!> @file pmc_interface_mod.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2019 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: pmc_interface_mod.f90 4260 2019-10-09 14:04:03Z hellstea $ ! Rest of the possibly round-off-error sensitive grid-line matching tests ! changed to round-off-error tolerant forms throughout the module. ! ! 4249 2019-10-01 12:27:47Z hellstea ! Several grid-line matching tests changed to a round-off-error tolerant form ! in pmci_setup_parent, pmci_define_index_mapping and pmci_check_grid_matching. ! ! 4182 2019-08-22 15:20:23Z scharf ! Corrected "Former revisions" section ! ! 4168 2019-08-16 13:50:17Z suehring ! Replace function get_topography_top_index by topo_top_ind ! ! 4029 2019-06-14 14:04:35Z raasch ! nest_chemistry switch removed ! ! 4026 2019-06-12 16:50:15Z suehring ! Masked topography at boundary grid points in mass conservation, in order to ! avoid that mean velocities within topography are imposed ! ! 4011 2019-05-31 14:34:03Z hellstea ! Mass (volume) flux correction included to ensure global mass conservation for child domains. ! ! 3987 2019-05-22 09:52:13Z kanani ! Introduce alternative switch for debug output during timestepping ! ! 3984 2019-05-16 15:17:03Z hellstea ! Commenting improved, pmci_map_fine_to_coarse_grid renamed as pmci_map_child_grid_to_parent_grid, ! set_child_edge_coords renamed as pmci_set_child_edge_coords, some variables renamed, etc. ! ! 3979 2019-05-15 13:54:29Z hellstea ! Bugfix in pmc_interp_1sto_sn. This bug had effect only in case of 1-d domain ! decomposition with npex = 1. ! ! 3976 2019-05-15 11:02:34Z hellstea ! Child initialization also for the redundant ghost points behind the nested ! boundaries added (2nd and 3rd ghost-point layers and corners). ! ! 3948 2019-05-03 14:49:57Z hellstea ! Some variables renamed, a little cleaning up and some commenting improvements ! ! 3947 2019-05-03 07:56:44Z hellstea ! The checks included in 3946 are extended for the z-direction and moved into its ! own subroutine called from pmci_define_index_mapping. ! ! 3946 2019-05-02 14:18:59Z hellstea ! Check added for child domains too small in terms of number of parent-grid cells so ! that anterpolation is not possible. Checks added for too wide anterpolation buffer ! for the same reason. Some minor code reformatting done. ! ! 3945 2019-05-02 11:29:27Z raasch ! ! 3932 2019-04-24 17:31:34Z suehring ! Add missing if statements for call of pmc_set_dataarray_name for TKE and ! dissipation. ! ! 3888 2019-04-12 09:18:10Z hellstea ! Variables renamed, commenting improved etc. ! ! 3885 2019-04-11 11:29:34Z kanani ! Changes related to global restructuring of location messages and introduction ! of additional debug messages ! ! 3883 2019-04-10 12:51:50Z hellstea ! Checks and error messages improved and extended. All the child index bounds in the ! parent-grid index space are made module variables. Function get_number_of_childs ! renamed get_number_of_children. A number of variables renamed ! and qite a lot of other code reshaping made all around the module. ! ! 3876 2019-04-08 18:41:49Z knoop ! Implemented nesting for salsa variables. ! ! 3833 2019-03-28 15:04:04Z forkel ! replaced USE chem_modules by USE chem_gasphase_mod ! ! 3822 2019-03-27 13:10:23Z hellstea ! Temporary increase of the vertical dimension of the parent-grid arrays and ! workarrc_t is cancelled as unnecessary. ! ! 3819 2019-03-27 11:01:36Z hellstea ! Adjustable anterpolation buffer introduced on all nest boundaries, it is controlled ! by the new nesting_parameters parameter anterpolation_buffer_width. ! ! 3804 2019-03-19 13:46:20Z hellstea ! Anterpolation domain is lowered from kct-1 to kct-3 to avoid exessive ! kinetic energy from building up in CBL flows. ! ! 3803 2019-03-19 13:44:40Z hellstea ! A bug fixed in lateral boundary interpolations. Dimension of val changed from ! 5 to 3 in pmci_setup_parent and pmci_setup_child. ! ! 3794 2019-03-15 09:36:33Z raasch ! two remaining unused variables removed ! ! 3792 2019-03-14 16:50:07Z hellstea ! Interpolations improved. Large number of obsolete subroutines removed. ! All unused variables removed. ! ! 3741 2019-02-13 16:24:49Z hellstea ! Interpolations and child initialization adjusted to handle set ups with child ! pe-subdomain dimension not integer divisible by the grid-spacing ratio in the ! respective direction. Set ups with pe-subdomain dimension smaller than the ! grid-spacing ratio in the respective direction are now forbidden. ! ! 3708 2019-01-30 12:58:13Z hellstea ! Checks for parent / child grid line matching introduced. ! Interpolation of nest-boundary-tangential velocity components revised. ! ! 3697 2019-01-24 17:16:13Z hellstea ! Bugfix: upper k-bound in the child initialization interpolation ! pmci_interp_1sto_all corrected. ! Copying of the nest boundary values into the redundant 2nd and 3rd ghost-node ! layers is added to the pmci_interp_1sto_*-routines. ! ! 3681 2019-01-18 15:06:05Z hellstea ! Linear interpolations are replaced by first order interpolations. The linear ! interpolation routines are still included but not called. In the child ! inititialization the interpolation is also changed to 1st order and the linear ! interpolation is not kept. ! Subroutine pmci_map_fine_to_coarse_grid is rewritten. ! Several changes in pmci_init_anterp_tophat. ! Child's parent-grid arrays (uc, vc,...) are made non-overlapping on the PE- ! subdomain boundaries in order to allow grid-spacing ratios higher than nbgp. ! Subroutine pmci_init_tkefactor is removed as unnecessary. ! ! 3655 2019-01-07 16:51:22Z knoop ! Remove unused variable simulated_time ! ! 1762 2016-02-25 12:31:13Z hellstea ! Initial revision by A. Hellsten ! ! Description: ! ------------ ! Domain nesting interface routines. The low-level inter-domain communication ! is conducted by the PMC-library routines. ! ! @todo Remove array_3d variables from USE statements thate not used in the ! routine ! @todo Data transfer of qc and nc is prepared but not activated !------------------------------------------------------------------------------! MODULE pmc_interface USE ISO_C_BINDING USE arrays_3d, & ONLY: diss, diss_2, dzu, dzw, e, e_p, e_2, nc, nc_2, nc_p, nr, nr_2, & pt, pt_2, q, q_2, qc, qc_2, qr, qr_2, s, s_2, & u, u_p, u_2, v, v_p, v_2, w, w_p, w_2, zu, zw USE control_parameters, & ONLY: air_chemistry, bc_dirichlet_l, bc_dirichlet_n, bc_dirichlet_r, & bc_dirichlet_s, child_domain, & constant_diffusion, constant_flux_layer, & coupling_char, & debug_output_timestep, & dt_3d, dz, humidity, message_string, & neutral, passive_scalar, rans_mode, rans_tke_e, & roughness_length, salsa, topography, volume_flow USE chem_gasphase_mod, & ONLY: nspec USE chem_modules, & ONLY: chem_species USE chemistry_model_mod, & ONLY: spec_conc_2 USE cpulog, & ONLY: cpu_log, log_point_s USE grid_variables, & ONLY: dx, dy USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxlu, nxr, nxrg, ny, nyn, nyng, nys, nysg, & nysv, nz, nzb, nzt, topo_top_ind, wall_flags_0 USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model, microphysics_morrison, microphysics_seifert USE particle_attributes, & ONLY: particle_advection USE kinds #if defined( __parallel ) #if !defined( __mpifh ) USE MPI #endif USE pegrid, & ONLY: collective_wait, comm1dx, comm1dy, comm2d, myid, myidx, myidy, & numprocs, pdims, pleft, pnorth, pright, psouth, status USE pmc_child, & ONLY: pmc_childinit, pmc_c_clear_next_array_list, & pmc_c_getnextarray, pmc_c_get_2d_index_list, pmc_c_getbuffer, & pmc_c_putbuffer, pmc_c_setind_and_allocmem, & pmc_c_set_dataarray, pmc_set_dataarray_name USE pmc_general, & ONLY: da_namelen USE pmc_handle_communicator, & ONLY: pmc_get_model_info, pmc_init_model, pmc_is_rootmodel, & pmc_no_namelist_found, pmc_parent_for_child, m_couplers USE pmc_mpi_wrapper, & ONLY: pmc_bcast, pmc_recv_from_child, pmc_recv_from_parent, & pmc_send_to_child, pmc_send_to_parent USE pmc_parent, & ONLY: pmc_parentinit, pmc_s_clear_next_array_list, pmc_s_fillbuffer, & pmc_s_getdata_from_buffer, pmc_s_getnextarray, & pmc_s_setind_and_allocmem, pmc_s_set_active_data_array, & pmc_s_set_dataarray, pmc_s_set_2d_index_list #endif USE salsa_mod, & ONLY: aerosol_mass, aerosol_number, gconc_2, mconc_2, nbins_aerosol, & ncomponents_mass, nconc_2, nest_salsa, ngases_salsa, salsa_gas, & salsa_gases_from_chem USE surface_mod, & ONLY: surf_def_h, surf_lsm_h, surf_usm_h IMPLICIT NONE #if defined( __parallel ) #if defined( __mpifh ) INCLUDE "mpif.h" #endif #endif PRIVATE ! !-- Constants INTEGER(iwp), PARAMETER :: child_to_parent = 2 !< Parameter for pmci_parent_datatrans indicating the direction of transfer INTEGER(iwp), PARAMETER :: parent_to_child = 1 !< Parameter for pmci_parent_datatrans indicating the direction of transfer INTEGER(iwp), PARAMETER :: interpolation_scheme_lrsn = 2 !< Interpolation scheme to be used on lateral boundaries INTEGER(iwp), PARAMETER :: interpolation_scheme_t = 3 !< Interpolation scheme to be used on top boundary REAL(wp), PARAMETER :: tolefac = 1.0E-6_wp !< Relative tolerence for grid-line matching tests and comparisons ! !-- Coupler setup INTEGER(iwp), SAVE :: comm_world_nesting !< Global nesting communicator INTEGER(iwp), SAVE :: cpl_id = 1 !< INTEGER(iwp), SAVE :: cpl_npe_total !< INTEGER(iwp), SAVE :: cpl_parent_id !< CHARACTER(LEN=32), SAVE :: cpl_name !< ! !-- Control parameters INTEGER(iwp), SAVE :: anterpolation_buffer_width = 2 !< Boundary buffer width for anterpolation CHARACTER(LEN=7), SAVE :: nesting_datatransfer_mode = 'mixed' !< steering parameter for data-transfer mode CHARACTER(LEN=8), SAVE :: nesting_mode = 'two-way' !< steering parameter for 1- or 2-way nesting LOGICAL, SAVE :: nested_run = .FALSE. !< general switch LOGICAL :: rans_mode_parent = .FALSE. !< mode of parent model (.F. - LES mode, .T. - RANS mode) ! !-- Geometry REAL(wp), SAVE, DIMENSION(:), ALLOCATABLE, PUBLIC :: coord_x !< Array for the absolute x-coordinates REAL(wp), SAVE, DIMENSION(:), ALLOCATABLE, PUBLIC :: coord_y !< Array for the absolute y-coordinates REAL(wp), SAVE, PUBLIC :: lower_left_coord_x !< x-coordinate of the lower left corner of the domain REAL(wp), SAVE, PUBLIC :: lower_left_coord_y !< y-coordinate of the lower left corner of the domain ! !-- Children's parent-grid arrays INTEGER(iwp), SAVE, DIMENSION(5), PUBLIC :: parent_bound !< subdomain index bounds for children's parent-grid arrays REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: dissc !< Parent-grid array on child domain - dissipation rate REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: ec !< Parent-grid array on child domain - SGS TKE REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: ptc !< Parent-grid array on child domain - potential temperature REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: uc !< Parent-grid array on child domain - velocity component u REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: vc !< Parent-grid array on child domain - velocity component v REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: wc !< Parent-grid array on child domain - velocity component w REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: q_c !< Parent-grid array on child domain - REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: qcc !< Parent-grid array on child domain - REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: qrc !< Parent-grid array on child domain - REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: nrc !< Parent-grid array on child domain - REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: ncc !< Parent-grid array on child domain - REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: sc !< Parent-grid array on child domain - INTEGER(idp), SAVE, DIMENSION(:,:), ALLOCATABLE, TARGET, PUBLIC :: nr_partc !< INTEGER(idp), SAVE, DIMENSION(:,:), ALLOCATABLE, TARGET, PUBLIC :: part_adrc !< REAL(wp), SAVE, DIMENSION(:,:,:,:), ALLOCATABLE, TARGET :: chem_spec_c !< Parent-grid array on child domain - chemical species REAL(wp), SAVE, DIMENSION(:,:,:,:), ALLOCATABLE, TARGET :: aerosol_mass_c !< Aerosol mass REAL(wp), SAVE, DIMENSION(:,:,:,:), ALLOCATABLE, TARGET :: aerosol_number_c !< Aerosol number REAL(wp), SAVE, DIMENSION(:,:,:,:), ALLOCATABLE, TARGET :: salsa_gas_c !< SALSA gases ! !-- Grid-spacing ratios. INTEGER(iwp), SAVE :: igsr !< Integer grid-spacing ratio in i-direction INTEGER(iwp), SAVE :: jgsr !< Integer grid-spacing ratio in j-direction INTEGER(iwp), SAVE :: kgsr !< Integer grid-spacing ratio in k-direction ! !-- Global parent-grid index bounds INTEGER(iwp), SAVE :: iplg !< Leftmost parent-grid array ip index of the whole child domain INTEGER(iwp), SAVE :: iprg !< Rightmost parent-grid array ip index of the whole child domain INTEGER(iwp), SAVE :: jpsg !< Southmost parent-grid array jp index of the whole child domain INTEGER(iwp), SAVE :: jpng !< Northmost parent-grid array jp index of the whole child domain ! !-- Local parent-grid index bounds. Different sets of index bounds are needed for parent-grid arrays (uc, etc), !-- for index mapping arrays (iflu, etc) and for work arrays (workarr_lr, etc). This is because these arrays !-- have different dimensions depending on the location of the subdomain relative to boundaries and corners. INTEGER(iwp), SAVE :: ipl !< Left index limit for children's parent-grid arrays INTEGER(iwp), SAVE :: ipla !< Left index limit for allocation of index-mapping and other auxiliary arrays INTEGER(iwp), SAVE :: iplw !< Left index limit for children's parent-grid work arrays INTEGER(iwp), SAVE :: ipr !< Right index limit for children's parent-grid arrays INTEGER(iwp), SAVE :: ipra !< Right index limit for allocation of index-mapping and other auxiliary arrays INTEGER(iwp), SAVE :: iprw !< Right index limit for children's parent-grid work arrays INTEGER(iwp), SAVE :: jpn !< North index limit for children's parent-grid arrays INTEGER(iwp), SAVE :: jpna !< North index limit for allocation of index-mapping and other auxiliary arrays INTEGER(iwp), SAVE :: jpnw !< North index limit for children's parent-grid work arrays INTEGER(iwp), SAVE :: jps !< South index limit for children's parent-grid arrays INTEGER(iwp), SAVE :: jpsa !< South index limit for allocation of index-mapping and other auxiliary arrays INTEGER(iwp), SAVE :: jpsw !< South index limit for children's parent-grid work arrays ! !-- Highest prognostic parent-grid k-indices. INTEGER(iwp), SAVE :: kcto !< Upper bound for k in anterpolation of variables other than w. INTEGER(iwp), SAVE :: kctw !< Upper bound for k in anterpolation of w. ! !-- Child-array indices to be precomputed and stored for anterpolation. INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: iflu !< child index indicating left bound of parent grid box on u-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: ifuu !< child index indicating right bound of parent grid box on u-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: iflo !< child index indicating left bound of parent grid box on scalar-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: ifuo !< child index indicating right bound of parent grid box on scalar-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: jflv !< child index indicating south bound of parent grid box on v-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: jfuv !< child index indicating north bound of parent grid box on v-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: jflo !< child index indicating south bound of parent grid box on scalar-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: jfuo !< child index indicating north bound of parent grid box on scalar-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: kflw !< child index indicating lower bound of parent grid box on w-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: kfuw !< child index indicating upper bound of parent grid box on w-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: kflo !< child index indicating lower bound of parent grid box on scalar-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: kfuo !< child index indicating upper bound of parent grid box on scalar-grid ! !-- Number of child-grid nodes within anterpolation cells to be precomputed for anterpolation. INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: ijkfc_u !< number of child grid points contributing to a parent grid !< node in anterpolation, u-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: ijkfc_v !< number of child grid points contributing to a parent grid !< node in anterpolation, v-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: ijkfc_w !< number of child grid points contributing to a parent grid !< node in anterpolation, w-grid INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: ijkfc_s !< number of child grid points contributing to a parent grid !< node in anterpolation, scalar-grid ! !-- Work arrays for interpolation and user-defined type definitions for horizontal work-array exchange REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: workarr_lr REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: workarr_sn REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: workarr_t INTEGER(iwp) :: workarr_lr_exchange_type INTEGER(iwp) :: workarr_sn_exchange_type INTEGER(iwp) :: workarr_t_exchange_type_x INTEGER(iwp) :: workarr_t_exchange_type_y INTEGER(iwp), DIMENSION(3) :: parent_grid_info_int !< Array for communicating the parent-grid dimensions !< to its children. REAL(wp), DIMENSION(6) :: face_area !< Surface area of each boundary face REAL(wp), DIMENSION(7) :: parent_grid_info_real !< Array for communicating the real-type parent-grid !< parameters to its children. TYPE parentgrid_def INTEGER(iwp) :: nx !< INTEGER(iwp) :: ny !< INTEGER(iwp) :: nz !< REAL(wp) :: dx !< REAL(wp) :: dy !< REAL(wp) :: dz !< REAL(wp) :: lower_left_coord_x !< REAL(wp) :: lower_left_coord_y !< REAL(wp) :: xend !< REAL(wp) :: yend !< REAL(wp), DIMENSION(:), ALLOCATABLE :: coord_x !< REAL(wp), DIMENSION(:), ALLOCATABLE :: coord_y !< REAL(wp), DIMENSION(:), ALLOCATABLE :: dzu !< REAL(wp), DIMENSION(:), ALLOCATABLE :: dzw !< REAL(wp), DIMENSION(:), ALLOCATABLE :: zu !< REAL(wp), DIMENSION(:), ALLOCATABLE :: zw !< END TYPE parentgrid_def TYPE(parentgrid_def), SAVE, PUBLIC :: pg !< Parent-grid information package of type parentgrid_def ! !-- Variables for particle coupling TYPE, PUBLIC :: childgrid_def INTEGER(iwp) :: nx !< INTEGER(iwp) :: ny !< INTEGER(iwp) :: nz !< REAL(wp) :: dx !< REAL(wp) :: dy !< REAL(wp) :: dz !< REAL(wp) :: lx_coord, lx_coord_b !< ! split onto separate lines REAL(wp) :: rx_coord, rx_coord_b !< REAL(wp) :: sy_coord, sy_coord_b !< REAL(wp) :: ny_coord, ny_coord_b !< REAL(wp) :: uz_coord, uz_coord_b !< END TYPE childgrid_def TYPE(childgrid_def), SAVE, ALLOCATABLE, DIMENSION(:), PUBLIC :: childgrid !< INTEGER(idp), ALLOCATABLE,DIMENSION(:,:), PUBLIC,TARGET :: nr_part !< INTEGER(idp), ALLOCATABLE,DIMENSION(:,:), PUBLIC,TARGET :: part_adr !< INTERFACE pmci_boundary_conds MODULE PROCEDURE pmci_boundary_conds END INTERFACE pmci_boundary_conds INTERFACE pmci_check_setting_mismatches MODULE PROCEDURE pmci_check_setting_mismatches END INTERFACE INTERFACE pmci_child_initialize MODULE PROCEDURE pmci_child_initialize END INTERFACE INTERFACE pmci_synchronize MODULE PROCEDURE pmci_synchronize END INTERFACE INTERFACE pmci_datatrans MODULE PROCEDURE pmci_datatrans END INTERFACE pmci_datatrans INTERFACE pmci_ensure_nest_mass_conservation MODULE PROCEDURE pmci_ensure_nest_mass_conservation END INTERFACE pmci_ensure_nest_mass_conservation INTERFACE pmci_ensure_nest_mass_conservation_vertical MODULE PROCEDURE pmci_ensure_nest_mass_conservation_vertical END INTERFACE pmci_ensure_nest_mass_conservation_vertical INTERFACE pmci_init MODULE PROCEDURE pmci_init END INTERFACE INTERFACE pmci_modelconfiguration MODULE PROCEDURE pmci_modelconfiguration END INTERFACE INTERFACE pmci_parent_initialize MODULE PROCEDURE pmci_parent_initialize END INTERFACE INTERFACE get_number_of_children MODULE PROCEDURE get_number_of_children END INTERFACE get_number_of_children INTERFACE get_childid MODULE PROCEDURE get_childid END INTERFACE get_childid INTERFACE get_child_edges MODULE PROCEDURE get_child_edges END INTERFACE get_child_edges INTERFACE get_child_gridspacing MODULE PROCEDURE get_child_gridspacing END INTERFACE get_child_gridspacing INTERFACE pmci_set_swaplevel MODULE PROCEDURE pmci_set_swaplevel END INTERFACE pmci_set_swaplevel PUBLIC child_to_parent, comm_world_nesting, cpl_id, nested_run, & nesting_datatransfer_mode, nesting_mode, parent_to_child, rans_mode_parent PUBLIC pmci_boundary_conds PUBLIC pmci_child_initialize PUBLIC pmci_datatrans PUBLIC pmci_init PUBLIC pmci_modelconfiguration PUBLIC pmci_parent_initialize PUBLIC pmci_synchronize PUBLIC pmci_set_swaplevel PUBLIC get_number_of_children, get_childid, get_child_edges, get_child_gridspacing PUBLIC pmci_ensure_nest_mass_conservation PUBLIC pmci_ensure_nest_mass_conservation_vertical CONTAINS SUBROUTINE pmci_init( world_comm ) USE control_parameters, & ONLY: message_string IMPLICIT NONE INTEGER(iwp), INTENT(OUT) :: world_comm !< #if defined( __parallel ) INTEGER(iwp) :: pmc_status !< CALL pmc_init_model( world_comm, nesting_datatransfer_mode, nesting_mode, & anterpolation_buffer_width, pmc_status ) IF ( pmc_status == pmc_no_namelist_found ) THEN ! !