[1] | 1 | MODULE prognostic_equations_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[110] | 6 | ! |
---|
[98] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: prognostic_equations.f90 110 2007-10-05 05:13:14Z raasch $ |
---|
| 11 | ! |
---|
[110] | 12 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 13 | ! +uswst, vswst as arguments in calls of diffusion_u|v, |
---|
| 14 | ! loops for u and v are starting from index nxlu, nysv, respectively (needed |
---|
| 15 | ! for non-cyclic boundary conditions) |
---|
| 16 | ! |
---|
[98] | 17 | ! 97 2007-06-21 08:23:15Z raasch |
---|
[96] | 18 | ! prognostic equation for salinity, density is calculated from equation of |
---|
[97] | 19 | ! state for seawater and is used for calculation of buoyancy, |
---|
| 20 | ! +eqn_state_seawater_mod |
---|
| 21 | ! diffusion_e is called with argument rho in case of ocean runs, |
---|
| 22 | ! new argument zw in calls of diffusion_e, new argument pt_/prho_reference |
---|
| 23 | ! in calls of buoyancy and diffusion_e, calc_mean_pt_profile renamed |
---|
[96] | 24 | ! calc_mean_profile |
---|
[1] | 25 | ! |
---|
[77] | 26 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 27 | ! checking for negative q and limiting for positive values, |
---|
| 28 | ! z0 removed from arguments in calls of diffusion_u/v/w, uxrp, vynp eliminated, |
---|
| 29 | ! subroutine names changed to .._noopt, .._cache, and .._vector, |
---|
| 30 | ! moisture renamed humidity, Bott-Chlond-scheme can be used in the |
---|
| 31 | ! _vector-version |
---|
| 32 | ! |
---|
[39] | 33 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 34 | ! Calculation of e, q, and pt extended for gridpoint nzt, |
---|
| 35 | ! handling of given temperature/humidity/scalar fluxes at top surface |
---|
| 36 | ! |
---|
[3] | 37 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 38 | ! |
---|
[1] | 39 | ! Revision 1.21 2006/08/04 15:01:07 raasch |
---|
| 40 | ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) |
---|
| 41 | ! regardless of the timestep scheme used for the other quantities, |
---|
| 42 | ! new argument diss in call of diffusion_e |
---|
| 43 | ! |
---|
| 44 | ! Revision 1.1 2000/04/13 14:56:27 schroeter |
---|
| 45 | ! Initial revision |
---|
| 46 | ! |
---|
| 47 | ! |
---|
| 48 | ! Description: |
---|
| 49 | ! ------------ |
---|
[19] | 50 | ! Solving the prognostic equations. |
---|
[1] | 51 | !------------------------------------------------------------------------------! |
---|
| 52 | |
---|
| 53 | USE arrays_3d |
---|
| 54 | USE control_parameters |
---|
| 55 | USE cpulog |
---|
[96] | 56 | USE eqn_state_seawater_mod |
---|
[1] | 57 | USE grid_variables |
---|
| 58 | USE indices |
---|
| 59 | USE interfaces |
---|
| 60 | USE pegrid |
---|
| 61 | USE pointer_interfaces |
---|
| 62 | USE statistics |
---|
| 63 | |
---|
| 64 | USE advec_s_pw_mod |
---|
| 65 | USE advec_s_up_mod |
---|
| 66 | USE advec_u_pw_mod |
---|
| 67 | USE advec_u_up_mod |
---|
| 68 | USE advec_v_pw_mod |
---|
| 69 | USE advec_v_up_mod |
---|
| 70 | USE advec_w_pw_mod |
---|
| 71 | USE advec_w_up_mod |
---|
| 72 | USE buoyancy_mod |
---|
| 73 | USE calc_precipitation_mod |
---|
| 74 | USE calc_radiation_mod |
---|
| 75 | USE coriolis_mod |
---|
| 76 | USE diffusion_e_mod |
---|
| 77 | USE diffusion_s_mod |
---|
| 78 | USE diffusion_u_mod |
---|
| 79 | USE diffusion_v_mod |
---|
| 80 | USE diffusion_w_mod |
---|
| 81 | USE impact_of_latent_heat_mod |
---|
| 82 | USE production_e_mod |
---|
| 83 | USE user_actions_mod |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | PRIVATE |
---|
[63] | 87 | PUBLIC prognostic_equations_noopt, prognostic_equations_cache, & |
---|
| 88 | prognostic_equations_vector |
---|
[1] | 89 | |
---|
[63] | 90 | INTERFACE prognostic_equations_noopt |
---|
| 91 | MODULE PROCEDURE prognostic_equations_noopt |
---|
| 92 | END INTERFACE prognostic_equations_noopt |
---|
[1] | 93 | |
---|
[63] | 94 | INTERFACE prognostic_equations_cache |
---|
| 95 | MODULE PROCEDURE prognostic_equations_cache |
---|
| 96 | END INTERFACE prognostic_equations_cache |
---|
[1] | 97 | |
---|
[63] | 98 | INTERFACE prognostic_equations_vector |
---|
| 99 | MODULE PROCEDURE prognostic_equations_vector |
---|
| 100 | END INTERFACE prognostic_equations_vector |
---|
[1] | 101 | |
---|
| 102 | |
---|
| 103 | CONTAINS |
---|
| 104 | |
---|
| 105 | |
---|
[63] | 106 | SUBROUTINE prognostic_equations_noopt |
---|
[1] | 107 | |
---|
| 108 | !------------------------------------------------------------------------------! |
---|
| 109 | ! Version with single loop optimization |
---|
| 110 | ! |
---|
| 111 | ! (Optimized over each single prognostic equation.) |
---|
| 112 | !------------------------------------------------------------------------------! |
---|
| 113 | |
---|
| 114 | IMPLICIT NONE |
---|
| 115 | |
---|
| 116 | CHARACTER (LEN=9) :: time_to_string |
---|
| 117 | INTEGER :: i, j, k |
---|
| 118 | REAL :: sat, sbt |
---|
| 119 | |
---|
| 120 | ! |
---|
| 121 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 122 | !-- global communication |
---|
[96] | 123 | CALL calc_mean_profile( pt, 4 ) |
---|
| 124 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 125 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 126 | |
---|
| 127 | ! |
---|
| 128 | !-- u-velocity component |
---|
| 129 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 130 | |
---|
| 131 | ! |
---|
| 132 | !-- u-tendency terms with communication |
---|
| 133 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 134 | tend = 0.0 |
---|
| 135 | CALL advec_u_ups |
---|
| 136 | ENDIF |
---|
| 137 | |
---|
| 138 | ! |
---|
| 139 | !-- u-tendency terms with no communication |
---|
[106] | 140 | DO i = nxlu, nxr |
---|
[1] | 141 | DO j = nys, nyn |
---|
| 142 | ! |
---|
| 143 | !-- Tendency terms |
---|
| 144 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 145 | tend(:,j,i) = 0.0 |
---|
| 146 | CALL advec_u_pw( i, j ) |
---|
| 147 | ELSE |
---|
| 148 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 149 | tend(:,j,i) = 0.0 |
---|
| 150 | CALL advec_u_up( i, j ) |
---|
| 151 | ENDIF |
---|
| 152 | ENDIF |
---|
| 153 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 154 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & |
---|
[102] | 155 | usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 156 | ELSE |
---|
| 157 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & |
---|
[102] | 158 | uswst, v, w ) |
---|
[1] | 159 | ENDIF |
---|
| 160 | CALL coriolis( i, j, 1 ) |
---|
[97] | 161 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, 4 ) |
---|
[1] | 162 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 163 | |
---|
| 164 | ! |
---|
| 165 | !-- Prognostic equation for u-velocity component |
---|
| 166 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 167 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 168 | dt_3d * ( & |
---|
| 169 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 170 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 171 | ) - & |
---|
| 172 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 173 | ENDDO |
---|
| 174 | |
---|
| 175 | ! |
---|
| 176 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 177 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 178 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 179 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 180 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 181 | ENDDO |
---|
| 182 | ELSEIF ( intermediate_timestep_count < & |
---|
| 183 | intermediate_timestep_count_max ) THEN |
---|
| 184 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 185 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 186 | ENDDO |
---|
| 187 | ENDIF |
---|
| 188 | ENDIF |
---|
| 189 | |
---|
| 190 | ENDDO |
---|
| 191 | ENDDO |
---|
| 192 | |
---|
| 193 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 194 | |
---|
| 195 | ! |
---|
| 196 | !-- v-velocity component |
---|
| 197 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 198 | |
---|
| 199 | ! |
---|
| 200 | !-- v-tendency terms with communication |
---|
| 201 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 202 | tend = 0.0 |
---|
| 203 | CALL advec_v_ups |
---|
| 204 | ENDIF |
---|
| 205 | |
---|
| 206 | ! |
---|
| 207 | !-- v-tendency terms with no communication |
---|
| 208 | DO i = nxl, nxr |
---|
[106] | 209 | DO j = nysv, nyn |
---|
[1] | 210 | ! |
---|
| 211 | !-- Tendency terms |
---|
| 212 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 213 | tend(:,j,i) = 0.0 |
---|
| 214 | CALL advec_v_pw( i, j ) |
---|
| 215 | ELSE |
---|
| 216 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 217 | tend(:,j,i) = 0.0 |
---|
| 218 | CALL advec_v_up( i, j ) |
---|
| 219 | ENDIF |
---|
| 220 | ENDIF |
---|
| 221 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 222 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & |
---|
[102] | 223 | v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 224 | ELSE |
---|
| 225 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 226 | vsws, vswst, w ) |
---|
[1] | 227 | ENDIF |
---|
| 228 | CALL coriolis( i, j, 2 ) |
---|
| 229 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 230 | |
---|
