation_scheme'// &
'= "rrtmg" in combination cloud_droplets = .T.'// &
'is not implementd'
CALL message( 'check_parameters', 'PA0560', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Incialize svf normalization reporting histogram
svfnorm_report_num = 1
DO WHILE ( svfnorm_report_thresh(svfnorm_report_num) < 1e20_wp &
.AND. svfnorm_report_num <= 30 )
svfnorm_report_num = svfnorm_report_num + 1
ENDDO
svfnorm_report_num = svfnorm_report_num - 1
!
!-- Check for dt_radiation
IF ( dt_radiation <= 0.0 ) THEN
message_string = 'dt_radiation must be > 0.0'
CALL message( 'check_parameters', 'PA0591', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Check rotation angle
!> @todo Remove this limitation
IF ( rotation_angle /= 0.0 ) THEN
message_string = 'rotation of the model domain is not considered in the radiation ' // &
'model.&Using rotation_angle /= 0.0 is not allowed in combination ' // &
'with the radiation model at the moment!'
CALL message( 'check_parameters', 'PA0675', 1, 2, 0, 6, 0 )
ENDIF
END SUBROUTINE radiation_check_parameters
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Initialization of the radiation model
!------------------------------------------------------------------------------!
SUBROUTINE radiation_init
IMPLICIT NONE
INTEGER(iwp) :: i !< running index x-direction
INTEGER(iwp) :: ioff !< offset in x between surface element reference grid point in atmosphere and actual surface
INTEGER(iwp) :: j !< running index y-direction
INTEGER(iwp) :: joff !< offset in y between surface element reference grid point in atmosphere and actual surface
INTEGER(iwp) :: l !< running index for orientation of vertical surfaces
INTEGER(iwp) :: m !< running index for surface elements
INTEGER(iwp) :: ntime = 0 !< number of available external radiation timesteps
#if defined( __rrtmg )
INTEGER(iwp) :: ind_type !< running index for subgrid-surface tiles
#endif
LOGICAL :: radiation_input_root_domain !< flag indicating the existence of a dynamic input file for the root domain
IF ( debug_output ) CALL debug_message( 'radiation_init', 'start' )
!
!-- Activate radiation_interactions according to the existence of vertical surfaces and/or trees.
!-- The namelist parameter radiation_interactions_on can override this behavior.
!-- (This check cannot be performed in check_parameters, because vertical_surfaces_exist is first set in
!-- init_surface_arrays.)
IF ( radiation_interactions_on ) THEN
IF ( vertical_surfaces_exist .OR. plant_canopy ) THEN
radiation_interactions = .TRUE.
average_radiation = .TRUE.
ELSE
radiation_interactions_on = .FALSE. !< reset namelist parameter: no interactions
!< calculations necessary in case of flat surface
ENDIF
ELSEIF ( vertical_surfaces_exist .OR. plant_canopy ) THEN
message_string = 'radiation_interactions_on is set to .FALSE. although ' // &
'vertical surfaces and/or trees exist. The model will run ' // &
'without RTM (no shadows, no radiation reflections)'
CALL message( 'init_3d_model', 'PA0348', 0, 1, 0, 6, 0 )
ENDIF
!
!-- Precalculate some time constants
d_hours_day = 1.0_wp / REAL( hours_per_day, KIND = wp )
d_seconds_hour = 1.0_wp / seconds_per_hour
!
!-- If required, initialize radiation interactions between surfaces
!-- via sky-view factors. This must be done before radiation is initialized.
IF ( radiation_interactions ) CALL radiation_interaction_init
!
!-- Allocate array for storing the surface net radiation
IF ( .NOT. ALLOCATED ( surf_lsm_h%rad_net ) .AND. &
surf_lsm_h%ns > 0 ) THEN
ALLOCATE( surf_lsm_h%rad_net(1:surf_lsm_h%ns) )
surf_lsm_h%rad_net = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( surf_usm_h%rad_net ) .AND. &
surf_usm_h%ns > 0 ) THEN
ALLOCATE( surf_usm_h%rad_net(1:surf_usm_h%ns) )
surf_usm_h%rad_net = 0.0_wp
ENDIF
DO l = 0, 3
IF ( .NOT. ALLOCATED ( surf_lsm_v(l)%rad_net ) .AND. &
surf_lsm_v(l)%ns > 0 ) THEN
ALLOCATE( surf_lsm_v(l)%rad_net(1:surf_lsm_v(l)%ns) )
surf_lsm_v(l)%rad_net = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( surf_usm_v(l)%rad_net ) .AND. &
surf_usm_v(l)%ns > 0 ) THEN
ALLOCATE( surf_usm_v(l)%rad_net(1:surf_usm_v(l)%ns) )
surf_usm_v(l)%rad_net = 0.0_wp
ENDIF
ENDDO
!
!-- Allocate array for storing the surface longwave (out) radiation change
IF ( .NOT. ALLOCATED ( surf_lsm_h%rad_lw_out_change_0 ) .AND. &
surf_lsm_h%ns > 0 ) THEN
ALLOCATE( surf_lsm_h%rad_lw_out_change_0(1:surf_lsm_h%ns) )
surf_lsm_h%rad_lw_out_change_0 = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( surf_usm_h%rad_lw_out_change_0 ) .AND. &
surf_usm_h%ns > 0 ) THEN
ALLOCATE( surf_usm_h%rad_lw_out_change_0(1:surf_usm_h%ns) )
surf_usm_h%rad_lw_out_change_0 = 0.0_wp
ENDIF
DO l = 0, 3
IF ( .NOT. ALLOCATED ( surf_lsm_v(l)%rad_lw_out_change_0 ) .AND. &
surf_lsm_v(l)%ns > 0 ) THEN
ALLOCATE( surf_lsm_v(l)%rad_lw_out_change_0(1:surf_lsm_v(l)%ns) )
surf_lsm_v(l)%rad_lw_out_change_0 = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( surf_usm_v(l)%rad_lw_out_change_0 ) .AND. &
surf_usm_v(l)%ns > 0 ) THEN
ALLOCATE( surf_usm_v(l)%rad_lw_out_change_0(1:surf_usm_v(l)%ns) )
surf_usm_v(l)%rad_lw_out_change_0 = 0.0_wp
ENDIF
ENDDO
!
!-- Allocate surface arrays for incoming/outgoing short/longwave radiation
IF ( .NOT. ALLOCATED ( surf_lsm_h%rad_sw_in ) .AND. &
surf_lsm_h%ns > 0 ) THEN
ALLOCATE( surf_lsm_h%rad_sw_in(1:surf_lsm_h%ns) )
ALLOCATE( surf_lsm_h%rad_sw_out(1:surf_lsm_h%ns) )
ALLOCATE( surf_lsm_h%rad_sw_dir(1:surf_lsm_h%ns) )
ALLOCATE( surf_lsm_h%rad_sw_dif(1:surf_lsm_h%ns) )
ALLOCATE( surf_lsm_h%rad_sw_ref(1:surf_lsm_h%ns) )
ALLOCATE( surf_lsm_h%rad_sw_res(1:surf_lsm_h%ns) )
ALLOCATE( surf_lsm_h%rad_lw_in(1:surf_lsm_h%ns) )
ALLOCATE( surf_lsm_h%rad_lw_out(1:surf_lsm_h%ns) )
ALLOCATE( surf_lsm_h%rad_lw_dif(1:surf_lsm_h%ns) )
ALLOCATE( surf_lsm_h%rad_lw_ref(1:surf_lsm_h%ns) )
ALLOCATE( surf_lsm_h%rad_lw_res(1:surf_lsm_h%ns) )
surf_lsm_h%rad_sw_in = 0.0_wp
surf_lsm_h%rad_sw_out = 0.0_wp
surf_lsm_h%rad_sw_dir = 0.0_wp
surf_lsm_h%rad_sw_dif = 0.0_wp
surf_lsm_h%rad_sw_ref = 0.0_wp
surf_lsm_h%rad_sw_res = 0.0_wp
surf_lsm_h%rad_lw_in = 0.0_wp
surf_lsm_h%rad_lw_out = 0.0_wp
surf_lsm_h%rad_lw_dif = 0.0_wp
surf_lsm_h%rad_lw_ref = 0.0_wp
surf_lsm_h%rad_lw_res = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( surf_usm_h%rad_sw_in ) .AND. &
surf_usm_h%ns > 0 ) THEN
ALLOCATE( surf_usm_h%rad_sw_in(1:surf_usm_h%ns) )
ALLOCATE( surf_usm_h%rad_sw_out(1:surf_usm_h%ns) )
ALLOCATE( surf_usm_h%rad_sw_dir(1:surf_usm_h%ns) )
ALLOCATE( surf_usm_h%rad_sw_dif(1:surf_usm_h%ns) )
ALLOCATE( surf_usm_h%rad_sw_ref(1:surf_usm_h%ns) )
ALLOCATE( surf_usm_h%rad_sw_res(1:surf_usm_h%ns) )
ALLOCATE( surf_usm_h%rad_lw_in(1:surf_usm_h%ns) )
ALLOCATE( surf_usm_h%rad_lw_out(1:surf_usm_h%ns) )
ALLOCATE( surf_usm_h%rad_lw_dif(1:surf_usm_h%ns) )
ALLOCATE( surf_usm_h%rad_lw_ref(1:surf_usm_h%ns) )
ALLOCATE( surf_usm_h%rad_lw_res(1:surf_usm_h%ns) )
surf_usm_h%rad_sw_in = 0.0_wp
surf_usm_h%rad_sw_out = 0.0_wp
surf_usm_h%rad_sw_dir = 0.0_wp
surf_usm_h%rad_sw_dif = 0.0_wp
surf_usm_h%rad_sw_ref = 0.0_wp
surf_usm_h%rad_sw_res = 0.0_wp
surf_usm_h%rad_lw_in = 0.0_wp
surf_usm_h%rad_lw_out = 0.0_wp
surf_usm_h%rad_lw_dif = 0.0_wp
surf_usm_h%rad_lw_ref = 0.0_wp
surf_usm_h%rad_lw_res = 0.0_wp
ENDIF
DO l = 0, 3
IF ( .NOT. ALLOCATED ( surf_lsm_v(l)%rad_sw_in ) .AND. &
surf_lsm_v(l)%ns > 0 ) THEN
ALLOCATE( surf_lsm_v(l)%rad_sw_in(1:surf_lsm_v(l)%ns) )
ALLOCATE( surf_lsm_v(l)%rad_sw_out(1:surf_lsm_v(l)%ns) )
ALLOCATE( surf_lsm_v(l)%rad_sw_dir(1:surf_lsm_v(l)%ns) )
ALLOCATE( surf_lsm_v(l)%rad_sw_dif(1:surf_lsm_v(l)%ns) )
ALLOCATE( surf_lsm_v(l)%rad_sw_ref(1:surf_lsm_v(l)%ns) )
ALLOCATE( surf_lsm_v(l)%rad_sw_res(1:surf_lsm_v(l)%ns) )
ALLOCATE( surf_lsm_v(l)%rad_lw_in(1:surf_lsm_v(l)%ns) )
ALLOCATE( surf_lsm_v(l)%rad_lw_out(1:surf_lsm_v(l)%ns) )
ALLOCATE( surf_lsm_v(l)%rad_lw_dif(1:surf_lsm_v(l)%ns) )
ALLOCATE( surf_lsm_v(l)%rad_lw_ref(1:surf_lsm_v(l)%ns) )
ALLOCATE( surf_lsm_v(l)%rad_lw_res(1:surf_lsm_v(l)%ns) )
surf_lsm_v(l)%rad_sw_in = 0.0_wp
surf_lsm_v(l)%rad_sw_out = 0.0_wp
surf_lsm_v(l)%rad_sw_dir = 0.0_wp
surf_lsm_v(l)%rad_sw_dif = 0.0_wp
surf_lsm_v(l)%rad_sw_ref = 0.0_wp
surf_lsm_v(l)%rad_sw_res = 0.0_wp
surf_lsm_v(l)%rad_lw_in = 0.0_wp
surf_lsm_v(l)%rad_lw_out = 0.0_wp
surf_lsm_v(l)%rad_lw_dif = 0.0_wp
surf_lsm_v(l)%rad_lw_ref = 0.0_wp
surf_lsm_v(l)%rad_lw_res = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( surf_usm_v(l)%rad_sw_in ) .AND. &
surf_usm_v(l)%ns > 0 ) THEN
ALLOCATE( surf_usm_v(l)%rad_sw_in(1:surf_usm_v(l)%ns) )
ALLOCATE( surf_usm_v(l)%rad_sw_out(1:surf_usm_v(l)%ns) )
ALLOCATE( surf_usm_v(l)%rad_sw_dir(1:surf_usm_v(l)%ns) )
ALLOCATE( surf_usm_v(l)%rad_sw_dif(1:surf_usm_v(l)%ns) )
ALLOCATE( surf_usm_v(l)%rad_sw_ref(1:surf_usm_v(l)%ns) )
ALLOCATE( surf_usm_v(l)%rad_sw_res(1:surf_usm_v(l)%ns) )
ALLOCATE( surf_usm_v(l)%rad_lw_in(1:surf_usm_v(l)%ns) )
ALLOCATE( surf_usm_v(l)%rad_lw_out(1:surf_usm_v(l)%ns) )
ALLOCATE( surf_usm_v(l)%rad_lw_dif(1:surf_usm_v(l)%ns) )
ALLOCATE( surf_usm_v(l)%rad_lw_ref(1:surf_usm_v(l)%ns) )
ALLOCATE( surf_usm_v(l)%rad_lw_res(1:surf_usm_v(l)%ns) )
surf_usm_v(l)%rad_sw_in = 0.0_wp
surf_usm_v(l)%rad_sw_out = 0.0_wp
surf_usm_v(l)%rad_sw_dir = 0.0_wp
surf_usm_v(l)%rad_sw_dif = 0.0_wp
surf_usm_v(l)%rad_sw_ref = 0.0_wp
surf_usm_v(l)%rad_sw_res = 0.0_wp
surf_usm_v(l)%rad_lw_in = 0.0_wp
surf_usm_v(l)%rad_lw_out = 0.0_wp
surf_usm_v(l)%rad_lw_dif = 0.0_wp
surf_usm_v(l)%rad_lw_ref = 0.0_wp
surf_usm_v(l)%rad_lw_res = 0.0_wp
ENDIF
ENDDO
!
!-- Fix net radiation in case of radiation_scheme = 'constant'
IF ( radiation_scheme == 'constant' ) THEN
IF ( ALLOCATED( surf_lsm_h%rad_net ) ) &
surf_lsm_h%rad_net = net_radiation
IF ( ALLOCATED( surf_usm_h%rad_net ) ) &
surf_usm_h%rad_net = net_radiation
!
!-- Todo: weight with inclination angle
DO l = 0, 3
IF ( ALLOCATED( surf_lsm_v(l)%rad_net ) ) &
surf_lsm_v(l)%rad_net = net_radiation
IF ( ALLOCATED( surf_usm_v(l)%rad_net ) ) &
surf_usm_v(l)%rad_net = net_radiation
ENDDO
! radiation = .FALSE.
!
!-- Calculate orbital constants
ELSE
decl_1 = SIN(23.45_wp * pi / 180.0_wp)
decl_2 = 2.0_wp * pi / 365.0_wp
decl_3 = decl_2 * 81.0_wp
lat = latitude * pi / 180.0_wp
lon = longitude * pi / 180.0_wp
ENDIF
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
!
!-- Allocate arrays for incoming/outgoing short/longwave radiation
IF ( .NOT. ALLOCATED ( rad_sw_in ) ) THEN
ALLOCATE ( rad_sw_in(0:0,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( .NOT. ALLOCATED ( rad_sw_out ) ) THEN
ALLOCATE ( rad_sw_out(0:0,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( .NOT. ALLOCATED ( rad_lw_in ) ) THEN
ALLOCATE ( rad_lw_in(0:0,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( .NOT. ALLOCATED ( rad_lw_out ) ) THEN
ALLOCATE ( rad_lw_out(0:0,nysg:nyng,nxlg:nxrg) )
ENDIF
!
!-- Allocate average arrays for incoming/outgoing short/longwave radiation
IF ( .NOT. ALLOCATED ( rad_sw_in_av ) ) THEN
ALLOCATE ( rad_sw_in_av(0:0,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( .NOT. ALLOCATED ( rad_sw_out_av ) ) THEN
ALLOCATE ( rad_sw_out_av(0:0,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( .NOT. ALLOCATED ( rad_lw_in_av ) ) THEN
ALLOCATE ( rad_lw_in_av(0:0,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( .NOT. ALLOCATED ( rad_lw_out_av ) ) THEN
ALLOCATE ( rad_lw_out_av(0:0,nysg:nyng,nxlg:nxrg) )
ENDIF
!
!-- Allocate arrays for broadband albedo, and level 1 initialization
!-- via namelist paramter, unless not already allocated.
IF ( .NOT. ALLOCATED(surf_lsm_h%albedo) ) THEN
ALLOCATE( surf_lsm_h%albedo(0:2,1:surf_lsm_h%ns) )
surf_lsm_h%albedo = albedo
ENDIF
IF ( .NOT. ALLOCATED(surf_usm_h%albedo) ) THEN
ALLOCATE( surf_usm_h%albedo(0:2,1:surf_usm_h%ns) )
surf_usm_h%albedo = albedo
ENDIF
DO l = 0, 3
IF ( .NOT. ALLOCATED( surf_lsm_v(l)%albedo ) ) THEN
ALLOCATE( surf_lsm_v(l)%albedo(0:2,1:surf_lsm_v(l)%ns) )
surf_lsm_v(l)%albedo = albedo
ENDIF
IF ( .NOT. ALLOCATED( surf_usm_v(l)%albedo ) ) THEN
ALLOCATE( surf_usm_v(l)%albedo(0:2,1:surf_usm_v(l)%ns) )
surf_usm_v(l)%albedo = albedo
ENDIF
ENDDO
!
!-- Level 2 initialization of broadband albedo via given albedo_type.
!-- Only if albedo_type is non-zero. In case of urban surface and
!-- input data is read from ASCII file, albedo_type will be zero, so that
!-- albedo won't be overwritten.
DO m = 1, surf_lsm_h%ns
IF ( surf_lsm_h%albedo_type(ind_veg_wall,m) /= 0 ) &
surf_lsm_h%albedo(ind_veg_wall,m) = &
albedo_pars(0,surf_lsm_h%albedo_type(ind_veg_wall,m))
IF ( surf_lsm_h%albedo_type(ind_pav_green,m) /= 0 ) &
surf_lsm_h%albedo(ind_pav_green,m) = &
albedo_pars(0,surf_lsm_h%albedo_type(ind_pav_green,m))
IF ( surf_lsm_h%albedo_type(ind_wat_win,m) /= 0 ) &
surf_lsm_h%albedo(ind_wat_win,m) = &
albedo_pars(0,surf_lsm_h%albedo_type(ind_wat_win,m))
ENDDO
DO m = 1, surf_usm_h%ns
IF ( surf_usm_h%albedo_type(ind_veg_wall,m) /= 0 ) &
surf_usm_h%albedo(ind_veg_wall,m) = &
albedo_pars(0,surf_usm_h%albedo_type(ind_veg_wall,m))
IF ( surf_usm_h%albedo_type(ind_pav_green,m) /= 0 ) &
surf_usm_h%albedo(ind_pav_green,m) = &
albedo_pars(0,surf_usm_h%albedo_type(ind_pav_green,m))
IF ( surf_usm_h%albedo_type(ind_wat_win,m) /= 0 ) &
surf_usm_h%albedo(ind_wat_win,m) = &
albedo_pars(0,surf_usm_h%albedo_type(ind_wat_win,m))
ENDDO
DO l = 0, 3
DO m = 1, surf_lsm_v(l)%ns
IF ( surf_lsm_v(l)%albedo_type(ind_veg_wall,m) /= 0 ) &
surf_lsm_v(l)%albedo(ind_veg_wall,m) = &
albedo_pars(0,surf_lsm_v(l)%albedo_type(ind_veg_wall,m))
IF ( surf_lsm_v(l)%albedo_type(ind_pav_green,m) /= 0 ) &
surf_lsm_v(l)%albedo(ind_pav_green,m) = &
albedo_pars(0,surf_lsm_v(l)%albedo_type(ind_pav_green,m))
IF ( surf_lsm_v(l)%albedo_type(ind_wat_win,m) /= 0 ) &
surf_lsm_v(l)%albedo(ind_wat_win,m) = &
albedo_pars(0,surf_lsm_v(l)%albedo_type(ind_wat_win,m))
ENDDO
DO m = 1, surf_usm_v(l)%ns
IF ( surf_usm_v(l)%albedo_type(ind_veg_wall,m) /= 0 ) &
surf_usm_v(l)%albedo(ind_veg_wall,m) = &
albedo_pars(0,surf_usm_v(l)%albedo_type(ind_veg_wall,m))
IF ( surf_usm_v(l)%albedo_type(ind_pav_green,m) /= 0 ) &
surf_usm_v(l)%albedo(ind_pav_green,m) = &
albedo_pars(0,surf_usm_v(l)%albedo_type(ind_pav_green,m))
IF ( surf_usm_v(l)%albedo_type(ind_wat_win,m) /= 0 ) &
surf_usm_v(l)%albedo(ind_wat_win,m) = &
albedo_pars(0,surf_usm_v(l)%albedo_type(ind_wat_win,m))
ENDDO
ENDDO
!
!-- Level 3 initialization at grid points where albedo type is zero.
!-- This case, albedo is taken from file. In case of constant radiation
!-- or clear sky, only broadband albedo is given.
IF ( albedo_pars_f%from_file ) THEN
!
!-- Horizontal surfaces
DO m = 1, surf_lsm_h%ns
i = surf_lsm_h%i(m)
j = surf_lsm_h%j(m)
IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill ) THEN
surf_lsm_h%albedo(ind_veg_wall,m) = albedo_pars_f%pars_xy(0,j,i)
surf_lsm_h%albedo(ind_pav_green,m) = albedo_pars_f%pars_xy(0,j,i)
surf_lsm_h%albedo(ind_wat_win,m) = albedo_pars_f%pars_xy(0,j,i)
ENDIF
ENDDO
DO m = 1, surf_usm_h%ns
i = surf_usm_h%i(m)
j = surf_usm_h%j(m)
IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill ) THEN
surf_usm_h%albedo(ind_veg_wall,m) = albedo_pars_f%pars_xy(0,j,i)
surf_usm_h%albedo(ind_pav_green,m) = albedo_pars_f%pars_xy(0,j,i)
surf_usm_h%albedo(ind_wat_win,m) = albedo_pars_f%pars_xy(0,j,i)
ENDIF
ENDDO
!
!-- Vertical surfaces
DO l = 0, 3
ioff = surf_lsm_v(l)%ioff
joff = surf_lsm_v(l)%joff
DO m = 1, surf_lsm_v(l)%ns
i = surf_lsm_v(l)%i(m) + ioff
j = surf_lsm_v(l)%j(m) + joff
IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill ) THEN
surf_lsm_v(l)%albedo(ind_veg_wall,m) = albedo_pars_f%pars_xy(0,j,i)
surf_lsm_v(l)%albedo(ind_pav_green,m) = albedo_pars_f%pars_xy(0,j,i)
surf_lsm_v(l)%albedo(ind_wat_win,m) = albedo_pars_f%pars_xy(0,j,i)
ENDIF
ENDDO
ioff = surf_usm_v(l)%ioff
joff = surf_usm_v(l)%joff
DO m = 1, surf_usm_v(l)%ns
i = surf_usm_v(l)%i(m) + ioff
j = surf_usm_v(l)%j(m) + joff
IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill ) THEN
surf_usm_v(l)%albedo(ind_veg_wall,m) = albedo_pars_f%pars_xy(0,j,i)
surf_usm_v(l)%albedo(ind_pav_green,m) = albedo_pars_f%pars_xy(0,j,i)
surf_usm_v(l)%albedo(ind_wat_win,m) = albedo_pars_f%pars_xy(0,j,i)
ENDIF
ENDDO
ENDDO
ENDIF
!
!-- Initialization actions for RRTMG
ELSEIF ( radiation_scheme == 'rrtmg' ) THEN
#if defined ( __rrtmg )
!
!-- Allocate albedos for short/longwave radiation, horizontal surfaces
!-- for wall/green/window (USM) or vegetation/pavement/water surfaces
!-- (LSM).
ALLOCATE ( surf_lsm_h%aldif(0:2,1:surf_lsm_h%ns) )
ALLOCATE ( surf_lsm_h%aldir(0:2,1:surf_lsm_h%ns) )
ALLOCATE ( surf_lsm_h%asdif(0:2,1:surf_lsm_h%ns) )
ALLOCATE ( surf_lsm_h%asdir(0:2,1:surf_lsm_h%ns) )
ALLOCATE ( surf_lsm_h%rrtm_aldif(0:2,1:surf_lsm_h%ns) )
ALLOCATE ( surf_lsm_h%rrtm_aldir(0:2,1:surf_lsm_h%ns) )
ALLOCATE ( surf_lsm_h%rrtm_asdif(0:2,1:surf_lsm_h%ns) )
ALLOCATE ( surf_lsm_h%rrtm_asdir(0:2,1:surf_lsm_h%ns) )
ALLOCATE ( surf_usm_h%aldif(0:2,1:surf_usm_h%ns) )
ALLOCATE ( surf_usm_h%aldir(0:2,1:surf_usm_h%ns) )
ALLOCATE ( surf_usm_h%asdif(0:2,1:surf_usm_h%ns) )
ALLOCATE ( surf_usm_h%asdir(0:2,1:surf_usm_h%ns) )
ALLOCATE ( surf_usm_h%rrtm_aldif(0:2,1:surf_usm_h%ns) )
ALLOCATE ( surf_usm_h%rrtm_aldir(0:2,1:surf_usm_h%ns) )
ALLOCATE ( surf_usm_h%rrtm_asdif(0:2,1:surf_usm_h%ns) )
ALLOCATE ( surf_usm_h%rrtm_asdir(0:2,1:surf_usm_h%ns) )
!
!-- Allocate broadband albedo (temporary for the current radiation
!-- implementations)
IF ( .NOT. ALLOCATED(surf_lsm_h%albedo) ) &
ALLOCATE( surf_lsm_h%albedo(0:2,1:surf_lsm_h%ns) )
IF ( .NOT. ALLOCATED(surf_usm_h%albedo) ) &
ALLOCATE( surf_usm_h%albedo(0:2,1:surf_usm_h%ns) )
!
!-- Allocate albedos for short/longwave radiation, vertical surfaces
DO l = 0, 3
ALLOCATE ( surf_lsm_v(l)%aldif(0:2,1:surf_lsm_v(l)%ns) )
ALLOCATE ( surf_lsm_v(l)%aldir(0:2,1:surf_lsm_v(l)%ns) )
ALLOCATE ( surf_lsm_v(l)%asdif(0:2,1:surf_lsm_v(l)%ns) )
ALLOCATE ( surf_lsm_v(l)%asdir(0:2,1:surf_lsm_v(l)%ns) )
ALLOCATE ( surf_lsm_v(l)%rrtm_aldif(0:2,1:surf_lsm_v(l)%ns) )
ALLOCATE ( surf_lsm_v(l)%rrtm_aldir(0:2,1:surf_lsm_v(l)%ns) )
ALLOCATE ( surf_lsm_v(l)%rrtm_asdif(0:2,1:surf_lsm_v(l)%ns) )
ALLOCATE ( surf_lsm_v(l)%rrtm_asdir(0:2,1:surf_lsm_v(l)%ns) )
ALLOCATE ( surf_usm_v(l)%aldif(0:2,1:surf_usm_v(l)%ns) )
ALLOCATE ( surf_usm_v(l)%aldir(0:2,1:surf_usm_v(l)%ns) )
ALLOCATE ( surf_usm_v(l)%asdif(0:2,1:surf_usm_v(l)%ns) )
ALLOCATE ( surf_usm_v(l)%asdir(0:2,1:surf_usm_v(l)%ns) )
ALLOCATE ( surf_usm_v(l)%rrtm_aldif(0:2,1:surf_usm_v(l)%ns) )
ALLOCATE ( surf_usm_v(l)%rrtm_aldir(0:2,1:surf_usm_v(l)%ns) )
ALLOCATE ( surf_usm_v(l)%rrtm_asdif(0:2,1:surf_usm_v(l)%ns) )
ALLOCATE ( surf_usm_v(l)%rrtm_asdir(0:2,1:surf_usm_v(l)%ns) )
!
!-- Allocate broadband albedo (temporary for the current radiation
!-- implementations)
IF ( .NOT. ALLOCATED( surf_lsm_v(l)%albedo ) ) &
ALLOCATE( surf_lsm_v(l)%albedo(0:2,1:surf_lsm_v(l)%ns) )
IF ( .NOT. ALLOCATED( surf_usm_v(l)%albedo ) ) &
ALLOCATE( surf_usm_v(l)%albedo(0:2,1:surf_usm_v(l)%ns) )
ENDDO
!
!-- Level 1 initialization of spectral albedos via namelist
!-- paramters. Please note, this case all surface tiles are initialized
!-- the same.
IF ( surf_lsm_h%ns > 0 ) THEN
surf_lsm_h%aldif = albedo_lw_dif
surf_lsm_h%aldir = albedo_lw_dir
surf_lsm_h%asdif = albedo_sw_dif
surf_lsm_h%asdir = albedo_sw_dir
surf_lsm_h%albedo = albedo_sw_dif
ENDIF
IF ( surf_usm_h%ns > 0 ) THEN
IF ( surf_usm_h%albedo_from_ascii ) THEN
surf_usm_h%aldif = surf_usm_h%albedo
surf_usm_h%aldir = surf_usm_h%albedo
surf_usm_h%asdif = surf_usm_h%albedo
surf_usm_h%asdir = surf_usm_h%albedo
ELSE
surf_usm_h%aldif = albedo_lw_dif
surf_usm_h%aldir = albedo_lw_dir
surf_usm_h%asdif = albedo_sw_dif
surf_usm_h%asdir = albedo_sw_dir
surf_usm_h%albedo = albedo_sw_dif
ENDIF
ENDIF
DO l = 0, 3
IF ( surf_lsm_v(l)%ns > 0 ) THEN
surf_lsm_v(l)%aldif = albedo_lw_dif
surf_lsm_v(l)%aldir = albedo_lw_dir
surf_lsm_v(l)%asdif = albedo_sw_dif
surf_lsm_v(l)%asdir = albedo_sw_dir
surf_lsm_v(l)%albedo = albedo_sw_dif
ENDIF
IF ( surf_usm_v(l)%ns > 0 ) THEN
IF ( surf_usm_v(l)%albedo_from_ascii ) THEN
surf_usm_v(l)%aldif = surf_usm_v(l)%albedo
surf_usm_v(l)%aldir = surf_usm_v(l)%albedo
surf_usm_v(l)%asdif = surf_usm_v(l)%albedo
surf_usm_v(l)%asdir = surf_usm_v(l)%albedo
ELSE
surf_usm_v(l)%aldif = albedo_lw_dif
surf_usm_v(l)%aldir = albedo_lw_dir
surf_usm_v(l)%asdif = albedo_sw_dif
surf_usm_v(l)%asdir = albedo_sw_dir
ENDIF
ENDIF
ENDDO
!
!-- Level 2 initialization of spectral albedos via albedo_type.
!-- Please note, for natural- and urban-type surfaces, a tile approach
!-- is applied so that the resulting albedo is calculated via the weighted
!-- average of respective surface fractions.
DO m = 1, surf_lsm_h%ns
!
!-- Spectral albedos for vegetation/pavement/water surfaces
DO ind_type = 0, 2
IF ( surf_lsm_h%albedo_type(ind_type,m) /= 0 ) THEN
surf_lsm_h%aldif(ind_type,m) = &
albedo_pars(1,surf_lsm_h%albedo_type(ind_type,m))
surf_lsm_h%asdif(ind_type,m) = &
albedo_pars(2,surf_lsm_h%albedo_type(ind_type,m))
surf_lsm_h%aldir(ind_type,m) = &
albedo_pars(1,surf_lsm_h%albedo_type(ind_type,m))
surf_lsm_h%asdir(ind_type,m) = &
albedo_pars(2,surf_lsm_h%albedo_type(ind_type,m))
surf_lsm_h%albedo(ind_type,m) = &
albedo_pars(0,surf_lsm_h%albedo_type(ind_type,m))
ENDIF
ENDDO
ENDDO
!
!-- For urban surface only if albedo has not been already initialized
!-- in the urban-surface model via the ASCII file.
IF ( .NOT. surf_usm_h%albedo_from_ascii ) THEN
DO m = 1, surf_usm_h%ns
!
!-- Spectral albedos for wall/green/window surfaces
DO ind_type = 0, 2
IF ( surf_usm_h%albedo_type(ind_type,m) /= 0 ) THEN
surf_usm_h%aldif(ind_type,m) = &
albedo_pars(1,surf_usm_h%albedo_type(ind_type,m))
surf_usm_h%asdif(ind_type,m) = &
albedo_pars(2,surf_usm_h%albedo_type(ind_type,m))
surf_usm_h%aldir(ind_type,m) = &
albedo_pars(1,surf_usm_h%albedo_type(ind_type,m))
surf_usm_h%asdir(ind_type,m) = &
albedo_pars(2,surf_usm_h%albedo_type(ind_type,m))
surf_usm_h%albedo(ind_type,m) = &
albedo_pars(0,surf_usm_h%albedo_type(ind_type,m))
ENDIF
ENDDO
ENDDO
ENDIF
DO l = 0, 3
DO m = 1, surf_lsm_v(l)%ns
!
!-- Spectral albedos for vegetation/pavement/water surfaces
DO ind_type = 0, 2
IF ( surf_lsm_v(l)%albedo_type(ind_type,m) /= 0 ) THEN
surf_lsm_v(l)%aldif(ind_type,m) = &
albedo_pars(1,surf_lsm_v(l)%albedo_type(ind_type,m))
surf_lsm_v(l)%asdif(ind_type,m) = &
albedo_pars(2,surf_lsm_v(l)%albedo_type(ind_type,m))
surf_lsm_v(l)%aldir(ind_type,m) = &
albedo_pars(1,surf_lsm_v(l)%albedo_type(ind_type,m))
surf_lsm_v(l)%asdir(ind_type,m) = &
albedo_pars(2,surf_lsm_v(l)%albedo_type(ind_type,m))
surf_lsm_v(l)%albedo(ind_type,m) = &
albedo_pars(0,surf_lsm_v(l)%albedo_type(ind_type,m))
ENDIF
ENDDO
ENDDO
!
!-- For urban surface only if albedo has not been already initialized
!-- in the urban-surface model via the ASCII file.
IF ( .NOT. surf_usm_v(l)%albedo_from_ascii ) THEN
DO m = 1, surf_usm_v(l)%ns
!
!-- Spectral albedos for wall/green/window surfaces
DO ind_type = 0, 2
IF ( surf_usm_v(l)%albedo_type(ind_type,m) /= 0 ) THEN
surf_usm_v(l)%aldif(ind_type,m) = &
albedo_pars(1,surf_usm_v(l)%albedo_type(ind_type,m))
surf_usm_v(l)%asdif(ind_type,m) = &
albedo_pars(2,surf_usm_v(l)%albedo_type(ind_type,m))
surf_usm_v(l)%aldir(ind_type,m) = &
albedo_pars(1,surf_usm_v(l)%albedo_type(ind_type,m))
surf_usm_v(l)%asdir(ind_type,m) = &
albedo_pars(2,surf_usm_v(l)%albedo_type(ind_type,m))
surf_usm_v(l)%albedo(ind_type,m) = &
albedo_pars(0,surf_usm_v(l)%albedo_type(ind_type,m))
ENDIF
ENDDO
ENDDO
ENDIF
ENDDO
!
!-- Level 3 initialization at grid points where albedo type is zero.
!-- This case, spectral albedos are taken from file if available
IF ( albedo_pars_f%from_file ) THEN
!
!-- Horizontal
DO m = 1, surf_lsm_h%ns
i = surf_lsm_h%i(m)
j = surf_lsm_h%j(m)
!
!-- Spectral albedos for vegetation/pavement/water surfaces
DO ind_type = 0, 2
IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill ) &
surf_lsm_h%albedo(ind_type,m) = &
albedo_pars_f%pars_xy(0,j,i)
IF ( albedo_pars_f%pars_xy(1,j,i) /= albedo_pars_f%fill ) &
surf_lsm_h%aldir(ind_type,m) = &
albedo_pars_f%pars_xy(1,j,i)
IF ( albedo_pars_f%pars_xy(1,j,i) /= albedo_pars_f%fill ) &
surf_lsm_h%aldif(ind_type,m) = &
albedo_pars_f%pars_xy(1,j,i)
IF ( albedo_pars_f%pars_xy(2,j,i) /= albedo_pars_f%fill ) &
surf_lsm_h%asdir(ind_type,m) = &
albedo_pars_f%pars_xy(2,j,i)
IF ( albedo_pars_f%pars_xy(2,j,i) /= albedo_pars_f%fill ) &
surf_lsm_h%asdif(ind_type,m) = &
albedo_pars_f%pars_xy(2,j,i)
ENDDO
ENDDO
!
!-- For urban surface only if albedo has not been already initialized
!-- in the urban-surface model via the ASCII file.
IF ( .NOT. surf_usm_h%albedo_from_ascii ) THEN
DO m = 1, surf_usm_h%ns
i = surf_usm_h%i(m)
j = surf_usm_h%j(m)
!
!-- Broadband albedos for wall/green/window surfaces
DO ind_type = 0, 2
IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill )&
surf_usm_h%albedo(ind_type,m) = &
albedo_pars_f%pars_xy(0,j,i)
ENDDO
!
!-- Spectral albedos especially for building wall surfaces
IF ( albedo_pars_f%pars_xy(1,j,i) /= albedo_pars_f%fill ) THEN
surf_usm_h%aldir(ind_veg_wall,m) = &
albedo_pars_f%pars_xy(1,j,i)
surf_usm_h%aldif(ind_veg_wall,m) = &
albedo_pars_f%pars_xy(1,j,i)
ENDIF
IF ( albedo_pars_f%pars_xy(2,j,i) /= albedo_pars_f%fill ) THEN
surf_usm_h%asdir(ind_veg_wall,m) = &
albedo_pars_f%pars_xy(2,j,i)
surf_usm_h%asdif(ind_veg_wall,m) = &
albedo_pars_f%pars_xy(2,j,i)
ENDIF
!
!-- Spectral albedos especially for building green surfaces
IF ( albedo_pars_f%pars_xy(3,j,i) /= albedo_pars_f%fill ) THEN
surf_usm_h%aldir(ind_pav_green,m) = &
albedo_pars_f%pars_xy(3,j,i)
surf_usm_h%aldif(ind_pav_green,m) = &
albedo_pars_f%pars_xy(3,j,i)
ENDIF
IF ( albedo_pars_f%pars_xy(4,j,i) /= albedo_pars_f%fill ) THEN
surf_usm_h%asdir(ind_pav_green,m) = &
albedo_pars_f%pars_xy(4,j,i)
surf_usm_h%asdif(ind_pav_green,m) = &
albedo_pars_f%pars_xy(4,j,i)
ENDIF
!
!-- Spectral albedos especially for building window surfaces
IF ( albedo_pars_f%pars_xy(5,j,i) /= albedo_pars_f%fill ) THEN
surf_usm_h%aldir(ind_wat_win,m) = &
albedo_pars_f%pars_xy(5,j,i)
surf_usm_h%aldif(ind_wat_win,m) = &
albedo_pars_f%pars_xy(5,j,i)
ENDIF
IF ( albedo_pars_f%pars_xy(6,j,i) /= albedo_pars_f%fill ) THEN
surf_usm_h%asdir(ind_wat_win,m) = &
albedo_pars_f%pars_xy(6,j,i)
surf_usm_h%asdif(ind_wat_win,m) = &
albedo_pars_f%pars_xy(6,j,i)
ENDIF
ENDDO
ENDIF
!
!-- Vertical
DO l = 0, 3
ioff = surf_lsm_v(l)%ioff
joff = surf_lsm_v(l)%joff
DO m = 1, surf_lsm_v(l)%ns
i = surf_lsm_v(l)%i(m)
j = surf_lsm_v(l)%j(m)
!
!-- Spectral albedos for vegetation/pavement/water surfaces
DO ind_type = 0, 2
IF ( albedo_pars_f%pars_xy(0,j+joff,i+ioff) /= &
albedo_pars_f%fill ) &
surf_lsm_v(l)%albedo(ind_type,m) = &
albedo_pars_f%pars_xy(0,j+joff,i+ioff)
IF ( albedo_pars_f%pars_xy(1,j+joff,i+ioff) /= &
albedo_pars_f%fill ) &
surf_lsm_v(l)%aldir(ind_type,m) = &
albedo_pars_f%pars_xy(1,j+joff,i+ioff)
IF ( albedo_pars_f%pars_xy(1,j+joff,i+ioff) /= &
albedo_pars_f%fill ) &
surf_lsm_v(l)%aldif(ind_type,m) = &
albedo_pars_f%pars_xy(1,j+joff,i+ioff)
IF ( albedo_pars_f%pars_xy(2,j+joff,i+ioff) /= &
albedo_pars_f%fill ) &
surf_lsm_v(l)%asdir(ind_type,m) = &
albedo_pars_f%pars_xy(2,j+joff,i+ioff)
IF ( albedo_pars_f%pars_xy(2,j+joff,i+ioff) /= &
albedo_pars_f%fill ) &
surf_lsm_v(l)%asdif(ind_type,m) = &
albedo_pars_f%pars_xy(2,j+joff,i+ioff)
ENDDO
ENDDO
!
!-- For urban surface only if albedo has not been already initialized
!-- in the urban-surface model via the ASCII file.
IF ( .NOT. surf_usm_v(l)%albedo_from_ascii ) THEN
ioff = surf_usm_v(l)%ioff
joff = surf_usm_v(l)%joff
DO m = 1, surf_usm_v(l)%ns
i = surf_usm_v(l)%i(m)
j = surf_usm_v(l)%j(m)
!
!-- Broadband albedos for wall/green/window surfaces
DO ind_type = 0, 2
IF ( albedo_pars_f%pars_xy(0,j+joff,i+ioff) /= &
albedo_pars_f%fill ) &
surf_usm_v(l)%albedo(ind_type,m) = &
albedo_pars_f%pars_xy(0,j+joff,i+ioff)
ENDDO
!
!-- Spectral albedos especially for building wall surfaces
IF ( albedo_pars_f%pars_xy(1,j+joff,i+ioff) /= &
albedo_pars_f%fill ) THEN
surf_usm_v(l)%aldir(ind_veg_wall,m) = &
albedo_pars_f%pars_xy(1,j+joff,i+ioff)
surf_usm_v(l)%aldif(ind_veg_wall,m) = &
albedo_pars_f%pars_xy(1,j+joff,i+ioff)
ENDIF
IF ( albedo_pars_f%pars_xy(2,j+joff,i+ioff) /= &
albedo_pars_f%fill ) THEN
surf_usm_v(l)%asdir(ind_veg_wall,m) = &
albedo_pars_f%pars_xy(2,j+joff,i+ioff)
surf_usm_v(l)%asdif(ind_veg_wall,m) = &
albedo_pars_f%pars_xy(2,j+joff,i+ioff)
ENDIF
!
!-- Spectral albedos especially for building green surfaces
IF ( albedo_pars_f%pars_xy(3,j+joff,i+ioff) /= &
albedo_pars_f%fill ) THEN
surf_usm_v(l)%aldir(ind_pav_green,m) = &
albedo_pars_f%pars_xy(3,j+joff,i+ioff)
surf_usm_v(l)%aldif(ind_pav_green,m) = &
albedo_pars_f%pars_xy(3,j+joff,i+ioff)
ENDIF
IF ( albedo_pars_f%pars_xy(4,j+joff,i+ioff) /= &
albedo_pars_f%fill ) THEN
surf_usm_v(l)%asdir(ind_pav_green,m) = &
albedo_pars_f%pars_xy(4,j+joff,i+ioff)
surf_usm_v(l)%asdif(ind_pav_green,m) = &
albedo_pars_f%pars_xy(4,j+joff,i+ioff)
ENDIF
!
!-- Spectral albedos especially for building window surfaces
IF ( albedo_pars_f%pars_xy(5,j+joff,i+ioff) /= &
albedo_pars_f%fill ) THEN
surf_usm_v(l)%aldir(ind_wat_win,m) = &
albedo_pars_f%pars_xy(5,j+joff,i+ioff)
surf_usm_v(l)%aldif(ind_wat_win,m) = &
albedo_pars_f%pars_xy(5,j+joff,i+ioff)
ENDIF
IF ( albedo_pars_f%pars_xy(6,j+joff,i+ioff) /= &
albedo_pars_f%fill ) THEN
surf_usm_v(l)%asdir(ind_wat_win,m) = &
albedo_pars_f%pars_xy(6,j+joff,i+ioff)
surf_usm_v(l)%asdif(ind_wat_win,m) = &
albedo_pars_f%pars_xy(6,j+joff,i+ioff)
ENDIF
ENDDO
ENDIF
ENDDO
ENDIF
!
!-- Calculate initial values of current (cosine of) the zenith angle and
!-- whether the sun is up
CALL get_date_time( time_since_reference_point, &
day_of_year=day_of_year, &
second_of_day=second_of_day )
CALL calc_zenith( day_of_year, second_of_day )
!
!-- Calculate initial surface albedo for different surfaces
IF ( .NOT. constant_albedo ) THEN
#if defined( __netcdf )
!
!-- Horizontally aligned natural and urban surfaces
CALL calc_albedo( surf_lsm_h )
CALL calc_albedo( surf_usm_h )
!
!-- Vertically aligned natural and urban surfaces
DO l = 0, 3
CALL calc_albedo( surf_lsm_v(l) )
CALL calc_albedo( surf_usm_v(l) )
ENDDO
#endif
ELSE
!
!-- Initialize sun-inclination independent spectral albedos
!-- Horizontal surfaces
IF ( surf_lsm_h%ns > 0 ) THEN
surf_lsm_h%rrtm_aldir = surf_lsm_h%aldir
surf_lsm_h%rrtm_asdir = surf_lsm_h%asdir
surf_lsm_h%rrtm_aldif = surf_lsm_h%aldif
surf_lsm_h%rrtm_asdif = surf_lsm_h%asdif
ENDIF
IF ( surf_usm_h%ns > 0 ) THEN
surf_usm_h%rrtm_aldir = surf_usm_h%aldir
surf_usm_h%rrtm_asdir = surf_usm_h%asdir
surf_usm_h%rrtm_aldif = surf_usm_h%aldif
surf_usm_h%rrtm_asdif = surf_usm_h%asdif
ENDIF
!
!-- Vertical surfaces
DO l = 0, 3
IF ( surf_lsm_v(l)%ns > 0 ) THEN
surf_lsm_v(l)%rrtm_aldir = surf_lsm_v(l)%aldir
surf_lsm_v(l)%rrtm_asdir = surf_lsm_v(l)%asdir
surf_lsm_v(l)%rrtm_aldif = surf_lsm_v(l)%aldif
surf_lsm_v(l)%rrtm_asdif = surf_lsm_v(l)%asdif
ENDIF
IF ( surf_usm_v(l)%ns > 0 ) THEN
surf_usm_v(l)%rrtm_aldir = surf_usm_v(l)%aldir
surf_usm_v(l)%rrtm_asdir = surf_usm_v(l)%asdir
surf_usm_v(l)%rrtm_aldif = surf_usm_v(l)%aldif
surf_usm_v(l)%rrtm_asdif = surf_usm_v(l)%asdif
ENDIF
ENDDO
ENDIF
!
!-- Allocate 3d arrays of radiative fluxes and heating rates
IF ( .NOT. ALLOCATED ( rad_sw_in ) ) THEN
ALLOCATE ( rad_sw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_in = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( rad_sw_in_av ) ) THEN
ALLOCATE ( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( .NOT. ALLOCATED ( rad_sw_out ) ) THEN
ALLOCATE ( rad_sw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_out = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( rad_sw_out_av ) ) THEN
ALLOCATE ( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( .NOT. ALLOCATED ( rad_sw_hr ) ) THEN
ALLOCATE ( rad_sw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_hr = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( rad_sw_hr_av ) ) THEN
ALLOCATE ( rad_sw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_hr_av = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( rad_sw_cs_hr ) ) THEN
ALLOCATE ( rad_sw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_cs_hr = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( rad_sw_cs_hr_av ) ) THEN
ALLOCATE ( rad_sw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_cs_hr_av = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( rad_lw_in ) ) THEN
ALLOCATE ( rad_lw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_in = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( rad_lw_in_av ) ) THEN
ALLOCATE ( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( .NOT. ALLOCATED ( rad_lw_out ) ) THEN
ALLOCATE ( rad_lw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_out = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( rad_lw_out_av ) ) THEN
ALLOCATE ( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( .NOT. ALLOCATED ( rad_lw_hr ) ) THEN
ALLOCATE ( rad_lw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_hr = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( rad_lw_hr_av ) ) THEN
ALLOCATE ( rad_lw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_hr_av = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( rad_lw_cs_hr ) ) THEN
ALLOCATE ( rad_lw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_cs_hr = 0.0_wp
ENDIF
IF ( .NOT. ALLOCATED ( rad_lw_cs_hr_av ) ) THEN
ALLOCATE ( rad_lw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_cs_hr_av = 0.0_wp
ENDIF
ALLOCATE ( rad_sw_cs_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ALLOCATE ( rad_sw_cs_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_cs_in = 0.0_wp
rad_sw_cs_out = 0.0_wp
ALLOCATE ( rad_lw_cs_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ALLOCATE ( rad_lw_cs_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_cs_in = 0.0_wp
rad_lw_cs_out = 0.0_wp
!
