1 | MODULE prognostic_equations_mod |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: prognostic_equations.f90 1112 2013-03-09 00:34:37Z raasch $ |
---|
27 | ! |
---|
28 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
29 | ! update directives for prognostic quantities removed |
---|
30 | ! |
---|
31 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
32 | ! small changes in code formatting |
---|
33 | ! |
---|
34 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
35 | ! unused variables removed |
---|
36 | ! |
---|
37 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
38 | ! implementation of two new prognostic equations for rain drop concentration (nr) |
---|
39 | ! and rain water content (qr) |
---|
40 | ! |
---|
41 | ! currently, only available for cache loop optimization |
---|
42 | ! |
---|
43 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
44 | ! code put under GPL (PALM 3.9) |
---|
45 | ! |
---|
46 | ! 1019 2012-09-28 06:46:45Z raasch |
---|
47 | ! non-optimized version of prognostic_equations removed |
---|
48 | ! |
---|
49 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
50 | ! new branch prognostic_equations_acc |
---|
51 | ! OpenACC statements added + code changes required for GPU optimization |
---|
52 | ! |
---|
53 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
54 | ! all actions concerning leapfrog- and upstream-spline-scheme removed |
---|
55 | ! |
---|
56 | ! 978 2012-08-09 08:28:32Z fricke |
---|
57 | ! km_damp_x and km_damp_y removed in calls of diffusion_u and diffusion_v |
---|
58 | ! add ptdf_x, ptdf_y for damping the potential temperature at the inflow |
---|
59 | ! boundary in case of non-cyclic lateral boundaries |
---|
60 | ! Bugfix: first thread index changes for WS-scheme at the inflow |
---|
61 | ! |
---|
62 | ! 940 2012-07-09 14:31:00Z raasch |
---|
63 | ! temperature equation can be switched off |
---|
64 | ! |
---|
65 | ! 785 2011-11-28 09:47:19Z raasch |
---|
66 | ! new factor rdf_sc allows separate Rayleigh damping of scalars |
---|
67 | ! |
---|
68 | ! 736 2011-08-17 14:13:26Z suehring |
---|
69 | ! Bugfix: determination of first thread index i for WS-scheme |
---|
70 | ! |
---|
71 | ! 709 2011-03-30 09:31:40Z raasch |
---|
72 | ! formatting adjustments |
---|
73 | ! |
---|
74 | ! 673 2011-01-18 16:19:48Z suehring |
---|
75 | ! Consideration of the pressure gradient (steered by tsc(4)) during the time |
---|
76 | ! integration removed. |
---|
77 | ! |
---|
78 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
79 | ! Calls of the advection routines with WS5 added. |
---|
80 | ! Calls of ws_statistics added to set the statistical arrays to zero after each |
---|
81 | ! time step. |
---|
82 | ! |
---|
83 | ! 531 2010-04-21 06:47:21Z heinze |
---|
84 | ! add call of subsidence in the equation for humidity / passive scalar |
---|
85 | ! |
---|
86 | ! 411 2009-12-11 14:15:58Z heinze |
---|
87 | ! add call of subsidence in the equation for potential temperature |
---|
88 | ! |
---|
89 | ! 388 2009-09-23 09:40:33Z raasch |
---|
90 | ! prho is used instead of rho in diffusion_e, |
---|
91 | ! external pressure gradient |
---|
92 | ! |
---|
93 | ! 153 2008-03-19 09:41:30Z steinfeld |
---|
94 | ! add call of plant_canopy_model in the prognostic equation for |
---|
95 | ! the potential temperature and for the passive scalar |
---|
96 | ! |
---|
97 | ! 138 2007-11-28 10:03:58Z letzel |
---|
98 | ! add call of subroutines that evaluate the canopy drag terms, |
---|
99 | ! add wall_*flux to parameter list of calls of diffusion_s |
---|
100 | ! |
---|
101 | ! 106 2007-08-16 14:30:26Z raasch |
---|
102 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
103 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
104 | ! for non-cyclic boundary conditions) |
---|
105 | ! |
---|
106 | ! 97 2007-06-21 08:23:15Z raasch |
---|
107 | ! prognostic equation for salinity, density is calculated from equation of |
---|
108 | ! state for seawater and is used for calculation of buoyancy, |
---|
109 | ! +eqn_state_seawater_mod |
---|
110 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
111 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
112 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
113 | ! calc_mean_profile |
---|
114 | ! |
---|
115 | ! 75 2007-03-22 09:54:05Z raasch |
---|
116 | ! checking for negative q and limiting for positive values, |
---|
117 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
118 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
119 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
120 | ! _vector-version |
---|
121 | ! |
---|
122 | ! 19 2007-02-23 04:53:48Z raasch |
---|
123 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
124 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
125 | ! |
---|
126 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
127 | ! |
---|
128 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
129 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
130 | ! regardless of the timestep scheme used for the other quantities, |
---|
131 | ! new argument diss in call of diffusion_e |
---|
132 | ! |
---|
133 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
134 | ! Initial revision |
---|
135 | ! |
---|
136 | ! |
---|
137 | ! Description: |
---|
138 | ! ------------ |
---|
139 | ! Solving the prognostic equations. |
---|
140 | !------------------------------------------------------------------------------! |
---|
141 | |
---|
142 | USE arrays_3d |
---|
143 | USE control_parameters |
---|
144 | USE cpulog |
---|
145 | USE eqn_state_seawater_mod |
---|
146 | USE grid_variables |
---|
147 | USE indices |
---|
148 | USE interfaces |
---|
149 | USE pegrid |
---|
150 | USE pointer_interfaces |
---|
151 | USE statistics |
---|
152 | USE advec_ws |
---|
153 | USE advec_s_pw_mod |
---|
154 | USE advec_s_up_mod |
---|
155 | USE advec_u_pw_mod |
---|
156 | USE advec_u_up_mod |
---|
157 | USE advec_v_pw_mod |
---|
158 | USE advec_v_up_mod |
---|
159 | USE advec_w_pw_mod |
---|
160 | USE advec_w_up_mod |
---|
161 | USE buoyancy_mod |
---|
162 | USE calc_precipitation_mod |
---|
163 | USE calc_radiation_mod |
---|
164 | USE coriolis_mod |
---|
165 | USE diffusion_e_mod |
---|
166 | USE diffusion_s_mod |
---|
167 | USE diffusion_u_mod |
---|
168 | USE diffusion_v_mod |
---|
169 | USE diffusion_w_mod |
---|
170 | USE impact_of_latent_heat_mod |
---|
171 | USE microphysics_mod |
---|
172 | USE plant_canopy_model_mod |
---|
173 | USE production_e_mod |
---|
174 | USE subsidence_mod |
---|
175 | USE user_actions_mod |
---|
176 | |
---|
177 | |
---|
178 | PRIVATE |
---|
179 | PUBLIC prognostic_equations_cache, prognostic_equations_vector, & |
---|
180 | prognostic_equations_acc |
---|
181 | |
---|
182 | INTERFACE prognostic_equations_cache |
---|
183 | MODULE PROCEDURE prognostic_equations_cache |
---|
184 | END INTERFACE prognostic_equations_cache |
---|
185 | |
---|
186 | INTERFACE prognostic_equations_vector |
---|
187 | MODULE PROCEDURE prognostic_equations_vector |
---|
188 | END INTERFACE prognostic_equations_vector |
---|
189 | |
---|
190 | INTERFACE prognostic_equations_acc |
---|
191 | MODULE PROCEDURE prognostic_equations_acc |
---|
192 | END INTERFACE prognostic_equations_acc |
---|
193 | |
---|
194 | |
---|
195 | CONTAINS |
---|
196 | |
---|
197 | |
---|
198 | SUBROUTINE prognostic_equations_cache |
---|
199 | |
---|
200 | !------------------------------------------------------------------------------! |
---|
201 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
202 | ! be called for the Wicker and Skamarock or Piascek-Williams advection scheme. |
---|
203 | ! |
---|
204 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
205 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
206 | ! these loops. |
---|
207 | ! |
---|
208 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
209 | !------------------------------------------------------------------------------! |
---|
210 | |
---|
211 | IMPLICIT NONE |
---|
212 | |
---|
213 | INTEGER :: i, i_omp_start, j, k, omp_get_thread_num, tn = 0 |
---|
214 | LOGICAL :: loop_start |
---|
215 | |
---|
216 | |
---|
217 | ! |
---|
218 | !-- Time measurement can only be performed for the whole set of equations |
---|
219 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
220 | |
---|
221 | |
---|
222 | ! |
---|
223 | !-- Calculate those variables needed in the tendency terms which need |
---|
224 | !-- global communication |
---|
225 | IF ( .NOT. neutral ) CALL calc_mean_profile( pt, 4 ) |
---|
226 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
227 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
228 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
229 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
230 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
231 | |
---|
232 | ! |
---|
233 | !-- Loop over all prognostic equations |
---|
234 | !$OMP PARALLEL private (i,i_omp_start,j,k,loop_start,tn) |
---|
235 | |
---|
236 | !$ tn = omp_get_thread_num() |
---|
237 | loop_start = .TRUE. |
---|
238 | !$OMP DO |
---|
239 | DO i = nxl, nxr |
---|
240 | |
---|
241 | ! |
---|
