MODULE pmc_interface !--------------------------------------------------------------------------------! ! This file is part of PALM. ! ! PALM is free software: you can redistribute it and/or modify it under the terms ! of the GNU General Public License as published by the Free Software Foundation, ! either version 3 of the License, or (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2014 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: pmc_interface.f90 1784 2016-03-06 19:14:40Z raasch $ ! ! 1783 2016-03-06 18:36:17Z raasch ! calculation of nest top area simplified, ! interpolation and anterpolation moved to seperate wrapper subroutines ! ! 1781 2016-03-03 15:12:23Z raasch ! _p arrays are set zero within buildings too, t.._m arrays and respective ! settings within buildings completely removed ! ! 1779 2016-03-03 08:01:28Z raasch ! only the total number of PEs is given for the domains, npe_x and npe_y ! replaced by npe_total, two unused elements removed from array ! define_coarse_grid_real, ! array management changed from linked list to sequential loop ! ! 1766 2016-02-29 08:37:15Z raasch ! modifications to allow for using PALM's pointer version, ! +new routine pmci_set_swaplevel ! ! 1764 2016-02-28 12:45:19Z raasch ! +cpl_parent_id, ! cpp-statements for nesting replaced by __parallel statements, ! errors output with message-subroutine, ! index bugfixes in pmci_interp_tril_all, ! some adjustments to PALM style ! ! 1762 2016-02-25 12:31:13Z hellstea ! Initial revision by A. Hellsten ! ! Description: ! ------------ ! Domain nesting interface routines. The low-level inter-domain communication ! is conducted by the PMC-library routines. !------------------------------------------------------------------------------! #if defined( __nopointer ) USE arrays_3d, & ONLY: dzu, dzw, e, e_p, pt, pt_p, q, q_p, u, u_p, v, v_p, w, w_p, zu, & zw, z0 #else USE arrays_3d, & ONLY: dzu, dzw, e, e_p, e_1, e_2, pt, pt_p, pt_1, pt_2, q, q_p, q_1, & q_2, u, u_p, u_1, u_2, v, v_p, v_1, v_2, w, w_p, w_1, w_2, zu, & zw, z0 #endif USE control_parameters, & ONLY: coupling_char, dt_3d, dz, humidity, message_string, & nest_bound_l, nest_bound_r, nest_bound_s, nest_bound_n, & nest_domain, passive_scalar, simulated_time, topography, & volume_flow USE cpulog, & ONLY: cpu_log, log_point_s USE grid_variables, & ONLY: dx, dy USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxlu, nxr, nxrg, ny, nyn, nyng, nys, nysg, & nysv, nz, nzb, nzb_s_inner, nzb_u_inner, nzb_u_outer, & nzb_v_inner, nzb_v_outer, nzb_w_inner, nzb_w_outer, nzt USE kinds #if defined( __parallel ) #if defined( __lc ) USE MPI #else INCLUDE "mpif.h" #endif USE pegrid, & ONLY: collective_wait, comm1dx, comm1dy, comm2d, myid, myidx, myidy, & numprocs USE pmc_client, & ONLY: pmc_clientinit, pmc_c_clear_next_array_list, & pmc_c_getnextarray, pmc_c_get_2d_index_list, pmc_c_getbuffer, & pmc_c_putbuffer, pmc_c_setind_and_allocmem, & pmc_c_set_dataarray, pmc_set_dataarray_name USE pmc_general, & ONLY: da_namelen, pmc_max_modell, pmc_status_ok USE pmc_handle_communicator, & ONLY: pmc_get_local_model_info, pmc_init_model, pmc_is_rootmodel, & pmc_no_namelist_found, pmc_server_for_client USE pmc_mpi_wrapper, & ONLY: pmc_bcast, pmc_recv_from_client, pmc_recv_from_server, & pmc_send_to_client, pmc_send_to_server USE pmc_server, & ONLY: pmc_serverinit, pmc_s_clear_next_array_list, pmc_s_fillbuffer, & pmc_s_getdata_from_buffer, pmc_s_getnextarray, & pmc_s_setind_and_allocmem, pmc_s_set_active_data_array, & pmc_s_set_dataarray, pmc_s_set_2d_index_list #endif IMPLICIT NONE !-- TO_DO: a lot of lines (including comments) in this file exceed the 80 char !-- limit. Try to reduce as much as possible !-- TO_DO: are all of these variables following now really PUBLIC? !-- Klaus and I guess they are not PRIVATE !: Note that the default publicity is here set to private. ! !-- Constants INTEGER(iwp), PARAMETER, PUBLIC :: client_to_server = 2 !: INTEGER(iwp), PARAMETER, PUBLIC :: server_to_client = 1 !: ! !-- Coupler setup INTEGER(iwp), PUBLIC, SAVE :: cpl_id = 1 !: CHARACTER(LEN=32), PUBLIC, SAVE :: cpl_name !: INTEGER(iwp), PUBLIC, SAVE :: cpl_npe_total !: INTEGER(iwp), PUBLIC, SAVE :: cpl_parent_id !: ! !-- Control parameters, will be made input parameters later CHARACTER(LEN=7), PUBLIC, SAVE :: nesting_mode = 'two-way' !: steering parameter for one- or two-way nesting LOGICAL, PUBLIC, SAVE :: nested_run = .FALSE. !: general switch if nested run or not REAL(wp), PUBLIC, SAVE :: anterp_relax_length_l = -1.0_wp !: REAL(wp), PUBLIC, SAVE :: anterp_relax_length_r = -1.0_wp !: REAL(wp), PUBLIC, SAVE :: anterp_relax_length_s = -1.0_wp !: REAL(wp), PUBLIC, SAVE :: anterp_relax_length_n = -1.0_wp !: REAL(wp), PUBLIC, SAVE :: anterp_relax_length_t = -1.0_wp !: ! !-- Geometry REAL(wp), PUBLIC, SAVE :: area_t !: REAL(wp), SAVE, DIMENSION(:), ALLOCATABLE :: coord_x !: REAL(wp), SAVE, DIMENSION(:), ALLOCATABLE :: coord_y !: REAL(wp), PUBLIC, SAVE :: lower_left_coord_x !: REAL(wp), PUBLIC, SAVE :: lower_left_coord_y !: ! !-- Client coarse data arrays REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET, PUBLIC :: ec !: REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET, PUBLIC :: ptc !: REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET, PUBLIC :: uc !: REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET, PUBLIC :: vc !: REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET, PUBLIC :: wc !: REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET, PUBLIC :: qc !: INTEGER(iwp), DIMENSION(5) :: coarse_bound !: REAL(wp), PUBLIC, SAVE :: xexl !: REAL(wp), PUBLIC, SAVE :: xexr !: REAL(wp), PUBLIC, SAVE :: yexs !: REAL(wp), PUBLIC, SAVE :: yexn !: REAL(wp), PUBLIC, SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_l !: REAL(wp), PUBLIC, SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_n !: REAL(wp), PUBLIC, SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_r !: REAL(wp), PUBLIC, SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_s !: REAL(wp), PUBLIC, SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_t !: ! !-- Client interpolation coefficients and client-array indices to be precomputed and stored. INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: ico !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: icu !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: jco !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: jcv !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: kco !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: kcw !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r1xo !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r2xo !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r1xu !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r2xu !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r1yo !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r2yo !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r1yv !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r2yv !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r1zo !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r2zo !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r1zw !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r2zw !: ! !-- Client index arrays and log-ratio arrays for the log-law near-wall corrections. !-- These are not truly 3-D arrays but multiply 2-D arrays. INTEGER(iwp), PUBLIC, SAVE :: ncorr !: ncorr is the 4th dimension of the log_ratio-arrays INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_u_l !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_u_n !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_u_r !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_u_s !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_v_l !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_v_n !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_v_r !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_v_s !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_w_l !