!-- Allocate 1-element array for surface temperature
!-- (RRTMG anticipates an array as passed argument).
ALLOCATE ( rrtm_tsfc(1) )
!
!-- Allocate surface emissivity.
!-- Values will be given directly before calling rrtm_lw.
ALLOCATE ( rrtm_emis(0:0,1:nbndlw+1) )
!
!-- Initialize RRTMG, before check if files are existent
INQUIRE( FILE='rrtmg_lw.nc', EXIST=lw_exists )
IF ( .NOT. lw_exists ) THEN
message_string = 'Input file rrtmg_lw.nc' // &
'&for rrtmg missing. ' // &
'&Please provide _lsw file in the INPUT directory.'
CALL message( 'radiation_init', 'PA0583', 1, 2, 0, 6, 0 )
ENDIF
INQUIRE( FILE='rrtmg_sw.nc', EXIST=sw_exists )
IF ( .NOT. sw_exists ) THEN
message_string = 'Input file rrtmg_sw.nc' // &
'&for rrtmg missing. ' // &
'&Please provide _rsw file in the INPUT directory.'
CALL message( 'radiation_init', 'PA0584', 1, 2, 0, 6, 0 )
ENDIF
IF ( lw_radiation ) CALL rrtmg_lw_ini ( c_p )
IF ( sw_radiation ) CALL rrtmg_sw_ini ( c_p )
!
!-- Set input files for RRTMG
INQUIRE(FILE="RAD_SND_DATA", EXIST=snd_exists)
IF ( .NOT. snd_exists ) THEN
rrtm_input_file = "rrtmg_lw.nc"
ENDIF
!
!-- Read vertical layers for RRTMG from sounding data
!-- The routine provides nzt_rad, hyp_snd(1:nzt_rad),
!-- t_snd(nzt+2:nzt_rad), rrtm_play(1:nzt_rad), rrtm_plev(1_nzt_rad+1),
!-- rrtm_tlay(nzt+2:nzt_rad), rrtm_tlev(nzt+2:nzt_rad+1)
CALL read_sounding_data
!
!-- Read trace gas profiles from file. This routine provides
!-- the rrtm_ arrays (1:nzt_rad+1)
CALL read_trace_gas_data
#endif
ENDIF
!
!-- Initializaion actions exclusively required for external
!-- radiation forcing
IF ( radiation_scheme == 'external' ) THEN
!
!-- Open the radiation input file. Note, for child domain, a dynamic
!-- input file is often not provided. In order to do not need to
!-- duplicate the dynamic input file just for the radiation input, take
!-- it from the dynamic file for the parent if not available for the
!-- child domain(s). In this case this is possible because radiation
!-- input should be the same for each model.
INQUIRE( FILE = TRIM( input_file_dynamic ), &
EXIST = radiation_input_root_domain )
IF ( .NOT. input_pids_dynamic .AND. &
.NOT. radiation_input_root_domain ) THEN
message_string = 'In case of external radiation forcing ' // &
'a dynamic input file is required. If no ' // &
'dynamic input for the child domain(s) is ' // &
'provided, at least one for the root domain ' // &
'is needed.'
CALL message( 'radiation_init', 'PA0315', 1, 2, 0, 6, 0 )
ENDIF
#if defined( __netcdf )
!
!-- Open dynamic input file for child domain if available, else, open
!-- dynamic input file for the root domain.
IF ( input_pids_dynamic ) THEN
CALL open_read_file( TRIM( input_file_dynamic ) // &
TRIM( coupling_char ), &
pids_id )
ELSEIF ( radiation_input_root_domain ) THEN
CALL open_read_file( TRIM( input_file_dynamic ), &
pids_id )
ENDIF
CALL inquire_num_variables( pids_id, num_var_pids )
!
!-- Allocate memory to store variable names and read them
ALLOCATE( vars_pids(1:num_var_pids) )
CALL inquire_variable_names( pids_id, vars_pids )
!
!-- Input time dimension.
IF ( check_existence( vars_pids, 'time_rad' ) ) THEN
CALL get_dimension_length( pids_id, ntime, 'time_rad' )
ALLOCATE( time_rad_f%var1d(0:ntime-1) )
!
!-- Read variable
CALL get_variable( pids_id, 'time_rad', time_rad_f%var1d )
time_rad_f%from_file = .TRUE.
ENDIF
!
!-- Input shortwave downwelling.
IF ( check_existence( vars_pids, 'rad_sw_in' ) ) THEN
!
!-- Get _FillValue attribute
CALL get_attribute( pids_id, char_fill, rad_sw_in_f%fill, &
.FALSE., 'rad_sw_in' )
!
!-- Get level-of-detail
CALL get_attribute( pids_id, char_lod, rad_sw_in_f%lod, &
.FALSE., 'rad_sw_in' )
!
!-- Level-of-detail 1 - radiation depends only on time_rad
IF ( rad_sw_in_f%lod == 1 ) THEN
ALLOCATE( rad_sw_in_f%var1d(0:ntime-1) )
CALL get_variable( pids_id, 'rad_sw_in', rad_sw_in_f%var1d )
rad_sw_in_f%from_file = .TRUE.
!
!-- Level-of-detail 2 - radiation depends on time_rad, y, x
ELSEIF ( rad_sw_in_f%lod == 2 ) THEN
ALLOCATE( rad_sw_in_f%var3d(0:ntime-1,nys:nyn,nxl:nxr) )
CALL get_variable( pids_id, 'rad_sw_in', rad_sw_in_f%var3d, &
nxl, nxr, nys, nyn, 0, ntime-1 )
rad_sw_in_f%from_file = .TRUE.
ELSE
message_string = '"rad_sw_in" has no valid lod attribute'
CALL message( 'radiation_init', 'PA0646', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
!
!-- Input longwave downwelling.
IF ( check_existence( vars_pids, 'rad_lw_in' ) ) THEN
!
!-- Get _FillValue attribute
CALL get_attribute( pids_id, char_fill, rad_lw_in_f%fill, &
.FALSE., 'rad_lw_in' )
!
!-- Get level-of-detail
CALL get_attribute( pids_id, char_lod, rad_lw_in_f%lod, &
.FALSE., 'rad_lw_in' )
!
!-- Level-of-detail 1 - radiation depends only on time_rad
IF ( rad_lw_in_f%lod == 1 ) THEN
ALLOCATE( rad_lw_in_f%var1d(0:ntime-1) )
CALL get_variable( pids_id, 'rad_lw_in', rad_lw_in_f%var1d )
rad_lw_in_f%from_file = .TRUE.
!
!-- Level-of-detail 2 - radiation depends on time_rad, y, x
ELSEIF ( rad_lw_in_f%lod == 2 ) THEN
ALLOCATE( rad_lw_in_f%var3d(0:ntime-1,nys:nyn,nxl:nxr) )
CALL get_variable( pids_id, 'rad_lw_in', rad_lw_in_f%var3d, &
nxl, nxr, nys, nyn, 0, ntime-1 )
rad_lw_in_f%from_file = .TRUE.
ELSE
message_string = '"rad_lw_in" has no valid lod attribute'
CALL message( 'radiation_init', 'PA0646', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
!
!-- Input shortwave downwelling, diffuse part.
IF ( check_existence( vars_pids, 'rad_sw_in_dif' ) ) THEN
!
!-- Read _FillValue attribute
CALL get_attribute( pids_id, char_fill, rad_sw_in_dif_f%fill, &
.FALSE., 'rad_sw_in_dif' )
!
!-- Get level-of-detail
CALL get_attribute( pids_id, char_lod, rad_sw_in_dif_f%lod, &
.FALSE., 'rad_sw_in_dif' )
!
!-- Level-of-detail 1 - radiation depends only on time_rad
IF ( rad_sw_in_dif_f%lod == 1 ) THEN
ALLOCATE( rad_sw_in_dif_f%var1d(0:ntime-1) )
CALL get_variable( pids_id, 'rad_sw_in_dif', &
rad_sw_in_dif_f%var1d )
rad_sw_in_dif_f%from_file = .TRUE.
!
!-- Level-of-detail 2 - radiation depends on time_rad, y, x
ELSEIF ( rad_sw_in_dif_f%lod == 2 ) THEN
ALLOCATE( rad_sw_in_dif_f%var3d(0:ntime-1,nys:nyn,nxl:nxr) )
CALL get_variable( pids_id, 'rad_sw_in_dif', &
rad_sw_in_dif_f%var3d, &
nxl, nxr, nys, nyn, 0, ntime-1 )
rad_sw_in_dif_f%from_file = .TRUE.
ELSE
message_string = '"rad_sw_in_dif" has no valid lod attribute'
CALL message( 'radiation_init', 'PA0646', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
!
!-- Finally, close the input file and deallocate temporary arrays
DEALLOCATE( vars_pids )
CALL close_input_file( pids_id )
#endif
!
!-- Make some consistency checks.
IF ( .NOT. rad_sw_in_f%from_file .OR. &
.NOT. rad_lw_in_f%from_file ) THEN
message_string = 'In case of external radiation forcing ' // &
'both, rad_sw_in and rad_lw_in are required.'
CALL message( 'radiation_init', 'PA0195', 1, 2, 0, 6, 0 )
ENDIF
IF ( .NOT. time_rad_f%from_file ) THEN
message_string = 'In case of external radiation forcing ' // &
'dimension time_rad is required.'
CALL message( 'radiation_init', 'PA0196', 1, 2, 0, 6, 0 )
ENDIF
CALL get_date_time( 0.0_wp, second_of_day=second_of_day )
IF ( ABS( time_rad_f%var1d(0) - second_of_day ) > 1E-6_wp ) THEN
message_string = 'External radiation forcing: first point in ' // &
'time is /= origin_date_time.'
CALL message( 'radiation_init', 'PA0313', 1, 2, 0, 6, 0 )
ENDIF
IF ( end_time - spinup_time > time_rad_f%var1d(ntime-1) &
- second_of_day ) THEN
message_string = 'External radiation forcing does not cover ' // &
'the entire simulation time.'
CALL message( 'radiation_init', 'PA0314', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Check for fill values in radiation
IF ( ALLOCATED( rad_sw_in_f%var1d ) ) THEN
IF ( ANY( rad_sw_in_f%var1d == rad_sw_in_f%fill ) ) THEN
message_string = 'External radiation array "rad_sw_in" ' // &
'must not contain any fill values.'
CALL message( 'radiation_init', 'PA0197', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
IF ( ALLOCATED( rad_lw_in_f%var1d ) ) THEN
IF ( ANY( rad_lw_in_f%var1d == rad_lw_in_f%fill ) ) THEN
message_string = 'External radiation array "rad_lw_in" ' // &
'must not contain any fill values.'
CALL message( 'radiation_init', 'PA0198', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
IF ( ALLOCATED( rad_sw_in_dif_f%var1d ) ) THEN
IF ( ANY( rad_sw_in_dif_f%var1d == rad_sw_in_dif_f%fill ) ) THEN
message_string = 'External radiation array "rad_sw_in_dif" ' //&
'must not contain any fill values.'
CALL message( 'radiation_init', 'PA0199', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
IF ( ALLOCATED( rad_sw_in_f%var3d ) ) THEN
IF ( ANY( rad_sw_in_f%var3d == rad_sw_in_f%fill ) ) THEN
message_string = 'External radiation array "rad_sw_in" ' // &
'must not contain any fill values.'
CALL message( 'radiation_init', 'PA0197', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
IF ( ALLOCATED( rad_lw_in_f%var3d ) ) THEN
IF ( ANY( rad_lw_in_f%var3d == rad_lw_in_f%fill ) ) THEN
message_string = 'External radiation array "rad_lw_in" ' // &
'must not contain any fill values.'
CALL message( 'radiation_init', 'PA0198', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
IF ( ALLOCATED( rad_sw_in_dif_f%var3d ) ) THEN
IF ( ANY( rad_sw_in_dif_f%var3d == rad_sw_in_dif_f%fill ) ) THEN
message_string = 'External radiation array "rad_sw_in_dif" ' //&
'must not contain any fill values.'
CALL message( 'radiation_init', 'PA0199', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
!
!-- Currently, 2D external radiation input is not possible in
!-- combination with topography where average radiation is used.
IF ( ( rad_lw_in_f%lod == 2 .OR. rad_sw_in_f%lod == 2 .OR. &
rad_sw_in_dif_f%lod == 2 ) .AND. average_radiation ) THEN
message_string = 'External radiation with lod = 2 is currently '//&
'not possible with average_radiation = .T..'
CALL message( 'radiation_init', 'PA0670', 1, 2, 0, 6, 0 )
ENDIF
!
!-- All radiation input should have the same level of detail. The sum
!-- of lods divided by the number of available radiation arrays must be
!-- 1 (if all are lod = 1) or 2 (if all are lod = 2).
IF ( REAL( MERGE( rad_lw_in_f%lod, 0, rad_lw_in_f%from_file ) + &
MERGE( rad_sw_in_f%lod, 0, rad_sw_in_f%from_file ) + &
MERGE( rad_sw_in_dif_f%lod, 0, rad_sw_in_dif_f%from_file ),&
KIND = wp ) / &
( MERGE( 1.0_wp, 0.0_wp, rad_lw_in_f%from_file ) + &
MERGE( 1.0_wp, 0.0_wp, rad_sw_in_f%from_file ) + &
MERGE( 1.0_wp, 0.0_wp, rad_sw_in_dif_f%from_file ) ) &
/= 1.0_wp .AND. &
REAL( MERGE( rad_lw_in_f%lod, 0, rad_lw_in_f%from_file ) + &
MERGE( rad_sw_in_f%lod, 0, rad_sw_in_f%from_file ) + &
MERGE( rad_sw_in_dif_f%lod, 0, rad_sw_in_dif_f%from_file ),&
KIND = wp ) / &
( MERGE( 1.0_wp, 0.0_wp, rad_lw_in_f%from_file ) + &
MERGE( 1.0_wp, 0.0_wp, rad_sw_in_f%from_file ) + &
MERGE( 1.0_wp, 0.0_wp, rad_sw_in_dif_f%from_file ) ) &
/= 2.0_wp ) THEN
message_string = 'External radiation input should have the same '//&
'lod.'
CALL message( 'radiation_init', 'PA0673', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
!
!-- Perform user actions if required
CALL user_init_radiation
!
!-- Calculate radiative fluxes at model start
SELECT CASE ( TRIM( radiation_scheme ) )
CASE ( 'rrtmg' )
CALL radiation_rrtmg
CASE ( 'clear-sky' )
CALL radiation_clearsky
CASE ( 'constant' )
CALL radiation_constant
CASE ( 'external' )
!
!-- During spinup apply clear-sky model
IF ( time_since_reference_point < 0.0_wp ) THEN
CALL radiation_clearsky
ELSE
CALL radiation_external
ENDIF
CASE DEFAULT
END SELECT
!
!-- Find all discretized apparent solar positions for radiation interaction.
IF ( radiation_interactions ) CALL radiation_presimulate_solar_pos
!
!-- If required, read or calculate and write out the SVF
IF ( radiation_interactions .AND. read_svf) THEN
!
!-- Read sky-view factors and further required data from file
CALL radiation_read_svf()
ELSEIF ( radiation_interactions .AND. .NOT. read_svf) THEN
!
!-- calculate SFV and CSF
CALL radiation_calc_svf()
ENDIF
IF ( radiation_interactions .AND. write_svf) THEN
!
!-- Write svf, csf svfsurf and csfsurf data to file
CALL radiation_write_svf()
ENDIF
!
!-- Adjust radiative fluxes. In case of urban and land surfaces, also
!-- call an initial interaction.
IF ( radiation_interactions ) THEN
CALL radiation_interaction
ENDIF
IF ( debug_output ) CALL debug_message( 'radiation_init', 'end' )
RETURN !todo: remove, I don't see what we need this for here
END SUBROUTINE radiation_init
!------------------------------------------------------------------------------!
! Description:
! ------------
!> A simple clear sky radiation model
!------------------------------------------------------------------------------!
SUBROUTINE radiation_external
IMPLICIT NONE
INTEGER(iwp) :: l !< running index for surface orientation
INTEGER(iwp) :: t !< index of current timestep
INTEGER(iwp) :: tm !< index of previous timestep
LOGICAL :: horizontal !< flag indicating treatment of horinzontal surfaces
REAL(wp) :: fac_dt !< interpolation factor
REAL(wp) :: second_of_day_init !< second of the day at model start
TYPE(surf_type), POINTER :: surf !< pointer on respective surface type, used to generalize routine
!
!-- Calculate current zenith angle
CALL get_date_time( time_since_reference_point, &
day_of_year=day_of_year, &
second_of_day=second_of_day )
CALL calc_zenith( day_of_year, second_of_day )
!
!-- Interpolate external radiation on current timestep
IF ( time_since_reference_point <= 0.0_wp ) THEN
t = 0
tm = 0
fac_dt = 0
ELSE
CALL get_date_time( 0.0_wp, second_of_day=second_of_day_init )
t = 0
DO WHILE ( time_rad_f%var1d(t) <= &
time_since_reference_point + second_of_day_init )
t = t + 1
ENDDO
tm = MAX( t-1, 0 )
fac_dt = ( time_since_reference_point + second_of_day_init &
- time_rad_f%var1d(tm) + dt_3d ) &
/ ( time_rad_f%var1d(t) - time_rad_f%var1d(tm) )
fac_dt = MIN( 1.0_wp, fac_dt )
ENDIF
!
!-- Call clear-sky calculation for each surface orientation.
!-- First, horizontal surfaces
horizontal = .TRUE.
surf => surf_lsm_h
CALL radiation_external_surf
surf => surf_usm_h
CALL radiation_external_surf
horizontal = .FALSE.
!
!-- Vertical surfaces
DO l = 0, 3
surf => surf_lsm_v(l)
CALL radiation_external_surf
surf => surf_usm_v(l)
CALL radiation_external_surf
ENDDO
CONTAINS
SUBROUTINE radiation_external_surf
USE control_parameters
IMPLICIT NONE
INTEGER(iwp) :: i !< grid index along x-dimension
INTEGER(iwp) :: j !< grid index along y-dimension
INTEGER(iwp) :: k !< grid index along z-dimension
INTEGER(iwp) :: m !< running index for surface elements
REAL(wp) :: lw_in !< downwelling longwave radiation, interpolated value
REAL(wp) :: sw_in !< downwelling shortwave radiation, interpolated value
REAL(wp) :: sw_in_dif !< downwelling diffuse shortwave radiation, interpolated value
IF ( surf%ns < 1 ) RETURN
!
!-- level-of-detail = 1. Note, here it must be distinguished between
!-- averaged radiation and non-averaged radiation for the upwelling
!-- fluxes.
IF ( rad_sw_in_f%lod == 1 ) THEN
sw_in = ( 1.0_wp - fac_dt ) * rad_sw_in_f%var1d(tm) &
+ fac_dt * rad_sw_in_f%var1d(t)
lw_in = ( 1.0_wp - fac_dt ) * rad_lw_in_f%var1d(tm) &
+ fac_dt * rad_lw_in_f%var1d(t)
!
!-- Limit shortwave incoming radiation to positive values, in order
!-- to overcome possible observation errors.
sw_in = MAX( 0.0_wp, sw_in )
sw_in = MERGE( sw_in, 0.0_wp, sun_up )
surf%rad_sw_in = sw_in
surf%rad_lw_in = lw_in
IF ( average_radiation ) THEN
surf%rad_sw_out = albedo_urb * surf%rad_sw_in
surf%rad_lw_out = emissivity_urb * sigma_sb * t_rad_urb**4 &
+ ( 1.0_wp - emissivity_urb ) * surf%rad_lw_in
surf%rad_net = surf%rad_sw_in - surf%rad_sw_out &
+ surf%rad_lw_in - surf%rad_lw_out
surf%rad_lw_out_change_0 = 4.0_wp * emissivity_urb &
* sigma_sb &
* t_rad_urb**3
ELSE
DO m = 1, surf%ns
k = surf%k(m)
surf%rad_sw_out(m) = ( surf%frac(ind_veg_wall,m) * &
surf%albedo(ind_veg_wall,m) &
+ surf%frac(ind_pav_green,m) * &
surf%albedo(ind_pav_green,m) &
+ surf%frac(ind_wat_win,m) * &
surf%albedo(ind_wat_win,m) ) &
* surf%rad_sw_in(m)
surf%rad_lw_out(m) = ( surf%frac(ind_veg_wall,m) * &
surf%emissivity(ind_veg_wall,m) &
+ surf%frac(ind_pav_green,m) * &
surf%emissivity(ind_pav_green,m) &
+ surf%frac(ind_wat_win,m) * &
surf%emissivity(ind_wat_win,m) &
) &
* sigma_sb &
* ( surf%pt_surface(m) * exner(k) )**4
surf%rad_lw_out_change_0(m) = &
( surf%frac(ind_veg_wall,m) * &
surf%emissivity(ind_veg_wall,m) &
+ surf%frac(ind_pav_green,m) * &
surf%emissivity(ind_pav_green,m) &
+ surf%frac(ind_wat_win,m) * &
surf%emissivity(ind_wat_win,m) &
) * 4.0_wp * sigma_sb &
* ( surf%pt_surface(m) * exner(k) )**3
ENDDO
ENDIF
!
!-- If diffuse shortwave radiation is available, store it on
!-- the respective files.
IF ( rad_sw_in_dif_f%from_file ) THEN
sw_in_dif= ( 1.0_wp - fac_dt ) * rad_sw_in_dif_f%var1d(tm) &
+ fac_dt * rad_sw_in_dif_f%var1d(t)
IF ( ALLOCATED( rad_sw_in_diff ) ) rad_sw_in_diff = sw_in_dif
IF ( ALLOCATED( rad_sw_in_dir ) ) rad_sw_in_dir = sw_in &
- sw_in_dif
!
!-- Diffuse longwave radiation equals the total downwelling
!-- longwave radiation
IF ( ALLOCATED( rad_lw_in_diff ) ) rad_lw_in_diff = lw_in
ENDIF
!
!-- level-of-detail = 2
ELSE
DO m = 1, surf%ns
i = surf%i(m)
j = surf%j(m)
k = surf%k(m)
surf%rad_sw_in(m) = ( 1.0_wp - fac_dt ) &
* rad_sw_in_f%var3d(tm,j,i) &
+ fac_dt * rad_sw_in_f%var3d(t,j,i)
!
!-- Limit shortwave incoming radiation to positive values, in
!-- order to overcome possible observation errors.
surf%rad_sw_in(m) = MAX( 0.0_wp, surf%rad_sw_in(m) )
surf%rad_sw_in(m) = MERGE( surf%rad_sw_in(m), 0.0_wp, sun_up )
surf%rad_lw_in(m) = ( 1.0_wp - fac_dt ) &
* rad_lw_in_f%var3d(tm,j,i) &
+ fac_dt * rad_lw_in_f%var3d(t,j,i)
!
!-- Weighted average according to surface fraction.
surf%rad_sw_out(m) = ( surf%frac(ind_veg_wall,m) * &
surf%albedo(ind_veg_wall,m) &
+ surf%frac(ind_pav_green,m) * &
surf%albedo(ind_pav_green,m) &
+ surf%frac(ind_wat_win,m) * &
surf%albedo(ind_wat_win,m) ) &
* surf%rad_sw_in(m)
surf%rad_lw_out(m) = ( surf%frac(ind_veg_wall,m) * &
surf%emissivity(ind_veg_wall,m) &
+ surf%frac(ind_pav_green,m) * &
surf%emissivity(ind_pav_green,m) &
+ surf%frac(ind_wat_win,m) * &
surf%emissivity(ind_wat_win,m) &
) &
* sigma_sb &
* ( surf%pt_surface(m) * exner(k) )**4
surf%rad_lw_out_change_0(m) = &
( surf%frac(ind_veg_wall,m) * &
surf%emissivity(ind_veg_wall,m) &
+ surf%frac(ind_pav_green,m) * &
surf%emissivity(ind_pav_green,m) &
+ surf%frac(ind_wat_win,m) * &
surf%emissivity(ind_wat_win,m) &
) * 4.0_wp * sigma_sb &
* ( surf%pt_surface(m) * exner(k) )**3
surf%rad_net(m) = surf%rad_sw_in(m) - surf%rad_sw_out(m) &
+ surf%rad_lw_in(m) - surf%rad_lw_out(m)
!
!-- If diffuse shortwave radiation is available, store it on
!-- the respective files.
IF ( rad_sw_in_dif_f%from_file ) THEN
IF ( ALLOCATED( rad_sw_in_diff ) ) &
rad_sw_in_diff(j,i) = ( 1.0_wp - fac_dt ) &
* rad_sw_in_dif_f%var3d(tm,j,i) &
+ fac_dt * rad_sw_in_dif_f%var3d(t,j,i)
!
!-- dir = sw_in - sw_in_dif.
IF ( ALLOCATED( rad_sw_in_dir ) ) &
rad_sw_in_dir(j,i) = surf%rad_sw_in(m) - &
rad_sw_in_diff(j,i)
!
!-- Diffuse longwave radiation equals the total downwelling
!-- longwave radiation
IF ( ALLOCATED( rad_lw_in_diff ) ) &
rad_lw_in_diff(j,i) = surf%rad_lw_in(m)
ENDIF
ENDDO
ENDIF
!
!-- Store radiation also on 2D arrays, which are still used for
!-- direct-diffuse splitting. Note, this is only required
!-- for horizontal surfaces, which covers all x,y position.
IF ( horizontal ) THEN
DO m = 1, surf%ns
i = surf%i(m)
j = surf%j(m)
rad_sw_in(0,j,i) = surf%rad_sw_in(m)
rad_lw_in(0,j,i) = surf%rad_lw_in(m)
rad_sw_out(0,j,i) = surf%rad_sw_out(m)
rad_lw_out(0,j,i) = surf%rad_lw_out(m)
ENDDO
ENDIF
END SUBROUTINE radiation_external_surf
END SUBROUTINE radiation_external
!------------------------------------------------------------------------------!
! Description:
! ------------
!> A simple clear sky radiation model
!------------------------------------------------------------------------------!
SUBROUTINE radiation_clearsky
IMPLICIT NONE
INTEGER(iwp) :: l !< running index for surface orientation
LOGICAL :: horizontal !< flag indicating treatment of horinzontal surfaces
REAL(wp) :: pt1 !< potential temperature at first grid level or mean value at urban layer top
REAL(wp) :: pt1_l !< potential temperature at first grid level or mean value at urban layer top at local subdomain
REAL(wp) :: ql1 !< liquid water mixing ratio at first grid level or mean value at urban layer top
REAL(wp) :: ql1_l !< liquid water mixing ratio at first grid level or mean value at urban layer top at local subdomain
TYPE(surf_type), POINTER :: surf !< pointer on respective surface type, used to generalize routine
!
!-- Calculate current zenith angle
CALL get_date_time( time_since_reference_point, &
day_of_year=day_of_year, &
second_of_day=second_of_day )
CALL calc_zenith( day_of_year, second_of_day )
!
!-- Calculate sky transmissivity
sky_trans = 0.6_wp + 0.2_wp * cos_zenith
!
!-- Calculate value of the Exner function at model surface
!
!-- In case averaged radiation is used, calculate mean temperature and
!-- liquid water mixing ratio at the urban-layer top.
IF ( average_radiation ) THEN
pt1 = 0.0_wp
IF ( bulk_cloud_model .OR. cloud_droplets ) ql1 = 0.0_wp
pt1_l = SUM( pt(nz_urban_t,nys:nyn,nxl:nxr) )
IF ( bulk_cloud_model .OR. cloud_droplets ) ql1_l = SUM( ql(nz_urban_t,nys:nyn,nxl:nxr) )
#if defined( __parallel )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( pt1_l, pt1, 1, MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllReduce1:', ierr, pt1_l, pt1
FLUSH(9)
ENDIF
IF ( bulk_cloud_model .OR. cloud_droplets ) THEN
CALL MPI_ALLREDUCE( ql1_l, ql1, 1, MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllReduce2:', ierr, ql1_l, ql1
FLUSH(9)
ENDIF
ENDIF
#else
pt1 = pt1_l
IF ( bulk_cloud_model .OR. cloud_droplets ) ql1 = ql1_l
#endif
IF ( bulk_cloud_model .OR. cloud_droplets ) pt1 = pt1 + lv_d_cp / exner(nz_urban_t) * ql1
!
!-- Finally, divide by number of grid points
pt1 = pt1 / REAL( ( nx + 1 ) * ( ny + 1 ), KIND=wp )
ENDIF
!
!-- Call clear-sky calculation for each surface orientation.
!-- First, horizontal surfaces
horizontal = .TRUE.
surf => surf_lsm_h
CALL radiation_clearsky_surf
surf => surf_usm_h
CALL radiation_clearsky_surf
horizontal = .FALSE.
!
!-- Vertical surfaces
DO l = 0, 3
surf => surf_lsm_v(l)
CALL radiation_clearsky_surf
surf => surf_usm_v(l)
CALL radiation_clearsky_surf
ENDDO
CONTAINS
SUBROUTINE radiation_clearsky_surf
IMPLICIT NONE
INTEGER(iwp) :: i !< index x-direction
INTEGER(iwp) :: j !< index y-direction
INTEGER(iwp) :: k !< index z-direction
INTEGER(iwp) :: m !< running index for surface elements
IF ( surf%ns < 1 ) RETURN
!
!-- Calculate radiation fluxes and net radiation (rad_net) assuming
!-- homogeneous urban radiation conditions.
IF ( average_radiation ) THEN
k = nz_urban_t
surf%rad_sw_in = solar_constant * sky_trans * cos_zenith
surf%rad_sw_out = albedo_urb * surf%rad_sw_in
surf%rad_lw_in = emissivity_atm_clsky * sigma_sb * (pt1 * exner(k+1))**4
surf%rad_lw_out = emissivity_urb * sigma_sb * (t_rad_urb)**4 &
+ (1.0_wp - emissivity_urb) * surf%rad_lw_in
surf%rad_net = surf%rad_sw_in - surf%rad_sw_out &
+ surf%rad_lw_in - surf%rad_lw_out
surf%rad_lw_out_change_0 = 4.0_wp * emissivity_urb * sigma_sb &
* (t_rad_urb)**3
!
!-- Calculate radiation fluxes and net radiation (rad_net) for each surface
!-- element.
ELSE
DO m = 1, surf%ns
i = surf%i(m)
j = surf%j(m)
k = surf%k(m)
surf%rad_sw_in(m) = solar_constant * sky_trans * cos_zenith
!
!-- Weighted average according to surface fraction.
!-- ATTENTION: when radiation interactions are switched on the
!-- calculated fluxes below are not actually used as they are
!-- overwritten in radiation_interaction.
surf%rad_sw_out(m) = ( surf%frac(ind_veg_wall,m) * &
surf%albedo(ind_veg_wall,m) &
+ surf%frac(ind_pav_green,m) * &
surf%albedo(ind_pav_green,m) &
+ surf%frac(ind_wat_win,m) * &
surf%albedo(ind_wat_win,m) ) &
* surf%rad_sw_in(m)
surf%rad_lw_out(m) = ( surf%frac(ind_veg_wall,m) * &
surf%emissivity(ind_veg_wall,m) &
+ surf%frac(ind_pav_green,m) * &
surf%emissivity(ind_pav_green,m) &
+ surf%frac(ind_wat_win,m) * &
surf%emissivity(ind_wat_win,m) &
) &
* sigma_sb &
* ( surf%pt_surface(m) * exner(nzb) )**4
surf%rad_lw_out_change_0(m) = &
( surf%frac(ind_veg_wall,m) * &
surf%emissivity(ind_veg_wall,m) &
+ surf%frac(ind_pav_green,m) * &
surf%emissivity(ind_pav_green,m) &
+ surf%frac(ind_wat_win,m) * &
surf%emissivity(ind_wat_win,m) &
) * 4.0_wp * sigma_sb &
* ( surf%pt_surface(m) * exner(nzb) )** 3
IF ( bulk_cloud_model .OR. cloud_droplets ) THEN
pt1 = pt(k,j,i) + lv_d_cp / exner(k) * ql(k,j,i)
surf%rad_lw_in(m) = emissivity_atm_clsky * sigma_sb * (pt1 * exner(k))**4
ELSE
surf%rad_lw_in(m) = emissivity_atm_clsky * sigma_sb * (pt(k,j,i) * exner(k))**4
ENDIF
surf%rad_net(m) = surf%rad_sw_in(m) - surf%rad_sw_out(m) &
+ surf%rad_lw_in(m) - surf%rad_lw_out(m)
ENDDO
ENDIF
!
!-- Fill out values in radiation arrays. Note, this is only required
!-- for horizontal surfaces, which covers all x,y position.
IF ( horizontal ) THEN
DO m = 1, surf%ns
i = surf%i(m)
j = surf%j(m)
rad_sw_in(0,j,i) = surf%rad_sw_in(m)
rad_sw_out(0,j,i) = surf%rad_sw_out(m)
rad_lw_in(0,j,i) = surf%rad_lw_in(m)
rad_lw_out(0,j,i) = surf%rad_lw_out(m)
ENDDO
ENDIF
END SUBROUTINE radiation_clearsky_surf
END SUBROUTINE radiation_clearsky
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This scheme keeps the prescribed net radiation constant during the run
!------------------------------------------------------------------------------!
SUBROUTINE radiation_constant
IMPLICIT NONE
INTEGER(iwp) :: l !< running index for surface orientation
LOGICAL :: horizontal !< flag indicating treatment of horinzontal surfaces
REAL(wp) :: pt1 !< potential temperature at first grid level or mean value at urban layer top
REAL(wp) :: pt1_l !< potential temperature at first grid level or mean value at urban layer top at local subdomain
REAL(wp) :: ql1 !< liquid water mixing ratio at first grid level or mean value at urban layer top
REAL(wp) :: ql1_l !< liquid water mixing ratio at first grid level or mean value at urban layer top at local subdomain
TYPE(surf_type), POINTER :: surf !< pointer on respective surface type, used to generalize routine
!
!-- In case averaged radiation is used, calculate mean temperature and
!-- liquid water mixing ratio at the urban-layer top.
IF ( average_radiation ) THEN
pt1 = 0.0_wp
IF ( bulk_cloud_model .OR. cloud_droplets ) ql1 = 0.0_wp
pt1_l = SUM( pt(nz_urban_t,nys:nyn,nxl:nxr) )
IF ( bulk_cloud_model .OR. cloud_droplets ) ql1_l = SUM( ql(nz_urban_t,nys:nyn,nxl:nxr) )
#if defined( __parallel )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( pt1_l, pt1, 1, MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllReduce3:', ierr, pt1_l, pt1
FLUSH(9)
ENDIF
IF ( bulk_cloud_model .OR. cloud_droplets ) THEN
CALL MPI_ALLREDUCE( ql1_l, ql1, 1, MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllReduce4:', ierr, ql1_l, ql1
FLUSH(9)
ENDIF
ENDIF
#else
pt1 = pt1_l
IF ( bulk_cloud_model .OR. cloud_droplets ) ql1 = ql1_l
#endif
IF ( bulk_cloud_model .OR. cloud_droplets ) pt1 = pt1 + lv_d_cp / exner(nz_urban_t+1) * ql1
!
!-- Finally, divide by number of grid points
pt1 = pt1 / REAL( ( nx + 1 ) * ( ny + 1 ), KIND=wp )
ENDIF
!
!-- First, horizontal surfaces
horizontal = .TRUE.
surf => surf_lsm_h
CALL radiation_constant_surf
surf => surf_usm_h
CALL radiation_constant_surf
horizontal = .FALSE.
!
!-- Vertical surfaces
DO l = 0, 3
surf => surf_lsm_v(l)
CALL radiation_constant_surf
surf => surf_usm_v(l)
CALL radiation_constant_surf
ENDDO
CONTAINS
SUBROUTINE radiation_constant_surf
IMPLICIT NONE
INTEGER(iwp) :: i !< index x-direction
INTEGER(iwp) :: ioff !< offset between surface element and adjacent grid point along x
INTEGER(iwp) :: j !< index y-direction
INTEGER(iwp) :: joff !< offset between surface element and adjacent grid point along y
INTEGER(iwp) :: k !< index z-direction
INTEGER(iwp) :: koff !< offset between surface element and adjacent grid point along z
INTEGER(iwp) :: m !< running index for surface elements
IF ( surf%ns < 1 ) RETURN
!-- Calculate homogenoeus urban radiation fluxes
IF ( average_radiation ) THEN
surf%rad_net = net_radiation
surf%rad_lw_in = emissivity_atm_clsky * sigma_sb * (pt1 * exner(nz_urban_t+1))**4
surf%rad_lw_out = emissivity_urb * sigma_sb * (t_rad_urb)**4 &
+ ( 1.0_wp - emissivity_urb ) & ! shouldn't be this a bulk value -- emissivity_urb?
* surf%rad_lw_in
surf%rad_lw_out_change_0 = 4.0_wp * emissivity_urb * sigma_sb &
* t_rad_urb**3
surf%rad_sw_in = ( surf%rad_net - surf%rad_lw_in &
+ surf%rad_lw_out ) &
/ ( 1.0_wp - albedo_urb )
surf%rad_sw_out = albedo_urb * surf%rad_sw_in
!
!-- Calculate radiation fluxes for each surface element
ELSE
!
!-- Determine index offset between surface element and adjacent
!-- atmospheric grid point
ioff = surf%ioff
joff = surf%joff
koff = surf%koff
!
!-- Prescribe net radiation and estimate the remaining radiative fluxes
DO m = 1, surf%ns
i = surf%i(m)
j = surf%j(m)
k = surf%k(m)
surf%rad_net(m) = net_radiation
IF ( bulk_cloud_model .OR. cloud_droplets ) THEN
pt1 = pt(k,j,i) + lv_d_cp / exner(k) * ql(k,j,i)
surf%rad_lw_in(m) = emissivity_atm_clsky * sigma_sb * (pt1 * exner(k))**4
ELSE
surf%rad_lw_in(m) = emissivity_atm_clsky * sigma_sb * &
( pt(k,j,i) * exner(k) )**4
ENDIF
!
!-- Weighted average according to surface fraction.
surf%rad_lw_out(m) = ( surf%frac(ind_veg_wall,m) * &
surf%emissivity(ind_veg_wall,m) &
+ surf%frac(ind_pav_green,m) * &
surf%emissivity(ind_pav_green,m) &
+ surf%frac(ind_wat_win,m) * &
surf%emissivity(ind_wat_win,m) &
) &
* sigma_sb &
* ( surf%pt_surface(m) * exner(nzb) )**4
surf%rad_sw_in(m) = ( surf%rad_net(m) - surf%rad_lw_in(m) &
+ surf%rad_lw_out(m) ) &
/ ( 1.0_wp - &
( surf%frac(ind_veg_wall,m) * &
surf%albedo(ind_veg_wall,m) &
+ surf%frac(ind_pav_green,m) * &
surf%albedo(ind_pav_green,m) &
+ surf%frac(ind_wat_win,m) * &
surf%albedo(ind_wat_win,m) ) &
)
surf%rad_sw_out(m) = ( surf%frac(ind_veg_wall,m) * &
surf%albedo(ind_veg_wall,m) &
+ surf%frac(ind_pav_green,m) * &
surf%albedo(ind_pav_green,m) &
+ surf%frac(ind_wat_win,m) * &
surf%albedo(ind_wat_win,m) ) &
* surf%rad_sw_in(m)
ENDDO
ENDIF
!
!-- Fill out values in radiation arrays. Note, this is only required
!-- for horizontal surfaces, which covers all x,y position.
IF ( horizontal ) THEN
DO m = 1, surf%ns
i = surf%i(m)
j = surf%j(m)
rad_sw_in(0,j,i) = surf%rad_sw_in(m)
rad_sw_out(0,j,i) = surf%rad_sw_out(m)
rad_lw_in(0,j,i) = surf%rad_lw_in(m)
rad_lw_out(0,j,i) = surf%rad_lw_out(m)
ENDDO
ENDIF
END SUBROUTINE radiation_constant_surf
END SUBROUTINE radiation_constant
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Header output for radiation model
!------------------------------------------------------------------------------!
SUBROUTINE radiation_header ( io )
IMPLICIT NONE
INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file
!
!-- Write radiation model header
WRITE( io, 3 )
IF ( radiation_scheme == "constant" ) THEN
WRITE( io, 4 ) net_radiation
ELSEIF ( radiation_scheme == "clear-sky" ) THEN
WRITE( io, 5 )
ELSEIF ( radiation_scheme == "rrtmg" ) THEN
WRITE( io, 6 )
IF ( .NOT. lw_radiation ) WRITE( io, 10 )
IF ( .NOT. sw_radiation ) WRITE( io, 11 )
ELSEIF ( radiation_scheme == "external" ) THEN
WRITE( io, 14 )
ENDIF
IF ( albedo_type_f%from_file .OR. vegetation_type_f%from_file .OR. &
pavement_type_f%from_file .OR. water_type_f%from_file .OR. &
building_type_f%from_file ) THEN
WRITE( io, 13 )
ELSE
IF ( albedo_type == 0 ) THEN
WRITE( io, 7 ) albedo
ELSE
WRITE( io, 8 ) TRIM( albedo_type_name(albedo_type) )
ENDIF
ENDIF
IF ( constant_albedo ) THEN
WRITE( io, 9 )
ENDIF
WRITE( io, 12 ) dt_radiation
3 FORMAT (//' Radiation model information:'/ &
' ----------------------------'/)
4 FORMAT (' --> Using constant net radiation: net_radiation = ', F6.2, &
// 'W/m**2')
5 FORMAT (' --> Simple radiation scheme for clear sky is used (no clouds,',&
' default)')
6 FORMAT (' --> RRTMG scheme is used')
7 FORMAT (/' User-specific surface albedo: albedo =', F6.3)
8 FORMAT (/' Albedo is set for land surface type: ', A)
9 FORMAT (/' --> Albedo is fixed during the run')
10 FORMAT (/' --> Longwave radiation is disabled')
11 FORMAT (/' --> Shortwave radiation is disabled.')
12 FORMAT (' Timestep: dt_radiation = ', F6.2, ' s')
13 FORMAT (/' Albedo is set individually for each xy-location, according ', &
'to given surface type.')
14 FORMAT (' --> External radiation forcing is used')
END SUBROUTINE radiation_header
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Parin for &radiation_parameters for radiation model
!------------------------------------------------------------------------------!
SUBROUTINE radiation_parin
IMPLICIT NONE
CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file
NAMELIST /radiation_par/ albedo, albedo_lw_dif, albedo_lw_dir, &
albedo_sw_dif, albedo_sw_dir, albedo_type, &
constant_albedo, dt_radiation, emissivity, &
lw_radiation, max_raytracing_dist, &
min_irrf_value, mrt_geom_human, &
mrt_include_sw, mrt_nlevels, &
mrt_skip_roof, net_radiation, nrefsteps, &
plant_lw_interact, rad_angular_discretization,&
radiation_interactions_on, radiation_scheme, &
raytrace_discrete_azims, &
raytrace_discrete_elevs, raytrace_mpi_rma, &
skip_time_do_radiation, surface_reflections, &
svfnorm_report_thresh, sw_radiation, &
unscheduled_radiation_calls
NAMELIST /radiation_parameters/ albedo, albedo_lw_dif, albedo_lw_dir, &
albedo_sw_dif, albedo_sw_dir, albedo_type, &
constant_albedo, dt_radiation, emissivity, &
lw_radiation, max_raytracing_dist, &
min_irrf_value, mrt_geom_human, &
mrt_include_sw, mrt_nlevels, &
mrt_skip_roof, net_radiation, nrefsteps, &
plant_lw_interact, rad_angular_discretization,&
radiation_interactions_on, radiation_scheme, &
raytrace_discrete_azims, &
raytrace_discrete_elevs, raytrace_mpi_rma, &
skip_time_do_radiation, surface_reflections, &
svfnorm_report_thresh, sw_radiation, &
unscheduled_radiation_calls
line = ' '
!
!-- Try to find radiation model namelist
REWIND ( 11 )
line = ' '
DO WHILE ( INDEX( line, '&radiation_parameters' ) == 0 )
READ ( 11, '(A)', END=12 ) line
ENDDO
BACKSPACE ( 11 )
!
!-- Read user-defined namelist
READ ( 11, radiation_parameters, ERR = 10 )
!
!-- Set flag that indicates that the radiation model is switched on
radiation = .TRUE.
GOTO 14
10 BACKSPACE( 11 )
READ( 11 , '(A)') line
CALL parin_fail_message( 'radiation_parameters', line )
!
!-- Try to find old namelist
12 REWIND ( 11 )
line = ' '
DO WHILE ( INDEX( line, '&radiation_par' ) == 0 )
READ ( 11, '(A)', END=14 ) line
ENDDO
BACKSPACE ( 11 )
!
!-- Read user-defined namelist
READ ( 11, radiation_par, ERR = 13, END = 14 )
message_string = 'namelist radiation_par is deprecated and will be ' // &
'removed in near future. Please use namelist ' // &
'radiation_parameters instead'
CALL message( 'radiation_parin', 'PA0487', 0, 1, 0, 6, 0 )
!
!-- Set flag that indicates that the radiation model is switched on
radiation = .TRUE.
IF ( .NOT. radiation_interactions_on .AND. surface_reflections ) THEN
message_string = 'surface_reflections is allowed only when ' // &
'radiation_interactions_on is set to TRUE'
CALL message( 'radiation_parin', 'PA0293',1, 2, 0, 6, 0 )
ENDIF
GOTO 14
13 BACKSPACE( 11 )
READ( 11 , '(A)') line
CALL parin_fail_message( 'radiation_par', line )
14 CONTINUE
END SUBROUTINE radiation_parin
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Implementation of the RRTMG radiation_scheme
!------------------------------------------------------------------------------!
SUBROUTINE radiation_rrtmg
#if defined ( __rrtmg )
USE indices, &
ONLY: nbgp
USE palm_date_time_mod, &
ONLY: hours_per_day
USE particle_attributes, &
ONLY: grid_particles, number_of_particles, particles, prt_count
IMPLICIT NONE
INTEGER(iwp) :: i, j, k, l, m, n !< loop indices
INTEGER(iwp) :: k_topo_l !< topography top index
INTEGER(iwp) :: k_topo !< topography top index
REAL(wp) :: d_hours_day !< 1 / hours-per-day
REAL(wp) :: nc_rad, & !< number concentration of cloud droplets
s_r2, & !< weighted sum over all droplets with r^2
s_r3 !< weighted sum over all droplets with r^3
REAL(wp), DIMENSION(0:nzt+1) :: pt_av, q_av, ql_av
REAL(wp), DIMENSION(0:0) :: zenith !< to provide indexed array
!
!-- Just dummy arguments
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: rrtm_lw_taucld_dum, &
rrtm_lw_tauaer_dum, &
rrtm_sw_taucld_dum, &
rrtm_sw_ssacld_dum, &
rrtm_sw_asmcld_dum, &
rrtm_sw_fsfcld_dum, &
rrtm_sw_tauaer_dum, &
rrtm_sw_ssaaer_dum, &
rrtm_sw_asmaer_dum, &
rrtm_sw_ecaer_dum
!
!-- Pre-calculate parameters
d_hours_day = 1.0_wp / REAL( hours_per_day, KIND=wp )
!
!-- Calculate current (cosine of) zenith angle and whether the sun is up
CALL get_date_time( time_since_reference_point, &
day_of_year=day_of_year, &
second_of_day=second_of_day )
CALL calc_zenith( day_of_year, second_of_day )
zenith(0) = cos_zenith
!
!-- Calculate surface albedo. In case average radiation is applied,
!-- this is not required.
#if defined( __netcdf )
IF ( .NOT. constant_albedo ) THEN
!
!-- Horizontally aligned default, natural and urban surfaces
CALL calc_albedo( surf_lsm_h )
CALL calc_albedo( surf_usm_h )
!
!-- Vertically aligned default, natural and urban surfaces
DO l = 0, 3
CALL calc_albedo( surf_lsm_v(l) )
CALL calc_albedo( surf_usm_v(l) )
ENDDO
ENDIF
#endif
!
!-- Prepare input data for RRTMG
!
!-- In case of large scale forcing with surface data, calculate new pressure
!-- profile. nzt_rad might be modified by these calls and all required arrays
!-- will then be re-allocated
IF ( large_scale_forcing .AND. lsf_surf ) THEN
CALL read_sounding_data
CALL read_trace_gas_data
ENDIF
IF ( average_radiation ) THEN
!
!-- Determine minimum topography top index.
k_topo_l = MINVAL( topo_top_ind(nys:nyn,nxl:nxr,0) )
#if defined( __parallel )
CALL MPI_ALLREDUCE( k_topo_l, k_topo, 1, MPI_INTEGER, MPI_MIN, &
comm2d, ierr)
#else
k_topo = k_topo_l
#endif
rrtm_asdir(1) = albedo_urb
rrtm_asdif(1) = albedo_urb
rrtm_aldir(1) = albedo_urb
rrtm_aldif(1) = albedo_urb
rrtm_emis = emissivity_urb
!
!-- Calculate mean pt profile.
CALL calc_mean_profile( pt, 4 )
pt_av = hom(:, 1, 4, 0)
IF ( humidity ) THEN
CALL calc_mean_profile( q, 41 )
q_av = hom(:, 1, 41, 0)
ENDIF
!