| 231 | ! |
---|
| 232 | !-- Prognostic equation for v-velocity component |
---|
| 233 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 234 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 235 | dt_3d * ( & |
---|
| 236 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 237 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 238 | ) - & |
---|
| 239 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 240 | ENDDO |
---|
| 241 | |
---|
| 242 | ! |
---|
| 243 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 244 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 245 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 246 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 247 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 248 | ENDDO |
---|
| 249 | ELSEIF ( intermediate_timestep_count < & |
---|
| 250 | intermediate_timestep_count_max ) THEN |
---|
| 251 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 252 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 253 | ENDDO |
---|
| 254 | ENDIF |
---|
| 255 | ENDIF |
---|
| 256 | |
---|
| 257 | ENDDO |
---|
| 258 | ENDDO |
---|
| 259 | |
---|
| 260 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 261 | |
---|
| 262 | ! |
---|
| 263 | !-- w-velocity component |
---|
| 264 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 265 | |
---|
| 266 | ! |
---|
| 267 | !-- w-tendency terms with communication |
---|
| 268 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 269 | tend = 0.0 |
---|
| 270 | CALL advec_w_ups |
---|
| 271 | ENDIF |
---|
| 272 | |
---|
| 273 | ! |
---|
| 274 | !-- w-tendency terms with no communication |
---|
| 275 | DO i = nxl, nxr |
---|
| 276 | DO j = nys, nyn |
---|
| 277 | ! |
---|
| 278 | !-- Tendency terms |
---|
| 279 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 280 | tend(:,j,i) = 0.0 |
---|
| 281 | CALL advec_w_pw( i, j ) |
---|
| 282 | ELSE |
---|
| 283 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 284 | tend(:,j,i) = 0.0 |
---|
| 285 | CALL advec_w_up( i, j ) |
---|
| 286 | ENDIF |
---|
| 287 | ENDIF |
---|
| 288 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 289 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & |
---|
[57] | 290 | tend, u_m, v_m, w_m ) |
---|
[1] | 291 | ELSE |
---|
| 292 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
[57] | 293 | tend, u, v, w ) |
---|
[1] | 294 | ENDIF |
---|
| 295 | CALL coriolis( i, j, 3 ) |
---|
[97] | 296 | IF ( ocean ) THEN |
---|
| 297 | CALL buoyancy( i, j, rho, prho_reference, 3, 64 ) |
---|
[1] | 298 | ELSE |
---|
[97] | 299 | IF ( .NOT. humidity ) THEN |
---|
| 300 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 301 | ELSE |
---|
| 302 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 303 | ENDIF |
---|
[1] | 304 | ENDIF |
---|
| 305 | CALL user_actions( i, j, 'w-tendency' ) |
---|
| 306 | |
---|
| 307 | ! |
---|
| 308 | !-- Prognostic equation for w-velocity component |
---|
| 309 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 310 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 311 | dt_3d * ( & |
---|
| 312 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 313 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 314 | ) - & |
---|
| 315 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 316 | ENDDO |
---|
| 317 | |
---|
| 318 | ! |
---|
| 319 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 320 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 321 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 322 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 323 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 324 | ENDDO |
---|
| 325 | ELSEIF ( intermediate_timestep_count < & |
---|
| 326 | intermediate_timestep_count_max ) THEN |
---|
| 327 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 328 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 329 | ENDDO |
---|
| 330 | ENDIF |
---|
| 331 | ENDIF |
---|
| 332 | |
---|
| 333 | ENDDO |
---|
| 334 | ENDDO |
---|
| 335 | |
---|
| 336 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 337 | |
---|
| 338 | ! |
---|
| 339 | !-- potential temperature |
---|
| 340 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 341 | |
---|
| 342 | ! |
---|
| 343 | !-- pt-tendency terms with communication |
---|
[70] | 344 | sat = tsc(1) |
---|
| 345 | sbt = tsc(2) |
---|
[1] | 346 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 347 | |
---|
| 348 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 349 | ! |
---|
[70] | 350 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 351 | !-- switched on. Thus: |
---|
| 352 | sat = 1.0 |
---|
| 353 | sbt = 1.0 |
---|
| 354 | ENDIF |
---|
[1] | 355 | tend = 0.0 |
---|
| 356 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 357 | ELSE |
---|
| 358 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 359 | tend = 0.0 |
---|
| 360 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 361 | ENDIF |
---|
| 362 | ENDIF |
---|
| 363 | |
---|
| 364 | ! |
---|
| 365 | !-- pt-tendency terms with no communication |
---|
| 366 | DO i = nxl, nxr |
---|
| 367 | DO j = nys, nyn |
---|
| 368 | ! |
---|
| 369 | !-- Tendency terms |
---|
| 370 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 371 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 372 | ELSE |
---|
| 373 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 374 | tend(:,j,i) = 0.0 |
---|
| 375 | CALL advec_s_pw( i, j, pt ) |
---|
| 376 | ELSE |
---|
| 377 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 378 | tend(:,j,i) = 0.0 |
---|
| 379 | CALL advec_s_up( i, j, pt ) |
---|
| 380 | ENDIF |
---|
| 381 | ENDIF |
---|
| 382 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 383 | THEN |
---|
[19] | 384 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
| 385 | tswst_m, tend ) |
---|
[1] | 386 | ELSE |
---|
[19] | 387 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 388 | ENDIF |
---|
| 389 | ENDIF |
---|
| 390 | |
---|
| 391 | ! |
---|
| 392 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 393 | !-- processes |
---|
| 394 | IF ( radiation ) THEN |
---|
| 395 | CALL calc_radiation( i, j ) |
---|
| 396 | ENDIF |
---|
| 397 | |
---|
| 398 | ! |
---|
| 399 | !-- If required compute impact of latent heat due to precipitation |
---|
| 400 | IF ( precipitation ) THEN |
---|
| 401 | CALL impact_of_latent_heat( i, j ) |
---|
| 402 | ENDIF |
---|
| 403 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 404 | |
---|
| 405 | ! |
---|
| 406 | !-- Prognostic equation for potential temperature |
---|
[19] | 407 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 408 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 409 | dt_3d * ( & |
---|
| 410 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 411 | ) - & |
---|
| 412 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 413 | ENDDO |
---|
| 414 | |
---|
| 415 | ! |
---|
| 416 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 417 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 418 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 419 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 420 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 421 | ENDDO |
---|
| 422 | ELSEIF ( intermediate_timestep_count < & |
---|
| 423 | intermediate_timestep_count_max ) THEN |
---|
[19] | 424 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 425 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 426 | ENDDO |
---|
| 427 | ENDIF |
---|
| 428 | ENDIF |
---|
| 429 | |
---|
| 430 | ENDDO |
---|
| 431 | ENDDO |
---|
| 432 | |
---|
| 433 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 434 | |
---|
| 435 | ! |
---|
[95] | 436 | !-- If required, compute prognostic equation for salinity |
---|
| 437 | IF ( ocean ) THEN |
---|
| 438 | |
---|
| 439 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 440 | |
---|
| 441 | ! |
---|
| 442 | !-- sa-tendency terms with communication |
---|
| 443 | sat = tsc(1) |
---|
| 444 | sbt = tsc(2) |
---|
| 445 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 446 | |
---|
| 447 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 448 | ! |
---|
| 449 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 450 | !-- switched on. Thus: |
---|
| 451 | sat = 1.0 |
---|
| 452 | sbt = 1.0 |
---|
| 453 | ENDIF |
---|
| 454 | tend = 0.0 |
---|
| 455 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 456 | ELSE |
---|
| 457 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 458 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 459 | tend = 0.0 |
---|
| 460 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 461 | ENDIF |
---|
| 462 | ENDIF |
---|
| 463 | ENDIF |
---|
| 464 | |
---|
| 465 | ! |
---|
| 466 | !-- sa terms with no communication |
---|
| 467 | DO i = nxl, nxr |
---|
| 468 | DO j = nys, nyn |
---|
| 469 | ! |
---|
| 470 | !-- Tendency-terms |
---|
| 471 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 472 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 473 | tend ) |
---|
| 474 | ELSE |
---|
| 475 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 476 | tend(:,j,i) = 0.0 |
---|
| 477 | CALL advec_s_pw( i, j, sa ) |
---|
| 478 | ELSE |
---|
| 479 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 480 | tend(:,j,i) = 0.0 |