242 | !-- Store the first loop index. It differs for each thread and is required |
---|
243 | !-- later in advec_ws |
---|
244 | IF ( loop_start ) THEN |
---|
245 | loop_start = .FALSE. |
---|
246 | i_omp_start = i |
---|
247 | ENDIF |
---|
248 | |
---|
249 | DO j = nys, nyn |
---|
250 | ! |
---|
251 | !-- Tendency terms for u-velocity component |
---|
252 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
253 | |
---|
254 | tend(:,j,i) = 0.0 |
---|
255 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
256 | IF ( ws_scheme_mom ) THEN |
---|
257 | IF ( ( inflow_l .OR. outflow_l ) .AND. i_omp_start == nxl ) THEN |
---|
258 | CALL advec_u_ws( i, j, i_omp_start + 1, tn ) |
---|
259 | ELSE |
---|
260 | CALL advec_u_ws( i, j, i_omp_start, tn ) |
---|
261 | ENDIF |
---|
262 | ELSE |
---|
263 | CALL advec_u_pw( i, j ) |
---|
264 | ENDIF |
---|
265 | ELSE |
---|
266 | CALL advec_u_up( i, j ) |
---|
267 | ENDIF |
---|
268 | CALL diffusion_u( i, j ) |
---|
269 | CALL coriolis( i, j, 1 ) |
---|
270 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
271 | CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
272 | ENDIF |
---|
273 | |
---|
274 | ! |
---|
275 | !-- Drag by plant canopy |
---|
276 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 1 ) |
---|
277 | |
---|
278 | ! |
---|
279 | !-- External pressure gradient |
---|
280 | IF ( dp_external ) THEN |
---|
281 | DO k = dp_level_ind_b+1, nzt |
---|
282 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
283 | ENDDO |
---|
284 | ENDIF |
---|
285 | |
---|
286 | CALL user_actions( i, j, 'u-tendency' ) |
---|
287 | |
---|
288 | ! |
---|
289 | !-- Prognostic equation for u-velocity component |
---|
290 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
291 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
292 | tsc(3) * tu_m(k,j,i) ) & |
---|
293 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
294 | ENDDO |
---|
295 | |
---|
296 | ! |
---|
297 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
298 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
299 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
300 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
301 | tu_m(k,j,i) = tend(k,j,i) |
---|
302 | ENDDO |
---|
303 | ELSEIF ( intermediate_timestep_count < & |
---|
304 | intermediate_timestep_count_max ) THEN |
---|
305 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
306 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
307 | ENDDO |
---|
308 | ENDIF |
---|
309 | ENDIF |
---|
310 | |
---|
311 | ENDIF |
---|
312 | |
---|
313 | ! |
---|
314 | !-- Tendency terms for v-velocity component |
---|
315 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
316 | |
---|
317 | tend(:,j,i) = 0.0 |
---|
318 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
319 | IF ( ws_scheme_mom ) THEN |
---|
320 | CALL advec_v_ws( i, j, i_omp_start, tn ) |
---|
321 | ELSE |
---|
322 | CALL advec_v_pw( i, j ) |
---|
323 | ENDIF |
---|
324 | ELSE |
---|
325 | CALL advec_v_up( i, j ) |
---|
326 | ENDIF |
---|
327 | CALL diffusion_v( i, j ) |
---|
328 | CALL coriolis( i, j, 2 ) |
---|
329 | |
---|
330 | ! |
---|
331 | !-- Drag by plant canopy |
---|
332 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 2 ) |
---|
333 | |
---|
334 | ! |
---|
335 | !-- External pressure gradient |
---|
336 | IF ( dp_external ) THEN |
---|
337 | DO k = dp_level_ind_b+1, nzt |
---|
338 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
339 | ENDDO |
---|
340 | ENDIF |
---|
341 | |
---|
342 | CALL user_actions( i, j, 'v-tendency' ) |
---|
343 | |
---|
344 | ! |
---|
345 | !-- Prognostic equation for v-velocity component |
---|
346 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
347 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
348 | tsc(3) * tv_m(k,j,i) ) & |
---|
349 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
350 | ENDDO |
---|
351 | |
---|
352 | ! |
---|
353 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
354 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
355 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
356 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
357 | tv_m(k,j,i) = tend(k,j,i) |
---|
358 | ENDDO |
---|
359 | ELSEIF ( intermediate_timestep_count < & |
---|
360 | intermediate_timestep_count_max ) THEN |
---|
361 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
362 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
363 | ENDDO |
---|
364 | ENDIF |
---|
365 | ENDIF |
---|
366 | |
---|
367 | ENDIF |
---|
368 | |
---|
369 | ! |
---|
370 | !-- Tendency terms for w-velocity component |
---|
371 | tend(:,j,i) = 0.0 |
---|
372 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
373 | IF ( ws_scheme_mom ) THEN |
---|
374 | CALL advec_w_ws( i, j, i_omp_start, tn ) |
---|
375 | ELSE |
---|
376 | CALL advec_w_pw( i, j ) |
---|
377 | END IF |
---|
378 | ELSE |
---|
379 | CALL advec_w_up( i, j ) |
---|
380 | ENDIF |
---|
381 | CALL diffusion_w( i, j ) |
---|
382 | CALL coriolis( i, j, 3 ) |
---|
383 | |
---|
384 | IF ( .NOT. neutral ) THEN |
---|
385 | IF ( ocean ) THEN |
---|
386 | CALL buoyancy( i, j, rho, rho_reference, 3, 64 ) |
---|
387 | ELSE |
---|
388 | IF ( .NOT. humidity ) THEN |
---|
389 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
390 | ELSE |
---|
391 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
392 | ENDIF |
---|
393 | ENDIF |
---|
394 | ENDIF |
---|
395 | |
---|
396 | ! |
---|
397 | !-- Drag by plant canopy |
---|
398 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 3 ) |
---|
399 | |
---|
400 | CALL user_actions( i, j, 'w-tendency' ) |
---|
401 | |
---|
402 | ! |
---|
403 | !-- Prognostic equation for w-velocity component |
---|
404 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
405 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
406 | tsc(3) * tw_m(k,j,i) ) & |
---|
407 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
408 | ENDDO |
---|
409 | |
---|
410 | ! |
---|
411 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
412 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
413 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
414 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
415 | tw_m(k,j,i) = tend(k,j,i) |
---|
416 | ENDDO |
---|
417 | ELSEIF ( intermediate_timestep_count < & |
---|
418 | intermediate_timestep_count_max ) THEN |
---|
419 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
420 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
421 | ENDDO |
---|
422 | ENDIF |
---|
423 | ENDIF |
---|
424 | |
---|
425 | ! |
---|
426 | !-- If required, calculate tendencies for total water content, rain water |
---|
427 | !-- content, rain drop concentration and liquid temperature |
---|
428 | IF ( cloud_physics .AND. icloud_scheme == 0 ) THEN |
---|
429 | |
---|
430 | tend_q(:,j,i) = 0.0 |
---|
431 | tend_qr(:,j,i) = 0.0 |
---|
432 | tend_nr(:,j,i) = 0.0 |
---|
433 | tend_pt(:,j,i) = 0.0 |
---|
434 | ! |
---|
435 | !-- Droplet size distribution (dsd) properties are needed for the |
---|
436 | !-- computation of selfcollection, breakup, evaporation and |
---|
437 | !-- sedimentation of rain |
---|
438 | IF ( precipitation ) THEN |
---|
439 | CALL dsd_properties( i,j ) |
---|
440 | CALL autoconversion( i,j ) |
---|
441 | CALL accretion( i,j ) |
---|
442 | CALL selfcollection_breakup( i,j ) |
---|
443 | CALL evaporation_rain( i,j ) |
---|
444 | CALL sedimentation_rain( i,j ) |
---|
445 | ENDIF |
---|
446 | |
---|
447 | IF ( drizzle ) CALL sedimentation_cloud( i,j ) |
---|
448 | |
---|
449 | ENDIF |
---|
450 | |
---|
451 | ! |
---|
452 | !-- If required, compute prognostic equation for potential temperature |
---|
453 | IF ( .NOT. neutral ) THEN |
---|
454 | ! |
---|
455 | !-- Tendency terms for potential temperature |
---|
456 | tend(:,j,i) = 0.0 |
---|
457 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
458 | IF ( ws_scheme_sca ) THEN |
---|
459 | CALL advec_s_ws( i, j, pt, 'pt', flux_s_pt, diss_s_pt, & |
---|
460 | flux_l_pt, diss_l_pt, i_omp_start, tn ) |
---|
461 | ELSE |
---|
462 | CALL advec_s_pw( i, j, pt ) |
---|
463 | ENDIF |
---|
464 | ELSE |
---|
465 | CALL advec_s_up( i, j, pt ) |
---|
466 | ENDIF |
---|
467 | CALL diffusion_s( i, j, pt, shf, tswst, wall_heatflux ) |
---|
468 | |
---|
469 | ! |
---|
470 | !-- If required compute heating/cooling due to long wave radiation |
---|
471 | !-- processes |
---|
472 | IF ( radiation ) THEN |
---|
473 | CALL calc_radiation( i, j ) |
---|
474 | ENDIF |
---|
475 | |
---|
476 | ! |
---|
477 | !-- Using microphysical tendencies (latent heat) |
---|
478 | IF ( cloud_physics ) THEN |
---|
479 | IF ( icloud_scheme == 0 ) THEN |
---|
480 | tend(:,j,i) = tend(:,j,i) + tend_pt(:,j,i) |
---|
481 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
482 | CALL impact_of_latent_heat( i, j ) |
---|
483 | ENDIF |
---|
484 | ENDIF |
---|
485 | |
---|
486 | ! |
---|
487 | !-- Consideration of heat sources within the plant canopy |
---|
488 | IF ( plant_canopy .AND. cthf /= 0.0 ) THEN |
---|
489 | CALL plant_canopy_model( i, j, 4 ) |
---|
490 | ENDIF |
---|
491 | |
---|
492 | ! |
---|
493 | !-- If required, compute effect of large-scale subsidence/ascent |
---|