!-- Prepare profiles of temperature and H2O volume mixing ratio
rrtm_tlev(0,k_topo+1) = t_rad_urb
IF ( bulk_cloud_model ) THEN
CALL calc_mean_profile( ql, 54 )
! average ql is now in hom(:, 1, 54, 0)
ql_av = hom(:, 1, 54, 0)
DO k = nzb+1, nzt+1
rrtm_tlay(0,k) = pt_av(k) * ( (hyp(k) ) / 100000._wp &
)**.286_wp + lv_d_cp * ql_av(k)
rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * (q_av(k) - ql_av(k))
ENDDO
ELSE
DO k = nzb+1, nzt+1
rrtm_tlay(0,k) = pt_av(k) * ( (hyp(k) ) / 100000._wp &
)**.286_wp
ENDDO
IF ( humidity ) THEN
DO k = nzb+1, nzt+1
rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * q_av(k)
ENDDO
ELSE
rrtm_h2ovmr(0,nzb+1:nzt+1) = 0.0_wp
ENDIF
ENDIF
!
!-- Avoid temperature/humidity jumps at the top of the PALM domain by
!-- linear interpolation from nzt+2 to nzt+7. Jumps are induced by
!-- discrepancies between the values in the domain and those above that
!-- are prescribed in RRTMG
DO k = nzt+2, nzt+7
rrtm_tlay(0,k) = rrtm_tlay(0,nzt+1) &
+ ( rrtm_tlay(0,nzt+8) - rrtm_tlay(0,nzt+1) ) &
/ ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) ) &
* ( rrtm_play(0,k) - rrtm_play(0,nzt+1) )
rrtm_h2ovmr(0,k) = rrtm_h2ovmr(0,nzt+1) &
+ ( rrtm_h2ovmr(0,nzt+8) - rrtm_h2ovmr(0,nzt+1) )&
/ ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) )&
* ( rrtm_play(0,k) - rrtm_play(0,nzt+1) )
ENDDO
!-- Linear interpolate to zw grid. Loop reaches one level further up
!-- due to the staggered grid in RRTMG
DO k = k_topo+2, nzt+8
rrtm_tlev(0,k) = rrtm_tlay(0,k-1) + (rrtm_tlay(0,k) - &
rrtm_tlay(0,k-1)) &
/ ( rrtm_play(0,k) - rrtm_play(0,k-1) ) &
* ( rrtm_plev(0,k) - rrtm_play(0,k-1) )
ENDDO
!
!-- Calculate liquid water path and cloud fraction for each column.
!-- Note that LWP is required in g/m2 instead of kg/kg m.
rrtm_cldfr = 0.0_wp
rrtm_reliq = 0.0_wp
rrtm_cliqwp = 0.0_wp
rrtm_icld = 0
IF ( bulk_cloud_model ) THEN
DO k = nzb+1, nzt+1
rrtm_cliqwp(0,k) = ql_av(k) * 1000._wp * &
(rrtm_plev(0,k) - rrtm_plev(0,k+1)) &
* 100._wp / g
IF ( rrtm_cliqwp(0,k) > 0._wp ) THEN
rrtm_cldfr(0,k) = 1._wp
IF ( rrtm_icld == 0 ) rrtm_icld = 1
!
!-- Calculate cloud droplet effective radius
rrtm_reliq(0,k) = 1.0E6_wp * ( 3.0_wp * ql_av(k) &
* rho_surface &
/ ( 4.0_wp * pi * nc_const * rho_l ) &
)**0.33333333333333_wp &
* EXP( LOG( sigma_gc )**2 )
!
!-- Limit effective radius
IF ( rrtm_reliq(0,k) > 0.0_wp ) THEN
rrtm_reliq(0,k) = MAX(rrtm_reliq(0,k),2.5_wp)
rrtm_reliq(0,k) = MIN(rrtm_reliq(0,k),60.0_wp)
ENDIF
ENDIF
ENDDO
ENDIF
!
!-- Set surface temperature
rrtm_tsfc = t_rad_urb
IF ( lw_radiation ) THEN
!
!-- Due to technical reasons, copy optical depth to dummy arguments
!-- which are allocated on the exact size as the rrtmg_lw is called.
!-- As one dimesion is allocated with zero size, compiler complains
!-- that rank of the array does not match that of the
!-- assumed-shaped arguments in the RRTMG library. In order to
!-- avoid this, write to dummy arguments and give pass the entire
!-- dummy array. Seems to be the only existing work-around.
ALLOCATE( rrtm_lw_taucld_dum(1:nbndlw+1,0:0,k_topo+1:nzt_rad+1) )
ALLOCATE( rrtm_lw_tauaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndlw+1) )
rrtm_lw_taucld_dum = &
rrtm_lw_taucld(1:nbndlw+1,0:0,k_topo+1:nzt_rad+1)
rrtm_lw_tauaer_dum = &
rrtm_lw_tauaer(0:0,k_topo+1:nzt_rad+1,1:nbndlw+1)
CALL rrtmg_lw( 1, &
nzt_rad-k_topo, &
rrtm_icld, &
rrtm_idrv, &
rrtm_play(:,k_topo+1:), &
rrtm_plev(:,k_topo+1:), &
rrtm_tlay(:,k_topo+1:), &
rrtm_tlev(:,k_topo+1:), &
rrtm_tsfc, &
rrtm_h2ovmr(:,k_topo+1:), &
rrtm_o3vmr(:,k_topo+1:), &
rrtm_co2vmr(:,k_topo+1:), &
rrtm_ch4vmr(:,k_topo+1:), &
rrtm_n2ovmr(:,k_topo+1:), &
rrtm_o2vmr(:,k_topo+1:), &
rrtm_cfc11vmr(:,k_topo+1:), &
rrtm_cfc12vmr(:,k_topo+1:), &
rrtm_cfc22vmr(:,k_topo+1:), &
rrtm_ccl4vmr(:,k_topo+1:), &
rrtm_emis, &
rrtm_inflglw, &
rrtm_iceflglw, &
rrtm_liqflglw, &
rrtm_cldfr(:,k_topo+1:), &
rrtm_lw_taucld_dum, &
rrtm_cicewp(:,k_topo+1:), &
rrtm_cliqwp(:,k_topo+1:), &
rrtm_reice(:,k_topo+1:), &
rrtm_reliq(:,k_topo+1:), &
rrtm_lw_tauaer_dum, &
rrtm_lwuflx(:,k_topo:), &
rrtm_lwdflx(:,k_topo:), &
rrtm_lwhr(:,k_topo+1:), &
rrtm_lwuflxc(:,k_topo:), &
rrtm_lwdflxc(:,k_topo:), &
rrtm_lwhrc(:,k_topo+1:), &
rrtm_lwuflx_dt(:,k_topo:), &
rrtm_lwuflxc_dt(:,k_topo:) )
DEALLOCATE ( rrtm_lw_taucld_dum )
DEALLOCATE ( rrtm_lw_tauaer_dum )
!
!-- Save fluxes
DO k = nzb, nzt+1
rad_lw_in(k,:,:) = rrtm_lwdflx(0,k)
rad_lw_out(k,:,:) = rrtm_lwuflx(0,k)
ENDDO
rad_lw_in_diff(:,:) = rad_lw_in(k_topo,:,:)
!
!-- Save heating rates (convert from K/d to K/h).
!-- Further, even though an aggregated radiation is computed, map
!-- signle-column profiles on top of any topography, in order to
!-- obtain correct near surface radiation heating/cooling rates.
DO i = nxl, nxr
DO j = nys, nyn
k_topo_l = topo_top_ind(j,i,0)
DO k = k_topo_l+1, nzt+1
rad_lw_hr(k,j,i) = rrtm_lwhr(0,k-k_topo_l) * d_hours_day
rad_lw_cs_hr(k,j,i) = rrtm_lwhrc(0,k-k_topo_l) * d_hours_day
ENDDO
ENDDO
ENDDO
ENDIF
IF ( sw_radiation .AND. sun_up ) THEN
!
!-- Due to technical reasons, copy optical depths and other
!-- to dummy arguments which are allocated on the exact size as the
!-- rrtmg_sw is called.
!-- As one dimesion is allocated with zero size, compiler complains
!-- that rank of the array does not match that of the
!-- assumed-shaped arguments in the RRTMG library. In order to
!-- avoid this, write to dummy arguments and give pass the entire
!-- dummy array. Seems to be the only existing work-around.
ALLOCATE( rrtm_sw_taucld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) )
ALLOCATE( rrtm_sw_ssacld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) )
ALLOCATE( rrtm_sw_asmcld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) )
ALLOCATE( rrtm_sw_fsfcld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) )
ALLOCATE( rrtm_sw_tauaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) )
ALLOCATE( rrtm_sw_ssaaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) )
ALLOCATE( rrtm_sw_asmaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) )
ALLOCATE( rrtm_sw_ecaer_dum(0:0,k_topo+1:nzt_rad+1,1:naerec+1) )
rrtm_sw_taucld_dum = rrtm_sw_taucld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1)
rrtm_sw_ssacld_dum = rrtm_sw_ssacld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1)
rrtm_sw_asmcld_dum = rrtm_sw_asmcld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1)
rrtm_sw_fsfcld_dum = rrtm_sw_fsfcld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1)
rrtm_sw_tauaer_dum = rrtm_sw_tauaer(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1)
rrtm_sw_ssaaer_dum = rrtm_sw_ssaaer(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1)
rrtm_sw_asmaer_dum = rrtm_sw_asmaer(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1)
rrtm_sw_ecaer_dum = rrtm_sw_ecaer(0:0,k_topo+1:nzt_rad+1,1:naerec+1)
CALL rrtmg_sw( 1, &
nzt_rad-k_topo, &
rrtm_icld, &
rrtm_iaer, &
rrtm_play(:,k_topo+1:nzt_rad+1), &
rrtm_plev(:,k_topo+1:nzt_rad+2), &
rrtm_tlay(:,k_topo+1:nzt_rad+1), &
rrtm_tlev(:,k_topo+1:nzt_rad+2), &
rrtm_tsfc, &
rrtm_h2ovmr(:,k_topo+1:nzt_rad+1), &
rrtm_o3vmr(:,k_topo+1:nzt_rad+1), &
rrtm_co2vmr(:,k_topo+1:nzt_rad+1), &
rrtm_ch4vmr(:,k_topo+1:nzt_rad+1), &
rrtm_n2ovmr(:,k_topo+1:nzt_rad+1), &
rrtm_o2vmr(:,k_topo+1:nzt_rad+1), &
rrtm_asdir, &
rrtm_asdif, &
rrtm_aldir, &
rrtm_aldif, &
zenith, &
0.0_wp, &
day_of_year, &
solar_constant, &
rrtm_inflgsw, &
rrtm_iceflgsw, &
rrtm_liqflgsw, &
rrtm_cldfr(:,k_topo+1:nzt_rad+1), &
rrtm_sw_taucld_dum, &
rrtm_sw_ssacld_dum, &
rrtm_sw_asmcld_dum, &
rrtm_sw_fsfcld_dum, &
rrtm_cicewp(:,k_topo+1:nzt_rad+1), &
rrtm_cliqwp(:,k_topo+1:nzt_rad+1), &
rrtm_reice(:,k_topo+1:nzt_rad+1), &
rrtm_reliq(:,k_topo+1:nzt_rad+1), &
rrtm_sw_tauaer_dum, &
rrtm_sw_ssaaer_dum, &
rrtm_sw_asmaer_dum, &
rrtm_sw_ecaer_dum, &
rrtm_swuflx(:,k_topo:nzt_rad+1), &
rrtm_swdflx(:,k_topo:nzt_rad+1), &
rrtm_swhr(:,k_topo+1:nzt_rad+1), &
rrtm_swuflxc(:,k_topo:nzt_rad+1), &
rrtm_swdflxc(:,k_topo:nzt_rad+1), &
rrtm_swhrc(:,k_topo+1:nzt_rad+1), &
rrtm_dirdflux(:,k_topo:nzt_rad+1), &
rrtm_difdflux(:,k_topo:nzt_rad+1) )
DEALLOCATE( rrtm_sw_taucld_dum )
DEALLOCATE( rrtm_sw_ssacld_dum )
DEALLOCATE( rrtm_sw_asmcld_dum )
DEALLOCATE( rrtm_sw_fsfcld_dum )
DEALLOCATE( rrtm_sw_tauaer_dum )
DEALLOCATE( rrtm_sw_ssaaer_dum )
DEALLOCATE( rrtm_sw_asmaer_dum )
DEALLOCATE( rrtm_sw_ecaer_dum )
!
!-- Save radiation fluxes for the entire depth of the model domain
DO k = nzb, nzt+1
rad_sw_in(k,:,:) = rrtm_swdflx(0,k)
rad_sw_out(k,:,:) = rrtm_swuflx(0,k)
ENDDO
!-- Save direct and diffuse SW radiation at the surface (required by RTM)
rad_sw_in_dir(:,:) = rrtm_dirdflux(0,k_topo)
rad_sw_in_diff(:,:) = rrtm_difdflux(0,k_topo)
!
!-- Save heating rates (convert from K/d to K/s)
DO k = nzb+1, nzt+1
rad_sw_hr(k,:,:) = rrtm_swhr(0,k) * d_hours_day
rad_sw_cs_hr(k,:,:) = rrtm_swhrc(0,k) * d_hours_day
ENDDO
!
!-- Solar radiation is zero during night
ELSE
rad_sw_in = 0.0_wp
rad_sw_out = 0.0_wp
rad_sw_in_dir(:,:) = 0.0_wp
rad_sw_in_diff(:,:) = 0.0_wp
ENDIF
!
!-- RRTMG is called for each (j,i) grid point separately, starting at the
!-- highest topography level. Here no RTM is used since average_radiation is false
ELSE
!
!-- Loop over all grid points
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Prepare profiles of temperature and H2O volume mixing ratio
DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i)
rrtm_tlev(0,nzb+1) = surf_lsm_h%pt_surface(m) * exner(nzb)
ENDDO
DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i)
rrtm_tlev(0,nzb+1) = surf_usm_h%pt_surface(m) * exner(nzb)
ENDDO
IF ( bulk_cloud_model ) THEN
DO k = nzb+1, nzt+1
rrtm_tlay(0,k) = pt(k,j,i) * exner(k) &
+ lv_d_cp * ql(k,j,i)
rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * (q(k,j,i) - ql(k,j,i))
ENDDO
ELSEIF ( cloud_droplets ) THEN
DO k = nzb+1, nzt+1
rrtm_tlay(0,k) = pt(k,j,i) * exner(k) &
+ lv_d_cp * ql(k,j,i)
rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * q(k,j,i)
ENDDO
ELSE
DO k = nzb+1, nzt+1
rrtm_tlay(0,k) = pt(k,j,i) * exner(k)
ENDDO
IF ( humidity ) THEN
DO k = nzb+1, nzt+1
rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * q(k,j,i)
ENDDO
ELSE
rrtm_h2ovmr(0,nzb+1:nzt+1) = 0.0_wp
ENDIF
ENDIF
!
!-- Avoid temperature/humidity jumps at the top of the LES domain by
!-- linear interpolation from nzt+2 to nzt+7
DO k = nzt+2, nzt+7
rrtm_tlay(0,k) = rrtm_tlay(0,nzt+1) &
+ ( rrtm_tlay(0,nzt+8) - rrtm_tlay(0,nzt+1) ) &
/ ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) ) &
* ( rrtm_play(0,k) - rrtm_play(0,nzt+1) )
rrtm_h2ovmr(0,k) = rrtm_h2ovmr(0,nzt+1) &
+ ( rrtm_h2ovmr(0,nzt+8) - rrtm_h2ovmr(0,nzt+1) )&
/ ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) )&
* ( rrtm_play(0,k) - rrtm_play(0,nzt+1) )
ENDDO
!-- Linear interpolate to zw grid
DO k = nzb+2, nzt+8
rrtm_tlev(0,k) = rrtm_tlay(0,k-1) + (rrtm_tlay(0,k) - &
rrtm_tlay(0,k-1)) &
/ ( rrtm_play(0,k) - rrtm_play(0,k-1) ) &
* ( rrtm_plev(0,k) - rrtm_play(0,k-1) )
ENDDO
!
!-- Calculate liquid water path and cloud fraction for each column.
!-- Note that LWP is required in g/m2 instead of kg/kg m.
rrtm_cldfr = 0.0_wp
rrtm_reliq = 0.0_wp
rrtm_cliqwp = 0.0_wp
rrtm_icld = 0
IF ( bulk_cloud_model .OR. cloud_droplets ) THEN
DO k = nzb+1, nzt+1
rrtm_cliqwp(0,k) = ql(k,j,i) * 1000.0_wp * &
(rrtm_plev(0,k) - rrtm_plev(0,k+1)) &
* 100.0_wp / g
IF ( rrtm_cliqwp(0,k) > 0.0_wp ) THEN
rrtm_cldfr(0,k) = 1.0_wp
IF ( rrtm_icld == 0 ) rrtm_icld = 1
!
!-- Calculate cloud droplet effective radius
IF ( bulk_cloud_model ) THEN
!
!-- Calculete effective droplet radius. In case of using
!-- cloud_scheme = 'morrison' and a non reasonable number
!-- of cloud droplets the inital aerosol number
!-- concentration is considered.
IF ( microphysics_morrison ) THEN
IF ( nc(k,j,i) > 1.0E-20_wp ) THEN
nc_rad = nc(k,j,i)
ELSE
nc_rad = na_init
ENDIF
ELSE
nc_rad = nc_const
ENDIF
rrtm_reliq(0,k) = 1.0E6_wp * ( 3.0_wp * ql(k,j,i) &
* rho_surface &
/ ( 4.0_wp * pi * nc_rad * rho_l ) &
)**0.33333333333333_wp &
* EXP( LOG( sigma_gc )**2 )
ELSEIF ( cloud_droplets ) THEN
number_of_particles = prt_count(k,j,i)
IF (number_of_particles <= 0) CYCLE
particles => grid_particles(k,j,i)%particles(1:number_of_particles)
s_r2 = 0.0_wp
s_r3 = 0.0_wp
DO n = 1, number_of_particles
IF ( particles(n)%particle_mask ) THEN
s_r2 = s_r2 + particles(n)%radius**2 * &
particles(n)%weight_factor
s_r3 = s_r3 + particles(n)%radius**3 * &
particles(n)%weight_factor
ENDIF
ENDDO
IF ( s_r2 > 0.0_wp ) rrtm_reliq(0,k) = s_r3 / s_r2
ENDIF
!
!-- Limit effective radius
IF ( rrtm_reliq(0,k) > 0.0_wp ) THEN
rrtm_reliq(0,k) = MAX(rrtm_reliq(0,k),2.5_wp)
rrtm_reliq(0,k) = MIN(rrtm_reliq(0,k),60.0_wp)
ENDIF
ENDIF
ENDDO
ENDIF
!
!-- Write surface emissivity and surface temperature at current
!-- surface element on RRTMG-shaped array.
!-- Please note, as RRTMG is a single column model, surface attributes
!-- are only obtained from horizontally aligned surfaces (for
!-- simplicity). Taking surface attributes from horizontal and
!-- vertical walls would lead to multiple solutions.
!-- Moreover, for natural- and urban-type surfaces, several surface
!-- classes can exist at a surface element next to each other.
!-- To obtain bulk parameters, apply a weighted average for these
!-- surfaces.
DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i)
rrtm_emis = surf_lsm_h%frac(ind_veg_wall,m) * &
surf_lsm_h%emissivity(ind_veg_wall,m) + &
surf_lsm_h%frac(ind_pav_green,m) * &
surf_lsm_h%emissivity(ind_pav_green,m) + &
surf_lsm_h%frac(ind_wat_win,m) * &
surf_lsm_h%emissivity(ind_wat_win,m)
rrtm_tsfc = surf_lsm_h%pt_surface(m) * exner(nzb)
ENDDO
DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i)
rrtm_emis = surf_usm_h%frac(ind_veg_wall,m) * &
surf_usm_h%emissivity(ind_veg_wall,m) + &
surf_usm_h%frac(ind_pav_green,m) * &
surf_usm_h%emissivity(ind_pav_green,m) + &
surf_usm_h%frac(ind_wat_win,m) * &
surf_usm_h%emissivity(ind_wat_win,m)
rrtm_tsfc = surf_usm_h%pt_surface(m) * exner(nzb)
ENDDO
!
!-- Obtain topography top index (lower bound of RRTMG)
k_topo = topo_top_ind(j,i,0)
IF ( lw_radiation ) THEN
!
!-- Due to technical reasons, copy optical depth to dummy arguments
!-- which are allocated on the exact size as the rrtmg_lw is called.
!-- As one dimesion is allocated with zero size, compiler complains
!-- that rank of the array does not match that of the
!-- assumed-shaped arguments in the RRTMG library. In order to
!-- avoid this, write to dummy arguments and give pass the entire
!-- dummy array. Seems to be the only existing work-around.
ALLOCATE( rrtm_lw_taucld_dum(1:nbndlw+1,0:0,k_topo+1:nzt_rad+1) )
ALLOCATE( rrtm_lw_tauaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndlw+1) )
rrtm_lw_taucld_dum = &
rrtm_lw_taucld(1:nbndlw+1,0:0,k_topo+1:nzt_rad+1)
rrtm_lw_tauaer_dum = &
rrtm_lw_tauaer(0:0,k_topo+1:nzt_rad+1,1:nbndlw+1)
CALL rrtmg_lw( 1, &
nzt_rad-k_topo, &
rrtm_icld, &
rrtm_idrv, &
rrtm_play(:,k_topo+1:nzt_rad+1), &
rrtm_plev(:,k_topo+1:nzt_rad+2), &
rrtm_tlay(:,k_topo+1:nzt_rad+1), &
rrtm_tlev(:,k_topo+1:nzt_rad+2), &
rrtm_tsfc, &
rrtm_h2ovmr(:,k_topo+1:nzt_rad+1), &
rrtm_o3vmr(:,k_topo+1:nzt_rad+1), &
rrtm_co2vmr(:,k_topo+1:nzt_rad+1), &
rrtm_ch4vmr(:,k_topo+1:nzt_rad+1), &
rrtm_n2ovmr(:,k_topo+1:nzt_rad+1), &
rrtm_o2vmr(:,k_topo+1:nzt_rad+1), &
rrtm_cfc11vmr(:,k_topo+1:nzt_rad+1), &
rrtm_cfc12vmr(:,k_topo+1:nzt_rad+1), &
rrtm_cfc22vmr(:,k_topo+1:nzt_rad+1), &
rrtm_ccl4vmr(:,k_topo+1:nzt_rad+1), &
rrtm_emis, &
rrtm_inflglw, &
rrtm_iceflglw, &
rrtm_liqflglw, &
rrtm_cldfr(:,k_topo+1:nzt_rad+1), &
rrtm_lw_taucld_dum, &
rrtm_cicewp(:,k_topo+1:nzt_rad+1), &
rrtm_cliqwp(:,k_topo+1:nzt_rad+1), &
rrtm_reice(:,k_topo+1:nzt_rad+1), &
rrtm_reliq(:,k_topo+1:nzt_rad+1), &
rrtm_lw_tauaer_dum, &
rrtm_lwuflx(:,k_topo:nzt_rad+1), &
rrtm_lwdflx(:,k_topo:nzt_rad+1), &
rrtm_lwhr(:,k_topo+1:nzt_rad+1), &
rrtm_lwuflxc(:,k_topo:nzt_rad+1), &
rrtm_lwdflxc(:,k_topo:nzt_rad+1), &
rrtm_lwhrc(:,k_topo+1:nzt_rad+1), &
rrtm_lwuflx_dt(:,k_topo:nzt_rad+1), &
rrtm_lwuflxc_dt(:,k_topo:nzt_rad+1) )
DEALLOCATE ( rrtm_lw_taucld_dum )
DEALLOCATE ( rrtm_lw_tauaer_dum )
!
!-- Save fluxes
DO k = k_topo, nzt+1
rad_lw_in(k,j,i) = rrtm_lwdflx(0,k)
rad_lw_out(k,j,i) = rrtm_lwuflx(0,k)
ENDDO
!
!-- Save heating rates (convert from K/d to K/h)
DO k = k_topo+1, nzt+1
rad_lw_hr(k,j,i) = rrtm_lwhr(0,k-k_topo) * d_hours_day
rad_lw_cs_hr(k,j,i) = rrtm_lwhrc(0,k-k_topo) * d_hours_day
ENDDO
!
!-- Save surface radiative fluxes and change in LW heating rate
!-- onto respective surface elements
!-- Horizontal surfaces
DO m = surf_lsm_h%start_index(j,i), &
surf_lsm_h%end_index(j,i)
surf_lsm_h%rad_lw_in(m) = rrtm_lwdflx(0,k_topo)
surf_lsm_h%rad_lw_out(m) = rrtm_lwuflx(0,k_topo)
surf_lsm_h%rad_lw_out_change_0(m) = rrtm_lwuflx_dt(0,k_topo)
ENDDO
DO m = surf_usm_h%start_index(j,i), &
surf_usm_h%end_index(j,i)
surf_usm_h%rad_lw_in(m) = rrtm_lwdflx(0,k_topo)
surf_usm_h%rad_lw_out(m) = rrtm_lwuflx(0,k_topo)
surf_usm_h%rad_lw_out_change_0(m) = rrtm_lwuflx_dt(0,k_topo)
ENDDO
!
!-- Vertical surfaces. Fluxes are obtain at vertical level of the
!-- respective surface element
DO l = 0, 3
DO m = surf_lsm_v(l)%start_index(j,i), &
surf_lsm_v(l)%end_index(j,i)
k = surf_lsm_v(l)%k(m)
surf_lsm_v(l)%rad_lw_in(m) = rrtm_lwdflx(0,k)
surf_lsm_v(l)%rad_lw_out(m) = rrtm_lwuflx(0,k)
surf_lsm_v(l)%rad_lw_out_change_0(m) = rrtm_lwuflx_dt(0,k)
ENDDO
DO m = surf_usm_v(l)%start_index(j,i), &
surf_usm_v(l)%end_index(j,i)
k = surf_usm_v(l)%k(m)
surf_usm_v(l)%rad_lw_in(m) = rrtm_lwdflx(0,k)
surf_usm_v(l)%rad_lw_out(m) = rrtm_lwuflx(0,k)
surf_usm_v(l)%rad_lw_out_change_0(m) = rrtm_lwuflx_dt(0,k)
ENDDO
ENDDO
ENDIF
IF ( sw_radiation .AND. sun_up ) THEN
!
!-- Get albedo for direct/diffusive long/shortwave radiation at
!-- current (y,x)-location from surface variables.
!-- Only obtain it from horizontal surfaces, as RRTMG is a single
!-- column model
!-- (Please note, only one loop will entered, controlled by
!-- start-end index.)
DO m = surf_lsm_h%start_index(j,i), &
surf_lsm_h%end_index(j,i)
rrtm_asdir(1) = SUM( surf_lsm_h%frac(:,m) * &
surf_lsm_h%rrtm_asdir(:,m) )
rrtm_asdif(1) = SUM( surf_lsm_h%frac(:,m) * &
surf_lsm_h%rrtm_asdif(:,m) )
rrtm_aldir(1) = SUM( surf_lsm_h%frac(:,m) * &
surf_lsm_h%rrtm_aldir(:,m) )
rrtm_aldif(1) = SUM( surf_lsm_h%frac(:,m) * &
surf_lsm_h%rrtm_aldif(:,m) )
ENDDO
DO m = surf_usm_h%start_index(j,i), &
surf_usm_h%end_index(j,i)
rrtm_asdir(1) = SUM( surf_usm_h%frac(:,m) * &
surf_usm_h%rrtm_asdir(:,m) )
rrtm_asdif(1) = SUM( surf_usm_h%frac(:,m) * &
surf_usm_h%rrtm_asdif(:,m) )
rrtm_aldir(1) = SUM( surf_usm_h%frac(:,m) * &
surf_usm_h%rrtm_aldir(:,m) )
rrtm_aldif(1) = SUM( surf_usm_h%frac(:,m) * &
surf_usm_h%rrtm_aldif(:,m) )
ENDDO
!
!-- Due to technical reasons, copy optical depths and other
!-- to dummy arguments which are allocated on the exact size as the
!-- rrtmg_sw is called.
!-- As one dimesion is allocated with zero size, compiler complains
!-- that rank of the array does not match that of the
!-- assumed-shaped arguments in the RRTMG library. In order to
!-- avoid this, write to dummy arguments and give pass the entire
!-- dummy array. Seems to be the only existing work-around.
ALLOCATE( rrtm_sw_taucld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) )
ALLOCATE( rrtm_sw_ssacld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) )
ALLOCATE( rrtm_sw_asmcld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) )
ALLOCATE( rrtm_sw_fsfcld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) )
ALLOCATE( rrtm_sw_tauaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) )
ALLOCATE( rrtm_sw_ssaaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) )
ALLOCATE( rrtm_sw_asmaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) )
ALLOCATE( rrtm_sw_ecaer_dum(0:0,k_topo+1:nzt_rad+1,1:naerec+1) )
rrtm_sw_taucld_dum = rrtm_sw_taucld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1)
rrtm_sw_ssacld_dum = rrtm_sw_ssacld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1)
rrtm_sw_asmcld_dum = rrtm_sw_asmcld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1)
rrtm_sw_fsfcld_dum = rrtm_sw_fsfcld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1)
rrtm_sw_tauaer_dum = rrtm_sw_tauaer(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1)
rrtm_sw_ssaaer_dum = rrtm_sw_ssaaer(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1)
rrtm_sw_asmaer_dum = rrtm_sw_asmaer(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1)
rrtm_sw_ecaer_dum = rrtm_sw_ecaer(0:0,k_topo+1:nzt_rad+1,1:naerec+1)
CALL rrtmg_sw( 1, &
nzt_rad-k_topo, &
rrtm_icld, &
rrtm_iaer, &
rrtm_play(:,k_topo+1:nzt_rad+1), &
rrtm_plev(:,k_topo+1:nzt_rad+2), &
rrtm_tlay(:,k_topo+1:nzt_rad+1), &
rrtm_tlev(:,k_topo+1:nzt_rad+2), &
rrtm_tsfc, &
rrtm_h2ovmr(:,k_topo+1:nzt_rad+1), &
rrtm_o3vmr(:,k_topo+1:nzt_rad+1), &
rrtm_co2vmr(:,k_topo+1:nzt_rad+1), &
rrtm_ch4vmr(:,k_topo+1:nzt_rad+1), &
rrtm_n2ovmr(:,k_topo+1:nzt_rad+1), &
rrtm_o2vmr(:,k_topo+1:nzt_rad+1), &
rrtm_asdir, &
rrtm_asdif, &
rrtm_aldir, &
rrtm_aldif, &
zenith, &
0.0_wp, &
day_of_year, &
solar_constant, &
rrtm_inflgsw, &
rrtm_iceflgsw, &
rrtm_liqflgsw, &
rrtm_cldfr(:,k_topo+1:nzt_rad+1), &
rrtm_sw_taucld_dum, &
rrtm_sw_ssacld_dum, &
rrtm_sw_asmcld_dum, &
rrtm_sw_fsfcld_dum, &
rrtm_cicewp(:,k_topo+1:nzt_rad+1), &
rrtm_cliqwp(:,k_topo+1:nzt_rad+1), &
rrtm_reice(:,k_topo+1:nzt_rad+1), &
rrtm_reliq(:,k_topo+1:nzt_rad+1), &
rrtm_sw_tauaer_dum, &
rrtm_sw_ssaaer_dum, &
rrtm_sw_asmaer_dum, &
rrtm_sw_ecaer_dum, &
rrtm_swuflx(:,k_topo:nzt_rad+1), &
rrtm_swdflx(:,k_topo:nzt_rad+1), &
rrtm_swhr(:,k_topo+1:nzt_rad+1), &
rrtm_swuflxc(:,k_topo:nzt_rad+1), &
rrtm_swdflxc(:,k_topo:nzt_rad+1), &
rrtm_swhrc(:,k_topo+1:nzt_rad+1), &
rrtm_dirdflux(:,k_topo:nzt_rad+1), &
rrtm_difdflux(:,k_topo:nzt_rad+1) )
DEALLOCATE( rrtm_sw_taucld_dum )
DEALLOCATE( rrtm_sw_ssacld_dum )
DEALLOCATE( rrtm_sw_asmcld_dum )
DEALLOCATE( rrtm_sw_fsfcld_dum )
DEALLOCATE( rrtm_sw_tauaer_dum )
DEALLOCATE( rrtm_sw_ssaaer_dum )
DEALLOCATE( rrtm_sw_asmaer_dum )
DEALLOCATE( rrtm_sw_ecaer_dum )
!
!-- Save fluxes
DO k = nzb, nzt+1
rad_sw_in(k,j,i) = rrtm_swdflx(0,k)
rad_sw_out(k,j,i) = rrtm_swuflx(0,k)
ENDDO
!
!-- Save heating rates (convert from K/d to K/s)
DO k = nzb+1, nzt+1
rad_sw_hr(k,j,i) = rrtm_swhr(0,k) * d_hours_day
rad_sw_cs_hr(k,j,i) = rrtm_swhrc(0,k) * d_hours_day
ENDDO
!
!-- Save surface radiative fluxes onto respective surface elements
!-- Horizontal surfaces
DO m = surf_lsm_h%start_index(j,i), &
surf_lsm_h%end_index(j,i)
surf_lsm_h%rad_sw_in(m) = rrtm_swdflx(0,k_topo)
surf_lsm_h%rad_sw_out(m) = rrtm_swuflx(0,k_topo)
ENDDO
DO m = surf_usm_h%start_index(j,i), &
surf_usm_h%end_index(j,i)
surf_usm_h%rad_sw_in(m) = rrtm_swdflx(0,k_topo)
surf_usm_h%rad_sw_out(m) = rrtm_swuflx(0,k_topo)
ENDDO
!
!-- Vertical surfaces. Fluxes are obtain at respective vertical
!-- level of the surface element
DO l = 0, 3
DO m = surf_lsm_v(l)%start_index(j,i), &
surf_lsm_v(l)%end_index(j,i)
k = surf_lsm_v(l)%k(m)
surf_lsm_v(l)%rad_sw_in(m) = rrtm_swdflx(0,k)
surf_lsm_v(l)%rad_sw_out(m) = rrtm_swuflx(0,k)
ENDDO
DO m = surf_usm_v(l)%start_index(j,i), &
surf_usm_v(l)%end_index(j,i)
k = surf_usm_v(l)%k(m)
surf_usm_v(l)%rad_sw_in(m) = rrtm_swdflx(0,k)
surf_usm_v(l)%rad_sw_out(m) = rrtm_swuflx(0,k)
ENDDO
ENDDO
!
!-- Solar radiation is zero during night
ELSE
rad_sw_in = 0.0_wp
rad_sw_out = 0.0_wp
!-- !!!!!!!! ATTENSION !!!!!!!!!!!!!!!
!-- Surface radiative fluxes should be also set to zero here
!-- Save surface radiative fluxes onto respective surface elements
!-- Horizontal surfaces
DO m = surf_lsm_h%start_index(j,i), &
surf_lsm_h%end_index(j,i)
surf_lsm_h%rad_sw_in(m) = 0.0_wp
surf_lsm_h%rad_sw_out(m) = 0.0_wp
ENDDO
DO m = surf_usm_h%start_index(j,i), &
surf_usm_h%end_index(j,i)
surf_usm_h%rad_sw_in(m) = 0.0_wp
surf_usm_h%rad_sw_out(m) = 0.0_wp
ENDDO
!
!-- Vertical surfaces. Fluxes are obtain at respective vertical
!-- level of the surface element
DO l = 0, 3
DO m = surf_lsm_v(l)%start_index(j,i), &
surf_lsm_v(l)%end_index(j,i)
k = surf_lsm_v(l)%k(m)
surf_lsm_v(l)%rad_sw_in(m) = 0.0_wp
surf_lsm_v(l)%rad_sw_out(m) = 0.0_wp
ENDDO
DO m = surf_usm_v(l)%start_index(j,i), &
surf_usm_v(l)%end_index(j,i)
k = surf_usm_v(l)%k(m)
surf_usm_v(l)%rad_sw_in(m) = 0.0_wp
surf_usm_v(l)%rad_sw_out(m) = 0.0_wp
ENDDO
ENDDO
ENDIF
ENDDO
ENDDO
ENDIF
!
!-- Finally, calculate surface net radiation for surface elements.
IF ( .NOT. radiation_interactions ) THEN
!-- First, for horizontal surfaces
DO m = 1, surf_lsm_h%ns
surf_lsm_h%rad_net(m) = surf_lsm_h%rad_sw_in(m) &
- surf_lsm_h%rad_sw_out(m) &
+ surf_lsm_h%rad_lw_in(m) &
- surf_lsm_h%rad_lw_out(m)
ENDDO
DO m = 1, surf_usm_h%ns
surf_usm_h%rad_net(m) = surf_usm_h%rad_sw_in(m) &
- surf_usm_h%rad_sw_out(m) &
+ surf_usm_h%rad_lw_in(m) &
- surf_usm_h%rad_lw_out(m)
ENDDO
!
!-- Vertical surfaces.
!-- Todo: weight with azimuth and zenith angle according to their orientation!
DO l = 0, 3
DO m = 1, surf_lsm_v(l)%ns
surf_lsm_v(l)%rad_net(m) = surf_lsm_v(l)%rad_sw_in(m) &
- surf_lsm_v(l)%rad_sw_out(m) &
+ surf_lsm_v(l)%rad_lw_in(m) &
- surf_lsm_v(l)%rad_lw_out(m)
ENDDO
DO m = 1, surf_usm_v(l)%ns
surf_usm_v(l)%rad_net(m) = surf_usm_v(l)%rad_sw_in(m) &
- surf_usm_v(l)%rad_sw_out(m) &
+ surf_usm_v(l)%rad_lw_in(m) &
- surf_usm_v(l)%rad_lw_out(m)
ENDDO
ENDDO
ENDIF
CALL exchange_horiz( rad_lw_in, nbgp )
CALL exchange_horiz( rad_lw_out, nbgp )
CALL exchange_horiz( rad_lw_hr, nbgp )
CALL exchange_horiz( rad_lw_cs_hr, nbgp )
CALL exchange_horiz( rad_sw_in, nbgp )
CALL exchange_horiz( rad_sw_out, nbgp )
CALL exchange_horiz( rad_sw_hr, nbgp )
CALL exchange_horiz( rad_sw_cs_hr, nbgp )
#endif
END SUBROUTINE radiation_rrtmg
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate the cosine of the zenith angle (variable is called zenith)
!------------------------------------------------------------------------------!
SUBROUTINE calc_zenith( day_of_year, second_of_day )
USE palm_date_time_mod, &
ONLY: seconds_per_day
IMPLICIT NONE
INTEGER(iwp), INTENT(IN) :: day_of_year !< day of the year
REAL(wp) :: declination !< solar declination angle
REAL(wp) :: hour_angle !< solar hour angle
REAL(wp), INTENT(IN) :: second_of_day !< current time of the day in UTC
!
!-- Calculate solar declination and hour angle
declination = ASIN( decl_1 * SIN(decl_2 * REAL(day_of_year, KIND=wp) - decl_3) )
hour_angle = 2.0_wp * pi * ( second_of_day / seconds_per_day ) + lon - pi
!
!-- Calculate cosine of solar zenith angle
cos_zenith = SIN(lat) * SIN(declination) + COS(lat) * COS(declination) &
* COS(hour_angle)
cos_zenith = MAX(0.0_wp,cos_zenith)
!
!-- Calculate solar directional vector
IF ( sun_direction ) THEN
!
!-- Direction in longitudes equals to sin(solar_azimuth) * sin(zenith)
sun_dir_lon = -SIN(hour_angle) * COS(declination)
!
!-- Direction in latitues equals to cos(solar_azimuth) * sin(zenith)
sun_dir_lat = SIN(declination) * COS(lat) - COS(hour_angle) &
* COS(declination) * SIN(lat)
ENDIF
!
!-- Check if the sun is up (otheriwse shortwave calculations can be skipped)
IF ( cos_zenith > 0.0_wp ) THEN
sun_up = .TRUE.
ELSE
sun_up = .FALSE.
END IF
END SUBROUTINE calc_zenith
#if defined ( __rrtmg ) && defined ( __netcdf )
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculates surface albedo components based on Briegleb (1992) and
!> Briegleb et al. (1986)
!------------------------------------------------------------------------------!
SUBROUTINE calc_albedo( surf )
IMPLICIT NONE
INTEGER(iwp) :: ind_type !< running index surface tiles
INTEGER(iwp) :: m !< running index surface elements
TYPE(surf_type) :: surf !< treated surfaces
IF ( sun_up .AND. .NOT. average_radiation ) THEN
DO m = 1, surf%ns
!
!-- Loop over surface elements
DO ind_type = 0, SIZE( surf%albedo_type, 1 ) - 1
!
!-- Ocean
IF ( surf%albedo_type(ind_type,m) == 1 ) THEN
surf%rrtm_aldir(ind_type,m) = 0.026_wp / &
( cos_zenith**1.7_wp + 0.065_wp )&
+ 0.15_wp * ( cos_zenith - 0.1_wp ) &
* ( cos_zenith - 0.5_wp ) &
* ( cos_zenith - 1.0_wp )
surf%rrtm_asdir(ind_type,m) = surf%rrtm_aldir(ind_type,m)
!
!-- Snow
ELSEIF ( surf%albedo_type(ind_type,m) == 16 ) THEN
IF ( cos_zenith < 0.5_wp ) THEN
surf%rrtm_aldir(ind_type,m) = &
0.5_wp * ( 1.0_wp - surf%aldif(ind_type,m) ) &
* ( 3.0_wp / ( 1.0_wp + 4.0_wp &
* cos_zenith ) ) - 1.0_wp
surf%rrtm_asdir(ind_type,m) = &
0.5_wp * ( 1.0_wp - surf%asdif(ind_type,m) ) &
* ( 3.0_wp / ( 1.0_wp + 4.0_wp &
* cos_zenith ) ) - 1.0_wp
surf%rrtm_aldir(ind_type,m) = &
MIN(0.98_wp, surf%rrtm_aldir(ind_type,m))
surf%rrtm_asdir(ind_type,m) = &
MIN(0.98_wp, surf%rrtm_asdir(ind_type,m))
ELSE
surf%rrtm_aldir(ind_type,m) = surf%aldif(ind_type,m)
surf%rrtm_asdir(ind_type,m) = surf%asdif(ind_type,m)
ENDIF
!
!-- Sea ice
ELSEIF ( surf%albedo_type(ind_type,m) == 15 ) THEN
surf%rrtm_aldir(ind_type,m) = surf%aldif(ind_type,m)
surf%rrtm_asdir(ind_type,m) = surf%asdif(ind_type,m)
!
!-- Asphalt
ELSEIF ( surf%albedo_type(ind_type,m) == 17 ) THEN
surf%rrtm_aldir(ind_type,m) = surf%aldif(ind_type,m)
surf%rrtm_asdir(ind_type,m) = surf%asdif(ind_type,m)
!
!-- Bare soil
ELSEIF ( surf%albedo_type(ind_type,m) == 18 ) THEN
surf%rrtm_aldir(ind_type,m) = surf%aldif(ind_type,m)
surf%rrtm_asdir(ind_type,m) = surf%asdif(ind_type,m)
!
!-- Land surfaces
ELSE
SELECT CASE ( surf%albedo_type(ind_type,m) )
!
!-- Surface types with strong zenith dependence
CASE ( 1, 2, 3, 4, 11, 12, 13 )
surf%rrtm_aldir(ind_type,m) = &
surf%aldif(ind_type,m) * 1.4_wp / &
( 1.0_wp + 0.8_wp * cos_zenith )
surf%rrtm_asdir(ind_type,m) = &
surf%asdif(ind_type,m) * 1.4_wp / &
( 1.0_wp + 0.8_wp * cos_zenith )
!
!-- Surface types with weak zenith dependence
CASE ( 5, 6, 7, 8, 9, 10, 14 )
surf%rrtm_aldir(ind_type,m) = &
surf%aldif(ind_type,m) * 1.1_wp / &
( 1.0_wp + 0.2_wp * cos_zenith )
surf%rrtm_asdir(ind_type,m) = &
surf%asdif(ind_type,m) * 1.1_wp / &
( 1.0_wp + 0.2_wp * cos_zenith )
CASE DEFAULT
END SELECT
ENDIF
!
!-- Diffusive albedo is taken from Table 2
surf%rrtm_aldif(ind_type,m) = surf%aldif(ind_type,m)
surf%rrtm_asdif(ind_type,m) = surf%asdif(ind_type,m)
ENDDO
ENDDO
!
!-- Set albedo in case of average radiation
ELSEIF ( sun_up .AND. average_radiation ) THEN
surf%rrtm_asdir = albedo_urb
surf%rrtm_asdif = albedo_urb
surf%rrtm_aldir = albedo_urb
surf%rrtm_aldif = albedo_urb
!
!-- Darkness
ELSE
surf%rrtm_aldir = 0.0_wp
surf%rrtm_asdir = 0.0_wp
surf%rrtm_aldif = 0.0_wp
surf%rrtm_asdif = 0.0_wp
ENDIF
END SUBROUTINE calc_albedo
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Read sounding data (pressure and temperature) from RADIATION_DATA.
!------------------------------------------------------------------------------!
SUBROUTINE read_sounding_data
IMPLICIT NONE
INTEGER(iwp) :: id, & !< NetCDF id of input file
id_dim_zrad, & !< pressure level id in the NetCDF file
id_var, & !< NetCDF variable id
k, & !< loop index
nz_snd, & !< number of vertical levels in the sounding data
nz_snd_start, & !< start vertical index for sounding data to be used
nz_snd_end !< end vertical index for souding data to be used
REAL(wp) :: t_surface !< actual surface temperature
REAL(wp), DIMENSION(:), ALLOCATABLE :: hyp_snd_tmp, & !< temporary hydrostatic pressure profile (sounding)
t_snd_tmp !< temporary temperature profile (sounding)
!
!-- In case of updates, deallocate arrays first (sufficient to check one
!-- array as the others are automatically allocated). This is required
!-- because nzt_rad might change during the update
IF ( ALLOCATED ( hyp_snd ) ) THEN
DEALLOCATE( hyp_snd )
DEALLOCATE( t_snd )
DEALLOCATE ( rrtm_play )
DEALLOCATE ( rrtm_plev )
DEALLOCATE ( rrtm_tlay )
DEALLOCATE ( rrtm_tlev )
DEALLOCATE ( rrtm_cicewp )
DEALLOCATE ( rrtm_cldfr )
DEALLOCATE ( rrtm_cliqwp )
DEALLOCATE ( rrtm_reice )
DEALLOCATE ( rrtm_reliq )
DEALLOCATE ( rrtm_lw_taucld )
DEALLOCATE ( rrtm_lw_tauaer )
DEALLOCATE ( rrtm_lwdflx )
DEALLOCATE ( rrtm_lwdflxc )
DEALLOCATE ( rrtm_lwuflx )
DEALLOCATE ( rrtm_lwuflxc )
DEALLOCATE ( rrtm_lwuflx_dt )
DEALLOCATE ( rrtm_lwuflxc_dt )
DEALLOCATE ( rrtm_lwhr )
DEALLOCATE ( rrtm_lwhrc )
DEALLOCATE ( rrtm_sw_taucld )
DEALLOCATE ( rrtm_sw_ssacld )
DEALLOCATE ( rrtm_sw_asmcld )
DEALLOCATE ( rrtm_sw_fsfcld )
DEALLOCATE ( rrtm_sw_tauaer )
DEALLOCATE ( rrtm_sw_ssaaer )
DEALLOCATE ( rrtm_sw_asmaer )
DEALLOCATE ( rrtm_sw_ecaer )
DEALLOCATE ( rrtm_swdflx )
DEALLOCATE ( rrtm_swdflxc )
DEALLOCATE ( rrtm_swuflx )
DEALLOCATE ( rrtm_swuflxc )
DEALLOCATE ( rrtm_swhr )
DEALLOCATE ( rrtm_swhrc )
DEALLOCATE ( rrtm_dirdflux )
DEALLOCATE ( rrtm_difdflux )
ENDIF
!
!-- Open file for reading
nc_stat = NF90_OPEN( rrtm_input_file, NF90_NOWRITE, id )
CALL netcdf_handle_error_rad( 'read_sounding_data', 549 )
!
!-- Inquire dimension of z axis and save in nz_snd
nc_stat = NF90_INQ_DIMID( id, "Pressure", id_dim_zrad )
nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim_zrad, len = nz_snd )
CALL netcdf_handle_error_rad( 'read_sounding_data', 551 )
!
! !-- Allocate temporary array for storing pressure data
ALLOCATE( hyp_snd_tmp(1:nz_snd) )
hyp_snd_tmp = 0.0_wp
!-- Read pressure from file
nc_stat = NF90_INQ_VARID( id, "Pressure", id_var )
nc_stat = NF90_GET_VAR( id, id_var, hyp_snd_tmp(:), start = (/1/), &
count = (/nz_snd/) )
CALL netcdf_handle_error_rad( 'read_sounding_data', 552 )
!
!-- Allocate temporary array for storing temperature data
ALLOCATE( t_snd_tmp(1:nz_snd) )
t_snd_tmp = 0.0_wp
!
!-- Read temperature from file
nc_stat = NF90_INQ_VARID( id, "ReferenceTemperature", id_var )
nc_stat = NF90_GET_VAR( id, id_var, t_snd_tmp(:), start = (/1/), &
count = (/nz_snd/) )
CALL netcdf_handle_error_rad( 'read_sounding_data', 553 )
!
!-- Calculate start of sounding data
nz_snd_start = nz_snd + 1
nz_snd_end = nz_snd + 1
!
!-- Start filling vertical dimension at 10hPa above the model domain (hyp is
!-- in Pa, hyp_snd in hPa).
DO k = 1, nz_snd
IF ( hyp_snd_tmp(k) < ( hyp(nzt+1) - 1000.0_wp) * 0.01_wp ) THEN
nz_snd_start = k
EXIT
END IF
END DO
IF ( nz_snd_start <= nz_snd ) THEN
nz_snd_end = nz_snd
END IF
!