---|
| 481 | CALL advec_s_up( i, j, sa ) |
---|
| 482 | ENDIF |
---|
| 483 | ENDIF |
---|
| 484 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 485 | tend ) |
---|
| 486 | ENDIF |
---|
| 487 | |
---|
| 488 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 489 | |
---|
| 490 | ! |
---|
| 491 | !-- Prognostic equation for salinity |
---|
| 492 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 493 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 494 | dt_3d * ( & |
---|
| 495 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 496 | ) - & |
---|
| 497 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 498 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 499 | ENDDO |
---|
| 500 | |
---|
| 501 | ! |
---|
| 502 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 503 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 504 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 505 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 506 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 507 | ENDDO |
---|
| 508 | ELSEIF ( intermediate_timestep_count < & |
---|
| 509 | intermediate_timestep_count_max ) THEN |
---|
| 510 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 511 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 512 | 5.3125 * tsa_m(k,j,i) |
---|
| 513 | ENDDO |
---|
| 514 | ENDIF |
---|
| 515 | ENDIF |
---|
| 516 | |
---|
[96] | 517 | ! |
---|
| 518 | !-- Calculate density by the equation of state for seawater |
---|
| 519 | CALL eqn_state_seawater( i, j ) |
---|
| 520 | |
---|
[95] | 521 | ENDDO |
---|
| 522 | ENDDO |
---|
| 523 | |
---|
| 524 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 525 | |
---|
| 526 | ENDIF |
---|
| 527 | |
---|
| 528 | ! |
---|
[1] | 529 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 530 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 531 | |
---|
| 532 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 533 | |
---|
| 534 | ! |
---|
| 535 | !-- Scalar/q-tendency terms with communication |
---|
[70] | 536 | sat = tsc(1) |
---|
| 537 | sbt = tsc(2) |
---|
[1] | 538 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 539 | |
---|
| 540 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 541 | ! |
---|
[70] | 542 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 543 | !-- switched on. Thus: |
---|
| 544 | sat = 1.0 |
---|
| 545 | sbt = 1.0 |
---|
| 546 | ENDIF |
---|
[1] | 547 | tend = 0.0 |
---|
| 548 | CALL advec_s_bc( q, 'q' ) |
---|
| 549 | ELSE |
---|
| 550 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 551 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 552 | tend = 0.0 |
---|
| 553 | CALL advec_s_ups( q, 'q' ) |
---|
| 554 | ENDIF |
---|
| 555 | ENDIF |
---|
| 556 | ENDIF |
---|
| 557 | |
---|
| 558 | ! |
---|
| 559 | !-- Scalar/q-tendency terms with no communication |
---|
| 560 | DO i = nxl, nxr |
---|
| 561 | DO j = nys, nyn |
---|
| 562 | ! |
---|
| 563 | !-- Tendency-terms |
---|
| 564 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 565 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 566 | ELSE |
---|
| 567 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 568 | tend(:,j,i) = 0.0 |
---|
| 569 | CALL advec_s_pw( i, j, q ) |
---|
| 570 | ELSE |
---|
| 571 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 572 | tend(:,j,i) = 0.0 |
---|
| 573 | CALL advec_s_up( i, j, q ) |
---|
| 574 | ENDIF |
---|
| 575 | ENDIF |
---|
| 576 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 577 | THEN |
---|
| 578 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
[19] | 579 | qswst_m, tend ) |
---|
| 580 | ELSE |
---|
| 581 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
[1] | 582 | tend ) |
---|
| 583 | ENDIF |
---|
| 584 | ENDIF |
---|
| 585 | |
---|
| 586 | ! |
---|
| 587 | !-- If required compute decrease of total water content due to |
---|
| 588 | !-- precipitation |
---|
| 589 | IF ( precipitation ) THEN |
---|
| 590 | CALL calc_precipitation( i, j ) |
---|
| 591 | ENDIF |
---|
| 592 | CALL user_actions( i, j, 'q-tendency' ) |
---|
| 593 | |
---|
| 594 | ! |
---|
| 595 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 596 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 597 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 598 | dt_3d * ( & |
---|
| 599 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 600 | ) - & |
---|
| 601 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 602 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 603 | ENDDO |
---|
| 604 | |
---|
| 605 | ! |
---|
| 606 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 607 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 608 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 609 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 610 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 611 | ENDDO |
---|
| 612 | ELSEIF ( intermediate_timestep_count < & |
---|
| 613 | intermediate_timestep_count_max ) THEN |
---|
[19] | 614 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 615 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 616 | ENDDO |
---|
| 617 | ENDIF |
---|
| 618 | ENDIF |
---|
| 619 | |
---|
| 620 | ENDDO |
---|
| 621 | ENDDO |
---|
| 622 | |
---|
| 623 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 624 | |
---|
| 625 | ENDIF |
---|
| 626 | |
---|
| 627 | ! |
---|
| 628 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 629 | !-- energy (TKE) |
---|
| 630 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 631 | |
---|
| 632 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 633 | |
---|
| 634 | ! |
---|
| 635 | !-- TKE-tendency terms with communication |
---|
| 636 | CALL production_e_init |
---|
[70] | 637 | |
---|
| 638 | sat = tsc(1) |
---|
| 639 | sbt = tsc(2) |
---|
[1] | 640 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 641 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[70] | 642 | |
---|
| 643 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 644 | ! |
---|
[70] | 645 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 646 | !-- switched on. Thus: |
---|
| 647 | sat = 1.0 |
---|
| 648 | sbt = 1.0 |
---|
| 649 | ENDIF |
---|
[1] | 650 | tend = 0.0 |
---|
| 651 | CALL advec_s_bc( e, 'e' ) |
---|
| 652 | ELSE |
---|
| 653 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 654 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 655 | tend = 0.0 |
---|
| 656 | CALL advec_s_ups( e, 'e' ) |
---|
| 657 | ENDIF |
---|
| 658 | ENDIF |
---|
| 659 | ENDIF |
---|
| 660 | ENDIF |
---|
| 661 | |
---|
| 662 | ! |
---|
| 663 | !-- TKE-tendency terms with no communication |
---|
| 664 | DO i = nxl, nxr |
---|
| 665 | DO j = nys, nyn |
---|
| 666 | ! |
---|
| 667 | !-- Tendency-terms |
---|
| 668 | IF ( scalar_advec == 'bc-scheme' .AND. & |
---|
| 669 | .NOT. use_upstream_for_tke ) THEN |
---|
[75] | 670 | IF ( .NOT. humidity ) THEN |
---|
[97] | 671 | IF ( ocean ) THEN |
---|
| 672 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 673 | l_grid, rho, prho_reference, rif, tend, & |
---|
| 674 | zu, zw ) |
---|
| 675 | ELSE |
---|
| 676 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 677 | l_grid, pt, pt_reference, rif, tend, & |
---|
| 678 | zu, zw ) |
---|
| 679 | ENDIF |
---|
[1] | 680 | ELSE |
---|
[97] | 681 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 682 | l_grid, vpt, pt_reference, rif, tend, zu, & |
---|
| 683 | zw ) |
---|
[1] | 684 | ENDIF |
---|
| 685 | ELSE |
---|
| 686 | IF ( use_upstream_for_tke ) THEN |
---|
| 687 | tend(:,j,i) = 0.0 |
---|
| 688 | CALL advec_s_up( i, j, e ) |
---|
| 689 | ELSE |
---|
| 690 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 691 | THEN |
---|
| 692 | tend(:,j,i) = 0.0 |
---|
| 693 | CALL advec_s_pw( i, j, e ) |
---|
| 694 | ELSE |
---|
| 695 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 696 | tend(:,j,i) = 0.0 |
---|
| 697 | CALL advec_s_up( i, j, e ) |
---|
| 698 | ENDIF |
---|
| 699 | ENDIF |
---|
| 700 | ENDIF |
---|
| 701 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 702 | THEN |
---|
[75] | 703 | IF ( .NOT. humidity ) THEN |
---|
[1] | 704 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 705 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 706 | rif_m, tend, zu, zw ) |
---|
[1] | 707 | ELSE |
---|
| 708 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
[97] | 709 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 710 | rif_m, tend, zu, zw ) |
---|
[1] | 711 | ENDIF |
---|
| 712 | ELSE |
---|
[75] | 713 | IF ( .NOT. humidity ) THEN |
---|
[97] | 714 | IF ( ocean ) THEN |
---|
| 715 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 716 | km, l_grid, rho, prho_reference, & |
---|
| 717 | rif, tend, zu, zw ) |
---|
| 718 | ELSE |
---|
| 719 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 720 | km, l_grid, pt, pt_reference, rif, & |
---|
| 721 | tend, zu, zw ) |
---|
| 722 | ENDIF |
---|
[1] | 723 | ELSE |
---|
| 724 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
[97] | 725 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 726 | zu, zw ) |
---|
[1] | 727 | ENDIF |
---|
| 728 | ENDIF |
---|
| 729 | ENDIF |
---|
| 730 | CALL production_e( i, j ) |
---|
| 731 | CALL user_actions( i, j, 'e-tendency' ) |