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_w_n !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_w_r !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_w_s !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_u_l !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_u_n !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_u_r !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_u_s !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_v_l !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_v_n !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_v_r !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_v_s !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_w_l !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_w_n !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_w_r !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_w_s !: ! !-- Upper bounds for k in anterpolation. INTEGER(iwp), PUBLIC, SAVE :: kceu !: INTEGER(iwp), PUBLIC, SAVE :: kcew !: ! !-- Upper bound for k in log-law correction in interpolation. INTEGER(iwp), PUBLIC, SAVE :: nzt_topo_nestbc_l !: INTEGER(iwp), PUBLIC, SAVE :: nzt_topo_nestbc_n !: INTEGER(iwp), PUBLIC, SAVE :: nzt_topo_nestbc_r !: INTEGER(iwp), PUBLIC, SAVE :: nzt_topo_nestbc_s !: ! !-- Number of ghost nodes in coarse-grid arrays for i and j in anterpolation. INTEGER(iwp), PUBLIC, SAVE :: nhll !: INTEGER(iwp), PUBLIC, SAVE :: nhlr !: INTEGER(iwp), PUBLIC, SAVE :: nhls !: INTEGER(iwp), PUBLIC, SAVE :: nhln !: ! !-- Spatial under-relaxation coefficients for anterpolation. REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: frax !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: fray !: REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: fraz !: ! !-- Client-array indices to be precomputed and stored for anterpolation. INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: iflu !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: ifuu !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: iflo !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: ifuo !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: jflv !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: jfuv !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: jflo !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: jfuo !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: kflw !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: kfuw !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: kflo !: INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: kfuo !: ! !-- Module private variables. INTEGER(iwp), DIMENSION(3) :: define_coarse_grid_int !: REAL(wp), DIMENSION(7) :: define_coarse_grid_real !: TYPE coarsegrid_def INTEGER(iwp) :: nx INTEGER(iwp) :: ny INTEGER(iwp) :: nz REAL(wp) :: dx REAL(wp) :: dy REAL(wp) :: dz REAL(wp) :: lower_left_coord_x REAL(wp) :: lower_left_coord_y REAL(wp) :: xend REAL(wp) :: yend REAL(wp), DIMENSION(:), ALLOCATABLE :: coord_x REAL(wp), DIMENSION(:), ALLOCATABLE :: coord_y REAL(wp), DIMENSION(:), ALLOCATABLE :: dzu REAL(wp), DIMENSION(:), ALLOCATABLE :: dzw REAL(wp), DIMENSION(:), ALLOCATABLE :: zu REAL(wp), DIMENSION(:), ALLOCATABLE :: zw END TYPE coarsegrid_def TYPE(coarsegrid_def), SAVE :: cg !: INTERFACE pmci_client_datatrans MODULE PROCEDURE pmci_client_datatrans END INTERFACE INTERFACE pmci_client_initialize MODULE PROCEDURE pmci_client_initialize END INTERFACE INTERFACE pmci_client_synchronize MODULE PROCEDURE pmci_client_synchronize END INTERFACE INTERFACE pmci_ensure_nest_mass_conservation MODULE PROCEDURE pmci_ensure_nest_mass_conservation END INTERFACE INTERFACE pmci_init MODULE PROCEDURE pmci_init END INTERFACE INTERFACE pmci_modelconfiguration MODULE PROCEDURE pmci_modelconfiguration END INTERFACE INTERFACE pmci_server_initialize MODULE PROCEDURE pmci_server_initialize END INTERFACE INTERFACE pmci_server_synchronize MODULE PROCEDURE pmci_server_synchronize END INTERFACE INTERFACE pmci_set_swaplevel MODULE PROCEDURE pmci_set_swaplevel END INTERFACE pmci_set_swaplevel INTERFACE pmci_update_new MODULE PROCEDURE pmci_update_new END INTERFACE PUBLIC pmci_client_datatrans PUBLIC pmci_client_initialize PUBLIC pmci_client_synchronize PUBLIC pmci_ensure_nest_mass_conservation PUBLIC pmci_init PUBLIC pmci_modelconfiguration PUBLIC pmci_server_datatrans PUBLIC pmci_server_initialize PUBLIC pmci_server_synchronize PUBLIC pmci_set_swaplevel PUBLIC pmci_update_new CONTAINS SUBROUTINE pmci_init( world_comm ) IMPLICIT NONE INTEGER, INTENT(OUT) :: world_comm !: #if defined( __parallel ) INTEGER(iwp) :: ierr !: INTEGER(iwp) :: istat !: INTEGER(iwp) :: pmc_status !: CALL pmc_init_model( world_comm, nesting_mode, pmc_status ) IF ( pmc_status == pmc_no_namelist_found ) THEN ! !-- This is not a nested run world_comm = MPI_COMM_WORLD cpl_id = 1 cpl_name = "" RETURN ENDIF ! !-- Set the general steering switch which tells PALM that its a nested run nested_run = .TRUE. ! !-- Get some variables required by the pmc-interface (and in some cases in the !-- PALM code out of the pmci) out of the pmc-core CALL pmc_get_local_model_info( my_cpl_id = cpl_id, & my_cpl_parent_id = cpl_parent_id, & cpl_name = cpl_name, & npe_total = cpl_npe_total, & lower_left_x = lower_left_coord_x, & lower_left_y = lower_left_coord_y ) ! !-- Set the steering switch which tells the models that they are nested (of !-- course the root domain (cpl_id = 1 ) is not nested) IF ( cpl_id >= 2 ) THEN nest_domain = .TRUE. WRITE( coupling_char, '(A1,I2.2)') '_', cpl_id ENDIF ! !-- Message that communicators for nesting are initialized. !-- Attention: myid has been set at the end of pmc_init_model in order to !-- guarantee that only PE0 of the root domain does the output. CALL location_message( 'finished', .TRUE. ) ! !-- Reset myid to its default value myid = 0 #else ! !-- Nesting cannot be used in serial mode. cpl_id is set to root domain (1) !-- because no location messages would be generated otherwise. !-- world_comm is given a dummy value to avoid compiler warnings (INTENT(OUT) !-- should get an explicit value) cpl_id = 1 nested_run = .FALSE. world_comm = 1 #endif END SUBROUTINE pmci_init SUBROUTINE pmci_modelconfiguration IMPLICIT NONE CALL location_message( 'setup the nested model configuration', .FALSE. ) CALL pmci_setup_coordinates !: Compute absolute coordinates valid for all models CALL pmci_setup_client !: Initialize PMC Client (Must be called before pmc_setup_server) CALL pmci_setup_server !: Initialize PMC Server CALL location_message( 'finished', .TRUE. ) END SUBROUTINE pmci_modelconfiguration SUBROUTINE pmci_setup_server #if defined( __parallel ) IMPLICIT NONE INTEGER(iwp) :: client_id !: INTEGER(iwp) :: ierr !: INTEGER(iwp) :: i !: INTEGER(iwp) :: j !: INTEGER(iwp) :: k !: INTEGER(iwp) :: m !: INTEGER(iwp) :: nomatch !: INTEGER(iwp) :: nx_cl !: INTEGER(iwp) :: ny_cl !: INTEGER(iwp) :: nz_cl !: INTEGER(iwp), DIMENSION(5) :: val !: REAL(wp), DIMENSION(1) :: fval !: REAL(wp) :: dx_cl !: REAL(wp) :: dy_cl !: REAL(wp) :: xez !: REAL(wp) :: yez !: CHARACTER(len=32) :: mychannel CHARACTER(len=32) :: myname REAL(wp), DIMENSION(:), ALLOCATABLE :: cl_coord_x !: REAL(wp), DIMENSION(:), ALLOCATABLE :: cl_coord_y !: ! ! Initialize the PMC server CALL pmc_serverinit ! !-- Get coordinates from all clients DO m = 1, SIZE( pmc_server_for_client ) - 1 client_id = pmc_server_for_client(m) IF ( myid == 0 ) THEN CALL pmc_recv_from_client( client_id, val, size(val), 0, 123, ierr ) CALL pmc_recv_from_client( client_id, fval, size(fval), 0, 124, ierr ) nx_cl = val(1) ny_cl = val(2) dx_cl = val(4) dy_cl = val(5) nz_cl = nz ! !-- Find the highest client level in the coarse grid for the reduced z !-- transfer DO k = 1, nz IF ( zw(k) > fval(1) ) THEN nz_cl = k EXIT ENDIF ENDDO ! !