494 | IF ( large_scale_subsidence ) THEN |
---|
495 | CALL subsidence( i, j, tend, pt, pt_init ) |
---|
496 | ENDIF |
---|
497 | |
---|
498 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
499 | |
---|
500 | ! |
---|
501 | !-- Prognostic equation for potential temperature |
---|
502 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
503 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
504 | tsc(3) * tpt_m(k,j,i) ) & |
---|
505 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
506 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
507 | ENDDO |
---|
508 | |
---|
509 | ! |
---|
510 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
511 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
512 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
513 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
514 | tpt_m(k,j,i) = tend(k,j,i) |
---|
515 | ENDDO |
---|
516 | ELSEIF ( intermediate_timestep_count < & |
---|
517 | intermediate_timestep_count_max ) THEN |
---|
518 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
519 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
520 | 5.3125 * tpt_m(k,j,i) |
---|
521 | ENDDO |
---|
522 | ENDIF |
---|
523 | ENDIF |
---|
524 | |
---|
525 | ENDIF |
---|
526 | |
---|
527 | ! |
---|
528 | !-- If required, compute prognostic equation for salinity |
---|
529 | IF ( ocean ) THEN |
---|
530 | |
---|
531 | ! |
---|
532 | !-- Tendency-terms for salinity |
---|
533 | tend(:,j,i) = 0.0 |
---|
534 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
535 | THEN |
---|
536 | IF ( ws_scheme_sca ) THEN |
---|
537 | CALL advec_s_ws( i, j, sa, 'sa', flux_s_sa, & |
---|
538 | diss_s_sa, flux_l_sa, diss_l_sa, i_omp_start, tn ) |
---|
539 | ELSE |
---|
540 | CALL advec_s_pw( i, j, sa ) |
---|
541 | ENDIF |
---|
542 | ELSE |
---|
543 | CALL advec_s_up( i, j, sa ) |
---|
544 | ENDIF |
---|
545 | CALL diffusion_s( i, j, sa, saswsb, saswst, wall_salinityflux ) |
---|
546 | |
---|
547 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
548 | |
---|
549 | ! |
---|
550 | !-- Prognostic equation for salinity |
---|
551 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
552 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
553 | tsc(3) * tsa_m(k,j,i) ) & |
---|
554 | - tsc(5) * rdf_sc(k) * & |
---|
555 | ( sa(k,j,i) - sa_init(k) ) |
---|
556 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
557 | ENDDO |
---|
558 | |
---|
559 | ! |
---|
560 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
561 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
562 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
563 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
564 | tsa_m(k,j,i) = tend(k,j,i) |
---|
565 | ENDDO |
---|
566 | ELSEIF ( intermediate_timestep_count < & |
---|
567 | intermediate_timestep_count_max ) THEN |
---|
568 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
569 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
570 | 5.3125 * tsa_m(k,j,i) |
---|
571 | ENDDO |
---|
572 | ENDIF |
---|
573 | ENDIF |
---|
574 | |
---|
575 | ! |
---|
576 | !-- Calculate density by the equation of state for seawater |
---|
577 | CALL eqn_state_seawater( i, j ) |
---|
578 | |
---|
579 | ENDIF |
---|
580 | |
---|
581 | ! |
---|
582 | !-- If required, compute prognostic equation for total water content / |
---|
583 | !-- scalar |
---|
584 | IF ( humidity .OR. passive_scalar ) THEN |
---|
585 | |
---|
586 | ! |
---|
587 | !-- Tendency-terms for total water content / scalar |
---|
588 | tend(:,j,i) = 0.0 |
---|
589 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
590 | THEN |
---|
591 | IF ( ws_scheme_sca ) THEN |
---|
592 | CALL advec_s_ws( i, j, q, 'q', flux_s_q, & |
---|
593 | diss_s_q, flux_l_q, diss_l_q, i_omp_start, tn ) |
---|
594 | ELSE |
---|
595 | CALL advec_s_pw( i, j, q ) |
---|
596 | ENDIF |
---|
597 | ELSE |
---|
598 | CALL advec_s_up( i, j, q ) |
---|
599 | ENDIF |
---|
600 | CALL diffusion_s( i, j, q, qsws, qswst, wall_qflux ) |
---|
601 | |
---|
602 | ! |
---|
603 | !-- Using microphysical tendencies |
---|
604 | IF ( cloud_physics ) THEN |
---|
605 | IF ( icloud_scheme == 0 ) THEN |
---|
606 | tend(:,j,i) = tend(:,j,i) + tend_q(:,j,i) |
---|
607 | ELSEIF ( icloud_scheme == 1 .AND. precipitation ) THEN |
---|
608 | CALL calc_precipitation( i, j ) |
---|
609 | ENDIF |
---|
610 | ENDIF |
---|
611 | ! |
---|
612 | !-- Sink or source of scalar concentration due to canopy elements |
---|
613 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 5 ) |
---|
614 | |
---|
615 | ! |
---|
616 | !-- If required compute influence of large-scale subsidence/ascent |
---|
617 | IF ( large_scale_subsidence ) THEN |
---|
618 | CALL subsidence( i, j, tend, q, q_init ) |
---|
619 | ENDIF |
---|
620 | |
---|
621 | CALL user_actions( i, j, 'q-tendency' ) |
---|
622 | |
---|
623 | ! |
---|
624 | !-- Prognostic equation for total water content / scalar |
---|
625 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
626 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
627 | tsc(3) * tq_m(k,j,i) ) & |
---|
628 | - tsc(5) * rdf_sc(k) * & |
---|
629 | ( q(k,j,i) - q_init(k) ) |
---|
630 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
631 | ENDDO |
---|
632 | |
---|
633 | ! |
---|
634 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
635 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
636 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
637 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
638 | tq_m(k,j,i) = tend(k,j,i) |
---|
639 | ENDDO |
---|
640 | ELSEIF ( intermediate_timestep_count < & |
---|
641 | intermediate_timestep_count_max ) THEN |
---|
642 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
643 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
644 | 5.3125 * tq_m(k,j,i) |
---|
645 | ENDDO |
---|
646 | ENDIF |
---|
647 | ENDIF |
---|
648 | |
---|
649 | ! |
---|
650 | !-- If required, calculate prognostic equations for rain water content |
---|
651 | !-- and rain drop concentration |
---|
652 | IF ( cloud_physics .AND. icloud_scheme == 0 ) THEN |
---|
653 | ! |
---|
654 | !-- Calculate prognostic equation for rain water content |
---|
655 | tend(:,j,i) = 0.0 |
---|
656 | IF ( timestep_scheme(1:5) == 'runge' ) & |
---|
657 | THEN |
---|
658 | IF ( ws_scheme_sca ) THEN |
---|
659 | CALL advec_s_ws( i, j, qr, 'qr', flux_s_qr, & |
---|
660 | diss_s_qr, flux_l_qr, diss_l_qr, & |
---|
661 | i_omp_start, tn ) |
---|
662 | ELSE |
---|
663 | CALL advec_s_pw( i, j, qr ) |
---|
664 | ENDIF |
---|
665 | ELSE |
---|
666 | CALL advec_s_up( i, j, qr ) |
---|
667 | ENDIF |
---|
668 | CALL diffusion_s( i, j, qr, qrsws, qrswst, wall_qrflux ) |
---|
669 | |
---|
670 | ! |
---|
671 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
672 | !-- evaporation; if required: sedimentation) |
---|
673 | tend(:,j,i) = tend(:,j,i) + tend_qr(:,j,i) |
---|
674 | |
---|
675 | ! |
---|
676 | !-- If required, compute influence of large-scale subsidence/ascent |
---|
677 | IF ( large_scale_subsidence ) THEN |
---|
678 | CALL subsidence( i, j, tend, qr, qr_init ) |
---|
679 | ENDIF |
---|
680 | |
---|
681 | ! CALL user_actions( i, j, 'qr-tendency' ) |
---|
682 | |
---|
683 | ! |
---|
684 | !-- Prognostic equation for rain water content |
---|
685 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
686 | qr_p(k,j,i) = qr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
687 | tsc(3) * tqr_m(k,j,i) ) & |
---|
688 | - tsc(5) * rdf_sc(k) * & |
---|
689 | ( qr(k,j,i) - qr_init(k) ) |
---|
690 | IF ( qr_p(k,j,i) < 0.0 ) qr_p(k,j,i) = 0.1 * qr(k,j,i) |
---|
691 | ENDDO |
---|
692 | ! |
---|
693 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
694 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
695 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
696 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
697 | tqr_m(k,j,i) = tend(k,j,i) |
---|
698 | ENDDO |
---|
699 | ELSEIF ( intermediate_timestep_count < & |
---|
700 | intermediate_timestep_count_max ) THEN |
---|
701 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
702 | tqr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
703 | 5.3125 * tqr_m(k,j,i) |
---|
704 | ENDDO |
---|
705 | ENDIF |
---|
706 | ENDIF |
---|
707 | |
---|
708 | ! |
---|
709 | !-- Calculate prognostic equation for rain drop concentration. |
---|
710 | tend(:,j,i) = 0.0 |
---|
711 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
712 | IF ( ws_scheme_sca ) THEN |
---|
713 | CALL advec_s_ws( i, j, nr, 'nr', flux_s_nr, & |
---|
714 | diss_s_nr, flux_l_nr, diss_l_nr, & |
---|
715 | i_omp_start, tn ) |
---|
716 | ELSE |
---|
717 | CALL advec_s_pw( i, j, nr ) |
---|
718 | ENDIF |
---|
719 | ELSE |
---|
720 | CALL advec_s_up( i, j, nr ) |
---|
721 | ENDIF |
---|
722 | CALL diffusion_s( i, j, nr, nrsws, nrswst, wall_nrflux ) |
---|
723 | |
---|
724 | !-- Using microphysical tendencies (autoconversion, accretion, |
---|
725 | !-- selfcollection, breakup, evaporation; |
---|
726 | !-- if required: sedimentation) |
---|
727 | tend(:,j,i) = tend(:,j,i) + tend_nr(:,j,i) |
---|
728 | |
---|
729 | ! |
---|
730 | !-- If required, compute influence of large-scale subsidence/ascent |
---|