!-- Calculate of total grid points for RRTMG calculations
nzt_rad = nzt + nz_snd_end - nz_snd_start + 1
!
!-- Save data above LES domain in hyp_snd, t_snd
ALLOCATE( hyp_snd(nzb+1:nzt_rad) )
ALLOCATE( t_snd(nzb+1:nzt_rad) )
hyp_snd = 0.0_wp
t_snd = 0.0_wp
hyp_snd(nzt+2:nzt_rad) = hyp_snd_tmp(nz_snd_start+1:nz_snd_end)
t_snd(nzt+2:nzt_rad) = t_snd_tmp(nz_snd_start+1:nz_snd_end)
nc_stat = NF90_CLOSE( id )
!
!-- Calculate pressure levels on zu and zw grid. Sounding data is added at
!-- top of the LES domain. This routine does not consider horizontal or
!-- vertical variability of pressure and temperature
ALLOCATE ( rrtm_play(0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_plev(0:0,nzb+1:nzt_rad+2) )
t_surface = pt_surface * exner(nzb)
DO k = nzb+1, nzt+1
rrtm_play(0,k) = hyp(k) * 0.01_wp
rrtm_plev(0,k) = barometric_formula(zw(k-1), &
pt_surface * exner(nzb), &
surface_pressure )
ENDDO
DO k = nzt+2, nzt_rad
rrtm_play(0,k) = hyp_snd(k)
rrtm_plev(0,k) = 0.5_wp * ( rrtm_play(0,k) + rrtm_play(0,k-1) )
ENDDO
rrtm_plev(0,nzt_rad+1) = MAX( 0.5 * hyp_snd(nzt_rad), &
1.5 * hyp_snd(nzt_rad) &
- 0.5 * hyp_snd(nzt_rad-1) )
rrtm_plev(0,nzt_rad+2) = MIN( 1.0E-4_wp, &
0.25_wp * rrtm_plev(0,nzt_rad+1) )
rrtm_play(0,nzt_rad+1) = 0.5 * rrtm_plev(0,nzt_rad+1)
!
!-- Calculate temperature/humidity levels at top of the LES domain.
!-- Currently, the temperature is taken from sounding data (might lead to a
!-- temperature jump at interface. To do: Humidity is currently not
!-- calculated above the LES domain.
ALLOCATE ( rrtm_tlay(0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_tlev(0:0,nzb+1:nzt_rad+2) )
DO k = nzt+8, nzt_rad
rrtm_tlay(0,k) = t_snd(k)
ENDDO
rrtm_tlay(0,nzt_rad+1) = 2.0_wp * rrtm_tlay(0,nzt_rad) &
- rrtm_tlay(0,nzt_rad-1)
DO k = nzt+9, nzt_rad+1
rrtm_tlev(0,k) = rrtm_tlay(0,k-1) + (rrtm_tlay(0,k) &
- rrtm_tlay(0,k-1)) &
/ ( rrtm_play(0,k) - rrtm_play(0,k-1) ) &
* ( rrtm_plev(0,k) - rrtm_play(0,k-1) )
ENDDO
rrtm_tlev(0,nzt_rad+2) = 2.0_wp * rrtm_tlay(0,nzt_rad+1) &
- rrtm_tlev(0,nzt_rad)
!
!-- Allocate remaining RRTMG arrays
ALLOCATE ( rrtm_cicewp(0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_cldfr(0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_cliqwp(0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_reice(0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_reliq(0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_lw_taucld(1:nbndlw+1,0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_lw_tauaer(0:0,nzb+1:nzt_rad+1,1:nbndlw+1) )
ALLOCATE ( rrtm_sw_taucld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_sw_ssacld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_sw_asmcld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_sw_fsfcld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_sw_tauaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) )
ALLOCATE ( rrtm_sw_ssaaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) )
ALLOCATE ( rrtm_sw_asmaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) )
ALLOCATE ( rrtm_sw_ecaer(0:0,nzb+1:nzt_rad+1,1:naerec+1) )
!
!-- The ice phase is currently not considered in PALM
rrtm_cicewp = 0.0_wp
rrtm_reice = 0.0_wp
!
!-- Set other parameters (move to NAMELIST parameters in the future)
rrtm_lw_tauaer = 0.0_wp
rrtm_lw_taucld = 0.0_wp
rrtm_sw_taucld = 0.0_wp
rrtm_sw_ssacld = 0.0_wp
rrtm_sw_asmcld = 0.0_wp
rrtm_sw_fsfcld = 0.0_wp
rrtm_sw_tauaer = 0.0_wp
rrtm_sw_ssaaer = 0.0_wp
rrtm_sw_asmaer = 0.0_wp
rrtm_sw_ecaer = 0.0_wp
ALLOCATE ( rrtm_swdflx(0:0,nzb:nzt_rad+1) )
ALLOCATE ( rrtm_swuflx(0:0,nzb:nzt_rad+1) )
ALLOCATE ( rrtm_swhr(0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_swuflxc(0:0,nzb:nzt_rad+1) )
ALLOCATE ( rrtm_swdflxc(0:0,nzb:nzt_rad+1) )
ALLOCATE ( rrtm_swhrc(0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_dirdflux(0:0,nzb:nzt_rad+1) )
ALLOCATE ( rrtm_difdflux(0:0,nzb:nzt_rad+1) )
rrtm_swdflx = 0.0_wp
rrtm_swuflx = 0.0_wp
rrtm_swhr = 0.0_wp
rrtm_swuflxc = 0.0_wp
rrtm_swdflxc = 0.0_wp
rrtm_swhrc = 0.0_wp
rrtm_dirdflux = 0.0_wp
rrtm_difdflux = 0.0_wp
ALLOCATE ( rrtm_lwdflx(0:0,nzb:nzt_rad+1) )
ALLOCATE ( rrtm_lwuflx(0:0,nzb:nzt_rad+1) )
ALLOCATE ( rrtm_lwhr(0:0,nzb+1:nzt_rad+1) )
ALLOCATE ( rrtm_lwuflxc(0:0,nzb:nzt_rad+1) )
ALLOCATE ( rrtm_lwdflxc(0:0,nzb:nzt_rad+1) )
ALLOCATE ( rrtm_lwhrc(0:0,nzb+1:nzt_rad+1) )
rrtm_lwdflx = 0.0_wp
rrtm_lwuflx = 0.0_wp
rrtm_lwhr = 0.0_wp
rrtm_lwuflxc = 0.0_wp
rrtm_lwdflxc = 0.0_wp
rrtm_lwhrc = 0.0_wp
ALLOCATE ( rrtm_lwuflx_dt(0:0,nzb:nzt_rad+1) )
ALLOCATE ( rrtm_lwuflxc_dt(0:0,nzb:nzt_rad+1) )
rrtm_lwuflx_dt = 0.0_wp
rrtm_lwuflxc_dt = 0.0_wp
END SUBROUTINE read_sounding_data
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Read trace gas data from file and convert into trace gas paths / volume
!> mixing ratios. If a user-defined input file is provided it needs to follow
!> the convections used in RRTMG (see respective netCDF files shipped with
!> RRTMG)
!------------------------------------------------------------------------------!
SUBROUTINE read_trace_gas_data
USE rrsw_ncpar
IMPLICIT NONE
INTEGER(iwp), PARAMETER :: num_trace_gases = 10 !< number of trace gases (absorbers)
CHARACTER(LEN=5), DIMENSION(num_trace_gases), PARAMETER :: & !< trace gas names
trace_names = (/'O3 ', 'CO2 ', 'CH4 ', 'N2O ', 'O2 ', &
'CFC11', 'CFC12', 'CFC22', 'CCL4 ', 'H2O '/)
INTEGER(iwp) :: id, & !< NetCDF id
k, & !< loop index
m, & !< loop index
n, & !< loop index
nabs, & !< number of absorbers
np, & !< number of pressure levels
id_abs, & !< NetCDF id of the respective absorber
id_dim, & !< NetCDF id of asborber's dimension
id_var !< NetCDf id ot the absorber
REAL(wp) :: p_mls_l, & !< pressure lower limit for interpolation
p_mls_u, & !< pressure upper limit for interpolation
p_wgt_l, & !< pressure weight lower limit for interpolation
p_wgt_u, & !< pressure weight upper limit for interpolation
p_mls_m !< mean pressure between upper and lower limits
REAL(wp), DIMENSION(:), ALLOCATABLE :: p_mls, & !< pressure levels for the absorbers
rrtm_play_tmp, & !< temporary array for pressure zu-levels
rrtm_plev_tmp, & !< temporary array for pressure zw-levels
trace_path_tmp !< temporary array for storing trace gas path data
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: trace_mls, & !< array for storing the absorber amounts
trace_mls_path, & !< array for storing trace gas path data
trace_mls_tmp !< temporary array for storing trace gas data
!
!-- In case of updates, deallocate arrays first (sufficient to check one
!-- array as the others are automatically allocated)
IF ( ALLOCATED ( rrtm_o3vmr ) ) THEN
DEALLOCATE ( rrtm_o3vmr )
DEALLOCATE ( rrtm_co2vmr )
DEALLOCATE ( rrtm_ch4vmr )
DEALLOCATE ( rrtm_n2ovmr )
DEALLOCATE ( rrtm_o2vmr )
DEALLOCATE ( rrtm_cfc11vmr )
DEALLOCATE ( rrtm_cfc12vmr )
DEALLOCATE ( rrtm_cfc22vmr )
DEALLOCATE ( rrtm_ccl4vmr )
DEALLOCATE ( rrtm_h2ovmr )
ENDIF
!
!-- Allocate trace gas profiles
ALLOCATE ( rrtm_o3vmr(0:0,1:nzt_rad+1) )
ALLOCATE ( rrtm_co2vmr(0:0,1:nzt_rad+1) )
ALLOCATE ( rrtm_ch4vmr(0:0,1:nzt_rad+1) )
ALLOCATE ( rrtm_n2ovmr(0:0,1:nzt_rad+1) )
ALLOCATE ( rrtm_o2vmr(0:0,1:nzt_rad+1) )
ALLOCATE ( rrtm_cfc11vmr(0:0,1:nzt_rad+1) )
ALLOCATE ( rrtm_cfc12vmr(0:0,1:nzt_rad+1) )
ALLOCATE ( rrtm_cfc22vmr(0:0,1:nzt_rad+1) )
ALLOCATE ( rrtm_ccl4vmr(0:0,1:nzt_rad+1) )
ALLOCATE ( rrtm_h2ovmr(0:0,1:nzt_rad+1) )
!
!-- Open file for reading
nc_stat = NF90_OPEN( rrtm_input_file, NF90_NOWRITE, id )
CALL netcdf_handle_error_rad( 'read_trace_gas_data', 549 )
!
!-- Inquire dimension ids and dimensions
nc_stat = NF90_INQ_DIMID( id, "Pressure", id_dim )
CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 )
nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim, len = np)
CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 )
nc_stat = NF90_INQ_DIMID( id, "Absorber", id_dim )
CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 )
nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim, len = nabs )
CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 )
!
!-- Allocate pressure, and trace gas arrays
ALLOCATE( p_mls(1:np) )
ALLOCATE( trace_mls(1:num_trace_gases,1:np) )
ALLOCATE( trace_mls_tmp(1:nabs,1:np) )
nc_stat = NF90_INQ_VARID( id, "Pressure", id_var )
CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 )
nc_stat = NF90_GET_VAR( id, id_var, p_mls )
CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 )
nc_stat = NF90_INQ_VARID( id, "AbsorberAmountMLS", id_var )
CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 )
nc_stat = NF90_GET_VAR( id, id_var, trace_mls_tmp )
CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 )
!
!-- Write absorber amounts (mls) to trace_mls
DO n = 1, num_trace_gases
CALL getAbsorberIndex( TRIM( trace_names(n) ), id_abs )
trace_mls(n,1:np) = trace_mls_tmp(id_abs,1:np)
!
!-- Replace missing values by zero
WHERE ( trace_mls(n,:) > 2.0_wp )
trace_mls(n,:) = 0.0_wp
END WHERE
END DO
DEALLOCATE ( trace_mls_tmp )
nc_stat = NF90_CLOSE( id )
CALL netcdf_handle_error_rad( 'read_trace_gas_data', 551 )
!
!-- Add extra pressure level for calculations of the trace gas paths
ALLOCATE ( rrtm_play_tmp(1:nzt_rad+1) )
ALLOCATE ( rrtm_plev_tmp(1:nzt_rad+2) )
rrtm_play_tmp(1:nzt_rad) = rrtm_play(0,1:nzt_rad)
rrtm_plev_tmp(1:nzt_rad+1) = rrtm_plev(0,1:nzt_rad+1)
rrtm_play_tmp(nzt_rad+1) = rrtm_plev(0,nzt_rad+1) * 0.5_wp
rrtm_plev_tmp(nzt_rad+2) = MIN( 1.0E-4_wp, 0.25_wp &
* rrtm_plev(0,nzt_rad+1) )
!
!-- Calculate trace gas path (zero at surface) with interpolation to the
!-- sounding levels
ALLOCATE ( trace_mls_path(1:nzt_rad+2,1:num_trace_gases) )
trace_mls_path(nzb+1,:) = 0.0_wp
DO k = nzb+2, nzt_rad+2
DO m = 1, num_trace_gases
trace_mls_path(k,m) = trace_mls_path(k-1,m)
!
!-- When the pressure level is higher than the trace gas pressure
!-- level, assume that
IF ( rrtm_plev_tmp(k-1) > p_mls(1) ) THEN
trace_mls_path(k,m) = trace_mls_path(k,m) + trace_mls(m,1) &
* ( rrtm_plev_tmp(k-1) &
- MAX( p_mls(1), rrtm_plev_tmp(k) ) &
) / g
ENDIF
!
!-- Integrate for each sounding level from the contributing p_mls
!-- levels
DO n = 2, np
!
!-- Limit p_mls so that it is within the model level
p_mls_u = MIN( rrtm_plev_tmp(k-1), &
MAX( rrtm_plev_tmp(k), p_mls(n) ) )
p_mls_l = MIN( rrtm_plev_tmp(k-1), &
MAX( rrtm_plev_tmp(k), p_mls(n-1) ) )
IF ( p_mls_l > p_mls_u ) THEN
!
!-- Calculate weights for interpolation
p_mls_m = 0.5_wp * (p_mls_l + p_mls_u)
p_wgt_u = (p_mls(n-1) - p_mls_m) / (p_mls(n-1) - p_mls(n))
p_wgt_l = (p_mls_m - p_mls(n)) / (p_mls(n-1) - p_mls(n))
!
!-- Add level to trace gas path
trace_mls_path(k,m) = trace_mls_path(k,m) &
+ ( p_wgt_u * trace_mls(m,n) &
+ p_wgt_l * trace_mls(m,n-1) ) &
* (p_mls_l - p_mls_u) / g
ENDIF
ENDDO
IF ( rrtm_plev_tmp(k) < p_mls(np) ) THEN
trace_mls_path(k,m) = trace_mls_path(k,m) + trace_mls(m,np) &
* ( MIN( rrtm_plev_tmp(k-1), p_mls(np) ) &
- rrtm_plev_tmp(k) &
) / g
ENDIF
ENDDO
ENDDO
!
!-- Prepare trace gas path profiles
ALLOCATE ( trace_path_tmp(1:nzt_rad+1) )
DO m = 1, num_trace_gases
trace_path_tmp(1:nzt_rad+1) = ( trace_mls_path(2:nzt_rad+2,m) &
- trace_mls_path(1:nzt_rad+1,m) ) * g &
/ ( rrtm_plev_tmp(1:nzt_rad+1) &
- rrtm_plev_tmp(2:nzt_rad+2) )
!
!-- Save trace gas paths to the respective arrays
SELECT CASE ( TRIM( trace_names(m) ) )
CASE ( 'O3' )
rrtm_o3vmr(0,:) = trace_path_tmp(:)
CASE ( 'CO2' )
rrtm_co2vmr(0,:) = trace_path_tmp(:)
CASE ( 'CH4' )
rrtm_ch4vmr(0,:) = trace_path_tmp(:)
CASE ( 'N2O' )
rrtm_n2ovmr(0,:) = trace_path_tmp(:)
CASE ( 'O2' )
rrtm_o2vmr(0,:) = trace_path_tmp(:)
CASE ( 'CFC11' )
rrtm_cfc11vmr(0,:) = trace_path_tmp(:)
CASE ( 'CFC12' )
rrtm_cfc12vmr(0,:) = trace_path_tmp(:)
CASE ( 'CFC22' )
rrtm_cfc22vmr(0,:) = trace_path_tmp(:)
CASE ( 'CCL4' )
rrtm_ccl4vmr(0,:) = trace_path_tmp(:)
CASE ( 'H2O' )
rrtm_h2ovmr(0,:) = trace_path_tmp(:)
CASE DEFAULT
END SELECT
ENDDO
DEALLOCATE ( trace_path_tmp )
DEALLOCATE ( trace_mls_path )
DEALLOCATE ( rrtm_play_tmp )
DEALLOCATE ( rrtm_plev_tmp )
DEALLOCATE ( trace_mls )
DEALLOCATE ( p_mls )
END SUBROUTINE read_trace_gas_data
SUBROUTINE netcdf_handle_error_rad( routine_name, errno )
USE control_parameters, &
ONLY: message_string
USE NETCDF
USE pegrid
IMPLICIT NONE
CHARACTER(LEN=6) :: message_identifier
CHARACTER(LEN=*) :: routine_name
INTEGER(iwp) :: errno
IF ( nc_stat /= NF90_NOERR ) THEN
WRITE( message_identifier, '(''NC'',I4.4)' ) errno
message_string = TRIM( NF90_STRERROR( nc_stat ) )
CALL message( routine_name, message_identifier, 2, 2, 0, 6, 1 )
ENDIF
END SUBROUTINE netcdf_handle_error_rad
#endif
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate temperature tendency due to radiative cooling/heating.
!> Cache-optimized version.
!------------------------------------------------------------------------------!
#if defined( __rrtmg )
SUBROUTINE radiation_tendency_ij ( i, j, tend )
IMPLICIT NONE
INTEGER(iwp) :: i, j, k !< loop indices
REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: tend !< pt tendency term
IF ( radiation_scheme == 'rrtmg' ) THEN
!
!-- Calculate tendency based on heating rate
DO k = nzb+1, nzt+1
tend(k,j,i) = tend(k,j,i) + (rad_lw_hr(k,j,i) + rad_sw_hr(k,j,i)) &
* d_exner(k) * d_seconds_hour
ENDDO
ENDIF
END SUBROUTINE radiation_tendency_ij
#endif
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate temperature tendency due to radiative cooling/heating.
!> Vector-optimized version
!------------------------------------------------------------------------------!
#if defined( __rrtmg )
SUBROUTINE radiation_tendency ( tend )
USE indices, &
ONLY: nxl, nxr, nyn, nys
IMPLICIT NONE
INTEGER(iwp) :: i, j, k !< loop indices
REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: tend !< pt tendency term
IF ( radiation_scheme == 'rrtmg' ) THEN
!
!-- Calculate tendency based on heating rate
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt+1
tend(k,j,i) = tend(k,j,i) + ( rad_lw_hr(k,j,i) &
+ rad_sw_hr(k,j,i) ) * d_exner(k) &
* d_seconds_hour
ENDDO
ENDDO
ENDDO
ENDIF
END SUBROUTINE radiation_tendency
#endif
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This subroutine calculates interaction of the solar radiation
!> with urban and land surfaces and updates all surface heatfluxes.
!> It calculates also the required parameters for RRTMG lower BC.
!>
!> For more info. see Resler et al. 2017
!>
!> The new version 2.0 was radically rewriten, the discretization scheme
!> has been changed. This new version significantly improves effectivity
!> of the paralelization and the scalability of the model.
!------------------------------------------------------------------------------!
SUBROUTINE radiation_interaction
USE control_parameters, &
ONLY: rotation_angle
IMPLICIT NONE
INTEGER(iwp) :: i, j, k, kk, d, refstep, m, mm, l, ll
INTEGER(iwp) :: isurf, isurfsrc, isvf, icsf, ipcgb
INTEGER(iwp) :: imrt, imrtf
INTEGER(iwp) :: isd !< solar direction number
INTEGER(iwp) :: pc_box_dimshift !< transform for best accuracy
INTEGER(iwp), DIMENSION(0:3) :: reorder = (/ 1, 0, 3, 2 /)
REAL(wp), DIMENSION(3,3) :: mrot !< grid rotation matrix (zyx)
REAL(wp), DIMENSION(3,0:nsurf_type):: vnorm !< face direction normal vectors (zyx)
REAL(wp), DIMENSION(3) :: sunorig !< grid rotated solar direction unit vector (zyx)
REAL(wp), DIMENSION(3) :: sunorig_grid !< grid squashed solar direction unit vector (zyx)
REAL(wp), DIMENSION(0:nsurf_type) :: costheta !< direct irradiance factor of solar angle
REAL(wp), DIMENSION(nz_urban_b:nz_urban_t) :: pchf_prep !< precalculated factor for canopy temperature tendency
REAL(wp) :: pc_box_area, pc_abs_frac, pc_abs_eff
REAL(wp) :: asrc !< area of source face
REAL(wp) :: pcrad !< irradiance from plant canopy
REAL(wp) :: pabsswl = 0.0_wp !< total absorbed SW radiation energy in local processor (W)
REAL(wp) :: pabssw = 0.0_wp !< total absorbed SW radiation energy in all processors (W)
REAL(wp) :: pabslwl = 0.0_wp !< total absorbed LW radiation energy in local processor (W)
REAL(wp) :: pabslw = 0.0_wp !< total absorbed LW radiation energy in all processors (W)
REAL(wp) :: pemitlwl = 0.0_wp !< total emitted LW radiation energy in all processors (W)
REAL(wp) :: pemitlw = 0.0_wp !< total emitted LW radiation energy in all processors (W)
REAL(wp) :: pinswl = 0.0_wp !< total received SW radiation energy in local processor (W)
REAL(wp) :: pinsw = 0.0_wp !< total received SW radiation energy in all processor (W)
REAL(wp) :: pinlwl = 0.0_wp !< total received LW radiation energy in local processor (W)
REAL(wp) :: pinlw = 0.0_wp !< total received LW radiation energy in all processor (W)
REAL(wp) :: emiss_sum_surfl !< sum of emissisivity of surfaces in local processor
REAL(wp) :: emiss_sum_surf !< sum of emissisivity of surfaces in all processor
REAL(wp) :: area_surfl !< total area of surfaces in local processor
REAL(wp) :: area_surf !< total area of surfaces in all processor
REAL(wp) :: area_hor !< total horizontal area of domain in all processor
#if defined( __parallel )
REAL(wp), DIMENSION(1:7) :: combine_allreduce !< dummy array used to combine several MPI_ALLREDUCE calls
REAL(wp), DIMENSION(1:7) :: combine_allreduce_l !< dummy array used to combine several MPI_ALLREDUCE calls
#endif
IF ( debug_output_timestep ) CALL debug_message( 'radiation_interaction', 'start' )
IF ( plant_canopy ) THEN
pchf_prep(:) = r_d * exner(nz_urban_b:nz_urban_t) &
/ (c_p * hyp(nz_urban_b:nz_urban_t) * dx*dy*dz(1)) !< equals to 1 / (rho * c_p * Vbox * T)
ENDIF
sun_direction = .TRUE.
CALL get_date_time( time_since_reference_point, &
day_of_year=day_of_year, &
second_of_day=second_of_day )
CALL calc_zenith( day_of_year, second_of_day ) !< required also for diffusion radiation
!
!-- prepare rotated normal vectors and irradiance factor
vnorm(1,:) = kdir(:)
vnorm(2,:) = jdir(:)
vnorm(3,:) = idir(:)
mrot(1, :) = (/ 1._wp, 0._wp, 0._wp /)
mrot(2, :) = (/ 0._wp, COS(rotation_angle), SIN(rotation_angle) /)
mrot(3, :) = (/ 0._wp, -SIN(rotation_angle), COS(rotation_angle) /)
sunorig = (/ cos_zenith, sun_dir_lat, sun_dir_lon /)
sunorig = MATMUL(mrot, sunorig)
DO d = 0, nsurf_type
costheta(d) = DOT_PRODUCT(sunorig, vnorm(:,d))
ENDDO
IF ( cos_zenith > 0 ) THEN
!-- now we will "squash" the sunorig vector by grid box size in
!-- each dimension, so that this new direction vector will allow us
!-- to traverse the ray path within grid coordinates directly
sunorig_grid = (/ sunorig(1)/dz(1), sunorig(2)/dy, sunorig(3)/dx /)
!-- sunorig_grid = sunorig_grid / norm2(sunorig_grid)
sunorig_grid = sunorig_grid / SQRT(SUM(sunorig_grid**2))
IF ( npcbl > 0 ) THEN
!-- precompute effective box depth with prototype Leaf Area Density
pc_box_dimshift = MAXLOC(ABS(sunorig), 1) - 1
CALL box_absorb(CSHIFT((/dz(1),dy,dx/), pc_box_dimshift), &
60, prototype_lad, &
CSHIFT(ABS(sunorig), pc_box_dimshift), &
pc_box_area, pc_abs_frac)
pc_box_area = pc_box_area * ABS(sunorig(pc_box_dimshift+1) &
/ sunorig(1))
pc_abs_eff = LOG(1._wp - pc_abs_frac) / prototype_lad
ENDIF
ENDIF
!
!-- Split downwelling shortwave radiation into a diffuse and a direct part.
!-- Note, if radiation scheme is RRTMG or diffuse radiation is externally
!-- prescribed, this is not required. Please note, in case of external
!-- radiation, the clear-sky model is applied during spinup, so that
!-- radiation need to be split also in this case.
IF ( radiation_scheme == 'constant' .OR. &
radiation_scheme == 'clear-sky' .OR. &
( radiation_scheme == 'external' .AND. &
.NOT. rad_sw_in_dif_f%from_file ) .OR. &
( radiation_scheme == 'external' .AND. &
time_since_reference_point < 0.0_wp ) ) THEN
CALL calc_diffusion_radiation
ENDIF
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- First pass: direct + diffuse irradiance + thermal
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
surfinswdir = 0._wp !nsurfl
surfins = 0._wp !nsurfl
surfinl = 0._wp !nsurfl
surfoutsl(:) = 0.0_wp !start-end
surfoutll(:) = 0.0_wp !start-end
IF ( nmrtbl > 0 ) THEN
mrtinsw(:) = 0._wp
mrtinlw(:) = 0._wp
ENDIF
surfinlg(:) = 0._wp !global
!-- Set up thermal radiation from surfaces
!-- emiss_surf is defined only for surfaces for which energy balance is calculated
!-- Workaround: reorder surface data type back on 1D array including all surfaces,
!-- which implies to reorder horizontal and vertical surfaces
!
!-- Horizontal walls
mm = 1
DO i = nxl, nxr
DO j = nys, nyn
!-- urban
DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i)
surfoutll(mm) = SUM ( surf_usm_h%frac(:,m) * &
surf_usm_h%emissivity(:,m) ) &
* sigma_sb &
* surf_usm_h%pt_surface(m)**4
albedo_surf(mm) = SUM ( surf_usm_h%frac(:,m) * &
surf_usm_h%albedo(:,m) )
emiss_surf(mm) = SUM ( surf_usm_h%frac(:,m) * &
surf_usm_h%emissivity(:,m) )
mm = mm + 1
ENDDO
!-- land
DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i)
surfoutll(mm) = SUM ( surf_lsm_h%frac(:,m) * &
surf_lsm_h%emissivity(:,m) ) &
* sigma_sb &
* surf_lsm_h%pt_surface(m)**4
albedo_surf(mm) = SUM ( surf_lsm_h%frac(:,m) * &
surf_lsm_h%albedo(:,m) )
emiss_surf(mm) = SUM ( surf_lsm_h%frac(:,m) * &
surf_lsm_h%emissivity(:,m) )
mm = mm + 1
ENDDO
ENDDO
ENDDO
!
!-- Vertical walls
DO i = nxl, nxr
DO j = nys, nyn
DO ll = 0, 3
l = reorder(ll)
!-- urban
DO m = surf_usm_v(l)%start_index(j,i), &
surf_usm_v(l)%end_index(j,i)
surfoutll(mm) = SUM ( surf_usm_v(l)%frac(:,m) * &
surf_usm_v(l)%emissivity(:,m) ) &
* sigma_sb &
* surf_usm_v(l)%pt_surface(m)**4
albedo_surf(mm) = SUM ( surf_usm_v(l)%frac(:,m) * &
surf_usm_v(l)%albedo(:,m) )
emiss_surf(mm) = SUM ( surf_usm_v(l)%frac(:,m) * &
surf_usm_v(l)%emissivity(:,m) )
mm = mm + 1
ENDDO
!-- land
DO m = surf_lsm_v(l)%start_index(j,i), &
surf_lsm_v(l)%end_index(j,i)
surfoutll(mm) = SUM ( surf_lsm_v(l)%frac(:,m) * &
surf_lsm_v(l)%emissivity(:,m) ) &
* sigma_sb &
* surf_lsm_v(l)%pt_surface(m)**4
albedo_surf(mm) = SUM ( surf_lsm_v(l)%frac(:,m) * &
surf_lsm_v(l)%albedo(:,m) )
emiss_surf(mm) = SUM ( surf_lsm_v(l)%frac(:,m) * &
surf_lsm_v(l)%emissivity(:,m) )
mm = mm + 1
ENDDO
ENDDO
ENDDO
ENDDO
#if defined( __parallel )
!-- might be optimized and gather only values relevant for current processor
CALL MPI_AllGatherv(surfoutll, nsurfl, MPI_REAL, &
surfoutl, nsurfs, surfstart, MPI_REAL, comm2d, ierr) !nsurf global
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllGatherv1:', ierr, SIZE(surfoutll), nsurfl, &
SIZE(surfoutl), nsurfs, surfstart
FLUSH(9)
ENDIF
#else
surfoutl(:) = surfoutll(:) !nsurf global
#endif
IF ( surface_reflections) THEN
DO isvf = 1, nsvfl
isurf = svfsurf(1, isvf)
k = surfl(iz, isurf)
j = surfl(iy, isurf)
i = surfl(ix, isurf)
isurfsrc = svfsurf(2, isvf)
!
!-- For surface-to-surface factors we calculate thermal radiation in 1st pass
IF ( plant_lw_interact ) THEN
surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * svf(2,isvf) * surfoutl(isurfsrc)
ELSE
surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * surfoutl(isurfsrc)
ENDIF
ENDDO
ENDIF
!
!-- diffuse radiation using sky view factor
DO isurf = 1, nsurfl
j = surfl(iy, isurf)
i = surfl(ix, isurf)
surfinswdif(isurf) = rad_sw_in_diff(j,i) * skyvft(isurf)
IF ( plant_lw_interact ) THEN
surfinlwdif(isurf) = rad_lw_in_diff(j,i) * skyvft(isurf)
ELSE
surfinlwdif(isurf) = rad_lw_in_diff(j,i) * skyvf(isurf)
ENDIF
ENDDO
!
!-- MRT diffuse irradiance
DO imrt = 1, nmrtbl
j = mrtbl(iy, imrt)
i = mrtbl(ix, imrt)
mrtinsw(imrt) = mrtskyt(imrt) * rad_sw_in_diff(j,i)
mrtinlw(imrt) = mrtsky(imrt) * rad_lw_in_diff(j,i)
ENDDO
!-- direct radiation
IF ( cos_zenith > 0 ) THEN
!--Identify solar direction vector (discretized number) 1)
!--
j = FLOOR(ACOS(cos_zenith) / pi * raytrace_discrete_elevs)
i = MODULO(NINT(ATAN2(sun_dir_lon, sun_dir_lat) &
/ (2._wp*pi) * raytrace_discrete_azims-.5_wp, iwp), &
raytrace_discrete_azims)
isd = dsidir_rev(j, i)
!-- TODO: check if isd = -1 to report that this solar position is not precalculated
DO isurf = 1, nsurfl
j = surfl(iy, isurf)
i = surfl(ix, isurf)
surfinswdir(isurf) = rad_sw_in_dir(j,i) * &
costheta(surfl(id, isurf)) * dsitrans(isurf, isd) / cos_zenith
ENDDO
!
!-- MRT direct irradiance
DO imrt = 1, nmrtbl
j = mrtbl(iy, imrt)
i = mrtbl(ix, imrt)
mrtinsw(imrt) = mrtinsw(imrt) + mrtdsit(imrt, isd) * rad_sw_in_dir(j,i) &
/ cos_zenith / 4._wp ! normal to sphere
ENDDO
ENDIF
!
!-- MRT first pass thermal
DO imrtf = 1, nmrtf
imrt = mrtfsurf(1, imrtf)
isurfsrc = mrtfsurf(2, imrtf)
mrtinlw(imrt) = mrtinlw(imrt) + mrtf(imrtf) * surfoutl(isurfsrc)
ENDDO
!
!-- Absorption in each local plant canopy grid box from the first atmospheric
!-- pass of radiation
IF ( npcbl > 0 ) THEN
pcbinswdir(:) = 0._wp
pcbinswdif(:) = 0._wp
pcbinlw(:) = 0._wp
DO icsf = 1, ncsfl
ipcgb = csfsurf(1, icsf)
i = pcbl(ix,ipcgb)
j = pcbl(iy,ipcgb)
k = pcbl(iz,ipcgb)
isurfsrc = csfsurf(2, icsf)
IF ( isurfsrc == -1 ) THEN
!
!-- Diffuse radiation from sky
pcbinswdif(ipcgb) = csf(1,icsf) * rad_sw_in_diff(j,i)
!
!-- Absorbed diffuse LW radiation from sky minus emitted to sky
IF ( plant_lw_interact ) THEN
pcbinlw(ipcgb) = csf(1,icsf) &
* (rad_lw_in_diff(j, i) &
- sigma_sb * (pt(k,j,i)*exner(k))**4)
ENDIF
!
!-- Direct solar radiation
IF ( cos_zenith > 0 ) THEN
!-- Estimate directed box absorption
pc_abs_frac = 1._wp - exp(pc_abs_eff * lad_s(k,j,i))
!
!-- isd has already been established, see 1)
pcbinswdir(ipcgb) = rad_sw_in_dir(j, i) * pc_box_area &
* pc_abs_frac * dsitransc(ipcgb, isd)
ENDIF
ELSE
IF ( plant_lw_interact ) THEN
!
!-- Thermal emission from plan canopy towards respective face
pcrad = sigma_sb * (pt(k,j,i) * exner(k))**4 * csf(1,icsf)
surfinlg(isurfsrc) = surfinlg(isurfsrc) + pcrad
!
!-- Remove the flux above + absorb LW from first pass from surfaces
asrc = facearea(surf(id, isurfsrc))
pcbinlw(ipcgb) = pcbinlw(ipcgb) &
+ (csf(1,icsf) * surfoutl(isurfsrc) & ! Absorb from first pass surf emit
- pcrad) & ! Remove emitted heatflux
* asrc
ENDIF
ENDIF
ENDDO
pcbinsw(:) = pcbinswdir(:) + pcbinswdif(:)
ENDIF
IF ( plant_lw_interact ) THEN
!
!-- Exchange incoming lw radiation from plant canopy
#if defined( __parallel )
CALL MPI_Allreduce(MPI_IN_PLACE, surfinlg, nsurf, MPI_REAL, MPI_SUM, comm2d, ierr)
IF ( ierr /= 0 ) THEN
WRITE (9,*) 'Error MPI_Allreduce:', ierr
FLUSH(9)
ENDIF
surfinl(:) = surfinl(:) + surfinlg(surfstart(myid)+1:surfstart(myid+1))
#else
surfinl(:) = surfinl(:) + surfinlg(:)
#endif
ENDIF
surfins = surfinswdir + surfinswdif
surfinl = surfinl + surfinlwdif
surfinsw = surfins
surfinlw = surfinl
surfoutsw = 0.0_wp
surfoutlw = surfoutll
surfemitlwl = surfoutll
IF ( .NOT. surface_reflections ) THEN
!
!-- Set nrefsteps to 0 to disable reflections
nrefsteps = 0
surfoutsl = albedo_surf * surfins
surfoutll = (1._wp - emiss_surf) * surfinl
surfoutsw = surfoutsw + surfoutsl
surfoutlw = surfoutlw + surfoutll
ENDIF
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- Next passes - reflections
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
DO refstep = 1, nrefsteps
surfoutsl = albedo_surf * surfins
!
!-- for non-transparent surfaces, longwave albedo is 1 - emissivity
surfoutll = (1._wp - emiss_surf) * surfinl
#if defined( __parallel )
CALL MPI_AllGatherv(surfoutsl, nsurfl, MPI_REAL, &
surfouts, nsurfs, surfstart, MPI_REAL, comm2d, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllGatherv2:', ierr, SIZE(surfoutsl), nsurfl, &
SIZE(surfouts), nsurfs, surfstart
FLUSH(9)
ENDIF
CALL MPI_AllGatherv(surfoutll, nsurfl, MPI_REAL, &
surfoutl, nsurfs, surfstart, MPI_REAL, comm2d, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllGatherv3:', ierr, SIZE(surfoutll), nsurfl, &
SIZE(surfoutl), nsurfs, surfstart
FLUSH(9)
ENDIF
#else
surfouts = surfoutsl
surfoutl = surfoutll
#endif
!
!-- Reset for the input from next reflective pass
surfins = 0._wp
surfinl = 0._wp
!
!-- Reflected radiation
DO isvf = 1, nsvfl
isurf = svfsurf(1, isvf)
isurfsrc = svfsurf(2, isvf)
surfins(isurf) = surfins(isurf) + svf(1,isvf) * svf(2,isvf) * surfouts(isurfsrc)
IF ( plant_lw_interact ) THEN
surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * svf(2,isvf) * surfoutl(isurfsrc)
ELSE
surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * surfoutl(isurfsrc)
ENDIF
ENDDO
!
!-- NOTE: PC absorbtion and MRT from reflected can both be done at once
!-- after all reflections if we do one more MPI_ALLGATHERV on surfout.
!-- Advantage: less local computation. Disadvantage: one more collective
!-- MPI call.
!
!-- Radiation absorbed by plant canopy
DO icsf = 1, ncsfl
ipcgb = csfsurf(1, icsf)
isurfsrc = csfsurf(2, icsf)
IF ( isurfsrc == -1 ) CYCLE ! sky->face only in 1st pass, not here
!
!-- Calculate source surface area. If the `surf' array is removed
!-- before timestepping starts (future version), then asrc must be
!-- stored within `csf'
asrc = facearea(surf(id, isurfsrc))
pcbinsw(ipcgb) = pcbinsw(ipcgb) + csf(1,icsf) * surfouts(isurfsrc) * asrc
IF ( plant_lw_interact ) THEN
pcbinlw(ipcgb) = pcbinlw(ipcgb) + csf(1,icsf) * surfoutl(isurfsrc) * asrc
ENDIF
ENDDO
!
!-- MRT reflected
DO imrtf = 1, nmrtf
imrt = mrtfsurf(1, imrtf)
isurfsrc = mrtfsurf(2, imrtf)
mrtinsw(imrt) = mrtinsw(imrt) + mrtft(imrtf) * surfouts(isurfsrc)
mrtinlw(imrt) = mrtinlw(imrt) + mrtf(imrtf) * surfoutl(isurfsrc)
ENDDO
surfinsw = surfinsw + surfins
surfinlw = surfinlw + surfinl
surfoutsw = surfoutsw + surfoutsl
surfoutlw = surfoutlw + surfoutll
ENDDO ! refstep
!-- push heat flux absorbed by plant canopy to respective 3D arrays
IF ( npcbl > 0 ) THEN
pc_heating_rate(:,:,:) = 0.0_wp
DO ipcgb = 1, npcbl
j = pcbl(iy, ipcgb)
i = pcbl(ix, ipcgb)
k = pcbl(iz, ipcgb)
!
!-- Following expression equals former kk = k - nzb_s_inner(j,i)
kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat
pc_heating_rate(kk, j, i) = (pcbinsw(ipcgb) + pcbinlw(ipcgb)) &
* pchf_prep(k) * pt(k, j, i) !-- = dT/dt
ENDDO
IF ( humidity .AND. plant_canopy_transpiration ) THEN
!-- Calculation of plant canopy transpiration rate and correspondidng latent heat rate
pc_transpiration_rate(:,:,:) = 0.0_wp
pc_latent_rate(:,:,:) = 0.0_wp
DO ipcgb = 1, npcbl
i = pcbl(ix, ipcgb)
j = pcbl(iy, ipcgb)
k = pcbl(iz, ipcgb)
kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat
CALL pcm_calc_transpiration_rate( i, j, k, kk, pcbinsw(ipcgb), pcbinlw(ipcgb), &
pc_transpiration_rate(kk,j,i), pc_latent_rate(kk,j,i) )
ENDDO
ENDIF
ENDIF
!
!-- Calculate black body MRT (after all reflections)
IF ( nmrtbl > 0 ) THEN
IF ( mrt_include_sw ) THEN
mrt(:) = ((mrtinsw(:) + mrtinlw(:)) / sigma_sb) ** .25_wp
ELSE
mrt(:) = (mrtinlw(:) / sigma_sb) ** .25_wp
ENDIF
ENDIF
!
!-- Transfer radiation arrays required for energy balance to the respective data types
DO i = 1, nsurfl
m = surfl(im,i)
!
!-- (1) Urban surfaces
!-- upward-facing
IF ( surfl(1,i) == iup_u ) THEN
surf_usm_h%rad_sw_in(m) = surfinsw(i)
surf_usm_h%rad_sw_out(m) = surfoutsw(i)
surf_usm_h%rad_sw_dir(m) = surfinswdir(i)
surf_usm_h%rad_sw_dif(m) = surfinswdif(i)
surf_usm_h%rad_sw_ref(m) = surfinsw(i) - surfinswdir(i) - &
surfinswdif(i)
surf_usm_h%rad_sw_res(m) = surfins(i)
surf_usm_h%rad_lw_in(m) = surfinlw(i)
surf_usm_h%rad_lw_out(m) = surfoutlw(i)
surf_usm_h%rad_net(m) = surfinsw(i) - surfoutsw(i) + &
surfinlw(i) - surfoutlw(i)
surf_usm_h%rad_net_l(m) = surf_usm_h%rad_net(m)
surf_usm_h%rad_lw_dif(m) = surfinlwdif(i)
surf_usm_h%rad_lw_ref(m) = surfinlw(i) - surfinlwdif(i)
surf_usm_h%rad_lw_res(m) = surfinl(i)
!
!-- northward-facding
ELSEIF ( surfl(1,i) == inorth_u ) THEN
surf_usm_v(0)%rad_sw_in(m) = surfinsw(i)
surf_usm_v(0)%rad_sw_out(m) = surfoutsw(i)
surf_usm_v(0)%rad_sw_dir(m) = surfinswdir(i)
surf_usm_v(0)%rad_sw_dif(m) = surfinswdif(i)
surf_usm_v(0)%rad_sw_ref(m) = surfinsw(i) - surfinswdir(i) - &
surfinswdif(i)
surf_usm_v(0)%rad_sw_res(m) = surfins(i)
surf_usm_v(0)%rad_lw_in(m) = surfinlw(i)
surf_usm_v(0)%rad_lw_out(m) = surfoutlw(i)
surf_usm_v(0)%rad_net(m) = surfinsw(i) - surfoutsw(i) + &
surfinlw(i) - surfoutlw(i)
surf_usm_v(0)%rad_net_l(m) = surf_usm_v(0)%rad_net(m)
surf_usm_v(0)%rad_lw_dif(m) = surfinlwdif(i)
surf_usm_v(0)%rad_lw_ref(m) = surfinlw(i) - surfinlwdif(i)
surf_usm_v(0)%rad_lw_res(m) = surfinl(i)
!
!-- southward-facding
ELSEIF ( surfl(1,i) == isouth_u ) THEN
surf_usm_v(1)%rad_sw_in(m) = surfinsw(i)
surf_usm_v(1)%rad_sw_out(m) = surfoutsw(i)
surf_usm_v(1)%rad_sw_dir(m) = surfinswdir(i)
surf_usm_v(1)%rad_sw_dif(m) = surfinswdif(i)
surf_usm_v(1)%rad_sw_ref(m) = surfinsw(i) - surfinswdir(i) - &
surfinswdif(i)
surf_usm_v(1)%rad_sw_res(m) = surfins(i)
surf_usm_v(1)%rad_lw_in(m) = surfinlw(i)
surf_usm_v(1)%rad_lw_out(m) = surfoutlw(i)
surf_usm_v(1)%rad_net(m) = surfinsw(i) - surfoutsw(i) + &
surfinlw(i) - surfoutlw(i)
surf_usm_v(1)%rad_net_l(m) = surf_usm_v(1)%rad_net(m)
surf_usm_v(1)%rad_lw_dif(m) = surfinlwdif(i)
surf_usm_v(1)%rad_lw_ref(m) = surfinlw(i) - surfinlwdif(i)
surf_usm_v(1)%rad_lw_res(m) = surfinl(i)
!
!-- eastward-facing
ELSEIF ( surfl(1,i) == ieast_u ) THEN
surf_usm_v(2)%rad_sw_in(m) = surfinsw(i)
surf_usm_v(2)%rad_sw_out(m) = surfoutsw(i)
surf_usm_v(2)%rad_sw_dir(m) = surfinswdir(i)
surf_usm_v(2)%rad_sw_dif(m) = surfinswdif(i)
surf_usm_v(2)%rad_sw_ref(m) = surfinsw(i) - surfinswdir(i) - &
surfinswdif(i)
surf_usm_v(2)%rad_sw_res(m) = surfins(i)
surf_usm_v(2)%rad_lw_in(m) = surfinlw(i)
surf_usm_v(2)%rad_lw_out(m) = surfoutlw(i)
surf_usm_v(2)%rad_net(m) = surfinsw(i) - surfoutsw(i) + &
surfinlw(i) - surfoutlw(i)
surf_usm_v(2)%rad_net_l(m) = surf_usm_v(2)%rad_net(m)
surf_usm_v(2)%rad_lw_dif(m) = surfinlwdif(i)
surf_usm_v(2)%rad_lw_ref(m) = surfinlw(i) - surfinlwdif(i)
surf_usm_v(2)%rad_lw_res(m) = surfinl(i)
!
!-- westward-facding
ELSEIF ( surfl(1,i) == iwest_u ) THEN
surf_usm_v(3)%rad_sw_in(m) = surfinsw(i)
surf_usm_v(3)%rad_sw_out(m) = surfoutsw(i)
surf_usm_v(3)%rad_sw_dir(m) = surfinswdir(i)
surf_usm_v(3)%rad_sw_dif(m) = surfinswdif(i)
surf_usm_v(3)%rad_sw_ref(m) = surfinsw(i) - surfinswdir(i) - &
surfinswdif(i)
surf_usm_v(3)%rad_sw_res(m) = surfins(i)
surf_usm_v(3)%rad_lw_in(m) = surfinlw(i)
surf_usm_v(3)%rad_lw_out(m) = surfoutlw(i)
surf_usm_v(3)%rad_net(m) = surfinsw(i) - surfoutsw(i) + &
surfinlw(i) - surfoutlw(i)
surf_usm_v(3)%rad_net_l(m) = surf_usm_v(3)%rad_net(m)
surf_usm_v(3)%rad_lw_dif(m) = surfinlwdif(i)
surf_usm_v(3)%rad_lw_ref(m) = surfinlw(i) - surfinlwdif(i)
surf_usm_v(3)%rad_lw_res(m) = surfinl(i)
!
!-- (2) land surfaces
!-- upward-facing
ELSEIF ( surfl(1,i) == iup_l ) THEN
surf_lsm_h%rad_sw_in(m) = surfinsw(i)
surf_lsm_h%rad_sw_out(m) = surfoutsw(i)
surf_lsm_h%rad_sw_dir(m) = surfinswdir(i)
surf_lsm_h%rad_sw_dif(m) = surfinswdif(i)
surf_lsm_h%rad_sw_ref(m) = surfinsw(i) - surfinswdir(i) - &
surfinswdif(i)
surf_lsm_h%rad_sw_res(m) = surfins(i)
surf_lsm_h%rad_lw_in(m) = surfinlw(i)
surf_lsm_h%rad_lw_out(m) = surfoutlw(i)
surf_lsm_h%rad_net(m) = surfinsw(i) - surfoutsw(i) + &
surfinlw(i) - surfoutlw(i)
surf_lsm_h%rad_lw_dif(m) = surfinlwdif(i)
surf_lsm_h%rad_lw_ref(m) = surfinlw(i) - surfinlwdif(i)
surf_lsm_h%rad_lw_res(m) = surfinl(i)
!
!-- northward-facding
ELSEIF ( surfl(1,i) == inorth_l ) THEN
surf_lsm_v(0)%rad_sw_in(m) = surfinsw(i)
surf_lsm_v(0)%rad_sw_out(m) = surfoutsw(i)
surf_lsm_v(0)%rad_sw_dir(m) = surfinswdir(i)
surf_lsm_v(0)%rad_sw_dif(m) = surfinswdif(i)
surf_lsm_v(0)%rad_sw_ref(m) = surfinsw(i) - surfinswdir(i) - &
surfinswdif(i)
surf_lsm_v(0)%rad_sw_res(m) = surfins(i)
surf_lsm_v(0)%rad_lw_in(m) = surfinlw(i)
surf_lsm_v(0)%rad_lw_out(m) = surfoutlw(i)
surf_lsm_v(0)%rad_net(m) = surfinsw(i) - surfoutsw(i) + &
surfinlw(i) - surfoutlw(i)
surf_lsm_v(0)%rad_lw_dif(m) = surfinlwdif(i)
surf_lsm_v(0)%rad_lw_ref(m) = surfinlw(i) - surfinlwdif(i)
surf_lsm_v(0)%rad_lw_res(m) = surfinl(i)
!