-- This is not a nested run world_comm = MPI_COMM_WORLD cpl_id = 1 cpl_name = "" RETURN ENDIF ! !-- Check steering parameter values IF ( TRIM( nesting_mode ) /= 'one-way' .AND. & TRIM( nesting_mode ) /= 'two-way' .AND. & TRIM( nesting_mode ) /= 'vertical' ) & THEN message_string = 'illegal nesting mode: ' // TRIM( nesting_mode ) CALL message( 'pmci_init', 'PA0417', 3, 2, 0, 6, 0 ) ENDIF IF ( TRIM( nesting_datatransfer_mode ) /= 'cascade' .AND. & TRIM( nesting_datatransfer_mode ) /= 'mixed' .AND. & TRIM( nesting_datatransfer_mode ) /= 'overlap' ) & THEN message_string = 'illegal nesting datatransfer mode: ' // TRIM( nesting_datatransfer_mode ) CALL message( 'pmci_init', 'PA0418', 3, 2, 0, 6, 0 ) ENDIF ! !-- Set the general steering switch which tells PALM that its a nested run nested_run = .TRUE. ! !-- Get some variables required by the pmc-interface (and in some cases in the !-- PALM code out of the pmci) out of the pmc-core CALL pmc_get_model_info( comm_world_nesting = comm_world_nesting, & cpl_id = cpl_id, cpl_parent_id = cpl_parent_id, & cpl_name = cpl_name, npe_total = cpl_npe_total, & lower_left_x = lower_left_coord_x, & lower_left_y = lower_left_coord_y ) ! !-- Set the steering switch which tells the models that they are nested (of !-- course the root domain is not nested) IF ( .NOT. pmc_is_rootmodel() ) THEN child_domain = .TRUE. WRITE( coupling_char, '(A2,I2.2)') '_N', cpl_id ENDIF ! !-- Message that communicators for nesting are initialized. !-- Attention: myid has been set at the end of pmc_init_model in order to !-- guarantee that only PE0 of the root domain does the output. CALL location_message( 'initialize model nesting', 'finished' ) ! !-- Reset myid to its default value myid = 0 #else ! !-- Nesting cannot be used in serial mode. cpl_id is set to root domain (1) !-- because no location messages would be generated otherwise. !-- world_comm is given a dummy value to avoid compiler warnings (INTENT(OUT) !-- must get an explicit value). !-- Note that this branch is only to avoid compiler warnings. The actual !-- execution never reaches here because the call of this subroutine is !-- already enclosed by #if defined( __parallel ). cpl_id = 1 nested_run = .FALSE. world_comm = 1 #endif END SUBROUTINE pmci_init SUBROUTINE pmci_modelconfiguration IMPLICIT NONE INTEGER(iwp) :: ncpl !< number of nest domains #if defined( __parallel ) CALL location_message( 'setup the nested model configuration', 'start' ) CALL cpu_log( log_point_s(79), 'pmci_model_config', 'start' ) ! !-- Compute absolute coordinates for all models CALL pmci_setup_coordinates ! CONTAIN THIS ! !-- Determine the number of coupled arrays CALL pmci_num_arrays ! CONTAIN THIS ! !-- Initialize the child (must be called before pmc_setup_parent) !-- Klaus, extend this comment to explain why it must be called before CALL pmci_setup_child ! CONTAIN THIS ! !-- Initialize PMC parent CALL pmci_setup_parent ! CONTAIN THIS ! !-- Check for mismatches between settings of master and child variables !-- (e.g., all children have to follow the end_time settings of the root master) CALL pmci_check_setting_mismatches ! CONTAIN THIS ! !-- Set flag file for combine_plot_fields for precessing the nest output data OPEN( 90, FILE='3DNESTING', FORM='FORMATTED' ) CALL pmc_get_model_info( ncpl = ncpl ) WRITE( 90, '(I2)' ) ncpl CLOSE( 90 ) CALL cpu_log( log_point_s(79), 'pmci_model_config', 'stop' ) CALL location_message( 'setup the nested model configuration', 'finished' ) #endif END SUBROUTINE pmci_modelconfiguration SUBROUTINE pmci_setup_parent #if defined( __parallel ) IMPLICIT NONE INTEGER(iwp) :: child_id !< Child id-number for the child m INTEGER(iwp) :: ierr !< MPI-error code INTEGER(iwp) :: kp !< Parent-grid index n the z-direction INTEGER(iwp) :: lb = 1 !< Running index for aerosol size bins INTEGER(iwp) :: lc = 1 !< Running index for aerosol mass bins INTEGER(iwp) :: lg = 1 !< Running index for SALSA gases INTEGER(iwp) :: m !< Loop index over all children of the current parent INTEGER(iwp) :: msib !< Loop index over all other children than m in case of siblings (parallel children) INTEGER(iwp) :: n = 1 !< Running index for chemical species INTEGER(iwp) :: nest_overlap = 0 !< Tag for parallel child-domains' overlap situation (>0 if overlap found) INTEGER(iwp) :: nomatch = 0 !< Tag for child-domain mismatch situation (>0 if mismatch found) INTEGER(iwp) :: nx_child !< Number of child-grid points in the x-direction INTEGER(iwp) :: ny_child !< Number of child-grid points in the y-direction INTEGER(iwp) :: nz_child !< Number of child-grid points in the z-direction INTEGER(iwp), DIMENSION(3) :: child_grid_dim !< Array for receiving the child-grid dimensions from the children REAL(wp), DIMENSION(:), ALLOCATABLE :: child_x_left !< Minimum x-coordinate of the child domain including the ghost !< point layers REAL(wp), DIMENSION(:), ALLOCATABLE :: child_x_right !< Maximum x-coordinate of the child domain including the ghost !< point layers REAL(wp), DIMENSION(:), ALLOCATABLE :: child_y_south !< Minimum y-coordinate of the child domain including the ghost !< point layers REAL(wp), DIMENSION(:), ALLOCATABLE :: child_y_north !< Maximum y-coordinate of the child domain including the ghost !< point layers REAL(wp), DIMENSION(:), ALLOCATABLE :: child_coord_x !< Child domain x-coordinate array REAL(wp), DIMENSION(:), ALLOCATABLE :: child_coord_y !< Child domain y-coordinate array REAL(wp), DIMENSION(5) :: child_grid_info !< Array for receiving the child-grid spacings etc from the children REAL(wp) :: child_height !< Height of the child domain defined on the child side as zw(nzt+1) REAL(wp) :: dx_child !< Child-grid spacing in the x-direction REAL(wp) :: dy_child !< Child-grid spacing in the y-direction REAL(wp) :: dz_child !< Child-grid spacing in the z-direction REAL(wp) :: left_limit !< Left limit for the absolute x-coordinate of the child left boundary REAL(wp) :: north_limit !< North limit for the absolute y-coordinate of the child north boundary REAL(wp) :: right_limit !< Right limit for the absolute x-coordinate of the child right boundary REAL(wp) :: south_limit !< South limit for the absolute y-coordinate of the child south boundary REAL(wp) :: upper_right_coord_x !< Absolute x-coordinate of the upper right corner of the child domain REAL(wp) :: upper_right_coord_y !< Absolute y-coordinate of the upper right corner of the child domain REAL(wp) :: xez !< Minimum separation in the x-direction required between the child and !< parent boundaries (left or right) REAL(wp) :: yez !< Minimum separation in the y-direction required between the child and !< parent boundaries (south or north) REAL(wp) :: tolex !< Tolerance for grid-line matching in x-direction REAL(wp) :: toley !< Tolerance for grid-line matching in y-direction REAL(wp) :: tolez !< Tolerance for grid-line matching in z-direction CHARACTER(LEN=32) :: myname !< String for variable name such as 'u' LOGICAL :: m_left_in_msib !< Logical auxiliary parameter for the overlap test: true if the left border !< of the child m is within the x-range of the child msib LOGICAL :: m_right_in_msib !< Logical auxiliary parameter for the overlap test: true if the right border !< of the child m is within the x-range of the child msib LOGICAL :: msib_left_in_m !< Logical auxiliary parameter for the overlap test: true if the left border !< of the child msib is within the x-range of the child m LOGICAL :: msib_right_in_m !< Logical auxiliary parameter for the overlap test: true if the right border !< of the child msib is within the x-range of the child m LOGICAL :: m_south_in_msib !< Logical auxiliary parameter for the overlap test: true if the south border !< of the child m is within the y-range of the child msib LOGICAL :: m_north_in_msib !< Logical auxiliary parameter for the overlap test: true if the north border !< of the child m is within the y-range of the child msib LOGICAL :: msib_south_in_m !< Logical auxiliary parameter for the overlap test: true if the south border !< of the child msib is within the y-range of the child m LOGICAL :: msib_north_in_m !< Logical auxiliary parameter for the overlap test: true if the north border !< of the child msib is within the y-range of the child m ! !-- Grid-line tolerances. tolex = tolefac * dx toley = tolefac * dy tolez = tolefac * dz(1) ! !-- Initialize the current pmc parent. CALL pmc_parentinit ! !-- Corners of all children of the present parent. Note that !-- SIZE( pmc_parent_for_child ) = 1 if we have no children. IF ( ( SIZE( pmc_parent_for_child ) - 1 > 0 ) .AND. myid == 0 ) THEN ALLOCATE( child_x_left(1:SIZE( pmc_parent_for_child ) - 1) ) ALLOCATE( child_x_right(1:SIZE( pmc_parent_for_child ) - 1) ) ALLOCATE( child_y_south(1:SIZE( pmc_parent_for_child ) - 1) ) ALLOCATE( child_y_north(1:SIZE( pmc_parent_for_child ) - 1) ) ENDIF IF ( ( SIZE( pmc_parent_for_child ) - 1 > 0 ) ) THEN ALLOCATE( childgrid(1:SIZE( pmc_parent_for_child ) - 1) ) ENDIF ! !-- Get coordinates from all children and check that the children match the parent !-- domain and each others. Note that SIZE( pmc_parent_for_child ) = 1 !-- if we have no children, thence the loop is not executed at all. DO m = 1, SIZE( pmc_parent_for_child ) - 1 child_id = pmc_parent_for_child(m) IF ( myid == 0 ) THEN CALL pmc_recv_from_child( child_id, child_grid_dim, SIZE(child_grid_dim), 0, 123, ierr ) CALL pmc_recv_from_child( child_id, child_grid_info, SIZE(child_grid_info), 0, 124, ierr ) nx_child = child_grid_dim(1) ny_child = child_grid_dim(2) dx_child = child_grid_info(3) dy_child = child_grid_info(4) dz_child = child_grid_info(5) child_height = child_grid_info(1) ! !-- Find the highest child-domain level in the parent grid for the reduced z transfer DO kp = 1, nzt IF ( zw(kp) - child_height > tolez ) THEN nz_child = kp EXIT ENDIF ENDDO ! !-- Get absolute coordinates from the child ALLOCATE( child_coord_x(-nbgp:nx_child+nbgp) ) ALLOCATE( child_coord_y(-nbgp:ny_child+nbgp) ) CALL pmc_recv_from_child( child_id, child_coord_x, SIZE( child_coord_x ), 0, 11, ierr ) CALL pmc_recv_from_child( child_id, child_coord_y, SIZE( child_coord_y ), 0, 12, ierr ) parent_grid_info_real(1) = lower_left_coord_x parent_grid_info_real(2) = lower_left_coord_y parent_grid_info_real(3) = dx parent_grid_info_real(4) = dy upper_right_coord_x = lower_left_coord_x + ( nx + 1 ) * dx upper_right_coord_y = lower_left_coord_y + ( ny + 1 ) * dy parent_grid_info_real(5) = upper_right_coord_x parent_grid_info_real(6) = upper_right_coord_y parent_grid_info_real(7) = dz(1) parent_grid_info_int(1) = nx parent_grid_info_int(2) = ny parent_grid_info_int(3) = nz_child ! !-- Check that the child domain matches its parent domain. IF ( nesting_mode == 'vertical' ) THEN ! !-- In case of vertical nesting, the lateral boundaries must match exactly. right_limit = upper_right_coord_x north_limit = upper_right_coord_y IF ( ( ABS( child_coord_x(nx_child+1) - right_limit ) > tolex ) .OR. & ( ABS( child_coord_y(ny_child+1) - north_limit ) > toley ) ) THEN nomatch = 1 ENDIF ELSE ! !-- In case of 3-D nesting, check that the child domain is completely !-- inside its parent domain. xez = ( nbgp + 1 ) * dx yez = ( nbgp + 1 ) * dy left_limit = lower_left_coord_x + xez right_limit = upper_right_coord_x - xez south_limit = lower_left_coord_y + yez north_limit = upper_right_coord_y - yez IF ( ( left_limit - child_coord_x(0) > tolex ) .OR. & ( child_coord_x(nx_child+1) - right_limit > tolex ) .OR. & ( south_limit - child_coord_y(0) > toley ) .OR. & ( child_coord_y(ny_child+1) - north_limit > toley ) ) THEN nomatch = 1 ENDIF ENDIF ! !-- Child domain must be lower than the parent domain such that the top ghost !-- layer of the child grid does not exceed the parent domain top boundary. IF ( child_height - zw(nzt) > tolez ) THEN nomatch = 1 ENDIF ! !-- If parallel child domains (siblings) do exist ( m > 1 ), !-- check that they do not overlap. child_x_left(m) = child_coord_x(-nbgp) child_x_right(m) = child_coord_x(nx_child+nbgp) child_y_south(m) = child_coord_y(-nbgp) child_y_north(m) = child_coord_y(ny_child+nbgp) IF ( nesting_mode /= 'vertical' ) THEN ! !-- Note that the msib-loop is executed only if ( m > 1 ). !-- Also note that the tests have to be made both ways (m vs msib and msib vs m) !-- in order to detect all the possible overlap situations. DO msib = 1, m - 1 ! !-- Set some logical auxiliary parameters to simplify the IF-condition. m_left_in_msib = ( child_x_left(m) >= child_x_left(msib) - tolex ) .AND. & ( child_x_left(m) <= child_x_right(msib) + tolex ) m_right_in_msib = ( child_x_right(m) >= child_x_left(msib) - tolex ) .AND. & ( child_x_right(m) <= child_x_right(msib) + tolex ) msib_left_in_m = ( child_x_left(msib) >= child_x_left(m) - tolex ) .AND. & ( child_x_left(msib) <= child_x_right(m) + tolex ) msib_right_in_m = ( child_x_right(msib) >= child_x_left(m) - tolex ) .AND. & ( child_x_right(msib) <= child_x_right(m) + tolex ) m_south_in_msib = ( child_y_south(m) >= child_y_south(msib) - toley ) .AND. & ( child_y_south(m) <= child_y_north(msib) + toley ) m_north_in_msib = ( child_y_north(m) >= child_y_south(msib) - toley ) .AND. & ( child_y_north(m) <= child_y_north(msib) + toley ) msib_south_in_m = ( child_y_south(msib) >= child_y_south(m) - toley ) .AND. & ( child_y_south(msib) <= child_y_north(m) + toley ) msib_north_in_m = ( child_y_north(msib) >= child_y_south(m) - toley ) .AND. & ( child_y_north(msib) <= child_y_north(m) + toley ) IF ( ( m_left_in_msib .OR. m_right_in_msib .OR. & msib_left_in_m .OR. msib_right_in_m ) & .AND. & ( m_south_in_msib .OR. m_north_in_msib .OR. & msib_south_in_m .OR. msib_north_in_m ) ) THEN nest_overlap = 1 ENDIF ENDDO ENDIF CALL pmci_set_child_edge_coords DEALLOCATE( child_coord_x ) DEALLOCATE( child_coord_y ) ! !-- Send information about operating mode (LES or RANS) to child. This will be !-- used to control TKE nesting and setting boundary conditions properly. CALL pmc_send_to_child( child_id, rans_mode, 1, 0, 19, ierr ) ! !-- Send parent grid information to child CALL pmc_send_to_child( child_id, parent_grid_info_real, & SIZE( parent_grid_info_real ), 0, 21, & ierr ) CALL pmc_send_to_child( child_id, parent_grid_info_int, 3, 0, & 22, ierr ) ! !-- Send local grid to child CALL pmc_send_to_child( child_id, coord_x, nx+1+2*nbgp, 0, 24, & ierr ) CALL pmc_send_to_child( child_id, coord_y, ny+1+2*nbgp, 0, 25, & ierr ) ! !-- Also send the dzu-, dzw-, zu- and zw-arrays here CALL pmc_send_to_child( child_id, dzu, nz_child + 1, 0, 26, ierr ) CALL pmc_send_to_child( child_id, dzw, nz_child + 1, 0, 27, ierr ) CALL pmc_send_to_child( child_id, zu, nz_child + 2, 0, 28, ierr ) CALL pmc_send_to_child( child_id, zw, nz_child + 2, 0, 29, ierr ) IF ( nomatch /= 0 ) THEN WRITE ( message_string, * ) 'nested child domain does not fit into its parent domain' CALL message( 'pmci_setup_parent', 'PA0425', 3, 2, 0, 6, 0 ) ENDIF IF ( nest_overlap /= 0 .AND. nesting_mode /= 'vertical' ) THEN WRITE ( message_string, * ) 'nested parallel child domains overlap' CALL message( 'pmci_setup_parent', 'PA0426', 3, 2, 0, 6, 0 ) ENDIF ENDIF ! ( myid == 0 ) CALL MPI_BCAST( nz_child, 1, MPI_INTEGER, 0, comm2d, ierr ) CALL MPI_BCAST( childgrid(m), STORAGE_SIZE(childgrid(1))/8, MPI_BYTE, 0, comm2d, ierr ) ! !-- Set up the index-list which is an integer array that maps the child index space on !-- the parent index- and subdomain spaces. CALL pmci_create_index_list ! !-- Include couple arrays into parent content. !-- The adresses of the PALM 2D or 3D array (here parent grid) which are candidates !-- for coupling are stored once into the pmc context. While data transfer, the array do not !-- have to be specified again CALL pmc_s_clear_next_array_list DO WHILE ( pmc_s_getnextarray( child_id, myname ) ) IF ( INDEX( TRIM( myname ), 'chem_' ) /= 0 ) THEN CALL pmci_set_array_pointer( myname, child_id = child_id, nz_child = nz_child, n = n ) n = n + 1 ELSEIF ( INDEX( TRIM( myname ), 'an_' ) /= 0 ) THEN CALL pmci_set_array_pointer( myname, child_id = child_id, nz_child = nz_child, n = lb ) lb = lb + 1 ELSEIF ( INDEX( TRIM( myname ), 'am_' ) /= 0 ) THEN CALL pmci_set_array_pointer( myname, child_id = child_id, nz_child = nz_child, n = lc ) lc = lc + 1 ELSEIF ( INDEX( TRIM( myname ), 'sg_' ) /= 0 .AND. .NOT. salsa_gases_from_chem ) THEN CALL pmci_set_array_pointer( myname, child_id = child_id, nz_child = nz_child, n = lg ) lg = lg + 1 ELSE CALL pmci_set_array_pointer( myname, child_id = child_id, nz_child = nz_child ) ENDIF ENDDO CALL pmc_s_setind_and_allocmem( child_id ) ENDDO ! m IF ( ( SIZE( pmc_parent_for_child ) - 1 > 0 ) .AND. myid == 0 ) THEN DEALLOCATE( child_x_left ) DEALLOCATE( child_x_right ) DEALLOCATE( child_y_south ) DEALLOCATE( child_y_north ) ENDIF CONTAINS SUBROUTINE pmci_create_index_list IMPLICIT NONE INTEGER(iwp) :: ilist !< Index-list index running over the child's parent-grid jc,ic-space INTEGER(iwp) :: index_list_size !< Dimension 2 of the array index_list INTEGER(iwp) :: ierr !< MPI error code INTEGER(iwp) :: ip !< Running parent-grid index on the child domain in the x-direction INTEGER(iwp) :: jp !< Running parent-grid index on the child domain in the y-direction INTEGER(iwp) :: n !< Running index over child subdomains INTEGER(iwp) :: nrx !< Parent subdomain dimension in the x-direction INTEGER(iwp) :: nry !< Parent subdomain dimension in the y-direction INTEGER(iwp) :: pex !< Two-dimensional subdomain (pe) index in the x-direction INTEGER(iwp) :: pey !< Two-dimensional subdomain (pe) index in the y-direction INTEGER(iwp) :: parent_pe !< Parent subdomain index (one-dimensional) INTEGER(iwp), DIMENSION(2) :: pe_indices_2d !< Array for two-dimensional subdomain (pe) !< indices needed for MPI_CART_RANK INTEGER(iwp), DIMENSION(2) :: size_of_childs_parent_grid_bounds_all !< Dimensions of childs_parent_grid_bounds_all INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: childs_parent_grid_bounds_all !< Array that contains the child's !< parent-grid index bounds for all its !< subdomains (pes) INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: index_list !< Array that maps the child index space on !< the parent index- and subdomain spaces IF ( myid == 0 ) THEN CALL pmc_recv_from_child( child_id, size_of_childs_parent_grid_bounds_all, & 2, 0, 40, ierr ) ALLOCATE( childs_parent_grid_bounds_all(size_of_childs_parent_grid_bounds_all(1), & size_of_childs_parent_grid_bounds_all(2)) ) CALL pmc_recv_from_child( child_id, childs_parent_grid_bounds_all, & SIZE( childs_parent_grid_bounds_all ), 0, 41, ierr ) ! !-- Compute size (dimension) of the index_list. index_list_size = 0 DO n = 1, size_of_childs_parent_grid_bounds_all(2) index_list_size = index_list_size + & ( childs_parent_grid_bounds_all(4,n) - childs_parent_grid_bounds_all(3,n) + 1 ) * & ( childs_parent_grid_bounds_all(2,n) - childs_parent_grid_bounds_all(1,n) + 1 ) ENDDO ALLOCATE( index_list(6,index_list_size) ) nrx = nxr - nxl + 1 nry = nyn - nys + 1 ilist = 0 ! !-- Loop over all children PEs DO n = 1, size_of_childs_parent_grid_bounds_all(2) ! ! !-- Subspace along y required by actual child PE DO jp = childs_parent_grid_bounds_all(3,n), childs_parent_grid_bounds_all(4,n) ! jp = jps, jpn of child PE# n ! !-- Subspace along x required by actual child PE DO ip = childs_parent_grid_bounds_all(1,n), childs_parent_grid_bounds_all(2,n) ! ip = ipl, ipr of child PE# n pex = ip / nrx pey = jp / nry pe_indices_2d(1) = pex pe_indices_2d(2) = pey CALL MPI_CART_RANK( comm2d, pe_indices_2d, parent_pe, ierr ) ilist = ilist + 1 ! !-- First index in parent array ! TO_DO: Klaus, please explain better index_list(1,ilist) = ip - ( pex * nrx ) + 1 + nbgp ! !-- Second index in parent array ! TO_DO: Klaus, please explain better index_list(2,ilist) = jp - ( pey * nry ) + 1 + nbgp ! !-- x index of child's parent grid index_list(3,ilist) = ip - childs_parent_grid_bounds_all(1,n) + 1 ! !-- y index of child's parent grid index_list(4,ilist) = jp - childs_parent_grid_bounds_all(3,n) + 1 ! !-- PE number of child index_list(5,ilist) = n - 1 ! !-- PE number of parent index_list(6,ilist) = parent_pe ENDDO ENDDO ENDDO ! !-- TO_DO: Klaus: comment what is done here CALL pmc_s_set_2d_index_list( child_id, index_list(:,1:ilist) ) ELSE ! !-- TO_DO: Klaus: comment why this dummy allocation is required ALLOCATE( index_list(6,1) ) CALL pmc_s_set_2d_index_list( child_id, index_list ) ENDIF DEALLOCATE(index_list) END SUBROUTINE pmci_create_index_list SUBROUTINE pmci_set_child_edge_coords IMPLICIT NONE INTEGER(iwp) :: nbgp_lpm = 1 !< Number of ghost-point layers used for lpm (Klaus, is this correct?) nbgp_lpm = MIN( nbgp_lpm, nbgp ) childgrid(m)%nx = nx_child childgrid(m)%ny = ny_child childgrid(m)%nz = nz_child childgrid(m)%dx = dx_child childgrid(m)%dy = dy_child childgrid(m)%dz = dz_child childgrid(m)%lx_coord = child_coord_x(0) childgrid(m)%lx_coord_b = child_coord_x(-nbgp_lpm) childgrid(m)%rx_coord = child_coord_x(nx_child) + dx_child childgrid(m)%rx_coord_b = child_coord_x(nx_child+nbgp_lpm) + dx_child childgrid(m)%sy_coord = child_coord_y(0) childgrid(m)%sy_coord_b = child_coord_y(-nbgp_lpm) childgrid(m)%ny_coord = child_coord_y(ny_child) + dy_child childgrid(m)%ny_coord_b = child_coord_y(ny_child+nbgp_lpm) + dy_child childgrid(m)%uz_coord = child_grid_info(2) childgrid(m)%uz_coord_b = child_grid_info(1) END SUBROUTINE pmci_set_child_edge_coords #endif END SUBROUTINE pmci_setup_parent SUBROUTINE pmci_setup_child #if defined( __parallel ) IMPLICIT NONE INTEGER(iwp) :: ierr !