-- Get absolute coordinates from the client ALLOCATE( cl_coord_x(-nbgp:nx_cl+nbgp) ) ALLOCATE( cl_coord_y(-nbgp:ny_cl+nbgp) ) CALL pmc_recv_from_client( client_id, cl_coord_x, SIZE( cl_coord_x ),& 0, 11, ierr ) CALL pmc_recv_from_client( client_id, cl_coord_y, SIZE( cl_coord_y ),& 0, 12, ierr ) WRITE ( 0, * ) 'receive from pmc Client ', client_id, nx_cl, ny_cl define_coarse_grid_real(1) = lower_left_coord_x define_coarse_grid_real(2) = lower_left_coord_y define_coarse_grid_real(3) = dx define_coarse_grid_real(4) = dy define_coarse_grid_real(5) = lower_left_coord_x + ( nx + 1 ) * dx define_coarse_grid_real(6) = lower_left_coord_y + ( ny + 1 ) * dy define_coarse_grid_real(7) = dz define_coarse_grid_int(1) = nx define_coarse_grid_int(2) = ny define_coarse_grid_int(3) = nz_cl ! !-- Check that the client domain is completely inside the server domain. nomatch = 0 xez = ( nbgp + 1 ) * dx yez = ( nbgp + 1 ) * dy IF ( cl_coord_x(0) < define_coarse_grid_real(1) + xez ) nomatch = 1 IF ( cl_coord_x(nx_cl + 1) > define_coarse_grid_real(5) - xez ) nomatch = 1 IF ( cl_coord_y(0) < define_coarse_grid_real(2) + yez ) nomatch = 1 IF ( cl_coord_y(ny_cl + 1) > define_coarse_grid_real(6) - yez ) nomatch = 1 DEALLOCATE( cl_coord_x ) DEALLOCATE( cl_coord_y ) ! !-- Send coarse grid information to client CALL pmc_send_to_client( client_id, Define_coarse_grid_real, & SIZE(define_coarse_grid_real), 0, & 21, ierr ) CALL pmc_send_to_client( client_id, Define_coarse_grid_int, 3, 0, & 22, ierr ) ! !-- Send local grid to client CALL pmc_send_to_client( client_id, coord_x, nx+1+2*nbgp, 0, 24, ierr ) CALL pmc_send_to_client( client_id, coord_y, ny+1+2*nbgp, 0, 25, ierr ) ! !-- Also send the dzu-, dzw-, zu- and zw-arrays here CALL pmc_send_to_client( client_id, dzu, nz_cl + 1, 0, 26, ierr ) CALL pmc_send_to_client( client_id, dzw, nz_cl + 1, 0, 27, ierr ) CALL pmc_send_to_client( client_id, zu, nz_cl + 2, 0, 28, ierr ) CALL pmc_send_to_client( client_id, zw, nz_cl + 2, 0, 29, ierr ) ENDIF CALL MPI_BCAST( nomatch, 1, MPI_INTEGER, 0, comm2d, ierr ) IF ( nomatch /= 0 ) THEN WRITE ( message_string, * ) 'Error: nested client domain does ', & 'not fit into its server domain' CALL message( 'pmc_palm_setup_server', 'PA0XYZ', 1, 2, 0, 6, 0 ) ENDIF CALL MPI_BCAST( nz_cl, 1, MPI_INTEGER, 0, comm2d, ierr ) CALL pmci_create_index_list ! !-- Include couple arrays into server content CALL pmc_s_clear_next_array_list DO WHILE ( pmc_s_getnextarray( client_id, myname ) ) CALL pmci_set_array_pointer( myname, client_id = client_id, & nz_cl = nz_cl ) ENDDO CALL pmc_s_setind_and_allocmem( client_id ) ENDDO CONTAINS SUBROUTINE pmci_create_index_list IMPLICIT NONE INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: coarse_bound_all !: INTEGER(iwp) :: i !: INTEGER(iwp) :: ic !: INTEGER(iwp) :: ierr !: INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: index_list !: INTEGER(iwp) :: j !: INTEGER(iwp) :: k !: INTEGER(iwp) :: m !: INTEGER(iwp) :: n !: INTEGER(iwp) :: npx !: INTEGER(iwp) :: npy !: INTEGER(iwp) :: nrx !: INTEGER(iwp) :: nry !: INTEGER(iwp) :: px !: INTEGER(iwp) :: py !: INTEGER(iwp), DIMENSION(2) :: scoord !: INTEGER(iwp) :: server_pe !: INTEGER(iwp), DIMENSION(2) :: size_of_array !: IF ( myid == 0 ) THEN CALL pmc_recv_from_client( client_id, size_of_array, 2, 0, 40, ierr ) ALLOCATE( coarse_bound_all(size_of_array(1),size_of_array(2)) ) CALL pmc_recv_from_client( client_id, coarse_bound_all, & SIZE( coarse_bound_all ), 0, 41, ierr ) ! !-- Compute size of index_list. ic = 0 DO k = 1, size_of_array(2) DO j = coarse_bound_all(3,k), coarse_bound_all(4,k) DO i = coarse_bound_all(1,k), coarse_bound_all(2,k) ic = ic + 1 ENDDO ENDDO ENDDO ALLOCATE( index_list(6,ic) ) CALL MPI_COMM_SIZE( comm1dx, npx, ierr ) CALL MPI_COMM_SIZE( comm1dy, npy, ierr ) nrx = nxr - nxl + 1 ! +1 in index because FORTRAN indexing starts with 1, palm with 0 nry = nyn - nys + 1 ic = 0 DO k = 1, size_of_array(2) ! loop over all client PEs DO j = coarse_bound_all(3,k), coarse_bound_all(4,k) ! area in y required by actual client PE DO i = coarse_bound_all(1,k), coarse_bound_all(2,k) ! area in x required by actual client PE px = i / nrx py = j / nry scoord(1) = px scoord(2) = py CALL MPI_CART_RANK( comm2d, scoord, server_pe, ierr ) ic = ic + 1 index_list(1,ic) = i - ( px * nrx ) + 1 + nbgp ! First index in Server Array index_list(2,ic) = j - ( py * nry ) + 1 + nbgp ! Second index in Server Array index_list(3,ic) = i - coarse_bound_all(1,k) + 1 ! x Index client coarse grid index_list(4,ic) = j - coarse_bound_all(3,k) + 1 ! y Index client coarse grid index_list(5,ic) = k - 1 ! PE Number client index_list(6,ic) = server_pe ! PE Number server ENDDO ENDDO ENDDO CALL pmc_s_set_2d_index_list( client_id, index_list(:,1:ic) ) ELSE ALLOCATE( index_list(6,1) ) ! Dummy allocate CALL pmc_s_set_2d_index_list( client_id, index_list ) ENDIF DEALLOCATE(index_list) END SUBROUTINE pmci_create_index_list #endif END SUBROUTINE pmci_setup_server SUBROUTINE pmci_setup_client #if defined( __parallel ) IMPLICIT NONE CHARACTER(LEN=DA_Namelen) :: myname !: INTEGER(iwp) :: i !: INTEGER(iwp) :: ierr !: INTEGER(iwp) :: icl !: INTEGER(iwp) :: icr !: INTEGER(iwp) :: j !: INTEGER(iwp) :: jcn !: INTEGER(iwp) :: jcs !: INTEGER(iwp), DIMENSION(5) :: val !: REAL(wp), DIMENSION(1) :: fval !: REAL(wp) :: xcs !: REAL(wp) :: xce !: REAL(wp) :: ycs !: REAL(wp) :: yce !: !-- TO_DO: describe what is happening in this if-clause !-- Root Model does not have Server and is not a client IF ( .NOT. pmc_is_rootmodel() ) THEN CALL pmc_clientinit ! !-- Here and only here the arrays are defined, which actualy will be !-- exchanged between client and server. !-- Please check, if the arrays are in the list of possible exchange arrays !-- in subroutines: !-- pmci_set_array_pointer (for server arrays) !-- pmci_create_client_arrays (for client arrays) CALL pmc_set_dataarray_name( 'coarse', 'u' ,'fine', 'u', ierr ) CALL pmc_set_dataarray_name( 'coarse', 'v' ,'fine', 'v', ierr ) CALL pmc_set_dataarray_name( 'coarse', 'w' ,'fine', 'w', ierr ) CALL pmc_set_dataarray_name( 'coarse', 'e' ,'fine', 'e', ierr ) CALL pmc_set_dataarray_name( 'coarse', 'pt' ,'fine', 'pt', ierr ) IF ( humidity .OR. passive_scalar ) THEN CALL pmc_set_dataarray_name( 'coarse', 'q' ,'fine', 'q', ierr ) ENDIF ! !-- Update this list appropritely and also in create_client_arrays and in !-- pmci_set_array_pointer. !-- If a variable is removed, it only has to be removed from here. CALL pmc_set_dataarray_name( lastentry = .TRUE. ) ! !-- Send grid to server val(1) = nx val(2) = ny val(3) = nz val(4) = dx val(5) = dy fval(1) = zw(nzt+1) IF ( myid == 0 ) THEN CALL pmc_send_to_server( val, SIZE( val ), 0, 123, ierr ) CALL pmc_send_to_server( fval, SIZE( fval ), 0, 124, ierr ) CALL pmc_send_to_server( coord_x, nx + 1 + 2 * nbgp, 0, 11, ierr ) CALL pmc_send_to_server( coord_y, ny + 1 + 2 * nbgp, 0, 12, ierr ) ! !-- Receive Coarse grid information. CALL pmc_recv_from_server( define_coarse_grid_real, & SIZE(define_coarse_grid_real), 0, 21, ierr ) CALL pmc_recv_from_server( define_coarse_grid_int, 3, 0, 22, ierr ) ! !-- Receive also the dz-,zu- and zw-arrays here. !-- TO_DO: what is the meaning of above comment + remove write statements !-- and give this informations in header WRITE(0,*) 'Coarse grid from Server ' WRITE(0,*) 'startx_tot = ',define_coarse_grid_real(1) WRITE(0,*) 'starty_tot = ',define_coarse_grid_real(2) WRITE(0,*) 'endx_tot = ',define_coarse_grid_real(5) WRITE(0,*) 'endy_tot = ',define_coarse_grid_real(6) WRITE(0,*) 'dx = ',define_coarse_grid_real(3) WRITE(0,*) 'dy = ',define_coarse_grid_real(4) WRITE(0,*) 'dz = ',define_coarse_grid_real(7) WRITE(0,*) 'nx_coarse = ',define_coarse_grid_int(1) WRITE(0,*) 'ny_coarse = ',define_coarse_grid_int(2) WRITE(0,*) 'nz_coarse = ',define_coarse_grid_int(3) ENDIF CALL MPI_BCAST( define_coarse_grid_real, SIZE(define_coarse_grid_real), & MPI_REAL, 0, comm2d, ierr ) CALL MPI_BCAST( define_coarse_grid_int, 3, MPI_INTEGER, 0, comm2d, ierr ) cg%dx = define_coarse_grid_real(3) cg%dy = define_coarse_grid_real(4) cg%dz = define_coarse_grid_real(7) cg%nx = define_coarse_grid_int(1) cg%ny = define_coarse_grid_int(2) cg%nz = define_coarse_grid_int(3) ! !