---|
| 732 | |
---|
| 733 | ! |
---|
| 734 | !-- Prognostic equation for TKE. |
---|
| 735 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 736 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 737 | !-- value is reduced by 90%. |
---|
[19] | 738 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 739 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 740 | dt_3d * ( & |
---|
| 741 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 742 | ) |
---|
| 743 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 744 | ENDDO |
---|
| 745 | |
---|
| 746 | ! |
---|
| 747 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 748 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 749 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 750 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 751 | te_m(k,j,i) = tend(k,j,i) |
---|
| 752 | ENDDO |
---|
| 753 | ELSEIF ( intermediate_timestep_count < & |
---|
| 754 | intermediate_timestep_count_max ) THEN |
---|
[19] | 755 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 756 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 757 | ENDDO |
---|
| 758 | ENDIF |
---|
| 759 | ENDIF |
---|
| 760 | |
---|
| 761 | ENDDO |
---|
| 762 | ENDDO |
---|
| 763 | |
---|
| 764 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 765 | |
---|
| 766 | ENDIF |
---|
| 767 | |
---|
| 768 | |
---|
[63] | 769 | END SUBROUTINE prognostic_equations_noopt |
---|
[1] | 770 | |
---|
| 771 | |
---|
[63] | 772 | SUBROUTINE prognostic_equations_cache |
---|
[1] | 773 | |
---|
| 774 | !------------------------------------------------------------------------------! |
---|
| 775 | ! Version with one optimized loop over all equations. It is only allowed to |
---|
| 776 | ! be called for the standard Piascek-Williams advection scheme. |
---|
| 777 | ! |
---|
[95] | 778 | ! Here the calls of most subroutines are embedded in two DO loops over i and j, |
---|
| 779 | ! so communication between CPUs is not allowed (does not make sense) within |
---|
| 780 | ! these loops. |
---|
[1] | 781 | ! |
---|
| 782 | ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) |
---|
| 783 | !------------------------------------------------------------------------------! |
---|
| 784 | |
---|
| 785 | IMPLICIT NONE |
---|
| 786 | |
---|
| 787 | CHARACTER (LEN=9) :: time_to_string |
---|
| 788 | INTEGER :: i, j, k |
---|
| 789 | |
---|
| 790 | |
---|
| 791 | ! |
---|
| 792 | !-- Time measurement can only be performed for the whole set of equations |
---|
| 793 | CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) |
---|
| 794 | |
---|
| 795 | |
---|
| 796 | ! |
---|
| 797 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 798 | !-- global communication |
---|
[96] | 799 | CALL calc_mean_profile( pt, 4 ) |
---|
| 800 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 801 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 802 | IF ( .NOT. constant_diffusion ) CALL production_e_init |
---|
| 803 | |
---|
| 804 | |
---|
| 805 | ! |
---|
| 806 | !-- Loop over all prognostic equations |
---|
| 807 | !$OMP PARALLEL private (i,j,k) |
---|
| 808 | !$OMP DO |
---|
[75] | 809 | DO i = nxl, nxr |
---|
| 810 | DO j = nys, nyn |
---|
[1] | 811 | ! |
---|
| 812 | !-- Tendency terms for u-velocity component |
---|
[106] | 813 | IF ( .NOT. outflow_l .OR. i > nxl ) THEN |
---|
[1] | 814 | |
---|
| 815 | tend(:,j,i) = 0.0 |
---|
| 816 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 817 | CALL advec_u_pw( i, j ) |
---|
| 818 | ELSE |
---|
| 819 | CALL advec_u_up( i, j ) |
---|
| 820 | ENDIF |
---|
| 821 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 822 | THEN |
---|
| 823 | CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & |
---|
[102] | 824 | u_m, usws_m, uswst_m, v_m, w_m ) |
---|
[1] | 825 | ELSE |
---|
| 826 | CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & |
---|
[102] | 827 | usws, uswst, v, w ) |
---|
[1] | 828 | ENDIF |
---|
| 829 | CALL coriolis( i, j, 1 ) |
---|
[97] | 830 | IF ( sloping_surface ) CALL buoyancy( i, j, pt, pt_reference, 1, & |
---|
| 831 | 4 ) |
---|
[1] | 832 | CALL user_actions( i, j, 'u-tendency' ) |
---|
| 833 | |
---|
| 834 | ! |
---|
| 835 | !-- Prognostic equation for u-velocity component |
---|
| 836 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 837 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 838 | dt_3d * ( & |
---|
| 839 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 840 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 841 | ) - & |
---|
| 842 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 843 | ENDDO |
---|
| 844 | |
---|
| 845 | ! |
---|
| 846 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 847 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 848 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 849 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 850 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 851 | ENDDO |
---|
| 852 | ELSEIF ( intermediate_timestep_count < & |
---|
| 853 | intermediate_timestep_count_max ) THEN |
---|
| 854 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 855 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 856 | ENDDO |
---|
| 857 | ENDIF |
---|
| 858 | ENDIF |
---|
| 859 | |
---|
| 860 | ENDIF |
---|
| 861 | |
---|
| 862 | ! |
---|
| 863 | !-- Tendency terms for v-velocity component |
---|
[106] | 864 | IF ( .NOT. outflow_s .OR. j > nys ) THEN |
---|
[1] | 865 | |
---|
| 866 | tend(:,j,i) = 0.0 |
---|
| 867 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 868 | CALL advec_v_pw( i, j ) |
---|
| 869 | ELSE |
---|
| 870 | CALL advec_v_up( i, j ) |
---|
| 871 | ENDIF |
---|
| 872 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 873 | THEN |
---|
| 874 | CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & |
---|
[102] | 875 | u_m, v_m, vsws_m, vswst_m, w_m ) |
---|
[1] | 876 | ELSE |
---|
| 877 | CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & |
---|
[102] | 878 | vsws, vswst, w ) |
---|
[1] | 879 | ENDIF |
---|
| 880 | CALL coriolis( i, j, 2 ) |
---|
| 881 | CALL user_actions( i, j, 'v-tendency' ) |
---|
| 882 | |
---|
| 883 | ! |
---|
| 884 | !-- Prognostic equation for v-velocity component |
---|
| 885 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 886 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 887 | dt_3d * ( & |
---|
| 888 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 889 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 890 | ) - & |
---|
| 891 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 892 | ENDDO |
---|
| 893 | |
---|
| 894 | ! |
---|
| 895 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 896 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 897 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 898 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 899 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 900 | ENDDO |
---|
| 901 | ELSEIF ( intermediate_timestep_count < & |
---|
| 902 | intermediate_timestep_count_max ) THEN |
---|
| 903 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 904 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 905 | ENDDO |
---|
| 906 | ENDIF |
---|
| 907 | ENDIF |
---|
| 908 | |
---|
| 909 | ENDIF |
---|
| 910 | |
---|
| 911 | ! |
---|
| 912 | !-- Tendency terms for w-velocity component |
---|
[106] | 913 | tend(:,j,i) = 0.0 |
---|
| 914 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 915 | CALL advec_w_pw( i, j ) |
---|
| 916 | ELSE |
---|
| 917 | CALL advec_w_up( i, j ) |
---|
| 918 | ENDIF |
---|
| 919 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 920 | THEN |
---|
| 921 | CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & |
---|
| 922 | km_damp_y, tend, u_m, v_m, w_m ) |
---|
| 923 | ELSE |
---|
| 924 | CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & |
---|
| 925 | tend, u, v, w ) |
---|
| 926 | ENDIF |
---|
| 927 | CALL coriolis( i, j, 3 ) |
---|
| 928 | IF ( ocean ) THEN |
---|
| 929 | CALL buoyancy( i, j, rho, prho_reference, 3, 64 ) |
---|
| 930 | ELSE |
---|
| 931 | IF ( .NOT. humidity ) THEN |
---|
| 932 | CALL buoyancy( i, j, pt, pt_reference, 3, 4 ) |
---|
| 933 | ELSE |
---|
| 934 | CALL buoyancy( i, j, vpt, pt_reference, 3, 44 ) |
---|
| 935 | ENDIF |
---|
| 936 | ENDIF |
---|
| 937 | CALL user_actions( i, j, 'w-tendency' ) |
---|
[1] | 938 | |
---|
[106] | 939 | ! |
---|
| 940 | !-- Prognostic equation for w-velocity component |
---|
| 941 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 942 | w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 943 | dt_3d * ( & |
---|
| 944 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 945 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 946 | ) - & |
---|
| 947 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 948 | ENDDO |
---|
| 949 | |
---|
| 950 | ! |
---|
| 951 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 952 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 953 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 954 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 955 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 956 | ENDDO |
---|
| 957 | ELSEIF ( intermediate_timestep_count < & |
---|
| 958 | intermediate_timestep_count_max ) THEN |