< MPI error code INTEGER(iwp) :: lb !< Running index for aerosol size bins INTEGER(iwp) :: lc !< Running index for aerosol mass bins INTEGER(iwp) :: lg !< Running index for SALSA gases INTEGER(iwp) :: n !< Running index for number of chemical species INTEGER(iwp), DIMENSION(3) :: child_grid_dim !< Array for sending the child-grid dimensions to parent REAL(wp), DIMENSION(5) :: child_grid_info !< Array for sending the child-grid spacings etc to parent CHARACTER( LEN=da_namelen ) :: myname !< Name of the variable to be coupled CHARACTER(LEN=5) :: salsa_char !< Name extension for the variable name in case of SALSA variable ! !-- Child setup !-- Root model does not have a parent and is not a child, therefore no child setup on root model IF ( .NOT. pmc_is_rootmodel() ) THEN ! !-- KLaus, add a description here what pmc_childinit does CALL pmc_childinit ! !-- The arrays, which actually will be exchanged between child and parent !-- are defined Here AND ONLY HERE. !-- If a variable is removed, it only has to be removed from here. !-- Please check, if the arrays are in the list of POSSIBLE exchange arrays !-- in subroutines: !-- pmci_set_array_pointer (for parent arrays) !-- pmci_create_childs_parent_grid_arrays (for child's parent-grid arrays) CALL pmc_set_dataarray_name( 'parent', 'u', 'child', 'u', ierr ) CALL pmc_set_dataarray_name( 'parent', 'v', 'child', 'v', ierr ) CALL pmc_set_dataarray_name( 'parent', 'w', 'child', 'w', ierr ) ! !-- Set data array name for TKE. Please note, nesting of TKE is actually !-- only done if both parent and child are in LES or in RANS mode. Due to !-- design of model coupler, however, data array names must be already !-- available at this point. IF ( ( rans_mode_parent .AND. rans_mode ) .OR. & ( .NOT. rans_mode_parent .AND. .NOT. rans_mode .AND. & .NOT. constant_diffusion ) ) THEN CALL pmc_set_dataarray_name( 'parent', 'e', 'child', 'e', ierr ) ENDIF ! !-- Nesting of dissipation rate only if both parent and child are in RANS !-- mode and TKE-epsilon closure is applied. Please see also comment for TKE !-- above. IF ( rans_mode_parent .AND. rans_mode .AND. rans_tke_e ) THEN CALL pmc_set_dataarray_name( 'parent', 'diss', 'child', 'diss', ierr ) ENDIF IF ( .NOT. neutral ) THEN CALL pmc_set_dataarray_name( 'parent', 'pt' ,'child', 'pt', ierr ) ENDIF IF ( humidity ) THEN CALL pmc_set_dataarray_name( 'parent', 'q', 'child', 'q', ierr ) IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN CALL pmc_set_dataarray_name( 'parent', 'qc', 'child', 'qc', ierr ) CALL pmc_set_dataarray_name( 'parent', 'nc', 'child', 'nc', ierr ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN CALL pmc_set_dataarray_name( 'parent', 'qr', 'child', 'qr', ierr ) CALL pmc_set_dataarray_name( 'parent', 'nr', 'child', 'nr', ierr ) ENDIF ENDIF IF ( passive_scalar ) THEN CALL pmc_set_dataarray_name( 'parent', 's', 'child', 's', ierr ) ENDIF IF ( particle_advection ) THEN CALL pmc_set_dataarray_name( 'parent', 'nr_part', 'child', 'nr_part', ierr ) CALL pmc_set_dataarray_name( 'parent', 'part_adr', 'child', 'part_adr', ierr ) ENDIF IF ( air_chemistry ) THEN DO n = 1, nspec CALL pmc_set_dataarray_name( 'parent', 'chem_' // TRIM( chem_species(n)%name ), & 'child', 'chem_' // TRIM( chem_species(n)%name ), ierr ) ENDDO ENDIF IF ( salsa .AND. nest_salsa ) THEN DO lb = 1, nbins_aerosol WRITE(salsa_char,'(i0)') lb CALL pmc_set_dataarray_name( 'parent', 'an_' // TRIM( salsa_char ), & 'child', 'an_' // TRIM( salsa_char ), ierr ) ENDDO DO lc = 1, nbins_aerosol * ncomponents_mass WRITE(salsa_char,'(i0)') lc CALL pmc_set_dataarray_name( 'parent', 'am_' // TRIM( salsa_char ), & 'child', 'am_' // TRIM( salsa_char ), ierr ) ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO lg = 1, ngases_salsa WRITE(salsa_char,'(i0)') lg CALL pmc_set_dataarray_name( 'parent', 'sg_' // TRIM( salsa_char ), & 'child', 'sg_' // TRIM( salsa_char ), ierr ) ENDDO ENDIF ENDIF CALL pmc_set_dataarray_name( lastentry = .TRUE. ) ! !-- Send grid to parent child_grid_dim(1) = nx child_grid_dim(2) = ny child_grid_dim(3) = nz child_grid_info(1) = zw(nzt+1) child_grid_info(2) = zw(nzt) child_grid_info(3) = dx child_grid_info(4) = dy child_grid_info(5) = dz(1) IF ( myid == 0 ) THEN CALL pmc_send_to_parent( child_grid_dim, SIZE( child_grid_dim ), 0, 123, ierr ) CALL pmc_send_to_parent( child_grid_info, SIZE( child_grid_info ), 0, 124, ierr ) CALL pmc_send_to_parent( coord_x, nx + 1 + 2 * nbgp, 0, 11, ierr ) CALL pmc_send_to_parent( coord_y, ny + 1 + 2 * nbgp, 0, 12, ierr ) CALL pmc_recv_from_parent( rans_mode_parent, 1, 0, 19, ierr ) ! !-- Receive parent-grid information. CALL pmc_recv_from_parent( parent_grid_info_real, & SIZE(parent_grid_info_real), 0, 21, ierr ) CALL pmc_recv_from_parent( parent_grid_info_int, 3, 0, 22, ierr ) ENDIF CALL MPI_BCAST( parent_grid_info_real, SIZE(parent_grid_info_real), & MPI_REAL, 0, comm2d, ierr ) CALL MPI_BCAST( parent_grid_info_int, 3, MPI_INTEGER, 0, comm2d, ierr ) pg%dx = parent_grid_info_real(3) pg%dy = parent_grid_info_real(4) pg%dz = parent_grid_info_real(7) pg%nx = parent_grid_info_int(1) pg%ny = parent_grid_info_int(2) pg%nz = parent_grid_info_int(3) ! !-- Allocate 1-D arrays for parent-grid coordinates and grid-spacings in the z-direction ALLOCATE( pg%coord_x(-nbgp:pg%nx+nbgp) ) ALLOCATE( pg%coord_y(-nbgp:pg%ny+nbgp) ) ALLOCATE( pg%dzu(1:pg%nz+1) ) ALLOCATE( pg%dzw(1:pg%nz+1) ) ALLOCATE( pg%zu(0:pg%nz+1) ) ALLOCATE( pg%zw(0:pg%nz+1) ) ! !-- Get parent-grid coordinates and grid-spacings in the z-direction from the parent IF ( myid == 0) THEN CALL pmc_recv_from_parent( pg%coord_x, pg%nx+1+2*nbgp, 0, 24, ierr ) CALL pmc_recv_from_parent( pg%coord_y, pg%ny+1+2*nbgp, 0, 25, ierr ) CALL pmc_recv_from_parent( pg%dzu, pg%nz+1, 0, 26, ierr ) CALL pmc_recv_from_parent( pg%dzw, pg%nz+1, 0, 27, ierr ) CALL pmc_recv_from_parent( pg%zu, pg%nz+2, 0, 28, ierr ) CALL pmc_recv_from_parent( pg%zw, pg%nz+2, 0, 29, ierr ) ENDIF ! !-- Broadcast this information CALL MPI_BCAST( pg%coord_x, pg%nx+1+2*nbgp, MPI_REAL, 0, comm2d, ierr ) CALL MPI_BCAST( pg%coord_y, pg%ny+1+2*nbgp, MPI_REAL, 0, comm2d, ierr ) CALL MPI_BCAST( pg%dzu, pg%nz+1, MPI_REAL, 0, comm2d, ierr ) CALL MPI_BCAST( pg%dzw, pg%nz+1, MPI_REAL, 0, comm2d, ierr ) CALL MPI_BCAST( pg%zu, pg%nz+2, MPI_REAL, 0, comm2d, ierr ) CALL MPI_BCAST( pg%zw, pg%nz+2, MPI_REAL, 0, comm2d, ierr ) CALL MPI_BCAST( rans_mode_parent, 1, MPI_LOGICAL, 0, comm2d, ierr ) ! !-- Find the index bounds for the nest domain in the parent-grid index space CALL pmci_map_child_grid_to_parent_grid ! !-- TO_DO: Klaus give a comment what is happening here CALL pmc_c_get_2d_index_list ! !-- Include couple arrays into child content !-- TO_DO: Klaus: better explain the above comment (what is child content?) CALL pmc_c_clear_next_array_list n = 1 lb = 1 lc = 1 lg = 1 DO WHILE ( pmc_c_getnextarray( myname ) ) ! !-- Note that pg%nz is not the original nz of parent, but the highest !-- parent-grid level needed for nesting. !-- Note that in case of chemical species or SALSA variables an additional !-- parameter needs to be passed. The parameter is required to set the pointer !-- correctlyto the chemical-species or SALSA data structure. Hence, first check if !-- the current variable is a chemical species or a SALSA variable. If so, pass !-- index id of respective sub-variable (species or bin) and increment this subsequently. IF ( INDEX( TRIM( myname ), 'chem_' ) /= 0 ) THEN CALL pmci_create_childs_parent_grid_arrays ( myname, ipl, ipr, jps, jpn, pg%nz, n ) n = n + 1 ELSEIF ( INDEX( TRIM( myname ), 'an_' ) /= 0 ) THEN CALL pmci_create_childs_parent_grid_arrays ( myname, ipl, ipr, jps, jpn, pg%nz, lb ) lb = lb + 1 ELSEIF ( INDEX( TRIM( myname ), 'am_' ) /= 0 ) THEN CALL pmci_create_childs_parent_grid_arrays ( myname, ipl, ipr, jps, jpn, pg%nz, lc ) lc = lc + 1 ELSEIF ( INDEX( TRIM( myname ), 'sg_' ) /= 0 .AND. .NOT. salsa_gases_from_chem ) THEN CALL pmci_create_childs_parent_grid_arrays ( myname, ipl, ipr, jps, jpn, pg%nz, lg ) lg = lg + 1 ELSE CALL pmci_create_childs_parent_grid_arrays ( myname, ipl, ipr, jps, jpn, pg%nz ) ENDIF ENDDO CALL pmc_c_setind_and_allocmem ! !-- Precompute the index-mapping arrays CALL pmci_define_index_mapping ! !-- Check that the child and parent grid lines do match CALL pmci_check_grid_matching ! !-- Compute surface areas of the nest-boundary faces CALL pmci_compute_face_areas ENDIF CONTAINS SUBROUTINE pmci_map_child_grid_to_parent_grid ! !-- Determine index bounds of interpolation/anterpolation area in the parent-grid index space IMPLICIT NONE INTEGER(iwp), DIMENSION(5,numprocs) :: parent_bound_all !< Transfer array for parent-grid index bounds INTEGER(iwp), DIMENSION(4) :: parent_bound_global !< Transfer array for global parent-grid index bounds INTEGER(iwp), DIMENSION(2) :: size_of_array !< For sending the dimensions of parent_bound_all to parent INTEGER(iwp) :: ip !< Running parent-grid index in the x-direction INTEGER(iwp) :: iauxl !< Offset between the index bound ipl and the auxiliary index bound ipla INTEGER(iwp) :: iauxr !< Offset between the index bound ipr and the auxiliary index bound ipra INTEGER(iwp) :: ijaux !< Temporary variable for receiving the index bound from the neighbouring subdomain INTEGER(iwp) :: jp !< Running parent-grid index in the y-direction INTEGER(iwp) :: jauxs !< Offset between the index bound jps and the auxiliary index bound jpsa INTEGER(iwp) :: jauxn !< Offset between the index bound jpn and the auxiliary index bound jpna REAL(wp) :: tolex !< Tolerance for grid-line matching in x-direction REAL(wp) :: toley !< Tolerance for grid-line matching in y-direction REAL(wp) :: xexl !< Parent-grid array exceedance behind the left edge of the child PE subdomain REAL(wp) :: xexr !< Parent-grid array exceedance behind the right edge of the child PE subdomain REAL(wp) :: yexs !< Parent-grid array exceedance behind the south edge of the child PE subdomain REAL(wp) :: yexn !< Parent-grid array exceedance behind the north edge of the child PE subdomain REAL(wp) :: xpl !< Requested left-edge x-coordinate of the parent-grid array domain (at the internal boundaries !< the real edge may differ from this in some cases as explained in the comment block below) REAL(wp) :: xpr !< Requested right-edge x-coordinate of the parent-grid array domain (at the internal boundaries !< the real edge may differ from this in some cases as explained in the comment block below) REAL(wp) :: yps !< Requested south-edge y-coordinate of the parent-grid array domain (at the internal boundaries !< the real edge may differ from this in some cases as explained in the comment block below) REAL(wp) :: ypn !< Requested south-edge y-coordinate of the parent-grid array domain (at the internal boundaries !< the real edge may differ from this in some cases as explained in the comment block below) ! !-- Determine the index limits for the child's parent-grid arrays (such as uc for example). !-- Note that at the outer edges of the child domain (nest boundaries) these arrays exceed !-- the boundary by two parent-grid cells. At the internal boundaries, there are no !-- exceedances and thus no overlaps with the neighbouring subdomain. If at least half !-- of the parent-grid cell is within the current child sub-domain, then it is included !-- in the current sub-domain's parent-grid array. Else the parent-grid cell is !-- included in the neighbouring subdomain's parent-grid array, or not included at all if !-- we are at the outer edge of the child domain. This may occur especially when a large !-- grid-spacing ratio is used. ! !-- Tolerances for grid-line matching. tolex = tolefac * dx toley = tolefac * dy ! !-- Left boundary. !-- Extension by two parent-grid cells behind the boundary, see the comment block above. IF ( bc_dirichlet_l ) THEN xexl = 2.0_wp * pg%dx iauxl = 0 ELSE xexl = 0.0_wp iauxl = 1 ENDIF xpl = coord_x(nxl) - xexl DO ip = 0, pg%nx IF ( pg%coord_x(ip) + 0.5_wp * pg%dx >= xpl - tolex ) THEN ipl = MAX( 0, ip ) EXIT ENDIF ENDDO ! !-- Right boundary. !-- Extension by two parent-grid cells behind the boundary, see the comment block above. IF ( bc_dirichlet_r ) THEN xexr = 2.0_wp * pg%dx iauxr = 0 ELSE xexr = 0.0_wp iauxr = 1 ENDIF xpr = coord_x(nxr+1) + xexr DO ip = pg%nx, 0 , -1 IF ( pg%coord_x(ip) + 0.5_wp * pg%dx <= xpr + tolex ) THEN ipr = MIN( pg%nx, MAX( ipl, ip ) ) EXIT ENDIF ENDDO ! !-- South boundary. !-- Extension by two parent-grid cells behind the boundary, see the comment block above. IF ( bc_dirichlet_s ) THEN yexs = 2.0_wp * pg%dy jauxs = 0 ELSE yexs = 0.0_wp jauxs = 1 ENDIF yps = coord_y(nys) - yexs DO jp = 0, pg%ny IF ( pg%coord_y(jp) + 0.5_wp * pg%dy >= yps - toley ) THEN jps = MAX( 0, jp ) EXIT ENDIF ENDDO ! !-- North boundary. !-- Extension by two parent-grid cells behind the boundary, see the comment block above. IF ( bc_dirichlet_n ) THEN yexn = 2.0_wp * pg%dy jauxn = 0 ELSE yexn = 0.0_wp jauxn = 1 ENDIF ypn = coord_y(nyn+1) + yexn DO jp = pg%ny, 0 , -1 IF ( pg%coord_y(jp) + 0.5_wp * pg%dy <= ypn + toley ) THEN jpn = MIN( pg%ny, MAX( jps, jp ) ) EXIT ENDIF ENDDO ! !-- Make sure that the indexing is contiguous (no gaps, no overlaps). !-- This is a safety measure mainly for cases with high grid-spacing !-- ratio and narrow child subdomains. IF ( pdims(1) > 1 ) THEN IF ( nxl == 0 ) THEN CALL MPI_SEND( ipr, 1, MPI_INTEGER, pright, 717, comm2d, ierr ) ELSE IF ( nxr == nx ) THEN CALL MPI_RECV( ijaux, 1, MPI_INTEGER, pleft, 717, comm2d, status, ierr ) ipl = ijaux + 1 ELSE CALL MPI_SEND( ipr, 1, MPI_INTEGER, pright, 717, comm2d, ierr ) CALL MPI_RECV( ijaux, 1, MPI_INTEGER, pleft, 717, comm2d, status, ierr ) ipl = ijaux + 1 ENDIF ENDIF IF ( pdims(2) > 1 ) THEN IF ( nys == 0 ) THEN CALL MPI_SEND( jpn, 1, MPI_INTEGER, pnorth, 719, comm2d, ierr ) ELSE IF ( nyn == ny ) THEN CALL MPI_RECV( ijaux, 1, MPI_INTEGER, psouth, 719, comm2d, status, ierr ) jps = ijaux + 1 ELSE CALL MPI_SEND( jpn, 1, MPI_INTEGER, pnorth, 719, comm2d, ierr ) CALL MPI_RECV( ijaux, 1, MPI_INTEGER, psouth, 719, comm2d, status, ierr ) jps = ijaux + 1 ENDIF ENDIF WRITE(9,"('pmci_map_child_grid_to_parent_grid. Parent-grid array bounds: ',4(i4,2x))") & ipl, ipr, jps, jpn FLUSH(9) parent_bound(1) = ipl parent_bound(2) = ipr parent_bound(3) = jps parent_bound(4) = jpn parent_bound(5) = myid ! !-- The following auxiliary index bounds are used for allocating index mapping and !-- some other auxiliary arrays. ipla = ipl - iauxl ipra = ipr + iauxr jpsa = jps - jauxs jpna = jpn + jauxn ! !-- The index-bounds parent_bound of all subdomains of the current child domain !-- must be sent to the parent in order for the parent to create the index list. !-- For this reason, the parent_bound arrays are packed together in single !-- array parent_bound_all using MPI_GATHER. !-- Note that MPI_Gather receives data from all processes in the rank order !-- This fact is exploited in creating the index list in pmci_create_index_list. CALL MPI_GATHER( parent_bound, 5, MPI_INTEGER, parent_bound_all, 5, & MPI_INTEGER, 0, comm2d, ierr ) IF ( myid == 0 ) THEN size_of_array(1) = SIZE( parent_bound_all, 1 ) size_of_array(2) = SIZE( parent_bound_all, 2 ) CALL pmc_send_to_parent( size_of_array, 2, 0, 40, ierr ) CALL pmc_send_to_parent( parent_bound_all, SIZE( parent_bound_all ), 0, 41, ierr ) ! !-- Determine the global parent-grid index bounds parent_bound_global(1) = MINVAL( parent_bound_all(1,:) ) parent_bound_global(2) = MAXVAL( parent_bound_all(2,:) ) parent_bound_global(3) = MINVAL( parent_bound_all(3,:) ) parent_bound_global(4) = MAXVAL( parent_bound_all(4,:) ) ENDIF ! !-- Broadcast the global parent-grid index bounds to all current child processes CALL MPI_BCAST( parent_bound_global, 4, MPI_INTEGER, 0, comm2d, ierr ) iplg = parent_bound_global(1) iprg = parent_bound_global(2) jpsg = parent_bound_global(3) jpng = parent_bound_global(4) WRITE( 9, "('pmci_map_child_grid_to_parent_grid. Global parent-grid index bounds iplg, iprg, jpsg, jpng: ',4(i4,2x))" ) & iplg, iprg, jpsg, jpng FLUSH( 9 ) END SUBROUTINE pmci_map_child_grid_to_parent_grid SUBROUTINE pmci_define_index_mapping ! !-- Precomputation of the mapping of the child- and parent-grid indices. IMPLICIT NONE INTEGER(iwp) :: i !< Child-grid index in the x-direction INTEGER(iwp) :: ii !< Parent-grid index in the x-direction INTEGER(iwp) :: istart !< INTEGER(iwp) :: ir !< INTEGER(iwp) :: iw !< Child-grid index limited to -1 <= iw <= nx+1 for wall_flags_0 INTEGER(iwp) :: j !< Child-grid index in the y-direction INTEGER(iwp) :: jj !< Parent-grid index in the y-direction INTEGER(iwp) :: jstart !< INTEGER(iwp) :: jr !< INTEGER(iwp) :: jw !< Child-grid index limited to -1 <= jw <= ny+1 for wall_flags_0 INTEGER(iwp) :: k !< Child-grid index in the z-direction INTEGER(iwp) :: kk !< Parent-grid index in the z-direction INTEGER(iwp) :: kstart !< INTEGER(iwp) :: kw !< Child-grid index limited to kw <= nzt+1 for wall_flags_0 REAL(wp) :: tolex !< Tolerance for grid-line matching in x-direction REAL(wp) :: toley !< Tolerance for grid-line matching in y-direction REAL(wp) :: tolez !< Tolerance for grid-line matching in z-direction ! !-- Grid-line tolerances. tolex = tolefac * dx toley = tolefac * dy tolez = tolefac * dz(1) ! !-- Allocate child-grid work arrays for interpolation. igsr = NINT( pg%dx / dx, iwp ) jgsr = NINT( pg%dy / dy, iwp ) kgsr = NINT( pg%dzw(1) / dzw(1), iwp ) WRITE(9,"('igsr, jgsr, kgsr: ',3(i3,2x))") igsr, jgsr, kgsr FLUSH(9) ! !-- Determine index bounds for the parent-grid work arrays for !-- interpolation and allocate them. CALL pmci_allocate_workarrays ! !-- Define the MPI-datatypes for parent-grid work array !-- exchange between the PE-subdomains. CALL pmci_create_workarray_exchange_datatypes ! !-- First determine kcto and kctw which refer to the uppermost !-- parent-grid levels below the child top-boundary level. !-- Note that these comparison tests are not round-off-error !-- sensitive and therefore tolerance buffering is not needed here. kk = 0 DO WHILE ( pg%zu(kk) <= zu(nzt) ) kk = kk + 1 ENDDO kcto = kk - 1 kk = 0 DO WHILE ( pg%zw(kk) <= zw(nzt-1) ) kk = kk + 1 ENDDO kctw = kk - 1 WRITE( 9, "('kcto, kctw = ', 2(i3,2x))" ) kcto, kctw FLUSH( 9 ) ! !-- In case of two-way coupling, check that the child domain is sufficiently !-- large in terms of the number of parent-grid cells covered. Otherwise !-- anterpolation is not possible. IF ( nesting_mode == 'two-way') THEN CALL pmci_check_child_domain_size ENDIF ALLOCATE( iflu(ipla:ipra) ) ALLOCATE( iflo(ipla:ipra) ) ALLOCATE( ifuu(ipla:ipra) ) ALLOCATE( ifuo(ipla:ipra) ) ALLOCATE( jflv(jpsa:jpna) ) ALLOCATE( jflo(jpsa:jpna) ) ALLOCATE( jfuv(jpsa:jpna) ) ALLOCATE( jfuo(jpsa:jpna) ) ALLOCATE( kflw(0:pg%nz+1) ) ALLOCATE( kflo(0:pg%nz+1) ) ALLOCATE( kfuw(0:pg%nz+1) ) ALLOCATE( kfuo(0:pg%nz+1) ) ALLOCATE( ijkfc_u(0:pg%nz+1,jpsa:jpna,ipla:ipra) ) ALLOCATE( ijkfc_v(0:pg%nz+1,jpsa:jpna,ipla:ipra) ) ALLOCATE( ijkfc_w(0:pg%nz+1,jpsa:jpna,ipla:ipra) ) ALLOCATE( ijkfc_s(0:pg%nz+1,jpsa:jpna,ipla:ipra) ) ijkfc_u = 0 ijkfc_v = 0 ijkfc_w = 0 ijkfc_s = 0 ! !-- i-indices of u for each ii-index value istart = nxlg DO ii = ipla, ipra ! !-- The parent and child grid lines do always match in x, hence we !-- use only the local k,j-child-grid plane for the anterpolation. !-- However, icru still has to be stored separately as these index bounds !-- are passed as arguments to the interpolation and anterpolation !-- subroutines. !-- Note that this comparison test is round-off-error sensitive !-- and therefore tolerance buffering is needed here. i = istart DO WHILE ( pg%coord_x(ii) - coord_x(i) > tolex .AND. i < nxrg ) i = i + 1 ENDDO iflu(ii) = MIN( MAX( i, nxlg ), nxrg ) ifuu(ii) = iflu(ii) istart = iflu(ii) ! !-- Print out the index bounds for checking and debugging purposes WRITE( 9, "('pmci_define_index_mapping, ii, iflu, ifuu: ', 3(i4,2x))" ) & ii, iflu(ii), ifuu(ii) FLUSH( 9 ) ENDDO WRITE( 9, * ) ! !-- i-indices of others for each ii-index value. !-- Note that these comparison tests are not round-off-error !-- sensitive and therefore tolerance buffering is not needed here. istart = nxlg DO ii = ipla, ipra i = istart DO WHILE ( ( coord_x(i) + 0.5_wp * dx < pg%coord_x(ii) ) .AND. ( i < nxrg ) ) i = i + 1 ENDDO iflo(ii) = MIN( MAX( i, nxlg ), nxrg ) ir = i DO WHILE ( ( coord_x(ir) + 0.5_wp * dx < pg%coord_x(ii) + pg%dx ) .AND. ( i < nxrg+1 ) ) i = i + 1 ir = MIN( i, nxrg ) ENDDO ifuo(ii) = MIN( MAX( i-1, iflo(ii) ), nxrg ) istart = iflo(ii) ! !-- Print out the index bounds for checking and debugging purposes WRITE( 9, "('pmci_define_index_mapping, ii, iflo, ifuo: ', 3(i4,2x))" ) & ii, iflo(ii), ifuo(ii) FLUSH( 9 ) ENDDO WRITE( 9, * ) ! !-- j-indices of v for each jj-index value jstart = nysg DO jj = jpsa, jpna ! !-- The parent and child grid lines do always match in y, hence we !-- use only the local k,i-child-grid plane for the anterpolation. !-- However, jcnv still has to be stored separately as these index bounds !-- are passed as arguments to the interpolation and anterpolation !-- subroutines. !-- Note that this comparison test is round-off-error sensitive !-- and therefore tolerance buffering is needed here. j = jstart DO WHILE ( pg%coord_y(jj) - coord_y(j) > toley .AND. j < nyng ) j = j + 1 ENDDO jflv(jj) = MIN( MAX( j, nysg ), nyng ) jfuv(jj) = jflv(jj) jstart = jflv(jj) ! !