!-- southward-facding
ELSEIF ( surfl(1,i) == isouth_l ) THEN
surf_lsm_v(1)%rad_sw_in(m) = surfinsw(i)
surf_lsm_v(1)%rad_sw_out(m) = surfoutsw(i)
surf_lsm_v(1)%rad_sw_dir(m) = surfinswdir(i)
surf_lsm_v(1)%rad_sw_dif(m) = surfinswdif(i)
surf_lsm_v(1)%rad_sw_ref(m) = surfinsw(i) - surfinswdir(i) - &
surfinswdif(i)
surf_lsm_v(1)%rad_sw_res(m) = surfins(i)
surf_lsm_v(1)%rad_lw_in(m) = surfinlw(i)
surf_lsm_v(1)%rad_lw_out(m) = surfoutlw(i)
surf_lsm_v(1)%rad_net(m) = surfinsw(i) - surfoutsw(i) + &
surfinlw(i) - surfoutlw(i)
surf_lsm_v(1)%rad_lw_dif(m) = surfinlwdif(i)
surf_lsm_v(1)%rad_lw_ref(m) = surfinlw(i) - surfinlwdif(i)
surf_lsm_v(1)%rad_lw_res(m) = surfinl(i)
!
!-- eastward-facing
ELSEIF ( surfl(1,i) == ieast_l ) THEN
surf_lsm_v(2)%rad_sw_in(m) = surfinsw(i)
surf_lsm_v(2)%rad_sw_out(m) = surfoutsw(i)
surf_lsm_v(2)%rad_sw_dir(m) = surfinswdir(i)
surf_lsm_v(2)%rad_sw_dif(m) = surfinswdif(i)
surf_lsm_v(2)%rad_sw_ref(m) = surfinsw(i) - surfinswdir(i) - &
surfinswdif(i)
surf_lsm_v(2)%rad_sw_res(m) = surfins(i)
surf_lsm_v(2)%rad_lw_in(m) = surfinlw(i)
surf_lsm_v(2)%rad_lw_out(m) = surfoutlw(i)
surf_lsm_v(2)%rad_net(m) = surfinsw(i) - surfoutsw(i) + &
surfinlw(i) - surfoutlw(i)
surf_lsm_v(2)%rad_lw_dif(m) = surfinlwdif(i)
surf_lsm_v(2)%rad_lw_ref(m) = surfinlw(i) - surfinlwdif(i)
surf_lsm_v(2)%rad_lw_res(m) = surfinl(i)
!
!-- westward-facing
ELSEIF ( surfl(1,i) == iwest_l ) THEN
surf_lsm_v(3)%rad_sw_in(m) = surfinsw(i)
surf_lsm_v(3)%rad_sw_out(m) = surfoutsw(i)
surf_lsm_v(3)%rad_sw_dir(m) = surfinswdir(i)
surf_lsm_v(3)%rad_sw_dif(m) = surfinswdif(i)
surf_lsm_v(3)%rad_sw_ref(m) = surfinsw(i) - surfinswdir(i) - &
surfinswdif(i)
surf_lsm_v(3)%rad_sw_res(m) = surfins(i)
surf_lsm_v(3)%rad_lw_in(m) = surfinlw(i)
surf_lsm_v(3)%rad_lw_out(m) = surfoutlw(i)
surf_lsm_v(3)%rad_net(m) = surfinsw(i) - surfoutsw(i) + &
surfinlw(i) - surfoutlw(i)
surf_lsm_v(3)%rad_lw_dif(m) = surfinlwdif(i)
surf_lsm_v(3)%rad_lw_ref(m) = surfinlw(i) - surfinlwdif(i)
surf_lsm_v(3)%rad_lw_res(m) = surfinl(i)
ENDIF
ENDDO
DO m = 1, surf_usm_h%ns
surf_usm_h%surfhf(m) = surf_usm_h%rad_sw_in(m) + &
surf_usm_h%rad_lw_in(m) - &
surf_usm_h%rad_sw_out(m) - &
surf_usm_h%rad_lw_out(m)
ENDDO
DO m = 1, surf_lsm_h%ns
surf_lsm_h%surfhf(m) = surf_lsm_h%rad_sw_in(m) + &
surf_lsm_h%rad_lw_in(m) - &
surf_lsm_h%rad_sw_out(m) - &
surf_lsm_h%rad_lw_out(m)
ENDDO
DO l = 0, 3
!-- urban
DO m = 1, surf_usm_v(l)%ns
surf_usm_v(l)%surfhf(m) = surf_usm_v(l)%rad_sw_in(m) + &
surf_usm_v(l)%rad_lw_in(m) - &
surf_usm_v(l)%rad_sw_out(m) - &
surf_usm_v(l)%rad_lw_out(m)
ENDDO
!-- land
DO m = 1, surf_lsm_v(l)%ns
surf_lsm_v(l)%surfhf(m) = surf_lsm_v(l)%rad_sw_in(m) + &
surf_lsm_v(l)%rad_lw_in(m) - &
surf_lsm_v(l)%rad_sw_out(m) - &
surf_lsm_v(l)%rad_lw_out(m)
ENDDO
ENDDO
!
!-- Calculate the average temperature, albedo, and emissivity for urban/land
!-- domain when using average_radiation in the respective radiation model
!-- calculate horizontal area
! !!! ATTENTION!!! uniform grid is assumed here
area_hor = (nx+1) * (ny+1) * dx * dy
!
!-- absorbed/received SW & LW and emitted LW energy of all physical
!-- surfaces (land and urban) in local processor
pinswl = 0._wp
pinlwl = 0._wp
pabsswl = 0._wp
pabslwl = 0._wp
pemitlwl = 0._wp
emiss_sum_surfl = 0._wp
area_surfl = 0._wp
DO i = 1, nsurfl
d = surfl(id, i)
!-- received SW & LW
pinswl = pinswl + (surfinswdir(i) + surfinswdif(i)) * facearea(d)
pinlwl = pinlwl + surfinlwdif(i) * facearea(d)
!-- absorbed SW & LW
pabsswl = pabsswl + (1._wp - albedo_surf(i)) * &
surfinsw(i) * facearea(d)
pabslwl = pabslwl + emiss_surf(i) * surfinlw(i) * facearea(d)
!-- emitted LW
pemitlwl = pemitlwl + surfemitlwl(i) * facearea(d)
!-- emissivity and area sum
emiss_sum_surfl = emiss_sum_surfl + emiss_surf(i) * facearea(d)
area_surfl = area_surfl + facearea(d)
END DO
!
!-- add the absorbed SW energy by plant canopy
IF ( npcbl > 0 ) THEN
pabsswl = pabsswl + SUM(pcbinsw)
pabslwl = pabslwl + SUM(pcbinlw)
pinswl = pinswl + SUM(pcbinswdir) + SUM(pcbinswdif)
ENDIF
!
!-- gather all rad flux energy in all processors. In order to reduce
!-- the number of MPI calls (to reduce latencies), combine the required
!-- quantities in one array, sum it up, and subsequently re-distribute
!-- back to the respective quantities.
#if defined( __parallel )
combine_allreduce_l(1) = pinswl
combine_allreduce_l(2) = pinlwl
combine_allreduce_l(3) = pabsswl
combine_allreduce_l(4) = pabslwl
combine_allreduce_l(5) = pemitlwl
combine_allreduce_l(6) = emiss_sum_surfl
combine_allreduce_l(7) = area_surfl
CALL MPI_ALLREDUCE( combine_allreduce_l, &
combine_allreduce, &
SIZE( combine_allreduce ), &
MPI_REAL, &
MPI_SUM, &
comm2d, &
ierr )
pinsw = combine_allreduce(1)
pinlw = combine_allreduce(2)
pabssw = combine_allreduce(3)
pabslw = combine_allreduce(4)
pemitlw = combine_allreduce(5)
emiss_sum_surf = combine_allreduce(6)
area_surf = combine_allreduce(7)
#else
pinsw = pinswl
pinlw = pinlwl
pabssw = pabsswl
pabslw = pabslwl
pemitlw = pemitlwl
emiss_sum_surf = emiss_sum_surfl
area_surf = area_surfl
#endif
!-- (1) albedo
IF ( pinsw /= 0.0_wp ) albedo_urb = ( pinsw - pabssw ) / pinsw
!-- (2) average emmsivity
IF ( area_surf /= 0.0_wp ) emissivity_urb = emiss_sum_surf / area_surf
!
!-- Temporally comment out calculation of effective radiative temperature.
!-- See below for more explanation.
!-- (3) temperature
!-- first we calculate an effective horizontal area to account for
!-- the effect of vertical surfaces (which contributes to LW emission)
!-- We simply use the ratio of the total LW to the incoming LW flux
area_hor = pinlw / rad_lw_in_diff(nyn,nxl)
t_rad_urb = ( ( pemitlw - pabslw + emissivity_urb * pinlw ) / &
(emissivity_urb * sigma_sb * area_hor) )**0.25_wp
IF ( debug_output_timestep ) CALL debug_message( 'radiation_interaction', 'end' )
CONTAINS
!------------------------------------------------------------------------------!
!> Calculates radiation absorbed by box with given size and LAD.
!>
!> Simulates resol**2 rays (by equally spacing a bounding horizontal square
!> conatining all possible rays that would cross the box) and calculates
!> average transparency per ray. Returns fraction of absorbed radiation flux
!> and area for which this fraction is effective.
!------------------------------------------------------------------------------!
PURE SUBROUTINE box_absorb(boxsize, resol, dens, uvec, area, absorb)
IMPLICIT NONE
REAL(wp), DIMENSION(3), INTENT(in) :: &
boxsize, & !< z, y, x size of box in m
uvec !< z, y, x unit vector of incoming flux
INTEGER(iwp), INTENT(in) :: &
resol !< No. of rays in x and y dimensions
REAL(wp), INTENT(in) :: &
dens !< box density (e.g. Leaf Area Density)
REAL(wp), INTENT(out) :: &
area, & !< horizontal area for flux absorbtion
absorb !< fraction of absorbed flux
REAL(wp) :: &
xshift, yshift, &
xmin, xmax, ymin, ymax, &
xorig, yorig, &
dx1, dy1, dz1, dx2, dy2, dz2, &
crdist, &
transp
INTEGER(iwp) :: &
i, j
xshift = uvec(3) / uvec(1) * boxsize(1)
xmin = min(0._wp, -xshift)
xmax = boxsize(3) + max(0._wp, -xshift)
yshift = uvec(2) / uvec(1) * boxsize(1)
ymin = min(0._wp, -yshift)
ymax = boxsize(2) + max(0._wp, -yshift)
transp = 0._wp
DO i = 1, resol
xorig = xmin + (xmax-xmin) * (i-.5_wp) / resol
DO j = 1, resol
yorig = ymin + (ymax-ymin) * (j-.5_wp) / resol
dz1 = 0._wp
dz2 = boxsize(1)/uvec(1)
IF ( uvec(2) > 0._wp ) THEN
dy1 = -yorig / uvec(2) !< crossing with y=0
dy2 = (boxsize(2)-yorig) / uvec(2) !< crossing with y=boxsize(2)
ELSE !uvec(2)==0
dy1 = -huge(1._wp)
dy2 = huge(1._wp)
ENDIF
IF ( uvec(3) > 0._wp ) THEN
dx1 = -xorig / uvec(3) !< crossing with x=0
dx2 = (boxsize(3)-xorig) / uvec(3) !< crossing with x=boxsize(3)
ELSE !uvec(3)==0
dx1 = -huge(1._wp)
dx2 = huge(1._wp)
ENDIF
crdist = max(0._wp, (min(dz2, dy2, dx2) - max(dz1, dy1, dx1)))
transp = transp + exp(-ext_coef * dens * crdist)
ENDDO
ENDDO
transp = transp / resol**2
area = (boxsize(3)+xshift)*(boxsize(2)+yshift)
absorb = 1._wp - transp
END SUBROUTINE box_absorb
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This subroutine splits direct and diffusion dw radiation
!> It sould not be called in case the radiation model already does it
!> It follows Boland, Ridley & Brown (2008)
!------------------------------------------------------------------------------!
SUBROUTINE calc_diffusion_radiation
USE palm_date_time_mod, &
ONLY: seconds_per_day
INTEGER(iwp) :: i !< grid index x-direction
INTEGER(iwp) :: j !< grid index y-direction
INTEGER(iwp) :: days_per_year !< days in the current year
REAL(wp) :: clearnessIndex !< clearness index
REAL(wp) :: corrected_solarUp !< corrected solar up radiation
REAL(wp) :: diff_frac !< diffusion fraction of the radiation
REAL(wp) :: etr !< extraterestrial radiation
REAL(wp) :: horizontalETR !< horizontal extraterestrial radiation
REAL(wp), PARAMETER :: lowest_solarUp = 0.1_wp !< limit the sun elevation to protect stability of the calculation
REAL(wp) :: second_of_year !< current second of the year
REAL(wp) :: year_angle !< angle
!
!-- Calculate current day and time based on the initial values and simulation time
CALL get_date_time( time_since_reference_point, &
second_of_year = second_of_year, &
days_per_year = days_per_year )
year_angle = second_of_year / ( REAL( days_per_year, KIND=wp ) * seconds_per_day ) &
* 2.0_wp * pi
etr = solar_constant * (1.00011_wp + &
0.034221_wp * cos(year_angle) + &
0.001280_wp * sin(year_angle) + &
0.000719_wp * cos(2.0_wp * year_angle) + &
0.000077_wp * sin(2.0_wp * year_angle))
!--
!-- Under a very low angle, we keep extraterestrial radiation at
!-- the last small value, therefore the clearness index will be pushed
!-- towards 0 while keeping full continuity.
IF ( cos_zenith <= lowest_solarUp ) THEN
corrected_solarUp = lowest_solarUp
ELSE
corrected_solarUp = cos_zenith
ENDIF
horizontalETR = etr * corrected_solarUp
DO i = nxl, nxr
DO j = nys, nyn
clearnessIndex = rad_sw_in(0,j,i) / horizontalETR
diff_frac = 1.0_wp / (1.0_wp + exp(-5.0033_wp + 8.6025_wp * clearnessIndex))
rad_sw_in_diff(j,i) = rad_sw_in(0,j,i) * diff_frac
rad_sw_in_dir(j,i) = rad_sw_in(0,j,i) * (1.0_wp - diff_frac)
rad_lw_in_diff(j,i) = rad_lw_in(0,j,i)
ENDDO
ENDDO
END SUBROUTINE calc_diffusion_radiation
END SUBROUTINE radiation_interaction
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This subroutine initializes structures needed for radiative transfer
!> model. This model calculates transformation processes of the
!> radiation inside urban and land canopy layer. The module includes also
!> the interaction of the radiation with the resolved plant canopy.
!>
!> For more info. see Resler et al. 2017
!>
!> The new version 2.0 was radically rewriten, the discretization scheme
!> has been changed. This new version significantly improves effectivity
!> of the paralelization and the scalability of the model.
!>
!------------------------------------------------------------------------------!
SUBROUTINE radiation_interaction_init
USE control_parameters, &
ONLY: dz_stretch_level_start
USE plant_canopy_model_mod, &
ONLY: lad_s
IMPLICIT NONE
INTEGER(iwp) :: i, j, k, l, m, d
INTEGER(iwp) :: k_topo !< vertical index indicating topography top for given (j,i)
INTEGER(iwp) :: nzptl, nzubl, nzutl, isurf, ipcgb, imrt
REAL(wp) :: mrl
#if defined( __parallel )
INTEGER(iwp), DIMENSION(:), POINTER, SAVE :: gridsurf_rma !< fortran pointer, but lower bounds are 1
TYPE(c_ptr) :: gridsurf_rma_p !< allocated c pointer
INTEGER(iwp) :: minfo !< MPI RMA window info handle
#endif
!
!-- precalculate face areas for different face directions using normal vector
DO d = 0, nsurf_type
facearea(d) = 1._wp
IF ( idir(d) == 0 ) facearea(d) = facearea(d) * dx
IF ( jdir(d) == 0 ) facearea(d) = facearea(d) * dy
IF ( kdir(d) == 0 ) facearea(d) = facearea(d) * dz(1)
ENDDO
!
!-- Find nz_urban_b, nz_urban_t, nz_urban via wall_flag_0 array (nzb_s_inner will be
!-- removed later). The following contruct finds the lowest / largest index
!-- for any upward-facing wall (see bit 12).
nzubl = MINVAL( topo_top_ind(nys:nyn,nxl:nxr,0) )
nzutl = MAXVAL( topo_top_ind(nys:nyn,nxl:nxr,0) )
nzubl = MAX( nzubl, nzb )
IF ( plant_canopy ) THEN
!-- allocate needed arrays
ALLOCATE( pct(nys:nyn,nxl:nxr) )
ALLOCATE( pch(nys:nyn,nxl:nxr) )
!-- calculate plant canopy height
npcbl = 0
pct = 0
pch = 0
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Find topography top index
k_topo = topo_top_ind(j,i,0)
DO k = nzt+1, 0, -1
IF ( lad_s(k,j,i) /= 0.0_wp ) THEN
!-- we are at the top of the pcs
pct(j,i) = k + k_topo
pch(j,i) = k
npcbl = npcbl + pch(j,i)
EXIT
ENDIF
ENDDO
ENDDO
ENDDO
nzutl = MAX( nzutl, MAXVAL( pct ) )
nzptl = MAXVAL( pct )
prototype_lad = MAXVAL( lad_s ) * .9_wp !< better be *1.0 if lad is either 0 or maxval(lad) everywhere
IF ( prototype_lad <= 0._wp ) prototype_lad = .3_wp
!WRITE(message_string, '(a,f6.3)') 'Precomputing effective box optical ' &
! // 'depth using prototype leaf area density = ', prototype_lad
!CALL message('radiation_interaction_init', 'PA0520', 0, 0, -1, 6, 0)
ENDIF
nzutl = MIN( nzutl + nzut_free, nzt )
#if defined( __parallel )
CALL MPI_AllReduce(nzubl, nz_urban_b, 1, MPI_INTEGER, MPI_MIN, comm2d, ierr )
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllReduce11:', ierr, nzubl, nz_urban_b
FLUSH(9)
ENDIF
CALL MPI_AllReduce(nzutl, nz_urban_t, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr )
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllReduce12:', ierr, nzutl, nz_urban_t
FLUSH(9)
ENDIF
CALL MPI_AllReduce(nzptl, nz_plant_t, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr )
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllReduce13:', ierr, nzptl, nz_plant_t
FLUSH(9)
ENDIF
#else
nz_urban_b = nzubl
nz_urban_t = nzutl
nz_plant_t = nzptl
#endif
!
!-- Stretching (non-uniform grid spacing) is not considered in the radiation
!-- model. Therefore, vertical stretching has to be applied above the area
!-- where the parts of the radiation model which assume constant grid spacing
!-- are active. ABS (...) is required because the default value of
!-- dz_stretch_level_start is -9999999.9_wp (negative).
IF ( ABS( dz_stretch_level_start(1) ) <= zw(nz_urban_t) ) THEN
WRITE( message_string, * ) 'The lowest level where vertical ', &
'stretching is applied have to be ', &
'greater than ', zw(nz_urban_t)
CALL message( 'radiation_interaction_init', 'PA0496', 1, 2, 0, 6, 0 )
ENDIF
!
!-- global number of urban and plant layers
nz_urban = nz_urban_t - nz_urban_b + 1
nz_plant = nz_plant_t - nz_urban_b + 1
!
!-- check max_raytracing_dist relative to urban surface layer height
mrl = 2.0_wp * nz_urban * dz(1)
!-- set max_raytracing_dist to double the urban surface layer height, if not set
IF ( max_raytracing_dist == -999.0_wp ) THEN
max_raytracing_dist = mrl
ENDIF
!-- check if max_raytracing_dist set too low (here we only warn the user. Other
! option is to correct the value again to double the urban surface layer height)
IF ( max_raytracing_dist < mrl ) THEN
WRITE(message_string, '(a,f6.1)') 'Max_raytracing_dist is set less than ' // &
'double the urban surface layer height, i.e. ', mrl
CALL message('radiation_interaction_init', 'PA0521', 0, 0, 0, 6, 0 )
ENDIF
! IF ( max_raytracing_dist <= mrl ) THEN
! IF ( max_raytracing_dist /= -999.0_wp ) THEN
! !-- max_raytracing_dist too low
! WRITE(message_string, '(a,f6.1)') 'Max_raytracing_dist too low, ' &
! // 'override to value ', mrl
! CALL message('radiation_interaction_init', 'PA0521', 0, 0, -1, 6, 0)
! ENDIF
! max_raytracing_dist = mrl
! ENDIF
!
!-- allocate urban surfaces grid
!-- calc number of surfaces in local proc
IF ( debug_output ) CALL debug_message( 'calculation of indices for surfaces', 'info' )
nsurfl = 0
!
!-- Number of horizontal surfaces including land- and roof surfaces in both USM and LSM. Note that
!-- All horizontal surface elements are already counted in surface_mod.
startland = 1
nsurfl = surf_usm_h%ns + surf_lsm_h%ns
endland = nsurfl
nlands = endland - startland + 1
!
!-- Number of vertical surfaces in both USM and LSM. Note that all vertical surface elements are
!-- already counted in surface_mod.
startwall = nsurfl+1
DO i = 0,3
nsurfl = nsurfl + surf_usm_v(i)%ns + surf_lsm_v(i)%ns
ENDDO
endwall = nsurfl
nwalls = endwall - startwall + 1
dirstart = (/ startland, startwall, startwall, startwall, startwall /)
dirend = (/ endland, endwall, endwall, endwall, endwall /)
!-- fill gridpcbl and pcbl
IF ( npcbl > 0 ) THEN
ALLOCATE( pcbl(iz:ix, 1:npcbl) )
ALLOCATE( gridpcbl(nz_urban_b:nz_plant_t,nys:nyn,nxl:nxr) )
pcbl = -1
gridpcbl(:,:,:) = 0
ipcgb = 0
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Find topography top index
k_topo = topo_top_ind(j,i,0)
DO k = k_topo + 1, pct(j,i)
ipcgb = ipcgb + 1
gridpcbl(k,j,i) = ipcgb
pcbl(:,ipcgb) = (/ k, j, i /)
ENDDO
ENDDO
ENDDO
ALLOCATE( pcbinsw( 1:npcbl ) )
ALLOCATE( pcbinswdir( 1:npcbl ) )
ALLOCATE( pcbinswdif( 1:npcbl ) )
ALLOCATE( pcbinlw( 1:npcbl ) )
ENDIF
!
!-- Fill surfl (the ordering of local surfaces given by the following
!-- cycles must not be altered, certain file input routines may depend
!-- on it).
!
!-- We allocate the array as linear and then use a two-dimensional pointer
!-- into it, because some MPI implementations crash with 2D-allocated arrays.
ALLOCATE(surfl_linear(nidx_surf*nsurfl))
surfl(1:nidx_surf,1:nsurfl) => surfl_linear(1:nidx_surf*nsurfl)
isurf = 0
IF ( rad_angular_discretization ) THEN
!
!-- Allocate and fill the reverse indexing array gridsurf
#if defined( __parallel )
!
!-- raytrace_mpi_rma is asserted
CALL MPI_Info_create(minfo, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Info_create1:', ierr
FLUSH(9)
ENDIF
CALL MPI_Info_set(minfo, 'accumulate_ordering', 'none', ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Info_set1:', ierr
FLUSH(9)
ENDIF
CALL MPI_Info_set(minfo, 'accumulate_ops', 'same_op', ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Info_set2:', ierr
FLUSH(9)
ENDIF
CALL MPI_Info_set(minfo, 'same_size', 'true', ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Info_set3:', ierr
FLUSH(9)
ENDIF
CALL MPI_Info_set(minfo, 'same_disp_unit', 'true', ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Info_set4:', ierr
FLUSH(9)
ENDIF
CALL MPI_Win_allocate(INT(STORAGE_SIZE(1_iwp)/8*nsurf_type_u*nz_urban*nny*nnx, &
kind=MPI_ADDRESS_KIND), STORAGE_SIZE(1_iwp)/8, &
minfo, comm2d, gridsurf_rma_p, win_gridsurf, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Win_allocate1:', ierr, &
INT(STORAGE_SIZE(1_iwp)/8*nsurf_type_u*nz_urban*nny*nnx,kind=MPI_ADDRESS_KIND), &
STORAGE_SIZE(1_iwp)/8, win_gridsurf
FLUSH(9)
ENDIF
CALL MPI_Info_free(minfo, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Info_free1:', ierr
FLUSH(9)
ENDIF
!
!-- On Intel compilers, calling c_f_pointer to transform a C pointer
!-- directly to a multi-dimensional Fotran pointer leads to strange
!-- errors on dimension boundaries. However, transforming to a 1D
!-- pointer and then redirecting a multidimensional pointer to it works
!-- fine.
CALL c_f_pointer(gridsurf_rma_p, gridsurf_rma, (/ nsurf_type_u*nz_urban*nny*nnx /))
gridsurf(0:nsurf_type_u-1, nz_urban_b:nz_urban_t, nys:nyn, nxl:nxr) => &
gridsurf_rma(1:nsurf_type_u*nz_urban*nny*nnx)
#else
ALLOCATE(gridsurf(0:nsurf_type_u-1,nz_urban_b:nz_urban_t,nys:nyn,nxl:nxr) )
#endif
gridsurf(:,:,:,:) = -999
ENDIF
!-- add horizontal surface elements (land and urban surfaces)
!-- TODO: add urban overhanging surfaces (idown_u)
DO i = nxl, nxr
DO j = nys, nyn
DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i)
k = surf_usm_h%k(m)
isurf = isurf + 1
surfl(:,isurf) = (/iup_u,k,j,i,m/)
IF ( rad_angular_discretization ) THEN
gridsurf(iup_u,k,j,i) = isurf
ENDIF
ENDDO
DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i)
k = surf_lsm_h%k(m)
isurf = isurf + 1
surfl(:,isurf) = (/iup_l,k,j,i,m/)
IF ( rad_angular_discretization ) THEN
gridsurf(iup_u,k,j,i) = isurf
ENDIF
ENDDO
ENDDO
ENDDO
!-- add vertical surface elements (land and urban surfaces)
!-- TODO: remove the hard coding of l = 0 to l = idirection
DO i = nxl, nxr
DO j = nys, nyn
l = 0
DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i)
k = surf_usm_v(l)%k(m)
isurf = isurf + 1
surfl(:,isurf) = (/inorth_u,k,j,i,m/)
IF ( rad_angular_discretization ) THEN
gridsurf(inorth_u,k,j,i) = isurf
ENDIF
ENDDO
DO m = surf_lsm_v(l)%start_index(j,i), surf_lsm_v(l)%end_index(j,i)
k = surf_lsm_v(l)%k(m)
isurf = isurf + 1
surfl(:,isurf) = (/inorth_l,k,j,i,m/)
IF ( rad_angular_discretization ) THEN
gridsurf(inorth_u,k,j,i) = isurf
ENDIF
ENDDO
l = 1
DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i)
k = surf_usm_v(l)%k(m)
isurf = isurf + 1
surfl(:,isurf) = (/isouth_u,k,j,i,m/)
IF ( rad_angular_discretization ) THEN
gridsurf(isouth_u,k,j,i) = isurf
ENDIF
ENDDO
DO m = surf_lsm_v(l)%start_index(j,i), surf_lsm_v(l)%end_index(j,i)
k = surf_lsm_v(l)%k(m)
isurf = isurf + 1
surfl(:,isurf) = (/isouth_l,k,j,i,m/)
IF ( rad_angular_discretization ) THEN
gridsurf(isouth_u,k,j,i) = isurf
ENDIF
ENDDO
l = 2
DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i)
k = surf_usm_v(l)%k(m)
isurf = isurf + 1
surfl(:,isurf) = (/ieast_u,k,j,i,m/)
IF ( rad_angular_discretization ) THEN
gridsurf(ieast_u,k,j,i) = isurf
ENDIF
ENDDO
DO m = surf_lsm_v(l)%start_index(j,i), surf_lsm_v(l)%end_index(j,i)
k = surf_lsm_v(l)%k(m)
isurf = isurf + 1
surfl(:,isurf) = (/ieast_l,k,j,i,m/)
IF ( rad_angular_discretization ) THEN
gridsurf(ieast_u,k,j,i) = isurf
ENDIF
ENDDO
l = 3
DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i)
k = surf_usm_v(l)%k(m)
isurf = isurf + 1
surfl(:,isurf) = (/iwest_u,k,j,i,m/)
IF ( rad_angular_discretization ) THEN
gridsurf(iwest_u,k,j,i) = isurf
ENDIF
ENDDO
DO m = surf_lsm_v(l)%start_index(j,i), surf_lsm_v(l)%end_index(j,i)
k = surf_lsm_v(l)%k(m)
isurf = isurf + 1
surfl(:,isurf) = (/iwest_l,k,j,i,m/)
IF ( rad_angular_discretization ) THEN
gridsurf(iwest_u,k,j,i) = isurf
ENDIF
ENDDO
ENDDO
ENDDO
!
!-- Add local MRT boxes for specified number of levels
nmrtbl = 0
IF ( mrt_nlevels > 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i)
!
!-- Skip roof if requested
IF ( mrt_skip_roof .AND. surf_usm_h%isroof_surf(m) ) CYCLE
!
!-- Cycle over specified no of levels
nmrtbl = nmrtbl + mrt_nlevels
ENDDO
!
!-- Dtto for LSM
DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i)
nmrtbl = nmrtbl + mrt_nlevels
ENDDO
ENDDO
ENDDO
ALLOCATE( mrtbl(iz:ix,nmrtbl), mrtsky(nmrtbl), mrtskyt(nmrtbl), &
mrtinsw(nmrtbl), mrtinlw(nmrtbl), mrt(nmrtbl) )
imrt = 0
DO i = nxl, nxr
DO j = nys, nyn
DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i)
!
!-- Skip roof if requested
IF ( mrt_skip_roof .AND. surf_usm_h%isroof_surf(m) ) CYCLE
!
!-- Cycle over specified no of levels
l = surf_usm_h%k(m)
DO k = l, l + mrt_nlevels - 1
imrt = imrt + 1
mrtbl(:,imrt) = (/k,j,i/)
ENDDO
ENDDO
!
!-- Dtto for LSM
DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i)
l = surf_lsm_h%k(m)
DO k = l, l + mrt_nlevels - 1
imrt = imrt + 1
mrtbl(:,imrt) = (/k,j,i/)
ENDDO
ENDDO
ENDDO
ENDDO
ENDIF
!
!-- broadband albedo of the land, roof and wall surface
!-- for domain border and sky set artifically to 1.0
!-- what allows us to calculate heat flux leaving over
!-- side and top borders of the domain
ALLOCATE ( albedo_surf(nsurfl) )
albedo_surf = 1.0_wp
!
!-- Also allocate further array for emissivity with identical order of
!-- surface elements as radiation arrays.
ALLOCATE ( emiss_surf(nsurfl) )
!
!-- global array surf of indices of surfaces and displacement index array surfstart
ALLOCATE(nsurfs(0:numprocs-1))
#if defined( __parallel )
CALL MPI_Allgather(nsurfl,1,MPI_INTEGER,nsurfs,1,MPI_INTEGER,comm2d,ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllGather1:', ierr, nsurfl, nsurfs
FLUSH(9)
ENDIF
#else
nsurfs(0) = nsurfl
#endif
ALLOCATE(surfstart(0:numprocs))
k = 0
DO i=0,numprocs-1
surfstart(i) = k
k = k+nsurfs(i)
ENDDO
surfstart(numprocs) = k
nsurf = k
!
!-- We allocate the array as linear and then use a two-dimensional pointer
!-- into it, because some MPI implementations crash with 2D-allocated arrays.
ALLOCATE(surf_linear(nidx_surf*nsurf))
surf(1:nidx_surf,1:nsurf) => surf_linear(1:nidx_surf*nsurf)
#if defined( __parallel )
CALL MPI_AllGatherv(surfl_linear, nsurfl*nidx_surf, MPI_INTEGER, &
surf_linear, nsurfs*nidx_surf, &
surfstart(0:numprocs-1)*nidx_surf, MPI_INTEGER, &
comm2d, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllGatherv4:', ierr, SIZE(surfl_linear), &
nsurfl*nidx_surf, SIZE(surf_linear), nsurfs*nidx_surf, &
surfstart(0:numprocs-1)*nidx_surf
FLUSH(9)
ENDIF
#else
surf = surfl
#endif
!--
!-- allocation of the arrays for direct and diffusion radiation
IF ( debug_output ) CALL debug_message( 'allocation of radiation arrays', 'info' )
!-- rad_sw_in, rad_lw_in are computed in radiation model,
!-- splitting of direct and diffusion part is done
!-- in calc_diffusion_radiation for now
ALLOCATE( rad_sw_in_dir(nysg:nyng,nxlg:nxrg) )
ALLOCATE( rad_sw_in_diff(nysg:nyng,nxlg:nxrg) )
ALLOCATE( rad_lw_in_diff(nysg:nyng,nxlg:nxrg) )
rad_sw_in_dir = 0.0_wp
rad_sw_in_diff = 0.0_wp
rad_lw_in_diff = 0.0_wp
!-- allocate radiation arrays
ALLOCATE( surfins(nsurfl) )
ALLOCATE( surfinl(nsurfl) )
ALLOCATE( surfinsw(nsurfl) )
ALLOCATE( surfinlw(nsurfl) )
ALLOCATE( surfinswdir(nsurfl) )
ALLOCATE( surfinswdif(nsurfl) )
ALLOCATE( surfinlwdif(nsurfl) )
ALLOCATE( surfoutsl(nsurfl) )
ALLOCATE( surfoutll(nsurfl) )
ALLOCATE( surfoutsw(nsurfl) )
ALLOCATE( surfoutlw(nsurfl) )
ALLOCATE( surfouts(nsurf) )
ALLOCATE( surfoutl(nsurf) )
ALLOCATE( surfinlg(nsurf) )
ALLOCATE( skyvf(nsurfl) )
ALLOCATE( skyvft(nsurfl) )
ALLOCATE( surfemitlwl(nsurfl) )
!
!-- In case of average_radiation, aggregated surface albedo and emissivity,
!-- also set initial value for t_rad_urb.
!-- For now set an arbitrary initial value.
IF ( average_radiation ) THEN
albedo_urb = 0.1_wp
emissivity_urb = 0.9_wp
t_rad_urb = pt_surface
ENDIF
END SUBROUTINE radiation_interaction_init
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculates shape view factors (SVF), plant sink canopy factors (PCSF),
!> sky-view factors, discretized path for direct solar radiation, MRT factors
!> and other preprocessed data needed for radiation_interaction.
!------------------------------------------------------------------------------!
SUBROUTINE radiation_calc_svf
IMPLICIT NONE
INTEGER(iwp) :: i, j, k, d, ip, jp
INTEGER(iwp) :: isvf, ksvf, icsf, kcsf, npcsfl, isvf_surflt, imrt, imrtf, ipcgb
INTEGER(iwp) :: sd, td
INTEGER(iwp) :: iaz, izn !< azimuth, zenith counters
INTEGER(iwp) :: naz, nzn !< azimuth, zenith num of steps
REAL(wp) :: az0, zn0 !< starting azimuth/zenith
REAL(wp) :: azs, zns !< azimuth/zenith cycle step
REAL(wp) :: az1, az2 !< relative azimuth of section borders
REAL(wp) :: azmid !< ray (center) azimuth
REAL(wp) :: yxlen !< |yxdir|
REAL(wp), DIMENSION(2) :: yxdir !< y,x *unit* vector of ray direction (in grid units)
REAL(wp), DIMENSION(:), ALLOCATABLE :: zdirs !< directions in z (tangent of elevation)
REAL(wp), DIMENSION(:), ALLOCATABLE :: zcent !< zenith angle centers
REAL(wp), DIMENSION(:), ALLOCATABLE :: zbdry !< zenith angle boundaries
REAL(wp), DIMENSION(:), ALLOCATABLE :: vffrac !< view factor fractions for individual rays
REAL(wp), DIMENSION(:), ALLOCATABLE :: vffrac0 !< dtto (original values)
REAL(wp), DIMENSION(:), ALLOCATABLE :: ztransp !< array of transparency in z steps
INTEGER(iwp) :: lowest_free_ray !< index into zdirs
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: itarget !< face indices of detected obstacles
INTEGER(iwp) :: itarg0, itarg1
INTEGER(iwp) :: udim
INTEGER(iwp), DIMENSION(:), ALLOCATABLE,TARGET:: nzterrl_l
INTEGER(iwp), DIMENSION(:,:), POINTER :: nzterrl
REAL(wp), DIMENSION(:), ALLOCATABLE,TARGET:: csflt_l, pcsflt_l
REAL(wp), DIMENSION(:,:), POINTER :: csflt, pcsflt
INTEGER(iwp), DIMENSION(:), ALLOCATABLE,TARGET:: kcsflt_l,kpcsflt_l
INTEGER(iwp), DIMENSION(:,:), POINTER :: kcsflt,kpcsflt
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: icsflt,dcsflt,ipcsflt,dpcsflt
REAL(wp), DIMENSION(3) :: uv
LOGICAL :: visible
REAL(wp), DIMENSION(3) :: sa, ta !< real coordinates z,y,x of source and target
REAL(wp) :: difvf !< differential view factor
REAL(wp) :: transparency, rirrf, sqdist, svfsum
INTEGER(iwp) :: isurflt, isurfs, isurflt_prev
INTEGER(idp) :: ray_skip_maxdist, ray_skip_minval !< skipped raytracing counts
INTEGER(iwp) :: max_track_len !< maximum 2d track length
INTEGER(iwp) :: minfo
REAL(wp), DIMENSION(:), POINTER, SAVE :: lad_s_rma !< fortran 1D pointer
TYPE(c_ptr) :: lad_s_rma_p !< allocated c pointer
#if defined( __parallel )
INTEGER(kind=MPI_ADDRESS_KIND) :: size_lad_rma
#endif
!
INTEGER(iwp), DIMENSION(0:svfnorm_report_num) :: svfnorm_counts
!-- calculation of the SVF
CALL location_message( 'calculating view factors for radiation interaction', 'start' )
!-- initialize variables and temporary arrays for calculation of svf and csf
nsvfl = 0
ncsfl = 0
nsvfla = gasize
msvf = 1
ALLOCATE( asvf1(nsvfla) )
asvf => asvf1
IF ( plant_canopy ) THEN
ncsfla = gasize
mcsf = 1
ALLOCATE( acsf1(ncsfla) )
acsf => acsf1
ENDIF
nmrtf = 0
IF ( mrt_nlevels > 0 ) THEN
nmrtfa = gasize
mmrtf = 1
ALLOCATE ( amrtf1(nmrtfa) )
amrtf => amrtf1
ENDIF
ray_skip_maxdist = 0
ray_skip_minval = 0
!-- initialize temporary terrain and plant canopy height arrays (global 2D array!)
ALLOCATE( nzterr(0:(nx+1)*(ny+1)-1) )
#if defined( __parallel )
!ALLOCATE( nzterrl(nys:nyn,nxl:nxr) )
ALLOCATE( nzterrl_l((nyn-nys+1)*(nxr-nxl+1)) )
nzterrl(nys:nyn,nxl:nxr) => nzterrl_l(1:(nyn-nys+1)*(nxr-nxl+1))
nzterrl = topo_top_ind(nys:nyn,nxl:nxr,0)
CALL MPI_AllGather( nzterrl_l, nnx*nny, MPI_INTEGER, &
nzterr, nnx*nny, MPI_INTEGER, comm2d, ierr )
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllGather1:', ierr, SIZE(nzterrl_l), nnx*nny, &
SIZE(nzterr), nnx*nny
FLUSH(9)
ENDIF
DEALLOCATE(nzterrl_l)
#else
nzterr = RESHAPE( topo_top_ind(nys:nyn,nxl:nxr,0), (/(nx+1)*(ny+1)/) )
#endif
IF ( plant_canopy ) THEN
ALLOCATE( plantt(0:(nx+1)*(ny+1)-1) )
maxboxesg = nx + ny + nz_plant + 1
max_track_len = nx + ny + 1
!-- temporary arrays storing values for csf calculation during raytracing
ALLOCATE( boxes(3, maxboxesg) )
ALLOCATE( crlens(maxboxesg) )
#if defined( __parallel )
CALL MPI_AllGather( pct, nnx*nny, MPI_INTEGER, &
plantt, nnx*nny, MPI_INTEGER, comm2d, ierr )
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllGather2:', ierr, SIZE(pct), nnx*nny, &
SIZE(plantt), nnx*nny
FLUSH(9)
ENDIF
!-- temporary arrays storing values for csf calculation during raytracing
ALLOCATE( lad_ip(maxboxesg) )
ALLOCATE( lad_disp(maxboxesg) )
IF ( raytrace_mpi_rma ) THEN
ALLOCATE( lad_s_ray(maxboxesg) )
! set conditions for RMA communication
CALL MPI_Info_create(minfo, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Info_create2:', ierr
FLUSH(9)
ENDIF
CALL MPI_Info_set(minfo, 'accumulate_ordering', 'none', ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Info_set5:', ierr
FLUSH(9)
ENDIF
CALL MPI_Info_set(minfo, 'accumulate_ops', 'same_op', ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Info_set6:', ierr
FLUSH(9)
ENDIF
CALL MPI_Info_set(minfo, 'same_size', 'true', ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Info_set7:', ierr
FLUSH(9)
ENDIF
CALL MPI_Info_set(minfo, 'same_disp_unit', 'true', ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Info_set8:', ierr
FLUSH(9)
ENDIF
!-- Allocate and initialize the MPI RMA window
!-- must be in accordance with allocation of lad_s in plant_canopy_model
!-- optimization of memory should be done
!-- Argument X of function STORAGE_SIZE(X) needs arbitrary REAL(wp) value, set to 1.0_wp for now
size_lad_rma = STORAGE_SIZE(1.0_wp)/8*nnx*nny*nz_plant
CALL MPI_Win_allocate(size_lad_rma, STORAGE_SIZE(1.0_wp)/8, minfo, comm2d, &
lad_s_rma_p, win_lad, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Win_allocate2:', ierr, size_lad_rma, &
STORAGE_SIZE(1.0_wp)/8, win_lad
FLUSH(9)
ENDIF
CALL c_f_pointer(lad_s_rma_p, lad_s_rma, (/ nz_plant*nny*nnx /))
sub_lad(nz_urban_b:nz_plant_t, nys:nyn, nxl:nxr) => lad_s_rma(1:nz_plant*nny*nnx)
ELSE
ALLOCATE(sub_lad(nz_urban_b:nz_plant_t, nys:nyn, nxl:nxr))
ENDIF
#else
plantt = RESHAPE( pct(nys:nyn,nxl:nxr), (/(nx+1)*(ny+1)/) )
ALLOCATE(sub_lad(nz_urban_b:nz_plant_t, nys:nyn, nxl:nxr))
#endif
plantt_max = MAXVAL(plantt)
ALLOCATE( rt2_track(2, max_track_len), rt2_track_lad(nz_urban_b:plantt_max, max_track_len), &
rt2_track_dist(0:max_track_len), rt2_dist(plantt_max-nz_urban_b+2) )
sub_lad(:,:,:) = 0._wp
DO i = nxl, nxr
DO j = nys, nyn
k = topo_top_ind(j,i,0)
sub_lad(k:nz_plant_t, j, i) = lad_s(0:nz_plant_t-k, j, i)
ENDDO
ENDDO
#if defined( __parallel )
IF ( raytrace_mpi_rma ) THEN
CALL MPI_Info_free(minfo, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Info_free2:', ierr
FLUSH(9)
ENDIF
CALL MPI_Win_lock_all(0, win_lad, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Win_lock_all1:', ierr, win_lad
FLUSH(9)
ENDIF
ELSE
ALLOCATE( sub_lad_g(0:(nx+1)*(ny+1)*nz_plant-1) )
CALL MPI_AllGather( sub_lad, nnx*nny*nz_plant, MPI_REAL, &
sub_lad_g, nnx*nny*nz_plant, MPI_REAL, comm2d, ierr )
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AllGather3:', ierr, SIZE(sub_lad), &
nnx*nny*nz_plant, SIZE(sub_lad_g), nnx*nny*nz_plant
FLUSH(9)
ENDIF
ENDIF
#endif
ENDIF
!-- prepare the MPI_Win for collecting the surface indices
!-- from the reverse index arrays gridsurf from processors of target surfaces
#if defined( __parallel )
IF ( rad_angular_discretization ) THEN
!
!-- raytrace_mpi_rma is asserted
CALL MPI_Win_lock_all(0, win_gridsurf, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Win_lock_all2:', ierr, win_gridsurf
FLUSH(9)
ENDIF
ENDIF
#endif
!--Directions opposite to face normals are not even calculated,
!--they must be preset to 0
!--
dsitrans(:,:) = 0._wp
DO isurflt = 1, nsurfl
!-- determine face centers
td = surfl(id, isurflt)
ta = (/ REAL(surfl(iz, isurflt), wp) - 0.5_wp * kdir(td), &
REAL(surfl(iy, isurflt), wp) - 0.5_wp * jdir(td), &
REAL(surfl(ix, isurflt), wp) - 0.5_wp * idir(td) /)
!--Calculate sky view factor and raytrace DSI paths
skyvf(isurflt) = 0._wp
skyvft(isurflt) = 0._wp
!--Select a proper half-sphere for 2D raytracing
SELECT CASE ( td )
CASE ( iup_u, iup_l )
az0 = 0._wp
naz = raytrace_discrete_azims
azs = 2._wp * pi / REAL(naz, wp)
zn0 = 0._wp
nzn = raytrace_discrete_elevs / 2
zns = pi / 2._wp / REAL(nzn, wp)
CASE ( isouth_u, isouth_l )
az0 = pi / 2._wp
naz = raytrace_discrete_azims / 2
azs = pi / REAL(naz, wp)
zn0 = 0._wp
nzn = raytrace_discrete_elevs
zns = pi / REAL(nzn, wp)
CASE ( inorth_u, inorth_l )
az0 = - pi / 2._wp
naz = raytrace_discrete_azims / 2
azs = pi / REAL(naz, wp)
zn0 = 0._wp
nzn = raytrace_discrete_elevs
zns = pi / REAL(nzn, wp)
CASE ( iwest_u, iwest_l )
az0 = pi
naz = raytrace_discrete_azims / 2
azs = pi / REAL(naz, wp)
zn0 = 0._wp
nzn = raytrace_discrete_elevs
zns = pi / REAL(nzn, wp)
CASE ( ieast_u, ieast_l )
az0 = 0._wp
naz = raytrace_discrete_azims / 2
azs = pi / REAL(naz, wp)
zn0 = 0._wp
nzn = raytrace_discrete_elevs
zns = pi / REAL(nzn, wp)
CASE DEFAULT
WRITE(message_string, *) 'ERROR: the surface type ', td, &
' is not supported for calculating',&
' SVF'
CALL message( 'radiation_calc_svf', 'PA0488', 1, 2, 0, 6, 0 )
END SELECT
ALLOCATE ( zdirs(1:nzn), zcent(1:nzn), zbdry(0:nzn), vffrac(1:nzn*naz), &
ztransp(1:nzn*naz), itarget(1:nzn*naz) ) !FIXME allocate itarget only
!in case of rad_angular_discretization
itarg0 = 1
itarg1 = nzn
zcent(:) = (/( zn0+(REAL(izn,wp)-.5_wp)*zns, izn=1, nzn )/)
zbdry(:) = (/( zn0+REAL(izn,wp)*zns, izn=0, nzn )/)
IF ( td == iup_u .OR. td == iup_l ) THEN
vffrac(1:nzn) = (COS(2 * zbdry(0:nzn-1)) - COS(2 * zbdry(1:nzn))) / 2._wp / REAL(naz, wp)
!
!-- For horizontal target, vf fractions are constant per azimuth
DO iaz = 1, naz-1
vffrac(iaz*nzn+1:(iaz+1)*nzn) = vffrac(1:nzn)
ENDDO
!-- sum of whole vffrac equals 1, verified
ENDIF
!
!-- Calculate sky-view factor and direct solar visibility using 2D raytracing
DO iaz = 1, naz
azmid = az0 + (REAL(iaz, wp) - .5_wp) * azs
IF ( td /= iup_u .AND. td /= iup_l ) THEN
az2 = REAL(iaz, wp) * azs - pi/2._wp
az1 = az2 - azs
!TODO precalculate after 1st line
vffrac(itarg0:itarg1) = (SIN(az2) - SIN(az1)) &
* (zbdry(1:nzn) - zbdry(0:nzn-1) &
+ SIN(zbdry(0:nzn-1))*COS(zbdry(0:nzn-1)) &
- SIN(zbdry(1:nzn))*COS(zbdry(1:nzn))) &
/ (2._wp * pi)
!-- sum of whole vffrac equals 1, verified
ENDIF
yxdir(:) = (/ COS(azmid) / dy, SIN(azmid) / dx /)
yxlen = SQRT(SUM(yxdir(:)**2))
zdirs(:) = COS(zcent(:)) / (dz(1) * yxlen * SIN(zcent(:)))
yxdir(:) = yxdir(:) / yxlen
CALL raytrace_2d(ta, yxdir, nzn, zdirs, &
surfstart(myid) + isurflt, facearea(td), &
vffrac(itarg0:itarg1), .TRUE., .TRUE., &
.FALSE., lowest_free_ray, &
ztransp(itarg0:itarg1), &
itarget(itarg0:itarg1))
skyvf(isurflt) = skyvf(isurflt) + &
SUM(vffrac(itarg0:itarg0+lowest_free_ray-1))
skyvft(isurflt) = skyvft(isurflt) + &
SUM(ztransp(itarg0:itarg0+lowest_free_ray-1) &
* vffrac(itarg0:itarg0+lowest_free_ray-1))
!-- Save direct solar transparency
j = MODULO(NINT(azmid/ &
(2._wp*pi)*raytrace_discrete_azims-.5_wp, iwp), &
raytrace_discrete_azims)
DO k = 1, raytrace_discrete_elevs/2
i = dsidir_rev(k-1, j)
IF ( i /= -1 .AND. k <= lowest_free_ray ) &
dsitrans(isurflt, i) = ztransp(itarg0+k-1)
ENDDO
!