---|
| 959 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 960 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 961 | ENDDO |
---|
| 962 | ENDIF |
---|
| 963 | ENDIF |
---|
| 964 | |
---|
| 965 | ! |
---|
| 966 | !-- Tendency terms for potential temperature |
---|
| 967 | tend(:,j,i) = 0.0 |
---|
| 968 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 969 | CALL advec_s_pw( i, j, pt ) |
---|
| 970 | ELSE |
---|
| 971 | CALL advec_s_up( i, j, pt ) |
---|
| 972 | ENDIF |
---|
| 973 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & |
---|
| 974 | THEN |
---|
| 975 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, & |
---|
| 976 | tswst_m, tend ) |
---|
| 977 | ELSE |
---|
| 978 | CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
| 979 | ENDIF |
---|
| 980 | |
---|
| 981 | ! |
---|
| 982 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 983 | !-- processes |
---|
| 984 | IF ( radiation ) THEN |
---|
| 985 | CALL calc_radiation( i, j ) |
---|
| 986 | ENDIF |
---|
| 987 | |
---|
| 988 | ! |
---|
| 989 | !-- If required compute impact of latent heat due to precipitation |
---|
| 990 | IF ( precipitation ) THEN |
---|
| 991 | CALL impact_of_latent_heat( i, j ) |
---|
| 992 | ENDIF |
---|
| 993 | CALL user_actions( i, j, 'pt-tendency' ) |
---|
| 994 | |
---|
| 995 | ! |
---|
| 996 | !-- Prognostic equation for potential temperature |
---|
| 997 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 998 | pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& |
---|
| 999 | dt_3d * ( & |
---|
| 1000 | tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1001 | ) - & |
---|
| 1002 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1003 | ENDDO |
---|
| 1004 | |
---|
| 1005 | ! |
---|
| 1006 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1007 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1008 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1009 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1010 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1011 | ENDDO |
---|
| 1012 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1013 | intermediate_timestep_count_max ) THEN |
---|
| 1014 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1015 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1016 | 5.3125 * tpt_m(k,j,i) |
---|
| 1017 | ENDDO |
---|
| 1018 | ENDIF |
---|
| 1019 | ENDIF |
---|
| 1020 | |
---|
| 1021 | ! |
---|
| 1022 | !-- If required, compute prognostic equation for salinity |
---|
| 1023 | IF ( ocean ) THEN |
---|
| 1024 | |
---|
| 1025 | ! |
---|
| 1026 | !-- Tendency-terms for salinity |
---|
[1] | 1027 | tend(:,j,i) = 0.0 |
---|
[106] | 1028 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
[1] | 1029 | THEN |
---|
[106] | 1030 | CALL advec_s_pw( i, j, sa ) |
---|
[1] | 1031 | ELSE |
---|
[106] | 1032 | CALL advec_s_up( i, j, sa ) |
---|
[1] | 1033 | ENDIF |
---|
[106] | 1034 | CALL diffusion_s( i, j, ddzu, ddzw, kh, sa, saswsb, saswst, & |
---|
| 1035 | tend ) |
---|
[1] | 1036 | |
---|
[106] | 1037 | CALL user_actions( i, j, 'sa-tendency' ) |
---|
| 1038 | |
---|
[1] | 1039 | ! |
---|
[106] | 1040 | !-- Prognostic equation for salinity |
---|
| 1041 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1042 | sa_p(k,j,i) = tsc(1) * sa(k,j,i) + & |
---|
| 1043 | dt_3d * ( & |
---|
| 1044 | tsc(2) * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1045 | ) - & |
---|
| 1046 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1047 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
[1] | 1048 | ENDDO |
---|
| 1049 | |
---|
| 1050 | ! |
---|
| 1051 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1052 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1053 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1054 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1055 | tsa_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1056 | ENDDO |
---|
| 1057 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1058 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1059 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1060 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1061 | 5.3125 * tsa_m(k,j,i) |
---|
[1] | 1062 | ENDDO |
---|
| 1063 | ENDIF |
---|
| 1064 | ENDIF |
---|
| 1065 | |
---|
| 1066 | ! |
---|
[106] | 1067 | !-- Calculate density by the equation of state for seawater |
---|
| 1068 | CALL eqn_state_seawater( i, j ) |
---|
| 1069 | |
---|
| 1070 | ENDIF |
---|
| 1071 | |
---|
| 1072 | ! |
---|
| 1073 | !-- If required, compute prognostic equation for total water content / |
---|
| 1074 | !-- scalar |
---|
| 1075 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 1076 | |
---|
| 1077 | ! |
---|
| 1078 | !-- Tendency-terms for total water content / scalar |
---|
[1] | 1079 | tend(:,j,i) = 0.0 |
---|
[106] | 1080 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1081 | THEN |
---|
| 1082 | CALL advec_s_pw( i, j, q ) |
---|
[1] | 1083 | ELSE |
---|
[106] | 1084 | CALL advec_s_up( i, j, q ) |
---|
[1] | 1085 | ENDIF |
---|
[106] | 1086 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
[1] | 1087 | THEN |
---|
[106] | 1088 | CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & |
---|
| 1089 | qswst_m, tend ) |
---|
[1] | 1090 | ELSE |
---|
[106] | 1091 | CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, qswst, & |
---|
| 1092 | tend ) |
---|
[1] | 1093 | ENDIF |
---|
[106] | 1094 | |
---|
[1] | 1095 | ! |
---|
[106] | 1096 | !-- If required compute decrease of total water content due to |
---|
| 1097 | !-- precipitation |
---|
[1] | 1098 | IF ( precipitation ) THEN |
---|
[106] | 1099 | CALL calc_precipitation( i, j ) |
---|
[1] | 1100 | ENDIF |
---|
[106] | 1101 | CALL user_actions( i, j, 'q-tendency' ) |
---|
[1] | 1102 | |
---|
| 1103 | ! |
---|
[106] | 1104 | !-- Prognostic equation for total water content / scalar |
---|
[19] | 1105 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1106 | q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& |
---|
| 1107 | dt_3d * ( & |
---|
| 1108 | tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1109 | ) - & |
---|
| 1110 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
| 1111 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1112 | ENDDO |
---|
| 1113 | |
---|
| 1114 | ! |
---|
| 1115 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1116 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1117 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[19] | 1118 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1119 | tq_m(k,j,i) = tend(k,j,i) |
---|
[1] | 1120 | ENDDO |
---|
| 1121 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1122 | intermediate_timestep_count_max ) THEN |
---|
[19] | 1123 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[106] | 1124 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1125 | 5.3125 * tq_m(k,j,i) |
---|
[1] | 1126 | ENDDO |
---|
| 1127 | ENDIF |
---|
| 1128 | ENDIF |
---|
| 1129 | |
---|
[106] | 1130 | ENDIF |
---|
[95] | 1131 | |
---|
| 1132 | ! |
---|
[106] | 1133 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1134 | !-- energy (TKE) |
---|
| 1135 | IF ( .NOT. constant_diffusion ) THEN |
---|
[95] | 1136 | |
---|
| 1137 | ! |
---|
[106] | 1138 | !-- Tendency-terms for TKE |
---|
| 1139 | tend(:,j,i) = 0.0 |
---|
| 1140 | IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & |
---|
| 1141 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
| 1142 | CALL advec_s_pw( i, j, e ) |
---|
| 1143 | ELSE |
---|
| 1144 | CALL advec_s_up( i, j, e ) |
---|
[95] | 1145 | ENDIF |
---|
[106] | 1146 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& |
---|
| 1147 | THEN |
---|
| 1148 | IF ( .NOT. humidity ) THEN |
---|
| 1149 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1150 | km_m, l_grid, pt_m, pt_reference, & |
---|
| 1151 | rif_m, tend, zu, zw ) |
---|
[1] | 1152 | ELSE |
---|
[106] | 1153 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & |
---|
| 1154 | km_m, l_grid, vpt_m, pt_reference, & |
---|
| 1155 | rif_m, tend, zu, zw ) |
---|
[1] | 1156 | ENDIF |
---|
[106] | 1157 | ELSE |
---|
| 1158 | IF ( .NOT. humidity ) THEN |
---|
| 1159 | IF ( ocean ) THEN |
---|
| 1160 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1161 | km, l_grid, rho, prho_reference, & |
---|
| 1162 | rif, tend, zu, zw ) |
---|
[1] | 1163 | ELSE |
---|
[106] | 1164 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, & |
---|
| 1165 | km, l_grid, pt, pt_reference, rif, & |
---|
| 1166 | tend, zu, zw ) |
---|
[1] | 1167 | ENDIF |
---|
| 1168 | ELSE |
---|
[106] | 1169 | CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & |
---|
| 1170 | l_grid, vpt, pt_reference, rif, tend, & |
---|
| 1171 | zu, zw ) |
---|
[1] | 1172 | ENDIF |
---|
[106] | 1173 | ENDIF |
---|
| 1174 | CALL production_e( i, j ) |
---|
| 1175 | CALL user_actions( i, j, 'e-tendency' ) |
---|
[1] | 1176 | |
---|
| 1177 | ! |
---|
[106] | 1178 | !-- Prognostic equation for TKE. |
---|
| 1179 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1180 | !-- reasons in the course of the integration. In such cases the old |
---|
| 1181 | !-- TKE value is reduced by 90%. |
---|
| 1182 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1183 | e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& |