-- Print out the index bounds for checking and debugging purposes WRITE( 9, "('pmci_define_index_mapping, jj, jflv, jfuv: ', 3(i4,2x))" ) & jj, jflv(jj), jfuv(jj) FLUSH(9) ENDDO WRITE( 9, * ) ! !-- j-indices of others for each jj-index value !-- Note that these comparison tests are not round-off-error !-- sensitive and therefore tolerance buffering is not needed here. jstart = nysg DO jj = jpsa, jpna j = jstart DO WHILE ( ( coord_y(j) + 0.5_wp * dy < pg%coord_y(jj) ) .AND. ( j < nyng ) ) j = j + 1 ENDDO jflo(jj) = MIN( MAX( j, nysg ), nyng ) jr = j DO WHILE ( ( coord_y(jr) + 0.5_wp * dy < pg%coord_y(jj) + pg%dy ) .AND. ( j < nyng+1 ) ) j = j + 1 jr = MIN( j, nyng ) ENDDO jfuo(jj) = MIN( MAX( j-1, jflo(jj) ), nyng ) jstart = jflo(jj) ! !-- Print out the index bounds for checking and debugging purposes WRITE( 9, "('pmci_define_index_mapping, jj, jflo, jfuo: ', 3(i4,2x))" ) & jj, jflo(jj), jfuo(jj) FLUSH( 9 ) ENDDO WRITE( 9, * ) ! !-- k-indices of w for each kk-index value !-- Note that anterpolation index limits are needed also for the top boundary !-- ghost cell level because they are used also in the interpolation. kstart = 0 kflw(0) = 0 kfuw(0) = 0 DO kk = 1, pg%nz+1 ! !-- The parent and child grid lines do always match in z, hence we !-- use only the local j,i-child-grid plane for the anterpolation. !-- However, kctw still has to be stored separately as these index bounds !-- are passed as arguments to the interpolation and anterpolation !-- subroutines. !-- Note that this comparison test is round-off-error sensitive !-- and therefore tolerance buffering is needed here. k = kstart DO WHILE ( ( pg%zw(kk) - zw(k) > tolez ) .AND. ( k < nzt+1 ) ) k = k + 1 ENDDO kflw(kk) = MIN( MAX( k, 1 ), nzt + 1 ) kfuw(kk) = kflw(kk) kstart = kflw(kk) ! !-- Print out the index bounds for checking and debugging purposes WRITE( 9, "('pmci_define_index_mapping, kk, kflw, kfuw: ', 4(i4,2x), 2(e12.5,2x))" ) & kk, kflw(kk), kfuw(kk), nzt, pg%zu(kk), pg%zw(kk) FLUSH( 9 ) ENDDO WRITE( 9, * ) ! !-- k-indices of others for each kk-index value kstart = 0 kflo(0) = 0 kfuo(0) = 0 ! !-- Note that anterpolation index limits are needed also for the top boundary !-- ghost cell level because they are used also in the interpolation. !-- Note that these comparison tests are not round-off-error !-- sensitive and therefore tolerance buffering is not needed here. DO kk = 1, pg%nz+1 k = kstart DO WHILE ( ( zu(k) < pg%zw(kk-1) ) .AND. ( k <= nzt ) ) k = k + 1 ENDDO kflo(kk) = MIN( MAX( k, 1 ), nzt + 1 ) DO WHILE ( ( zu(k) < pg%zw(kk) ) .AND. ( k <= nzt+1 ) ) k = k + 1 IF ( k > nzt + 1 ) EXIT ! This EXIT is to prevent zu(k) from flowing over. ENDDO kfuo(kk) = MIN( MAX( k-1, kflo(kk) ), nzt + 1 ) kstart = kflo(kk) ENDDO ! !-- Print out the index bounds for checking and debugging purposes DO kk = 1, pg%nz+1 WRITE( 9, "('pmci_define_index_mapping, kk, kflo, kfuo: ', 4(i4,2x), 2(e12.5,2x))" ) & kk, kflo(kk), kfuo(kk), nzt, pg%zu(kk), pg%zw(kk) FLUSH( 9 ) ENDDO WRITE( 9, * ) ! !-- Precomputation of number of child-grid nodes inside parent-grid cells. !-- Note that ii, jj, and kk are parent-grid indices. !-- This information is needed in the anterpolation. !-- The indices for wall_flags_0 (kw,jw,iw) must be limited to the range !-- [-1,...,nx/ny/nzt+1] in order to avoid zero values on the outer ghost nodes. DO ii = ipla, ipra DO jj = jpsa, jpna DO kk = 0, pg%nz+1 ! !-- u-component DO i = iflu(ii), ifuu(ii) iw = MAX( MIN( i, nx+1 ), -1 ) DO j = jflo(jj), jfuo(jj) jw = MAX( MIN( j, ny+1 ), -1 ) DO k = kflo(kk), kfuo(kk) kw = MIN( k, nzt+1 ) ijkfc_u(kk,jj,ii) = ijkfc_u(kk,jj,ii) & + MERGE( 1, 0, BTEST( wall_flags_0(kw,jw,iw), 1 ) ) ENDDO ENDDO ENDDO ! !-- v-component DO i = iflo(ii), ifuo(ii) iw = MAX( MIN( i, nx+1 ), -1 ) DO j = jflv(jj), jfuv(jj) jw = MAX( MIN( j, ny+1 ), -1 ) DO k = kflo(kk), kfuo(kk) kw = MIN( k, nzt+1 ) ijkfc_v(kk,jj,ii) = ijkfc_v(kk,jj,ii) & + MERGE( 1, 0, BTEST( wall_flags_0(kw,jw,iw), 2 ) ) ENDDO ENDDO ENDDO ! !-- scalars DO i = iflo(ii), ifuo(ii) iw = MAX( MIN( i, nx+1 ), -1 ) DO j = jflo(jj), jfuo(jj) jw = MAX( MIN( j, ny+1 ), -1 ) DO k = kflo(kk), kfuo(kk) kw = MIN( k, nzt+1 ) ijkfc_s(kk,jj,ii) = ijkfc_s(kk,jj,ii) & + MERGE( 1, 0, BTEST( wall_flags_0(kw,jw,iw), 0 ) ) ENDDO ENDDO ENDDO ! !-- w-component DO i = iflo(ii), ifuo(ii) iw = MAX( MIN( i, nx+1 ), -1 ) DO j = jflo(jj), jfuo(jj) jw = MAX( MIN( j, ny+1 ), -1 ) DO k = kflw(kk), kfuw(kk) kw = MIN( k, nzt+1 ) ijkfc_w(kk,jj,ii) = ijkfc_w(kk,jj,ii) & + MERGE( 1, 0, BTEST( wall_flags_0(kw,jw,iw), 3 ) ) ENDDO ENDDO ENDDO ENDDO ! kk ENDDO ! jj ENDDO ! ii END SUBROUTINE pmci_define_index_mapping SUBROUTINE pmci_check_child_domain_size ! !-- Check if the child domain is too small in terms of number of parent-grid cells !-- covered so that anterpolation buffers fill the whole domain so that anterpolation !-- not possible. Also, check that anterpolation_buffer_width is not too large to !-- prevent anterpolation. IMPLICIT NONE ! !-- First x-direction IF ( iplg + 3 + anterpolation_buffer_width > iprg - 3 - anterpolation_buffer_width ) THEN IF ( iprg - iplg + 1 < 7 ) THEN ! !-- Error WRITE( message_string, * ) 'child domain too narrow for anterpolation in x-direction' CALL message( 'pmci_check_child_domain_size', 'PA0652', 3, 2, 0, 6, 0 ) ELSE IF ( iprg - iplg + 1 < 11 ) THEN ! !-- Warning WRITE( message_string, * ) 'anterpolation_buffer_width value too high, reset to 0' CALL message( 'pmci_check_child_domain_size', 'PA0653', 0, 1, 0, 6, 0 ) anterpolation_buffer_width = 0 ELSE ! !-- Informative message WRITE( message_string, * ) 'anterpolation_buffer_width value too high, reset to default value 2' CALL message( 'pmci_check_child_domain_size', 'PA0654', 0, 0, 0, 6, 0 ) anterpolation_buffer_width = 2 ENDIF ENDIF ! !-- Then y-direction IF ( jpsg + 3 + anterpolation_buffer_width > jpng - 3 - anterpolation_buffer_width ) THEN IF ( jpng - jpsg + 1 < 7 ) THEN ! !-- Error WRITE( message_string, * ) 'child domain too narrow for anterpolation in y-direction' CALL message( 'pmci_check_child_domain_size', 'PA0652', 3, 2, 0, 6, 0 ) ELSE IF ( jpng - jpsg + 1 < 11 ) THEN ! !-- Warning WRITE( message_string, * ) 'anterpolation_buffer_width value too high, reset to 0' CALL message( 'pmci_check_child_domain_size', 'PA0653', 0, 1, 0, 6, 0 ) anterpolation_buffer_width = 0 ELSE ! !-- Informative message WRITE( message_string, * ) 'anterpolation_buffer_width value too high, reset to default value 2' CALL message( 'pmci_check_child_domain_size', 'PA0654', 0, 0, 0, 6, 0 ) anterpolation_buffer_width = 2 ENDIF ENDIF ! !-- Finally z-direction IF ( kctw - 1 - anterpolation_buffer_width < 1 ) THEN IF ( kctw - 1 < 1 ) THEN ! !-- Error WRITE( message_string, * ) 'child domain too shallow for anterpolation in z-direction' CALL message( 'pmci_check_child_domain_size', 'PA0652', 3, 2, 0, 6, 0 ) ELSE IF ( kctw - 3 < 1 ) THEN ! !-- Warning WRITE( message_string, * ) 'anterpolation_buffer_width value too high, reset to 0' CALL message( 'pmci_check_child_domain_size', 'PA0653', 0, 1, 0, 6, 0 ) anterpolation_buffer_width = 0 ELSE ! !-- Informative message WRITE( message_string, * ) 'anterpolation_buffer_width value too high, reset to default value 2' CALL message( 'pmci_check_child_domain_size', 'PA0654', 0, 0, 0, 6, 0 ) anterpolation_buffer_width = 2 ENDIF ENDIF END SUBROUTINE pmci_check_child_domain_size SUBROUTINE pmci_allocate_workarrays ! !-- Allocate parent-grid work-arrays for interpolation IMPLICIT NONE ! !-- Determine and store the PE-subdomain dependent index bounds IF ( bc_dirichlet_l ) THEN iplw = ipl + 1 ELSE iplw = ipl - 1 ENDIF IF ( bc_dirichlet_r ) THEN iprw = ipr - 1 ELSE iprw = ipr + 1 ENDIF IF ( bc_dirichlet_s ) THEN jpsw = jps + 1 ELSE jpsw = jps - 1 ENDIF IF ( bc_dirichlet_n ) THEN jpnw = jpn - 1 ELSE jpnw = jpn + 1 ENDIF ! !-- Left and right boundaries. ALLOCATE( workarr_lr(0:pg%nz+1,jpsw:jpnw,0:2) ) ! !-- South and north boundaries. ALLOCATE( workarr_sn(0:pg%nz+1,0:2,iplw:iprw) ) ! !-- Top boundary. ALLOCATE( workarr_t(0:2,jpsw:jpnw,iplw:iprw) ) END SUBROUTINE pmci_allocate_workarrays SUBROUTINE pmci_create_workarray_exchange_datatypes ! !-- Define specific MPI types for workarr-exchange. IMPLICIT NONE ! !-- For the left and right boundaries CALL MPI_TYPE_VECTOR( 3, pg%nz+2, (jpnw-jpsw+1)*(pg%nz+2), MPI_REAL, & workarr_lr_exchange_type, ierr ) CALL MPI_TYPE_COMMIT( workarr_lr_exchange_type, ierr ) ! !-- For the south and north boundaries CALL MPI_TYPE_VECTOR( 1, 3*(pg%nz+2), 3*(pg%nz+2), MPI_REAL, & workarr_sn_exchange_type, ierr ) CALL MPI_TYPE_COMMIT( workarr_sn_exchange_type, ierr ) ! !-- For the top-boundary x-slices CALL MPI_TYPE_VECTOR( iprw-iplw+1, 3, 3*(jpnw-jpsw+1), MPI_REAL, & workarr_t_exchange_type_x, ierr ) CALL MPI_TYPE_COMMIT( workarr_t_exchange_type_x, ierr ) ! !-- For the top-boundary y-slices CALL MPI_TYPE_VECTOR( 1, 3*(jpnw-jpsw+1), 3*(jpnw-jpsw+1), MPI_REAL, & workarr_t_exchange_type_y, ierr ) CALL MPI_TYPE_COMMIT( workarr_t_exchange_type_y, ierr ) END SUBROUTINE pmci_create_workarray_exchange_datatypes SUBROUTINE pmci_check_grid_matching ! !-- Check that the grid lines of child and parent do match. !-- Also check that the child subdomain width is not smaller than !-- the parent grid spacing in the respective direction. IMPLICIT NONE INTEGER(iwp) :: non_matching_height = 0 !< Flag for non-matching child-domain height INTEGER(iwp) :: non_matching_lower_left_corner = 0 !< Flag for non-matching lower left corner INTEGER(iwp) :: non_matching_upper_right_corner = 0 !< Flag for non-matching upper right corner INTEGER(iwp) :: non_int_gsr_x = 0 !< Flag for non-integer grid-spacing ration in x-direction INTEGER(iwp) :: non_int_gsr_y = 0 !< Flag for non-integer grid-spacing ration in y-direction INTEGER(iwp) :: non_int_gsr_z = 0 !< Flag for non-integer grid-spacing ration in z-direction INTEGER(iwp) :: too_narrow_pesd_x = 0 !< Flag for too narrow pe-subdomain in x-direction INTEGER(iwp) :: too_narrow_pesd_y = 0 !< Flag for too narrow pe-subdomain in y-direction REAL(wp) :: child_ngp_x_l !< Number of gridpoints in child subdomain in x-direction !< converted to REAL(wp) REAL(wp) :: child_ngp_y_l !< Number of gridpoints in child subdomain in y-direction !< converted to REAL(wp) REAL(wp) :: gridline_mismatch_x !< Mismatch between the parent and child gridlines in the x-direction REAL(wp) :: gridline_mismatch_y !< Mismatch between the parent and child gridlines in the y-direction REAL(wp) :: gsr_mismatch_x !< Deviation of the grid-spacing ratio from the nearest integer value, the x-direction REAL(wp) :: gsr_mismatch_y !< Deviation of the grid-spacing ratio from the nearest integer value, the y-direction REAL(wp) :: upper_right_coord_x !< X-coordinate of the upper right corner of the child domain REAL(wp) :: upper_right_coord_y !< Y-coordinate of the upper right corner of the child domain REAL(wp) :: tolex !< Tolerance for grid-line matching in x-direction REAL(wp) :: toley !< Tolerance for grid-line matching in y-direction REAL(wp) :: tolez !< Tolerance for grid-line matching in z-direction IF ( myid == 0 ) THEN tolex = tolefac * dx toley = tolefac * dy tolez = tolefac * dz(1) ! !-- First check that the child domain lower left corner matches the parent grid lines. gridline_mismatch_x = ABS( NINT( lower_left_coord_x / pg%dx ) * pg%dx - lower_left_coord_x ) gridline_mismatch_y = ABS( NINT( lower_left_coord_y / pg%dy ) * pg%dy - lower_left_coord_y ) IF ( gridline_mismatch_x > tolex ) non_matching_lower_left_corner = 1 IF ( gridline_mismatch_y > toley ) non_matching_lower_left_corner = 1 ! !-- Then check that the child doman upper right corner matches the parent grid lines. upper_right_coord_x = lower_left_coord_x + ( nx + 1 ) * dx upper_right_coord_y = lower_left_coord_y + ( ny + 1 ) * dy gridline_mismatch_x = ABS( NINT( upper_right_coord_x / pg%dx ) * pg%dx - upper_right_coord_x ) gridline_mismatch_y = ABS( NINT( upper_right_coord_y / pg%dy ) * pg%dy - upper_right_coord_y ) IF ( gridline_mismatch_x > tolex ) non_matching_upper_right_corner = 1 IF ( gridline_mismatch_y > toley ) non_matching_upper_right_corner = 1 ! !-- Also check that the cild domain height matches the parent grid lines. IF ( MOD( zw(nzt), pg%dz ) > tolez ) non_matching_height = 1 ! !-- Check that the grid-spacing ratios in each direction are integer valued. gsr_mismatch_x = ABS( NINT( pg%dx / dx ) * dx - pg%dx ) gsr_mismatch_y = ABS( NINT( pg%dy / dy ) * dy - pg%dy ) IF ( gsr_mismatch_x > tolex ) non_int_gsr_x = 1 IF ( gsr_mismatch_y > toley ) non_int_gsr_y = 1 ! !-- In the z-direction, all levels need to be checked separately against grid stretching !-- which is not allowed. DO n = 0, kctw+1 IF ( ABS( pg%zw(n) - zw(kflw(n)) ) > tolez ) non_int_gsr_z = 1 ENDDO child_ngp_x_l = REAL( nxr - nxl + 1, KIND=wp ) IF ( child_ngp_x_l / REAL( igsr, KIND=wp ) < 1.0_wp ) too_narrow_pesd_x = 1 child_ngp_y_l = REAL( nyn - nys + 1, KIND=wp ) IF ( child_ngp_y_l / REAL( jgsr, KIND=wp ) < 1.0_wp ) too_narrow_pesd_y = 1 IF ( non_matching_height > 0 ) THEN WRITE( message_string, * ) 'nested child domain height must match ', & 'its parent grid lines' CALL message( 'pmci_check_grid_matching', 'PA0414', 3, 2, 0, 6, 0 ) ENDIF IF ( non_matching_lower_left_corner > 0 ) THEN WRITE( message_string, * ) 'nested child domain lower left ', & 'corner must match its parent grid lines' CALL message( 'pmci_check_grid_matching', 'PA0414', 3, 2, 0, 6, 0 ) ENDIF IF ( non_matching_upper_right_corner > 0 ) THEN WRITE( message_string, * ) 'nested child domain upper right ', & 'corner must match its parent grid lines' CALL message( 'pmci_check_grid_matching', 'PA0414', 3, 2, 0, 6, 0 ) ENDIF IF ( non_int_gsr_x > 0 ) THEN WRITE( message_string, * ) 'nesting grid-spacing ratio ( parent dx / child dx ) ', & 'must have an integer value' CALL message( 'pmci_check_grid_matching', 'PA0416', 3, 2, 0, 6, 0 ) ENDIF IF ( non_int_gsr_y > 0 ) THEN WRITE( message_string, * ) 'nesting grid-spacing ratio ( parent dy / child dy ) ', & 'must have an integer value' CALL message( 'pmci_check_grid_matching', 'PA0416', 3, 2, 0, 6, 0 ) ENDIF IF ( non_int_gsr_z > 0 ) THEN WRITE( message_string, * ) 'nesting grid-spacing ratio ( parent dz / child dz ) ', & 'must have an integer value for each z-level' CALL message( 'pmci_check_grid_matching', 'PA0416', 3, 2, 0, 6, 0 ) ENDIF IF ( too_narrow_pesd_x > 0 ) THEN WRITE( message_string, * ) 'child subdomain width in x-direction must not be ', & 'smaller than its parent grid dx. Change the PE-grid ', & 'setting (npex, npey) to satisfy this requirement.' CALL message( 'pmci_check_grid_matching', 'PA0587', 3, 2, 0, 6, 0 ) ENDIF IF ( too_narrow_pesd_y > 0 ) THEN WRITE( message_string, * ) 'child subdomain width in y-direction must not be ', & 'smaller than its parent grid dy. Change the PE-grid ', & 'setting (npex, npey) to satisfy this requirement.' CALL message( 'pmci_check_grid_matching', 'PA0587', 3, 2, 0, 6, 0 ) ENDIF ENDIF ! ( myid == 0 ) END SUBROUTINE pmci_check_grid_matching SUBROUTINE pmci_compute_face_areas IMPLICIT NONE REAL(wp) :: face_area_local !< Local (for the current pe) integral face area of the left boundary REAL(wp) :: sub_sum !< Intermediate sum in order to improve the accuracy of the summation INTEGER(iwp) :: i !< Running index in the x-direction INTEGER(iwp) :: j !< Running index in the y-direction INTEGER(iwp) :: k !< Running index in the z-direction INTEGER(iwp) :: k_wall !< Local topography top k-index INTEGER(iwp) :: n !< Running index over boundary faces ! !-- Sum up the volume flow through the left boundary face_area(1) = 0.0_wp face_area_local = 0.0_wp IF ( bc_dirichlet_l ) THEN i = 0 DO j = nys, nyn sub_sum = 0.0_wp k_wall = topo_top_ind(j,i,1) DO k = k_wall + 1, nzt sub_sum = sub_sum + dzw(k) ENDDO face_area_local = face_area_local + dy * sub_sum ENDDO ENDIF #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( face_area_local, face_area(1), 1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else face_area(1) = face_area_local #endif ! !-- Sum up the volume flow through the right boundary face_area(2) = 0.0_wp face_area_local = 0.0_wp IF ( bc_dirichlet_r ) THEN i = nx DO j = nys, nyn sub_sum = 0.0_wp k_wall = topo_top_ind(j,i,1) DO k = k_wall + 1, nzt sub_sum = sub_sum + dzw(k) ENDDO face_area_local = face_area_local + dy * sub_sum ENDDO ENDIF #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( face_area_local, face_area(2), 1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else face_area(2) = face_area_local #endif ! !-- Sum up the volume flow through the south boundary face_area(3) = 0.0_wp face_area_local = 0.0_wp IF ( bc_dirichlet_s ) THEN j = 0 DO i = nxl, nxr sub_sum = 0.0_wp k_wall = topo_top_ind(j,i,2) DO k = k_wall + 1, nzt sub_sum = sub_sum + dzw(k) ENDDO face_area_local = face_area_local + dx * sub_sum ENDDO ENDIF #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( face_area_local, face_area(3), 1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else face_area(3) = face_area_local #endif ! !-- Sum up the volume flow through the north boundary face_area(4) = 0.0_wp face_area_local = 0.0_wp IF ( bc_dirichlet_n ) THEN j = ny DO i = nxl, nxr sub_sum = 0.0_wp k_wall = topo_top_ind(j,i,2) DO k = k_wall + 1, nzt sub_sum = sub_sum + dzw(k) ENDDO face_area_local = face_area_local + dx * sub_sum ENDDO ENDIF #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( face_area_local, face_area(4), 1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else face_area(4) = face_area_local #endif ! !-- The top face area does not depend on the topography at all. face_area(5) = ( nx + 1 ) * ( ny + 1 ) * dx * dy ! !-- The 6th element is used for the total area face_area(6) = 0.0_wp DO n = 1, 5 face_area(6) = face_area(6) + face_area(n) ENDDO ! write( 9, "(6(e12.5,2x))") ( face_area(n), n = 1, 6 ) ! flush( 9 ) END SUBROUTINE pmci_compute_face_areas #endif END SUBROUTINE pmci_setup_child SUBROUTINE pmci_setup_coordinates #if defined( __parallel ) IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< ! !-- Create coordinate arrays. ALLOCATE( coord_x(-nbgp:nx+nbgp) ) ALLOCATE( coord_y(-nbgp:ny+nbgp) ) DO i = -nbgp, nx + nbgp coord_x(i) = lower_left_coord_x + i * dx ENDDO DO j = -nbgp, ny + nbgp coord_y(j) = lower_left_coord_y + j * dy ENDDO #endif END SUBROUTINE pmci_setup_coordinates !------------------------------------------------------------------------------! ! Description: ! ------------ !> In this subroutine the number of coupled arrays is determined. !------------------------------------------------------------------------------! SUBROUTINE pmci_num_arrays #if defined( __parallel ) USE pmc_general, & ONLY: pmc_max_array IMPLICIT NONE ! !-- The number of coupled arrays depends on the model settings. At least !-- 5 arrays need to be coupled (u, v, w, e, diss). Please note, actually !-- e and diss (TKE and dissipation rate) are only required if RANS-RANS !-- nesting is applied, but memory is allocated nevertheless. This is because !-- the information whether they are needed or not is retrieved at a later !-- point in time. In case e and diss are not needed, they are also not !-- exchanged between parent and child. pmc_max_array = 5 ! !-- pt IF ( .NOT. neutral ) pmc_max_array = pmc_max_array + 1 IF ( humidity ) THEN ! !-- q pmc_max_array = pmc_max_array + 1 ! !-- qc, nc IF ( bulk_cloud_model .AND. microphysics_morrison ) & pmc_max_array = pmc_max_array + 2 ! !-- qr, nr IF ( bulk_cloud_model .AND. microphysics_seifert ) & pmc_max_array = pmc_max_array + 2 ENDIF ! !-- s IF ( passive_scalar ) pmc_max_array = pmc_max_array + 1 ! !-- nr_part, part_adr IF ( particle_advection ) pmc_max_array = pmc_max_array + 2 ! !-- Chemistry, depends on number of species IF ( air_chemistry ) pmc_max_array = pmc_max_array + nspec ! !-- SALSA, depens on the number aerosol size bins and chemical components + !-- the number of default gases IF ( salsa .AND. nest_salsa ) pmc_max_array = pmc_max_array + nbins_aerosol + & nbins_aerosol * ncomponents_mass IF ( .NOT. salsa_gases_from_chem ) pmc_max_array = pmc_max_array + ngases_salsa #endif END SUBROUTINE pmci_num_arrays SUBROUTINE pmci_set_array_pointer( name, child_id, nz_child, n ) IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: child_id !< INTEGER(iwp), INTENT(IN) :: nz_child !< INTEGER(iwp), INTENT(IN), OPTIONAL :: n !< index of chemical species CHARACTER(LEN=*), INTENT(IN) :: name !< #if defined( __parallel ) ! !-- Local variables: INTEGER(iwp) :: ierr !< MPI error code INTEGER(idp), POINTER, DIMENSION(:,:) :: i_2d !< REAL(wp), POINTER, DIMENSION(:,:) :: p_2d !< REAL(wp), POINTER, DIMENSION(:,:,:) :: p_3d !< REAL(wp), POINTER, DIMENSION(:,:,:) :: p_3d_sec !< NULLIFY( p_3d ) NULLIFY( p_2d ) NULLIFY( i_2d ) ! !-- List of array names, which can be coupled. !-- In case of 3D please change also the second array for the pointer version IF ( TRIM(name) == "u" ) p_3d => u IF ( TRIM(name) == "v" ) p_3d => v IF ( TRIM(name) == "w" ) p_3d => w IF ( TRIM(name) == "e" ) p_3d => e IF ( TRIM(name) == "pt" ) p_3d => pt IF ( TRIM(name) == "q" ) p_3d => q IF ( TRIM(name) == "qc" ) p_3d => qc IF ( TRIM(name) == "qr" ) p_3d => qr IF ( TRIM(name) == "nr" ) p_3d => nr IF ( TRIM(name) == "nc" ) p_3d => nc IF ( TRIM(name) == "s" ) p_3d => s IF ( TRIM(name) == "diss" ) p_3d => diss IF ( TRIM(name) == "nr_part" ) i_2d => nr_part IF ( TRIM(name) == "part_adr" ) i_2d => part_adr IF ( INDEX( TRIM(name), "chem_" ) /= 0 ) p_3d => chem_species(n)%conc IF ( INDEX( TRIM(name), "an_" ) /= 0 ) p_3d => aerosol_number(n)%conc IF ( INDEX( TRIM(name), "am_" ) /= 0 ) p_3d => aerosol_mass(n)%conc IF ( INDEX( TRIM(name), "sg_" ) /= 0 .AND. .NOT. salsa_gases_from_chem ) & p_3d => salsa_gas(n)%conc ! !