!-- Advance itarget indices
itarg0 = itarg1 + 1
itarg1 = itarg1 + nzn
ENDDO
IF ( rad_angular_discretization ) THEN
!-- sort itarget by face id
CALL quicksort_itarget(itarget,vffrac,ztransp,1,nzn*naz)
!
!-- For aggregation, we need fractions multiplied by transmissivities
ztransp(:) = vffrac(:) * ztransp(:)
!
!-- find the first valid position
itarg0 = 1
DO WHILE ( itarg0 <= nzn*naz )
IF ( itarget(itarg0) /= -1 ) EXIT
itarg0 = itarg0 + 1
ENDDO
DO i = itarg0, nzn*naz
!
!-- For duplicate values, only sum up vf fraction value
IF ( i < nzn*naz ) THEN
IF ( itarget(i+1) == itarget(i) ) THEN
vffrac(i+1) = vffrac(i+1) + vffrac(i)
ztransp(i+1) = ztransp(i+1) + ztransp(i)
CYCLE
ENDIF
ENDIF
!
!-- write to the svf array
nsvfl = nsvfl + 1
!-- check dimmension of asvf array and enlarge it if needed
IF ( nsvfla < nsvfl ) THEN
k = CEILING(REAL(nsvfla, kind=wp) * grow_factor)
IF ( msvf == 0 ) THEN
msvf = 1
ALLOCATE( asvf1(k) )
asvf => asvf1
asvf1(1:nsvfla) = asvf2
DEALLOCATE( asvf2 )
ELSE
msvf = 0
ALLOCATE( asvf2(k) )
asvf => asvf2
asvf2(1:nsvfla) = asvf1
DEALLOCATE( asvf1 )
ENDIF
IF ( debug_output ) THEN
WRITE( debug_string, '(A,3I12)' ) 'Grow asvf:', nsvfl, nsvfla, k
CALL debug_message( debug_string, 'info' )
ENDIF
nsvfla = k
ENDIF
!-- write svf values into the array
asvf(nsvfl)%isurflt = isurflt
asvf(nsvfl)%isurfs = itarget(i)
asvf(nsvfl)%rsvf = vffrac(i)
asvf(nsvfl)%rtransp = ztransp(i) / vffrac(i)
END DO
ENDIF ! rad_angular_discretization
DEALLOCATE ( zdirs, zcent, zbdry, vffrac, ztransp, itarget ) !FIXME itarget shall be allocated only
!in case of rad_angular_discretization
!
!-- Following calculations only required for surface_reflections
IF ( surface_reflections .AND. .NOT. rad_angular_discretization ) THEN
DO isurfs = 1, nsurf
IF ( .NOT. surface_facing(surfl(ix, isurflt), surfl(iy, isurflt), &
surfl(iz, isurflt), surfl(id, isurflt), &
surf(ix, isurfs), surf(iy, isurfs), &
surf(iz, isurfs), surf(id, isurfs)) ) THEN
CYCLE
ENDIF
sd = surf(id, isurfs)
sa = (/ REAL(surf(iz, isurfs), wp) - 0.5_wp * kdir(sd), &
REAL(surf(iy, isurfs), wp) - 0.5_wp * jdir(sd), &
REAL(surf(ix, isurfs), wp) - 0.5_wp * idir(sd) /)
!-- unit vector source -> target
uv = (/ (ta(1)-sa(1))*dz(1), (ta(2)-sa(2))*dy, (ta(3)-sa(3))*dx /)
sqdist = SUM(uv(:)**2)
uv = uv / SQRT(sqdist)
!-- reject raytracing above max distance
IF ( SQRT(sqdist) > max_raytracing_dist ) THEN
ray_skip_maxdist = ray_skip_maxdist + 1
CYCLE
ENDIF
difvf = dot_product((/ kdir(sd), jdir(sd), idir(sd) /), uv) & ! cosine of source normal and direction
* dot_product((/ kdir(td), jdir(td), idir(td) /), -uv) & ! cosine of target normal and reverse direction
/ (pi * sqdist) ! square of distance between centers
!
!-- irradiance factor (our unshaded shape view factor) = view factor per differential target area * source area
rirrf = difvf * facearea(sd)
!-- reject raytracing for potentially too small view factor values
IF ( rirrf < min_irrf_value ) THEN
ray_skip_minval = ray_skip_minval + 1
CYCLE
ENDIF
!-- raytrace + process plant canopy sinks within
CALL raytrace(sa, ta, isurfs, difvf, facearea(td), .TRUE., &
visible, transparency)
IF ( .NOT. visible ) CYCLE
! rsvf = rirrf * transparency
!-- write to the svf array
nsvfl = nsvfl + 1
!-- check dimmension of asvf array and enlarge it if needed
IF ( nsvfla < nsvfl ) THEN
k = CEILING(REAL(nsvfla, kind=wp) * grow_factor)
IF ( msvf == 0 ) THEN
msvf = 1
ALLOCATE( asvf1(k) )
asvf => asvf1
asvf1(1:nsvfla) = asvf2
DEALLOCATE( asvf2 )
ELSE
msvf = 0
ALLOCATE( asvf2(k) )
asvf => asvf2
asvf2(1:nsvfla) = asvf1
DEALLOCATE( asvf1 )
ENDIF
IF ( debug_output ) THEN
WRITE( debug_string, '(A,3I12)' ) 'Grow asvf:', nsvfl, nsvfla, k
CALL debug_message( debug_string, 'info' )
ENDIF
nsvfla = k
ENDIF
!-- write svf values into the array
asvf(nsvfl)%isurflt = isurflt
asvf(nsvfl)%isurfs = isurfs
asvf(nsvfl)%rsvf = rirrf !we postopne multiplication by transparency
asvf(nsvfl)%rtransp = transparency !a.k.a. Direct Irradiance Factor
ENDDO
ENDIF
ENDDO
!--
!-- Raytrace to canopy boxes to fill dsitransc TODO optimize
dsitransc(:,:) = 0._wp
az0 = 0._wp
naz = raytrace_discrete_azims
azs = 2._wp * pi / REAL(naz, wp)
zn0 = 0._wp
nzn = raytrace_discrete_elevs / 2
zns = pi / 2._wp / REAL(nzn, wp)
ALLOCATE ( zdirs(1:nzn), zcent(1:nzn), vffrac(1:nzn), ztransp(1:nzn), &
itarget(1:nzn) )
zcent(:) = (/( zn0+(REAL(izn,wp)-.5_wp)*zns, izn=1, nzn )/)
vffrac(:) = 0._wp
DO ipcgb = 1, npcbl
ta = (/ REAL(pcbl(iz, ipcgb), wp), &
REAL(pcbl(iy, ipcgb), wp), &
REAL(pcbl(ix, ipcgb), wp) /)
!-- Calculate direct solar visibility using 2D raytracing
DO iaz = 1, naz
azmid = az0 + (REAL(iaz, wp) - .5_wp) * azs
yxdir(:) = (/ COS(azmid) / dy, SIN(azmid) / dx /)
yxlen = SQRT(SUM(yxdir(:)**2))
zdirs(:) = COS(zcent(:)) / (dz(1) * yxlen * SIN(zcent(:)))
yxdir(:) = yxdir(:) / yxlen
CALL raytrace_2d(ta, yxdir, nzn, zdirs, &
-999, -999._wp, vffrac, .FALSE., .FALSE., .TRUE., &
lowest_free_ray, ztransp, itarget)
!-- Save direct solar transparency
j = MODULO(NINT(azmid/ &
(2._wp*pi)*raytrace_discrete_azims-.5_wp, iwp), &
raytrace_discrete_azims)
DO k = 1, raytrace_discrete_elevs/2
i = dsidir_rev(k-1, j)
IF ( i /= -1 .AND. k <= lowest_free_ray ) &
dsitransc(ipcgb, i) = ztransp(k)
ENDDO
ENDDO
ENDDO
DEALLOCATE ( zdirs, zcent, vffrac, ztransp, itarget )
!--
!-- Raytrace to MRT boxes
IF ( nmrtbl > 0 ) THEN
mrtdsit(:,:) = 0._wp
mrtsky(:) = 0._wp
mrtskyt(:) = 0._wp
az0 = 0._wp
naz = raytrace_discrete_azims
azs = 2._wp * pi / REAL(naz, wp)
zn0 = 0._wp
nzn = raytrace_discrete_elevs
zns = pi / REAL(nzn, wp)
ALLOCATE ( zdirs(1:nzn), zcent(1:nzn), zbdry(0:nzn), vffrac(1:nzn*naz), vffrac0(1:nzn), &
ztransp(1:nzn*naz), itarget(1:nzn*naz) ) !FIXME allocate itarget only
!in case of rad_angular_discretization
zcent(:) = (/( zn0+(REAL(izn,wp)-.5_wp)*zns, izn=1, nzn )/)
zbdry(:) = (/( zn0+REAL(izn,wp)*zns, izn=0, nzn )/)
vffrac0(:) = (COS(zbdry(0:nzn-1)) - COS(zbdry(1:nzn))) / 2._wp / REAL(naz, wp)
!
!--Modify direction weights to simulate human body (lower weight for top-down)
IF ( mrt_geom_human ) THEN
vffrac0(:) = vffrac0(:) * MAX(0._wp, SIN(zcent(:))*0.88_wp + COS(zcent(:))*0.12_wp)
vffrac0(:) = vffrac0(:) / (SUM(vffrac0) * REAL(naz, wp))
ENDIF
DO imrt = 1, nmrtbl
ta = (/ REAL(mrtbl(iz, imrt), wp), &
REAL(mrtbl(iy, imrt), wp), &
REAL(mrtbl(ix, imrt), wp) /)
!
!-- vf fractions are constant per azimuth
DO iaz = 0, naz-1
vffrac(iaz*nzn+1:(iaz+1)*nzn) = vffrac0(:)
ENDDO
!-- sum of whole vffrac equals 1, verified
itarg0 = 1
itarg1 = nzn
!
!-- Calculate sky-view factor and direct solar visibility using 2D raytracing
DO iaz = 1, naz
azmid = az0 + (REAL(iaz, wp) - .5_wp) * azs
yxdir(:) = (/ COS(azmid) / dy, SIN(azmid) / dx /)
yxlen = SQRT(SUM(yxdir(:)**2))
zdirs(:) = COS(zcent(:)) / (dz(1) * yxlen * SIN(zcent(:)))
yxdir(:) = yxdir(:) / yxlen
CALL raytrace_2d(ta, yxdir, nzn, zdirs, &
-999, -999._wp, vffrac(itarg0:itarg1), .TRUE., &
.FALSE., .TRUE., lowest_free_ray, &
ztransp(itarg0:itarg1), &
itarget(itarg0:itarg1))
!-- Sky view factors for MRT
mrtsky(imrt) = mrtsky(imrt) + &
SUM(vffrac(itarg0:itarg0+lowest_free_ray-1))
mrtskyt(imrt) = mrtskyt(imrt) + &
SUM(ztransp(itarg0:itarg0+lowest_free_ray-1) &
* vffrac(itarg0:itarg0+lowest_free_ray-1))
!-- Direct solar transparency for MRT
j = MODULO(NINT(azmid/ &
(2._wp*pi)*raytrace_discrete_azims-.5_wp, iwp), &
raytrace_discrete_azims)
DO k = 1, raytrace_discrete_elevs/2
i = dsidir_rev(k-1, j)
IF ( i /= -1 .AND. k <= lowest_free_ray ) &
mrtdsit(imrt, i) = ztransp(itarg0+k-1)
ENDDO
!
!-- Advance itarget indices
itarg0 = itarg1 + 1
itarg1 = itarg1 + nzn
ENDDO
!-- sort itarget by face id
CALL quicksort_itarget(itarget,vffrac,ztransp,1,nzn*naz)
!
!-- find the first valid position
itarg0 = 1
DO WHILE ( itarg0 <= nzn*naz )
IF ( itarget(itarg0) /= -1 ) EXIT
itarg0 = itarg0 + 1
ENDDO
DO i = itarg0, nzn*naz
!
!-- For duplicate values, only sum up vf fraction value
IF ( i < nzn*naz ) THEN
IF ( itarget(i+1) == itarget(i) ) THEN
vffrac(i+1) = vffrac(i+1) + vffrac(i)
CYCLE
ENDIF
ENDIF
!
!-- write to the mrtf array
nmrtf = nmrtf + 1
!-- check dimmension of mrtf array and enlarge it if needed
IF ( nmrtfa < nmrtf ) THEN
k = CEILING(REAL(nmrtfa, kind=wp) * grow_factor)
IF ( mmrtf == 0 ) THEN
mmrtf = 1
ALLOCATE( amrtf1(k) )
amrtf => amrtf1
amrtf1(1:nmrtfa) = amrtf2
DEALLOCATE( amrtf2 )
ELSE
mmrtf = 0
ALLOCATE( amrtf2(k) )
amrtf => amrtf2
amrtf2(1:nmrtfa) = amrtf1
DEALLOCATE( amrtf1 )
ENDIF
IF ( debug_output ) THEN
WRITE( debug_string, '(A,3I12)' ) 'Grow amrtf:', nmrtf, nmrtfa, k
CALL debug_message( debug_string, 'info' )
ENDIF
nmrtfa = k
ENDIF
!-- write mrtf values into the array
amrtf(nmrtf)%isurflt = imrt
amrtf(nmrtf)%isurfs = itarget(i)
amrtf(nmrtf)%rsvf = vffrac(i)
amrtf(nmrtf)%rtransp = ztransp(i)
ENDDO ! itarg
ENDDO ! imrt
DEALLOCATE ( zdirs, zcent, zbdry, vffrac, vffrac0, ztransp, itarget )
!
!-- Move MRT factors to final arrays
ALLOCATE ( mrtf(nmrtf), mrtft(nmrtf), mrtfsurf(2,nmrtf) )
DO imrtf = 1, nmrtf
mrtf(imrtf) = amrtf(imrtf)%rsvf
mrtft(imrtf) = amrtf(imrtf)%rsvf * amrtf(imrtf)%rtransp
mrtfsurf(:,imrtf) = (/amrtf(imrtf)%isurflt, amrtf(imrtf)%isurfs /)
ENDDO
IF ( ALLOCATED(amrtf1) ) DEALLOCATE( amrtf1 )
IF ( ALLOCATED(amrtf2) ) DEALLOCATE( amrtf2 )
ENDIF ! nmrtbl > 0
IF ( rad_angular_discretization ) THEN
#if defined( __parallel )
!-- finalize MPI_RMA communication established to get global index of the surface from grid indices
!-- flush all MPI window pending requests
CALL MPI_Win_flush_all(win_gridsurf, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Win_flush_all1:', ierr, win_gridsurf
FLUSH(9)
ENDIF
!-- unlock MPI window
CALL MPI_Win_unlock_all(win_gridsurf, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Win_unlock_all1:', ierr, win_gridsurf
FLUSH(9)
ENDIF
!-- free MPI window
CALL MPI_Win_free(win_gridsurf, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Win_free1:', ierr, win_gridsurf
FLUSH(9)
ENDIF
#else
DEALLOCATE ( gridsurf )
#endif
ENDIF
IF ( debug_output ) CALL debug_message( 'waiting for completion of SVF and CSF calculation in all processes', 'info' )
!-- deallocate temporary global arrays
DEALLOCATE(nzterr)
IF ( plant_canopy ) THEN
!-- finalize mpi_rma communication and deallocate temporary arrays
#if defined( __parallel )
IF ( raytrace_mpi_rma ) THEN
CALL MPI_Win_flush_all(win_lad, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Win_flush_all2:', ierr, win_lad
FLUSH(9)
ENDIF
!-- unlock MPI window
CALL MPI_Win_unlock_all(win_lad, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Win_unlock_all2:', ierr, win_lad
FLUSH(9)
ENDIF
!-- free MPI window
CALL MPI_Win_free(win_lad, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Win_free2:', ierr, win_lad
FLUSH(9)
ENDIF
!-- deallocate temporary arrays storing values for csf calculation during raytracing
DEALLOCATE( lad_s_ray )
!-- sub_lad is the pointer to lad_s_rma in case of raytrace_mpi_rma
!-- and must not be deallocated here
ELSE
DEALLOCATE(sub_lad)
DEALLOCATE(sub_lad_g)
ENDIF
#else
DEALLOCATE(sub_lad)
#endif
DEALLOCATE( boxes )
DEALLOCATE( crlens )
DEALLOCATE( plantt )
DEALLOCATE( rt2_track, rt2_track_lad, rt2_track_dist, rt2_dist )
ENDIF
IF ( debug_output ) CALL debug_message( 'calculation of the complete SVF array', 'info' )
IF ( rad_angular_discretization ) THEN
IF ( debug_output ) CALL debug_message( 'Load svf from the structure array to plain arrays', 'info' )
ALLOCATE( svf(ndsvf,nsvfl) )
ALLOCATE( svfsurf(idsvf,nsvfl) )
DO isvf = 1, nsvfl
svf(:, isvf) = (/ asvf(isvf)%rsvf, asvf(isvf)%rtransp /)
svfsurf(:, isvf) = (/ asvf(isvf)%isurflt, asvf(isvf)%isurfs /)
ENDDO
ELSE
IF ( debug_output ) CALL debug_message( 'Start SVF sort', 'info' )
!-- sort svf ( a version of quicksort )
CALL quicksort_svf(asvf,1,nsvfl)
!< load svf from the structure array to plain arrays
IF ( debug_output ) CALL debug_message( 'Load svf from the structure array to plain arrays', 'info' )
ALLOCATE( svf(ndsvf,nsvfl) )
ALLOCATE( svfsurf(idsvf,nsvfl) )
svfnorm_counts(:) = 0._wp
isurflt_prev = -1
ksvf = 1
svfsum = 0._wp
DO isvf = 1, nsvfl
!-- normalize svf per target face
IF ( asvf(ksvf)%isurflt /= isurflt_prev ) THEN
IF ( isurflt_prev /= -1 .AND. svfsum /= 0._wp ) THEN
!< update histogram of logged svf normalization values
i = searchsorted(svfnorm_report_thresh, svfsum / (1._wp-skyvf(isurflt_prev)))
svfnorm_counts(i) = svfnorm_counts(i) + 1
svf(1, isvf_surflt:isvf-1) = svf(1, isvf_surflt:isvf-1) / svfsum * (1._wp-skyvf(isurflt_prev))
ENDIF
isurflt_prev = asvf(ksvf)%isurflt
isvf_surflt = isvf
svfsum = asvf(ksvf)%rsvf !?? / asvf(ksvf)%rtransp
ELSE
svfsum = svfsum + asvf(ksvf)%rsvf !?? / asvf(ksvf)%rtransp
ENDIF
svf(:, isvf) = (/ asvf(ksvf)%rsvf, asvf(ksvf)%rtransp /)
svfsurf(:, isvf) = (/ asvf(ksvf)%isurflt, asvf(ksvf)%isurfs /)
!-- next element
ksvf = ksvf + 1
ENDDO
IF ( isurflt_prev /= -1 .AND. svfsum /= 0._wp ) THEN
i = searchsorted(svfnorm_report_thresh, svfsum / (1._wp-skyvf(isurflt_prev)))
svfnorm_counts(i) = svfnorm_counts(i) + 1
svf(1, isvf_surflt:nsvfl) = svf(1, isvf_surflt:nsvfl) / svfsum * (1._wp-skyvf(isurflt_prev))
ENDIF
WRITE(9, *) 'SVF normalization histogram:', svfnorm_counts, &
'on thresholds:', svfnorm_report_thresh(1:svfnorm_report_num), '(val < thresh <= val)'
!TODO we should be able to deallocate skyvf, from now on we only need skyvft
ENDIF ! rad_angular_discretization
!-- deallocate temporary asvf array
!-- DEALLOCATE(asvf) - ifort has a problem with deallocation of allocatable target
!-- via pointing pointer - we need to test original targets
IF ( ALLOCATED(asvf1) ) THEN
DEALLOCATE(asvf1)
ENDIF
IF ( ALLOCATED(asvf2) ) THEN
DEALLOCATE(asvf2)
ENDIF
npcsfl = 0
IF ( plant_canopy ) THEN
IF ( debug_output ) CALL debug_message( 'Calculation of the complete CSF array', 'info' )
!-- sort and merge csf for the last time, keeping the array size to minimum
CALL merge_and_grow_csf(-1)
!-- aggregate csb among processors
!-- allocate necessary arrays
udim = max(ncsfl,1)
ALLOCATE( csflt_l(ndcsf*udim) )
csflt(1:ndcsf,1:udim) => csflt_l(1:ndcsf*udim)
ALLOCATE( kcsflt_l(kdcsf*udim) )
kcsflt(1:kdcsf,1:udim) => kcsflt_l(1:kdcsf*udim)
ALLOCATE( icsflt(0:numprocs-1) )
ALLOCATE( dcsflt(0:numprocs-1) )
ALLOCATE( ipcsflt(0:numprocs-1) )
ALLOCATE( dpcsflt(0:numprocs-1) )
!-- fill out arrays of csf values and
!-- arrays of number of elements and displacements
!-- for particular precessors
icsflt = 0
dcsflt = 0
ip = -1
j = -1
d = 0
DO kcsf = 1, ncsfl
j = j+1
IF ( acsf(kcsf)%ip /= ip ) THEN
!-- new block of the processor
!-- number of elements of previous block
IF ( ip>=0) icsflt(ip) = j
d = d+j
!-- blank blocks
DO jp = ip+1, acsf(kcsf)%ip-1
!-- number of elements is zero, displacement is equal to previous
icsflt(jp) = 0
dcsflt(jp) = d
ENDDO
!-- the actual block
ip = acsf(kcsf)%ip
dcsflt(ip) = d
j = 0
ENDIF
csflt(1,kcsf) = acsf(kcsf)%rcvf
!-- fill out integer values of itz,ity,itx,isurfs
kcsflt(1,kcsf) = acsf(kcsf)%itz
kcsflt(2,kcsf) = acsf(kcsf)%ity
kcsflt(3,kcsf) = acsf(kcsf)%itx
kcsflt(4,kcsf) = acsf(kcsf)%isurfs
ENDDO
!-- last blank blocks at the end of array
j = j+1
IF ( ip>=0 ) icsflt(ip) = j
d = d+j
DO jp = ip+1, numprocs-1
!-- number of elements is zero, displacement is equal to previous
icsflt(jp) = 0
dcsflt(jp) = d
ENDDO
!-- deallocate temporary acsf array
!-- DEALLOCATE(acsf) - ifort has a problem with deallocation of allocatable target
!-- via pointing pointer - we need to test original targets
IF ( ALLOCATED(acsf1) ) THEN
DEALLOCATE(acsf1)
ENDIF
IF ( ALLOCATED(acsf2) ) THEN
DEALLOCATE(acsf2)
ENDIF
#if defined( __parallel )
!-- scatter and gather the number of elements to and from all processor
!-- and calculate displacements
IF ( debug_output ) CALL debug_message( 'Scatter and gather the number of elements to and from all processor', 'info' )
CALL MPI_AlltoAll(icsflt,1,MPI_INTEGER,ipcsflt,1,MPI_INTEGER,comm2d, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AlltoAll1:', ierr, SIZE(icsflt), SIZE(ipcsflt)
FLUSH(9)
ENDIF
npcsfl = SUM(ipcsflt)
d = 0
DO i = 0, numprocs-1
dpcsflt(i) = d
d = d + ipcsflt(i)
ENDDO
!-- exchange csf fields between processors
IF ( debug_output ) CALL debug_message( 'Exchange csf fields between processors', 'info' )
udim = max(npcsfl,1)
ALLOCATE( pcsflt_l(ndcsf*udim) )
pcsflt(1:ndcsf,1:udim) => pcsflt_l(1:ndcsf*udim)
ALLOCATE( kpcsflt_l(kdcsf*udim) )
kpcsflt(1:kdcsf,1:udim) => kpcsflt_l(1:kdcsf*udim)
CALL MPI_AlltoAllv(csflt_l, ndcsf*icsflt, ndcsf*dcsflt, MPI_REAL, &
pcsflt_l, ndcsf*ipcsflt, ndcsf*dpcsflt, MPI_REAL, comm2d, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AlltoAllv1:', ierr, SIZE(ipcsflt), ndcsf*icsflt, &
ndcsf*dcsflt, SIZE(pcsflt_l),ndcsf*ipcsflt, ndcsf*dpcsflt
FLUSH(9)
ENDIF
CALL MPI_AlltoAllv(kcsflt_l, kdcsf*icsflt, kdcsf*dcsflt, MPI_INTEGER, &
kpcsflt_l, kdcsf*ipcsflt, kdcsf*dpcsflt, MPI_INTEGER, comm2d, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_AlltoAllv2:', ierr, SIZE(kcsflt_l),kdcsf*icsflt, &
kdcsf*dcsflt, SIZE(kpcsflt_l), kdcsf*ipcsflt, kdcsf*dpcsflt
FLUSH(9)
ENDIF
#else
npcsfl = ncsfl
ALLOCATE( pcsflt(ndcsf,max(npcsfl,ndcsf)) )
ALLOCATE( kpcsflt(kdcsf,max(npcsfl,kdcsf)) )
pcsflt = csflt
kpcsflt = kcsflt
#endif
!-- deallocate temporary arrays
DEALLOCATE( csflt_l )
DEALLOCATE( kcsflt_l )
DEALLOCATE( icsflt )
DEALLOCATE( dcsflt )
DEALLOCATE( ipcsflt )
DEALLOCATE( dpcsflt )
!-- sort csf ( a version of quicksort )
IF ( debug_output ) CALL debug_message( 'Sort csf', 'info' )
CALL quicksort_csf2(kpcsflt, pcsflt, 1, npcsfl)
!-- aggregate canopy sink factor records with identical box & source
!-- againg across all values from all processors
IF ( debug_output ) CALL debug_message( 'Aggregate canopy sink factor records with identical box', 'info' )
IF ( npcsfl > 0 ) THEN
icsf = 1 !< reading index
kcsf = 1 !< writing index
DO WHILE (icsf < npcsfl)
!-- here kpcsf(kcsf) already has values from kpcsf(icsf)
IF ( kpcsflt(3,icsf) == kpcsflt(3,icsf+1) .AND. &
kpcsflt(2,icsf) == kpcsflt(2,icsf+1) .AND. &
kpcsflt(1,icsf) == kpcsflt(1,icsf+1) .AND. &
kpcsflt(4,icsf) == kpcsflt(4,icsf+1) ) THEN
pcsflt(1,kcsf) = pcsflt(1,kcsf) + pcsflt(1,icsf+1)
!-- advance reading index, keep writing index
icsf = icsf + 1
ELSE
!-- not identical, just advance and copy
icsf = icsf + 1
kcsf = kcsf + 1
kpcsflt(:,kcsf) = kpcsflt(:,icsf)
pcsflt(:,kcsf) = pcsflt(:,icsf)
ENDIF
ENDDO
!-- last written item is now also the last item in valid part of array
npcsfl = kcsf
ENDIF
ncsfl = npcsfl
IF ( ncsfl > 0 ) THEN
ALLOCATE( csf(ndcsf,ncsfl) )
ALLOCATE( csfsurf(idcsf,ncsfl) )
DO icsf = 1, ncsfl
csf(:,icsf) = pcsflt(:,icsf)
csfsurf(1,icsf) = gridpcbl(kpcsflt(1,icsf),kpcsflt(2,icsf),kpcsflt(3,icsf))
csfsurf(2,icsf) = kpcsflt(4,icsf)
ENDDO
ENDIF
!-- deallocation of temporary arrays
IF ( npcbl > 0 ) DEALLOCATE( gridpcbl )
DEALLOCATE( pcsflt_l )
DEALLOCATE( kpcsflt_l )
IF ( debug_output ) CALL debug_message( 'End of aggregate csf', 'info' )
ENDIF
#if defined( __parallel )
CALL MPI_BARRIER( comm2d, ierr )
#endif
CALL location_message( 'calculating view factors for radiation interaction', 'finished' )
RETURN !todo: remove
! WRITE( message_string, * ) &
! 'I/O error when processing shape view factors / ', &
! 'plant canopy sink factors / direct irradiance factors.'
! CALL message( 'init_urban_surface', 'PA0502', 2, 2, 0, 6, 0 )
END SUBROUTINE radiation_calc_svf
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Raytracing for detecting obstacles and calculating compound canopy sink
!> factors. (A simple obstacle detection would only need to process faces in
!> 3 dimensions without any ordering.)
!> Assumtions:
!> -----------
!> 1. The ray always originates from a face midpoint (only one coordinate equals
!> *.5, i.e. wall) and doesn't travel parallel to the surface (that would mean
!> shape factor=0). Therefore, the ray may never travel exactly along a face
!> or an edge.
!> 2. From grid bottom to urban surface top the grid has to be *equidistant*
!> within each of the dimensions, including vertical (but the resolution
!> doesn't need to be the same in all three dimensions).
!------------------------------------------------------------------------------!
SUBROUTINE raytrace(src, targ, isrc, difvf, atarg, create_csf, visible, transparency)
IMPLICIT NONE
REAL(wp), DIMENSION(3), INTENT(in) :: src, targ !< real coordinates z,y,x
INTEGER(iwp), INTENT(in) :: isrc !< index of source face for csf
REAL(wp), INTENT(in) :: difvf !< differential view factor for csf
REAL(wp), INTENT(in) :: atarg !< target surface area for csf
LOGICAL, INTENT(in) :: create_csf !< whether to generate new CSFs during raytracing
LOGICAL, INTENT(out) :: visible
REAL(wp), INTENT(out) :: transparency !< along whole path
INTEGER(iwp) :: i, k, d
INTEGER(iwp) :: seldim !< dimension to be incremented
INTEGER(iwp) :: ncsb !< no of written plant canopy sinkboxes
INTEGER(iwp) :: maxboxes !< max no of gridboxes visited
REAL(wp) :: distance !< euclidean along path
REAL(wp) :: crlen !< length of gridbox crossing
REAL(wp) :: lastdist !< beginning of current crossing
REAL(wp) :: nextdist !< end of current crossing
REAL(wp) :: realdist !< distance in meters per unit distance
REAL(wp) :: crmid !< midpoint of crossing
REAL(wp) :: cursink !< sink factor for current canopy box
REAL(wp), DIMENSION(3) :: delta !< path vector
REAL(wp), DIMENSION(3) :: uvect !< unit vector
REAL(wp), DIMENSION(3) :: dimnextdist !< distance for each dimension increments
INTEGER(iwp), DIMENSION(3) :: box !< gridbox being crossed
INTEGER(iwp), DIMENSION(3) :: dimnext !< next dimension increments along path
INTEGER(iwp), DIMENSION(3) :: dimdelta !< dimension direction = +- 1
INTEGER(iwp) :: px, py !< number of processors in x and y dir before
!< the processor in the question
INTEGER(iwp) :: ip !< number of processor where gridbox reside
INTEGER(iwp) :: ig !< 1D index of gridbox in global 2D array
REAL(wp) :: eps = 1E-10_wp !< epsilon for value comparison
REAL(wp) :: lad_s_target !< recieved lad_s of particular grid box
!
!-- Maximum number of gridboxes visited equals to maximum number of boundaries crossed in each dimension plus one. That's also
!-- the maximum number of plant canopy boxes written. We grow the acsf array accordingly using exponential factor.
maxboxes = SUM(ABS(NINT(targ, iwp) - NINT(src, iwp))) + 1
IF ( plant_canopy .AND. ncsfl + maxboxes > ncsfla ) THEN
!-- use this code for growing by fixed exponential increments (equivalent to case where ncsfl always increases by 1)
!-- k = CEILING(grow_factor ** real(CEILING(log(real(ncsfl + maxboxes, kind=wp)) &
!-- / log(grow_factor)), kind=wp))
!-- or use this code to simply always keep some extra space after growing
k = CEILING(REAL(ncsfl + maxboxes, kind=wp) * grow_factor)
CALL merge_and_grow_csf(k)
ENDIF
transparency = 1._wp
ncsb = 0
delta(:) = targ(:) - src(:)
distance = SQRT(SUM(delta(:)**2))
IF ( distance == 0._wp ) THEN
visible = .TRUE.
RETURN
ENDIF
uvect(:) = delta(:) / distance
realdist = SQRT(SUM( (uvect(:)*(/dz(1),dy,dx/))**2 ))
lastdist = 0._wp
!-- Since all face coordinates have values *.5 and we'd like to use
!-- integers, all these have .5 added
DO d = 1, 3
IF ( uvect(d) == 0._wp ) THEN
dimnext(d) = 999999999
dimdelta(d) = 999999999
dimnextdist(d) = 1.0E20_wp
ELSE IF ( uvect(d) > 0._wp ) THEN
dimnext(d) = CEILING(src(d) + .5_wp)
dimdelta(d) = 1
dimnextdist(d) = (dimnext(d) - .5_wp - src(d)) / uvect(d)
ELSE
dimnext(d) = FLOOR(src(d) + .5_wp)
dimdelta(d) = -1
dimnextdist(d) = (dimnext(d) - .5_wp - src(d)) / uvect(d)
ENDIF
ENDDO
DO
!-- along what dimension will the next wall crossing be?
seldim = minloc(dimnextdist, 1)
nextdist = dimnextdist(seldim)
IF ( nextdist > distance ) nextdist = distance
crlen = nextdist - lastdist
IF ( crlen > .001_wp ) THEN
crmid = (lastdist + nextdist) * .5_wp
box = NINT(src(:) + uvect(:) * crmid, iwp)
!-- calculate index of the grid with global indices (box(2),box(3))
!-- in the array nzterr and plantt and id of the coresponding processor
px = box(3)/nnx
py = box(2)/nny
ip = px*pdims(2)+py
ig = ip*nnx*nny + (box(3)-px*nnx)*nny + box(2)-py*nny
IF ( box(1) <= nzterr(ig) ) THEN
visible = .FALSE.
RETURN
ENDIF
IF ( plant_canopy ) THEN
IF ( box(1) <= plantt(ig) ) THEN
ncsb = ncsb + 1
boxes(:,ncsb) = box
crlens(ncsb) = crlen
#if defined( __parallel )
lad_ip(ncsb) = ip
lad_disp(ncsb) = (box(3)-px*nnx)*(nny*nz_plant) + (box(2)-py*nny)*nz_plant + box(1)-nz_urban_b
#endif
ENDIF
ENDIF
ENDIF
IF ( ABS(distance - nextdist) < eps ) EXIT
lastdist = nextdist
dimnext(seldim) = dimnext(seldim) + dimdelta(seldim)
dimnextdist(seldim) = (dimnext(seldim) - .5_wp - src(seldim)) / uvect(seldim)
ENDDO
IF ( plant_canopy ) THEN
#if defined( __parallel )
IF ( raytrace_mpi_rma ) THEN
!-- send requests for lad_s to appropriate processor
CALL cpu_log( log_point_s(77), 'rad_rma_lad', 'start' )
DO i = 1, ncsb
CALL MPI_Get(lad_s_ray(i), 1, MPI_REAL, lad_ip(i), lad_disp(i), &
1, MPI_REAL, win_lad, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Get1:', ierr, lad_s_ray(i), &
lad_ip(i), lad_disp(i), win_lad
FLUSH(9)
ENDIF
ENDDO
!-- wait for all pending local requests complete
CALL MPI_Win_flush_local_all(win_lad, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Win_flush_local_all1:', ierr, win_lad
FLUSH(9)
ENDIF
CALL cpu_log( log_point_s(77), 'rad_rma_lad', 'stop' )
ENDIF
#endif
!-- calculate csf and transparency
DO i = 1, ncsb
#if defined( __parallel )
IF ( raytrace_mpi_rma ) THEN
lad_s_target = lad_s_ray(i)
ELSE
lad_s_target = sub_lad_g(lad_ip(i)*nnx*nny*nz_plant + lad_disp(i))
ENDIF
#else
lad_s_target = sub_lad(boxes(1,i),boxes(2,i),boxes(3,i))
#endif
cursink = 1._wp - exp(-ext_coef * lad_s_target * crlens(i)*realdist)
IF ( create_csf ) THEN
!-- write svf values into the array
ncsfl = ncsfl + 1
acsf(ncsfl)%ip = lad_ip(i)
acsf(ncsfl)%itx = boxes(3,i)
acsf(ncsfl)%ity = boxes(2,i)
acsf(ncsfl)%itz = boxes(1,i)
acsf(ncsfl)%isurfs = isrc
acsf(ncsfl)%rcvf = cursink*transparency*difvf*atarg
ENDIF !< create_csf
transparency = transparency * (1._wp - cursink)
ENDDO
ENDIF
visible = .TRUE.
END SUBROUTINE raytrace
!------------------------------------------------------------------------------!
! Description:
! ------------
!> A new, more efficient version of ray tracing algorithm that processes a whole
!> arc instead of a single ray.
!>
!> In all comments, horizon means tangent of horizon angle, i.e.
!> vertical_delta / horizontal_distance
!------------------------------------------------------------------------------!
SUBROUTINE raytrace_2d(origin, yxdir, nrays, zdirs, iorig, aorig, vffrac, &
calc_svf, create_csf, skip_1st_pcb, &
lowest_free_ray, transparency, itarget)
IMPLICIT NONE
REAL(wp), DIMENSION(3), INTENT(IN) :: origin !< z,y,x coordinates of ray origin
REAL(wp), DIMENSION(2), INTENT(IN) :: yxdir !< y,x *unit* vector of ray direction (in grid units)
INTEGER(iwp) :: nrays !< number of rays (z directions) to raytrace
REAL(wp), DIMENSION(nrays), INTENT(IN) :: zdirs !< list of z directions to raytrace (z/hdist, grid, zenith->nadir)
INTEGER(iwp), INTENT(in) :: iorig !< index of origin face for csf
REAL(wp), INTENT(in) :: aorig !< origin face area for csf
REAL(wp), DIMENSION(nrays), INTENT(in) :: vffrac !< view factor fractions of each ray for csf
LOGICAL, INTENT(in) :: calc_svf !< whether to calculate SFV (identify obstacle surfaces)
LOGICAL, INTENT(in) :: create_csf !< whether to create canopy sink factors
LOGICAL, INTENT(in) :: skip_1st_pcb !< whether to skip first plant canopy box during raytracing
INTEGER(iwp), INTENT(out) :: lowest_free_ray !< index into zdirs
REAL(wp), DIMENSION(nrays), INTENT(OUT) :: transparency !< transparencies of zdirs paths
INTEGER(iwp), DIMENSION(nrays), INTENT(OUT) :: itarget !< global indices of target faces for zdirs
INTEGER(iwp), DIMENSION(nrays) :: target_procs
REAL(wp) :: horizon !< highest horizon found after raytracing (z/hdist)
INTEGER(iwp) :: i, k, l, d
INTEGER(iwp) :: seldim !< dimension to be incremented
REAL(wp), DIMENSION(2) :: yxorigin !< horizontal copy of origin (y,x)
REAL(wp) :: distance !< euclidean along path
REAL(wp) :: lastdist !< beginning of current crossing
REAL(wp) :: nextdist !< end of current crossing
REAL(wp) :: crmid !< midpoint of crossing
REAL(wp) :: horz_entry !< horizon at entry to column
REAL(wp) :: horz_exit !< horizon at exit from column
REAL(wp) :: bdydim !< boundary for current dimension
REAL(wp), DIMENSION(2) :: crossdist !< distances to boundary for dimensions
REAL(wp), DIMENSION(2) :: dimnextdist !< distance for each dimension increments
INTEGER(iwp), DIMENSION(2) :: column !< grid column being crossed
INTEGER(iwp), DIMENSION(2) :: dimnext !< next dimension increments along path
INTEGER(iwp), DIMENSION(2) :: dimdelta !< dimension direction = +- 1
INTEGER(iwp) :: px, py !< number of processors in x and y dir before
!< the processor in the question
INTEGER(iwp) :: ip !< number of processor where gridbox reside
INTEGER(iwp) :: ig !< 1D index of gridbox in global 2D array
INTEGER(iwp) :: wcount !< RMA window item count
INTEGER(iwp) :: maxboxes !< max no of CSF created
INTEGER(iwp) :: nly !< maximum plant canopy height
INTEGER(iwp) :: ntrack
INTEGER(iwp) :: zb0
INTEGER(iwp) :: zb1
INTEGER(iwp) :: nz
INTEGER(iwp) :: iz
INTEGER(iwp) :: zsgn
INTEGER(iwp) :: lowest_lad !< lowest column cell for which we need LAD
INTEGER(iwp) :: lastdir !< wall direction before hitting this column
INTEGER(iwp), DIMENSION(2) :: lastcolumn
#if defined( __parallel )
INTEGER(MPI_ADDRESS_KIND) :: wdisp !< RMA window displacement
#endif
REAL(wp) :: eps = 1E-10_wp !< epsilon for value comparison
REAL(wp) :: zbottom, ztop !< urban surface boundary in real numbers
REAL(wp) :: zorig !< z coordinate of ray column entry
REAL(wp) :: zexit !< z coordinate of ray column exit
REAL(wp) :: qdist !< ratio of real distance to z coord difference
REAL(wp) :: dxxyy !< square of real horizontal distance
REAL(wp) :: curtrans !< transparency of current PC box crossing
yxorigin(:) = origin(2:3)
transparency(:) = 1._wp !-- Pre-set the all rays to transparent before reducing
horizon = -HUGE(1._wp)
lowest_free_ray = nrays
IF ( rad_angular_discretization .AND. calc_svf ) THEN
ALLOCATE(target_surfl(nrays))
target_surfl(:) = -1
lastdir = -999
lastcolumn(:) = -999
ENDIF
!-- Determine distance to boundary (in 2D xy)
IF ( yxdir(1) > 0._wp ) THEN
bdydim = ny + .5_wp !< north global boundary
crossdist(1) = (bdydim - yxorigin(1)) / yxdir(1)
ELSEIF ( yxdir(1) == 0._wp ) THEN
crossdist(1) = HUGE(1._wp)
ELSE
bdydim = -.5_wp !< south global boundary
crossdist(1) = (bdydim - yxorigin(1)) / yxdir(1)
ENDIF
IF ( yxdir(2) > 0._wp ) THEN
bdydim = nx + .5_wp !< east global boundary
crossdist(2) = (bdydim - yxorigin(2)) / yxdir(2)
ELSEIF ( yxdir(2) == 0._wp ) THEN
crossdist(2) = HUGE(1._wp)
ELSE
bdydim = -.5_wp !< west global boundary
crossdist(2) = (bdydim - yxorigin(2)) / yxdir(2)
ENDIF
distance = minval(crossdist, 1)
IF ( plant_canopy ) THEN
rt2_track_dist(0) = 0._wp
rt2_track_lad(:,:) = 0._wp
nly = plantt_max - nz_urban_b + 1
ENDIF
lastdist = 0._wp
!-- Since all face coordinates have values *.5 and we'd like to use
!-- integers, all these have .5 added
DO d = 1, 2
IF ( yxdir(d) == 0._wp ) THEN
dimnext(d) = HUGE(1_iwp)
dimdelta(d) = HUGE(1_iwp)
dimnextdist(d) = HUGE(1._wp)
ELSE IF ( yxdir(d) > 0._wp ) THEN
dimnext(d) = FLOOR(yxorigin(d) + .5_wp) + 1
dimdelta(d) = 1
dimnextdist(d) = (dimnext(d) - .5_wp - yxorigin(d)) / yxdir(d)
ELSE
dimnext(d) = CEILING(yxorigin(d) + .5_wp) - 1
dimdelta(d) = -1
dimnextdist(d) = (dimnext(d) - .5_wp - yxorigin(d)) / yxdir(d)
ENDIF
ENDDO
ntrack = 0
DO
!-- along what dimension will the next wall crossing be?
seldim = minloc(dimnextdist, 1)
nextdist = dimnextdist(seldim)
IF ( nextdist > distance ) nextdist = distance
IF ( nextdist > lastdist ) THEN
ntrack = ntrack + 1
crmid = (lastdist + nextdist) * .5_wp
column = NINT(yxorigin(:) + yxdir(:) * crmid, iwp)
!-- calculate index of the grid with global indices (column(1),column(2))
!-- in the array nzterr and plantt and id of the coresponding processor
px = column(2)/nnx
py = column(1)/nny
ip = px*pdims(2)+py
ig = ip*nnx*nny + (column(2)-px*nnx)*nny + column(1)-py*nny
IF ( lastdist == 0._wp ) THEN
horz_entry = -HUGE(1._wp)
ELSE
horz_entry = (REAL(nzterr(ig), wp) + .5_wp - origin(1)) / lastdist
ENDIF
horz_exit = (REAL(nzterr(ig), wp) + .5_wp - origin(1)) / nextdist
IF ( rad_angular_discretization .AND. calc_svf ) THEN
!
!-- Identify vertical obstacles hit by rays in current column
DO WHILE ( lowest_free_ray > 0 )
IF ( zdirs(lowest_free_ray) > horz_entry ) EXIT
!
!-- This may only happen after 1st column, so lastdir and lastcolumn are valid
CALL request_itarget(lastdir, &
CEILING(-0.5_wp + origin(1) + zdirs(lowest_free_ray)*lastdist), &
lastcolumn(1), lastcolumn(2), &
target_surfl(lowest_free_ray), target_procs(lowest_free_ray))
lowest_free_ray = lowest_free_ray - 1
ENDDO
!
!-- Identify horizontal obstacles hit by rays in current column
DO WHILE ( lowest_free_ray > 0 )
IF ( zdirs(lowest_free_ray) > horz_exit ) EXIT
CALL request_itarget(iup_u, nzterr(ig)+1, column(1), column(2), &
target_surfl(lowest_free_ray), &
target_procs(lowest_free_ray))
lowest_free_ray = lowest_free_ray - 1
ENDDO
ENDIF
horizon = MAX(horizon, horz_entry, horz_exit)
IF ( plant_canopy ) THEN
rt2_track(:, ntrack) = column(:)
rt2_track_dist(ntrack) = nextdist
ENDIF
ENDIF
IF ( nextdist + eps >= distance ) EXIT
IF ( rad_angular_discretization .AND. calc_svf ) THEN
!
!-- Save wall direction of coming building column (= this air column)
IF ( seldim == 1 ) THEN
IF ( dimdelta(seldim) == 1 ) THEN
lastdir = isouth_u
ELSE
lastdir = inorth_u
ENDIF
ELSE
IF ( dimdelta(seldim) == 1 ) THEN
lastdir = iwest_u
ELSE
lastdir = ieast_u
ENDIF
ENDIF
lastcolumn = column
ENDIF
lastdist = nextdist
dimnext(seldim) = dimnext(seldim) + dimdelta(seldim)
dimnextdist(seldim) = (dimnext(seldim) - .5_wp - yxorigin(seldim)) / yxdir(seldim)
ENDDO
IF ( plant_canopy ) THEN
!-- Request LAD WHERE applicable
!--
#if defined( __parallel )
IF ( raytrace_mpi_rma ) THEN
!-- send requests for lad_s to appropriate processor
!CALL cpu_log( log_point_s(77), 'usm_init_rma', 'start' )
DO i = 1, ntrack
px = rt2_track(2,i)/nnx
py = rt2_track(1,i)/nny
ip = px*pdims(2)+py
ig = ip*nnx*nny + (rt2_track(2,i)-px*nnx)*nny + rt2_track(1,i)-py*nny
IF ( rad_angular_discretization .AND. calc_svf ) THEN
!
!-- For fixed view resolution, we need plant canopy even for rays
!-- to opposing surfaces
lowest_lad = nzterr(ig) + 1
ELSE
!
!-- We only need LAD for rays directed above horizon (to sky)
lowest_lad = CEILING( -0.5_wp + origin(1) + &
MIN( horizon * rt2_track_dist(i-1), & ! entry
horizon * rt2_track_dist(i) ) ) ! exit
ENDIF
!
!-- Skip asking for LAD where all plant canopy is under requested level
IF ( plantt(ig) < lowest_lad ) CYCLE
wdisp = (rt2_track(2,i)-px*nnx)*(nny*nz_plant) + (rt2_track(1,i)-py*nny)*nz_plant + lowest_lad-nz_urban_b
wcount = plantt(ig)-lowest_lad+1
! TODO send request ASAP - even during raytracing
CALL MPI_Get(rt2_track_lad(lowest_lad:plantt(ig), i), wcount, MPI_REAL, ip, &
wdisp, wcount, MPI_REAL, win_lad, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Get2:', ierr, rt2_track_lad(lowest_lad:plantt(ig), i), &
wcount, ip, wdisp, win_lad
FLUSH(9)
ENDIF
ENDDO
!-- wait for all pending local requests complete
! TODO WAIT selectively for each column later when needed
CALL MPI_Win_flush_local_all(win_lad, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Win_flush_local_all2:', ierr, win_lad
FLUSH(9)
ENDIF
!CALL cpu_log( log_point_s(77), 'usm_init_rma', 'stop' )
ELSE ! raytrace_mpi_rma = .F.