731 | IF ( large_scale_subsidence ) THEN |
---|
732 | CALL subsidence( i, j, tend, nr, nr_init ) |
---|
733 | ENDIF |
---|
734 | |
---|
735 | ! CALL user_actions( i, j, 'nr-tendency' ) |
---|
736 | |
---|
737 | ! |
---|
738 | !-- Prognostic equation for rain drop concentration |
---|
739 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
740 | nr_p(k,j,i) = nr(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
741 | tsc(3) * tnr_m(k,j,i) ) & |
---|
742 | - tsc(5) * rdf_sc(k) * & |
---|
743 | ( nr(k,j,i) - nr_init(k) ) |
---|
744 | IF ( nr_p(k,j,i) < 0.0 ) nr_p(k,j,i) = 0.1 * nr(k,j,i) |
---|
745 | ENDDO |
---|
746 | ! |
---|
747 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
748 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
749 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
750 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
751 | tnr_m(k,j,i) = tend(k,j,i) |
---|
752 | ENDDO |
---|
753 | ELSEIF ( intermediate_timestep_count < & |
---|
754 | intermediate_timestep_count_max ) THEN |
---|
755 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
756 | tnr_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
757 | 5.3125 * tnr_m(k,j,i) |
---|
758 | ENDDO |
---|
759 | ENDIF |
---|
760 | ENDIF |
---|
761 | |
---|
762 | ENDIF |
---|
763 | |
---|
764 | ENDIF |
---|
765 | |
---|
766 | ! |
---|
767 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
768 | !-- energy (TKE) |
---|
769 | IF ( .NOT. constant_diffusion ) THEN |
---|
770 | |
---|
771 | ! |
---|
772 | !-- Tendency-terms for TKE |
---|
773 | tend(:,j,i) = 0.0 |
---|
774 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
775 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
776 | IF ( ws_scheme_sca ) THEN |
---|
777 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
778 | flux_l_e, diss_l_e , i_omp_start, tn ) |
---|
779 | ELSE |
---|
780 | CALL advec_s_pw( i, j, e ) |
---|
781 | ENDIF |
---|
782 | ELSE |
---|
783 | CALL advec_s_up( i, j, e ) |
---|
784 | ENDIF |
---|
785 | IF ( .NOT. humidity ) THEN |
---|
786 | IF ( ocean ) THEN |
---|
787 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
788 | ELSE |
---|
789 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
790 | ENDIF |
---|
791 | ELSE |
---|
792 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
793 | ENDIF |
---|
794 | CALL production_e( i, j ) |
---|
795 | |
---|
796 | ! |
---|
797 | !-- Additional sink term for flows through plant canopies |
---|
798 | IF ( plant_canopy ) CALL plant_canopy_model( i, j, 6 ) |
---|
799 | |
---|
800 | CALL user_actions( i, j, 'e-tendency' ) |
---|
801 | |
---|
802 | ! |
---|
803 | !-- Prognostic equation for TKE. |
---|
804 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
805 | !-- reasons in the course of the integration. In such cases the old |
---|
806 | !-- TKE value is reduced by 90%. |
---|
807 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
808 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
809 | tsc(3) * te_m(k,j,i) ) |
---|
810 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
811 | ENDDO |
---|
812 | |
---|
813 | ! |
---|
814 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
815 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
816 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
817 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
818 | te_m(k,j,i) = tend(k,j,i) |
---|
819 | ENDDO |
---|
820 | ELSEIF ( intermediate_timestep_count < & |
---|
821 | intermediate_timestep_count_max ) THEN |
---|
822 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
823 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
824 | 5.3125 * te_m(k,j,i) |
---|
825 | ENDDO |
---|
826 | ENDIF |
---|
827 | ENDIF |
---|
828 | |
---|
829 | ENDIF ! TKE equation |
---|
830 | |
---|
831 | ENDDO |
---|
832 | ENDDO |
---|
833 | !$OMP END PARALLEL |
---|
834 | |
---|
835 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
836 | |
---|
837 | |
---|
838 | END SUBROUTINE prognostic_equations_cache |
---|
839 | |
---|
840 | |
---|
841 | SUBROUTINE prognostic_equations_vector |
---|
842 | |
---|
843 | !------------------------------------------------------------------------------! |
---|
844 | ! Version for vector machines |
---|
845 | !------------------------------------------------------------------------------! |
---|
846 | |
---|
847 | IMPLICIT NONE |
---|
848 | |
---|
849 | INTEGER :: i, j, k |
---|
850 | REAL :: sbt |
---|
851 | |
---|
852 | ! |
---|
853 | !-- Calculate those variables needed in the tendency terms which need |
---|
854 | !-- global communication |
---|
855 | IF ( .NOT. neutral ) CALL calc_mean_profile( pt, 4 ) |
---|
856 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
857 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
858 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
859 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
860 | |
---|
861 | ! |
---|
862 | !-- u-velocity component |
---|
863 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
864 | |
---|
865 | tend = 0.0 |
---|
866 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
867 | IF ( ws_scheme_mom ) THEN |
---|
868 | CALL advec_u_ws |
---|
869 | ELSE |
---|
870 | CALL advec_u_pw |
---|
871 | ENDIF |
---|
872 | ELSE |
---|
873 | CALL advec_u_up |
---|
874 | ENDIF |
---|
875 | CALL diffusion_u |
---|
876 | CALL coriolis( 1 ) |
---|
877 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
878 | CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
879 | ENDIF |
---|
880 | |
---|
881 | ! |
---|
882 | !-- Drag by plant canopy |
---|
883 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
884 | |
---|
885 | ! |
---|
886 | !-- External pressure gradient |
---|
887 | IF ( dp_external ) THEN |
---|
888 | DO i = nxlu, nxr |
---|
889 | DO j = nys, nyn |
---|
890 | DO k = dp_level_ind_b+1, nzt |
---|
891 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
892 | ENDDO |
---|
893 | ENDDO |
---|
894 | ENDDO |
---|
895 | ENDIF |
---|
896 | |
---|
897 | CALL user_actions( 'u-tendency' ) |
---|
898 | |
---|
899 | ! |
---|
900 | !-- Prognostic equation for u-velocity component |
---|
901 | DO i = nxlu, nxr |
---|
902 | DO j = nys, nyn |
---|
903 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
904 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
905 | tsc(3) * tu_m(k,j,i) ) & |
---|
906 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
907 | ENDDO |
---|
908 | ENDDO |
---|
909 | ENDDO |
---|
910 | |
---|
911 | ! |
---|
912 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
913 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
914 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
915 | DO i = nxlu, nxr |
---|
916 | DO j = nys, nyn |
---|
917 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
918 | tu_m(k,j,i) = tend(k,j,i) |
---|
919 | ENDDO |
---|
920 | ENDDO |
---|
921 | ENDDO |
---|
922 | ELSEIF ( intermediate_timestep_count < & |
---|
923 | intermediate_timestep_count_max ) THEN |
---|
924 | DO i = nxlu, nxr |
---|
925 | DO j = nys, nyn |
---|
926 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
927 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
928 | ENDDO |
---|
929 | ENDDO |
---|
930 | ENDDO |
---|
931 | ENDIF |
---|
932 | ENDIF |
---|
933 | |
---|
934 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
935 | |
---|
936 | ! |
---|
937 | !-- v-velocity component |
---|
938 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
939 | |
---|
940 | tend = 0.0 |
---|
941 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
942 | IF ( ws_scheme_mom ) THEN |
---|
943 | CALL advec_v_ws |
---|
944 | ELSE |
---|
945 | CALL advec_v_pw |
---|
946 | END IF |
---|
947 | ELSE |
---|
948 | CALL advec_v_up |
---|
949 | ENDIF |
---|
950 | CALL diffusion_v |
---|
951 | CALL coriolis( 2 ) |
---|
952 | |
---|
953 | ! |
---|
954 | !-- Drag by plant canopy |
---|
955 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
956 | |
---|
957 | ! |
---|
958 | !-- External pressure gradient |
---|
959 | IF ( dp_external ) THEN |
---|
960 | DO i = nxl, nxr |
---|
961 | DO j = nysv, nyn |
---|
962 | DO k = dp_level_ind_b+1, nzt |
---|
963 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
964 | ENDDO |
---|
965 | ENDDO |
---|
966 | ENDDO |
---|
967 | ENDIF |
---|
968 | |
---|
969 | CALL user_actions( 'v-tendency' ) |
---|
970 | |
---|
971 | ! |
---|
972 | !-- Prognostic equation for v-velocity component |
---|
973 | DO i = nxl, nxr |
---|
974 | DO j = nysv, nyn |
---|
975 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
976 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
977 | tsc(3) * tv_m(k,j,i) ) & |
---|
978 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
979 | ENDDO |
---|
980 | ENDDO |
---|
981 | ENDDO |
---|
982 | |
---|
983 | ! |
---|
984 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
985 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
986 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
987 | DO i = nxl, nxr |
---|
988 | DO j = nysv, nyn |
---|
989 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
990 | tv_m(k,j,i) = tend(k,j,i) |
---|
991 | ENDDO |
---|
992 | ENDDO |
---|
993 | ENDDO |
---|