-- Next line is just an example for a 2D array (not active for coupling!) !-- Please note, that z0 has to be declared as TARGET array in modules.f90. ! IF ( TRIM(name) == "z0" ) p_2d => z0 IF ( TRIM(name) == "u" ) p_3d_sec => u_2 IF ( TRIM(name) == "v" ) p_3d_sec => v_2 IF ( TRIM(name) == "w" ) p_3d_sec => w_2 IF ( TRIM(name) == "e" ) p_3d_sec => e_2 IF ( TRIM(name) == "pt" ) p_3d_sec => pt_2 IF ( TRIM(name) == "q" ) p_3d_sec => q_2 IF ( TRIM(name) == "qc" ) p_3d_sec => qc_2 IF ( TRIM(name) == "qr" ) p_3d_sec => qr_2 IF ( TRIM(name) == "nr" ) p_3d_sec => nr_2 IF ( TRIM(name) == "nc" ) p_3d_sec => nc_2 IF ( TRIM(name) == "s" ) p_3d_sec => s_2 IF ( TRIM(name) == "diss" ) p_3d_sec => diss_2 IF ( INDEX( TRIM(name), "chem_" ) /= 0 ) p_3d_sec => spec_conc_2(:,:,:,n) IF ( INDEX( TRIM(name), "an_" ) /= 0 ) p_3d_sec => nconc_2(:,:,:,n) IF ( INDEX( TRIM(name), "am_" ) /= 0 ) p_3d_sec => mconc_2(:,:,:,n) IF ( INDEX( TRIM(name), "sg_" ) /= 0 .AND. .NOT. salsa_gases_from_chem ) & p_3d_sec => gconc_2(:,:,:,n) IF ( ASSOCIATED( p_3d ) ) THEN CALL pmc_s_set_dataarray( child_id, p_3d, nz_child, nz, array_2 = p_3d_sec ) ELSEIF ( ASSOCIATED( p_2d ) ) THEN CALL pmc_s_set_dataarray( child_id, p_2d ) ELSEIF ( ASSOCIATED( i_2d ) ) THEN CALL pmc_s_set_dataarray( child_id, i_2d ) ELSE ! !-- Give only one message for the root domain IF ( pmc_is_rootmodel() .AND. myid == 0 ) THEN message_string = 'pointer for array "' // TRIM( name ) // '" can''t be associated' CALL message( 'pmci_set_array_pointer', 'PA0117', 3, 2, 0, 6, 0 ) ELSE ! !-- Avoid others to continue CALL MPI_BARRIER( comm2d, ierr ) ENDIF ENDIF #endif END SUBROUTINE pmci_set_array_pointer INTEGER FUNCTION get_number_of_children() IMPLICIT NONE #if defined( __parallel ) get_number_of_children = SIZE( pmc_parent_for_child ) - 1 #else get_number_of_children = 0 #endif RETURN END FUNCTION get_number_of_children INTEGER FUNCTION get_childid( id_index ) IMPLICIT NONE INTEGER, INTENT(IN) :: id_index !< #if defined( __parallel ) get_childid = pmc_parent_for_child(id_index) #else get_childid = 0 #endif RETURN END FUNCTION get_childid SUBROUTINE get_child_edges( m, lx_coord, lx_coord_b, rx_coord, rx_coord_b, sy_coord, sy_coord_b, & ny_coord, ny_coord_b, uz_coord, uz_coord_b ) IMPLICIT NONE INTEGER,INTENT(IN) :: m !< REAL(wp),INTENT(OUT) :: lx_coord, lx_coord_b !< REAL(wp),INTENT(OUT) :: rx_coord, rx_coord_b !< REAL(wp),INTENT(OUT) :: ny_coord, ny_coord_b !< REAL(wp),INTENT(OUT) :: sy_coord, sy_coord_b !< REAL(wp),INTENT(OUT) :: uz_coord, uz_coord_b !< #if defined( __parallel ) lx_coord = childgrid(m)%lx_coord rx_coord = childgrid(m)%rx_coord sy_coord = childgrid(m)%sy_coord ny_coord = childgrid(m)%ny_coord uz_coord = childgrid(m)%uz_coord lx_coord_b = childgrid(m)%lx_coord_b rx_coord_b = childgrid(m)%rx_coord_b sy_coord_b = childgrid(m)%sy_coord_b ny_coord_b = childgrid(m)%ny_coord_b uz_coord_b = childgrid(m)%uz_coord_b #endif END SUBROUTINE get_child_edges SUBROUTINE get_child_gridspacing( m, dx, dy,dz ) IMPLICIT NONE INTEGER, INTENT(IN) :: m !< REAL(wp), INTENT(OUT) :: dx,dy !< REAL(wp), INTENT(OUT), OPTIONAL :: dz !< #if defined( __parallel ) dx = childgrid(m)%dx dy = childgrid(m)%dy IF ( PRESENT( dz ) ) THEN dz = childgrid(m)%dz ENDIF #endif END SUBROUTINE get_child_gridspacing SUBROUTINE pmci_create_childs_parent_grid_arrays( name, is, ie, js, je, nzc, n ) IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: ie !< RENAME ie, is, je, js? INTEGER(iwp), INTENT(IN) :: is !< INTEGER(iwp), INTENT(IN) :: je !< INTEGER(iwp), INTENT(IN) :: js !< INTEGER(iwp), INTENT(IN) :: nzc !< nzc is pg%nz, but note that pg%nz is not the original nz of parent, !< but the highest parent-grid level needed for nesting. INTEGER(iwp), INTENT(IN), OPTIONAL :: n !< number of chemical species / salsa variables CHARACTER(LEN=*), INTENT(IN) :: name !< #if defined( __parallel ) ! !-- Local variables: INTEGER(iwp) :: ierr !< INTEGER(idp), POINTER,DIMENSION(:,:) :: i_2d !< REAL(wp), POINTER,DIMENSION(:,:) :: p_2d !< REAL(wp), POINTER,DIMENSION(:,:,:) :: p_3d !< NULLIFY( p_3d ) NULLIFY( p_2d ) NULLIFY( i_2d ) ! !-- List of array names, which can be coupled IF ( TRIM( name ) == "u" ) THEN IF ( .NOT. ALLOCATED( uc ) ) ALLOCATE( uc(0:nzc+1,js:je,is:ie) ) p_3d => uc ELSEIF ( TRIM( name ) == "v" ) THEN IF ( .NOT. ALLOCATED( vc ) ) ALLOCATE( vc(0:nzc+1,js:je,is:ie) ) p_3d => vc ELSEIF ( TRIM( name ) == "w" ) THEN IF ( .NOT. ALLOCATED( wc ) ) ALLOCATE( wc(0:nzc+1,js:je,is:ie) ) p_3d => wc ELSEIF ( TRIM( name ) == "e" ) THEN IF ( .NOT. ALLOCATED( ec ) ) ALLOCATE( ec(0:nzc+1,js:je,is:ie) ) p_3d => ec ELSEIF ( TRIM( name ) == "diss" ) THEN IF ( .NOT. ALLOCATED( dissc ) ) ALLOCATE( dissc(0:nzc+1,js:je,is:ie) ) p_3d => dissc ELSEIF ( TRIM( name ) == "pt") THEN IF ( .NOT. ALLOCATED( ptc ) ) ALLOCATE( ptc(0:nzc+1,js:je,is:ie) ) p_3d => ptc ELSEIF ( TRIM( name ) == "q") THEN IF ( .NOT. ALLOCATED( q_c ) ) ALLOCATE( q_c(0:nzc+1,js:je,is:ie) ) p_3d => q_c ELSEIF ( TRIM( name ) == "qc") THEN IF ( .NOT. ALLOCATED( qcc ) ) ALLOCATE( qcc(0:nzc+1,js:je,is:ie) ) p_3d => qcc ELSEIF ( TRIM( name ) == "qr") THEN IF ( .NOT. ALLOCATED( qrc ) ) ALLOCATE( qrc(0:nzc+1,js:je,is:ie) ) p_3d => qrc ELSEIF ( TRIM( name ) == "nr") THEN IF ( .NOT. ALLOCATED( nrc ) ) ALLOCATE( nrc(0:nzc+1,js:je,is:ie) ) p_3d => nrc ELSEIF ( TRIM( name ) == "nc") THEN IF ( .NOT. ALLOCATED( ncc ) ) ALLOCATE( ncc(0:nzc+1,js:je,is:ie) ) p_3d => ncc ELSEIF ( TRIM( name ) == "s") THEN IF ( .NOT. ALLOCATED( sc ) ) ALLOCATE( sc(0:nzc+1,js:je,is:ie) ) p_3d => sc ELSEIF ( TRIM( name ) == "nr_part") THEN IF ( .NOT. ALLOCATED( nr_partc ) ) ALLOCATE( nr_partc(js:je,is:ie) ) i_2d => nr_partc ELSEIF ( TRIM( name ) == "part_adr") THEN IF ( .NOT. ALLOCATED( part_adrc ) ) ALLOCATE( part_adrc(js:je,is:ie) ) i_2d => part_adrc ELSEIF ( TRIM( name(1:5) ) == "chem_" ) THEN IF ( .NOT. ALLOCATED( chem_spec_c ) ) ALLOCATE( chem_spec_c(0:nzc+1,js:je,is:ie,1:nspec) ) p_3d => chem_spec_c(:,:,:,n) ELSEIF ( TRIM( name(1:3) ) == "an_" ) THEN IF ( .NOT. ALLOCATED( aerosol_number_c ) ) & ALLOCATE( aerosol_number_c(0:nzc+1,js:je,is:ie,1:nbins_aerosol) ) p_3d => aerosol_number_c(:,:,:,n) ELSEIF ( TRIM( name(1:3) ) == "am_" ) THEN IF ( .NOT. ALLOCATED( aerosol_mass_c ) ) & ALLOCATE( aerosol_mass_c(0:nzc+1,js:je,is:ie,1:(nbins_aerosol*ncomponents_mass) ) ) p_3d => aerosol_mass_c(:,:,:,n) ELSEIF ( TRIM( name(1:3) ) == "sg_" .AND. .NOT. salsa_gases_from_chem ) & THEN IF ( .NOT. ALLOCATED( salsa_gas_c ) ) & ALLOCATE( salsa_gas_c(0:nzc+1,js:je,is:ie,1:ngases_salsa) ) p_3d => salsa_gas_c(:,:,:,n) !ELSEIF (trim(name) == "z0") then !IF (.not.allocated(z0c)) allocate(z0c(js:je, is:ie)) !p_2d => z0c ENDIF IF ( ASSOCIATED( p_3d ) ) THEN CALL pmc_c_set_dataarray( p_3d ) ELSEIF ( ASSOCIATED( p_2d ) ) THEN CALL pmc_c_set_dataarray( p_2d ) ELSEIF ( ASSOCIATED( i_2d ) ) THEN CALL pmc_c_set_dataarray( i_2d ) ELSE ! !-- Give only one message for the first child domain. IF ( cpl_id == 2 .AND. myid == 0 ) THEN message_string = 'pointer for array "' // TRIM( name ) // & '" can''t be associated' CALL message( 'pmci_create_childs_parent_grid_arrays', 'PA0170', 3, 2, 0, 6, 0 ) ELSE ! !-- Prevent others from continuing in case the abort is to come. CALL MPI_BARRIER( comm2d, ierr ) ENDIF ENDIF #endif END SUBROUTINE pmci_create_childs_parent_grid_arrays SUBROUTINE pmci_parent_initialize ! !-- Send data for the children in order to let them create initial !-- conditions by interpolating the parent-domain fields. #if defined( __parallel ) IMPLICIT NONE INTEGER(iwp) :: child_id !< INTEGER(iwp) :: m !< REAL(wp) :: waittime !< DO m = 1, SIZE( pmc_parent_for_child ) - 1 child_id = pmc_parent_for_child(m) CALL pmc_s_fillbuffer( child_id, waittime=waittime ) ENDDO #endif END SUBROUTINE pmci_parent_initialize SUBROUTINE pmci_child_initialize ! !-- Create initial conditions for the current child domain by interpolating !-- the parent-domain fields. #if defined( __parallel ) IMPLICIT NONE INTEGER(iwp) :: ic !< Child-grid index in x-direction INTEGER(iwp) :: jc !< Child-grid index in y-direction INTEGER(iwp) :: kc !< Child-grid index in z-direction INTEGER(iwp) :: lb !< Running index for aerosol size bins INTEGER(iwp) :: lc !< Running index for aerosol mass bins INTEGER(iwp) :: lg !< Running index for salsa gases INTEGER(iwp) :: n !< Running index for chemical species REAL(wp) :: waittime !< Waiting time ! !-- Root model is never anyone's child IF ( .NOT. pmc_is_rootmodel() ) THEN ! !-- Get data from the parent CALL pmc_c_getbuffer( waittime = waittime ) ! !-- The interpolation. CALL pmci_interp_1sto_all ( u, uc, kcto, iflu, ifuu, jflo, jfuo, kflo, kfuo, 'u' ) CALL pmci_interp_1sto_all ( v, vc, kcto, iflo, ifuo, jflv, jfuv, kflo, kfuo, 'v' ) CALL pmci_interp_1sto_all ( w, wc, kctw, iflo, ifuo, jflo, jfuo, kflw, kfuw, 'w' ) IF ( ( rans_mode_parent .AND. rans_mode ) .OR. & ( .NOT. rans_mode_parent .AND. .NOT. rans_mode .AND. & .NOT. constant_diffusion ) ) THEN CALL pmci_interp_1sto_all ( e, ec, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 'e' ) ENDIF IF ( rans_mode_parent .AND. rans_mode .AND. rans_tke_e ) THEN CALL pmci_interp_1sto_all ( diss, dissc, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 's' ) ENDIF IF ( .NOT. neutral ) THEN CALL pmci_interp_1sto_all ( pt, ptc, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 's' ) ENDIF IF ( humidity ) THEN CALL pmci_interp_1sto_all ( q, q_c, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 's' ) IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN CALL pmci_interp_1sto_all ( qc, qcc, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 's' ) CALL pmci_interp_1sto_all ( nc, ncc, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 's' ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN CALL pmci_interp_1sto_all ( qr, qrc, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 's' ) CALL pmci_interp_1sto_all ( nr, nrc, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 's' ) ENDIF ENDIF IF ( passive_scalar ) THEN CALL pmci_interp_1sto_all ( s, sc, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 's' ) ENDIF IF ( air_chemistry ) THEN DO n = 1, nspec CALL pmci_interp_1sto_all ( chem_species(n)%conc, chem_spec_c(:,:,:,n), & kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 's' ) ENDDO ENDIF IF ( salsa .AND. nest_salsa ) THEN DO lb = 1, nbins_aerosol CALL pmci_interp_1sto_all ( aerosol_number(lb)%conc, aerosol_number_c(:,:,:,lb), & kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 's' ) ENDDO DO lc = 1, nbins_aerosol * ncomponents_mass CALL pmci_interp_1sto_all ( aerosol_mass(lc)%conc, aerosol_mass_c(:,:,:,lc), & kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 's' ) ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO lg = 1, ngases_salsa CALL pmci_interp_1sto_all ( salsa_gas(lg)%conc, salsa_gas_c(:,:,:,lg), & kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 's' ) ENDDO ENDIF ENDIF IF ( topography /= 'flat' ) THEN ! !-- Inside buildings set velocities back to zero. DO ic = nxlg, nxrg DO jc = nysg, nyng DO kc = nzb, nzt u(kc,jc,ic) = MERGE( u(kc,jc,ic), 0.0_wp, BTEST( wall_flags_0(kc,jc,ic), 1 ) ) v(kc,jc,ic) = MERGE( v(kc,jc,ic), 0.0_wp, BTEST( wall_flags_0(kc,jc,ic), 2 ) ) w(kc,jc,ic) = MERGE( w(kc,jc,ic), 0.0_wp, BTEST( wall_flags_0(kc,jc,ic), 3 ) ) u_p(kc,jc,ic) = MERGE( u_p(kc,jc,ic), 0.0_wp, BTEST( wall_flags_0(kc,jc,ic), 1 ) ) v_p(kc,jc,ic) = MERGE( v_p(kc,jc,ic), 0.0_wp, BTEST( wall_flags_0(kc,jc,ic), 2 ) ) w_p(kc,jc,ic) = MERGE( w_p(kc,jc,ic), 0.0_wp, BTEST( wall_flags_0(kc,jc,ic), 3 ) ) ENDDO ENDDO ENDDO ENDIF ENDIF CONTAINS SUBROUTINE pmci_interp_1sto_all( child_array, parent_array, kct, ifl, ifu, jfl, jfu, kfl, kfu, & var ) ! !-- Interpolation of the internal values for the child-domain initialization IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: kct !< The parent-grid index in z-direction just below the boundary value node INTEGER(iwp), DIMENSION(ipla:ipra), INTENT(IN) :: ifl !< Indicates start index of child cells belonging to certain !< parent cell - x direction INTEGER(iwp), DIMENSION(ipla:ipra), INTENT(IN) :: ifu !< Indicates end index of child cells belonging to certain !< parent cell - x direction INTEGER(iwp), DIMENSION(jpsa:jpna), INTENT(IN) :: jfl !< Indicates start index of child cells belonging to certain !< parent cell - y direction INTEGER(iwp), DIMENSION(jpsa:jpna), INTENT(IN) :: jfu !< Indicates end index of child cells belonging to certain !< parent cell - y direction INTEGER(iwp), DIMENSION(0:pg%nz+1), INTENT(IN) :: kfl !< Indicates start index of child cells belonging to certain !< parent cell - z direction INTEGER(iwp), DIMENSION(0:pg%nz+1), INTENT(IN) :: kfu !< Indicates end index of child cells belonging to certain !< parent cell - z direction REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: child_array !< Child-grid array REAL(wp), DIMENSION(0:pg%nz+1,jps:jpn,ipl:ipr), INTENT(IN) :: parent_array !< Parent-grid array CHARACTER(LEN=1), INTENT(IN) :: var !< Variable symbol: 'u', 'v', 'w' or 's' ! !-- Local variables: INTEGER(iwp) :: ic !< Running child-grid index in the x-direction INTEGER(iwp) :: icb !< Index pointing to the first redundant ghost point layer behind the actual boundary !< ghost point layer in the x-direction INTEGER(iwp) :: icbc !< Index pointing to the boundary ghost point layer in the x-direction INTEGER(iwp) :: icfirst !< Leftmost child-grid index initialized by the main loops (usually icfirst == icl_init) INTEGER(iwp) :: iclast !< Rightmost child-grid index initialized by the main loops (usually iclast == icr_init) INTEGER(iwp) :: icl_init !< Left child-grid index bound for initialization in the x-direction INTEGER(iwp) :: icr_init !< Right child-grid index bound for initialization in the x-direction INTEGER(iwp) :: jc !< Running child-grid index in the y-direction INTEGER(iwp) :: jcb !< Index pointing to the first redundant ghost point layer behind the actual boundary !< ghost point layer in the y-direction INTEGER(iwp) :: jcbc !< Index pointing to the boundary ghost point layer in the y-direction INTEGER(iwp) :: jcfirst !< Southmost child-grid index initialized by the main loops (usually jcfirst == jcs_init) INTEGER(iwp) :: jclast !< Northmost child-grid index initialized by the main loops (usually jclast == jcn_init) INTEGER(iwp) :: jcs_init !< South child-grid index bound for initialization in the y-direction INTEGER(iwp) :: jcn_init !< North child-grid index bound for initialization in the y-direction INTEGER(iwp) :: kc !< Running child-grid index in the z-direction INTEGER(iwp) :: ip !< Running parent-grid index in the x-direction INTEGER(iwp) :: ipl_init !< Left parent-grid index bound for initialization in the x-direction INTEGER(iwp) :: ipr_init !< Right parent-grid index bound for initialization in the x-direction INTEGER(iwp) :: jp !< Running parent-grid index in the y-direction INTEGER(iwp) :: jps_init !< South parent-grid index bound for initialization in the y-direction INTEGER(iwp) :: jpn_init !< North parent-grid index bound for initialization in the y-direction INTEGER(iwp) :: kp !< Running parent-grid index in the z-direction ipl_init = ipl ipr_init = ipr jps_init = jps jpn_init = jpn icl_init = nxl icr_init = nxr jcs_init = nys jcn_init = nyn icbc = -1 icb = -2 jcbc = -1 jcb = -2 IF ( var == 'u' ) THEN icbc = 0 icb = -1 ELSE IF ( var == 'v' ) THEN jcbc = 0 jcb = -1 ENDIF IF ( nesting_mode /= 'vertical' ) THEN IF ( bc_dirichlet_l ) THEN ipl_init = ipl + 1 icl_init = nxl - 1 ! !-- For u, nxl is a ghost node, but not for the other variables IF ( var == 'u' ) THEN ipl_init = ipl + 2 icl_init = nxl ENDIF ENDIF IF ( bc_dirichlet_s ) THEN jps_init = jps + 1 jcs_init = nys - 1 ! !-- For v, nys is a ghost node, but not for the other variables IF ( var == 'v' ) THEN jps_init = jps + 2 jcs_init = nys ENDIF ENDIF IF ( bc_dirichlet_r ) THEN ipr_init = ipr - 1 icr_init = nxr + 1 ENDIF IF ( bc_dirichlet_n ) THEN jpn_init = jpn - 1 jcn_init = nyn + 1 ENDIF ENDIF child_array(:,:,:) = 0.0_wp IF ( var == 'u' ) THEN icfirst = ifl(ipl_init) iclast = ifl(ipr_init+1) - 1 jcfirst = jfl(jps_init) jclast = jfu(jpn_init) DO ip = ipl_init, ipr_init DO jp = jps_init, jpn_init DO kp = 0, kct + 1 DO ic = ifl(ip), ifl(ip+1)-1 DO jc = jfl(jp), jfu(jp) DO kc = kfl(kp), MIN( kfu(kp), nzt+1 ) child_array(kc,jc,ic) = parent_array(kp,jp,ip) ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ELSE IF ( var == 'v' ) THEN icfirst = ifl(ipl_init) iclast = ifu(ipr_init) jcfirst = jfl(jps_init) jclast = jfl(jpn_init+1) - 1 DO ip = ipl_init, ipr_init DO jp = jps_init, jpn_init DO kp = 0, kct + 1 DO ic = ifl(ip), ifu(ip) DO jc = jfl(jp), jfl(jp+1)-1 DO kc = kfl(kp), MIN( kfu(kp), nzt+1 ) child_array(kc,jc,ic) = parent_array(kp,jp,ip) ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ELSE IF ( var == 'w' ) THEN icfirst = ifl(ipl_init) iclast = ifu(ipr_init) jcfirst = jfl(jps_init) jclast = jfu(jpn_init) DO ip = ipl_init, ipr_init DO jp = jps_init, jpn_init DO kp = 1, kct + 1 DO ic = ifl(ip), ifu(ip) DO jc = jfl(jp), jfu(jp) ! !-- Because the kp-loop for w starts from kp=1 instead of 0 child_array(nzb,jc,ic) = 0.0_wp DO kc = kfu(kp-1)+1, kfu(kp) child_array(kc,jc,ic) = parent_array(kp,jp,ip) ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ELSE ! scalars icfirst = ifl(ipl_init) iclast = ifu(ipr_init) jcfirst = jfl(jps_init) jclast = jfu(jpn_init) DO ip = ipl_init, ipr_init DO jp = jps_init, jpn_init DO kp = 0, kct + 1 DO ic = ifl(ip), ifu(ip) DO jc = jfl(jp), jfu(jp) DO kc = kfl(kp), MIN( kfu(kp), nzt+1 ) child_array(kc,jc,ic) = parent_array(kp,jp,ip) ENDDO ENDDO ENDDO ENDDO ENDDO ENDDO ENDIF ! var ! !-- If the number of grid points in child subdomain in x- or y-direction !-- (nxr - nxl + 1 and/or nyn - nys + 1) is not integer divisible by the grid spacing !-- ratio in its direction (igsr and/or jgsr), the above loops will return with !-- unfilled gaps in the initial fields. These gaps, if present, are filled here. IF ( icfirst > icl_init ) THEN DO ic = icl_init, icfirst - 1 child_array(:,:,ic) = child_array(:,:,icfirst) ENDDO ENDIF IF ( iclast < icr_init ) THEN DO ic = iclast + 1, icr_init child_array(:,:,ic) = child_array(:,:,iclast) ENDDO ENDIF IF ( jcfirst > jcs_init ) THEN DO jc = jcs_init, jcfirst - 1 child_array(:,jc,:) = child_array(:,jcfirst,:) ENDDO ENDIF IF ( jclast < jcn_init ) THEN DO jc = jclast + 1, jcn_init child_array(:,jc,:) = child_array(:,jclast,:) ENDDO ENDIF ! !-- Finally, make sure that also the redundant 2nd and 3rd ghost-node layers !-- including the corners are properly filled up. IF ( nys == 0 ) THEN DO jc = -nbgp, jcb ! jcb = -2 if var == v, else jcb = -1 child_array(0:nzt+1,jc,nxlg:nxrg) = child_array(0:nzt+1,jcbc,nxlg:nxrg) ENDDO ENDIF IF ( nyn == ny ) THEN DO jc = ny+2, ny+nbgp child_array(0:nzt+1,jc,nxlg:nxrg) = child_array(0:nzt+1,ny+1,nxlg:nxrg) ENDDO ENDIF IF ( nxl == 0 ) THEN DO ic = -nbgp, icb ! icb = -2 if var == u, else icb = -1 child_array(0:nzt+1,nysg:nyng,ic) = child_array(0:nzt+1,nysg:nyng,icbc) ENDDO ENDIF IF ( nxr == nx ) THEN DO ic = nx+2, nx+nbgp child_array(0:nzt+1,nysg:nyng,ic) = child_array(0:nzt+1,nysg:nyng,nx+1) ENDDO ENDIF END SUBROUTINE pmci_interp_1sto_all #endif END SUBROUTINE pmci_child_initialize SUBROUTINE pmci_check_setting_mismatches ! !-- Check for mismatches between settings of root and child variables !-- (e.g., all children have to follow the end_time settings of the root model). !-- The root model overwrites variables in the other models, so these variables !-- only need to be set once in file PARIN. #if defined( __parallel ) USE control_parameters, & ONLY: dt_restart, end_time, message_string, restart_time, time_restart IMPLICIT NONE INTEGER :: ierr !< MPI error code REAL(wp) :: dt_restart_root !< REAL(wp) :: end_time_root !< REAL(wp) :: restart_time_root !< REAL(wp) :: time_restart_root !< ! !-- Check the time to be simulated. !-- Here, and in the following, the root process communicates the respective !-- variable to all others, and its value will then be compared with the local !-- values. IF ( pmc_is_rootmodel() ) end_time_root = end_time CALL MPI_BCAST( end_time_root, 1, MPI_REAL, 0, comm_world_nesting, ierr ) IF ( .NOT. pmc_is_rootmodel() ) THEN IF ( end_time /= end_time_root ) THEN WRITE( message_string, * ) 'mismatch between root model and ', & 'child settings:& end_time(root) = ', end_time_root, & '& end_time(child) = ', end_time, '& child value is set', & ' to root value' CALL message( 'pmci_check_setting_mismatches', 'PA0419', 0, 1, 0, 6, & 0 ) end_time = end_time_root ENDIF ENDIF ! !-- Same for restart time IF ( pmc_is_rootmodel() ) restart_time_root = restart_time CALL MPI_BCAST( restart_time_root, 1, MPI_REAL, 0, comm_world_nesting, ierr ) IF ( .NOT. pmc_is_rootmodel() ) THEN IF ( restart_time /= restart_time_root ) THEN WRITE( message_string, * ) 'mismatch between root model and ', & 'child settings: & restart_time(root) = ', restart_time_root, & '& restart_time(child) = ', restart_time, '& child ', & 'value is set to root value' CALL message( 'pmci_check_setting_mismatches', 'PA0419', 0, 1, 0, 6, & 0 ) restart_time = restart_time_root ENDIF ENDIF ! !