DO i = 1, ntrack
px = rt2_track(2,i)/nnx
py = rt2_track(1,i)/nny
ip = px*pdims(2)+py
ig = ip*nnx*nny*nz_plant + (rt2_track(2,i)-px*nnx)*(nny*nz_plant) + (rt2_track(1,i)-py*nny)*nz_plant
rt2_track_lad(nz_urban_b:plantt_max, i) = sub_lad_g(ig:ig+nly-1)
ENDDO
ENDIF
#else
DO i = 1, ntrack
rt2_track_lad(nz_urban_b:plantt_max, i) = sub_lad(rt2_track(1,i), rt2_track(2,i), nz_urban_b:plantt_max)
ENDDO
#endif
ENDIF ! plant_canopy
IF ( rad_angular_discretization .AND. calc_svf ) THEN
#if defined( __parallel )
!-- wait for all gridsurf requests to complete
CALL MPI_Win_flush_local_all(win_gridsurf, ierr)
IF ( ierr /= 0 ) THEN
WRITE(9,*) 'Error MPI_Win_flush_local_all3:', ierr, win_gridsurf
FLUSH(9)
ENDIF
#endif
!
!-- recalculate local surf indices into global ones
DO i = 1, nrays
IF ( target_surfl(i) == -1 ) THEN
itarget(i) = -1
ELSE
itarget(i) = target_surfl(i) + surfstart(target_procs(i))
ENDIF
ENDDO
DEALLOCATE( target_surfl )
ELSE
itarget(:) = -1
ENDIF ! rad_angular_discretization
IF ( plant_canopy ) THEN
!-- Skip the PCB around origin if requested (for MRT, the PCB might not be there)
!--
IF ( skip_1st_pcb .AND. NINT(origin(1)) <= plantt_max ) THEN
rt2_track_lad(NINT(origin(1), iwp), 1) = 0._wp
ENDIF
!-- Assert that we have space allocated for CSFs
!--
maxboxes = (ntrack + MAX(CEILING(origin(1)-.5_wp) - nz_urban_b, &
nz_urban_t - CEILING(origin(1)-.5_wp))) * nrays
IF ( ncsfl + maxboxes > ncsfla ) THEN
!-- use this code for growing by fixed exponential increments (equivalent to case where ncsfl always increases by 1)
!-- k = CEILING(grow_factor ** real(CEILING(log(real(ncsfl + maxboxes, kind=wp)) &
!-- / log(grow_factor)), kind=wp))
!-- or use this code to simply always keep some extra space after growing
k = CEILING(REAL(ncsfl + maxboxes, kind=wp) * grow_factor)
CALL merge_and_grow_csf(k)
ENDIF
!-- Calculate transparencies and store new CSFs
!--
zbottom = REAL(nz_urban_b, wp) - .5_wp
ztop = REAL(plantt_max, wp) + .5_wp
!-- Reverse direction of radiation (face->sky), only when calc_svf
!--
IF ( calc_svf ) THEN
DO i = 1, ntrack ! for each column
dxxyy = ((dy*yxdir(1))**2 + (dx*yxdir(2))**2) * (rt2_track_dist(i)-rt2_track_dist(i-1))**2
px = rt2_track(2,i)/nnx
py = rt2_track(1,i)/nny
ip = px*pdims(2)+py
DO k = 1, nrays ! for each ray
!
!-- NOTE 6778:
!-- With traditional svf discretization, CSFs under the horizon
!-- (i.e. for surface to surface radiation) are created in
!-- raytrace(). With rad_angular_discretization, we must create
!-- CSFs under horizon only for one direction, otherwise we would
!-- have duplicate amount of energy. Although we could choose
!-- either of the two directions (they differ only by
!-- discretization error with no bias), we choose the the backward
!-- direction, because it tends to cumulate high canopy sink
!-- factors closer to raytrace origin, i.e. it should potentially
!-- cause less moiree.
IF ( .NOT. rad_angular_discretization ) THEN
IF ( zdirs(k) <= horizon ) CYCLE
ENDIF
zorig = origin(1) + zdirs(k) * rt2_track_dist(i-1)
IF ( zorig <= zbottom .OR. zorig >= ztop ) CYCLE
zsgn = INT(SIGN(1._wp, zdirs(k)), iwp)
rt2_dist(1) = 0._wp
IF ( zdirs(k) == 0._wp ) THEN ! ray is exactly horizontal
nz = 2
rt2_dist(nz) = SQRT(dxxyy)
iz = CEILING(-.5_wp + zorig, iwp)
ELSE
zexit = MIN(MAX(origin(1) + zdirs(k) * rt2_track_dist(i), zbottom), ztop)
zb0 = FLOOR( zorig * zsgn - .5_wp) + 1 ! because it must be greater than orig
zb1 = CEILING(zexit * zsgn - .5_wp) - 1 ! because it must be smaller than exit
nz = MAX(zb1 - zb0 + 3, 2)
rt2_dist(nz) = SQRT(((zexit-zorig)*dz(1))**2 + dxxyy)
qdist = rt2_dist(nz) / (zexit-zorig)
rt2_dist(2:nz-1) = (/( ((REAL(l, wp) + .5_wp) * zsgn - zorig) * qdist , l = zb0, zb1 )/)
iz = zb0 * zsgn
ENDIF
DO l = 2, nz
IF ( rt2_track_lad(iz, i) > 0._wp ) THEN
curtrans = exp(-ext_coef * rt2_track_lad(iz, i) * (rt2_dist(l)-rt2_dist(l-1)))
IF ( create_csf ) THEN
ncsfl = ncsfl + 1
acsf(ncsfl)%ip = ip
acsf(ncsfl)%itx = rt2_track(2,i)
acsf(ncsfl)%ity = rt2_track(1,i)
acsf(ncsfl)%itz = iz
acsf(ncsfl)%isurfs = iorig
acsf(ncsfl)%rcvf = (1._wp - curtrans)*transparency(k)*vffrac(k)
ENDIF
transparency(k) = transparency(k) * curtrans
ENDIF
iz = iz + zsgn
ENDDO ! l = 1, nz - 1
ENDDO ! k = 1, nrays
ENDDO ! i = 1, ntrack
transparency(1:lowest_free_ray) = 1._wp !-- Reset rays above horizon to transparent (see NOTE 6778)
ENDIF
!-- Forward direction of radiation (sky->face), always
!--
DO i = ntrack, 1, -1 ! for each column backwards
dxxyy = ((dy*yxdir(1))**2 + (dx*yxdir(2))**2) * (rt2_track_dist(i)-rt2_track_dist(i-1))**2
px = rt2_track(2,i)/nnx
py = rt2_track(1,i)/nny
ip = px*pdims(2)+py
DO k = 1, nrays ! for each ray
!
!-- See NOTE 6778 above
IF ( zdirs(k) <= horizon ) CYCLE
zexit = origin(1) + zdirs(k) * rt2_track_dist(i-1)
IF ( zexit <= zbottom .OR. zexit >= ztop ) CYCLE
zsgn = -INT(SIGN(1._wp, zdirs(k)), iwp)
rt2_dist(1) = 0._wp
IF ( zdirs(k) == 0._wp ) THEN ! ray is exactly horizontal
nz = 2
rt2_dist(nz) = SQRT(dxxyy)
iz = NINT(zexit, iwp)
ELSE
zorig = MIN(MAX(origin(1) + zdirs(k) * rt2_track_dist(i), zbottom), ztop)
zb0 = FLOOR( zorig * zsgn - .5_wp) + 1 ! because it must be greater than orig
zb1 = CEILING(zexit * zsgn - .5_wp) - 1 ! because it must be smaller than exit
nz = MAX(zb1 - zb0 + 3, 2)
rt2_dist(nz) = SQRT(((zexit-zorig)*dz(1))**2 + dxxyy)
qdist = rt2_dist(nz) / (zexit-zorig)
rt2_dist(2:nz-1) = (/( ((REAL(l, wp) + .5_wp) * zsgn - zorig) * qdist , l = zb0, zb1 )/)
iz = zb0 * zsgn
ENDIF
DO l = 2, nz
IF ( rt2_track_lad(iz, i) > 0._wp ) THEN
curtrans = exp(-ext_coef * rt2_track_lad(iz, i) * (rt2_dist(l)-rt2_dist(l-1)))
IF ( create_csf ) THEN
ncsfl = ncsfl + 1
acsf(ncsfl)%ip = ip
acsf(ncsfl)%itx = rt2_track(2,i)
acsf(ncsfl)%ity = rt2_track(1,i)
acsf(ncsfl)%itz = iz
IF ( itarget(k) /= -1 ) STOP 1 !FIXME remove after test
acsf(ncsfl)%isurfs = -1
acsf(ncsfl)%rcvf = (1._wp - curtrans)*transparency(k)*aorig*vffrac(k)
ENDIF ! create_csf
transparency(k) = transparency(k) * curtrans
ENDIF
iz = iz + zsgn
ENDDO ! l = 1, nz - 1
ENDDO ! k = 1, nrays
ENDDO ! i = 1, ntrack
ENDIF ! plant_canopy
IF ( .NOT. (rad_angular_discretization .AND. calc_svf) ) THEN
!
!-- Just update lowest_free_ray according to horizon
DO WHILE ( lowest_free_ray > 0 )
IF ( zdirs(lowest_free_ray) > horizon ) EXIT
lowest_free_ray = lowest_free_ray - 1
ENDDO
ENDIF
CONTAINS
SUBROUTINE request_itarget( d, z, y, x, isurfl, iproc )
INTEGER(iwp), INTENT(in) :: d, z, y, x
INTEGER(iwp), TARGET, INTENT(out) :: isurfl
INTEGER(iwp), INTENT(out) :: iproc
#if defined( __parallel )
#else
INTEGER(iwp) :: target_displ !< index of the grid in the local gridsurf array
#endif
INTEGER(iwp) :: px, py !< number of processors in x and y direction
!< before the processor in the question
#if defined( __parallel )
INTEGER(KIND=MPI_ADDRESS_KIND) :: target_displ !< index of the grid in the local gridsurf array
!
!-- Calculate target processor and index in the remote local target gridsurf array
px = x / nnx
py = y / nny
iproc = px * pdims(2) + py
target_displ = ((x-px*nnx) * nny + y - py*nny ) * nz_urban * nsurf_type_u +&
( z-nz_urban_b ) * nsurf_type_u + d
!
!-- Send MPI_Get request to obtain index target_surfl(i)
CALL MPI_GET( isurfl, 1, MPI_INTEGER, iproc, target_displ, &
1, MPI_INTEGER, win_gridsurf, ierr)
IF ( ierr /= 0 ) THEN
WRITE( 9,* ) 'Error MPI_Get3:', ierr, isurfl, iproc, target_displ, &
win_gridsurf
FLUSH( 9 )
ENDIF
#else
!-- set index target_surfl(i)
isurfl = gridsurf(d,z,y,x)
#endif
END SUBROUTINE request_itarget
END SUBROUTINE raytrace_2d
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Calculates apparent solar positions for all timesteps and stores discretized
!> positions.
!------------------------------------------------------------------------------!
SUBROUTINE radiation_presimulate_solar_pos
IMPLICIT NONE
INTEGER(iwp) :: it, i, j !< loop indices
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dsidir_tmp !< dsidir_tmp[:,i] = unit vector of i-th
!< appreant solar direction
ALLOCATE ( dsidir_rev(0:raytrace_discrete_elevs/2-1, &
0:raytrace_discrete_azims-1) )
dsidir_rev(:,:) = -1
ALLOCATE ( dsidir_tmp(3, &
raytrace_discrete_elevs/2*raytrace_discrete_azims) )
ndsidir = 0
sun_direction = .TRUE.
!
!-- Process spinup time if configured
IF ( spinup_time > 0._wp ) THEN
DO it = 0, CEILING(spinup_time / dt_spinup)
CALL simulate_pos( it * dt_spinup - spinup_time )
ENDDO
ENDIF
!
!-- Process simulation time
DO it = 0, CEILING(( end_time - spinup_time ) / dt_radiation)
CALL simulate_pos( it * dt_radiation )
ENDDO
!
!-- Allocate global vars which depend on ndsidir
ALLOCATE ( dsidir ( 3, ndsidir ) )
dsidir(:,:) = dsidir_tmp(:, 1:ndsidir)
DEALLOCATE ( dsidir_tmp )
ALLOCATE ( dsitrans(nsurfl, ndsidir) )
ALLOCATE ( dsitransc(npcbl, ndsidir) )
IF ( nmrtbl > 0 ) ALLOCATE ( mrtdsit(nmrtbl, ndsidir) )
WRITE ( message_string, * ) 'Precalculated', ndsidir, ' solar positions', &
' from', it, ' timesteps.'
CALL message( 'radiation_presimulate_solar_pos', 'UI0013', 0, 0, 0, 6, 0 )
CONTAINS
!------------------------------------------------------------------------!
! Description:
! ------------
!> Simuates a single position
!------------------------------------------------------------------------!
SUBROUTINE simulate_pos( time_since_reference_local )
REAL(wp), INTENT(IN) :: time_since_reference_local !< local time since reference
!
!-- Update apparent solar position based on modified t_s_r_p
CALL get_date_time( time_since_reference_local, &
day_of_year=day_of_year, &
second_of_day=second_of_day )
CALL calc_zenith( day_of_year, second_of_day )
IF ( cos_zenith > 0 ) THEN
!--
!-- Identify solar direction vector (discretized number) 1)
i = MODULO(NINT(ATAN2(sun_dir_lon, sun_dir_lat) &
/ (2._wp*pi) * raytrace_discrete_azims-.5_wp, iwp), &
raytrace_discrete_azims)
j = FLOOR(ACOS(cos_zenith) / pi * raytrace_discrete_elevs)
IF ( dsidir_rev(j, i) == -1 ) THEN
ndsidir = ndsidir + 1
dsidir_tmp(:, ndsidir) = &
(/ COS((REAL(j,wp)+.5_wp) * pi / raytrace_discrete_elevs), &
SIN((REAL(j,wp)+.5_wp) * pi / raytrace_discrete_elevs) &
* COS((REAL(i,wp)+.5_wp) * 2_wp*pi / raytrace_discrete_azims), &
SIN((REAL(j,wp)+.5_wp) * pi / raytrace_discrete_elevs) &
* SIN((REAL(i,wp)+.5_wp) * 2_wp*pi / raytrace_discrete_azims) /)
dsidir_rev(j, i) = ndsidir
ENDIF
ENDIF
END SUBROUTINE simulate_pos
END SUBROUTINE radiation_presimulate_solar_pos
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Determines whether two faces are oriented towards each other. Since the
!> surfaces follow the gird box surfaces, it checks first whether the two surfaces
!> are directed in the same direction, then it checks if the two surfaces are
!> located in confronted direction but facing away from each other, e.g. <--| |-->
!------------------------------------------------------------------------------!
PURE LOGICAL FUNCTION surface_facing(x, y, z, d, x2, y2, z2, d2)
IMPLICIT NONE
INTEGER(iwp), INTENT(in) :: x, y, z, d, x2, y2, z2, d2
surface_facing = .FALSE.
!-- first check: are the two surfaces directed in the same direction
IF ( (d==iup_u .OR. d==iup_l ) &
.AND. (d2==iup_u .OR. d2==iup_l) ) RETURN
IF ( (d==isouth_u .OR. d==isouth_l ) &
.AND. (d2==isouth_u .OR. d2==isouth_l) ) RETURN
IF ( (d==inorth_u .OR. d==inorth_l ) &
.AND. (d2==inorth_u .OR. d2==inorth_l) ) RETURN
IF ( (d==iwest_u .OR. d==iwest_l ) &
.AND. (d2==iwest_u .OR. d2==iwest_l ) ) RETURN
IF ( (d==ieast_u .OR. d==ieast_l ) &
.AND. (d2==ieast_u .OR. d2==ieast_l ) ) RETURN
!-- second check: are surfaces facing away from each other
SELECT CASE (d)
CASE (iup_u, iup_l) !< upward facing surfaces
IF ( z2 < z ) RETURN
CASE (isouth_u, isouth_l) !< southward facing surfaces
IF ( y2 > y ) RETURN
CASE (inorth_u, inorth_l) !< northward facing surfaces
IF ( y2 < y ) RETURN
CASE (iwest_u, iwest_l) !< westward facing surfaces
IF ( x2 > x ) RETURN
CASE (ieast_u, ieast_l) !< eastward facing surfaces
IF ( x2 < x ) RETURN
END SELECT
SELECT CASE (d2)
CASE (iup_u) !< ground, roof
IF ( z < z2 ) RETURN
CASE (isouth_u, isouth_l) !< south facing
IF ( y > y2 ) RETURN
CASE (inorth_u, inorth_l) !< north facing
IF ( y < y2 ) RETURN
CASE (iwest_u, iwest_l) !< west facing
IF ( x > x2 ) RETURN
CASE (ieast_u, ieast_l) !< east facing
IF ( x < x2 ) RETURN
CASE (-1)
CONTINUE
END SELECT
surface_facing = .TRUE.
END FUNCTION surface_facing
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Reads svf, svfsurf, csf, csfsurf and mrt factors data from saved file
!> SVF means sky view factors and CSF means canopy sink factors
!------------------------------------------------------------------------------!
SUBROUTINE radiation_read_svf
IMPLICIT NONE
CHARACTER(rad_version_len) :: rad_version_field
INTEGER(iwp) :: i
INTEGER(iwp) :: ndsidir_from_file = 0
INTEGER(iwp) :: npcbl_from_file = 0
INTEGER(iwp) :: nsurfl_from_file = 0
INTEGER(iwp) :: nmrtbl_from_file = 0
CALL location_message( 'reading view factors for radiation interaction', 'start' )
DO i = 0, io_blocks-1
IF ( i == io_group ) THEN
!
!-- numprocs_previous_run is only known in case of reading restart
!-- data. If a new initial run which reads svf data is started the
!-- following query will be skipped
IF ( initializing_actions == 'read_restart_data' ) THEN
IF ( numprocs_previous_run /= numprocs ) THEN
WRITE( message_string, * ) 'A different number of ', &
'processors between the run ', &
'that has written the svf data ',&
'and the one that will read it ',&
'is not allowed'
CALL message( 'check_open', 'PA0491', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
!
!-- Open binary file
CALL check_open( 88 )
!
!-- read and check version
READ ( 88 ) rad_version_field
IF ( TRIM(rad_version_field) /= TRIM(rad_version) ) THEN
WRITE( message_string, * ) 'Version of binary SVF file "', &
TRIM(rad_version_field), '" does not match ', &
'the version of model "', TRIM(rad_version), '"'
CALL message( 'radiation_read_svf', 'PA0482', 1, 2, 0, 6, 0 )
ENDIF
!
!-- read nsvfl, ncsfl, nsurfl, nmrtf
READ ( 88 ) nsvfl, ncsfl, nsurfl_from_file, npcbl_from_file, &
ndsidir_from_file, nmrtbl_from_file, nmrtf
IF ( nsvfl < 0 .OR. ncsfl < 0 ) THEN
WRITE( message_string, * ) 'Wrong number of SVF or CSF'
CALL message( 'radiation_read_svf', 'PA0483', 1, 2, 0, 6, 0 )
ELSE
WRITE(debug_string,*) 'Number of SVF, CSF, and nsurfl ', &
'to read', nsvfl, ncsfl, &
nsurfl_from_file
IF ( debug_output ) CALL debug_message( debug_string, 'info' )
ENDIF
IF ( nsurfl_from_file /= nsurfl ) THEN
WRITE( message_string, * ) 'nsurfl from SVF file does not ', &
'match calculated nsurfl from ', &
'radiation_interaction_init'
CALL message( 'radiation_read_svf', 'PA0490', 1, 2, 0, 6, 0 )
ENDIF
IF ( npcbl_from_file /= npcbl ) THEN
WRITE( message_string, * ) 'npcbl from SVF file does not ', &
'match calculated npcbl from ', &
'radiation_interaction_init'
CALL message( 'radiation_read_svf', 'PA0493', 1, 2, 0, 6, 0 )
ENDIF
IF ( ndsidir_from_file /= ndsidir ) THEN
WRITE( message_string, * ) 'ndsidir from SVF file does not ', &
'match calculated ndsidir from ', &
'radiation_presimulate_solar_pos'
CALL message( 'radiation_read_svf', 'PA0494', 1, 2, 0, 6, 0 )
ENDIF
IF ( nmrtbl_from_file /= nmrtbl ) THEN
WRITE( message_string, * ) 'nmrtbl from SVF file does not ', &
'match calculated nmrtbl from ', &
'radiation_interaction_init'
CALL message( 'radiation_read_svf', 'PA0494', 1, 2, 0, 6, 0 )
ELSE
WRITE(debug_string,*) 'Number of nmrtf to read ', nmrtf
IF ( debug_output ) CALL debug_message( debug_string, 'info' )
ENDIF
!
!-- Arrays skyvf, skyvft, dsitrans and dsitransc are allready
!-- allocated in radiation_interaction_init and
!-- radiation_presimulate_solar_pos
IF ( nsurfl > 0 ) THEN
READ(88) skyvf
READ(88) skyvft
READ(88) dsitrans
ENDIF
IF ( plant_canopy .AND. npcbl > 0 ) THEN
READ ( 88 ) dsitransc
ENDIF
!
!-- The allocation of svf, svfsurf, csf, csfsurf, mrtf, mrtft, and
!-- mrtfsurf happens in routine radiation_calc_svf which is not
!-- called if the program enters radiation_read_svf. Therefore
!-- these arrays has to allocate in the following
IF ( nsvfl > 0 ) THEN
ALLOCATE( svf(ndsvf,nsvfl) )
ALLOCATE( svfsurf(idsvf,nsvfl) )
READ(88) svf
READ(88) svfsurf
ENDIF
IF ( plant_canopy .AND. ncsfl > 0 ) THEN
ALLOCATE( csf(ndcsf,ncsfl) )
ALLOCATE( csfsurf(idcsf,ncsfl) )
READ(88) csf
READ(88) csfsurf
ENDIF
IF ( nmrtbl > 0 ) THEN
READ(88) mrtsky
READ(88) mrtskyt
READ(88) mrtdsit
ENDIF
IF ( nmrtf > 0 ) THEN
ALLOCATE ( mrtf(nmrtf) )
ALLOCATE ( mrtft(nmrtf) )
ALLOCATE ( mrtfsurf(2,nmrtf) )
READ(88) mrtf
READ(88) mrtft
READ(88) mrtfsurf
ENDIF
!
!-- Close binary file
CALL close_file( 88 )
ENDIF
#if defined( __parallel )
CALL MPI_BARRIER( comm2d, ierr )
#endif
ENDDO
CALL location_message( 'reading view factors for radiation interaction', 'finished' )
END SUBROUTINE radiation_read_svf
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Subroutine stores svf, svfsurf, csf, csfsurf and mrt data to a file.
!------------------------------------------------------------------------------!
SUBROUTINE radiation_write_svf
IMPLICIT NONE
INTEGER(iwp) :: i
CALL location_message( 'writing view factors for radiation interaction', 'start' )
DO i = 0, io_blocks-1
IF ( i == io_group ) THEN
!
!-- Open binary file
CALL check_open( 89 )
WRITE ( 89 ) rad_version
WRITE ( 89 ) nsvfl, ncsfl, nsurfl, npcbl, ndsidir, nmrtbl, nmrtf
IF ( nsurfl > 0 ) THEN
WRITE ( 89 ) skyvf
WRITE ( 89 ) skyvft
WRITE ( 89 ) dsitrans
ENDIF
IF ( npcbl > 0 ) THEN
WRITE ( 89 ) dsitransc
ENDIF
IF ( nsvfl > 0 ) THEN
WRITE ( 89 ) svf
WRITE ( 89 ) svfsurf
ENDIF
IF ( plant_canopy .AND. ncsfl > 0 ) THEN
WRITE ( 89 ) csf
WRITE ( 89 ) csfsurf
ENDIF
IF ( nmrtbl > 0 ) THEN
WRITE ( 89 ) mrtsky
WRITE ( 89 ) mrtskyt
WRITE ( 89 ) mrtdsit
ENDIF
IF ( nmrtf > 0 ) THEN
WRITE ( 89 ) mrtf
WRITE ( 89 ) mrtft
WRITE ( 89 ) mrtfsurf
ENDIF
!
!-- Close binary file
CALL close_file( 89 )
ENDIF
#if defined( __parallel )
CALL MPI_BARRIER( comm2d, ierr )
#endif
ENDDO
CALL location_message( 'writing view factors for radiation interaction', 'finished' )
END SUBROUTINE radiation_write_svf
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Block of auxiliary subroutines:
!> 1. quicksort and corresponding comparison
!> 2. merge_and_grow_csf for implementation of "dynamical growing"
!> array for csf
!------------------------------------------------------------------------------!
!-- quicksort.f -*-f90-*-
!-- Author: t-nissie, adaptation J.Resler
!-- License: GPLv3
!-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea
RECURSIVE SUBROUTINE quicksort_itarget(itarget, vffrac, ztransp, first, last)
IMPLICIT NONE
INTEGER(iwp), DIMENSION(:), INTENT(INOUT) :: itarget
REAL(wp), DIMENSION(:), INTENT(INOUT) :: vffrac, ztransp
INTEGER(iwp), INTENT(IN) :: first, last
INTEGER(iwp) :: x, t
INTEGER(iwp) :: i, j
REAL(wp) :: tr
IF ( first>=last ) RETURN
x = itarget((first+last)/2)
i = first
j = last
DO
DO WHILE ( itarget(i) < x )
i=i+1
ENDDO
DO WHILE ( x < itarget(j) )
j=j-1
ENDDO
IF ( i >= j ) EXIT
t = itarget(i); itarget(i) = itarget(j); itarget(j) = t
tr = vffrac(i); vffrac(i) = vffrac(j); vffrac(j) = tr
tr = ztransp(i); ztransp(i) = ztransp(j); ztransp(j) = tr
i=i+1
j=j-1
ENDDO
IF ( first < i-1 ) CALL quicksort_itarget(itarget, vffrac, ztransp, first, i-1)
IF ( j+1 < last ) CALL quicksort_itarget(itarget, vffrac, ztransp, j+1, last)
END SUBROUTINE quicksort_itarget
PURE FUNCTION svf_lt(svf1,svf2) result (res)
TYPE (t_svf), INTENT(in) :: svf1,svf2
LOGICAL :: res
IF ( svf1%isurflt < svf2%isurflt .OR. &
(svf1%isurflt == svf2%isurflt .AND. svf1%isurfs < svf2%isurfs) ) THEN
res = .TRUE.
ELSE
res = .FALSE.
ENDIF
END FUNCTION svf_lt
!-- quicksort.f -*-f90-*-
!-- Author: t-nissie, adaptation J.Resler
!-- License: GPLv3
!-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea
RECURSIVE SUBROUTINE quicksort_svf(svfl, first, last)
IMPLICIT NONE
TYPE(t_svf), DIMENSION(:), INTENT(INOUT) :: svfl
INTEGER(iwp), INTENT(IN) :: first, last
TYPE(t_svf) :: x, t
INTEGER(iwp) :: i, j
IF ( first>=last ) RETURN
x = svfl( (first+last) / 2 )
i = first
j = last
DO
DO while ( svf_lt(svfl(i),x) )
i=i+1
ENDDO
DO while ( svf_lt(x,svfl(j)) )
j=j-1
ENDDO
IF ( i >= j ) EXIT
t = svfl(i); svfl(i) = svfl(j); svfl(j) = t
i=i+1
j=j-1
ENDDO
IF ( first < i-1 ) CALL quicksort_svf(svfl, first, i-1)
IF ( j+1 < last ) CALL quicksort_svf(svfl, j+1, last)
END SUBROUTINE quicksort_svf
PURE FUNCTION csf_lt(csf1,csf2) result (res)
TYPE (t_csf), INTENT(in) :: csf1,csf2
LOGICAL :: res
IF ( csf1%ip < csf2%ip .OR. &
(csf1%ip == csf2%ip .AND. csf1%itx < csf2%itx) .OR. &
(csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity < csf2%ity) .OR. &
(csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity == csf2%ity .AND. &
csf1%itz < csf2%itz) .OR. &
(csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity == csf2%ity .AND. &
csf1%itz == csf2%itz .AND. csf1%isurfs < csf2%isurfs) ) THEN
res = .TRUE.
ELSE
res = .FALSE.
ENDIF
END FUNCTION csf_lt
!-- quicksort.f -*-f90-*-
!-- Author: t-nissie, adaptation J.Resler
!-- License: GPLv3
!-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea
RECURSIVE SUBROUTINE quicksort_csf(csfl, first, last)
IMPLICIT NONE
TYPE(t_csf), DIMENSION(:), INTENT(INOUT) :: csfl
INTEGER(iwp), INTENT(IN) :: first, last
TYPE(t_csf) :: x, t
INTEGER(iwp) :: i, j
IF ( first>=last ) RETURN
x = csfl( (first+last)/2 )
i = first
j = last
DO
DO while ( csf_lt(csfl(i),x) )
i=i+1
ENDDO
DO while ( csf_lt(x,csfl(j)) )
j=j-1
ENDDO
IF ( i >= j ) EXIT
t = csfl(i); csfl(i) = csfl(j); csfl(j) = t
i=i+1
j=j-1
ENDDO
IF ( first < i-1 ) CALL quicksort_csf(csfl, first, i-1)
IF ( j+1 < last ) CALL quicksort_csf(csfl, j+1, last)
END SUBROUTINE quicksort_csf
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Grows the CSF array exponentially after it is full. During that, the ray
!> canopy sink factors with common source face and target plant canopy grid
!> cell are merged together so that the size doesn't grow out of control.
!------------------------------------------------------------------------------!
SUBROUTINE merge_and_grow_csf(newsize)
INTEGER(iwp), INTENT(in) :: newsize !< new array size after grow, must be >= ncsfl
!< or -1 to shrink to minimum
INTEGER(iwp) :: iread, iwrite
TYPE(t_csf), DIMENSION(:), POINTER :: acsfnew
IF ( newsize == -1 ) THEN
!-- merge in-place
acsfnew => acsf
ELSE
!-- allocate new array
IF ( mcsf == 0 ) THEN
ALLOCATE( acsf1(newsize) )
acsfnew => acsf1
ELSE
ALLOCATE( acsf2(newsize) )
acsfnew => acsf2
ENDIF
ENDIF
IF ( ncsfl >= 1 ) THEN
!-- sort csf in place (quicksort)
CALL quicksort_csf(acsf,1,ncsfl)
!-- while moving to a new array, aggregate canopy sink factor records with identical box & source
acsfnew(1) = acsf(1)
iwrite = 1
DO iread = 2, ncsfl
!-- here acsf(kcsf) already has values from acsf(icsf)
IF ( acsfnew(iwrite)%itx == acsf(iread)%itx &
.AND. acsfnew(iwrite)%ity == acsf(iread)%ity &
.AND. acsfnew(iwrite)%itz == acsf(iread)%itz &
.AND. acsfnew(iwrite)%isurfs == acsf(iread)%isurfs ) THEN
acsfnew(iwrite)%rcvf = acsfnew(iwrite)%rcvf + acsf(iread)%rcvf
!-- advance reading index, keep writing index
ELSE
!-- not identical, just advance and copy
iwrite = iwrite + 1
acsfnew(iwrite) = acsf(iread)
ENDIF
ENDDO
ncsfl = iwrite
ENDIF
IF ( newsize == -1 ) THEN
!-- allocate new array and copy shrinked data
IF ( mcsf == 0 ) THEN
ALLOCATE( acsf1(ncsfl) )
acsf1(1:ncsfl) = acsf2(1:ncsfl)
ELSE
ALLOCATE( acsf2(ncsfl) )
acsf2(1:ncsfl) = acsf1(1:ncsfl)
ENDIF
ENDIF
!-- deallocate old array
IF ( mcsf == 0 ) THEN
mcsf = 1
acsf => acsf1
DEALLOCATE( acsf2 )
ELSE
mcsf = 0
acsf => acsf2
DEALLOCATE( acsf1 )
ENDIF
ncsfla = newsize
IF ( debug_output ) THEN
WRITE( debug_string, '(A,2I12)' ) 'Grow acsf2:', ncsfl, ncsfla
CALL debug_message( debug_string, 'info' )
ENDIF
END SUBROUTINE merge_and_grow_csf
!-- quicksort.f -*-f90-*-
!-- Author: t-nissie, adaptation J.Resler
!-- License: GPLv3
!-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea
RECURSIVE SUBROUTINE quicksort_csf2(kpcsflt, pcsflt, first, last)
IMPLICIT NONE
INTEGER(iwp), DIMENSION(:,:), INTENT(INOUT) :: kpcsflt
REAL(wp), DIMENSION(:,:), INTENT(INOUT) :: pcsflt
INTEGER(iwp), INTENT(IN) :: first, last
REAL(wp), DIMENSION(ndcsf) :: t2
INTEGER(iwp), DIMENSION(kdcsf) :: x, t1
INTEGER(iwp) :: i, j
IF ( first>=last ) RETURN
x = kpcsflt(:, (first+last)/2 )
i = first
j = last
DO
DO while ( csf_lt2(kpcsflt(:,i),x) )
i=i+1
ENDDO
DO while ( csf_lt2(x,kpcsflt(:,j)) )
j=j-1
ENDDO
IF ( i >= j ) EXIT
t1 = kpcsflt(:,i); kpcsflt(:,i) = kpcsflt(:,j); kpcsflt(:,j) = t1
t2 = pcsflt(:,i); pcsflt(:,i) = pcsflt(:,j); pcsflt(:,j) = t2
i=i+1
j=j-1
ENDDO
IF ( first < i-1 ) CALL quicksort_csf2(kpcsflt, pcsflt, first, i-1)
IF ( j+1 < last ) CALL quicksort_csf2(kpcsflt, pcsflt, j+1, last)
END SUBROUTINE quicksort_csf2
PURE FUNCTION csf_lt2(item1, item2) result(res)
INTEGER(iwp), DIMENSION(kdcsf), INTENT(in) :: item1, item2
LOGICAL :: res
res = ( (item1(3) < item2(3)) &
.OR. (item1(3) == item2(3) .AND. item1(2) < item2(2)) &
.OR. (item1(3) == item2(3) .AND. item1(2) == item2(2) .AND. item1(1) < item2(1)) &
.OR. (item1(3) == item2(3) .AND. item1(2) == item2(2) .AND. item1(1) == item2(1) &
.AND. item1(4) < item2(4)) )
END FUNCTION csf_lt2
PURE FUNCTION searchsorted(athresh, val) result(ind)
REAL(wp), DIMENSION(:), INTENT(IN) :: athresh
REAL(wp), INTENT(IN) :: val
INTEGER(iwp) :: ind
INTEGER(iwp) :: i
DO i = LBOUND(athresh, 1), UBOUND(athresh, 1)
IF ( val < athresh(i) ) THEN
ind = i - 1
RETURN
ENDIF
ENDDO
ind = UBOUND(athresh, 1)
END FUNCTION searchsorted
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Subroutine for averaging 3D data
!------------------------------------------------------------------------------!
SUBROUTINE radiation_3d_data_averaging( mode, variable )
USE control_parameters
USE indices
USE kinds
IMPLICIT NONE
CHARACTER (LEN=*) :: mode !<
CHARACTER (LEN=*) :: variable !<
LOGICAL :: match_lsm !< flag indicating natural-type surface
LOGICAL :: match_usm !< flag indicating urban-type surface
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: l, m !< index of current surface element
INTEGER(iwp) :: ids, idsint_u, idsint_l, isurf
CHARACTER(LEN=varnamelength) :: var
!-- find the real name of the variable
ids = -1
l = -1
var = TRIM(variable)
DO i = 0, nd-1
k = len(TRIM(var))
j = len(TRIM(dirname(i)))
IF ( k-j+1 >= 1_iwp ) THEN
IF ( TRIM(var(k-j+1:k)) == TRIM(dirname(i)) ) THEN
ids = i
idsint_u = dirint_u(ids)
idsint_l = dirint_l(ids)
var = var(:k-j)
EXIT
ENDIF
ENDIF
ENDDO
IF ( ids == -1 ) THEN
var = TRIM(variable)
ENDIF
IF ( mode == 'allocate' ) THEN
SELECT CASE ( TRIM( var ) )
!-- block of large scale (e.g. RRTMG) radiation output variables
CASE ( 'rad_net*' )
IF ( .NOT. ALLOCATED( rad_net_av ) ) THEN
ALLOCATE( rad_net_av(nysg:nyng,nxlg:nxrg) )
ENDIF
rad_net_av = 0.0_wp
CASE ( 'rad_lw_in*' )
IF ( .NOT. ALLOCATED( rad_lw_in_xy_av ) ) THEN
ALLOCATE( rad_lw_in_xy_av(nysg:nyng,nxlg:nxrg) )
ENDIF
rad_lw_in_xy_av = 0.0_wp
CASE ( 'rad_lw_out*' )
IF ( .NOT. ALLOCATED( rad_lw_out_xy_av ) ) THEN
ALLOCATE( rad_lw_out_xy_av(nysg:nyng,nxlg:nxrg) )
ENDIF
rad_lw_out_xy_av = 0.0_wp
CASE ( 'rad_sw_in*' )
IF ( .NOT. ALLOCATED( rad_sw_in_xy_av ) ) THEN
ALLOCATE( rad_sw_in_xy_av(nysg:nyng,nxlg:nxrg) )
ENDIF
rad_sw_in_xy_av = 0.0_wp
CASE ( 'rad_sw_out*' )
IF ( .NOT. ALLOCATED( rad_sw_out_xy_av ) ) THEN
ALLOCATE( rad_sw_out_xy_av(nysg:nyng,nxlg:nxrg) )
ENDIF
rad_sw_out_xy_av = 0.0_wp
CASE ( 'rad_lw_in' )
IF ( .NOT. ALLOCATED( rad_lw_in_av ) ) THEN
ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
rad_lw_in_av = 0.0_wp
CASE ( 'rad_lw_out' )
IF ( .NOT. ALLOCATED( rad_lw_out_av ) ) THEN
ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
rad_lw_out_av = 0.0_wp
CASE ( 'rad_lw_cs_hr' )
IF ( .NOT. ALLOCATED( rad_lw_cs_hr_av ) ) THEN
ALLOCATE( rad_lw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
rad_lw_cs_hr_av = 0.0_wp
CASE ( 'rad_lw_hr' )
IF ( .NOT. ALLOCATED( rad_lw_hr_av ) ) THEN
ALLOCATE( rad_lw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
rad_lw_hr_av = 0.0_wp
CASE ( 'rad_sw_in' )
IF ( .NOT. ALLOCATED( rad_sw_in_av ) ) THEN
ALLOCATE( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
rad_sw_in_av = 0.0_wp
CASE ( 'rad_sw_out' )
IF ( .NOT. ALLOCATED( rad_sw_out_av ) ) THEN
ALLOCATE( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
rad_sw_out_av = 0.0_wp
CASE ( 'rad_sw_cs_hr' )
IF ( .NOT. ALLOCATED( rad_sw_cs_hr_av ) ) THEN
ALLOCATE( rad_sw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
rad_sw_cs_hr_av = 0.0_wp
CASE ( 'rad_sw_hr' )
IF ( .NOT. ALLOCATED( rad_sw_hr_av ) ) THEN
ALLOCATE( rad_sw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
rad_sw_hr_av = 0.0_wp
!-- block of RTM output variables
CASE ( 'rtm_rad_net' )
!-- array of complete radiation balance
IF ( .NOT. ALLOCATED(surfradnet_av) ) THEN
ALLOCATE( surfradnet_av(nsurfl) )
surfradnet_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_insw' )
!-- array of sw radiation falling to surface after i-th reflection
IF ( .NOT. ALLOCATED(surfinsw_av) ) THEN
ALLOCATE( surfinsw_av(nsurfl) )
surfinsw_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_inlw' )
!-- array of lw radiation falling to surface after i-th reflection
IF ( .NOT. ALLOCATED(surfinlw_av) ) THEN
ALLOCATE( surfinlw_av(nsurfl) )
surfinlw_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_inswdir' )
!-- array of direct sw radiation falling to surface from sun
IF ( .NOT. ALLOCATED(surfinswdir_av) ) THEN
ALLOCATE( surfinswdir_av(nsurfl) )
surfinswdir_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_inswdif' )
!-- array of difusion sw radiation falling to surface from sky and borders of the domain
IF ( .NOT. ALLOCATED(surfinswdif_av) ) THEN
ALLOCATE( surfinswdif_av(nsurfl) )
surfinswdif_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_inswref' )
!-- array of sw radiation falling to surface from reflections
IF ( .NOT. ALLOCATED(surfinswref_av) ) THEN
ALLOCATE( surfinswref_av(nsurfl) )
surfinswref_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_inlwdif' )
!-- array of sw radiation falling to surface after i-th reflection
IF ( .NOT. ALLOCATED(surfinlwdif_av) ) THEN
ALLOCATE( surfinlwdif_av(nsurfl) )
surfinlwdif_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_inlwref' )
!-- array of lw radiation falling to surface from reflections
IF ( .NOT. ALLOCATED(surfinlwref_av) ) THEN
ALLOCATE( surfinlwref_av(nsurfl) )
surfinlwref_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_outsw' )
!-- array of sw radiation emitted from surface after i-th reflection
IF ( .NOT. ALLOCATED(surfoutsw_av) ) THEN
ALLOCATE( surfoutsw_av(nsurfl) )
surfoutsw_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_outlw' )
!-- array of lw radiation emitted from surface after i-th reflection
IF ( .NOT. ALLOCATED(surfoutlw_av) ) THEN
ALLOCATE( surfoutlw_av(nsurfl) )
surfoutlw_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_ressw' )
!-- array of residua of sw radiation absorbed in surface after last reflection
IF ( .NOT. ALLOCATED(surfins_av) ) THEN
ALLOCATE( surfins_av(nsurfl) )
surfins_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_reslw' )
!-- array of residua of lw radiation absorbed in surface after last reflection
IF ( .NOT. ALLOCATED(surfinl_av) ) THEN
ALLOCATE( surfinl_av(nsurfl) )
surfinl_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_pc_inlw' )
!-- array of of lw radiation absorbed in plant canopy
IF ( .NOT. ALLOCATED(pcbinlw_av) ) THEN
ALLOCATE( pcbinlw_av(1:npcbl) )
pcbinlw_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_pc_insw' )
!-- array of of sw radiation absorbed in plant canopy
IF ( .NOT. ALLOCATED(pcbinsw_av) ) THEN
ALLOCATE( pcbinsw_av(1:npcbl) )
pcbinsw_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_pc_inswdir' )
!-- array of of direct sw radiation absorbed in plant canopy
IF ( .NOT. ALLOCATED(pcbinswdir_av) ) THEN
ALLOCATE( pcbinswdir_av(1:npcbl) )
pcbinswdir_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_pc_inswdif' )
!-- array of of diffuse sw radiation absorbed in plant canopy
IF ( .NOT. ALLOCATED(pcbinswdif_av) ) THEN
ALLOCATE( pcbinswdif_av(1:npcbl) )
pcbinswdif_av = 0.0_wp
ENDIF
CASE ( 'rtm_rad_pc_inswref' )
!-- array of of reflected sw radiation absorbed in plant canopy
IF ( .NOT. ALLOCATED(pcbinswref_av) ) THEN
ALLOCATE( pcbinswref_av(1:npcbl) )
pcbinswref_av = 0.0_wp
ENDIF
CASE ( 'rtm_mrt_sw' )
IF ( .NOT. ALLOCATED( mrtinsw_av ) ) THEN
ALLOCATE( mrtinsw_av(nmrtbl) )
ENDIF
mrtinsw_av = 0.0_wp
CASE ( 'rtm_mrt_lw' )
IF ( .NOT. ALLOCATED( mrtinlw_av ) ) THEN
ALLOCATE( mrtinlw_av(nmrtbl) )
ENDIF
mrtinlw_av = 0.0_wp
CASE ( 'rtm_mrt' )
IF ( .NOT. ALLOCATED( mrt_av ) ) THEN
ALLOCATE( mrt_av(nmrtbl) )
ENDIF
mrt_av = 0.0_wp
CASE DEFAULT
CONTINUE
END SELECT
ELSEIF ( mode == 'sum' ) THEN
SELECT CASE ( TRIM( var ) )
!-- block of large scale (e.g. RRTMG) radiation output variables
CASE ( 'rad_net*' )
IF ( ALLOCATED( rad_net_av ) ) THEN
DO i = nxl, nxr
DO j = nys, nyn
match_lsm = surf_lsm_h%start_index(j,i) <= &
surf_lsm_h%end_index(j,i)
match_usm = surf_usm_h%start_index(j,i) <= &
surf_usm_h%end_index(j,i)
IF ( match_lsm .AND. .NOT. match_usm ) THEN
m = surf_lsm_h%end_index(j,i)
rad_net_av(j,i) = rad_net_av(j,i) + &
surf_lsm_h%rad_net(m)
ELSEIF ( match_usm ) THEN
m = surf_usm_h%end_index(j,i)
rad_net_av(j,i) = rad_net_av(j,i) + &
surf_usm_h%rad_net(m)
ENDIF
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_in*' )
IF ( ALLOCATED( rad_lw_in_xy_av ) ) THEN
DO i = nxl, nxr
DO j = nys, nyn
match_lsm = surf_lsm_h%start_index(j,i) <= &
surf_lsm_h%end_index(j,i)
match_usm = surf_usm_h%start_index(j,i) <= &
surf_usm_h%end_index(j,i)
IF ( match_lsm .AND. .NOT. match_usm ) THEN
m = surf_lsm_h%end_index(j,i)
rad_lw_in_xy_av(j,i) = rad_lw_in_xy_av(j,i) + &
surf_lsm_h%rad_lw_in(m)
ELSEIF ( match_usm ) THEN
m = surf_usm_h%end_index(j,i)
rad_lw_in_xy_av(j,i) = rad_lw_in_xy_av(j,i) + &
surf_usm_h%rad_lw_in(m)
ENDIF
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_out*' )
IF ( ALLOCATED( rad_lw_out_xy_av ) ) THEN
DO i = nxl, nxr
DO j = nys, nyn
match_lsm = surf_lsm_h%start_index(j,i) <= &
surf_lsm_h%end_index(j,i)
match_usm = surf_usm_h%start_index(j,i) <= &
surf_usm_h%end_index(j,i)
IF ( match_lsm .AND. .NOT. match_usm ) THEN
m = surf_lsm_h%end_index(j,i)
rad_lw_out_xy_av(j,i) = rad_lw_out_xy_av(j,i) + &
surf_lsm_h%rad_lw_out(m)
ELSEIF ( match_usm ) THEN
m = surf_usm_h%end_index(j,i)
rad_lw_out_xy_av(j,i) = rad_lw_out_xy_av(j,i) + &
surf_usm_h%rad_lw_out(m)
ENDIF
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_in*' )
IF ( ALLOCATED( rad_sw_in_xy_av ) ) THEN
DO i = nxl, nxr
DO j = nys, nyn
match_lsm = surf_lsm_h%start_index(j,i) <= &
surf_lsm_h%end_index(j,i)
match_usm = surf_usm_h%start_index(j,i) <= &
surf_usm_h%end_index(j,i)
IF ( match_lsm .AND. .NOT. match_usm ) THEN
m = surf_lsm_h%end_index(j,i)
rad_sw_in_xy_av(j,i) = rad_sw_in_xy_av(j,i) + &
surf_lsm_h%rad_sw_in(m)
ELSEIF ( match_usm ) THEN
m = surf_usm_h%end_index(j,i)
rad_sw_in_xy_av(j,i) = rad_sw_in_xy_av(j,i) + &
surf_usm_h%rad_sw_in(m)
ENDIF
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_out*' )
IF ( ALLOCATED( rad_sw_out_xy_av ) ) THEN
DO i = nxl, nxr
DO j = nys, nyn
match_lsm = surf_lsm_h%start_index(j,i) <= &
surf_lsm_h%end_index(j,i)
match_usm = surf_usm_h%start_index(j,i) <= &
surf_usm_h%end_index(j,i)
IF ( match_lsm .AND. .NOT. match_usm ) THEN
m = surf_lsm_h%end_index(j,i)
rad_sw_out_xy_av(j,i) = rad_sw_out_xy_av(j,i) + &
surf_lsm_h%rad_sw_out(m)
ELSEIF ( match_usm ) THEN
m = surf_usm_h%end_index(j,i)
rad_sw_out_xy_av(j,i) = rad_sw_out_xy_av(j,i) + &
surf_usm_h%rad_sw_out(m)
ENDIF
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_in' )
IF ( ALLOCATED( rad_lw_in_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_lw_in_av(k,j,i) = rad_lw_in_av(k,j,i) &
+ rad_lw_in(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_out' )
IF ( ALLOCATED( rad_lw_out_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_lw_out_av(k,j,i) = rad_lw_out_av(k,j,i) &
+ rad_lw_out(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_cs_hr' )
IF ( ALLOCATED( rad_lw_cs_hr_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_lw_cs_hr_av(k,j,i) = rad_lw_cs_hr_av(k,j,i) &
+ rad_lw_cs_hr(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_hr' )
IF ( ALLOCATED( rad_lw_hr_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_lw_hr_av(k,j,i) = rad_lw_hr_av(k,j,i) &
+ rad_lw_hr(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_in' )
IF ( ALLOCATED( rad_sw_in_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_sw_in_av(k,j,i) = rad_sw_in_av(k,j,i) &
+ rad_sw_in(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_out' )
IF ( ALLOCATED( rad_sw_out_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_sw_out_av(k,j,i) = rad_sw_out_av(k,j,i) &
+ rad_sw_out(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_cs_hr' )
IF ( ALLOCATED( rad_sw_cs_hr_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_sw_cs_hr_av(k,j,i) = rad_sw_cs_hr_av(k,j,i) &
+ rad_sw_cs_hr(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_hr' )
IF ( ALLOCATED( rad_sw_hr_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_sw_hr_av(k,j,i) = rad_sw_hr_av(k,j,i) &
+ rad_sw_hr(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
!-- block of RTM output variables
CASE ( 'rtm_rad_net' )
!-- array of complete radiation balance
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfradnet_av(isurf) = surfinsw(isurf) - surfoutsw(isurf) + surfinlw(isurf) - surfoutlw(isurf)
ENDIF
ENDDO
CASE ( 'rtm_rad_insw' )
!-- array of sw radiation falling to surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinsw_av(isurf) = surfinsw_av(isurf) + surfinsw(isurf)
ENDIF
ENDDO
CASE ( 'rtm_rad_inlw' )
!-- array of lw radiation falling to surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinlw_av(isurf) = surfinlw_av(isurf) + surfinlw(isurf)
ENDIF
ENDDO
CASE ( 'rtm_rad_inswdir' )
!-- array of direct sw radiation falling to surface from sun
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinswdir_av(isurf) = surfinswdir_av(isurf) + surfinswdir(isurf)
ENDIF
ENDDO
CASE ( 'rtm_rad_inswdif' )
!-- array of difusion sw radiation falling to surface from sky and borders of the domain
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinswdif_av(isurf) = surfinswdif_av(isurf) + surfinswdif(isurf)
ENDIF
ENDDO
CASE ( 'rtm_rad_inswref' )
!-- array of sw radiation falling to surface from reflections
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinswref_av(isurf) = surfinswref_av(isurf) + surfinsw(isurf) - &
surfinswdir(isurf) - surfinswdif(isurf)
ENDIF
ENDDO
CASE ( 'rtm_rad_inlwdif' )
!-- array of sw radiation falling to surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinlwdif_av(isurf) = surfinlwdif_av(isurf) + surfinlwdif(isurf)
ENDIF
ENDDO
!