---|
| 1184 | dt_3d * ( & |
---|
| 1185 | tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1186 | ) |
---|
| 1187 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1188 | ENDDO |
---|
[1] | 1189 | |
---|
| 1190 | ! |
---|
[106] | 1191 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1192 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1193 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1194 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1195 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1196 | ENDDO |
---|
| 1197 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1198 | intermediate_timestep_count_max ) THEN |
---|
| 1199 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1200 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1201 | 5.3125 * te_m(k,j,i) |
---|
| 1202 | ENDDO |
---|
[1] | 1203 | ENDIF |
---|
[106] | 1204 | ENDIF |
---|
[1] | 1205 | |
---|
[106] | 1206 | ENDIF ! TKE equation |
---|
[1] | 1207 | |
---|
| 1208 | ENDDO |
---|
| 1209 | ENDDO |
---|
| 1210 | !$OMP END PARALLEL |
---|
| 1211 | |
---|
| 1212 | CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) |
---|
| 1213 | |
---|
| 1214 | |
---|
[63] | 1215 | END SUBROUTINE prognostic_equations_cache |
---|
[1] | 1216 | |
---|
| 1217 | |
---|
[63] | 1218 | SUBROUTINE prognostic_equations_vector |
---|
[1] | 1219 | |
---|
| 1220 | !------------------------------------------------------------------------------! |
---|
| 1221 | ! Version for vector machines |
---|
| 1222 | !------------------------------------------------------------------------------! |
---|
| 1223 | |
---|
| 1224 | IMPLICIT NONE |
---|
| 1225 | |
---|
| 1226 | CHARACTER (LEN=9) :: time_to_string |
---|
| 1227 | INTEGER :: i, j, k |
---|
| 1228 | REAL :: sat, sbt |
---|
| 1229 | |
---|
| 1230 | ! |
---|
| 1231 | !-- Calculate those variables needed in the tendency terms which need |
---|
| 1232 | !-- global communication |
---|
[96] | 1233 | CALL calc_mean_profile( pt, 4 ) |
---|
| 1234 | IF ( ocean ) CALL calc_mean_profile( rho, 64 ) |
---|
| 1235 | IF ( humidity ) CALL calc_mean_profile( vpt, 44 ) |
---|
[1] | 1236 | |
---|
| 1237 | ! |
---|
| 1238 | !-- u-velocity component |
---|
| 1239 | CALL cpu_log( log_point(5), 'u-equation', 'start' ) |
---|
| 1240 | |
---|
| 1241 | ! |
---|
| 1242 | !-- u-tendency terms with communication |
---|
| 1243 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1244 | tend = 0.0 |
---|
| 1245 | CALL advec_u_ups |
---|
| 1246 | ENDIF |
---|
| 1247 | |
---|
| 1248 | ! |
---|
| 1249 | !-- u-tendency terms with no communication |
---|
| 1250 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1251 | tend = 0.0 |
---|
| 1252 | CALL advec_u_pw |
---|
| 1253 | ELSE |
---|
| 1254 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1255 | tend = 0.0 |
---|
| 1256 | CALL advec_u_up |
---|
| 1257 | ENDIF |
---|
| 1258 | ENDIF |
---|
| 1259 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[102] | 1260 | CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, & |
---|
| 1261 | uswst_m, v_m, w_m ) |
---|
[1] | 1262 | ELSE |
---|
[102] | 1263 | CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, uswst, v, w ) |
---|
[1] | 1264 | ENDIF |
---|
| 1265 | CALL coriolis( 1 ) |
---|
[97] | 1266 | IF ( sloping_surface ) CALL buoyancy( pt, pt_reference, 1, 4 ) |
---|
[1] | 1267 | CALL user_actions( 'u-tendency' ) |
---|
| 1268 | |
---|
| 1269 | ! |
---|
| 1270 | !-- Prognostic equation for u-velocity component |
---|
[106] | 1271 | DO i = nxlu, nxr |
---|
[1] | 1272 | DO j = nys, nyn |
---|
| 1273 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1274 | u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & |
---|
| 1275 | dt_3d * ( & |
---|
| 1276 | tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & |
---|
| 1277 | - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & |
---|
| 1278 | ) - & |
---|
| 1279 | tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) |
---|
| 1280 | ENDDO |
---|
| 1281 | ENDDO |
---|
| 1282 | ENDDO |
---|
| 1283 | |
---|
| 1284 | ! |
---|
| 1285 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1286 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1287 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[106] | 1288 | DO i = nxlu, nxr |
---|
[1] | 1289 | DO j = nys, nyn |
---|
| 1290 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1291 | tu_m(k,j,i) = tend(k,j,i) |
---|
| 1292 | ENDDO |
---|
| 1293 | ENDDO |
---|
| 1294 | ENDDO |
---|
| 1295 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1296 | intermediate_timestep_count_max ) THEN |
---|
[106] | 1297 | DO i = nxlu, nxr |
---|
[1] | 1298 | DO j = nys, nyn |
---|
| 1299 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 1300 | tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) |
---|
| 1301 | ENDDO |
---|
| 1302 | ENDDO |
---|
| 1303 | ENDDO |
---|
| 1304 | ENDIF |
---|
| 1305 | ENDIF |
---|
| 1306 | |
---|
| 1307 | CALL cpu_log( log_point(5), 'u-equation', 'stop' ) |
---|
| 1308 | |
---|
| 1309 | ! |
---|
| 1310 | !-- v-velocity component |
---|
| 1311 | CALL cpu_log( log_point(6), 'v-equation', 'start' ) |
---|
| 1312 | |
---|
| 1313 | ! |
---|
| 1314 | !-- v-tendency terms with communication |
---|
| 1315 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1316 | tend = 0.0 |
---|
| 1317 | CALL advec_v_ups |
---|
| 1318 | ENDIF |
---|
| 1319 | |
---|
| 1320 | ! |
---|
| 1321 | !-- v-tendency terms with no communication |
---|
| 1322 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1323 | tend = 0.0 |
---|
| 1324 | CALL advec_v_pw |
---|
| 1325 | ELSE |
---|
| 1326 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1327 | tend = 0.0 |
---|
| 1328 | CALL advec_v_up |
---|
| 1329 | ENDIF |
---|
| 1330 | ENDIF |
---|
| 1331 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1332 | CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & |
---|
[102] | 1333 | vswst_m, w_m ) |
---|
[1] | 1334 | ELSE |
---|
[102] | 1335 | CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, vswst, w ) |
---|
[1] | 1336 | ENDIF |
---|
| 1337 | CALL coriolis( 2 ) |
---|
| 1338 | CALL user_actions( 'v-tendency' ) |
---|
| 1339 | |
---|
| 1340 | ! |
---|
| 1341 | !-- Prognostic equation for v-velocity component |
---|
| 1342 | DO i = nxl, nxr |
---|
[106] | 1343 | DO j = nysv, nyn |
---|
[1] | 1344 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1345 | v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & |
---|
| 1346 | dt_3d * ( & |
---|
| 1347 | tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & |
---|
| 1348 | - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & |
---|
| 1349 | ) - & |
---|
| 1350 | tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) |
---|
| 1351 | ENDDO |
---|
| 1352 | ENDDO |
---|
| 1353 | ENDDO |
---|
| 1354 | |
---|
| 1355 | ! |
---|
| 1356 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1357 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1358 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1359 | DO i = nxl, nxr |
---|
[106] | 1360 | DO j = nysv, nyn |
---|
[1] | 1361 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1362 | tv_m(k,j,i) = tend(k,j,i) |
---|
| 1363 | ENDDO |
---|
| 1364 | ENDDO |
---|
| 1365 | ENDDO |
---|
| 1366 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1367 | intermediate_timestep_count_max ) THEN |
---|
| 1368 | DO i = nxl, nxr |
---|
[106] | 1369 | DO j = nysv, nyn |
---|
[1] | 1370 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 1371 | tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) |
---|
| 1372 | ENDDO |
---|
| 1373 | ENDDO |
---|
| 1374 | ENDDO |
---|
| 1375 | ENDIF |
---|
| 1376 | ENDIF |
---|
| 1377 | |
---|
| 1378 | CALL cpu_log( log_point(6), 'v-equation', 'stop' ) |
---|
| 1379 | |
---|
| 1380 | ! |
---|
| 1381 | !-- w-velocity component |
---|
| 1382 | CALL cpu_log( log_point(7), 'w-equation', 'start' ) |
---|
| 1383 | |
---|
| 1384 | ! |
---|
| 1385 | !-- w-tendency terms with communication |
---|
| 1386 | IF ( momentum_advec == 'ups-scheme' ) THEN |
---|
| 1387 | tend = 0.0 |
---|
| 1388 | CALL advec_w_ups |
---|
| 1389 | ENDIF |
---|
| 1390 | |
---|
| 1391 | ! |
---|
| 1392 | !-- w-tendency terms with no communication |
---|
| 1393 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1394 | tend = 0.0 |
---|
| 1395 | CALL advec_w_pw |
---|
| 1396 | ELSE |
---|
| 1397 | IF ( momentum_advec /= 'ups-scheme' ) THEN |
---|
| 1398 | tend = 0.0 |
---|
| 1399 | CALL advec_w_up |
---|
| 1400 | ENDIF |
---|
| 1401 | ENDIF |
---|
| 1402 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 1403 | CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & |
---|
[57] | 1404 | v_m, w_m ) |
---|
[1] | 1405 | ELSE |
---|
[57] | 1406 | CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w ) |
---|
[1] | 1407 | ENDIF |
---|
| 1408 | CALL coriolis( 3 ) |
---|
[97] | 1409 | IF ( ocean ) THEN |
---|
| 1410 | CALL buoyancy( rho, prho_reference, 3, 64 ) |
---|
[1] | 1411 | ELSE |
---|
[97] | 1412 | IF ( .NOT. humidity ) THEN |
---|
| 1413 | CALL buoyancy( pt, pt_reference, 3, 4 ) |
---|
| 1414 | ELSE |
---|
| 1415 | CALL buoyancy( vpt, pt_reference, 3, 44 ) |
---|
| 1416 | ENDIF |
---|