-- Same for dt_restart IF ( pmc_is_rootmodel() ) dt_restart_root = dt_restart CALL MPI_BCAST( dt_restart_root, 1, MPI_REAL, 0, comm_world_nesting, ierr ) IF ( .NOT. pmc_is_rootmodel() ) THEN IF ( dt_restart /= dt_restart_root ) THEN WRITE( message_string, * ) 'mismatch between root model and ', & 'child settings: & dt_restart(root) = ', dt_restart_root, & '& dt_restart(child) = ', dt_restart, '& child ', & 'value is set to root value' CALL message( 'pmci_check_setting_mismatches', 'PA0419', 0, 1, 0, 6, & 0 ) dt_restart = dt_restart_root ENDIF ENDIF ! !-- Same for time_restart IF ( pmc_is_rootmodel() ) time_restart_root = time_restart CALL MPI_BCAST( time_restart_root, 1, MPI_REAL, 0, comm_world_nesting, ierr ) IF ( .NOT. pmc_is_rootmodel() ) THEN IF ( time_restart /= time_restart_root ) THEN WRITE( message_string, * ) 'mismatch between root model and ', & 'child settings: & time_restart(root) = ', time_restart_root, & '& time_restart(child) = ', time_restart, '& child ', & 'value is set to root value' CALL message( 'pmci_check_setting_mismatches', 'PA0419', 0, 1, 0, 6, & 0 ) time_restart = time_restart_root ENDIF ENDIF #endif END SUBROUTINE pmci_check_setting_mismatches SUBROUTINE pmci_synchronize #if defined( __parallel ) ! !-- Unify the time steps for each model and synchronize using !-- MPI_ALLREDUCE with the MPI_MIN operator over all processes using !-- the global communicator MPI_COMM_WORLD. IMPLICIT NONE INTEGER(iwp) :: ierr !< MPI error code REAL(wp) :: dtl !< Local time step of the current process REAL(wp) :: dtg !< Global time step defined as the global minimum of dtl of all processes IF ( debug_output_timestep ) CALL debug_message( 'pmci_synchronize', 'start' ) dtl = dt_3d CALL MPI_ALLREDUCE( dtl, dtg, 1, MPI_REAL, MPI_MIN, MPI_COMM_WORLD, ierr ) dt_3d = dtg IF ( debug_output_timestep ) CALL debug_message( 'pmci_synchronize', 'end' ) #endif END SUBROUTINE pmci_synchronize SUBROUTINE pmci_set_swaplevel( swaplevel ) ! !-- After each Runge-Kutta sub-timestep, alternately set buffer one or buffer !-- two active IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: swaplevel !< swaplevel (1 or 2) of PALM's timestep INTEGER(iwp) :: child_id !< Child id of the child number m INTEGER(iwp) :: m !< Loop index over all children of the current parent #if defined( __parallel ) DO m = 1, SIZE( pmc_parent_for_child ) - 1 child_id = pmc_parent_for_child(m) CALL pmc_s_set_active_data_array( child_id, swaplevel ) ENDDO #endif END SUBROUTINE pmci_set_swaplevel SUBROUTINE pmci_datatrans( local_nesting_mode ) ! !-- This subroutine controls the nesting according to the nestpar !-- parameter nesting_mode (two-way (default) or one-way) and the !-- order of anterpolations according to the nestpar parameter !-- nesting_datatransfer_mode (cascade, overlap or mixed (default)). !-- Although nesting_mode is a variable of this model, pass it as !-- an argument to allow for example to force one-way initialization !-- phase. !-- Note that interpolation ( parent_to_child ) must always be carried !-- out before anterpolation ( child_to_parent ). IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN) :: local_nesting_mode !< Nesting mode: 'one-way', 'two-way' or 'vertical' #if defined( __parallel ) IF ( debug_output_timestep ) CALL debug_message( 'pmci_datatrans', 'start' ) IF ( TRIM( local_nesting_mode ) == 'one-way' ) THEN CALL pmci_child_datatrans( parent_to_child ) CALL pmci_parent_datatrans( parent_to_child ) ELSE IF ( nesting_datatransfer_mode == 'cascade' ) THEN CALL pmci_child_datatrans( parent_to_child ) CALL pmci_parent_datatrans( parent_to_child ) CALL pmci_parent_datatrans( child_to_parent ) CALL pmci_child_datatrans( child_to_parent ) ELSEIF ( nesting_datatransfer_mode == 'overlap') THEN CALL pmci_parent_datatrans( parent_to_child ) CALL pmci_child_datatrans( parent_to_child ) CALL pmci_child_datatrans( child_to_parent ) CALL pmci_parent_datatrans( child_to_parent ) ELSEIF ( TRIM( nesting_datatransfer_mode ) == 'mixed' ) THEN CALL pmci_parent_datatrans( parent_to_child ) CALL pmci_child_datatrans( parent_to_child ) CALL pmci_parent_datatrans( child_to_parent ) CALL pmci_child_datatrans( child_to_parent ) ENDIF ENDIF IF ( debug_output_timestep ) CALL debug_message( 'pmci_datatrans', 'end' ) #endif END SUBROUTINE pmci_datatrans SUBROUTINE pmci_parent_datatrans( direction ) IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: direction !< Direction of the data transfer: 'parent_to_child' or 'child_to_parent' #if defined( __parallel ) INTEGER(iwp) :: child_id !< Child id of the child number m INTEGER(iwp) :: i !< Parent-grid index in x-direction INTEGER(iwp) :: j !< Parent-grid index in y-direction INTEGER(iwp) :: k !< Parent-grid index in z-direction INTEGER(iwp) :: m !< Loop index over all children of the current parent DO m = 1, SIZE( pmc_parent_for_child ) - 1 child_id = pmc_parent_for_child(m) IF ( direction == parent_to_child ) THEN CALL cpu_log( log_point_s(71), 'pmc parent send', 'start' ) CALL pmc_s_fillbuffer( child_id ) CALL cpu_log( log_point_s(71), 'pmc parent send', 'stop' ) ELSE ! !-- Communication from child to parent CALL cpu_log( log_point_s(72), 'pmc parent recv', 'start' ) child_id = pmc_parent_for_child(m) CALL pmc_s_getdata_from_buffer( child_id ) CALL cpu_log( log_point_s(72), 'pmc parent recv', 'stop' ) ! !-- The anterpolated data is now available in u etc IF ( topography /= 'flat' ) THEN ! !-- Inside buildings/topography reset velocities back to zero. !-- Scalars (pt, q, s, km, kh, p, sa, ...) are ignored at !-- present, maybe revise later. !-- Resetting of e is removed as unnecessary since e is not !-- anterpolated, and as incorrect since it overran the default !-- Neumann condition (bc_e_b). DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 u(k,j,i) = MERGE( u(k,j,i), 0.0_wp, BTEST( wall_flags_0(k,j,i), 1 ) ) v(k,j,i) = MERGE( v(k,j,i), 0.0_wp, BTEST( wall_flags_0(k,j,i), 2 ) ) w(k,j,i) = MERGE( w(k,j,i), 0.0_wp, BTEST( wall_flags_0(k,j,i), 3 ) ) ! !-- TO_DO: zero setting of temperature within topography creates !-- wrong results ! pt(nzb:nzb_s_inner(j,i),j,i) = 0.0_wp ! IF ( humidity .OR. passive_scalar ) THEN ! q(nzb:nzb_s_inner(j,i),j,i) = 0.0_wp ! ENDIF ENDDO ENDDO ENDDO ENDIF ENDIF ENDDO ! m #endif END SUBROUTINE pmci_parent_datatrans SUBROUTINE pmci_child_datatrans( direction ) IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: direction !< Transfer direction: parent_to_child or child_to_parent #if defined( __parallel ) REAL(wp), DIMENSION(1) :: dtl !< Time step size dtl = dt_3d IF ( .NOT. pmc_is_rootmodel() ) THEN IF ( direction == parent_to_child ) THEN CALL cpu_log( log_point_s(73), 'pmc child recv', 'start' ) CALL pmc_c_getbuffer( ) CALL cpu_log( log_point_s(73), 'pmc child recv', 'stop' ) CALL cpu_log( log_point_s(75), 'pmc interpolation', 'start' ) CALL pmci_interpolation CALL cpu_log( log_point_s(75), 'pmc interpolation', 'stop' ) ELSE ! !-- direction == child_to_parent CALL cpu_log( log_point_s(76), 'pmc anterpolation', 'start' ) CALL pmci_anterpolation CALL cpu_log( log_point_s(76), 'pmc anterpolation', 'stop' ) CALL cpu_log( log_point_s(74), 'pmc child send', 'start' ) CALL pmc_c_putbuffer( ) CALL cpu_log( log_point_s(74), 'pmc child send', 'stop' ) ENDIF ENDIF CONTAINS SUBROUTINE pmci_interpolation ! !-- A wrapper routine for all interpolation actions IMPLICIT NONE INTEGER(iwp) :: ibgp !< Index running over the nbgp boundary ghost points in i-direction INTEGER(iwp) :: jbgp !< Index running over the nbgp boundary ghost points in j-direction INTEGER(iwp) :: lb !< Running index for aerosol size bins INTEGER(iwp) :: lc !< Running index for aerosol mass bins INTEGER(iwp) :: lg !< Running index for salsa gases INTEGER(iwp) :: n !< Running index for number of chemical species ! !-- In case of vertical nesting no interpolation is needed for the !-- horizontal boundaries IF ( nesting_mode /= 'vertical' ) THEN ! !-- Left border pe: IF ( bc_dirichlet_l ) THEN CALL pmci_interp_1sto_lr( u, uc, kcto, jflo, jfuo, kflo, kfuo, 'l', 'u' ) CALL pmci_interp_1sto_lr( v, vc, kcto, jflv, jfuv, kflo, kfuo, 'l', 'v' ) CALL pmci_interp_1sto_lr( w, wc, kctw, jflo, jfuo, kflw, kfuw, 'l', 'w' ) IF ( ( rans_mode_parent .AND. rans_mode ) .OR. & ( .NOT. rans_mode_parent .AND. .NOT. rans_mode .AND. & .NOT. constant_diffusion ) ) THEN ! CALL pmci_interp_1sto_lr( e, ec, kcto, jflo, jfuo, kflo, kfuo, 'l', 'e' ) ! !-- Interpolation of e is replaced by the Neumann condition. DO ibgp = -nbgp, -1 e(nzb:nzt,nys:nyn,ibgp) = e(nzb:nzt,nys:nyn,0) ENDDO ENDIF IF ( rans_mode_parent .AND. rans_mode .AND. rans_tke_e ) THEN CALL pmci_interp_1sto_lr( diss, dissc, kcto, jflo, jfuo, kflo, kfuo, 'l', 's' ) ENDIF IF ( .NOT. neutral ) THEN CALL pmci_interp_1sto_lr( pt, ptc, kcto, jflo, jfuo, kflo, kfuo, 'l', 's' ) ENDIF IF ( humidity ) THEN CALL pmci_interp_1sto_lr( q, q_c, kcto, jflo, jfuo, kflo, kfuo, 'l', 's' ) IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN CALL pmci_interp_1sto_lr( qc, qcc, kcto, jflo, jfuo, kflo, kfuo, 'l', 's' ) CALL pmci_interp_1sto_lr( nc, ncc, kcto, jflo, jfuo, kflo, kfuo, 'l', 's' ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN CALL pmci_interp_1sto_lr( qr, qrc, kcto, jflo, jfuo, kflo, kfuo, 'l', 's' ) CALL pmci_interp_1sto_lr( nr, nrc, kcto, jflo, jfuo, kflo, kfuo, 'l', 's' ) ENDIF ENDIF IF ( passive_scalar ) THEN CALL pmci_interp_1sto_lr( s, sc, kcto, jflo, jfuo, kflo, kfuo, 'l', 's' ) ENDIF IF ( air_chemistry ) THEN DO n = 1, nspec CALL pmci_interp_1sto_lr( chem_species(n)%conc, chem_spec_c(:,:,:,n), & kcto, jflo, jfuo, kflo, kfuo, 'l', 's' ) ENDDO ENDIF IF ( salsa .AND. nest_salsa ) THEN DO lb = 1, nbins_aerosol CALL pmci_interp_1sto_lr( aerosol_number(lb)%conc, aerosol_number_c(:,:,:,lb), & kcto, jflo, jfuo, kflo, kfuo, 'l', 's') ENDDO DO lc = 1, nbins_aerosol * ncomponents_mass CALL pmci_interp_1sto_lr( aerosol_mass(lc)%conc, aerosol_mass_c(:,:,:,lc), & kcto, jflo, jfuo, kflo, kfuo, 'l', 's') ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO lg = 1, ngases_salsa CALL pmci_interp_1sto_lr( salsa_gas(lg)%conc, salsa_gas_c(:,:,:,lg), & kcto, jflo, jfuo, kflo, kfuo, 'l', 's') ENDDO ENDIF ENDIF ENDIF ! !-- Right border pe IF ( bc_dirichlet_r ) THEN CALL pmci_interp_1sto_lr( u, uc, kcto, jflo, jfuo, kflo, kfuo, 'r', 'u' ) CALL pmci_interp_1sto_lr( v, vc, kcto, jflv, jfuv, kflo, kfuo, 'r', 'v' ) CALL pmci_interp_1sto_lr( w, wc, kctw, jflo, jfuo, kflw, kfuw, 'r', 'w' ) IF ( ( rans_mode_parent .AND. rans_mode ) .OR. & ( .NOT. rans_mode_parent .AND. .NOT. rans_mode .AND. & .NOT. constant_diffusion ) ) THEN ! CALL pmci_interp_1sto_lr( e, ec, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, 'r', 'e' ) ! !-- Interpolation of e is replaced by the Neumann condition. DO ibgp = nx+1, nx+nbgp e(nzb:nzt,nys:nyn,ibgp) = e(nzb:nzt,nys:nyn,nx) ENDDO ENDIF IF ( rans_mode_parent .AND. rans_mode .AND. rans_tke_e ) THEN CALL pmci_interp_1sto_lr( diss, dissc, kcto, jflo, jfuo, kflo, kfuo, 'r', 's' ) ENDIF IF ( .NOT. neutral ) THEN CALL pmci_interp_1sto_lr( pt, ptc, kcto, jflo, jfuo, kflo, kfuo, 'r', 's' ) ENDIF IF ( humidity ) THEN CALL pmci_interp_1sto_lr( q, q_c, kcto, jflo, jfuo, kflo, kfuo, 'r', 's' ) IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN CALL pmci_interp_1sto_lr( qc, qcc, kcto, jflo, jfuo, kflo, kfuo, 'r', 's' ) CALL pmci_interp_1sto_lr( nc, ncc, kcto, jflo, jfuo, kflo, kfuo, 'r', 's' ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN CALL pmci_interp_1sto_lr( qr, qrc, kcto, jflo, jfuo, kflo, kfuo, 'r', 's' ) CALL pmci_interp_1sto_lr( nr, nrc, kcto, jflo, jfuo, kflo, kfuo, 'r', 's' ) ENDIF ENDIF IF ( passive_scalar ) THEN CALL pmci_interp_1sto_lr( s, sc, kcto, jflo, jfuo, kflo, kfuo, 'r', 's' ) ENDIF IF ( air_chemistry ) THEN DO n = 1, nspec CALL pmci_interp_1sto_lr( chem_species(n)%conc, chem_spec_c(:,:,:,n), & kcto, jflo, jfuo, kflo, kfuo, 'r', 's' ) ENDDO ENDIF IF ( salsa .AND. nest_salsa ) THEN DO lb = 1, nbins_aerosol CALL pmci_interp_1sto_lr( aerosol_number(lb)%conc, aerosol_number_c(:,:,:,lb), & kcto, jflo, jfuo, kflo, kfuo, 'r', 's' ) ENDDO DO lc = 1, nbins_aerosol * ncomponents_mass CALL pmci_interp_1sto_lr( aerosol_mass(lc)%conc, aerosol_mass_c(:,:,:,lc), & kcto, jflo, jfuo, kflo, kfuo, 'r', 's' ) ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO lg = 1, ngases_salsa CALL pmci_interp_1sto_lr( salsa_gas(lg)%conc, salsa_gas_c(:,:,:,lg), & kcto, jflo, jfuo, kflo, kfuo, 'r', 's' ) ENDDO ENDIF ENDIF ENDIF ! !-- South border pe IF ( bc_dirichlet_s ) THEN CALL pmci_interp_1sto_sn( v, vc, kcto, iflo, ifuo, kflo, kfuo, 's', 'v' ) CALL pmci_interp_1sto_sn( w, wc, kctw, iflo, ifuo, kflw, kfuw, 's', 'w' ) CALL pmci_interp_1sto_sn( u, uc, kcto, iflu, ifuu, kflo, kfuo, 's', 'u' ) IF ( ( rans_mode_parent .AND. rans_mode ) .OR. & ( .NOT. rans_mode_parent .AND. .NOT. rans_mode .AND. & .NOT. constant_diffusion ) ) THEN ! CALL pmci_interp_1sto_sn( e, ec, kcto, iflo, ifuo, kflo, kfuo, 's', 'e' ) ! !-- Interpolation of e is replaced by the Neumann condition. DO jbgp = -nbgp, -1 e(nzb:nzt,jbgp,nxl:nxr) = e(nzb:nzt,0,nxl:nxr) ENDDO ENDIF IF ( rans_mode_parent .AND. rans_mode .AND. rans_tke_e ) THEN CALL pmci_interp_1sto_sn( diss, dissc, kcto, iflo, ifuo, kflo, kfuo, 's', 's' ) ENDIF IF ( .NOT. neutral ) THEN CALL pmci_interp_1sto_sn( pt, ptc, kcto, iflo, ifuo, kflo, kfuo, 's', 's' ) ENDIF IF ( humidity ) THEN CALL pmci_interp_1sto_sn( q, q_c, kcto, iflo, ifuo, kflo, kfuo, 's', 's' ) IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN CALL pmci_interp_1sto_sn( qc, qcc, kcto, iflo, ifuo, kflo, kfuo, 's', 's' ) CALL pmci_interp_1sto_sn( nc, ncc, kcto, iflo, ifuo, kflo, kfuo, 's', 's' ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN CALL pmci_interp_1sto_sn( qr, qrc, kcto, iflo, ifuo, kflo, kfuo, 's', 's' ) CALL pmci_interp_1sto_sn( nr, nrc, kcto, iflo, ifuo, kflo, kfuo, 's', 's' ) ENDIF ENDIF IF ( passive_scalar ) THEN CALL pmci_interp_1sto_sn( s, sc, kcto, iflo, ifuo, kflo, kfuo, 's', 's' ) ENDIF IF ( air_chemistry ) THEN DO n = 1, nspec CALL pmci_interp_1sto_sn( chem_species(n)%conc, chem_spec_c(:,:,:,n), & kcto, iflo, ifuo, kflo, kfuo, 's', 's' ) ENDDO ENDIF IF ( salsa .AND. nest_salsa ) THEN DO lb = 1, nbins_aerosol CALL pmci_interp_1sto_sn( aerosol_number(lb)%conc, aerosol_number_c(:,:,:,lb), & kcto, iflo, ifuo, kflo, kfuo, 's', 's' ) ENDDO DO lc = 1, nbins_aerosol * ncomponents_mass CALL pmci_interp_1sto_sn( aerosol_mass(lc)%conc, aerosol_mass_c(:,:,:,lc), & kcto, iflo, ifuo, kflo, kfuo, 's', 's' ) ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO lg = 1, ngases_salsa CALL pmci_interp_1sto_sn( salsa_gas(lg)%conc, salsa_gas_c(:,:,:,lg), & kcto, iflo, ifuo, kflo, kfuo, 's', 's' ) ENDDO ENDIF ENDIF ENDIF ! !-- North border pe IF ( bc_dirichlet_n ) THEN CALL pmci_interp_1sto_sn( v, vc, kcto, iflo, ifuo, kflo, kfuo, 'n', 'v' ) CALL pmci_interp_1sto_sn( w, wc, kctw, iflo, ifuo, kflw, kfuw, 'n', 'w' ) CALL pmci_interp_1sto_sn( u, uc, kcto, iflu, ifuu, kflo, kfuo, 'n', 'u' ) IF ( ( rans_mode_parent .AND. rans_mode ) .OR. & ( .NOT. rans_mode_parent .AND. .NOT. rans_mode .AND. & .NOT. constant_diffusion ) ) THEN ! CALL pmci_interp_1sto_sn( e, ec, kcto, iflo, ifuo, kflo, kfuo, 'n', 'e' ) ! !-- Interpolation of e is replaced by the Neumann condition. DO jbgp = ny+1, ny+nbgp e(nzb:nzt,jbgp,nxl:nxr) = e(nzb:nzt,ny,nxl:nxr) ENDDO ENDIF IF ( rans_mode_parent .AND. rans_mode .AND. rans_tke_e ) THEN CALL pmci_interp_1sto_sn( diss, dissc, kcto, iflo, ifuo, kflo, kfuo, 'n', 's' ) ENDIF IF ( .NOT. neutral ) THEN CALL pmci_interp_1sto_sn( pt, ptc, kcto, iflo, ifuo, kflo, kfuo, 'n', 's' ) ENDIF IF ( humidity ) THEN CALL pmci_interp_1sto_sn( q, q_c, kcto, iflo, ifuo, kflo, kfuo, 'n', 's' ) IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN CALL pmci_interp_1sto_sn( qc, qcc, kcto, iflo, ifuo, kflo, kfuo, 'n', 's' ) CALL pmci_interp_1sto_sn( nc, ncc, kcto, iflo, ifuo, kflo, kfuo, 'n', 's' ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN CALL pmci_interp_1sto_sn( qr, qrc, kcto, iflo, ifuo, kflo, kfuo, 'n', 's' ) CALL pmci_interp_1sto_sn( nr, nrc, kcto, iflo, ifuo, kflo, kfuo, 'n', 's' ) ENDIF ENDIF IF ( passive_scalar ) THEN CALL pmci_interp_1sto_sn( s, sc, kcto, iflo, ifuo, kflo, kfuo, 'n', 's' ) ENDIF IF ( air_chemistry ) THEN DO n = 1, nspec CALL pmci_interp_1sto_sn( chem_species(n)%conc, chem_spec_c(:,:,:,n), & kcto, iflo, ifuo, kflo, kfuo, 'n', 's' ) ENDDO ENDIF IF ( salsa .AND. nest_salsa ) THEN DO lb = 1, nbins_aerosol CALL pmci_interp_1sto_sn( aerosol_number(lb)%conc, aerosol_number_c(:,:,:,lb), & kcto, iflo, ifuo, kflo, kfuo, 'n', 's' ) ENDDO DO lc = 1, nbins_aerosol * ncomponents_mass CALL pmci_interp_1sto_sn( aerosol_mass(lc)%conc, aerosol_mass_c(:,:,:,lc), & kcto, iflo, ifuo, kflo, kfuo, 'n', 's' ) ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO lg = 1, ngases_salsa CALL pmci_interp_1sto_sn( salsa_gas(lg)%conc, salsa_gas_c(:,:,:,lg), & kcto, iflo, ifuo, kflo, kfuo, 'n', 's' ) ENDDO ENDIF ENDIF ENDIF ENDIF ! IF ( nesting_mode /= 'vertical' ) ! !-- All PEs are top-border PEs CALL pmci_interp_1sto_t( w, wc, kctw, iflo, ifuo, jflo, jfuo, 'w' ) CALL pmci_interp_1sto_t( u, uc, kcto, iflu, ifuu, jflo, jfuo, 'u' ) CALL pmci_interp_1sto_t( v, vc, kcto, iflo, ifuo, jflv, jfuv, 'v' ) IF ( ( rans_mode_parent .AND. rans_mode ) .OR. & ( .NOT. rans_mode_parent .AND. .NOT. rans_mode .AND. & .NOT. constant_diffusion ) ) THEN ! CALL pmci_interp_1sto_t( e, ec, kcto, iflo, ifuo, jflo, jfuo, 'e' ) ! !-- Interpolation of e is replaced by the Neumann condition. e(nzt+1,nys:nyn,nxl:nxr) = e(nzt,nys:nyn,nxl:nxr) ENDIF IF ( rans_mode_parent .AND. rans_mode .AND. rans_tke_e ) THEN CALL pmci_interp_1sto_t( diss, dissc, kcto, iflo, ifuo, jflo, jfuo, 's' ) ENDIF IF ( .NOT. neutral ) THEN CALL pmci_interp_1sto_t( pt, ptc, kcto, iflo, ifuo, jflo, jfuo, 's' ) ENDIF IF ( humidity ) THEN CALL pmci_interp_1sto_t( q, q_c, kcto, iflo, ifuo, jflo, jfuo, 's' ) IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN CALL pmci_interp_1sto_t( qc, qcc, kcto, iflo, ifuo, jflo, jfuo, 's' ) CALL pmci_interp_1sto_t( nc, ncc, kcto, iflo, ifuo, jflo, jfuo, 's' ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN CALL pmci_interp_1sto_t( qr, qrc, kcto, iflo, ifuo, jflo, jfuo, 's' ) CALL pmci_interp_1sto_t( nr, nrc, kcto, iflo, ifuo, jflo, jfuo, 's' ) ENDIF ENDIF IF ( passive_scalar ) THEN CALL pmci_interp_1sto_t( s, sc, kcto, iflo, ifuo, jflo, jfuo, 's' ) ENDIF IF ( air_chemistry ) THEN DO n = 1, nspec CALL pmci_interp_1sto_t( chem_species(n)%conc, chem_spec_c(:,:,:,n), & kcto, iflo, ifuo, jflo, jfuo, 's' ) ENDDO ENDIF IF ( salsa .AND. nest_salsa ) THEN DO lb = 1, nbins_aerosol CALL pmci_interp_1sto_t( aerosol_number(lb)%conc, aerosol_number_c(:,:,:,lb), & kcto, iflo, ifuo, jflo, jfuo, 's' ) ENDDO DO lc = 1, nbins_aerosol * ncomponents_mass CALL pmci_interp_1sto_t( aerosol_mass(lc)%conc, aerosol_mass_c(:,:,:,lc), & kcto, iflo, ifuo, jflo, jfuo, 's' ) ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO lg = 1, ngases_salsa CALL pmci_interp_1sto_t( salsa_gas(lg)%conc, salsa_gas_c(:,:,:,lg), & kcto, iflo, ifuo, jflo, jfuo, 's' ) ENDDO ENDIF ENDIF END SUBROUTINE pmci_interpolation SUBROUTINE pmci_anterpolation ! !-- A wrapper routine for all anterpolation actions. !-- Note that TKE is not anterpolated. IMPLICIT NONE INTEGER(iwp) :: lb !< Running index for aerosol size bins INTEGER(iwp) :: lc !< Running index for aerosol mass bins INTEGER(iwp) :: lg !< Running index for salsa gases INTEGER(iwp) :: n !< Running index for number of chemical species CALL pmci_anterp_tophat( u, uc, kcto, iflu, ifuu, jflo, jfuo, kflo, kfuo, ijkfc_u, 'u' ) CALL pmci_anterp_tophat( v, vc, kcto, iflo, ifuo, jflv, jfuv, kflo, kfuo, ijkfc_v, 'v' ) CALL pmci_anterp_tophat( w, wc, kctw, iflo, ifuo, jflo, jfuo, kflw, kfuw, ijkfc_w, 'w' ) ! !-- Anterpolation of TKE and dissipation rate if parent and child are in !-- RANS mode. IF ( rans_mode_parent .AND. rans_mode ) THEN CALL pmci_anterp_tophat( e, ec, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, ijkfc_s, 'e' ) ! !-- Anterpolation of dissipation rate only if TKE-e closure is applied. IF ( rans_tke_e ) THEN CALL pmci_anterp_tophat( diss, dissc, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, & ijkfc_s, 'diss' ) ENDIF ENDIF IF ( .NOT. neutral ) THEN CALL pmci_anterp_tophat( pt, ptc, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, ijkfc_s, 'pt' ) ENDIF IF ( humidity ) THEN CALL pmci_anterp_tophat( q, q_c, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, ijkfc_s, 'q' ) IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN CALL pmci_anterp_tophat( qc, qcc, kcto, iflo, ifuo, jflo, jfuo, & kflo, kfuo, ijkfc_s, 'qc' ) CALL pmci_anterp_tophat( nc, ncc, kcto, iflo, ifuo, jflo, jfuo, & kflo, kfuo, ijkfc_s, 'nc' ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN CALL pmci_anterp_tophat( qr, qrc, kcto, iflo, ifuo, jflo, jfuo, & kflo, kfuo, ijkfc_s, 'qr' ) CALL pmci_anterp_tophat( nr, nrc, kcto, iflo, ifuo, jflo, jfuo, & kflo, kfuo, ijkfc_s, 'nr' ) ENDIF ENDIF IF ( passive_scalar ) THEN CALL pmci_anterp_tophat( s, sc, kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, ijkfc_s, 's' ) ENDIF IF ( air_chemistry ) THEN DO n = 1, nspec CALL pmci_anterp_tophat( chem_species(n)%conc, chem_spec_c(:,:,:,n), & kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, ijkfc_s, 's' ) ENDDO ENDIF IF ( salsa .AND. nest_salsa ) THEN DO lb = 1, nbins_aerosol CALL pmci_anterp_tophat( aerosol_number(lb)%conc, aerosol_number_c(:,:,:,lb), & kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, ijkfc_s, 's' ) ENDDO DO lc = 1, nbins_aerosol * ncomponents_mass CALL pmci_anterp_tophat( aerosol_mass(lc)%conc, aerosol_mass_c(:,:,:,lc), & kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, ijkfc_s, 's' ) ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO lg = 1, ngases_salsa CALL pmci_anterp_tophat( salsa_gas(lg)%conc, salsa_gas_c(:,:,:,lg), & kcto, iflo, ifuo, jflo, jfuo, kflo, kfuo, ijkfc_s, 's' ) ENDDO ENDIF ENDIF END SUBROUTINE pmci_anterpolation SUBROUTINE pmci_interp_1sto_lr( child_array, parent_array, kct, jfl, jfu, kfl, kfu, edge, var ) ! !