CASE ( 'rtm_rad_inlwref' )
!-- array of lw radiation falling to surface from reflections
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinlwref_av(isurf) = surfinlwref_av(isurf) + &
surfinlw(isurf) - surfinlwdif(isurf)
ENDIF
ENDDO
CASE ( 'rtm_rad_outsw' )
!-- array of sw radiation emitted from surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfoutsw_av(isurf) = surfoutsw_av(isurf) + surfoutsw(isurf)
ENDIF
ENDDO
CASE ( 'rtm_rad_outlw' )
!-- array of lw radiation emitted from surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfoutlw_av(isurf) = surfoutlw_av(isurf) + surfoutlw(isurf)
ENDIF
ENDDO
CASE ( 'rtm_rad_ressw' )
!-- array of residua of sw radiation absorbed in surface after last reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfins_av(isurf) = surfins_av(isurf) + surfins(isurf)
ENDIF
ENDDO
CASE ( 'rtm_rad_reslw' )
!-- array of residua of lw radiation absorbed in surface after last reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinl_av(isurf) = surfinl_av(isurf) + surfinl(isurf)
ENDIF
ENDDO
CASE ( 'rtm_rad_pc_inlw' )
DO l = 1, npcbl
pcbinlw_av(l) = pcbinlw_av(l) + pcbinlw(l)
ENDDO
CASE ( 'rtm_rad_pc_insw' )
DO l = 1, npcbl
pcbinsw_av(l) = pcbinsw_av(l) + pcbinsw(l)
ENDDO
CASE ( 'rtm_rad_pc_inswdir' )
DO l = 1, npcbl
pcbinswdir_av(l) = pcbinswdir_av(l) + pcbinswdir(l)
ENDDO
CASE ( 'rtm_rad_pc_inswdif' )
DO l = 1, npcbl
pcbinswdif_av(l) = pcbinswdif_av(l) + pcbinswdif(l)
ENDDO
CASE ( 'rtm_rad_pc_inswref' )
DO l = 1, npcbl
pcbinswref_av(l) = pcbinswref_av(l) + pcbinsw(l) - pcbinswdir(l) - pcbinswdif(l)
ENDDO
CASE ( 'rad_mrt_sw' )
IF ( ALLOCATED( mrtinsw_av ) ) THEN
mrtinsw_av(:) = mrtinsw_av(:) + mrtinsw(:)
ENDIF
CASE ( 'rad_mrt_lw' )
IF ( ALLOCATED( mrtinlw_av ) ) THEN
mrtinlw_av(:) = mrtinlw_av(:) + mrtinlw(:)
ENDIF
CASE ( 'rad_mrt' )
IF ( ALLOCATED( mrt_av ) ) THEN
mrt_av(:) = mrt_av(:) + mrt(:)
ENDIF
CASE DEFAULT
CONTINUE
END SELECT
ELSEIF ( mode == 'average' ) THEN
SELECT CASE ( TRIM( var ) )
!-- block of large scale (e.g. RRTMG) radiation output variables
CASE ( 'rad_net*' )
IF ( ALLOCATED( rad_net_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
rad_net_av(j,i) = rad_net_av(j,i) &
/ REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_in*' )
IF ( ALLOCATED( rad_lw_in_xy_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
rad_lw_in_xy_av(j,i) = rad_lw_in_xy_av(j,i) &
/ REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_out*' )
IF ( ALLOCATED( rad_lw_out_xy_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
rad_lw_out_xy_av(j,i) = rad_lw_out_xy_av(j,i) &
/ REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_in*' )
IF ( ALLOCATED( rad_sw_in_xy_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
rad_sw_in_xy_av(j,i) = rad_sw_in_xy_av(j,i) &
/ REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_out*' )
IF ( ALLOCATED( rad_sw_out_xy_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
rad_sw_out_xy_av(j,i) = rad_sw_out_xy_av(j,i) &
/ REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_in' )
IF ( ALLOCATED( rad_lw_in_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_lw_in_av(k,j,i) = rad_lw_in_av(k,j,i) &
/ REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_out' )
IF ( ALLOCATED( rad_lw_out_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_lw_out_av(k,j,i) = rad_lw_out_av(k,j,i) &
/ REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_cs_hr' )
IF ( ALLOCATED( rad_lw_cs_hr_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_lw_cs_hr_av(k,j,i) = rad_lw_cs_hr_av(k,j,i) &
/ REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_hr' )
IF ( ALLOCATED( rad_lw_hr_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_lw_hr_av(k,j,i) = rad_lw_hr_av(k,j,i) &
/ REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_in' )
IF ( ALLOCATED( rad_sw_in_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_sw_in_av(k,j,i) = rad_sw_in_av(k,j,i) &
/ REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_out' )
IF ( ALLOCATED( rad_sw_out_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_sw_out_av(k,j,i) = rad_sw_out_av(k,j,i) &
/ REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_cs_hr' )
IF ( ALLOCATED( rad_sw_cs_hr_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_sw_cs_hr_av(k,j,i) = rad_sw_cs_hr_av(k,j,i) &
/ REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_hr' )
IF ( ALLOCATED( rad_sw_hr_av ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
rad_sw_hr_av(k,j,i) = rad_sw_hr_av(k,j,i) &
/ REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
!-- block of RTM output variables
CASE ( 'rtm_rad_net' )
!-- array of complete radiation balance
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfradnet_av(isurf) = surfinsw_av(isurf) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'rtm_rad_insw' )
!-- array of sw radiation falling to surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinsw_av(isurf) = surfinsw_av(isurf) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'rtm_rad_inlw' )
!-- array of lw radiation falling to surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinlw_av(isurf) = surfinlw_av(isurf) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'rtm_rad_inswdir' )
!-- array of direct sw radiation falling to surface from sun
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinswdir_av(isurf) = surfinswdir_av(isurf) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'rtm_rad_inswdif' )
!-- array of difusion sw radiation falling to surface from sky and borders of the domain
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinswdif_av(isurf) = surfinswdif_av(isurf) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'rtm_rad_inswref' )
!-- array of sw radiation falling to surface from reflections
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinswref_av(isurf) = surfinswref_av(isurf) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'rtm_rad_inlwdif' )
!-- array of sw radiation falling to surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinlwdif_av(isurf) = surfinlwdif_av(isurf) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'rtm_rad_inlwref' )
!-- array of lw radiation falling to surface from reflections
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinlwref_av(isurf) = surfinlwref_av(isurf) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'rtm_rad_outsw' )
!-- array of sw radiation emitted from surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfoutsw_av(isurf) = surfoutsw_av(isurf) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'rtm_rad_outlw' )
!-- array of lw radiation emitted from surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfoutlw_av(isurf) = surfoutlw_av(isurf) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'rtm_rad_ressw' )
!-- array of residua of sw radiation absorbed in surface after last reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfins_av(isurf) = surfins_av(isurf) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'rtm_rad_reslw' )
!-- array of residua of lw radiation absorbed in surface after last reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
surfinl_av(isurf) = surfinl_av(isurf) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'rtm_rad_pc_inlw' )
DO l = 1, npcbl
pcbinlw_av(:) = pcbinlw_av(:) / REAL( average_count_3d, kind=wp )
ENDDO
CASE ( 'rtm_rad_pc_insw' )
DO l = 1, npcbl
pcbinsw_av(:) = pcbinsw_av(:) / REAL( average_count_3d, kind=wp )
ENDDO
CASE ( 'rtm_rad_pc_inswdir' )
DO l = 1, npcbl
pcbinswdir_av(:) = pcbinswdir_av(:) / REAL( average_count_3d, kind=wp )
ENDDO
CASE ( 'rtm_rad_pc_inswdif' )
DO l = 1, npcbl
pcbinswdif_av(:) = pcbinswdif_av(:) / REAL( average_count_3d, kind=wp )
ENDDO
CASE ( 'rtm_rad_pc_inswref' )
DO l = 1, npcbl
pcbinswref_av(:) = pcbinswref_av(:) / REAL( average_count_3d, kind=wp )
ENDDO
CASE ( 'rad_mrt_lw' )
IF ( ALLOCATED( mrtinlw_av ) ) THEN
mrtinlw_av(:) = mrtinlw_av(:) / REAL( average_count_3d, KIND=wp )
ENDIF
CASE ( 'rad_mrt' )
IF ( ALLOCATED( mrt_av ) ) THEN
mrt_av(:) = mrt_av(:) / REAL( average_count_3d, KIND=wp )
ENDIF
END SELECT
ENDIF
END SUBROUTINE radiation_3d_data_averaging
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Subroutine defining appropriate grid for netcdf variables.
!> It is called out from subroutine netcdf.
!------------------------------------------------------------------------------!
SUBROUTINE radiation_define_netcdf_grid( variable, found, grid_x, grid_y, grid_z )
IMPLICIT NONE
CHARACTER (LEN=*), INTENT(IN) :: variable !<
LOGICAL, INTENT(OUT) :: found !<
CHARACTER (LEN=*), INTENT(OUT) :: grid_x !<
CHARACTER (LEN=*), INTENT(OUT) :: grid_y !<
CHARACTER (LEN=*), INTENT(OUT) :: grid_z !<
CHARACTER (len=varnamelength) :: var
found = .TRUE.
!
!-- Check for the grid
var = TRIM(variable)
!-- RTM directional variables
IF ( var(1:12) == 'rtm_rad_net_' .OR. var(1:13) == 'rtm_rad_insw_' .OR. &
var(1:13) == 'rtm_rad_inlw_' .OR. var(1:16) == 'rtm_rad_inswdir_' .OR. &
var(1:16) == 'rtm_rad_inswdif_' .OR. var(1:16) == 'rtm_rad_inswref_' .OR. &
var(1:16) == 'rtm_rad_inlwdif_' .OR. var(1:16) == 'rtm_rad_inlwref_' .OR. &
var(1:14) == 'rtm_rad_outsw_' .OR. var(1:14) == 'rtm_rad_outlw_' .OR. &
var(1:14) == 'rtm_rad_ressw_' .OR. var(1:14) == 'rtm_rad_reslw_' .OR. &
var == 'rtm_rad_pc_inlw' .OR. &
var == 'rtm_rad_pc_insw' .OR. var == 'rtm_rad_pc_inswdir' .OR. &
var == 'rtm_rad_pc_inswdif' .OR. var == 'rtm_rad_pc_inswref' .OR. &
var(1:7) == 'rtm_svf' .OR. var(1:7) == 'rtm_dif' .OR. &
var(1:9) == 'rtm_skyvf' .OR. var(1:10) == 'rtm_skyvft' .OR. &
var(1:12) == 'rtm_surfalb_' .OR. var(1:13) == 'rtm_surfemis_' .OR. &
var == 'rtm_mrt' .OR. var == 'rtm_mrt_sw' .OR. var == 'rtm_mrt_lw' ) THEN
found = .TRUE.
grid_x = 'x'
grid_y = 'y'
grid_z = 'zu'
ELSE
SELECT CASE ( TRIM( var ) )
CASE ( 'rad_lw_cs_hr', 'rad_lw_hr', 'rad_sw_cs_hr', 'rad_sw_hr', &
'rad_lw_cs_hr_xy', 'rad_lw_hr_xy', 'rad_sw_cs_hr_xy', &
'rad_sw_hr_xy', 'rad_lw_cs_hr_xz', 'rad_lw_hr_xz', &
'rad_sw_cs_hr_xz', 'rad_sw_hr_xz', 'rad_lw_cs_hr_yz', &
'rad_lw_hr_yz', 'rad_sw_cs_hr_yz', 'rad_sw_hr_yz', &
'rad_mrt', 'rad_mrt_sw', 'rad_mrt_lw' )
grid_x = 'x'
grid_y = 'y'
grid_z = 'zu'
CASE ( 'rad_lw_in', 'rad_lw_out', 'rad_sw_in', 'rad_sw_out', &
'rad_lw_in_xy', 'rad_lw_out_xy', 'rad_sw_in_xy','rad_sw_out_xy', &
'rad_lw_in_xz', 'rad_lw_out_xz', 'rad_sw_in_xz','rad_sw_out_xz', &
'rad_lw_in_yz', 'rad_lw_out_yz', 'rad_sw_in_yz','rad_sw_out_yz' )
grid_x = 'x'
grid_y = 'y'
grid_z = 'zw'
CASE DEFAULT
found = .FALSE.
grid_x = 'none'
grid_y = 'none'
grid_z = 'none'
END SELECT
ENDIF
END SUBROUTINE radiation_define_netcdf_grid
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Subroutine defining 2D output variables
!------------------------------------------------------------------------------!
SUBROUTINE radiation_data_output_2d( av, variable, found, grid, mode, &
local_pf, two_d, nzb_do, nzt_do )
USE indices
USE kinds
IMPLICIT NONE
CHARACTER (LEN=*) :: grid !<
CHARACTER (LEN=*) :: mode !<
CHARACTER (LEN=*) :: variable !<
INTEGER(iwp) :: av !<
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: m !< index of surface element at grid point (j,i)
INTEGER(iwp) :: nzb_do !<
INTEGER(iwp) :: nzt_do !<
LOGICAL :: found !<
LOGICAL :: two_d !< flag parameter that indicates 2D variables (horizontal cross sections)
REAL(wp) :: fill_value = -999.0_wp !< value for the _FillValue attribute
REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !<
found = .TRUE.
SELECT CASE ( TRIM( variable ) )
CASE ( 'rad_net*_xy' ) ! 2d-array
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Obtain rad_net from its respective surface type
!-- Natural-type surfaces
DO m = surf_lsm_h%start_index(j,i), &
surf_lsm_h%end_index(j,i)
local_pf(i,j,nzb+1) = surf_lsm_h%rad_net(m)
ENDDO
!
!-- Urban-type surfaces
DO m = surf_usm_h%start_index(j,i), &
surf_usm_h%end_index(j,i)
local_pf(i,j,nzb+1) = surf_usm_h%rad_net(m)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_net_av ) ) THEN
ALLOCATE( rad_net_av(nysg:nyng,nxlg:nxrg) )
rad_net_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = rad_net_av(j,i)
ENDDO
ENDDO
ENDIF
two_d = .TRUE.
grid = 'zu1'
CASE ( 'rad_lw_in*_xy' ) ! 2d-array
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Obtain rad_net from its respective surface type
!-- Natural-type surfaces
DO m = surf_lsm_h%start_index(j,i), &
surf_lsm_h%end_index(j,i)
local_pf(i,j,nzb+1) = surf_lsm_h%rad_lw_in(m)
ENDDO
!
!-- Urban-type surfaces
DO m = surf_usm_h%start_index(j,i), &
surf_usm_h%end_index(j,i)
local_pf(i,j,nzb+1) = surf_usm_h%rad_lw_in(m)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_lw_in_xy_av ) ) THEN
ALLOCATE( rad_lw_in_xy_av(nysg:nyng,nxlg:nxrg) )
rad_lw_in_xy_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = rad_lw_in_xy_av(j,i)
ENDDO
ENDDO
ENDIF
two_d = .TRUE.
grid = 'zu1'
CASE ( 'rad_lw_out*_xy' ) ! 2d-array
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Obtain rad_net from its respective surface type
!-- Natural-type surfaces
DO m = surf_lsm_h%start_index(j,i), &
surf_lsm_h%end_index(j,i)
local_pf(i,j,nzb+1) = surf_lsm_h%rad_lw_out(m)
ENDDO
!
!-- Urban-type surfaces
DO m = surf_usm_h%start_index(j,i), &
surf_usm_h%end_index(j,i)
local_pf(i,j,nzb+1) = surf_usm_h%rad_lw_out(m)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_lw_out_xy_av ) ) THEN
ALLOCATE( rad_lw_out_xy_av(nysg:nyng,nxlg:nxrg) )
rad_lw_out_xy_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = rad_lw_out_xy_av(j,i)
ENDDO
ENDDO
ENDIF
two_d = .TRUE.
grid = 'zu1'
CASE ( 'rad_sw_in*_xy' ) ! 2d-array
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Obtain rad_net from its respective surface type
!-- Natural-type surfaces
DO m = surf_lsm_h%start_index(j,i), &
surf_lsm_h%end_index(j,i)
local_pf(i,j,nzb+1) = surf_lsm_h%rad_sw_in(m)
ENDDO
!
!-- Urban-type surfaces
DO m = surf_usm_h%start_index(j,i), &
surf_usm_h%end_index(j,i)
local_pf(i,j,nzb+1) = surf_usm_h%rad_sw_in(m)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_sw_in_xy_av ) ) THEN
ALLOCATE( rad_sw_in_xy_av(nysg:nyng,nxlg:nxrg) )
rad_sw_in_xy_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = rad_sw_in_xy_av(j,i)
ENDDO
ENDDO
ENDIF
two_d = .TRUE.
grid = 'zu1'
CASE ( 'rad_sw_out*_xy' ) ! 2d-array
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Obtain rad_net from its respective surface type
!-- Natural-type surfaces
DO m = surf_lsm_h%start_index(j,i), &
surf_lsm_h%end_index(j,i)
local_pf(i,j,nzb+1) = surf_lsm_h%rad_sw_out(m)
ENDDO
!
!-- Urban-type surfaces
DO m = surf_usm_h%start_index(j,i), &
surf_usm_h%end_index(j,i)
local_pf(i,j,nzb+1) = surf_usm_h%rad_sw_out(m)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_sw_out_xy_av ) ) THEN
ALLOCATE( rad_sw_out_xy_av(nysg:nyng,nxlg:nxrg) )
rad_sw_out_xy_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = rad_sw_out_xy_av(j,i)
ENDDO
ENDDO
ENDIF
two_d = .TRUE.
grid = 'zu1'
CASE ( 'rad_lw_in_xy', 'rad_lw_in_xz', 'rad_lw_in_yz' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_in(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_lw_in_av ) ) THEN
ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_in_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_in_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( mode == 'xy' ) grid = 'zu'
CASE ( 'rad_lw_out_xy', 'rad_lw_out_xz', 'rad_lw_out_yz' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_out(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_lw_out_av ) ) THEN
ALLOCATE( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_out_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_out_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( mode == 'xy' ) grid = 'zu'
CASE ( 'rad_lw_cs_hr_xy', 'rad_lw_cs_hr_xz', 'rad_lw_cs_hr_yz' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_cs_hr(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_lw_cs_hr_av ) ) THEN
ALLOCATE( rad_lw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_cs_hr_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_cs_hr_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( mode == 'xy' ) grid = 'zw'
CASE ( 'rad_lw_hr_xy', 'rad_lw_hr_xz', 'rad_lw_hr_yz' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_hr(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_lw_hr_av ) ) THEN
ALLOCATE( rad_lw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_hr_av= REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_hr_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( mode == 'xy' ) grid = 'zw'
CASE ( 'rad_sw_in_xy', 'rad_sw_in_xz', 'rad_sw_in_yz' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_in(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_sw_in_av ) ) THEN
ALLOCATE( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_in_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_in_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( mode == 'xy' ) grid = 'zu'
CASE ( 'rad_sw_out_xy', 'rad_sw_out_xz', 'rad_sw_out_yz' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_out(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_sw_out_av ) ) THEN
ALLOCATE( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_out_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
local_pf(i,j,k) = rad_sw_out_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( mode == 'xy' ) grid = 'zu'
CASE ( 'rad_sw_cs_hr_xy', 'rad_sw_cs_hr_xz', 'rad_sw_cs_hr_yz' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_cs_hr(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_sw_cs_hr_av ) ) THEN
ALLOCATE( rad_sw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_cs_hr_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_cs_hr_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( mode == 'xy' ) grid = 'zw'
CASE ( 'rad_sw_hr_xy', 'rad_sw_hr_xz', 'rad_sw_hr_yz' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_hr(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_sw_hr_av ) ) THEN
ALLOCATE( rad_sw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_hr_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_hr_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( mode == 'xy' ) grid = 'zw'
CASE DEFAULT
found = .FALSE.
grid = 'none'
END SELECT
END SUBROUTINE radiation_data_output_2d
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Subroutine defining 3D output variables
!------------------------------------------------------------------------------!
SUBROUTINE radiation_data_output_3d( av, variable, found, local_pf, nzb_do, nzt_do )
USE indices
USE kinds
IMPLICIT NONE
CHARACTER (LEN=*) :: variable !<
INTEGER(iwp) :: av !<
INTEGER(iwp) :: i, j, k, l !<
INTEGER(iwp) :: nzb_do !<
INTEGER(iwp) :: nzt_do !<
LOGICAL :: found !<
REAL(wp) :: fill_value = -999.0_wp !< value for the _FillValue attribute
REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !<
CHARACTER (len=varnamelength) :: var, surfid
INTEGER(iwp) :: ids,idsint_u,idsint_l,isurf,isvf,isurfs,isurflt,ipcgb
INTEGER(iwp) :: is, js, ks, istat
found = .TRUE.
var = TRIM(variable)
!-- check if variable belongs to radiation related variables (starts with rad or rtm)
IF ( len(var) < 3_iwp ) THEN
found = .FALSE.
RETURN
ENDIF
IF ( var(1:3) /= 'rad' .AND. var(1:3) /= 'rtm' ) THEN
found = .FALSE.
RETURN
ENDIF
ids = -1
DO i = 0, nd-1
k = len(TRIM(var))
j = len(TRIM(dirname(i)))
IF ( k-j+1 >= 1_iwp ) THEN
IF ( TRIM(var(k-j+1:k)) == TRIM(dirname(i)) ) THEN
ids = i
idsint_u = dirint_u(ids)
idsint_l = dirint_l(ids)
var = var(:k-j)
EXIT
ENDIF
ENDIF
ENDDO
IF ( ids == -1 ) THEN
var = TRIM(variable)
ENDIF
IF ( (var(1:8) == 'rtm_svf_' .OR. var(1:8) == 'rtm_dif_') .AND. len(TRIM(var)) >= 13 ) THEN
!-- svf values to particular surface
surfid = var(9:)
i = index(surfid,'_')
j = index(surfid(i+1:),'_')
READ(surfid(1:i-1),*, iostat=istat ) is
IF ( istat == 0 ) THEN
READ(surfid(i+1:i+j-1),*, iostat=istat ) js
ENDIF
IF ( istat == 0 ) THEN
READ(surfid(i+j+1:),*, iostat=istat ) ks
ENDIF
IF ( istat == 0 ) THEN
var = var(1:7)
ENDIF
ENDIF
local_pf = fill_value
SELECT CASE ( TRIM( var ) )
!-- block of large scale radiation model (e.g. RRTMG) output variables
CASE ( 'rad_sw_in' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_in(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_sw_in_av ) ) THEN
ALLOCATE( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_in_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_in_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_out' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_out(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_sw_out_av ) ) THEN
ALLOCATE( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_out_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_out_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_cs_hr' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_cs_hr(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_sw_cs_hr_av ) ) THEN
ALLOCATE( rad_sw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_cs_hr_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_cs_hr_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_sw_hr' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_hr(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_sw_hr_av ) ) THEN
ALLOCATE( rad_sw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_sw_hr_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_sw_hr_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_in' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_in(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_lw_in_av ) ) THEN
ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_in_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_in_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_out' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_out(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_lw_out_av ) ) THEN
ALLOCATE( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_out_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_out_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_cs_hr' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_cs_hr(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_lw_cs_hr_av ) ) THEN
ALLOCATE( rad_lw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_cs_hr_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_cs_hr_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rad_lw_hr' )
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_hr(k,j,i)
ENDDO
ENDDO
ENDDO
ELSE
IF ( .NOT. ALLOCATED( rad_lw_hr_av ) ) THEN
ALLOCATE( rad_lw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) )
rad_lw_hr_av = REAL( fill_value, KIND = wp )
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = rad_lw_hr_av(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'rtm_rad_net' )
!-- array of complete radiation balance
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
IF ( av == 0 ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = &
surfinsw(isurf) - surfoutsw(isurf) + surfinlw(isurf) - surfoutlw(isurf)
ELSE
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfradnet_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'rtm_rad_insw' )
!-- array of sw radiation falling to surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
IF ( av == 0 ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinsw(isurf)
ELSE
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinsw_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'rtm_rad_inlw' )
!-- array of lw radiation falling to surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
IF ( av == 0 ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinlw(isurf)
ELSE
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinlw_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'rtm_rad_inswdir' )
!-- array of direct sw radiation falling to surface from sun
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
IF ( av == 0 ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinswdir(isurf)
ELSE
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinswdir_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'rtm_rad_inswdif' )
!-- array of difusion sw radiation falling to surface from sky and borders of the domain
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
IF ( av == 0 ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinswdif(isurf)
ELSE
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinswdif_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'rtm_rad_inswref' )
!-- array of sw radiation falling to surface from reflections
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
IF ( av == 0 ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = &
surfinsw(isurf) - surfinswdir(isurf) - surfinswdif(isurf)
ELSE
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinswref_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'rtm_rad_inlwdif' )
!-- array of difusion lw radiation falling to surface from sky and borders of the domain
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
IF ( av == 0 ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinlwdif(isurf)
ELSE
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinlwdif_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'rtm_rad_inlwref' )
!-- array of lw radiation falling to surface from reflections
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
IF ( av == 0 ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinlw(isurf) - surfinlwdif(isurf)
ELSE
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinlwref_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'rtm_rad_outsw' )
!-- array of sw radiation emitted from surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
IF ( av == 0 ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfoutsw(isurf)
ELSE
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfoutsw_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'rtm_rad_outlw' )
!-- array of lw radiation emitted from surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
IF ( av == 0 ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfoutlw(isurf)
ELSE
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfoutlw_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'rtm_rad_ressw' )
!-- average of array of residua of sw radiation absorbed in surface after last reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
IF ( av == 0 ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfins(isurf)
ELSE
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfins_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'rtm_rad_reslw' )
!-- average of array of residua of lw radiation absorbed in surface after last reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
IF ( av == 0 ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinl(isurf)
ELSE
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = surfinl_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'rtm_rad_pc_inlw' )
!-- array of lw radiation absorbed by plant canopy
DO ipcgb = 1, npcbl
IF ( av == 0 ) THEN
local_pf(pcbl(ix,ipcgb),pcbl(iy,ipcgb),pcbl(iz,ipcgb)) = pcbinlw(ipcgb)
ELSE
local_pf(pcbl(ix,ipcgb),pcbl(iy,ipcgb),pcbl(iz,ipcgb)) = pcbinlw_av(ipcgb)
ENDIF
ENDDO
CASE ( 'rtm_rad_pc_insw' )
!-- array of sw radiation absorbed by plant canopy
DO ipcgb = 1, npcbl
IF ( av == 0 ) THEN
local_pf(pcbl(ix,ipcgb),pcbl(iy,ipcgb),pcbl(iz,ipcgb)) = pcbinsw(ipcgb)
ELSE
local_pf(pcbl(ix,ipcgb),pcbl(iy,ipcgb),pcbl(iz,ipcgb)) = pcbinsw_av(ipcgb)
ENDIF
ENDDO
CASE ( 'rtm_rad_pc_inswdir' )
!-- array of direct sw radiation absorbed by plant canopy
DO ipcgb = 1, npcbl
IF ( av == 0 ) THEN
local_pf(pcbl(ix,ipcgb),pcbl(iy,ipcgb),pcbl(iz,ipcgb)) = pcbinswdir(ipcgb)
ELSE
local_pf(pcbl(ix,ipcgb),pcbl(iy,ipcgb),pcbl(iz,ipcgb)) = pcbinswdir_av(ipcgb)
ENDIF
ENDDO
CASE ( 'rtm_rad_pc_inswdif' )
!-- array of diffuse sw radiation absorbed by plant canopy
DO ipcgb = 1, npcbl
IF ( av == 0 ) THEN
local_pf(pcbl(ix,ipcgb),pcbl(iy,ipcgb),pcbl(iz,ipcgb)) = pcbinswdif(ipcgb)
ELSE
local_pf(pcbl(ix,ipcgb),pcbl(iy,ipcgb),pcbl(iz,ipcgb)) = pcbinswdif_av(ipcgb)
ENDIF
ENDDO
CASE ( 'rtm_rad_pc_inswref' )
!-- array of reflected sw radiation absorbed by plant canopy
DO ipcgb = 1, npcbl
IF ( av == 0 ) THEN
local_pf(pcbl(ix,ipcgb),pcbl(iy,ipcgb),pcbl(iz,ipcgb)) = &
pcbinsw(ipcgb) - pcbinswdir(ipcgb) - pcbinswdif(ipcgb)
ELSE
local_pf(pcbl(ix,ipcgb),pcbl(iy,ipcgb),pcbl(iz,ipcgb)) = pcbinswref_av(ipcgb)
ENDIF
ENDDO
CASE ( 'rtm_mrt_sw' )
local_pf = REAL( fill_value, KIND = wp )
IF ( av == 0 ) THEN
DO l = 1, nmrtbl
local_pf(mrtbl(ix,l),mrtbl(iy,l),mrtbl(iz,l)) = mrtinsw(l)
ENDDO
ELSE
IF ( ALLOCATED( mrtinsw_av ) ) THEN
DO l = 1, nmrtbl
local_pf(mrtbl(ix,l),mrtbl(iy,l),mrtbl(iz,l)) = mrtinsw_av(l)
ENDDO
ENDIF
ENDIF
CASE ( 'rtm_mrt_lw' )
local_pf = REAL( fill_value, KIND = wp )
IF ( av == 0 ) THEN
DO l = 1, nmrtbl
local_pf(mrtbl(ix,l),mrtbl(iy,l),mrtbl(iz,l)) = mrtinlw(l)
ENDDO
ELSE
IF ( ALLOCATED( mrtinlw_av ) ) THEN
DO l = 1, nmrtbl
local_pf(mrtbl(ix,l),mrtbl(iy,l),mrtbl(iz,l)) = mrtinlw_av(l)
ENDDO
ENDIF
ENDIF
CASE ( 'rtm_mrt' )
local_pf = REAL( fill_value, KIND = wp )
IF ( av == 0 ) THEN
DO l = 1, nmrtbl
local_pf(mrtbl(ix,l),mrtbl(iy,l),mrtbl(iz,l)) = mrt(l)
ENDDO
ELSE
IF ( ALLOCATED( mrt_av ) ) THEN
DO l = 1, nmrtbl
local_pf(mrtbl(ix,l),mrtbl(iy,l),mrtbl(iz,l)) = mrt_av(l)
ENDDO
ENDIF
ENDIF
!
!-- block of RTM output variables
!-- variables are intended mainly for debugging and detailed analyse purposes
CASE ( 'rtm_skyvf' )
!
!-- sky view factor
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = skyvf(isurf)
ENDIF
ENDDO
CASE ( 'rtm_skyvft' )
!
!-- sky view factor
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = skyvft(isurf)
ENDIF
ENDDO
CASE ( 'rtm_svf', 'rtm_dif' )
!
!-- shape view factors or iradiance factors to selected surface
IF ( TRIM(var)=='rtm_svf' ) THEN
k = 1
ELSE
k = 2
ENDIF
DO isvf = 1, nsvfl
isurflt = svfsurf(1, isvf)
isurfs = svfsurf(2, isvf)
IF ( surf(ix,isurfs) == is .AND. surf(iy,isurfs) == js .AND. surf(iz,isurfs) == ks .AND. &
(surf(id,isurfs) == idsint_u .OR. surfl(id,isurfs) == idsint_l ) ) THEN
!
!-- correct source surface
local_pf(surfl(ix,isurflt),surfl(iy,isurflt),surfl(iz,isurflt)) = svf(k,isvf)
ENDIF
ENDDO
CASE ( 'rtm_surfalb' )
!
!-- surface albedo
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = albedo_surf(isurf)
ENDIF
ENDDO
CASE ( 'rtm_surfemis' )
!
!-- surface emissivity, weighted average
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == idsint_u .OR. surfl(id,isurf) == idsint_l ) THEN
local_pf(surfl(ix,isurf),surfl(iy,isurf),surfl(iz,isurf)) = emiss_surf(isurf)
ENDIF
ENDDO
CASE DEFAULT
found = .FALSE.
END SELECT
END SUBROUTINE radiation_data_output_3d
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Subroutine defining masked data output
!------------------------------------------------------------------------------!
SUBROUTINE radiation_data_output_mask( av, variable, found, local_pf, mid )
USE control_parameters
USE indices
USE kinds
IMPLICIT NONE
CHARACTER (LEN=*) :: variable !<
CHARACTER(LEN=5) :: grid !< flag to distinquish between staggered grids
INTEGER(iwp) :: av !<
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: mid !< masked output running index
INTEGER(iwp) :: topo_top_index !< k index of highest horizontal surface
LOGICAL :: found !< true if output array was found
LOGICAL :: resorted !< true if array is resorted
REAL(wp), &
DIMENSION(mask_size_l(mid,1),mask_size_l(mid,2),mask_size_l(mid,3)) :: &
local_pf !<
REAL(wp), DIMENSION(:,:,:), POINTER :: to_be_resorted !< points to array which needs to be resorted for output
found = .TRUE.
grid = 's'
resorted = .FALSE.
SELECT CASE ( TRIM( variable ) )
CASE ( 'rad_lw_in' )
IF ( av == 0 ) THEN
to_be_resorted => rad_lw_in
ELSE
to_be_resorted => rad_lw_in_av
ENDIF
CASE ( 'rad_lw_out' )
IF ( av == 0 ) THEN
to_be_resorted => rad_lw_out
ELSE
to_be_resorted => rad_lw_out_av
ENDIF
CASE ( 'rad_lw_cs_hr' )
IF ( av == 0 ) THEN
to_be_resorted => rad_lw_cs_hr
ELSE
to_be_resorted => rad_lw_cs_hr_av
ENDIF
CASE ( 'rad_lw_hr' )
IF ( av == 0 ) THEN
to_be_resorted => rad_lw_hr
ELSE
to_be_resorted => rad_lw_hr_av
ENDIF
CASE ( 'rad_sw_in' )
IF ( av == 0 ) THEN
to_be_resorted => rad_sw_in
ELSE
to_be_resorted => rad_sw_in_av
ENDIF
CASE ( 'rad_sw_out' )
IF ( av == 0 ) THEN
to_be_resorted => rad_sw_out
ELSE
to_be_resorted => rad_sw_out_av
ENDIF
CASE ( 'rad_sw_cs_hr' )
IF ( av == 0 ) THEN
to_be_resorted => rad_sw_cs_hr
ELSE
to_be_resorted => rad_sw_cs_hr_av
ENDIF
CASE ( 'rad_sw_hr' )
IF ( av == 0 ) THEN
to_be_resorted => rad_sw_hr
ELSE
to_be_resorted => rad_sw_hr_av
ENDIF
CASE DEFAULT
found = .FALSE.
END SELECT
!
!-- Resort the array to be output, if not done above
IF ( found .AND. .NOT. resorted ) THEN
IF ( .NOT. mask_surface(mid) ) THEN
!
!-- Default masked output
DO i = 1, mask_size_l(mid,1)
DO j = 1, mask_size_l(mid,2)
DO k = 1, mask_size_l(mid,3)
local_pf(i,j,k) = to_be_resorted(mask_k(mid,k), &
mask_j(mid,j),mask_i(mid,i))
ENDDO
ENDDO
ENDDO
ELSE
!
!-- Terrain-following masked output
DO i = 1, mask_size_l(mid,1)
DO j = 1, mask_size_l(mid,2)
!
!-- Get k index of highest horizontal surface
topo_top_index = topo_top_ind(mask_j(mid,j), &
mask_i(mid,i), &
0 )
!
!-- Save output array
DO k = 1, mask_size_l(mid,3)
local_pf(i,j,k) = to_be_resorted( &
MIN( topo_top_index+mask_k(mid,k), &
nzt+1 ), &
mask_j(mid,j), &
mask_i(mid,i) )
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
END SUBROUTINE radiation_data_output_mask
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine writes local (subdomain) restart data
!------------------------------------------------------------------------------!
SUBROUTINE radiation_wrd_local
IMPLICIT NONE
IF ( ALLOCATED( rad_net_av ) ) THEN
CALL wrd_write_string( 'rad_net_av' )
WRITE ( 14 ) rad_net_av
ENDIF
IF ( ALLOCATED( rad_lw_in_xy_av ) ) THEN
CALL wrd_write_string( 'rad_lw_in_xy_av' )
WRITE ( 14 ) rad_lw_in_xy_av
ENDIF
IF ( ALLOCATED( rad_lw_out_xy_av ) ) THEN
CALL wrd_write_string( 'rad_lw_out_xy_av' )
WRITE ( 14 ) rad_lw_out_xy_av
ENDIF
IF ( ALLOCATED( rad_sw_in_xy_av ) ) THEN
CALL wrd_write_string( 'rad_sw_in_xy_av' )
WRITE ( 14 ) rad_sw_in_xy_av
ENDIF
IF ( ALLOCATED( rad_sw_out_xy_av ) ) THEN
CALL wrd_write_string( 'rad_sw_out_xy_av' )
WRITE ( 14 ) rad_sw_out_xy_av
ENDIF
IF ( ALLOCATED( rad_lw_in ) ) THEN
CALL wrd_write_string( 'rad_lw_in' )
WRITE ( 14 ) rad_lw_in
ENDIF
IF ( ALLOCATED( rad_lw_in_av ) ) THEN
CALL wrd_write_string( 'rad_lw_in_av' )
WRITE ( 14 ) rad_lw_in_av
ENDIF
IF ( ALLOCATED( rad_lw_out ) ) THEN
CALL wrd_write_string( 'rad_lw_out' )
WRITE ( 14 ) rad_lw_out
ENDIF
IF ( ALLOCATED( rad_lw_out_av) ) THEN
CALL wrd_write_string( 'rad_lw_out_av' )
WRITE ( 14 ) rad_lw_out_av
ENDIF
IF ( ALLOCATED( rad_lw_cs_hr) ) THEN
CALL wrd_write_string( 'rad_lw_cs_hr' )
WRITE ( 14 ) rad_lw_cs_hr
ENDIF
IF ( ALLOCATED( rad_lw_cs_hr_av) ) THEN
CALL wrd_write_string( 'rad_lw_cs_hr_av' )
WRITE ( 14 ) rad_lw_cs_hr_av
ENDIF
IF ( ALLOCATED( rad_lw_hr) ) THEN
CALL wrd_write_string( 'rad_lw_hr' )
WRITE ( 14 ) rad_lw_hr
ENDIF
IF ( ALLOCATED( rad_lw_hr_av) ) THEN
CALL wrd_write_string( 'rad_lw_hr_av' )
WRITE ( 14 ) rad_lw_hr_av
ENDIF
IF ( ALLOCATED( rad_sw_in) ) THEN
CALL wrd_write_string( 'rad_sw_in' )
WRITE ( 14 ) rad_sw_in
ENDIF
IF ( ALLOCATED( rad_sw_in_av) ) THEN
CALL wrd_write_string( 'rad_sw_in_av' )
WRITE ( 14 ) rad_sw_in_av
ENDIF
IF ( ALLOCATED( rad_sw_out) ) THEN
CALL wrd_write_string( 'rad_sw_out' )
WRITE ( 14 ) rad_sw_out
ENDIF
IF ( ALLOCATED( rad_sw_out_av) ) THEN
CALL wrd_write_string( 'rad_sw_out_av' )
WRITE ( 14 ) rad_sw_out_av
ENDIF
IF ( ALLOCATED( rad_sw_cs_hr) ) THEN
CALL wrd_write_string( 'rad_sw_cs_hr' )
WRITE ( 14 ) rad_sw_cs_hr
ENDIF
IF ( ALLOCATED( rad_sw_cs_hr_av) ) THEN
CALL wrd_write_string( 'rad_sw_cs_hr_av' )
WRITE ( 14 ) rad_sw_cs_hr_av
ENDIF
IF ( ALLOCATED( rad_sw_hr) ) THEN
CALL wrd_write_string( 'rad_sw_hr' )
WRITE ( 14 ) rad_sw_hr
ENDIF
IF ( ALLOCATED( rad_sw_hr_av) ) THEN
CALL wrd_write_string( 'rad_sw_hr_av' )
WRITE ( 14 ) rad_sw_hr_av
ENDIF
END SUBROUTINE radiation_wrd_local
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine reads local (subdomain) restart data
!------------------------------------------------------------------------------!
SUBROUTINE radiation_rrd_local( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, &
nxr_on_file, nynf, nync, nyn_on_file, nysf, &
nysc, nys_on_file, tmp_2d, tmp_3d, found )
USE control_parameters
USE indices
USE kinds
USE pegrid
IMPLICIT NONE
INTEGER(iwp) :: k !<
INTEGER(iwp) :: nxlc !<
INTEGER(iwp) :: nxlf !<
INTEGER(iwp) :: nxl_on_file !<
INTEGER(iwp) :: nxrc !<
INTEGER(iwp) :: nxrf !<
INTEGER(iwp) :: nxr_on_file !<
INTEGER(iwp) :: nync !<
INTEGER(iwp) :: nynf !<
INTEGER(iwp) :: nyn_on_file !<
INTEGER(iwp) :: nysc !<
INTEGER(iwp) :: nysf !<
INTEGER(iwp) :: nys_on_file !<
LOGICAL, INTENT(OUT) :: found
REAL(wp), DIMENSION(nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_2d !<
REAL(wp), DIMENSION(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d !<
REAL(wp), DIMENSION(0:0,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d2 !<
found = .TRUE.
SELECT CASE ( restart_string(1:length) )
CASE ( 'rad_net_av' )
IF ( .NOT. ALLOCATED( rad_net_av ) ) THEN
ALLOCATE( rad_net_av(nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_2d
rad_net_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'rad_lw_in_xy_av' )
IF ( .NOT. ALLOCATED( rad_lw_in_xy_av ) ) THEN
ALLOCATE( rad_lw_in_xy_av(nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_2d
rad_lw_in_xy_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'rad_lw_out_xy_av' )
IF ( .NOT. ALLOCATED( rad_lw_out_xy_av ) ) THEN
ALLOCATE( rad_lw_out_xy_av(nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_2d
rad_lw_out_xy_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'rad_sw_in_xy_av' )
IF ( .NOT. ALLOCATED( rad_sw_in_xy_av ) ) THEN
ALLOCATE( rad_sw_in_xy_av(nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_2d
rad_sw_in_xy_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'rad_sw_out_xy_av' )
IF ( .NOT. ALLOCATED( rad_sw_out_xy_av ) ) THEN
ALLOCATE( rad_sw_out_xy_av(nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_2d
rad_sw_out_xy_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'rad_lw_in' )
IF ( .NOT. ALLOCATED( rad_lw_in ) ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
ALLOCATE( rad_lw_in(0:0,nysg:nyng,nxlg:nxrg) )
ELSE
ALLOCATE( rad_lw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
ENDIF
IF ( k == 1 ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
READ ( 13 ) tmp_3d2
rad_lw_in(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ELSE
READ ( 13 ) tmp_3d
rad_lw_in(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ENDIF
ENDIF
CASE ( 'rad_lw_in_av' )
IF ( .NOT. ALLOCATED( rad_lw_in_av ) ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
ALLOCATE( rad_lw_in_av(0:0,nysg:nyng,nxlg:nxrg) )
ELSE
ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
ENDIF
IF ( k == 1 ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
READ ( 13 ) tmp_3d2
rad_lw_in_av(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) =&
tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ELSE
READ ( 13 ) tmp_3d
rad_lw_in_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ENDIF
ENDIF
CASE ( 'rad_lw_out' )
IF ( .NOT. ALLOCATED( rad_lw_out ) ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
ALLOCATE( rad_lw_out(0:0,nysg:nyng,nxlg:nxrg) )
ELSE
ALLOCATE( rad_lw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
ENDIF
IF ( k == 1 ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
READ ( 13 ) tmp_3d2
rad_lw_out(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ELSE
READ ( 13 ) tmp_3d
rad_lw_out(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ENDIF
ENDIF
CASE ( 'rad_lw_out_av' )
IF ( .NOT. ALLOCATED( rad_lw_out_av ) ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
ALLOCATE( rad_lw_out_av(0:0,nysg:nyng,nxlg:nxrg) )
ELSE
ALLOCATE( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
ENDIF
IF ( k == 1 ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
READ ( 13 ) tmp_3d2
rad_lw_out_av(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) &
= tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ELSE
READ ( 13 ) tmp_3d
rad_lw_out_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ENDIF
ENDIF
CASE ( 'rad_lw_cs_hr' )
IF ( .NOT. ALLOCATED( rad_lw_cs_hr ) ) THEN
ALLOCATE( rad_lw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
rad_lw_cs_hr(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'rad_lw_cs_hr_av' )
IF ( .NOT. ALLOCATED( rad_lw_cs_hr_av ) ) THEN
ALLOCATE( rad_lw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
rad_lw_cs_hr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'rad_lw_hr' )
IF ( .NOT. ALLOCATED( rad_lw_hr ) ) THEN
ALLOCATE( rad_lw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
rad_lw_hr(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'rad_lw_hr_av' )
IF ( .NOT. ALLOCATED( rad_lw_hr_av ) ) THEN
ALLOCATE( rad_lw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
rad_lw_hr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'rad_sw_in' )
IF ( .NOT. ALLOCATED( rad_sw_in ) ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
ALLOCATE( rad_sw_in(0:0,nysg:nyng,nxlg:nxrg) )
ELSE
ALLOCATE( rad_sw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
ENDIF
IF ( k == 1 ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
READ ( 13 ) tmp_3d2
rad_sw_in(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ELSE
READ ( 13 ) tmp_3d
rad_sw_in(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ENDIF
ENDIF
CASE ( 'rad_sw_in_av' )
IF ( .NOT. ALLOCATED( rad_sw_in_av ) ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
ALLOCATE( rad_sw_in_av(0:0,nysg:nyng,nxlg:nxrg) )
ELSE
ALLOCATE( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
ENDIF
IF ( k == 1 ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
READ ( 13 ) tmp_3d2
rad_sw_in_av(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) =&
tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ELSE
READ ( 13 ) tmp_3d
rad_sw_in_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ENDIF
ENDIF
CASE ( 'rad_sw_out' )
IF ( .NOT. ALLOCATED( rad_sw_out ) ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
ALLOCATE( rad_sw_out(0:0,nysg:nyng,nxlg:nxrg) )
ELSE
ALLOCATE( rad_sw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
ENDIF
IF ( k == 1 ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
READ ( 13 ) tmp_3d2
rad_sw_out(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ELSE
READ ( 13 ) tmp_3d
rad_sw_out(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ENDIF
ENDIF
CASE ( 'rad_sw_out_av' )
IF ( .NOT. ALLOCATED( rad_sw_out_av ) ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
ALLOCATE( rad_sw_out_av(0:0,nysg:nyng,nxlg:nxrg) )
ELSE
ALLOCATE( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
ENDIF
IF ( k == 1 ) THEN
IF ( radiation_scheme == 'clear-sky' .OR. &
radiation_scheme == 'constant' .OR. &
radiation_scheme == 'external' ) THEN
READ ( 13 ) tmp_3d2
rad_sw_out_av(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) &
= tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ELSE
READ ( 13 ) tmp_3d
rad_sw_out_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
ENDIF
ENDIF
CASE ( 'rad_sw_cs_hr' )
IF ( .NOT. ALLOCATED( rad_sw_cs_hr ) ) THEN
ALLOCATE( rad_sw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
rad_sw_cs_hr(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'rad_sw_cs_hr_av' )
IF ( .NOT. ALLOCATED( rad_sw_cs_hr_av ) ) THEN
ALLOCATE( rad_sw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
rad_sw_cs_hr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'rad_sw_hr' )
IF ( .NOT. ALLOCATED( rad_sw_hr ) ) THEN
ALLOCATE( rad_sw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
rad_sw_hr(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'rad_sw_hr_av' )
IF ( .NOT. ALLOCATED( rad_sw_hr_av ) ) THEN
ALLOCATE( rad_sw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
rad_lw_hr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE DEFAULT
found = .FALSE.
END SELECT
END SUBROUTINE radiation_rrd_local
END MODULE radiation_model_mod