-- Get Server coordinates on coarse grid ALLOCATE( cg%coord_x(-nbgp:cg%nx+nbgp) ) ALLOCATE( cg%coord_y(-nbgp:cg%ny+nbgp) ) ALLOCATE( cg%dzu(1:cg%nz+1) ) ALLOCATE( cg%dzw(1:cg%nz+1) ) ALLOCATE( cg%zu(0:cg%nz+1) ) ALLOCATE( cg%zw(0:cg%nz+1) ) ! !-- Get coarse grid coordinates and vales of the z-direction from server IF ( myid == 0) THEN CALL pmc_recv_from_server( cg%coord_x, cg%nx + 1 + 2 * nbgp, 0, 24, & ierr ) CALL pmc_recv_from_server( cg%coord_y, cg%ny + 1 + 2 * nbgp, 0, 25, & ierr ) CALL pmc_recv_from_server( cg%dzu, cg%nz + 1, 0, 26, ierr ) CALL pmc_recv_from_server( cg%dzw, cg%nz + 1, 0, 27, ierr ) CALL pmc_recv_from_server( cg%zu, cg%nz + 2, 0, 28, ierr ) CALL pmc_recv_from_server( cg%zw, cg%nz + 2, 0, 29, ierr ) ENDIF ! !-- and broadcast this information CALL MPI_BCAST( cg%coord_x, cg%nx + 1 + 2 * nbgp, MPI_REAL, 0, comm2d, & ierr ) CALL MPI_BCAST( cg%coord_y, cg%ny + 1 + 2 * nbgp, MPI_REAL, 0, comm2d, & ierr ) CALL MPI_BCAST( cg%dzu, cg%nz + 1, MPI_REAL, 0, comm2d, ierr ) CALL MPI_BCAST( cg%dzw, cg%nz + 1, MPI_REAL, 0, comm2d, ierr ) CALL MPI_BCAST( cg%zu, cg%nz + 2, MPI_REAL, 0, comm2d, ierr ) CALL MPI_BCAST( cg%zw, cg%nz + 2, MPI_REAL, 0, comm2d, ierr ) CALL pmci_map_fine_to_coarse_grid CALL pmc_c_get_2d_index_list ! !-- Include couple arrays into client content. CALL pmc_c_clear_next_array_list DO WHILE ( pmc_c_getnextarray( myname ) ) !-- TO_DO: Klaus, why the c-arrays are still up to cg%nz?? CALL pmci_create_client_arrays ( myname, icl, icr, jcs, jcn, cg%nz ) ENDDO CALL pmc_c_setind_and_allocmem ! !-- Precompute interpolation coefficients and client-array indices CALL pmci_init_interp_tril ! !-- Precompute the log-law correction index- and ratio-arrays CALL pmci_init_loglaw_correction ! !-- Define the SGS-TKE scaling factor based on the grid-spacing ratio CALL pmci_init_tkefactor ! !-- Two-way coupling IF ( nesting_mode == 'two-way' ) THEN CALL pmci_init_anterp_tophat ENDIF ! !-- Finally, compute the total area of the top-boundary face of the domain. !-- This is needed in the pmc_ensure_nest_mass_conservation area_t = ( nx + 1 ) * (ny + 1 ) * dx * dy ENDIF CONTAINS SUBROUTINE pmci_map_fine_to_coarse_grid IMPLICIT NONE INTEGER(iwp), DIMENSION(5,numprocs) :: coarse_bound_all !: INTEGER(iwp), DIMENSION(2) :: size_of_array !: REAL(wp) :: coarse_dx !: REAL(wp) :: coarse_dy !: REAL(wp) :: loffset !: REAL(wp) :: noffset !: REAL(wp) :: roffset !: REAL(wp) :: soffset !: ! !-- Determine indices of interpolation/anterpolation area in coarse grid. coarse_dx = cg%dx coarse_dy = cg%dy loffset = MOD( coord_x(nxl), coarse_dx ) ! If the fine- and coarse grid nodes do not match. xexl = coarse_dx + loffset nhll = CEILING( xexl / coarse_dx ) ! This is needed in the anterpolation phase. xcs = coord_x(nxl) - xexl DO i = 0, cg%nx IF ( cg%coord_x(i) > xcs ) THEN icl = MAX( -1, i-1 ) EXIT ENDIF ENDDO roffset = MOD( coord_x(nxr + 1), coarse_dx ) ! If the fine- and coarse grid nodes do not match. xexr = coarse_dx + roffset nhlr = CEILING( xexr / coarse_dx ) ! This is needed in the anterpolation phase. xce = coord_x(nxr) + xexr DO i = cg%nx, 0 , -1 IF ( cg%coord_x(i) < xce ) THEN icr = MIN( cg%nx + 1, i + 1 ) EXIT ENDIF ENDDO soffset = MOD( coord_y(nys), coarse_dy ) ! If the fine- and coarse grid nodes do not match yexs = coarse_dy + soffset nhls = CEILING( yexs / coarse_dy ) ! This is needed in the anterpolation phase. ycs = coord_y(nys) - yexs DO j = 0, cg%ny IF ( cg%coord_y(j) > ycs ) THEN jcs = MAX( -nbgp, j - 1 ) EXIT ENDIF ENDDO noffset = MOD( coord_y(nyn + 1), coarse_dy ) ! If the fine- and coarse grid nodes do not match yexn = coarse_dy + noffset nhln = CEILING( yexn / coarse_dy ) ! This is needed in the anterpolation phase. yce = coord_y(nyn) + yexn DO j = cg%ny, 0, -1 IF ( cg%coord_y(j) < yce ) THEN jcn = MIN( cg%ny + nbgp, j + 1 ) EXIT ENDIF ENDDO coarse_bound(1) = icl coarse_bound(2) = icr coarse_bound(3) = jcs coarse_bound(4) = jcn coarse_bound(5) = myid ! !-- Note that MPI_Gather receives data from all processes in the rank order. CALL MPI_GATHER( coarse_bound, 5, MPI_INTEGER, coarse_bound_all, 5, & MPI_INTEGER, 0, comm2d, ierr ) IF ( myid == 0 ) THEN size_of_array(1) = SIZE( coarse_bound_all, 1 ) size_of_array(2) = SIZE( coarse_bound_all, 2 ) CALL pmc_send_to_server( size_of_array, 2, 0, 40, ierr ) CALL pmc_send_to_server( coarse_bound_all, SIZE( coarse_bound_all ), 0, 41, ierr ) ENDIF END SUBROUTINE pmci_map_fine_to_coarse_grid SUBROUTINE pmci_init_interp_tril ! !-- Precomputation of the interpolation coefficients and client-array indices !-- to be used by the interpolation routines interp_tril_lr, interp_tril_ns and !-- interp_tril_t. Constant dz is still assumed. ! !-- Antti Hellsten 3.3.2015. ! !-- Modified for variable dz, but not yet tested. !-- Antti Hellsten 27.3.2015. ! IMPLICIT NONE INTEGER(iwp) :: i !: INTEGER(iwp) :: i1 !: INTEGER(iwp) :: j !: INTEGER(iwp) :: j1 !: INTEGER(iwp) :: k !: INTEGER(iwp) :: kc !: REAL(wp) :: coarse_dx !: REAL(wp) :: coarse_dy !: REAL(wp) :: coarse_dz !: REAL(wp) :: xb !: REAL(wp) :: xcsu !: REAL(wp) :: xfso !: REAL(wp) :: xcso !: REAL(wp) :: xfsu !: REAL(wp) :: yb !: REAL(wp) :: ycso !: REAL(wp) :: ycsv !: REAL(wp) :: yfso !: REAL(wp) :: yfsv !: REAL(wp) :: zcso !: REAL(wp) :: zcsw !: REAL(wp) :: zfso !: REAL(wp) :: zfsw !: coarse_dx = cg%dx coarse_dy = cg%dy coarse_dz = cg%dz xb = nxl * dx yb = nys * dy ALLOCATE( icu(nxlg:nxrg) ) ALLOCATE( ico(nxlg:nxrg) ) ALLOCATE( jcv(nysg:nyng) ) ALLOCATE( jco(nysg:nyng) ) ALLOCATE( kcw(nzb:nzt+1) ) ALLOCATE( kco(nzb:nzt+1) ) ALLOCATE( r1xu(nxlg:nxrg) ) ALLOCATE( r2xu(nxlg:nxrg) ) ALLOCATE( r1xo(nxlg:nxrg) ) ALLOCATE( r2xo(nxlg:nxrg) ) ALLOCATE( r1yv(nysg:nyng) ) ALLOCATE( r2yv(nysg:nyng) ) ALLOCATE( r1yo(nysg:nyng) ) ALLOCATE( r2yo(nysg:nyng) ) ALLOCATE( r1zw(nzb:nzt+1) ) ALLOCATE( r2zw(nzb:nzt+1) ) ALLOCATE( r1zo(nzb:nzt+1) ) ALLOCATE( r2zo(nzb:nzt+1) ) ! !-- Note that the node coordinates xfs... and xcs... are relative !-- to the lower-left-bottom corner of the fc-array, not the actual !-- client domain corner. DO i = nxlg, nxrg xfsu = coord_x(i) - ( lower_left_coord_x + xb - xexl ) xfso = coord_x(i) + 0.5_wp * dx - ( lower_left_coord_x + xb - xexl ) icu(i) = icl + FLOOR( xfsu / coarse_dx ) ico(i) = icl + FLOOR( ( xfso - 0.5_wp * coarse_dx ) / coarse_dx ) xcsu = ( icu(i) - icl ) * coarse_dx xcso = ( ico(i) - icl ) * coarse_dx + 0.5_wp * coarse_dx r2xu(i) = ( xfsu - xcsu ) / coarse_dx r2xo(i) = ( xfso - xcso ) / coarse_dx r1xu(i) = 1.0_wp - r2xu(i) r1xo(i) = 1.0_wp - r2xo(i) ENDDO DO j = nysg, nyng yfsv = coord_y(j) - ( lower_left_coord_y + yb - yexs ) yfso = coord_y(j) + 0.5_wp * dy - ( lower_left_coord_y + yb - yexs ) jcv(j) = jcs + FLOOR( yfsv/coarse_dy ) jco(j) = jcs + FLOOR( ( yfso -0.5_wp * coarse_dy ) / coarse_dy ) ycsv = ( jcv(j) - jcs ) * coarse_dy ycso = ( jco(j) - jcs ) * coarse_dy + 0.5_wp * coarse_dy r2yv(j) = ( yfsv - ycsv ) / coarse_dy r2yo(j) = ( yfso - ycso ) / coarse_dy r1yv(j) = 1.0_wp - r2yv(j) r1yo(j) = 1.0_wp - r2yo(j) ENDDO DO k = nzb, nzt + 1 zfsw = zw(k) zfso = zu(k) kc = 0 DO WHILE ( cg%zw(kc) <= zfsw ) kc = kc + 1 ENDDO kcw(k) = kc - 1 kc = 0 DO WHILE ( cg%zu(kc) <= zfso ) kc = kc + 1 ENDDO kco(k) = kc - 1 zcsw = cg%zw(kcw(k)) zcso = cg%zu(kco(k)) r2zw(k) = ( zfsw - zcsw ) / cg%dzw(kcw(k) + 1 ) r2zo(k) = ( zfso - zcso ) / cg%dzu(kco(k) + 1 ) r1zw(k) = 1.0_wp - r2zw(k) r1zo(k) = 1.0_wp - r2zo(k) ENDDO END SUBROUTINE pmci_init_interp_tril SUBROUTINE pmci_init_loglaw_correction ! !-- Precomputation of the index and log-ratio arrays for the log-law corrections !-- for near-wall nodes after the nest-BC interpolation. !-- These are used by the interpolation routines interp_tril_lr and interp_tril_ns. ! !-- Antti Hellsten 30.12.2015. ! IMPLICIT NONE INTEGER(iwp) :: direction !: Wall normal index: 1=k, 2=j, 3=i. INTEGER(iwp) :: i !: INTEGER(iwp) :: icorr !: INTEGER(iwp) :: inc !: Wall outward-normal index increment -1 or 1, for direction=1, inc=1 always. INTEGER(iwp) :: iw !: INTEGER(iwp) :: j !: INTEGER(iwp) :: jcorr !: INTEGER(iwp) :: jw !: INTEGER(iwp) :: k !: INTEGER(iwp) :: kb !: INTEGER(iwp) :: kcorr !: INTEGER(iwp) :: lc !: INTEGER(iwp) :: ni !: INTEGER(iwp) :: nj !: INTEGER(iwp) :: nk !: INTEGER(iwp) :: nzt_topo_max !: INTEGER(iwp) :: wall_index !: Index of the wall-node coordinate REAL(wp), ALLOCATABLE, DIMENSION(:) :: lcr !: ! !