-- Interpolation of ghost-node values used as the child-domain boundary !-- conditions. This subroutine handles the left and right boundaries. IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: kct !< The parent-grid index in z-direction just below the boundary value node INTEGER(iwp), DIMENSION(jpsa:jpna), INTENT(IN) :: jfl !< Indicates start index of child cells belonging to certain !< parent cell - y direction INTEGER(iwp), DIMENSION(jpsa:jpna), INTENT(IN) :: jfu !< Indicates end index of child cells belonging to certain !< parent cell - y direction INTEGER(iwp), DIMENSION(0:pg%nz+1), INTENT(IN) :: kfl !< Indicates start index of child cells belonging to certain !< parent cell - z direction INTEGER(iwp), DIMENSION(0:pg%nz+1), INTENT(IN) :: kfu !< Indicates end index of child cells belonging to certain !< parent cell - z direction REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: child_array !< Child-grid array REAL(wp), DIMENSION(0:pg%nz+1,jps:jpn,ipl:ipr), INTENT(IN) :: parent_array !< Parent-grid array CHARACTER(LEN=1), INTENT(IN) :: edge !< Edge symbol: 'l' or 'r' CHARACTER(LEN=1), INTENT(IN) :: var !< Variable symbol: 'u', 'v', 'w' or 's' ! !-- Local variables: INTEGER(iwp) :: icb !< Fixed child-grid index in the x-direction pointing to the node just behind the !< boundary-value node INTEGER(iwp) :: icbc !< Fixed child-grid index in the x-direction pointing to the boundary-value nodes INTEGER(iwp) :: icbgp !< Index running over the redundant boundary ghost points in the x-direction INTEGER(iwp) :: ierr !< MPI error code INTEGER(iwp) :: ipbeg !< Parent-grid index in the x-direction pointing to the starting point of workarr_lr !< in the parent-grid array INTEGER(iwp) :: ipw !< Reduced parent-grid index in the x-direction for workarr_lr pointing to !< the boundary ghost node INTEGER(iwp) :: ipwp !< Reduced parent-grid index in the x-direction for workarr_lr pointing to !< the first prognostic node INTEGER(iwp) :: jc !< Running child-grid index in the y-direction INTEGER(iwp) :: jp !< Running parent-grid index in the y-direction INTEGER(iwp) :: kc !< Running child-grid index in the z-direction INTEGER(iwp) :: kp !< Running parent-grid index in the z-direction REAL(wp) :: cb !< Interpolation coefficient for the boundary ghost node REAL(wp) :: cp !< Interpolation coefficient for the first prognostic node REAL(wp) :: c_interp_1 !< Value interpolated to the flux point in x direction from the parent-grid data REAL(wp) :: c_interp_2 !< Auxiliary value interpolated to the flux point in x direction from the parent-grid data ! !-- Check which edge is to be handled IF ( edge == 'l' ) THEN ! !-- For u, nxl is a ghost node, but not for the other variables IF ( var == 'u' ) THEN icbc = nxl icb = icbc - 1 ipw = 2 ipwp = ipw ! This is redundant when var == 'u' ipbeg = ipl ELSE icbc = nxl - 1 icb = icbc - 1 ipw = 1 ipwp = 2 ipbeg = ipl ENDIF ELSEIF ( edge == 'r' ) THEN IF ( var == 'u' ) THEN icbc = nxr + 1 icb = icbc + 1 ipw = 1 ipwp = ipw ! This is redundant when var == 'u' ipbeg = ipr - 2 ELSE icbc = nxr + 1 icb = icbc + 1 ipw = 1 ipwp = 0 ipbeg = ipr - 2 ENDIF ENDIF ! !-- Interpolation coefficients IF ( interpolation_scheme_lrsn == 1 ) THEN cb = 1.0_wp ! 1st-order upwind ELSE IF ( interpolation_scheme_lrsn == 2 ) THEN cb = 0.5_wp ! 2nd-order central ELSE cb = 0.5_wp ! 2nd-order central (default) ENDIF cp = 1.0_wp - cb ! !-- Substitute the necessary parent-grid data to the work array workarr_lr. workarr_lr = 0.0_wp IF ( pdims(2) > 1 ) THEN IF ( bc_dirichlet_s ) THEN workarr_lr(0:pg%nz+1,jpsw:jpnw-1,0:2) = parent_array(0:pg%nz+1,jpsw:jpnw-1,ipbeg:ipbeg+2) ELSE IF ( bc_dirichlet_n ) THEN workarr_lr(0:pg%nz+1,jpsw+1:jpnw,0:2) = parent_array(0:pg%nz+1,jpsw+1:jpnw,ipbeg:ipbeg+2) ELSE workarr_lr(0:pg%nz+1,jpsw+1:jpnw-1,0:2) & = parent_array(0:pg%nz+1,jpsw+1:jpnw-1,ipbeg:ipbeg+2) ENDIF ! !-- South-north exchange if more than one PE subdomain in the y-direction. !-- Note that in case of 3-D nesting the south (psouth == MPI_PROC_NULL) !-- and north (pnorth == MPI_PROC_NULL) boundaries are not exchanged !-- because the nest domain is not cyclic. !-- From south to north CALL MPI_SENDRECV( workarr_lr(0,jpsw+1,0), 1, workarr_lr_exchange_type, psouth, 0, & workarr_lr(0,jpnw,0), 1, workarr_lr_exchange_type, pnorth, 0, comm2d, & status, ierr ) ! !-- From north to south CALL MPI_SENDRECV( workarr_lr(0,jpnw-1,0), 1, workarr_lr_exchange_type, pnorth, 1, & workarr_lr(0,jpsw,0), 1, workarr_lr_exchange_type, psouth, 1, comm2d, & status, ierr ) ELSE workarr_lr(0:pg%nz+1,jpsw:jpnw,0:2) = parent_array(0:pg%nz+1,jpsw:jpnw,ipbeg:ipbeg+2) ENDIF IF ( var == 'u' ) THEN DO jp = jpsw, jpnw DO kp = 0, kct DO jc = jfl(jp), jfu(jp) DO kc = kfl(kp), kfu(kp) child_array(kc,jc,icbc) = workarr_lr(kp,jp,ipw) ENDDO ENDDO ENDDO ENDDO ELSE IF ( var == 'v' ) THEN DO jp = jpsw, jpnw-1 DO kp = 0, kct ! !-- First interpolate to the flux point c_interp_1 = cb * workarr_lr(kp,jp,ipw) + cp * workarr_lr(kp,jp,ipwp) c_interp_2 = cb * workarr_lr(kp,jp+1,ipw) + cp * workarr_lr(kp,jp+1,ipwp) ! !-- Use averages of the neighbouring matching grid-line values DO jc = jfl(jp), jfl(jp+1) child_array(kfl(kp):kfu(kp),jc,icbc) = 0.5_wp * ( c_interp_1 + c_interp_2 ) ENDDO ! !-- Then set the values along the matching grid-lines IF ( MOD( jfl(jp), jgsr ) == 0 ) THEN child_array(kfl(kp):kfu(kp),jfl(jp),icbc) = c_interp_1 ENDIF ENDDO ENDDO ! !-- Finally, set the values along the last matching grid-line IF ( MOD( jfl(jpnw), jgsr ) == 0 ) THEN DO kp = 0, kct c_interp_1 = cb * workarr_lr(kp,jpnw,ipw) + cp * workarr_lr(kp,jpnw,ipwp) child_array(kfl(kp):kfu(kp),jfl(jpnw),icbc) = c_interp_1 ENDDO ENDIF ! !-- A gap may still remain in some cases if the subdomain size is not !-- divisible by the grid-spacing ratio. In such a case, fill the !-- gap. Note however, this operation may produce some additional !-- momentum conservation error. IF ( jfl(jpnw) < nyn ) THEN DO kp = 0, kct DO jc = jfl(jpnw) + 1, nyn child_array(kfl(kp):kfu(kp),jc,icbc) = child_array(kfl(kp):kfu(kp),jfl(jpnw),icbc) ENDDO ENDDO ENDIF ELSE IF ( var == 'w' ) THEN DO jp = jpsw, jpnw DO kp = 0, kct + 1 ! It is important to go up to kct+1 ! !-- Interpolate to the flux point c_interp_1 = cb * workarr_lr(kp,jp,ipw) + cp * workarr_lr(kp,jp,ipwp) ! !-- First substitute only the matching-node values child_array(kfu(kp),jfl(jp):jfu(jp),icbc) = c_interp_1 ENDDO ENDDO DO jp = jpsw, jpnw DO kp = 1, kct + 1 ! It is important to go up to kct+1 ! !-- Then fill up the nodes in between with the averages DO kc = kfu(kp-1) + 1, kfu(kp) - 1 child_array(kc,jfl(jp):jfu(jp),icbc) = & 0.5_wp * ( child_array(kfu(kp-1),jfl(jp):jfu(jp),icbc) & + child_array(kfu(kp),jfl(jp):jfu(jp),icbc) ) ENDDO ENDDO ENDDO ELSE ! any scalar DO jp = jpsw, jpnw DO kp = 0, kct ! !-- Interpolate to the flux point c_interp_1 = cb * workarr_lr(kp,jp,ipw) + cp * workarr_lr(kp,jp,ipwp) DO jc = jfl(jp), jfu(jp) DO kc = kfl(kp), kfu(kp) child_array(kc,jc,icbc) = c_interp_1 ENDDO ENDDO ENDDO ENDDO ENDIF ! var ! !-- Fill up also the redundant 2nd and 3rd ghost-node layers IF ( edge == 'l' ) THEN DO icbgp = -nbgp, icb child_array(0:nzt+1,nysg:nyng,icbgp) = child_array(0:nzt+1,nysg:nyng,icbc) ENDDO ELSEIF ( edge == 'r' ) THEN DO icbgp = icb, nx+nbgp child_array(0:nzt+1,nysg:nyng,icbgp) = child_array(0:nzt+1,nysg:nyng,icbc) ENDDO ENDIF END SUBROUTINE pmci_interp_1sto_lr SUBROUTINE pmci_interp_1sto_sn( child_array, parent_array, kct, ifl, ifu, kfl, kfu, edge, var ) ! !-- Interpolation of ghost-node values used as the child-domain boundary !-- conditions. This subroutine handles the south and north boundaries. IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: kct !< The parent-grid index in z-direction just below the boundary value node INTEGER(iwp), DIMENSION(ipla:ipra), INTENT(IN) :: ifl !< Indicates start index of child cells belonging to certain !< parent cell - x direction INTEGER(iwp), DIMENSION(ipla:ipra), INTENT(IN) :: ifu !< Indicates end index of child cells belonging to certain !< parent cell - x direction INTEGER(iwp), DIMENSION(0:pg%nz+1), INTENT(IN) :: kfl !< Indicates start index of child cells belonging to certain !< parent cell - z direction INTEGER(iwp), DIMENSION(0:pg%nz+1), INTENT(IN) :: kfu !< Indicates end index of child cells belonging to certain !< parent cell - z direction REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: child_array !< Child-grid array REAL(wp), DIMENSION(0:pg%nz+1,jps:jpn,ipl:ipr), INTENT(IN) :: parent_array !< Parent-grid array CHARACTER(LEN=1), INTENT(IN) :: edge !< Edge symbol: 's' or 'n' CHARACTER(LEN=1), INTENT(IN) :: var !< Variable symbol: 'u', 'v', 'w' or 's' ! !-- Local variables: INTEGER(iwp) :: ic !< Running child-grid index in the x-direction INTEGER(iwp) :: ierr !< MPI error code INTEGER(iwp) :: ip !< Running parent-grid index in the x-direction INTEGER(iwp) :: jcb !< Fixed child-grid index in the y-direction pointing to the node just behind the !< boundary-value node INTEGER(iwp) :: jcbc !< Fixed child-grid index in the y-direction pointing to the boundary-value nodes INTEGER(iwp) :: jcbgp !< Index running over the redundant boundary ghost points in y-direction INTEGER(iwp) :: jpbeg !< Parent-grid index in the y-direction pointing to the starting point of workarr_sn !< in the parent-grid array INTEGER(iwp) :: jpw !< Reduced parent-grid index in the y-direction for workarr_sn pointing to !< the boundary ghost node INTEGER(iwp) :: jpwp !< Reduced parent-grid index in the y-direction for workarr_sn pointing to !< the first prognostic node INTEGER(iwp) :: kc !< Running child-grid index in the z-direction INTEGER(iwp) :: kp !< Running parent-grid index in the z-direction REAL(wp) :: cb !< Interpolation coefficient for the boundary ghost node REAL(wp) :: cp !< Interpolation coefficient for the first prognostic node REAL(wp) :: c_interp_1 !< Value interpolated to the flux point in x direction from the parent-grid data REAL(wp) :: c_interp_2 !< Auxiliary value interpolated to the flux point in x direction from the parent-grid data ! !-- Check which edge is to be handled: south or north IF ( edge == 's' ) THEN ! !-- For v, nys is a ghost node, but not for the other variables IF ( var == 'v' ) THEN jcbc = nys jcb = jcbc - 1 jpw = 2 jpwp = 2 ! This is redundant when var == 'v' jpbeg = jps ELSE jcbc = nys - 1 jcb = jcbc - 1 jpw = 1 jpwp = 2 jpbeg = jps ENDIF ELSEIF ( edge == 'n' ) THEN IF ( var == 'v' ) THEN jcbc = nyn + 1 jcb = jcbc + 1 jpw = 1 jpwp = 0 ! This is redundant when var == 'v' jpbeg = jpn - 2 ELSE jcbc = nyn + 1 jcb = jcbc + 1 jpw = 1 jpwp = 0 jpbeg = jpn - 2 ENDIF ENDIF ! !-- Interpolation coefficients IF ( interpolation_scheme_lrsn == 1 ) THEN cb = 1.0_wp ! 1st-order upwind ELSE IF ( interpolation_scheme_lrsn == 2 ) THEN cb = 0.5_wp ! 2nd-order central ELSE cb = 0.5_wp ! 2nd-order central (default) ENDIF cp = 1.0_wp - cb ! !-- Substitute the necessary parent-grid data to the work array workarr_sn. workarr_sn = 0.0_wp IF ( pdims(1) > 1 ) THEN IF ( bc_dirichlet_l ) THEN workarr_sn(0:pg%nz+1,0:2,iplw:iprw-1) = parent_array(0:pg%nz+1,jpbeg:jpbeg+2,iplw:iprw-1) ELSE IF ( bc_dirichlet_r ) THEN workarr_sn(0:pg%nz+1,0:2,iplw+1:iprw) = parent_array(0:pg%nz+1,jpbeg:jpbeg+2,iplw+1:iprw) ELSE workarr_sn(0:pg%nz+1,0:2,iplw+1:iprw-1) & = parent_array(0:pg%nz+1,jpbeg:jpbeg+2,iplw+1:iprw-1) ENDIF ! !-- Left-right exchange if more than one PE subdomain in the x-direction. !-- Note that in case of 3-D nesting the left (pleft == MPI_PROC_NULL) and !-- right (pright == MPI_PROC_NULL) boundaries are not exchanged because !-- the nest domain is not cyclic. !-- From left to right CALL MPI_SENDRECV( workarr_sn(0,0,iplw+1), 1, workarr_sn_exchange_type, pleft, 0, & workarr_sn(0,0,iprw), 1, workarr_sn_exchange_type, pright, 0, comm2d, & status, ierr ) ! !-- From right to left CALL MPI_SENDRECV( workarr_sn(0,0,iprw-1), 1, workarr_sn_exchange_type, pright, 1, & workarr_sn(0,0,iplw), 1, workarr_sn_exchange_type, pleft, 1, comm2d, & status, ierr ) ELSE workarr_sn(0:pg%nz+1,0:2,iplw:iprw) = parent_array(0:pg%nz+1,jpbeg:jpbeg+2,iplw:iprw) ENDIF IF ( var == 'v' ) THEN DO ip = iplw, iprw DO kp = 0, kct DO ic = ifl(ip), ifu(ip) DO kc = kfl(kp), kfu(kp) child_array(kc,jcbc,ic) = workarr_sn(kp,jpw,ip) ENDDO ENDDO ENDDO ENDDO ELSE IF ( var == 'u' ) THEN DO ip = iplw, iprw - 1 DO kp = 0, kct ! !-- First interpolate to the flux point c_interp_1 = cb * workarr_sn(kp,jpw,ip) + cp * workarr_sn(kp,jpwp,ip) c_interp_2 = cb * workarr_sn(kp,jpw,ip+1) + cp * workarr_sn(kp,jpwp,ip+1) ! !-- Use averages of the neighbouring matching grid-line values DO ic = ifl(ip), ifl(ip+1) child_array(kfl(kp):kfu(kp),jcbc,ic) = 0.5_wp * ( c_interp_1 + c_interp_2 ) ENDDO ! !-- Then set the values along the matching grid-lines IF ( MOD( ifl(ip), igsr ) == 0 ) THEN child_array(kfl(kp):kfu(kp),jcbc,ifl(ip)) = c_interp_1 ENDIF ENDDO ENDDO ! !-- Finally, set the values along the last matching grid-line IF ( MOD( ifl(iprw), igsr ) == 0 ) THEN DO kp = 0, kct c_interp_1 = cb * workarr_sn(kp,jpw,iprw) + cp * workarr_sn(kp,jpwp,iprw) child_array(kfl(kp):kfu(kp),jcbc,ifl(iprw)) = c_interp_1 ENDDO ENDIF ! !-- A gap may still remain in some cases if the subdomain size is not !-- divisible by the grid-spacing ratio. In such a case, fill the !-- gap. Note however, this operation may produce some additional !-- momentum conservation error. IF ( ifl(iprw) < nxr ) THEN DO kp = 0, kct DO ic = ifl(iprw) + 1, nxr child_array(kfl(kp):kfu(kp),jcbc,ic) = child_array(kfl(kp):kfu(kp),jcbc,ifl(iprw)) ENDDO ENDDO ENDIF ELSE IF ( var == 'w' ) THEN DO ip = iplw, iprw DO kp = 0, kct + 1 ! It is important to go up to kct+1 ! !-- Interpolate to the flux point c_interp_1 = cb * workarr_sn(kp,jpw,ip) + cp * workarr_sn(kp,jpwp,ip) ! !-- First substitute only the matching-node values child_array(kfu(kp),jcbc,ifl(ip):ifu(ip)) = c_interp_1 ENDDO ENDDO DO ip = iplw, iprw DO kp = 1, kct + 1 ! It is important to go up to kct + 1 ! !-- Then fill up the nodes in between with the averages DO kc = kfu(kp-1) + 1, kfu(kp) - 1 child_array(kc,jcbc,ifl(ip):ifu(ip)) = & 0.5_wp * ( child_array(kfu(kp-1),jcbc,ifl(ip):ifu(ip)) & + child_array(kfu(kp),jcbc,ifl(ip):ifu(ip)) ) ENDDO ENDDO ENDDO ELSE ! Any scalar DO ip = iplw, iprw DO kp = 0, kct ! !-- Interpolate to the flux point c_interp_1 = cb * workarr_sn(kp,jpw,ip) + cp * workarr_sn(kp,jpwp,ip) DO ic = ifl(ip), ifu(ip) DO kc = kfl(kp), kfu(kp) child_array(kc,jcbc,ic) = c_interp_1 ENDDO ENDDO ENDDO ENDDO ENDIF ! var ! !-- Fill up also the redundant 2nd and 3rd ghost-node layers IF ( edge == 's' ) THEN DO jcbgp = -nbgp, jcb child_array(0:nzt+1,jcbgp,nxlg:nxrg) = child_array(0:nzt+1,jcbc,nxlg:nxrg) ENDDO ELSEIF ( edge == 'n' ) THEN DO jcbgp = jcb, ny+nbgp child_array(0:nzt+1,jcbgp,nxlg:nxrg) = child_array(0:nzt+1,jcbc,nxlg:nxrg) ENDDO ENDIF END SUBROUTINE pmci_interp_1sto_sn SUBROUTINE pmci_interp_1sto_t( child_array, parent_array, kct, ifl, ifu, jfl, jfu, var ) ! !-- Interpolation of ghost-node values used as the child-domain boundary !-- conditions. This subroutine handles the top boundary. IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: kct !< The parent-grid index in z-direction just below the boundary value node INTEGER(iwp), DIMENSION(ipla:ipra), INTENT(IN) :: ifl !< Indicates start index of child cells belonging to certain !< parent cell - x direction INTEGER(iwp), DIMENSION(ipla:ipra), INTENT(IN) :: ifu !< Indicates end index of child cells belonging to certain !< parent cell - x direction INTEGER(iwp), DIMENSION(jpsa:jpna), INTENT(IN) :: jfl !< Indicates start index of child cells belonging to certain !< parent cell - y direction INTEGER(iwp), DIMENSION(jpsa:jpna), INTENT(IN) :: jfu !< Indicates end index of child cells belonging to certain !< parent cell - y direction REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: child_array !< Child-grid array REAL(wp), DIMENSION(0:pg%nz+1,jps:jpn,ipl:ipr), INTENT(IN) :: parent_array !< Parent-grid array CHARACTER(LEN=1), INTENT(IN) :: var !< Variable symbol: 'u', 'v', 'w' or 's' ! !-- Local variables: INTEGER(iwp) :: ic !< Running child-grid index in the x-direction INTEGER(iwp) :: ierr !< MPI error code INTEGER(iwp) :: iplc !< Lower parent-grid index limit in the x-direction for copying parent-grid !< array data to workarr_t INTEGER(iwp) :: iprc !< Upper parent-grid index limit in the x-direction for copying parent-grid !< array data to workarr_t INTEGER(iwp) :: jc !< Running child-grid index in the y-direction INTEGER(iwp) :: jpsc !< Lower parent-grid index limit in the y-direction for copying parent-grid !< array data to workarr_t INTEGER(iwp) :: jpnc !< Upper parent-grid-index limit in the y-direction for copying parent-grid !< array data to workarr_t INTEGER(iwp) :: kc !< Vertical child-grid index fixed to the boundary-value level INTEGER(iwp) :: ip !< Running parent-grid index in the x-direction INTEGER(iwp) :: jp !< Running parent-grid index in the y-direction INTEGER(iwp) :: kpw !< Reduced parent-grid index in the z-direction for workarr_t pointing to !< the boundary ghost node REAL(wp) :: c31 !< Interpolation coefficient for the 3rd-order WS scheme REAL(wp) :: c32 !< Interpolation coefficient for the 3rd-order WS scheme REAL(wp) :: c33 !< Interpolation coefficient for the 3rd-order WS scheme REAL(wp) :: c_interp_1 !< Value interpolated to the flux point in z direction from the parent-grid data REAL(wp) :: c_interp_2 !< Auxiliary value interpolated to the flux point in z direction from the parent-grid data IF ( var == 'w' ) THEN kc = nzt ELSE kc = nzt + 1 ENDIF kpw = 1 ! !-- Interpolation coefficients IF ( interpolation_scheme_t == 1 ) THEN c31 = 0.0_wp ! 1st-order upwind c32 = 1.0_wp c33 = 0.0_wp ELSE IF ( interpolation_scheme_t == 2 ) THEN c31 = 0.5_wp ! 2nd-order central c32 = 0.5_wp c33 = 0.0_wp ELSE c31 = 2.0_wp / 6.0_wp ! 3rd-order WS upwind biased (default) c32 = 5.0_wp / 6.0_wp c33 = -1.0_wp / 6.0_wp ENDIF ! !-- Substitute the necessary parent-grid data to the work array. !-- Note that the dimension of workarr_t is (0:2,jpsw:jpnw,iplw:iprw), !-- And the jc?w and ic?w-index bounds depend on the location of the PE- !-- subdomain relative to the side boundaries. iplc = iplw + 1 iprc = iprw - 1 jpsc = jpsw + 1 jpnc = jpnw - 1 IF ( bc_dirichlet_l ) THEN iplc = iplw ENDIF IF ( bc_dirichlet_r ) THEN iprc = iprw ENDIF IF ( bc_dirichlet_s ) THEN jpsc = jpsw ENDIF IF ( bc_dirichlet_n ) THEN jpnc = jpnw ENDIF workarr_t = 0.0_wp workarr_t(0:2,jpsc:jpnc,iplc:iprc) = parent_array(kct:kct+2,jpsc:jpnc,iplc:iprc) ! !-- Left-right exchange if more than one PE subdomain in the x-direction. !-- Note that in case of 3-D nesting the left and right boundaries are !-- not exchanged because the nest domain is not cyclic. IF ( pdims(1) > 1 ) THEN ! !-- From left to right CALL MPI_SENDRECV( workarr_t(0,jpsw,iplw+1), 1, workarr_t_exchange_type_y, pleft, 0, & workarr_t(0,jpsw,iprw), 1, workarr_t_exchange_type_y, pright, 0, & comm2d, status, ierr ) ! !-- From right to left CALL MPI_SENDRECV( workarr_t(0,jpsw,iprw-1), 1, workarr_t_exchange_type_y, pright, 1, & workarr_t(0,jpsw,iplw), 1, workarr_t_exchange_type_y, pleft, 1, & comm2d, status, ierr ) ENDIF ! !-- South-north exchange if more than one PE subdomain in the y-direction. !-- Note that in case of 3-D nesting the south and north boundaries are !-- not exchanged because the nest domain is not cyclic. IF ( pdims(2) > 1 ) THEN ! !-- From south to north CALL MPI_SENDRECV( workarr_t(0,jpsw+1,iplw), 1, workarr_t_exchange_type_x, psouth, 2, & workarr_t(0,jpnw,iplw), 1, workarr_t_exchange_type_x, pnorth, 2, & comm2d, status, ierr ) ! !-- From north to south CALL MPI_SENDRECV( workarr_t(0,jpnw-1,iplw), 1, workarr_t_exchange_type_x, pnorth, 3, & workarr_t(0,jpsw,iplw), 1, workarr_t_exchange_type_x, psouth, 3, & comm2d, status, ierr ) ENDIF IF ( var == 'w' ) THEN DO ip = iplw, iprw DO jp = jpsw, jpnw DO ic = ifl(ip), ifu(ip) DO jc = jfl(jp), jfu(jp) child_array(kc,jc,ic) = workarr_t(kpw,jp,ip) ENDDO ENDDO ENDDO ENDDO ELSE IF ( var == 'u' ) THEN DO ip = iplw, iprw - 1 DO jp = jpsw, jpnw ! !-- First interpolate to the flux point using the 3rd-order WS scheme c_interp_1 = c31 * workarr_t(kpw-1,jp,ip) + c32 * workarr_t(kpw,jp,ip) & + c33 * workarr_t(kpw+1,jp,ip) c_interp_2 = c31 * workarr_t(kpw-1,jp,ip+1) + c32 * workarr_t(kpw,jp,ip+1) & + c33 * workarr_t(kpw+1,jp,ip+1) ! !-- Use averages of the neighbouring matching grid-line values DO ic = ifl(ip), ifl(ip+1) child_array(kc,jfl(jp):jfu(jp),ic) = 0.5_wp * ( c_interp_1 + c_interp_2 ) ENDDO ! !-- Then set the values along the matching grid-lines IF ( MOD( ifl(ip), igsr ) == 0 ) THEN ! !-- First interpolate to the flux point using the 3rd-order WS scheme c_interp_1 = c31 * workarr_t(kpw-1,jp,ip) + c32 * workarr_t(kpw,jp,ip) & + c33 * workarr_t(kpw+1,jp,ip) child_array(kc,jfl(jp):jfu(jp),ifl(ip)) = c_interp_1 ENDIF ENDDO ENDDO ! !