[1] | 1417 | ENDIF |
---|
| 1418 | CALL user_actions( 'w-tendency' ) |
---|
| 1419 | |
---|
| 1420 | ! |
---|
| 1421 | !-- Prognostic equation for w-velocity component |
---|
| 1422 | DO i = nxl, nxr |
---|
| 1423 | DO j = nys, nyn |
---|
| 1424 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1425 | w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & |
---|
| 1426 | dt_3d * ( & |
---|
| 1427 | tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & |
---|
| 1428 | - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & |
---|
| 1429 | ) - & |
---|
| 1430 | tsc(5) * rdf(k) * w(k,j,i) |
---|
| 1431 | ENDDO |
---|
| 1432 | ENDDO |
---|
| 1433 | ENDDO |
---|
| 1434 | |
---|
| 1435 | ! |
---|
| 1436 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1437 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1438 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1439 | DO i = nxl, nxr |
---|
| 1440 | DO j = nys, nyn |
---|
| 1441 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1442 | tw_m(k,j,i) = tend(k,j,i) |
---|
| 1443 | ENDDO |
---|
| 1444 | ENDDO |
---|
| 1445 | ENDDO |
---|
| 1446 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1447 | intermediate_timestep_count_max ) THEN |
---|
| 1448 | DO i = nxl, nxr |
---|
| 1449 | DO j = nys, nyn |
---|
| 1450 | DO k = nzb_w_inner(j,i)+1, nzt-1 |
---|
| 1451 | tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) |
---|
| 1452 | ENDDO |
---|
| 1453 | ENDDO |
---|
| 1454 | ENDDO |
---|
| 1455 | ENDIF |
---|
| 1456 | ENDIF |
---|
| 1457 | |
---|
| 1458 | CALL cpu_log( log_point(7), 'w-equation', 'stop' ) |
---|
| 1459 | |
---|
| 1460 | ! |
---|
| 1461 | !-- potential temperature |
---|
| 1462 | CALL cpu_log( log_point(13), 'pt-equation', 'start' ) |
---|
| 1463 | |
---|
| 1464 | ! |
---|
| 1465 | !-- pt-tendency terms with communication |
---|
[63] | 1466 | sat = tsc(1) |
---|
| 1467 | sbt = tsc(2) |
---|
[1] | 1468 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1469 | |
---|
| 1470 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1471 | ! |
---|
[63] | 1472 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1473 | !-- switched on. Thus: |
---|
| 1474 | sat = 1.0 |
---|
| 1475 | sbt = 1.0 |
---|
| 1476 | ENDIF |
---|
[1] | 1477 | tend = 0.0 |
---|
| 1478 | CALL advec_s_bc( pt, 'pt' ) |
---|
| 1479 | ELSE |
---|
| 1480 | IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN |
---|
| 1481 | tend = 0.0 |
---|
| 1482 | CALL advec_s_ups( pt, 'pt' ) |
---|
| 1483 | ENDIF |
---|
| 1484 | ENDIF |
---|
| 1485 | |
---|
| 1486 | ! |
---|
| 1487 | !-- pt-tendency terms with no communication |
---|
| 1488 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 1489 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 1490 | ELSE |
---|
| 1491 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1492 | tend = 0.0 |
---|
| 1493 | CALL advec_s_pw( pt ) |
---|
| 1494 | ELSE |
---|
| 1495 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1496 | tend = 0.0 |
---|
| 1497 | CALL advec_s_up( pt ) |
---|
| 1498 | ENDIF |
---|
| 1499 | ENDIF |
---|
| 1500 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[19] | 1501 | CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tswst_m, tend ) |
---|
[1] | 1502 | ELSE |
---|
[19] | 1503 | CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tswst, tend ) |
---|
[1] | 1504 | ENDIF |
---|
| 1505 | ENDIF |
---|
| 1506 | |
---|
| 1507 | ! |
---|
| 1508 | !-- If required compute heating/cooling due to long wave radiation |
---|
| 1509 | !-- processes |
---|
| 1510 | IF ( radiation ) THEN |
---|
| 1511 | CALL calc_radiation |
---|
| 1512 | ENDIF |
---|
| 1513 | |
---|
| 1514 | ! |
---|
| 1515 | !-- If required compute impact of latent heat due to precipitation |
---|
| 1516 | IF ( precipitation ) THEN |
---|
| 1517 | CALL impact_of_latent_heat |
---|
| 1518 | ENDIF |
---|
| 1519 | CALL user_actions( 'pt-tendency' ) |
---|
| 1520 | |
---|
| 1521 | ! |
---|
| 1522 | !-- Prognostic equation for potential temperature |
---|
| 1523 | DO i = nxl, nxr |
---|
| 1524 | DO j = nys, nyn |
---|
[19] | 1525 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1526 | pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & |
---|
| 1527 | dt_3d * ( & |
---|
| 1528 | sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & |
---|
| 1529 | ) - & |
---|
| 1530 | tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) |
---|
| 1531 | ENDDO |
---|
| 1532 | ENDDO |
---|
| 1533 | ENDDO |
---|
| 1534 | |
---|
| 1535 | ! |
---|
| 1536 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1537 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1538 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1539 | DO i = nxl, nxr |
---|
| 1540 | DO j = nys, nyn |
---|
[19] | 1541 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1542 | tpt_m(k,j,i) = tend(k,j,i) |
---|
| 1543 | ENDDO |
---|
| 1544 | ENDDO |
---|
| 1545 | ENDDO |
---|
| 1546 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1547 | intermediate_timestep_count_max ) THEN |
---|
| 1548 | DO i = nxl, nxr |
---|
| 1549 | DO j = nys, nyn |
---|
[19] | 1550 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1551 | tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) |
---|
| 1552 | ENDDO |
---|
| 1553 | ENDDO |
---|
| 1554 | ENDDO |
---|
| 1555 | ENDIF |
---|
| 1556 | ENDIF |
---|
| 1557 | |
---|
| 1558 | CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) |
---|
| 1559 | |
---|
| 1560 | ! |
---|
[95] | 1561 | !-- If required, compute prognostic equation for salinity |
---|
| 1562 | IF ( ocean ) THEN |
---|
| 1563 | |
---|
| 1564 | CALL cpu_log( log_point(37), 'sa-equation', 'start' ) |
---|
| 1565 | |
---|
| 1566 | ! |
---|
| 1567 | !-- sa-tendency terms with communication |
---|
| 1568 | sat = tsc(1) |
---|
| 1569 | sbt = tsc(2) |
---|
| 1570 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1571 | |
---|
| 1572 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 1573 | ! |
---|
| 1574 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1575 | !-- switched on. Thus: |
---|
| 1576 | sat = 1.0 |
---|
| 1577 | sbt = 1.0 |
---|
| 1578 | ENDIF |
---|
| 1579 | tend = 0.0 |
---|
| 1580 | CALL advec_s_bc( sa, 'sa' ) |
---|
| 1581 | ELSE |
---|
| 1582 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1583 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1584 | tend = 0.0 |
---|
| 1585 | CALL advec_s_ups( sa, 'sa' ) |
---|
| 1586 | ENDIF |
---|
| 1587 | ENDIF |
---|
| 1588 | ENDIF |
---|
| 1589 | |
---|
| 1590 | ! |
---|
| 1591 | !-- Scalar/q-tendency terms with no communication |
---|
| 1592 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
| 1593 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, tend ) |
---|
| 1594 | ELSE |
---|
| 1595 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1596 | tend = 0.0 |
---|
| 1597 | CALL advec_s_pw( sa ) |
---|
| 1598 | ELSE |
---|
| 1599 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1600 | tend = 0.0 |
---|
| 1601 | CALL advec_s_up( sa ) |
---|
| 1602 | ENDIF |
---|
| 1603 | ENDIF |
---|
| 1604 | CALL diffusion_s( ddzu, ddzw, kh, sa, saswsb, saswst, tend ) |
---|
| 1605 | ENDIF |
---|
| 1606 | |
---|
| 1607 | CALL user_actions( 'sa-tendency' ) |
---|
| 1608 | |
---|
| 1609 | ! |
---|
| 1610 | !-- Prognostic equation for salinity |
---|
| 1611 | DO i = nxl, nxr |
---|
| 1612 | DO j = nys, nyn |
---|
| 1613 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1614 | sa_p(k,j,i) = sat * sa(k,j,i) + & |
---|
| 1615 | dt_3d * ( & |
---|
| 1616 | sbt * tend(k,j,i) + tsc(3) * tsa_m(k,j,i) & |
---|
| 1617 | ) - & |
---|
| 1618 | tsc(5) * rdf(k) * ( sa(k,j,i) - sa_init(k) ) |
---|
| 1619 | IF ( sa_p(k,j,i) < 0.0 ) sa_p(k,j,i) = 0.1 * sa(k,j,i) |
---|
| 1620 | ENDDO |
---|
| 1621 | ENDDO |
---|
| 1622 | ENDDO |
---|
| 1623 | |
---|
| 1624 | ! |
---|
| 1625 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1626 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1627 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1628 | DO i = nxl, nxr |
---|
| 1629 | DO j = nys, nyn |
---|
| 1630 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1631 | tsa_m(k,j,i) = tend(k,j,i) |
---|
| 1632 | ENDDO |
---|
| 1633 | ENDDO |
---|
| 1634 | ENDDO |
---|
| 1635 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1636 | intermediate_timestep_count_max ) THEN |
---|
| 1637 | DO i = nxl, nxr |
---|
| 1638 | DO j = nys, nyn |
---|
| 1639 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1640 | tsa_m(k,j,i) = -9.5625 * tend(k,j,i) + & |
---|
| 1641 | 5.3125 * tsa_m(k,j,i) |
---|
| 1642 | ENDDO |
---|
| 1643 | ENDDO |
---|
| 1644 | ENDDO |
---|
| 1645 | ENDIF |
---|
| 1646 | ENDIF |
---|
| 1647 | |
---|
| 1648 | CALL cpu_log( log_point(37), 'sa-equation', 'stop' ) |
---|
| 1649 | |
---|
[96] | 1650 | ! |
---|
| 1651 | !-- Calculate density by the equation of state for seawater |
---|
| 1652 | CALL cpu_log( log_point(38), 'eqns-seawater', 'start' ) |
---|
| 1653 | CALL eqn_state_seawater |
---|
| 1654 | CALL cpu_log( log_point(38), 'eqns-seawater', 'stop' ) |
---|
| 1655 | |
---|
[95] | 1656 | ENDIF |
---|
| 1657 | |
---|
| 1658 | ! |
---|
[1] | 1659 | !-- If required, compute prognostic equation for total water content / scalar |
---|