-- First determine the maximum k-index needed for the near-wall corrections. !-- This maximum is individual for each boundary to minimize the storage requirements !-- and to minimize the corresponding loop k-range in the interpolation routines. nzt_topo_nestbc_l = nzb IF ( nest_bound_l ) THEN DO i = nxl - 1, nxl DO j = nys, nyn nzt_topo_nestbc_l = MAX( nzt_topo_nestbc_l, nzb_u_inner(j,i), & nzb_v_inner(j,i), nzb_w_inner(j,i) ) ENDDO ENDDO nzt_topo_nestbc_l = nzt_topo_nestbc_l + 1 ENDIF nzt_topo_nestbc_r = nzb IF ( nest_bound_r ) THEN i = nxr + 1 DO j = nys, nyn nzt_topo_nestbc_r = MAX( nzt_topo_nestbc_r, nzb_u_inner(j,i), & nzb_v_inner(j,i), nzb_w_inner(j,i) ) ENDDO nzt_topo_nestbc_r = nzt_topo_nestbc_r + 1 ENDIF nzt_topo_nestbc_s = nzb IF ( nest_bound_s ) THEN DO j = nys - 1, nys DO i = nxl, nxr nzt_topo_nestbc_s = MAX( nzt_topo_nestbc_s, nzb_u_inner(j,i), & nzb_v_inner(j,i), nzb_w_inner(j,i) ) ENDDO ENDDO nzt_topo_nestbc_s = nzt_topo_nestbc_s + 1 ENDIF nzt_topo_nestbc_n = nzb IF ( nest_bound_n ) THEN j = nyn + 1 DO i = nxl, nxr nzt_topo_nestbc_n = MAX( nzt_topo_nestbc_n, nzb_u_inner(j,i), & nzb_v_inner(j,i), nzb_w_inner(j,i) ) ENDDO nzt_topo_nestbc_n = nzt_topo_nestbc_n + 1 ENDIF ! !-- Then determine the maximum number of near-wall nodes per wall point based !-- on the grid-spacing ratios. nzt_topo_max = MAX( nzt_topo_nestbc_l, nzt_topo_nestbc_r, & nzt_topo_nestbc_s, nzt_topo_nestbc_n ) ! !-- Note that the outer division must be integer division. ni = CEILING( cg%dx / dx ) / 2 nj = CEILING( cg%dy / dy ) / 2 nk = 1 DO k = 1, nzt_topo_max nk = MAX( nk, CEILING( cg%dzu(k) / dzu(k) ) ) ENDDO nk = nk / 2 ! Note that this must be integer division. ncorr = MAX( ni, nj, nk ) ALLOCATE( lcr(0:ncorr - 1) ) lcr = 1.0_wp ! !-- First horizontal walls !-- Left boundary IF ( nest_bound_l ) THEN ALLOCATE( logc_u_l(nzb:nzt_topo_nestbc_l, nys:nyn, 1:2) ) ALLOCATE( logc_v_l(nzb:nzt_topo_nestbc_l, nys:nyn, 1:2) ) ALLOCATE( logc_ratio_u_l(nzb:nzt_topo_nestbc_l, nys:nyn, 1:2, 0:ncorr-1) ) ALLOCATE( logc_ratio_v_l(nzb:nzt_topo_nestbc_l, nys:nyn, 1:2, 0:ncorr-1) ) logc_u_l = 0 logc_v_l = 0 logc_ratio_u_l = 1.0_wp logc_ratio_v_l = 1.0_wp direction = 1 inc = 1 DO j = nys, nyn ! !-- Left boundary for u i = 0 kb = nzb_u_inner(j,i) k = kb + 1 wall_index = kb CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & wall_index, z0(j,i), kb, direction, ncorr ) logc_u_l(k,j,1) = lc logc_ratio_u_l(k,j,1,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ! !-- Left boundary for v i = -1 kb = nzb_v_inner(j,i) k = kb + 1 wall_index = kb CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & wall_index, z0(j,i), kb, direction, ncorr ) logc_v_l(k,j,1) = lc logc_ratio_v_l(k,j,1,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDDO ENDIF ! !-- Right boundary IF ( nest_bound_r ) THEN ALLOCATE( logc_u_r(nzb:nzt_topo_nestbc_r,nys:nyn,1:2) ) ALLOCATE( logc_v_r(nzb:nzt_topo_nestbc_r,nys:nyn,1:2) ) ALLOCATE( logc_ratio_u_r(nzb:nzt_topo_nestbc_r,nys:nyn,1:2,0:ncorr-1) ) ALLOCATE( logc_ratio_v_r(nzb:nzt_topo_nestbc_r,nys:nyn,1:2,0:ncorr-1) ) logc_u_r = 0 logc_v_r = 0 logc_ratio_u_r = 1.0_wp logc_ratio_v_r = 1.0_wp direction = 1 inc = 1 DO j = nys, nyn ! !-- Right boundary for u. i = nxr + 1 kb = nzb_u_inner(j,i) k = kb + 1 wall_index = kb CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & wall_index, z0(j,i), kb, direction, ncorr ) logc_u_r(k,j,1) = lc logc_ratio_u_r(k,j,1,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ! !-- Right boundary for v. i = nxr + 1 kb = nzb_v_inner(j,i) k = kb + 1 wall_index = kb CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & wall_index, z0(j,i), kb, direction, ncorr ) logc_v_r(k,j,1) = lc logc_ratio_v_r(k,j,1,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDDO ENDIF ! !-- South boundary IF ( nest_bound_s ) THEN ALLOCATE( logc_u_s(nzb:nzt_topo_nestbc_s,nxl:nxr,1:2) ) ALLOCATE( logc_v_s(nzb:nzt_topo_nestbc_s,nxl:nxr,1:2) ) ALLOCATE( logc_ratio_u_s(nzb:nzt_topo_nestbc_s,nxl:nxr,1:2,0:ncorr-1) ) ALLOCATE( logc_ratio_v_s(nzb:nzt_topo_nestbc_s,nxl:nxr,1:2,0:ncorr-1) ) logc_u_s = 0 logc_v_s = 0 logc_ratio_u_s = 1.0_wp logc_ratio_v_s = 1.0_wp direction = 1 inc = 1 DO i = nxl, nxr ! !-- South boundary for u. j = -1 kb = nzb_u_inner(j,i) k = kb + 1 wall_index = kb CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & wall_index, z0(j,i), kb, direction, ncorr ) logc_u_s(k,i,1) = lc logc_ratio_u_s(k,i,1,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ! !-- South boundary for v j = 0 kb = nzb_v_inner(j,i) k = kb + 1 wall_index = kb CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & wall_index, z0(j,i), kb, direction, ncorr ) logc_v_s(k,i,1) = lc logc_ratio_v_s(k,i,1,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDDO ENDIF ! !-- North boundary IF ( nest_bound_n ) THEN ALLOCATE( logc_u_n(nzb:nzt_topo_nestbc_n,nxl:nxr,1:2) ) ALLOCATE( logc_v_n(nzb:nzt_topo_nestbc_n,nxl:nxr,1:2) ) ALLOCATE( logc_ratio_u_n(nzb:nzt_topo_nestbc_n,nxl:nxr,1:2,0:ncorr-1) ) ALLOCATE( logc_ratio_v_n(nzb:nzt_topo_nestbc_n,nxl:nxr,1:2,0:ncorr-1) ) logc_u_n = 0 logc_v_n = 0 logc_ratio_u_n = 1.0_wp logc_ratio_v_n = 1.0_wp direction = 1 inc = 1 DO i = nxl, nxr ! !-- North boundary for u. j = nyn + 1 kb = nzb_u_inner(j,i) k = kb + 1 wall_index = kb CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & wall_index, z0(j,i), kb, direction, ncorr ) logc_u_n(k,i,1) = lc logc_ratio_u_n(k,i,1,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ! !-- North boundary for v. j = nyn + 1 kb = nzb_v_inner(j,i) k = kb + 1 wall_index = kb CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & wall_index, z0(j,i), kb, direction, ncorr ) logc_v_n(k,i,1) = lc logc_ratio_v_n(k,i,1,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDDO ENDIF ! !-- Then vertical walls and corners if necessary. IF ( topography /= 'flat' ) THEN kb = 0 ! kb is not used when direction > 1 ! !-- Left boundary IF ( nest_bound_l ) THEN ALLOCATE( logc_w_l(nzb:nzt_topo_nestbc_l,nys:nyn,1:2) ) ALLOCATE( logc_ratio_w_l(nzb:nzt_topo_nestbc_l,nys:nyn,1:2,0:ncorr-1) ) logc_w_l = 0 logc_ratio_w_l = 1.0_wp direction = 2 DO j = nys, nyn DO k = nzb, nzt_topo_nestbc_l ! !-- Wall for u on the south side, but not on the north side. i = 0 IF ( ( nzb_u_outer(j,i) > nzb_u_outer(j+1,i) ) .AND. & ( nzb_u_outer(j,i) == nzb_u_outer(j-1,i) ) ) THEN inc = 1 wall_index = j CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_u_l(k,j,2) = inc * lc logc_ratio_u_l(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ! !-- Wall for u on the north side, but not on the south side. i = 0 IF ( ( nzb_u_outer(j,i) > nzb_u_outer(j-1,i) ) .AND. & ( nzb_u_outer(j,i) == nzb_u_outer(j+1,i) ) ) THEN inc = -1 wall_index = j + 1 CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_u_l(k,j,2) = inc * lc logc_ratio_u_l(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ! !-- Wall for w on the south side, but not on the north side. i = -1 IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j+1,i) ) .AND. & ( nzb_w_outer(j,i) == nzb_w_outer(j-1,i) ) ) THEN inc = 1 wall_index = j CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_w_l(k,j,2) = inc * lc logc_ratio_w_l(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ! !-- Wall for w on the north side, but not on the south side. i = -1 IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j-1,i) ) .AND. & ( nzb_w_outer(j,i) == nzb_w_outer(j+1,i) ) ) THEN inc = -1 wall_index = j+1 CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_w_l(k,j,2) = inc * lc logc_ratio_w_l(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ENDDO ENDDO ENDIF ! IF ( nest_bound_l ) ! !-- Right boundary. IF ( nest_bound_r ) THEN ALLOCATE( logc_w_r(nzb:nzt_topo_nestbc_r,nys:nyn,1:2) ) ALLOCATE( logc_ratio_w_r(nzb:nzt_topo_nestbc_r,nys:nyn,1:2,0:ncorr-1) ) logc_w_r = 0 logc_ratio_w_r = 1.0_wp direction = 2 i = nxr + 1 DO j = nys, nyn DO k = nzb, nzt_topo_nestbc_r ! !