-- Finally, set the values along the last matching grid-line IF ( MOD( ifl(iprw), igsr ) == 0 ) THEN DO jp = jpsw, jpnw ! !-- First interpolate to the flux point using the 3rd-order WS scheme c_interp_1 = c31 * workarr_t(kpw-1,jp,iprw) + c32 * workarr_t(kpw,jp,iprw) & + c33 * workarr_t(kpw+1,jp,iprw) child_array(kc,jfl(jp):jfu(jp),ifl(iprw)) = c_interp_1 ENDDO ENDIF ! !-- A gap may still remain in some cases if the subdomain size is not !-- divisible by the grid-spacing ratio. In such a case, fill the !-- gap. Note however, this operation may produce some additional !-- momentum conservation error. IF ( ifl(iprw) < nxr ) THEN DO jp = jpsw, jpnw DO ic = ifl(iprw) + 1, nxr child_array(kc,jfl(jp):jfu(jp),ic) = child_array(kc,jfl(jp):jfu(jp),ifl(iprw)) ENDDO ENDDO ENDIF ELSE IF ( var == 'v' ) THEN DO ip = iplw, iprw DO jp = jpsw, jpnw-1 ! !-- First interpolate to the flux point using the 3rd-order WS scheme c_interp_1 = c31 * workarr_t(kpw-1,jp,ip) + c32 * workarr_t(kpw,jp,ip) & + c33 * workarr_t(kpw+1,jp,ip) c_interp_2 = c31 * workarr_t(kpw-1,jp+1,ip) + c32 * workarr_t(kpw,jp+1,ip) & + c33 * workarr_t(kpw+1,jp+1,ip) ! !-- Use averages of the neighbouring matching grid-line values DO jc = jfl(jp), jfl(jp+1) child_array(kc,jc,ifl(ip):ifu(ip)) = 0.5_wp * ( c_interp_1 + c_interp_2 ) ENDDO ! !-- Then set the values along the matching grid-lines IF ( MOD( jfl(jp), jgsr ) == 0 ) THEN c_interp_1 = c31 * workarr_t(kpw-1,jp,ip) + c32 * workarr_t(kpw,jp,ip) & + c33 * workarr_t(kpw+1,jp,ip) child_array(kc,jfl(jp),ifl(ip):ifu(ip)) = c_interp_1 ENDIF ENDDO ENDDO ! !-- Finally, set the values along the last matching grid-line IF ( MOD( jfl(jpnw), jgsr ) == 0 ) THEN DO ip = iplw, iprw ! !-- First interpolate to the flux point using the 3rd-order WS scheme c_interp_1 = c31 * workarr_t(kpw-1,jpnw,ip) + c32 * workarr_t(kpw,jpnw,ip) & + c33 * workarr_t(kpw+1,jpnw,ip) child_array(kc,jfl(jpnw),ifl(ip):ifu(ip)) = c_interp_1 ENDDO ENDIF ! !-- A gap may still remain in some cases if the subdomain size is not !-- divisible by the grid-spacing ratio. In such a case, fill the !-- gap. Note however, this operation may produce some additional !-- momentum conservation error. IF ( jfl(jpnw) < nyn ) THEN DO ip = iplw, iprw DO jc = jfl(jpnw)+1, nyn child_array(kc,jc,ifl(ip):ifu(ip)) = child_array(kc,jfl(jpnw),ifl(ip):ifu(ip)) ENDDO ENDDO ENDIF ELSE ! any scalar variable DO ip = iplw, iprw DO jp = jpsw, jpnw ! !-- First interpolate to the flux point using the 3rd-order WS scheme c_interp_1 = c31 * workarr_t(kpw-1,jp,ip) + c32 * workarr_t(kpw,jp,ip) & + c33 * workarr_t(kpw+1,jp,ip) DO ic = ifl(ip), ifu(ip) DO jc = jfl(jp), jfu(jp) child_array(kc,jc,ic) = c_interp_1 ENDDO ENDDO ENDDO ENDDO ENDIF ! var ! !-- Just fill up the redundant second ghost-node layer in case of var == w. IF ( var == 'w' ) THEN child_array(nzt+1,:,:) = child_array(nzt,:,:) ENDIF END SUBROUTINE pmci_interp_1sto_t SUBROUTINE pmci_anterp_tophat( child_array, parent_array, kct, ifl, ifu, jfl, jfu, kfl, kfu, & ijkfc, var ) ! !-- Anterpolation of internal-node values to be used as the parent-domain !-- values. This subroutine is based on the first-order numerical !-- integration of the child-grid values contained within the anterpolation !-- cell (Clark & Farley, Journal of the Atmospheric Sciences 41(3), 1984). IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: kct !< Top boundary index for anterpolation along z INTEGER(iwp), DIMENSION(0:pg%nz+1,jpsa:jpna,ipla:ipra), INTENT(IN) :: ijkfc !< number of child grid points contributing !< to a parent grid box INTEGER(iwp), DIMENSION(ipla:ipra), INTENT(IN) :: ifl !< Indicates start index of child cells belonging to certain !< parent cell - x direction INTEGER(iwp), DIMENSION(ipla:ipra), INTENT(IN) :: ifu !< Indicates end index of child cells belonging to certain !< parent cell - x direction INTEGER(iwp), DIMENSION(jpsa:jpna), INTENT(IN) :: jfl !< Indicates start index of child cells belonging to certain !< parent cell - y direction INTEGER(iwp), DIMENSION(jpsa:jpna), INTENT(IN) :: jfu !< Indicates end index of child cells belonging to certain !< parent cell - y direction INTEGER(iwp), DIMENSION(0:pg%nz+1), INTENT(IN) :: kfl !< Indicates start index of child cells belonging to certain !< parent cell - z direction INTEGER(iwp), DIMENSION(0:pg%nz+1), INTENT(IN) :: kfu !< Indicates end index of child cells belonging to certain !< parent cell - z direction REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(IN) :: child_array !< Child-grid array REAL(wp), DIMENSION(0:pg%nz+1,jps:jpn,ipl:ipr), INTENT(INOUT) :: parent_array !< Parent-grid array CHARACTER(LEN=*), INTENT(IN) :: var !< Variable symbol: 'u', 'v', 'w' or 's' ! !-- Local variables: INTEGER(iwp) :: ic !< Running index x-direction - child grid INTEGER(iwp) :: ipl_anterp !< Left boundary index for anterpolation along x INTEGER(iwp) :: ipr_anterp !< Right boundary index for anterpolation along x INTEGER(iwp) :: jc !< Running index y-direction - child grid INTEGER(iwp) :: jpn_anterp !< North boundary index for anterpolation along y INTEGER(iwp) :: jps_anterp !< South boundary index for anterpolation along y INTEGER(iwp) :: kc !< Running index z-direction - child grid INTEGER(iwp) :: kpb_anterp = 0 !< Bottom boundary index for anterpolation along z INTEGER(iwp) :: kpt_anterp !< Top boundary index for anterpolation along z INTEGER(iwp) :: ip !< Running index x-direction - parent grid INTEGER(iwp) :: jp !< Running index y-direction - parent grid INTEGER(iwp) :: kp !< Running index z-direction - parent grid INTEGER(iwp) :: var_flag !< bit number used to flag topography on respective grid REAL(wp) :: cellsum !< sum of respective child cells belonging to parent cell ! !-- Define the index bounds ipl_anterp, ipr_anterp, jps_anterp and jpn_anterp. !-- Note that kcb_anterp is simply zero and kct_anterp depends on kct which enters !-- here as a parameter and it is determined in pmci_define_index_mapping. !-- Note that the grid points directly used also for interpolation (from parent to !-- child) are always excluded from anterpolation, e.g. anterpolation is maximally !-- only from 0:kct-1, since kct is directly used for interpolation. Similar restriction is !-- applied to the lateral boundaries as well. An additional buffer is !-- also applied (default value for anterpolation_buffer_width = 2) in order !-- to avoid unphysical accumulation of kinetic energy. ipl_anterp = ipl ipr_anterp = ipr jps_anterp = jps jpn_anterp = jpn kpb_anterp = 0 kpt_anterp = kct - 1 - anterpolation_buffer_width IF ( nesting_mode /= 'vertical' ) THEN ! !-- Set the anterpolation buffers on the lateral boundaries ipl_anterp = MAX( ipl, iplg + 3 + anterpolation_buffer_width ) ipr_anterp = MIN( ipr, iprg - 3 - anterpolation_buffer_width ) jps_anterp = MAX( jps, jpsg + 3 + anterpolation_buffer_width ) jpn_anterp = MIN( jpn, jpng - 3 - anterpolation_buffer_width ) ENDIF ! !-- Set masking bit for topography flags IF ( var == 'u' ) THEN var_flag = 1 ELSEIF ( var == 'v' ) THEN var_flag = 2 ELSEIF ( var == 'w' ) THEN var_flag = 3 ELSE var_flag = 0 ENDIF ! !-- Note that ip, jp, and kp are parent-grid indices and ic,jc, and kc !-- are child-grid indices. DO ip = ipl_anterp, ipr_anterp DO jp = jps_anterp, jpn_anterp ! !-- For simplicity anterpolate within buildings and under elevated !-- terrain too DO kp = kpb_anterp, kpt_anterp cellsum = 0.0_wp DO ic = ifl(ip), ifu(ip) DO jc = jfl(jp), jfu(jp) DO kc = kfl(kp), kfu(kp) cellsum = cellsum + MERGE( child_array(kc,jc,ic), 0.0_wp, & BTEST( wall_flags_0(kc,jc,ic), var_flag ) ) ENDDO ENDDO ENDDO ! !-- In case all child grid points are inside topography, i.e. !-- ijkfc and cellsum are zero, also parent solution would have !-- zero values at that grid point, which may cause problems in !-- particular for the temperature. Therefore, in case cellsum is !-- zero, keep the parent solution at this point. IF ( ijkfc(kp,jp,ip) /= 0 ) THEN parent_array(kp,jp,ip) = cellsum / REAL( ijkfc(kp,jp,ip), KIND=wp ) ENDIF ENDDO ENDDO ENDDO END SUBROUTINE pmci_anterp_tophat #endif END SUBROUTINE pmci_child_datatrans ! Description: ! ------------ !> Set boundary conditions for the prognostic quantities after interpolation !> and anterpolation at upward- and downward facing surfaces. !> @todo: add Dirichlet boundary conditions for pot. temperature, humdidity and !> passive scalar. !------------------------------------------------------------------------------! SUBROUTINE pmci_boundary_conds #if defined( __parallel ) USE chem_modules, & ONLY: ibc_cs_b USE control_parameters, & ONLY: ibc_pt_b, ibc_q_b, ibc_s_b, ibc_uv_b USE salsa_mod, & ONLY: ibc_salsa_b USE surface_mod, & ONLY: bc_h IMPLICIT NONE INTEGER(iwp) :: ic !< Index along x-direction INTEGER(iwp) :: jc !< Index along y-direction INTEGER(iwp) :: kc !< Index along z-direction INTEGER(iwp) :: lb !< Running index for aerosol size bins INTEGER(iwp) :: lc !< Running index for aerosol mass bins INTEGER(iwp) :: lg !< Running index for salsa gases INTEGER(iwp) :: m !< Running index for surface type INTEGER(iwp) :: n !< Running index for number of chemical species IF ( debug_output_timestep ) CALL debug_message( 'pmci_boundary_conds', 'start' ) ! !-- Set Dirichlet boundary conditions for horizontal velocity components IF ( ibc_uv_b == 0 ) THEN ! !-- Upward-facing surfaces DO m = 1, bc_h(0)%ns ic = bc_h(0)%i(m) jc = bc_h(0)%j(m) kc = bc_h(0)%k(m) u(kc-1,jc,ic) = 0.0_wp v(kc-1,jc,ic) = 0.0_wp ENDDO ! !-- Downward-facing surfaces DO m = 1, bc_h(1)%ns ic = bc_h(1)%i(m) jc = bc_h(1)%j(m) kc = bc_h(1)%k(m) u(kc+1,jc,ic) = 0.0_wp v(kc+1,jc,ic) = 0.0_wp ENDDO ENDIF ! !-- Set Dirichlet boundary conditions for vertical velocity component !-- Upward-facing surfaces DO m = 1, bc_h(0)%ns ic = bc_h(0)%i(m) jc = bc_h(0)%j(m) kc = bc_h(0)%k(m) w(kc-1,jc,ic) = 0.0_wp ENDDO ! !-- Downward-facing surfaces DO m = 1, bc_h(1)%ns ic = bc_h(1)%i(m) jc = bc_h(1)%j(m) kc = bc_h(1)%k(m) w(kc+1,jc,ic) = 0.0_wp ENDDO ! !-- Set Neumann boundary conditions for potential temperature IF ( .NOT. neutral ) THEN IF ( ibc_pt_b == 1 ) THEN DO m = 1, bc_h(0)%ns ic = bc_h(0)%i(m) jc = bc_h(0)%j(m) kc = bc_h(0)%k(m) pt(kc-1,jc,ic) = pt(kc,jc,ic) ENDDO DO m = 1, bc_h(1)%ns ic = bc_h(1)%i(m) jc = bc_h(1)%j(m) kc = bc_h(1)%k(m) pt(kc+1,jc,ic) = pt(kc,jc,ic) ENDDO ENDIF ENDIF ! !-- Set Neumann boundary conditions for humidity and cloud-physical quantities IF ( humidity ) THEN IF ( ibc_q_b == 1 ) THEN DO m = 1, bc_h(0)%ns ic = bc_h(0)%i(m) jc = bc_h(0)%j(m) kc = bc_h(0)%k(m) q(kc-1,jc,ic) = q(kc,jc,ic) ENDDO DO m = 1, bc_h(1)%ns ic = bc_h(1)%i(m) jc = bc_h(1)%j(m) kc = bc_h(1)%k(m) q(kc+1,jc,ic) = q(kc,jc,ic) ENDDO ENDIF IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN DO m = 1, bc_h(0)%ns ic = bc_h(0)%i(m) jc = bc_h(0)%j(m) kc = bc_h(0)%k(m) nc(kc-1,jc,ic) = 0.0_wp qc(kc-1,jc,ic) = 0.0_wp ENDDO DO m = 1, bc_h(1)%ns ic = bc_h(1)%i(m) jc = bc_h(1)%j(m) kc = bc_h(1)%k(m) nc(kc+1,jc,ic) = 0.0_wp qc(kc+1,jc,ic) = 0.0_wp ENDDO ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN DO m = 1, bc_h(0)%ns ic = bc_h(0)%i(m) jc = bc_h(0)%j(m) kc = bc_h(0)%k(m) nr(kc-1,jc,ic) = 0.0_wp qr(kc-1,jc,ic) = 0.0_wp ENDDO DO m = 1, bc_h(1)%ns ic = bc_h(1)%i(m) jc = bc_h(1)%j(m) kc = bc_h(1)%k(m) nr(kc+1,jc,ic) = 0.0_wp qr(kc+1,jc,ic) = 0.0_wp ENDDO ENDIF ENDIF ! !-- Set Neumann boundary conditions for passive scalar IF ( passive_scalar ) THEN IF ( ibc_s_b == 1 ) THEN DO m = 1, bc_h(0)%ns ic = bc_h(0)%i(m) jc = bc_h(0)%j(m) kc = bc_h(0)%k(m) s(kc-1,jc,ic) = s(kc,jc,ic) ENDDO DO m = 1, bc_h(1)%ns ic = bc_h(1)%i(m) jc = bc_h(1)%j(m) kc = bc_h(1)%k(m) s(kc+1,jc,ic) = s(kc,jc,ic) ENDDO ENDIF ENDIF ! !-- Set Neumann boundary conditions for chemical species IF ( air_chemistry ) THEN IF ( ibc_cs_b == 1 ) THEN DO n = 1, nspec DO m = 1, bc_h(0)%ns ic = bc_h(0)%i(m) jc = bc_h(0)%j(m) kc = bc_h(0)%k(m) chem_species(n)%conc(kc-1,jc,ic) = chem_species(n)%conc(kc,jc,ic) ENDDO DO m = 1, bc_h(1)%ns ic = bc_h(1)%i(m) jc = bc_h(1)%j(m) kc = bc_h(1)%k(m) chem_species(n)%conc(kc+1,jc,ic) = chem_species(n)%conc(kc,jc,ic) ENDDO ENDDO ENDIF ENDIF ! !-- Set Neumann boundary conditions for aerosols and salsa gases IF ( salsa .AND. nest_salsa ) THEN IF ( ibc_salsa_b == 1 ) THEN DO m = 1, bc_h(0)%ns ic = bc_h(0)%i(m) jc = bc_h(0)%j(m) kc = bc_h(0)%k(m) DO lb = 1, nbins_aerosol aerosol_number(lb)%conc(kc-1,jc,ic) = aerosol_number(lb)%conc(kc,jc,ic) ENDDO DO lc = 1, nbins_aerosol * ncomponents_mass aerosol_mass(lc)%conc(kc-1,jc,ic) = aerosol_mass(lc)%conc(kc,jc,ic) ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO lg = 1, ngases_salsa salsa_gas(lg)%conc(kc-1,jc,ic) = salsa_gas(lg)%conc(kc,jc,ic) ENDDO ENDIF ENDDO DO m = 1, bc_h(1)%ns ic = bc_h(1)%i(m) jc = bc_h(1)%j(m) kc = bc_h(1)%k(m) DO lb = 1, nbins_aerosol aerosol_number(lb)%conc(kc+1,jc,ic) = aerosol_number(lb)%conc(kc,jc,ic) ENDDO DO lc = 1, nbins_aerosol * ncomponents_mass aerosol_mass(lc)%conc(kc+1,jc,ic) = aerosol_mass(lc)%conc(kc,jc,ic) ENDDO IF ( .NOT. salsa_gases_from_chem ) THEN DO lg = 1, ngases_salsa salsa_gas(lg)%conc(kc+1,jc,ic) = salsa_gas(lg)%conc(kc,jc,ic) ENDDO ENDIF ENDDO ENDIF ENDIF IF ( debug_output_timestep ) CALL debug_message( 'pmci_boundary_conds', 'end' ) #endif END SUBROUTINE pmci_boundary_conds SUBROUTINE pmci_ensure_nest_mass_conservation ! !-- Adjust the volume-flow rate through the nested boundaries so that the net volume !-- flow through all boundaries of the current nest domain becomes zero. IMPLICIT NONE INTEGER(iwp) :: i !< Running index in the x-direction INTEGER(iwp) :: ierr !< MPI error code INTEGER(iwp) :: j !< Running index in the y-direction INTEGER(iwp) :: k !< Running index in the z-direction INTEGER(iwp) :: n !< Running index over the boundary faces: l, r, s, n and t REAL(wp) :: dxdy !< Surface area of grid cell top face REAL(wp) :: innor !< Inner normal vector of the grid cell face REAL(wp) :: sub_sum !< Intermediate sum for reducing the loss of signifigant digits in 2-D summations REAL(wp) :: u_corr_left !< Correction added to the left boundary value of u REAL(wp) :: u_corr_right !< Correction added to the right boundary value of u REAL(wp) :: v_corr_south !< Correction added to the south boundary value of v REAL(wp) :: v_corr_north !< Correction added to the north boundary value of v REAL(wp) :: volume_flux_integral !< Surface integral of volume flux over the domain boundaries REAL(wp) :: volume_flux_local !< Surface integral of volume flux over the subdomain boundary face REAL(wp) :: w_corr_top !< Correction added to the top boundary value of w REAL(wp), DIMENSION(5) :: volume_flux !< Surface integral of volume flux over each boundary face of the domain ! !-- Sum up the volume flow through the left boundary volume_flux(1) = 0.0_wp volume_flux_local = 0.0_wp IF ( bc_dirichlet_l ) THEN i = 0 innor = dy DO j = nys, nyn sub_sum = 0.0_wp DO k = nzb+1, nzt sub_sum = sub_sum + innor * u(k,j,i) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 1 ) ) ENDDO volume_flux_local = volume_flux_local + sub_sum ENDDO ENDIF #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flux_local, volume_flux(1), 1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flux(1) = volume_flux_local #endif ! !-- Sum up the volume flow through the right boundary volume_flux(2) = 0.0_wp volume_flux_local = 0.0_wp IF ( bc_dirichlet_r ) THEN i = nx + 1 innor = -dy DO j = nys, nyn sub_sum = 0.0_wp DO k = nzb+1, nzt sub_sum = sub_sum + innor * u(k,j,i) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 1 ) ) ENDDO volume_flux_local = volume_flux_local + sub_sum ENDDO ENDIF #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flux_local, volume_flux(2), 1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flux(2) = volume_flux_local #endif ! !-- Sum up the volume flow through the south boundary volume_flux(3) = 0.0_wp volume_flux_local = 0.0_wp IF ( bc_dirichlet_s ) THEN j = 0 innor = dx DO i = nxl, nxr sub_sum = 0.0_wp DO k = nzb+1, nzt sub_sum = sub_sum + innor * v(k,j,i) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 2 ) ) ENDDO volume_flux_local = volume_flux_local + sub_sum ENDDO ENDIF #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flux_local, volume_flux(3), 1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flux(3) = volume_flux_local #endif ! !-- Sum up the volume flow through the north boundary volume_flux(4) = 0.0_wp volume_flux_local = 0.0_wp IF ( bc_dirichlet_n ) THEN j = ny + 1 innor = -dx DO i = nxl, nxr sub_sum = 0.0_wp DO k = nzb+1, nzt sub_sum = sub_sum + innor * v(k,j,i) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 2 ) ) ENDDO volume_flux_local = volume_flux_local + sub_sum ENDDO ENDIF #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flux_local, volume_flux(4), 1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flux(4) = volume_flux_local #endif ! !-- Sum up the volume flow through the top boundary volume_flux(5) = 0.0_wp volume_flux_local = 0.0_wp dxdy = dx * dy k = nzt DO i = nxl, nxr sub_sum = 0.0_wp DO j = nys, nyn sub_sum = sub_sum - w(k,j,i) * dxdy ! Minus, because the inner unit normal vector is (0,0,-1) ENDDO volume_flux_local = volume_flux_local + sub_sum ENDDO #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flux_local, volume_flux(5), 1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flux(5) = volume_flux_local #endif volume_flux_integral = 0.0_wp DO n = 1, 5 volume_flux_integral = volume_flux_integral + volume_flux(n) ENDDO ! !-- Correction equally distributed to all nest boundaries, area_total must be used as area. !-- Note that face_area(6) is the total area (=sum from 1 to 5) w_corr_top = volume_flux_integral / face_area(6) u_corr_left =-w_corr_top u_corr_right = w_corr_top v_corr_south =-w_corr_top v_corr_north = w_corr_top !! !!-- Just print out the net volume fluxes through each boundary. Only the root process prints. ! if ( myid == 0 ) then ! write( 9, "(5(e14.7,2x),4x,e14.7,4x,e12.5,4x,5(e14.7,2x))" ) & ! volume_flux(1), volume_flux(2), volume_flux(3), volume_flux(4), volume_flux(5), & ! volume_flux_integral, c_correc, & ! u_corr_left, u_corr_right, v_corr_south, v_corr_north, w_corr_top ! flush( 9 ) ! endif ! !-- Correct the top-boundary value of w DO i = nxl, nxr DO j = nys, nyn DO k = nzt, nzt + 1 w(k,j,i) = w(k,j,i) + w_corr_top ENDDO ENDDO ENDDO ! !-- Correct the left-boundary value of u IF ( bc_dirichlet_l ) THEN DO i = nxlg, nxl DO j = nys, nyn DO k = nzb + 1, nzt u(k,j,i) = u(k,j,i) + u_corr_left & * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 1 ) ) ENDDO ENDDO ENDDO ENDIF ! !-- Correct the right-boundary value of u IF ( bc_dirichlet_r ) THEN DO i = nxr+1, nxrg DO j = nys, nyn DO k = nzb + 1, nzt u(k,j,i) = u(k,j,i) + u_corr_right & * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 1 ) ) ENDDO ENDDO ENDDO ENDIF ! !-- Correct the south-boundary value of v IF ( bc_dirichlet_s ) THEN DO i = nxl, nxr DO j = nysg, nys DO k = nzb + 1, nzt v(k,j,i) = v(k,j,i) + v_corr_south & * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 2 ) ) ENDDO ENDDO ENDDO ENDIF ! !-- Correct the north-boundary value of v IF ( bc_dirichlet_n ) THEN DO i = nxl, nxr DO j = nyn+1, nyng DO k = nzb + 1, nzt v(k,j,i) = v(k,j,i) + v_corr_north & * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 2 ) ) ENDDO ENDDO ENDDO ENDIF END SUBROUTINE pmci_ensure_nest_mass_conservation SUBROUTINE pmci_ensure_nest_mass_conservation_vertical ! !-- Adjust the volume-flow rate through the top boundary so that the net volume !-- flow through all boundaries of the current nest domain becomes zero. IMPLICIT NONE INTEGER(iwp) :: i !< Running index in the x-direction INTEGER(iwp) :: ierr !< MPI error code INTEGER(iwp) :: j !< Running index in the y-direction INTEGER(iwp) :: k !< Running index in the z-direction REAL(wp) :: dxdy !< Surface area of grid cell top face REAL(wp) :: sub_sum !< Intermediate sum for reducing the loss of signifigant digits in 2-D summations REAL(wp) :: top_area !< Top boundary face area REAL(wp) :: volume_flux !< Surface integral of volume flux over the top boundary face REAL(wp) :: volume_flux_local !< Surface integral of volume flux over the subdomain boundary face REAL(wp) :: w_corr_top !< Correction added to the top boundary value of w top_area = face_area(5) ! !-- Sum up the volume flow through the top boundary volume_flux = 0.0_wp volume_flux_local = 0.0_wp dxdy = dx * dy k = nzt DO i = nxl, nxr sub_sum = 0.0_wp DO j = nys, nyn sub_sum = sub_sum - w(k,j,i) * dxdy ! Minus, because the inner unit normal vector is (0,0,-1) ENDDO volume_flux_local = volume_flux_local + sub_sum ENDDO #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flux_local, volume_flux, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flux = volume_flux_local #endif w_corr_top = volume_flux / top_area !! !!-- Just print out the net volume fluxes through each boundary. Only the root process prints. ! if ( myid == 0 ) then ! write( 9, "(5(e14.7,2x),4x,e14.7,4x,e12.5,4x,5(e14.7,2x))" ) & ! volume_flux(1), volume_flux(2), volume_flux(3), volume_flux(4), volume_flux(5), & ! volume_flux_integral, c_correc, & ! u_corr_left, u_corr_right, v_corr_south, v_corr_north, w_corr_top ! flush( 9 ) ! endif ! !-- Correct the top-boundary value of w DO i = nxl, nxr DO j = nys, nyn DO k = nzt, nzt + 1 w(k,j,i) = w(k,j,i) + w_corr_top ENDDO ENDDO ENDDO END SUBROUTINE pmci_ensure_nest_mass_conservation_vertical END MODULE pmc_interface