[75] | 1660 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 1661 | |
---|
| 1662 | CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) |
---|
| 1663 | |
---|
| 1664 | ! |
---|
| 1665 | !-- Scalar/q-tendency terms with communication |
---|
[63] | 1666 | sat = tsc(1) |
---|
| 1667 | sbt = tsc(2) |
---|
[1] | 1668 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1669 | |
---|
| 1670 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1671 | ! |
---|
[63] | 1672 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1673 | !-- switched on. Thus: |
---|
| 1674 | sat = 1.0 |
---|
| 1675 | sbt = 1.0 |
---|
| 1676 | ENDIF |
---|
[1] | 1677 | tend = 0.0 |
---|
| 1678 | CALL advec_s_bc( q, 'q' ) |
---|
| 1679 | ELSE |
---|
| 1680 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1681 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1682 | tend = 0.0 |
---|
| 1683 | CALL advec_s_ups( q, 'q' ) |
---|
| 1684 | ENDIF |
---|
| 1685 | ENDIF |
---|
| 1686 | ENDIF |
---|
| 1687 | |
---|
| 1688 | ! |
---|
| 1689 | !-- Scalar/q-tendency terms with no communication |
---|
| 1690 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[19] | 1691 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 1692 | ELSE |
---|
| 1693 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1694 | tend = 0.0 |
---|
| 1695 | CALL advec_s_pw( q ) |
---|
| 1696 | ELSE |
---|
| 1697 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1698 | tend = 0.0 |
---|
| 1699 | CALL advec_s_up( q ) |
---|
| 1700 | ENDIF |
---|
| 1701 | ENDIF |
---|
| 1702 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[19] | 1703 | CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, qswst_m, tend ) |
---|
[1] | 1704 | ELSE |
---|
[19] | 1705 | CALL diffusion_s( ddzu, ddzw, kh, q, qsws, qswst, tend ) |
---|
[1] | 1706 | ENDIF |
---|
| 1707 | ENDIF |
---|
| 1708 | |
---|
| 1709 | ! |
---|
| 1710 | !-- If required compute decrease of total water content due to |
---|
| 1711 | !-- precipitation |
---|
| 1712 | IF ( precipitation ) THEN |
---|
| 1713 | CALL calc_precipitation |
---|
| 1714 | ENDIF |
---|
| 1715 | CALL user_actions( 'q-tendency' ) |
---|
| 1716 | |
---|
| 1717 | ! |
---|
| 1718 | !-- Prognostic equation for total water content / scalar |
---|
| 1719 | DO i = nxl, nxr |
---|
| 1720 | DO j = nys, nyn |
---|
[19] | 1721 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1722 | q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & |
---|
| 1723 | dt_3d * ( & |
---|
| 1724 | sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & |
---|
| 1725 | ) - & |
---|
| 1726 | tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) |
---|
[73] | 1727 | IF ( q_p(k,j,i) < 0.0 ) q_p(k,j,i) = 0.1 * q(k,j,i) |
---|
[1] | 1728 | ENDDO |
---|
| 1729 | ENDDO |
---|
| 1730 | ENDDO |
---|
| 1731 | |
---|
| 1732 | ! |
---|
| 1733 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1734 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1735 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1736 | DO i = nxl, nxr |
---|
| 1737 | DO j = nys, nyn |
---|
[19] | 1738 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1739 | tq_m(k,j,i) = tend(k,j,i) |
---|
| 1740 | ENDDO |
---|
| 1741 | ENDDO |
---|
| 1742 | ENDDO |
---|
| 1743 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1744 | intermediate_timestep_count_max ) THEN |
---|
| 1745 | DO i = nxl, nxr |
---|
| 1746 | DO j = nys, nyn |
---|
[19] | 1747 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1748 | tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) |
---|
| 1749 | ENDDO |
---|
| 1750 | ENDDO |
---|
| 1751 | ENDDO |
---|
| 1752 | ENDIF |
---|
| 1753 | ENDIF |
---|
| 1754 | |
---|
| 1755 | CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) |
---|
| 1756 | |
---|
| 1757 | ENDIF |
---|
| 1758 | |
---|
| 1759 | ! |
---|
| 1760 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
| 1761 | !-- energy (TKE) |
---|
| 1762 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 1763 | |
---|
| 1764 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
| 1765 | |
---|
| 1766 | ! |
---|
| 1767 | !-- TKE-tendency terms with communication |
---|
| 1768 | CALL production_e_init |
---|
[63] | 1769 | |
---|
| 1770 | sat = tsc(1) |
---|
| 1771 | sbt = tsc(2) |
---|
[1] | 1772 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
| 1773 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
[63] | 1774 | |
---|
| 1775 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[1] | 1776 | ! |
---|
[63] | 1777 | !-- Bott-Chlond scheme always uses Euler time step when leapfrog is |
---|
| 1778 | !-- switched on. Thus: |
---|
| 1779 | sat = 1.0 |
---|
| 1780 | sbt = 1.0 |
---|
| 1781 | ENDIF |
---|
[1] | 1782 | tend = 0.0 |
---|
| 1783 | CALL advec_s_bc( e, 'e' ) |
---|
| 1784 | ELSE |
---|
| 1785 | IF ( tsc(2) /= 2.0 ) THEN |
---|
| 1786 | IF ( scalar_advec == 'ups-scheme' ) THEN |
---|
| 1787 | tend = 0.0 |
---|
| 1788 | CALL advec_s_ups( e, 'e' ) |
---|
| 1789 | ENDIF |
---|
| 1790 | ENDIF |
---|
| 1791 | ENDIF |
---|
| 1792 | ENDIF |
---|
| 1793 | |
---|
| 1794 | ! |
---|
| 1795 | !-- TKE-tendency terms with no communication |
---|
| 1796 | IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & |
---|
| 1797 | THEN |
---|
[75] | 1798 | IF ( .NOT. humidity ) THEN |
---|
[97] | 1799 | IF ( ocean ) THEN |
---|
| 1800 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, rho, & |
---|
| 1801 | prho_reference, rif, tend, zu, zw ) |
---|
| 1802 | ELSE |
---|
| 1803 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & |
---|
| 1804 | pt_reference, rif, tend, zu, zw ) |
---|
| 1805 | ENDIF |
---|
[1] | 1806 | ELSE |
---|
| 1807 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 1808 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 1809 | ENDIF |
---|
| 1810 | ELSE |
---|
| 1811 | IF ( use_upstream_for_tke ) THEN |
---|
| 1812 | tend = 0.0 |
---|
| 1813 | CALL advec_s_up( e ) |
---|
| 1814 | ELSE |
---|
| 1815 | IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1816 | tend = 0.0 |
---|
| 1817 | CALL advec_s_pw( e ) |
---|
| 1818 | ELSE |
---|
| 1819 | IF ( scalar_advec /= 'ups-scheme' ) THEN |
---|
| 1820 | tend = 0.0 |
---|
| 1821 | CALL advec_s_up( e ) |
---|
| 1822 | ENDIF |
---|
| 1823 | ENDIF |
---|
| 1824 | ENDIF |
---|
| 1825 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
[75] | 1826 | IF ( .NOT. humidity ) THEN |
---|
[1] | 1827 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 1828 | pt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 1829 | ELSE |
---|
| 1830 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & |
---|
[97] | 1831 | vpt_m, pt_reference, rif_m, tend, zu, zw ) |
---|
[1] | 1832 | ENDIF |
---|
| 1833 | ELSE |
---|
[75] | 1834 | IF ( .NOT. humidity ) THEN |
---|
[97] | 1835 | IF ( ocean ) THEN |
---|
| 1836 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 1837 | rho, prho_reference, rif, tend, zu, zw ) |
---|
| 1838 | ELSE |
---|
| 1839 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, & |
---|
| 1840 | pt, pt_reference, rif, tend, zu, zw ) |
---|
| 1841 | ENDIF |
---|
[1] | 1842 | ELSE |
---|
| 1843 | CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & |
---|
[97] | 1844 | pt_reference, rif, tend, zu, zw ) |
---|
[1] | 1845 | ENDIF |
---|
| 1846 | ENDIF |
---|
| 1847 | ENDIF |
---|
| 1848 | CALL production_e |
---|
| 1849 | CALL user_actions( 'e-tendency' ) |
---|
| 1850 | |
---|
| 1851 | ! |
---|
| 1852 | !-- Prognostic equation for TKE. |
---|
| 1853 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
| 1854 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
| 1855 | !-- value is reduced by 90%. |
---|
| 1856 | DO i = nxl, nxr |
---|
| 1857 | DO j = nys, nyn |
---|
[19] | 1858 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1859 | e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & |
---|
| 1860 | dt_3d * ( & |
---|
| 1861 | sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & |
---|
| 1862 | ) |
---|
| 1863 | IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) |
---|
| 1864 | ENDDO |
---|
| 1865 | ENDDO |
---|
| 1866 | ENDDO |
---|
| 1867 | |
---|
| 1868 | ! |
---|
| 1869 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 1870 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1871 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1872 | DO i = nxl, nxr |
---|
| 1873 | DO j = nys, nyn |
---|
[19] | 1874 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1875 | te_m(k,j,i) = tend(k,j,i) |
---|
| 1876 | ENDDO |
---|
| 1877 | ENDDO |
---|
| 1878 | ENDDO |
---|
| 1879 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1880 | intermediate_timestep_count_max ) THEN |
---|
| 1881 | DO i = nxl, nxr |
---|
| 1882 | DO j = nys, nyn |
---|
[19] | 1883 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1] | 1884 | te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) |
---|
| 1885 | ENDDO |
---|
| 1886 | ENDDO |
---|
| 1887 | ENDDO |
---|
| 1888 | ENDIF |
---|
| 1889 | ENDIF |
---|
| 1890 | |
---|
| 1891 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
| 1892 | |
---|
| 1893 | ENDIF |
---|
| 1894 | |
---|
| 1895 | |
---|
[63] | 1896 | END SUBROUTINE prognostic_equations_vector |
---|
[1] | 1897 | |
---|
| 1898 | |
---|
| 1899 | END MODULE prognostic_equations_mod |
---|