-- Wall for u on the south side, but not on the north side. IF ( ( nzb_u_outer(j,i) > nzb_u_outer(j+1,i) ) .AND. & ( nzb_u_outer(j,i) == nzb_u_outer(j-1,i) ) ) THEN inc = 1 wall_index = j CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_u_r(k,j,2) = inc * lc logc_ratio_u_r(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ! !-- Wall for u on the north side, but not on the south side. IF ( ( nzb_u_outer(j,i) > nzb_u_outer(j-1,i) ) .AND. & ( nzb_u_outer(j,i) == nzb_u_outer(j+1,i) ) ) THEN inc = -1 wall_index = j+1 CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_u_r(k,j,2) = inc * lc logc_ratio_u_r(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ! !-- Wall for w on the south side, but not on the north side. IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j+1,i) ) .AND. & ( nzb_w_outer(j,i) == nzb_w_outer(j-1,i) ) ) THEN inc = 1 wall_index = j CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_w_r(k,j,2) = inc * lc logc_ratio_w_r(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ! !-- Wall for w on the north side, but not on the south side. IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j-1,i) ) .AND. & ( nzb_w_outer(j,i) == nzb_w_outer(j+1,i) ) ) THEN inc = -1 wall_index = j+1 CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_w_r(k,j,2) = inc * lc logc_ratio_w_r(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ENDDO ENDDO ENDIF ! IF ( nest_bound_r ) ! !-- South boundary. IF ( nest_bound_s ) THEN ALLOCATE( logc_w_s(nzb:nzt_topo_nestbc_s, nxl:nxr, 1:2) ) ALLOCATE( logc_ratio_w_s(nzb:nzt_topo_nestbc_s, nxl:nxr, 1:2, 0:ncorr-1) ) logc_w_s = 0 logc_ratio_w_s = 1.0_wp direction = 3 DO i = nxl, nxr DO k = nzb, nzt_topo_nestbc_s ! !-- Wall for v on the left side, but not on the right side. j = 0 IF ( ( nzb_v_outer(j,i) > nzb_v_outer(j,i+1) ) .AND. & ( nzb_v_outer(j,i) == nzb_v_outer(j,i-1) ) ) THEN inc = 1 wall_index = i CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_v_s(k,i,2) = inc * lc logc_ratio_v_s(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ! !-- Wall for v on the right side, but not on the left side. j = 0 IF ( ( nzb_v_outer(j,i) > nzb_v_outer(j,i-1) ) .AND. & ( nzb_v_outer(j,i) == nzb_v_outer(j,i+1) ) ) THEN inc = -1 wall_index = i+1 CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_v_s(k,i,2) = inc * lc logc_ratio_v_s(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ! !-- Wall for w on the left side, but not on the right side. j = -1 IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j,i+1) ) .AND. & ( nzb_w_outer(j,i) == nzb_w_outer(j,i-1) ) ) THEN inc = 1 wall_index = i CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_w_s(k,i,2) = inc * lc logc_ratio_w_s(k,i,2,0:ncorr - 1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ! !-- Wall for w on the right side, but not on the left side. j = -1 IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j,i-1) ) .AND. & ( nzb_w_outer(j,i) == nzb_w_outer(j,i+1) ) ) THEN inc = -1 wall_index = i+1 CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_w_s(k,i,2) = inc * lc logc_ratio_w_s(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ENDDO ENDDO ENDIF ! IF (nest_bound_s ) ! !-- North boundary. IF ( nest_bound_n ) THEN ALLOCATE( logc_w_n(nzb:nzt_topo_nestbc_n, nxl:nxr, 1:2) ) ALLOCATE( logc_ratio_w_n(nzb:nzt_topo_nestbc_n, nxl:nxr, 1:2, 0:ncorr-1) ) logc_w_n = 0 logc_ratio_w_n = 1.0_wp direction = 3 j = nyn + 1 DO i = nxl, nxr DO k = nzb, nzt_topo_nestbc_n ! !-- Wall for v on the left side, but not on the right side. IF ( ( nzb_v_outer(j,i) > nzb_v_outer(j,i+1) ) .AND. & ( nzb_v_outer(j,i) == nzb_v_outer(j,i-1) ) ) THEN inc = 1 wall_index = i CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_v_n(k,i,2) = inc * lc logc_ratio_v_n(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ! !-- Wall for v on the right side, but not on the left side. IF ( ( nzb_v_outer(j,i) > nzb_v_outer(j,i-1) ) .AND. & ( nzb_v_outer(j,i) == nzb_v_outer(j,i+1) ) ) THEN inc = -1 wall_index = i + 1 CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_v_n(k,i,2) = inc * lc logc_ratio_v_n(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ! !-- Wall for w on the left side, but not on the right side. IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j,i+1) ) .AND. & ( nzb_w_outer(j,i) == nzb_w_outer(j,i-1) ) ) THEN inc = 1 wall_index = i CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_w_n(k,i,2) = inc * lc logc_ratio_w_n(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ! !-- Wall for w on the right side, but not on the left side. IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j,i-1) ) .AND. & ( nzb_w_outer(j,i) == nzb_w_outer(j,i+1) ) ) THEN inc = -1 wall_index = i+1 CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) ! !-- The direction of the wall-normal index is stored as the sign of the logc-element. logc_w_n(k,i,2) = inc * lc logc_ratio_w_n(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) lcr(0:ncorr-1) = 1.0_wp ENDIF ENDDO ENDDO ENDIF ! IF ( nest_bound_n ) ENDIF ! IF ( topography /= 'flat' ) END SUBROUTINE pmci_init_loglaw_correction SUBROUTINE pmci_define_loglaw_correction_parameters( lc, lcr, k, ij, inc, wall_index, z0_l, kb, direction, ncorr ) IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: direction !: INTEGER(iwp), INTENT(IN) :: ij !: INTEGER(iwp), INTENT(IN) :: inc !: INTEGER(iwp), INTENT(IN) :: k !: INTEGER(iwp), INTENT(IN) :: kb !: INTEGER(iwp), INTENT(OUT) :: lc !: INTEGER(iwp), INTENT(IN) :: ncorr !: INTEGER(iwp), INTENT(IN) :: wall_index !: REAL(wp), DIMENSION(0:ncorr-1), INTENT(OUT) :: lcr !: REAL(wp), INTENT(IN) :: z0_l !: INTEGER(iwp) :: alcorr !: INTEGER(iwp) :: corr_index !: INTEGER(iwp) :: lcorr !: REAL(wp) :: logvelc1 !: LOGICAL :: more !: SELECT CASE ( direction ) CASE (1) ! k more = .TRUE. lcorr = 0 DO WHILE ( more .AND. lcorr <= ncorr - 1 ) corr_index = k + lcorr IF ( lcorr == 0 ) THEN CALL pmci_find_logc_pivot_k( lc, logvelc1, z0_l, kb ) ENDIF IF ( corr_index < lc ) THEN lcr(lcorr) = LOG( ( zu(k) - zw(kb) ) / z0_l ) / logvelc1 more = .TRUE. ELSE lcr(lcorr) = 1.0 more = .FALSE. ENDIF lcorr = lcorr + 1 ENDDO CASE (2) ! j more = .TRUE. lcorr = 0 alcorr = 0 DO WHILE ( more .AND. alcorr <= ncorr - 1 ) corr_index = ij + lcorr ! In this case (direction = 2) ij is j IF ( lcorr == 0 ) THEN CALL pmci_find_logc_pivot_j( lc, logvelc1, ij, wall_index, z0_l, inc ) ENDIF ! !-- The role of inc here is to make the comparison operation "<" valid in both directions. IF ( inc * corr_index < inc * lc ) THEN lcr(alcorr) = LOG( ABS( coord_y(corr_index) + 0.5_wp * dy & - coord_y(wall_index) ) / z0_l ) / logvelc1 more = .TRUE. ELSE lcr(alcorr) = 1.0_wp more = .FALSE. ENDIF lcorr = lcorr + inc alcorr = ABS( lcorr ) ENDDO CASE (3) ! i more = .TRUE. lcorr = 0 alcorr = 0 DO WHILE ( more .AND. alcorr <= ncorr - 1 ) corr_index = ij + lcorr ! In this case (direction = 3) ij is i IF ( lcorr == 0 ) THEN CALL pmci_find_logc_pivot_i( lc, logvelc1, ij, wall_index, z0_l, inc ) ENDIF ! !-- The role of inc here is to make the comparison operation "<" valid in both directions. IF ( inc * corr_index < inc * lc ) THEN lcr(alcorr) = LOG( ABS( coord_x(corr_index) + 0.5_wp * dx & - coord_x(wall_index) ) / z0_l ) / logvelc1 more = .TRUE. ELSE lcr(alcorr) = 1.0_wp more = .FALSE. ENDIF lcorr = lcorr + inc alcorr = ABS( lcorr ) ENDDO END SELECT END SUBROUTINE pmci_define_loglaw_correction_parameters SUBROUTINE pmci_find_logc_pivot_k( lc, logzc1, z0_l, kb ) ! !-- Finds the pivot node and te log-law factor for near-wall nodes for !-- which the wall-parallel velocity components will be log-law corrected !-- after interpolation. This subroutine is only for horizontal walls. ! !