994 | ELSEIF ( intermediate_timestep_count < & |
---|
995 | intermediate_timestep_count_max ) THEN |
---|
996 | DO i = nxl, nxr |
---|
997 | DO j = nysv, nyn |
---|
998 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
999 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1000 | ENDDO |
---|
1001 | ENDDO |
---|
1002 | ENDDO |
---|
1003 | ENDIF |
---|
1004 | ENDIF |
---|
1005 | |
---|
1006 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1007 | |
---|
1008 | ! |
---|
1009 | !-- w-velocity component |
---|
1010 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1011 | |
---|
1012 | tend = 0.0 |
---|
1013 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1014 | IF ( ws_scheme_mom ) THEN |
---|
1015 | CALL advec_w_ws |
---|
1016 | ELSE |
---|
1017 | CALL advec_w_pw |
---|
1018 | ENDIF |
---|
1019 | ELSE |
---|
1020 | CALL advec_w_up |
---|
1021 | ENDIF |
---|
1022 | CALL diffusion_w |
---|
1023 | CALL coriolis( 3 ) |
---|
1024 | |
---|
1025 | IF ( .NOT. neutral ) THEN |
---|
1026 | IF ( ocean ) THEN |
---|
1027 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
1028 | ELSE |
---|
1029 | IF ( .NOT. humidity ) THEN |
---|
1030 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
1031 | ELSE |
---|
1032 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
1033 | ENDIF |
---|
1034 | ENDIF |
---|
1035 | ENDIF |
---|
1036 | |
---|
1037 | ! |
---|
1038 | !-- Drag by plant canopy |
---|
1039 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
1040 | |
---|
1041 | CALL user_actions( 'w-tendency' ) |
---|
1042 | |
---|
1043 | ! |
---|
1044 | !-- Prognostic equation for w-velocity component |
---|
1045 | DO i = nxl, nxr |
---|
1046 | DO j = nys, nyn |
---|
1047 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1048 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1049 | tsc(3) * tw_m(k,j,i) ) & |
---|
1050 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
1051 | ENDDO |
---|
1052 | ENDDO |
---|
1053 | ENDDO |
---|
1054 | |
---|
1055 | ! |
---|
1056 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1057 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1058 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1059 | DO i = nxl, nxr |
---|
1060 | DO j = nys, nyn |
---|
1061 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1062 | tw_m(k,j,i) = tend(k,j,i) |
---|
1063 | ENDDO |
---|
1064 | ENDDO |
---|
1065 | ENDDO |
---|
1066 | ELSEIF ( intermediate_timestep_count < & |
---|
1067 | intermediate_timestep_count_max ) THEN |
---|
1068 | DO i = nxl, nxr |
---|
1069 | DO j = nys, nyn |
---|
1070 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
1071 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1072 | ENDDO |
---|
1073 | ENDDO |
---|
1074 | ENDDO |
---|
1075 | ENDIF |
---|
1076 | ENDIF |
---|
1077 | |
---|
1078 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1079 | |
---|
1080 | |
---|
1081 | ! |
---|
1082 | !-- If required, compute prognostic equation for potential temperature |
---|
1083 | IF ( .NOT. neutral ) THEN |
---|
1084 | |
---|
1085 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1086 | |
---|
1087 | ! |
---|
1088 | !-- pt-tendency terms with communication |
---|
1089 | sbt = tsc(2) |
---|
1090 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1091 | |
---|
1092 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1093 | ! |
---|
1094 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1095 | sbt = 1.0 |
---|
1096 | ENDIF |
---|
1097 | tend = 0.0 |
---|
1098 | CALL advec_s_bc( pt, 'pt' ) |
---|
1099 | |
---|
1100 | ENDIF |
---|
1101 | |
---|
1102 | ! |
---|
1103 | !-- pt-tendency terms with no communication |
---|
1104 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1105 | tend = 0.0 |
---|
1106 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1107 | IF ( ws_scheme_sca ) THEN |
---|
1108 | CALL advec_s_ws( pt, 'pt' ) |
---|
1109 | ELSE |
---|
1110 | CALL advec_s_pw( pt ) |
---|
1111 | ENDIF |
---|
1112 | ELSE |
---|
1113 | CALL advec_s_up( pt ) |
---|
1114 | ENDIF |
---|
1115 | ENDIF |
---|
1116 | |
---|
1117 | CALL diffusion_s( pt, shf, tswst, wall_heatflux ) |
---|
1118 | |
---|
1119 | ! |
---|
1120 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
1121 | IF ( radiation ) THEN |
---|
1122 | CALL calc_radiation |
---|
1123 | ENDIF |
---|
1124 | |
---|
1125 | ! |
---|
1126 | !-- If required compute impact of latent heat due to precipitation |
---|
1127 | IF ( precipitation ) THEN |
---|
1128 | CALL impact_of_latent_heat |
---|
1129 | ENDIF |
---|
1130 | |
---|
1131 | ! |
---|
1132 | !-- Consideration of heat sources within the plant canopy |
---|
1133 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1134 | CALL plant_canopy_model( 4 ) |
---|
1135 | ENDIF |
---|
1136 | |
---|
1137 | ! |
---|
1138 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1139 | IF ( large_scale_subsidence ) THEN |
---|
1140 | CALL subsidence( tend, pt, pt_init ) |
---|
1141 | ENDIF |
---|
1142 | |
---|
1143 | CALL user_actions( 'pt-tendency' ) |
---|
1144 | |
---|
1145 | ! |
---|
1146 | !-- Prognostic equation for potential temperature |
---|
1147 | DO i = nxl, nxr |
---|
1148 | DO j = nys, nyn |
---|
1149 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1150 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1151 | tsc(3) * tpt_m(k,j,i) ) & |
---|
1152 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
1153 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
1154 | ENDDO |
---|
1155 | ENDDO |
---|
1156 | ENDDO |
---|
1157 | |
---|
1158 | ! |
---|
1159 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1160 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1161 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1162 | DO i = nxl, nxr |
---|
1163 | DO j = nys, nyn |
---|
1164 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1165 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1166 | ENDDO |
---|
1167 | ENDDO |
---|
1168 | ENDDO |
---|
1169 | ELSEIF ( intermediate_timestep_count < & |
---|
1170 | intermediate_timestep_count_max ) THEN |
---|
1171 | DO i = nxl, nxr |
---|
1172 | DO j = nys, nyn |
---|
1173 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1174 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1175 | 5.3125 * tpt_m(k,j,i) |
---|
1176 | ENDDO |
---|
1177 | ENDDO |
---|
1178 | ENDDO |
---|
1179 | ENDIF |
---|
1180 | ENDIF |
---|
1181 | |
---|
1182 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1183 | |
---|
1184 | ENDIF |
---|
1185 | |
---|
1186 | ! |
---|
1187 | !-- If required, compute prognostic equation for salinity |
---|
1188 | IF ( ocean ) THEN |
---|
1189 | |
---|
1190 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
1191 | |
---|
1192 | ! |
---|
1193 | !-- sa-tendency terms with communication |
---|
1194 | sbt = tsc(2) |
---|
1195 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1196 | |
---|
1197 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1198 | ! |
---|
1199 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1200 | sbt = 1.0 |
---|
1201 | ENDIF |
---|
1202 | tend = 0.0 |
---|
1203 | CALL advec_s_bc( sa, 'sa' ) |
---|
1204 | |
---|
1205 | ENDIF |
---|
1206 | |
---|
1207 | ! |
---|
1208 | !-- sa-tendency terms with no communication |
---|
1209 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1210 | tend = 0.0 |
---|
1211 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1212 | IF ( ws_scheme_sca ) THEN |
---|
1213 | CALL advec_s_ws( sa, 'sa' ) |
---|
1214 | ELSE |
---|
1215 | CALL advec_s_pw( sa ) |
---|
1216 | ENDIF |
---|
1217 | ELSE |
---|
1218 | CALL advec_s_up( sa ) |
---|
1219 | ENDIF |
---|
1220 | ENDIF |
---|
1221 | |
---|
1222 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
1223 | |
---|
1224 | CALL user_actions( 'sa-tendency' ) |
---|
1225 | |
---|
1226 | ! |
---|
1227 | !-- Prognostic equation for salinity |
---|
1228 | DO i = nxl, nxr |
---|
1229 | DO j = nys, nyn |
---|
1230 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1231 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1232 | tsc(3) * tsa_m(k,j,i) ) & |
---|
1233 | - tsc(5) * rdf_sc(k) * & |
---|
1234 | ( sa(k,j,i) - sa_init(k) ) |
---|
1235 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1236 | ENDDO |
---|
1237 | ENDDO |
---|
1238 | ENDDO |
---|
1239 | |
---|
1240 | ! |
---|
1241 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1242 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1243 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1244 | DO i = nxl, nxr |
---|
1245 | DO j = nys, nyn |
---|
1246 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1247 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1248 | ENDDO |
---|
1249 | ENDDO |
---|
1250 | ENDDO |
---|
1251 | ELSEIF ( intermediate_timestep_count < & |
---|
1252 | intermediate_timestep_count_max ) THEN |
---|
1253 | DO i = nxl, nxr |
---|
1254 | DO j = nys, nyn |
---|
1255 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1256 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
1257 | 5.3125 * tsa_m(k,j,i) |
---|
1258 | ENDDO |
---|
1259 | ENDDO |
---|
1260 | ENDDO |
---|
1261 | ENDIF |
---|
1262 | ENDIF |
---|
1263 | |
---|
1264 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