-- Antti Hellsten 30.12.2015 IMPLICIT NONE REAL(wp),INTENT(OUT) :: logzc1 !: REAL(wp), INTENT(IN) :: z0_l !: INTEGER(iwp), INTENT(IN) :: kb !: INTEGER(iwp), INTENT(OUT) :: lc !: REAL(wp) :: zuc1 !: INTEGER(iwp) :: kbc !: INTEGER(iwp) :: k1 !: kbc = nzb + 1 DO WHILE ( cg%zu(kbc) < zu(kb) ) ! kbc is the first coarse-grid point above the surface. kbc = kbc + 1 ENDDO zuc1 = cg%zu(kbc) k1 = kb + 1 DO WHILE ( zu(k1) < zuc1 ) ! Important: must be <, not <= k1 = k1 + 1 ENDDO logzc1 = LOG( (zu(k1) - zw(kb) ) / z0_l ) lc = k1 END SUBROUTINE pmci_find_logc_pivot_k SUBROUTINE pmci_find_logc_pivot_j( lc, logyc1, j, jw, z0_l, inc ) ! !-- Finds the pivot node and te log-law factor for near-wall nodes for !-- which the wall-parallel velocity components will be log-law corrected !-- after interpolation. This subroutine is only for vertical walls on !-- south/north sides of the node. ! !-- Antti Hellsten 5.1.2016 IMPLICIT NONE REAL(wp), INTENT(IN) :: z0_l !: INTEGER(iwp), INTENT(IN) :: inc !: increment must be 1 or -1. INTEGER(iwp), INTENT(IN) :: j !: INTEGER(iwp), INTENT(IN) :: jw !: INTEGER(iwp), INTENT(OUT) :: lc !: REAL(wp) :: logyc1 !: REAL(wp) :: yc1 !: INTEGER(iwp) :: j1 !: ! !-- yc1 is the y-coordinate of the first coarse-grid u- and w-nodes out from the wall. yc1 = coord_y(jw) + 0.5_wp * inc * cg%dy ! !-- j1 is the first fine-grid index futher away from the wall than yc1. j1 = j DO WHILE ( inc * ( coord_y(j1) + 0.5_wp * dy ) < inc * yc1 ) ! Important: must be <, not <= j1 = j1 + inc ENDDO logyc1 = LOG( ABS( coord_y(j1) + 0.5_wp * dy - coord_y(jw) ) / z0_l ) lc = j1 END SUBROUTINE pmci_find_logc_pivot_j SUBROUTINE pmci_find_logc_pivot_i( lc, logxc1, i, iw, z0_l, inc ) ! !-- Finds the pivot node and the log-law factor for near-wall nodes for !-- which the wall-parallel velocity components will be log-law corrected !-- after interpolation. This subroutine is only for vertical walls on !-- south/north sides of the node. ! !-- Antti Hellsten 8.1.2016 IMPLICIT NONE REAL(wp), INTENT(IN) :: z0_l !: INTEGER(iwp), INTENT(IN) :: i !: INTEGER(iwp), INTENT(IN) :: inc !: increment must be 1 or -1. INTEGER(iwp), INTENT(IN) :: iw !: INTEGER(iwp), INTENT(OUT) :: lc !: REAL(wp) :: logxc1 !: REAL(wp) :: xc1 !: INTEGER(iwp) :: i1 !: ! !-- xc1 is the x-coordinate of the first coarse-grid v- and w-nodes out from the wall. xc1 = coord_x(iw) + 0.5_wp *inc * cg%dx ! !-- i1 is the first fine-grid index futher away from the wall than xc1. i1 = i DO WHILE ( inc * ( coord_x(i1) + 0.5_wp *dx ) < inc *xc1 ) ! Important: must be <, not <= i1 = i1 + inc ENDDO logxc1 = LOG( ABS( coord_x(i1) + 0.5_wp*dx - coord_x(iw) ) / z0_l ) lc = i1 END SUBROUTINE pmci_find_logc_pivot_i SUBROUTINE pmci_init_anterp_tophat ! !-- Precomputation of the client-array indices for !-- corresponding coarse-grid array index and the !-- Under-relaxation coefficients to be used by anterp_tophat. ! !-- Antti Hellsten 9.10.2015. IMPLICIT NONE INTEGER(iwp) :: i !: INTEGER(iwp) :: istart !: INTEGER(iwp) :: j !: INTEGER(iwp) :: jstart !: INTEGER(iwp) :: k !: INTEGER(iwp) :: kstart !: INTEGER(iwp) :: l !: INTEGER(iwp) :: m !: INTEGER(iwp) :: n !: REAL(wp) :: xi !: REAL(wp) :: eta !: REAL(wp) :: zeta !: ! !-- Default values: IF ( anterp_relax_length_l < 0.0_wp ) THEN anterp_relax_length_l = 0.1_wp * ( nx + 1 ) * dx ENDIF IF ( anterp_relax_length_r < 0.0_wp ) THEN anterp_relax_length_r = 0.1_wp * ( nx + 1 ) * dx ENDIF IF ( anterp_relax_length_s < 0.0_wp ) THEN anterp_relax_length_s = 0.1_wp * ( ny + 1 ) * dy ENDIF IF ( anterp_relax_length_n < 0.0_wp ) THEN anterp_relax_length_n = 0.1_wp * ( ny + 1 ) * dy ENDIF IF ( anterp_relax_length_t < 0.0_wp ) THEN anterp_relax_length_t = 0.1_wp * zu(nzt) ENDIF ! !-- First determine kceu and kcew that are the coarse-grid upper bounds for index k. n = 0 DO WHILE ( cg%zu(n) < zu(nzt) ) n = n + 1 ENDDO kceu = n - 1 n = 0 DO WHILE ( cg%zw(n) < zw(nzt-1) ) n = n + 1 ENDDO kcew = n - 1 ALLOCATE( iflu(icl:icr) ) ALLOCATE( iflo(icl:icr) ) ALLOCATE( ifuu(icl:icr) ) ALLOCATE( ifuo(icl:icr) ) ALLOCATE( jflv(jcs:jcn) ) ALLOCATE( jflo(jcs:jcn) ) ALLOCATE( jfuv(jcs:jcn) ) ALLOCATE( jfuo(jcs:jcn) ) ALLOCATE( kflw(0:kcew) ) ALLOCATE( kflo(0:kceu) ) ALLOCATE( kfuw(0:kcew) ) ALLOCATE( kfuo(0:kceu) ) ! !-- i-indices of u for each l-index value. istart = nxlg DO l = icl, icr i = istart DO WHILE ( ( coord_x(i) < cg%coord_x(l) - 0.5_wp * cg%dx ) .AND. ( i < nxrg ) ) i = i + 1 ENDDO iflu(l) = MIN( MAX( i, nxlg ), nxrg ) DO WHILE ( ( coord_x(i) < cg%coord_x(l) + 0.5_wp * cg%dx ) .AND. ( i < nxrg ) ) i = i + 1 ENDDO ifuu(l) = MIN( MAX( i, nxlg ), nxrg ) istart = iflu(l) ENDDO ! !-- i-indices of others for each l-index value. istart = nxlg DO l = icl, icr i = istart DO WHILE ( ( coord_x(i) + 0.5_wp * dx < cg%coord_x(l) ) .AND. ( i < nxrg ) ) i = i + 1 ENDDO iflo(l) = MIN( MAX( i, nxlg ), nxrg ) DO WHILE ( ( coord_x(i) + 0.5_wp * dx < cg%coord_x(l) + cg%dx ) .AND. ( i < nxrg ) ) i = i + 1 ENDDO ifuo(l) = MIN(MAX(i,nxlg),nxrg) istart = iflo(l) ENDDO ! !-- j-indices of v for each m-index value. jstart = nysg DO m = jcs, jcn j = jstart DO WHILE ( ( coord_y(j) < cg%coord_y(m) - 0.5_wp * cg%dy ) .AND. ( j < nyng ) ) j = j + 1 ENDDO jflv(m) = MIN( MAX( j, nysg ), nyng ) DO WHILE ( ( coord_y(j) < cg%coord_y(m) + 0.5_wp * cg%dy ) .AND. ( j < nyng ) ) j = j + 1 ENDDO jfuv(m) = MIN( MAX( j, nysg ), nyng ) jstart = jflv(m) ENDDO ! !-- j-indices of others for each m-index value. jstart = nysg DO m = jcs, jcn j = jstart DO WHILE ( ( coord_y(j) + 0.5_wp * dy < cg%coord_y(m) ) .AND. ( j < nyng ) ) j = j + 1 ENDDO jflo(m) = MIN( MAX( j, nysg ), nyng ) DO WHILE ( ( coord_y(j) + 0.5_wp * dy < cg%coord_y(m) + cg%dy ) .AND. ( j < nyng ) ) j = j + 1 ENDDO jfuo(m) = MIN( MAX( j, nysg ), nyng ) jstart = jflv(m) ENDDO ! !-- k-indices of w for each n-index value. kstart = 0 kflw(0) = 0 kfuw(0) = 0 DO n = 1, kcew k = kstart DO WHILE ( ( zw(k) < cg%zw(n) - 0.5_wp * cg%dzw(n) ) .AND. ( k < nzt ) ) k = k + 1 ENDDO kflw(n) = MIN( MAX( k, 1 ), nzt + 1 ) DO WHILE ( ( zw(k) < cg%zw(n) + 0.5_wp * cg%dzw(n+1) ) .AND. ( k < nzt ) ) k = k + 1 ENDDO kfuw(n) = MIN( MAX( k, 1 ), nzt + 1 ) kstart = kflw(n) ENDDO ! !-- k-indices of others for each n-index value. kstart = 0 kflo(0) = 0 kfuo(0) = 0 DO n = 1, kceu k = kstart DO WHILE ( ( zu(k) < cg%zu(n) - 0.5_wp * cg%dzu(n) ) .AND. ( k < nzt ) ) k = k + 1 ENDDO kflo(n) = MIN( MAX( k, 1 ), nzt + 1 ) DO WHILE ( ( zu(k) < cg%zu(n) + 0.5_wp * cg%dzu(n+1) ) .AND. ( k < nzt ) ) k = k + 1 ENDDO kfuo(n) = MIN( MAX( k-1, 1 ), nzt + 1 ) kstart = kflo(n) ENDDO ! !-- Spatial under-relaxation coefficients ALLOCATE( frax(icl:icr) ) DO l = icl, icr IF ( nest_bound_l ) THEN xi = ( ( cg%coord_x(l) - lower_left_coord_x ) / anterp_relax_length_l )**4 ELSEIF ( nest_bound_r ) THEN xi = ( ( lower_left_coord_x + ( nx + 1 ) * dx - cg%coord_x(l) ) / anterp_relax_length_r )**4 ELSE xi = 999999.9_wp ENDIF frax(l) = xi / ( 1.0_wp + xi ) ENDDO ALLOCATE( fray(jcs:jcn) ) DO m = jcs, jcn IF ( nest_bound_s ) THEN eta = ( ( cg%coord_y(m) - lower_left_coord_y ) / anterp_relax_length_s )**4 ELSEIF ( nest_bound_n ) THEN eta = ( (lower_left_coord_y + ( ny + 1 ) * dy - cg%coord_y(m)) / anterp_relax_length_n )**4 ELSE eta = 999999.9_wp ENDIF fray(m) = eta / ( 1.0_wp + eta ) ENDDO ALLOCATE( fraz(0:kceu) ) DO n = 0, kceu zeta = ( ( zu(nzt) - cg%zu(n) ) / anterp_relax_length_t )**4 fraz(n) = zeta / ( 1.0_wp + zeta ) ENDDO END SUBROUTINE pmci_init_anterp_tophat SUBROUTINE pmci_init_tkefactor ! !-- Computes the scaling factor for the SGS TKE from coarse grid to be used !-- as BC for the fine grid. Based on the Kolmogorov energy spectrum !-- for the inertial subrange and assumption of sharp cut-off of the resolved !-- energy spectrum. Near the surface, the reduction of TKE is made !-- smaller than further away from the surface. ! ! Antti Hellsten 4.3.2015 ! !-- Extended for non-flat topography and variable dz. ! ! Antti Hellsten 26.3.2015 ! !-- The current near-wall adaptation can be replaced by a new one which !