1265 | |
---|
1266 | ! |
---|
1267 | !-- Calculate density by the equation of state for seawater |
---|
1268 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
1269 | CALL eqn_state_seawater |
---|
1270 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
1271 | |
---|
1272 | ENDIF |
---|
1273 | |
---|
1274 | ! |
---|
1275 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1276 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1277 | |
---|
1278 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1279 | |
---|
1280 | ! |
---|
1281 | !-- Scalar/q-tendency terms with communication |
---|
1282 | sbt = tsc(2) |
---|
1283 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1284 | |
---|
1285 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1286 | ! |
---|
1287 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1288 | sbt = 1.0 |
---|
1289 | ENDIF |
---|
1290 | tend = 0.0 |
---|
1291 | CALL advec_s_bc( q, 'q' ) |
---|
1292 | |
---|
1293 | ENDIF |
---|
1294 | |
---|
1295 | ! |
---|
1296 | !-- Scalar/q-tendency terms with no communication |
---|
1297 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1298 | tend = 0.0 |
---|
1299 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1300 | IF ( ws_scheme_sca ) THEN |
---|
1301 | CALL advec_s_ws( q, 'q' ) |
---|
1302 | ELSE |
---|
1303 | CALL advec_s_pw( q ) |
---|
1304 | ENDIF |
---|
1305 | ELSE |
---|
1306 | CALL advec_s_up( q ) |
---|
1307 | ENDIF |
---|
1308 | ENDIF |
---|
1309 | |
---|
1310 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
1311 | |
---|
1312 | ! |
---|
1313 | !-- If required compute decrease of total water content due to |
---|
1314 | !-- precipitation |
---|
1315 | IF ( precipitation ) THEN |
---|
1316 | CALL calc_precipitation |
---|
1317 | ENDIF |
---|
1318 | |
---|
1319 | ! |
---|
1320 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1321 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
1322 | |
---|
1323 | ! |
---|
1324 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1325 | IF ( large_scale_subsidence ) THEN |
---|
1326 | CALL subsidence( tend, q, q_init ) |
---|
1327 | ENDIF |
---|
1328 | |
---|
1329 | CALL user_actions( 'q-tendency' ) |
---|
1330 | |
---|
1331 | ! |
---|
1332 | !-- Prognostic equation for total water content / scalar |
---|
1333 | DO i = nxl, nxr |
---|
1334 | DO j = nys, nyn |
---|
1335 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1336 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1337 | tsc(3) * tq_m(k,j,i) ) & |
---|
1338 | - tsc(5) * rdf_sc(k) * & |
---|
1339 | ( q(k,j,i) - q_init(k) ) |
---|
1340 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1341 | ENDDO |
---|
1342 | ENDDO |
---|
1343 | ENDDO |
---|
1344 | |
---|
1345 | ! |
---|
1346 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1347 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1348 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1349 | DO i = nxl, nxr |
---|
1350 | DO j = nys, nyn |
---|
1351 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1352 | tq_m(k,j,i) = tend(k,j,i) |
---|
1353 | ENDDO |
---|
1354 | ENDDO |
---|
1355 | ENDDO |
---|
1356 | ELSEIF ( intermediate_timestep_count < & |
---|
1357 | intermediate_timestep_count_max ) THEN |
---|
1358 | DO i = nxl, nxr |
---|
1359 | DO j = nys, nyn |
---|
1360 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1361 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
1362 | ENDDO |
---|
1363 | ENDDO |
---|
1364 | ENDDO |
---|
1365 | ENDIF |
---|
1366 | ENDIF |
---|
1367 | |
---|
1368 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
1369 | |
---|
1370 | ENDIF |
---|
1371 | |
---|
1372 | ! |
---|
1373 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1374 | !-- energy (TKE) |
---|
1375 | IF ( .NOT. constant_diffusion ) THEN |
---|
1376 | |
---|
1377 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1378 | |
---|
1379 | ! |
---|
1380 | !-- TKE-tendency terms with communication |
---|
1381 | CALL production_e_init |
---|
1382 | |
---|
1383 | sbt = tsc(2) |
---|
1384 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
1385 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1386 | |
---|
1387 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1388 | ! |
---|
1389 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1390 | sbt = 1.0 |
---|
1391 | ENDIF |
---|
1392 | tend = 0.0 |
---|
1393 | CALL advec_s_bc( e, 'e' ) |
---|
1394 | |
---|
1395 | ENDIF |
---|
1396 | ENDIF |
---|
1397 | |
---|
1398 | ! |
---|
1399 | !-- TKE-tendency terms with no communication |
---|
1400 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
1401 | IF ( use_upstream_for_tke ) THEN |
---|
1402 | tend = 0.0 |
---|
1403 | CALL advec_s_up( e ) |
---|
1404 | ELSE |
---|
1405 | tend = 0.0 |
---|
1406 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1407 | IF ( ws_scheme_sca ) THEN |
---|
1408 | CALL advec_s_ws( e, 'e' ) |
---|
1409 | ELSE |
---|
1410 | CALL advec_s_pw( e ) |
---|
1411 | ENDIF |
---|
1412 | ELSE |
---|
1413 | CALL advec_s_up( e ) |
---|
1414 | ENDIF |
---|
1415 | ENDIF |
---|
1416 | ENDIF |
---|
1417 | |
---|
1418 | IF ( .NOT. humidity ) THEN |
---|
1419 | IF ( ocean ) THEN |
---|
1420 | CALL diffusion_e( prho, prho_reference ) |
---|
1421 | ELSE |
---|
1422 | CALL diffusion_e( pt, pt_reference ) |
---|
1423 | ENDIF |
---|
1424 | ELSE |
---|
1425 | CALL diffusion_e( vpt, pt_reference ) |
---|
1426 | ENDIF |
---|
1427 | |
---|
1428 | CALL production_e |
---|
1429 | |
---|
1430 | ! |
---|
1431 | !-- Additional sink term for flows through plant canopies |
---|
1432 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
1433 | CALL user_actions( 'e-tendency' ) |
---|
1434 | |
---|
1435 | ! |
---|
1436 | !-- Prognostic equation for TKE. |
---|
1437 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
1438 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
1439 | !-- value is reduced by 90%. |
---|
1440 | DO i = nxl, nxr |
---|
1441 | DO j = nys, nyn |
---|
1442 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1443 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1444 | tsc(3) * te_m(k,j,i) ) |
---|
1445 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
1446 | ENDDO |
---|
1447 | ENDDO |
---|
1448 | ENDDO |
---|
1449 | |
---|
1450 | ! |
---|
1451 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
1452 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1453 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1454 | DO i = nxl, nxr |
---|
1455 | DO j = nys, nyn |
---|
1456 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1457 | te_m(k,j,i) = tend(k,j,i) |
---|
1458 | ENDDO |
---|
1459 | ENDDO |
---|
1460 | ENDDO |
---|
1461 | ELSEIF ( intermediate_timestep_count < & |
---|
1462 | intermediate_timestep_count_max ) THEN |
---|
1463 | DO i = nxl, nxr |
---|
1464 | DO j = nys, nyn |
---|
1465 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1466 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
1467 | ENDDO |
---|
1468 | ENDDO |
---|
1469 | ENDDO |
---|
1470 | ENDIF |
---|
1471 | ENDIF |
---|
1472 | |
---|
1473 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
1474 | |
---|
1475 | ENDIF |
---|
1476 | |
---|
1477 | |
---|
1478 | END SUBROUTINE prognostic_equations_vector |
---|
1479 | |
---|
1480 | |
---|
1481 | SUBROUTINE prognostic_equations_acc |
---|
1482 | |
---|
1483 | !------------------------------------------------------------------------------! |
---|
1484 | ! Version for accelerator boards |
---|
1485 | !------------------------------------------------------------------------------! |
---|
1486 | |
---|
1487 | IMPLICIT NONE |
---|
1488 | |
---|
1489 | INTEGER :: i, j, k, runge_step |
---|
1490 | REAL :: sbt |
---|
1491 | |
---|
1492 | ! |
---|
1493 | !-- Set switch for intermediate Runge-Kutta step |
---|
1494 | runge_step = 0 |
---|
1495 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1496 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1497 | runge_step = 1 |
---|
1498 | ELSEIF ( intermediate_timestep_count < & |
---|
1499 | intermediate_timestep_count_max ) THEN |
---|
1500 | runge_step = 2 |
---|
1501 | ENDIF |
---|
1502 | ENDIF |
---|
1503 | |
---|
1504 | ! |
---|
1505 | !-- Calculate those variables needed in the tendency terms which need |
---|
1506 | !-- global communication |
---|
1507 | IF ( .NOT. neutral ) CALL calc_mean_profile( pt, 4 ) |
---|
1508 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
1509 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
1510 | IF ( ( ws_scheme_mom .OR. ws_scheme_sca ) .AND. & |
---|
1511 | intermediate_timestep_count == 1 ) CALL ws_statistics |
---|
1512 | |
---|
1513 | ! |
---|
1514 | !-- u-velocity component |
---|
1515 | !++ Statistics still not ported to accelerators |
---|
1516 | !$acc update device( hom ) |
---|
1517 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
1518 | |
---|
1519 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1520 | IF ( ws_scheme_mom ) THEN |
---|
1521 | CALL advec_u_ws_acc |
---|
1522 | ELSE |
---|
1523 | tend = 0.0 ! to be removed later?? |
---|
1524 | CALL advec_u_pw |
---|
1525 | ENDIF |
---|
1526 | ELSE |
---|
1527 | CALL advec_u_up |
---|
1528 | ENDIF |
---|
1529 | CALL diffusion_u_acc |
---|
1530 | CALL coriolis_acc( 1 ) |
---|
1531 | IF ( sloping_surface .AND. .NOT. neutral ) THEN |
---|
1532 | CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
1533 | ENDIF |
---|
1534 | |
---|
1535 | ! |
---|
1536 | !-- Drag by plant canopy |
---|
1537 | IF ( plant_canopy ) CALL plant_canopy_model( 1 ) |
---|
1538 | |
---|
1539 | ! |
---|
1540 | !-- External pressure gradient |
---|
1541 | IF ( dp_external ) THEN |
---|
1542 | DO i = nxlu, nxr |
---|
1543 | DO j = nys, nyn |
---|
1544 | DO k = dp_level_ind_b+1, nzt |
---|
1545 | tend(k,j,i) = tend(k,j,i) - dpdxy(1) * dp_smooth_factor(k) |
---|
1546 | ENDDO |
---|
1547 | ENDDO |
---|
1548 | ENDDO |
---|
1549 | ENDIF |
---|
1550 | |
---|
1551 | CALL user_actions( 'u-tendency' ) |
---|
1552 | |
---|
1553 | ! |
---|
1554 | !-- Prognostic equation for u-velocity component |
---|
1555 | !$acc kernels present( nzb_u_inner, rdf, tend, tu_m, u, ug, u_p ) |
---|
1556 | !$acc loop |
---|
1557 | DO i = nxlu, nxr |
---|
1558 | DO j = nys, nyn |
---|
1559 | !$acc loop vector( 32 ) |
---|
1560 | DO k = 1, nzt |
---|
1561 | IF ( k > nzb_u_inner(j,i) ) THEN |
---|
1562 | u_p(k,j,i) = u(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1563 | tsc(3) * tu_m(k,j,i) ) & |
---|
1564 | - tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
1565 | ! |
---|
1566 | !-- Tendencies for the next Runge-Kutta step |
---|
1567 | IF ( runge_step == 1 ) THEN |
---|
1568 | tu_m(k,j,i) = tend(k,j,i) |
---|
1569 | ELSEIF ( runge_step == 2 ) THEN |
---|
1570 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
1571 | ENDIF |
---|
1572 | ENDIF |
---|
1573 | ENDDO |
---|
1574 | ENDDO |
---|
1575 | ENDDO |
---|
1576 | !$acc end kernels |
---|
1577 | |
---|
1578 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
1579 | |
---|
1580 | ! |
---|
1581 | !-- v-velocity component |
---|
1582 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
1583 | |
---|
1584 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1585 | IF ( ws_scheme_mom ) THEN |
---|
1586 | CALL advec_v_ws_acc |
---|
1587 | ELSE |
---|
1588 | tend = 0.0 ! to be removed later?? |
---|
1589 | CALL advec_v_pw |
---|
1590 | END IF |
---|
1591 | ELSE |
---|
1592 | CALL advec_v_up |
---|
1593 | ENDIF |
---|
1594 | CALL diffusion_v_acc |
---|
1595 | CALL coriolis_acc( 2 ) |
---|
1596 | |
---|
1597 | ! |
---|
1598 | !-- Drag by plant canopy |
---|
1599 | IF ( plant_canopy ) CALL plant_canopy_model( 2 ) |
---|
1600 | |
---|
1601 | ! |
---|
1602 | !-- External pressure gradient |
---|
1603 | IF ( dp_external ) THEN |
---|
1604 | DO i = nxl, nxr |
---|
1605 | DO j = nysv, nyn |
---|
1606 | DO k = dp_level_ind_b+1, nzt |
---|
1607 | tend(k,j,i) = tend(k,j,i) - dpdxy(2) * dp_smooth_factor(k) |
---|
1608 | ENDDO |
---|
1609 | ENDDO |
---|
1610 | ENDDO |
---|
1611 | ENDIF |
---|
1612 | |
---|
1613 | CALL user_actions( 'v-tendency' ) |
---|
1614 | |
---|
1615 | ! |
---|
1616 | !-- Prognostic equation for v-velocity component |
---|
1617 | !$acc kernels present( nzb_v_inner, rdf, tend, tv_m, v, vg, v_p ) |
---|
1618 | !$acc loop |
---|
1619 | DO i = nxl, nxr |
---|
1620 | DO j = nysv, nyn |
---|
1621 | !$acc loop vector( 32 ) |
---|
1622 | DO k = 1, nzt |
---|
1623 | IF ( k > nzb_v_inner(j,i) ) THEN |
---|
1624 | v_p(k,j,i) = v(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1625 | tsc(3) * tv_m(k,j,i) ) & |
---|
1626 | - tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
1627 | ! |
---|
1628 | !-- Tendencies for the next Runge-Kutta step |
---|
1629 | IF ( runge_step == 1 ) THEN |
---|
1630 | tv_m(k,j,i) = tend(k,j,i) |
---|
1631 | ELSEIF ( runge_step == 2 ) THEN |
---|
1632 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
1633 | ENDIF |
---|
1634 | ENDIF |
---|
1635 | ENDDO |
---|
1636 | ENDDO |
---|
1637 | ENDDO |
---|
1638 | !$acc end kernels |
---|
1639 | |
---|
1640 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
1641 | |
---|
1642 | ! |
---|
1643 | !-- w-velocity component |
---|
1644 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
1645 | |
---|
1646 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1647 | IF ( ws_scheme_mom ) THEN |
---|
1648 | CALL advec_w_ws_acc |
---|
1649 | ELSE |
---|
1650 | tend = 0.0 ! to be removed later?? |
---|
1651 | CALL advec_w_pw |
---|
1652 | ENDIF |
---|
1653 | ELSE |
---|
1654 | CALL advec_w_up |
---|
1655 | ENDIF |
---|
1656 | CALL diffusion_w_acc |
---|
1657 | CALL coriolis_acc( 3 ) |
---|
1658 | |
---|
1659 | IF ( .NOT. neutral ) THEN |
---|
1660 | IF ( ocean ) THEN |
---|
1661 | CALL buoyancy( rho, rho_reference, 3, 64 ) |
---|
1662 | ELSE |
---|
1663 | IF ( .NOT. humidity ) THEN |
---|
1664 | CALL buoyancy_acc( pt, pt_reference, 3, 4 ) |
---|
1665 | ELSE |
---|
1666 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
1667 | ENDIF |
---|
1668 | ENDIF |
---|
1669 | ENDIF |
---|
1670 | |
---|
1671 | ! |
---|
1672 | !-- Drag by plant canopy |
---|
1673 | IF ( plant_canopy ) CALL plant_canopy_model( 3 ) |
---|
1674 | |
---|
1675 | CALL user_actions( 'w-tendency' ) |
---|
1676 | |
---|
1677 | ! |
---|
1678 | !-- Prognostic equation for w-velocity component |
---|
1679 | !$acc kernels present( nzb_w_inner, rdf, tend, tw_m, w, w_p ) |
---|
1680 | !$acc loop |
---|
1681 | DO i = nxl, nxr |
---|
1682 | DO j = nys, nyn |
---|
1683 | !$acc loop vector( 32 ) |
---|
1684 | DO k = 1, nzt-1 |
---|
1685 | IF ( k > nzb_w_inner(j,i) ) THEN |
---|
1686 | w_p(k,j,i) = w(k,j,i) + dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
1687 | tsc(3) * tw_m(k,j,i) ) & |
---|
1688 | - tsc(5) * rdf(k) * w(k,j,i) |
---|
1689 | ! |
---|
1690 | !-- Tendencies for the next Runge-Kutta step |
---|
1691 | IF ( runge_step == 1 ) THEN |
---|
1692 | tw_m(k,j,i) = tend(k,j,i) |
---|
1693 | ELSEIF ( runge_step == 2 ) THEN |
---|
1694 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
1695 | ENDIF |
---|
1696 | ENDIF |
---|
1697 | ENDDO |
---|
1698 | ENDDO |
---|
1699 | ENDDO |
---|
1700 | !$acc end kernels |
---|
1701 | |
---|
1702 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
1703 | |
---|
1704 | |
---|
1705 | ! |
---|
1706 | !-- If required, compute prognostic equation for potential temperature |
---|
1707 | IF ( .NOT. neutral ) THEN |
---|
1708 | |
---|
1709 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
1710 | |
---|
1711 | ! |
---|
1712 | !-- pt-tendency terms with communication |
---|
1713 | sbt = tsc(2) |
---|
1714 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1715 | |
---|
1716 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1717 | ! |
---|
1718 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1719 | sbt = 1.0 |
---|
1720 | ENDIF |
---|
1721 | tend = 0.0 |
---|
1722 | CALL advec_s_bc( pt, 'pt' ) |
---|
1723 | |
---|
1724 | ENDIF |
---|
1725 | |
---|
1726 | ! |
---|
1727 | !-- pt-tendency terms with no communication |
---|
1728 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1729 | tend = 0.0 |
---|
1730 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1731 | IF ( ws_scheme_sca ) THEN |
---|
1732 | CALL advec_s_ws_acc( pt, 'pt' ) |
---|
1733 | ELSE |
---|
1734 | tend = 0.0 ! to be removed later?? |
---|
1735 | CALL advec_s_pw( pt ) |
---|
1736 | ENDIF |
---|
1737 | ELSE |
---|
1738 | CALL advec_s_up( pt ) |
---|
1739 | ENDIF |
---|
1740 | ENDIF |
---|
1741 | |
---|
1742 | CALL diffusion_s_acc( pt, shf, tswst, wall_heatflux ) |
---|
1743 | |
---|
1744 | ! |
---|
1745 | !-- If required compute heating/cooling due to long wave radiation processes |
---|
1746 | IF ( radiation ) THEN |
---|
1747 | CALL calc_radiation |
---|
1748 | ENDIF |
---|
1749 | |
---|
1750 | ! |
---|
1751 | !-- If required compute impact of latent heat due to precipitation |
---|
1752 | IF ( precipitation ) THEN |
---|
1753 | CALL impact_of_latent_heat |
---|
1754 | ENDIF |
---|
1755 | |
---|
1756 | ! |
---|
1757 | !-- Consideration of heat sources within the plant canopy |
---|
1758 | IF ( plant_canopy .AND. ( cthf /= 0.0 ) ) THEN |
---|
1759 | CALL plant_canopy_model( 4 ) |
---|
1760 | ENDIF |
---|
1761 | |
---|
1762 | ! |
---|
1763 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1764 | IF ( large_scale_subsidence ) THEN |
---|
1765 | CALL subsidence( tend, pt, pt_init ) |
---|
1766 | ENDIF |
---|
1767 | |
---|
1768 | CALL user_actions( 'pt-tendency' ) |
---|
1769 | |
---|
1770 | ! |
---|
1771 | !-- Prognostic equation for potential temperature |
---|
1772 | !$acc kernels present( nzb_s_inner, rdf_sc, ptdf_x, ptdf_y, pt_init ) & |
---|
1773 | !$acc present( tend, tpt_m, pt, pt_p ) |
---|
1774 | !$acc loop |
---|
1775 | DO i = nxl, nxr |
---|
1776 | DO j = nys, nyn |
---|
1777 | !$acc loop vector( 32 ) |
---|
1778 | DO k = 1, nzt |
---|
1779 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
1780 | pt_p(k,j,i) = pt(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1781 | tsc(3) * tpt_m(k,j,i) ) & |
---|
1782 | - tsc(5) * ( pt(k,j,i) - pt_init(k) ) *& |
---|
1783 | ( rdf_sc(k) + ptdf_x(i) + ptdf_y(j) ) |
---|
1784 | ! |
---|
1785 | !-- Tendencies for the next Runge-Kutta step |
---|
1786 | IF ( runge_step == 1 ) THEN |
---|
1787 | tpt_m(k,j,i) = tend(k,j,i) |
---|
1788 | ELSEIF ( runge_step == 2 ) THEN |
---|
1789 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
1790 | ENDIF |
---|
1791 | ENDIF |
---|
1792 | ENDDO |
---|
1793 | ENDDO |
---|
1794 | ENDDO |
---|
1795 | !$acc end kernels |
---|
1796 | |
---|
1797 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
1798 | |
---|
1799 | ENDIF |
---|
1800 | |
---|
1801 | ! |
---|
1802 | !-- If required, compute prognostic equation for salinity |
---|
1803 | IF ( ocean ) THEN |
---|
1804 | |
---|
1805 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
1806 | |
---|
1807 | ! |
---|
1808 | !-- sa-tendency terms with communication |
---|
1809 | sbt = tsc(2) |
---|
1810 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1811 | |
---|
1812 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1813 | ! |
---|
1814 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1815 | sbt = 1.0 |
---|
1816 | ENDIF |
---|
1817 | tend = 0.0 |
---|
1818 | CALL advec_s_bc( sa, 'sa' ) |
---|
1819 | |
---|
1820 | ENDIF |
---|
1821 | |
---|
1822 | ! |
---|
1823 | !-- sa-tendency terms with no communication |
---|
1824 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1825 | tend = 0.0 |
---|
1826 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1827 | IF ( ws_scheme_sca ) THEN |
---|
1828 | CALL advec_s_ws( sa, 'sa' ) |
---|
1829 | ELSE |
---|
1830 | CALL advec_s_pw( sa ) |
---|
1831 | ENDIF |
---|
1832 | ELSE |
---|
1833 | CALL advec_s_up( sa ) |
---|
1834 | ENDIF |
---|
1835 | ENDIF |
---|
1836 | |
---|
1837 | CALL diffusion_s( sa, saswsb, saswst, wall_salinityflux ) |
---|
1838 | |
---|
1839 | CALL user_actions( 'sa-tendency' ) |
---|
1840 | |
---|
1841 | ! |
---|
1842 | !-- Prognostic equation for salinity |
---|
1843 | DO i = nxl, nxr |
---|
1844 | DO j = nys, nyn |
---|
1845 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1846 | sa_p(k,j,i) = sa(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1847 | tsc(3) * tsa_m(k,j,i) ) & |
---|
1848 | - tsc(5) * rdf_sc(k) * & |
---|
1849 | ( sa(k,j,i) - sa_init(k) ) |
---|
1850 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
1851 | ! |
---|
1852 | !-- Tendencies for the next Runge-Kutta step |
---|
1853 | IF ( runge_step == 1 ) THEN |
---|
1854 | tsa_m(k,j,i) = tend(k,j,i) |
---|
1855 | ELSEIF ( runge_step == 2 ) THEN |
---|
1856 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tsa_m(k,j,i) |
---|
1857 | ENDIF |
---|
1858 | ENDDO |
---|
1859 | ENDDO |
---|
1860 | ENDDO |
---|
1861 | |
---|
1862 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
1863 | |
---|
1864 | ! |
---|
1865 | !-- Calculate density by the equation of state for seawater |
---|
1866 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
1867 | CALL eqn_state_seawater |
---|
1868 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
1869 | |
---|
1870 | ENDIF |
---|
1871 | |
---|
1872 | ! |
---|
1873 | !-- If required, compute prognostic equation for total water content / scalar |
---|
1874 | IF ( humidity .OR. passive_scalar ) THEN |
---|
1875 | |
---|
1876 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
1877 | |
---|
1878 | ! |
---|
1879 | !-- Scalar/q-tendency terms with communication |
---|
1880 | sbt = tsc(2) |
---|
1881 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1882 | |
---|
1883 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1884 | ! |
---|
1885 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1886 | sbt = 1.0 |
---|
1887 | ENDIF |
---|
1888 | tend = 0.0 |
---|
1889 | CALL advec_s_bc( q, 'q' ) |
---|
1890 | |
---|
1891 | ENDIF |
---|
1892 | |
---|
1893 | ! |
---|
1894 | !-- Scalar/q-tendency terms with no communication |
---|
1895 | IF ( scalar_advec /= 'bc-scheme' ) THEN |
---|
1896 | tend = 0.0 |
---|
1897 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1898 | IF ( ws_scheme_sca ) THEN |
---|
1899 | CALL advec_s_ws( q, 'q' ) |
---|
1900 | ELSE |
---|
1901 | CALL advec_s_pw( q ) |
---|
1902 | ENDIF |
---|
1903 | ELSE |
---|
1904 | CALL advec_s_up( q ) |
---|
1905 | ENDIF |
---|
1906 | ENDIF |
---|
1907 | |
---|
1908 | CALL diffusion_s( q, qsws, qswst, wall_qflux ) |
---|
1909 | |
---|
1910 | ! |
---|
1911 | !-- If required compute decrease of total water content due to |
---|
1912 | !-- precipitation |
---|
1913 | IF ( precipitation ) THEN |
---|
1914 | CALL calc_precipitation |
---|
1915 | ENDIF |
---|
1916 | |
---|
1917 | ! |
---|
1918 | !-- Sink or source of scalar concentration due to canopy elements |
---|
1919 | IF ( plant_canopy ) CALL plant_canopy_model( 5 ) |
---|
1920 | |
---|
1921 | ! |
---|
1922 | !-- If required compute influence of large-scale subsidence/ascent |
---|
1923 | IF ( large_scale_subsidence ) THEN |
---|
1924 | CALL subsidence( tend, q, q_init ) |
---|
1925 | ENDIF |
---|
1926 | |
---|
1927 | CALL user_actions( 'q-tendency' ) |
---|
1928 | |
---|
1929 | ! |
---|
1930 | !-- Prognostic equation for total water content / scalar |
---|
1931 | DO i = nxl, nxr |
---|
1932 | DO j = nys, nyn |
---|
1933 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1934 | q_p(k,j,i) = q(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
1935 | tsc(3) * tq_m(k,j,i) ) & |
---|
1936 | - tsc(5) * rdf_sc(k) * & |
---|
1937 | ( q(k,j,i) - q_init(k) ) |
---|
1938 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
1939 | ! |
---|
1940 | !-- Tendencies for the next Runge-Kutta step |
---|
1941 | IF ( runge_step == 1 ) THEN |
---|
1942 | tq_m(k,j,i) = tend(k,j,i) |
---|
1943 | ELSEIF ( runge_step == 2 ) THEN |
---|
1944 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
1945 | ENDIF |
---|
1946 | ENDDO |
---|
1947 | ENDDO |
---|
1948 | ENDDO |
---|
1949 | |
---|
1950 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
1951 | |
---|
1952 | ENDIF |
---|
1953 | |
---|
1954 | ! |
---|
1955 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
1956 | !-- energy (TKE) |
---|
1957 | IF ( .NOT. constant_diffusion ) THEN |
---|
1958 | |
---|
1959 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
1960 | |
---|
1961 | ! |
---|
1962 | !-- TKE-tendency terms with communication |
---|
1963 | CALL production_e_init |
---|
1964 | |
---|
1965 | sbt = tsc(2) |
---|
1966 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
1967 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
1968 | |
---|
1969 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
1970 | ! |
---|
1971 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
1972 | sbt = 1.0 |
---|
1973 | ENDIF |
---|
1974 | tend = 0.0 |
---|
1975 | CALL advec_s_bc( e, 'e' ) |
---|
1976 | |
---|
1977 | ENDIF |
---|
1978 | ENDIF |
---|
1979 | |
---|
1980 | ! |
---|
1981 | !-- TKE-tendency terms with no communication |
---|
1982 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
1983 | IF ( use_upstream_for_tke ) THEN |
---|
1984 | tend = 0.0 |
---|
1985 | CALL advec_s_up( e ) |
---|
1986 | ELSE |
---|
1987 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
1988 | IF ( ws_scheme_sca ) THEN |
---|
1989 | CALL advec_s_ws_acc( e, 'e' ) |
---|
1990 | ELSE |
---|
1991 | tend = 0.0 ! to be removed later?? |
---|
1992 | CALL advec_s_pw( e ) |
---|
1993 | ENDIF |
---|
1994 | ELSE |
---|
1995 | tend = 0.0 ! to be removed later?? |
---|
1996 | CALL advec_s_up( e ) |
---|
1997 | ENDIF |
---|
1998 | ENDIF |
---|
1999 | ENDIF |
---|
2000 | |
---|
2001 | IF ( .NOT. humidity ) THEN |
---|
2002 | IF ( ocean ) THEN |
---|
2003 | CALL diffusion_e( prho, prho_reference ) |
---|
2004 | ELSE |
---|
2005 | CALL diffusion_e_acc( pt, pt_reference ) |
---|
2006 | ENDIF |
---|
2007 | ELSE |
---|
2008 | CALL diffusion_e( vpt, pt_reference ) |
---|
2009 | ENDIF |
---|
2010 | |
---|
2011 | CALL production_e_acc |
---|
2012 | |
---|
2013 | ! |
---|
2014 | !-- Additional sink term for flows through plant canopies |
---|
2015 | IF ( plant_canopy ) CALL plant_canopy_model( 6 ) |
---|
2016 | CALL user_actions( 'e-tendency' ) |
---|
2017 | |
---|
2018 | ! |
---|
2019 | !-- Prognostic equation for TKE. |
---|
2020 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
2021 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
2022 | !-- value is reduced by 90%. |
---|
2023 | !$acc kernels present( e, e_p, nzb_s_inner, tend, te_m ) |
---|
2024 | !$acc loop |
---|
2025 | DO i = nxl, nxr |
---|
2026 | DO j = nys, nyn |
---|
2027 | !$acc loop vector( 32 ) |
---|
2028 | DO k = 1, nzt |
---|
2029 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
2030 | e_p(k,j,i) = e(k,j,i) + dt_3d * ( sbt * tend(k,j,i) + & |
---|
2031 | tsc(3) * te_m(k,j,i) ) |
---|
2032 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
2033 | ! |
---|
2034 | !-- Tendencies for the next Runge-Kutta step |
---|
2035 | IF ( runge_step == 1 ) THEN |
---|
2036 | te_m(k,j,i) = tend(k,j,i) |
---|
2037 | ELSEIF ( runge_step == 2 ) THEN |
---|
2038 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
2039 | ENDIF |
---|
2040 | ENDIF |
---|
2041 | ENDDO |
---|
2042 | ENDDO |
---|
2043 | ENDDO |
---|
2044 | !$acc end kernels |
---|
2045 | |
---|
2046 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
2047 | |
---|
2048 | ENDIF |
---|
2049 | |
---|
2050 | |
---|
2051 | END SUBROUTINE prognostic_equations_acc |
---|
2052 | |
---|
2053 | |
---|
2054 | END MODULE prognostic_equations_mod |
---|