-- uses a step function [0,1] based on the logc-arrays. AH 30.12.2015 IMPLICIT NONE REAL(wp), PARAMETER :: cfw = 0.2_wp !: REAL(wp), PARAMETER :: c_tkef = 0.6_wp !: REAL(wp) :: fw !: REAL(wp), PARAMETER :: fw0 = 0.9_wp !: REAL(wp) :: glsf !: REAL(wp) :: glsc !: REAL(wp) :: height !: REAL(wp), PARAMETER :: p13 = 1.0_wp/3.0_wp !: REAL(wp), PARAMETER :: p23 = 2.0_wp/3.0_wp !: INTEGER(iwp) :: k !: INTEGER(iwp) :: kc !: IF ( nest_bound_l ) THEN ALLOCATE( tkefactor_l(nzb:nzt+1,nysg:nyng) ) tkefactor_l = 0.0_wp i = nxl - 1 DO j = nysg, nyng DO k = nzb_s_inner(j,i) + 1, nzt kc = kco(k+1) glsf = ( dx * dy * dzu(k) )**p13 glsc = ( cg%dx * cg%dy *cg%dzu(kc) )**p13 height = zu(k) - zu(nzb_s_inner(j,i)) fw = EXP( -cfw * height / glsf ) tkefactor_l(k,j) = c_tkef * ( fw0 * fw + ( 1.0_wp - fw ) * ( glsf / glsc )**p23 ) ENDDO tkefactor_l(nzb_s_inner(j,i),j) = c_tkef * fw0 ENDDO ENDIF IF ( nest_bound_r ) THEN ALLOCATE( tkefactor_r(nzb:nzt+1,nysg:nyng) ) tkefactor_r = 0.0_wp i = nxr + 1 DO j = nysg, nyng DO k = nzb_s_inner(j,i) + 1, nzt kc = kco(k+1) glsf = ( dx * dy * dzu(k) )**p13 glsc = ( cg%dx * cg%dy * cg%dzu(kc) )**p13 height = zu(k) - zu(nzb_s_inner(j,i)) fw = EXP( -cfw * height / glsf ) tkefactor_r(k,j) = c_tkef * (fw0 * fw + ( 1.0_wp - fw ) * ( glsf / glsc )**p23 ) ENDDO tkefactor_r(nzb_s_inner(j,i),j) = c_tkef * fw0 ENDDO ENDIF IF ( nest_bound_s ) THEN ALLOCATE( tkefactor_s(nzb:nzt+1,nxlg:nxrg) ) tkefactor_s = 0.0_wp j = nys - 1 DO i = nxlg, nxrg DO k = nzb_s_inner(j,i) + 1, nzt kc = kco(k+1) glsf = ( dx * dy * dzu(k) )**p13 glsc = ( cg%dx * cg%dy * cg%dzu(kc) ) ** p13 height = zu(k) - zu(nzb_s_inner(j,i)) fw = EXP( -cfw*height / glsf ) tkefactor_s(k,i) = c_tkef * ( fw0 * fw + ( 1.0_wp - fw ) * ( glsf / glsc )**p23 ) ENDDO tkefactor_s(nzb_s_inner(j,i),i) = c_tkef * fw0 ENDDO ENDIF IF ( nest_bound_n ) THEN ALLOCATE( tkefactor_n(nzb:nzt+1,nxlg:nxrg) ) tkefactor_n = 0.0_wp j = nyn + 1 DO i = nxlg, nxrg DO k = nzb_s_inner(j,i)+1, nzt kc = kco(k+1) glsf = ( dx * dy * dzu(k) )**p13 glsc = ( cg%dx * cg%dy * cg%dzu(kc) )**p13 height = zu(k) - zu(nzb_s_inner(j,i)) fw = EXP( -cfw * height / glsf ) tkefactor_n(k,i) = c_tkef * ( fw0 * fw + ( 1.0_wp - fw ) * ( glsf / glsc )**p23 ) ENDDO tkefactor_n(nzb_s_inner(j,i),i) = c_tkef * fw0 ENDDO ENDIF ALLOCATE( tkefactor_t(nysg:nyng,nxlg:nxrg) ) k = nzt DO i = nxlg, nxrg DO j = nysg, nyng kc = kco(k+1) glsf = ( dx * dy * dzu(k) )**p13 glsc = ( cg%dx * cg%dy * cg%dzu(kc) )**p13 height = zu(k) - zu(nzb_s_inner(j,i)) fw = EXP( -cfw * height / glsf ) tkefactor_t(j,i) = c_tkef * ( fw0 * fw + ( 1.0_wp - fw ) * ( glsf / glsc )**p23 ) ENDDO ENDDO END SUBROUTINE pmci_init_tkefactor #endif END SUBROUTINE pmci_setup_client SUBROUTINE pmci_setup_coordinates #if defined( __parallel ) IMPLICIT NONE INTEGER(iwp) :: i !: INTEGER(iwp) :: j !: ! !-- Create coordinate arrays. ALLOCATE( coord_x(-nbgp:nx+nbgp) ) ALLOCATE( coord_y(-nbgp:ny+nbgp) ) DO i = -nbgp, nx + nbgp coord_x(i) = lower_left_coord_x + i * dx ENDDO DO j = -nbgp, ny + nbgp coord_y(j) = lower_left_coord_y + j * dy ENDDO #endif END SUBROUTINE pmci_setup_coordinates SUBROUTINE pmci_server_synchronize #if defined( __parallel ) ! !-- Unify the time steps for each model and synchronize. !-- This is based on the assumption that the native time step !-- (original dt_3d) of any server is always larger than the smallest !-- native time step of it s clients. IMPLICIT NONE INTEGER(iwp) :: client_id !: REAL(wp), DIMENSION(1) :: dtc !: REAL(wp), DIMENSION(1) :: dtl !: INTEGER(iwp) :: ierr !: INTEGER(iwp) :: m !: ! !-- First find the smallest native time step of all the clients of the current server. dtl(1) = 999999.9_wp DO m = 1, SIZE( PMC_Server_for_Client ) - 1 client_id = PMC_Server_for_Client(m) IF ( myid == 0 ) THEN CALL pmc_recv_from_client( client_id, dtc, SIZE( dtc ), 0, 101, ierr ) dtl(1) = MIN( dtl(1), dtc(1) ) dt_3d = dtl(1) ENDIF ENDDO ! !-- Broadcast the unified time step to all server processes. CALL MPI_BCAST( dt_3d, 1, MPI_REAL, 0, comm2d, ierr ) ! !-- Send the new time step to all the clients of the current server. DO m = 1, SIZE( PMC_Server_for_Client ) - 1 client_id = PMC_Server_for_Client(m) IF ( myid == 0 ) THEN CALL pmc_send_to_client( client_id, dtl, SIZE( dtl ), 0, 102, ierr ) ENDIF ENDDO #endif END SUBROUTINE pmci_server_synchronize SUBROUTINE pmci_client_synchronize #if defined( __parallel ) ! !-- Unify the time steps for each model and synchronize. !-- This is based on the assumption that the native time step !-- (original dt_3d) of any server is always larger than the smallest !-- native time step of it s clients. IMPLICIT NONE REAL(wp), DIMENSION(1) :: dtl !: REAL(wp), DIMENSION(1) :: dts !: INTEGER(iwp) :: ierr !: dtl(1) = dt_3d IF ( cpl_id > 1 ) THEN ! Root id is never a client IF ( myid==0 ) THEN CALL pmc_send_to_server( dtl, SIZE( dtl ), 0, 101, ierr ) CALL pmc_recv_from_server( dts, SIZE( dts ), 0, 102, ierr ) dt_3d = dts(1) ENDIF ! !-- Broadcast the unified time step to all server processes. CALL MPI_BCAST( dt_3d, 1, MPI_REAL, 0, comm2d, ierr ) ENDIF #endif END SUBROUTINE pmci_client_synchronize SUBROUTINE pmci_set_swaplevel( swaplevel ) IMPLICIT NONE INTEGER(iwp),INTENT(IN) :: swaplevel !: swaplevel (1 or 2) of PALM's timestep INTEGER(iwp) :: client_id !: INTEGER(iwp) :: m !: ! !-- After each timestep, alternately set buffer one or buffer two active DO m = 1, SIZE( pmc_server_for_client )-1 client_id = pmc_server_for_client(m) CALL pmc_s_set_active_data_array( client_id, swaplevel ) ENDDO END SUBROUTINE pmci_set_swaplevel SUBROUTINE pmci_server_datatrans( direction ) IMPLICIT NONE INTEGER(iwp),INTENT(IN) :: direction !: #if defined( __parallel ) INTEGER(iwp) :: client_id !: INTEGER(iwp) :: i !: INTEGER(iwp) :: j !: INTEGER(iwp) :: ierr !: INTEGER(iwp) :: m !: REAL(wp) :: waittime !: REAL(wp), DIMENSION(1) :: dtc !: REAL(wp), DIMENSION(1) :: dtl !: ! !-- First find the smallest native time step of all the clients of the current server. dtl(1) = 999999.9_wp DO m = 1, SIZE( PMC_Server_for_Client ) - 1 client_id = PMC_Server_for_Client(m) IF ( myid==0 ) THEN CALL pmc_recv_from_client( client_id, dtc, SIZE( dtc ), 0, 101, ierr ) dtl(1) = MIN( dtl(1), dtc(1) ) dt_3d = dtl(1) ENDIF ENDDO ! !-- Broadcast the unified time step to all server processes. CALL MPI_BCAST( dt_3d, 1, MPI_REAL, 0, comm2d, ierr ) DO m = 1, SIZE( PMC_Server_for_Client ) - 1 client_id = PMC_Server_for_Client(m) CALL cpu_log( log_point_s(70), 'PMC model sync', 'start' ) ! !-- Send the new time step to all the clients of the current server. IF ( myid == 0 ) THEN CALL pmc_send_to_client( client_id, dtl, SIZE( dtl ), 0, 102, ierr ) ENDIF CALL cpu_log( log_point_s(70), 'PMC model sync', 'stop' ) IF ( direction == server_to_client ) THEN CALL cpu_log( log_point_s(71), 'PMC Server Send', 'start' ) CALL pmc_s_fillbuffer( client_id, waittime=waittime ) CALL cpu_log( log_point_s(71), 'PMC Server Send', 'stop' ) ELSE ! Communication from client to server. CALL cpu_log( log_point_s(72), 'PMC Server Recv', 'start' ) client_id = pmc_server_for_client(m) CALL pmc_s_getdata_from_buffer( client_id ) CALL cpu_log( log_point_s(72), 'PMC Server Recv', 'stop' ) ! !-- The anterpolated data is now available in u etc. IF ( topography /= 'flat' ) THEN ! !-- Inside buildings/topography reset velocities and TKE back to zero. !-- Other scalars (pt, q, s, km, kh, p, sa, ...) are ignored at present, !-- maybe revise later. DO i = nxlg, nxrg DO j = nysg, nyng u(nzb:nzb_u_inner(j,i),j,i) = 0.0_wp v(nzb:nzb_v_inner(j,i),j,i) = 0.0_wp w(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp e(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp ENDDO ENDDO ENDIF ENDIF ENDDO #endif END SUBROUTINE pmci_server_datatrans SUBROUTINE pmci_client_datatrans( direction ) IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: direction !: #if defined( __parallel ) INTEGER(iwp) :: ierr !: INTEGER(iwp) :: icl !: INTEGER(iwp) :: icr !: INTEGER(iwp) :: jcs !: INTEGER(iwp) :: jcn !: REAL(wp), DIMENSION(1) :: dtl !: REAL(wp), DIMENSION(1) :: dts !: REAL(wp) :: waittime !: dtl = dt_3d IF ( cpl_id > 1 ) THEN ! Root id is never a client CALL cpu_log( log_point_s(70), 'PMC model sync', 'start' ) IF ( myid==0 ) THEN CALL pmc_send_to_server( dtl, SIZE( dtl ), 0, 101, ierr ) CALL pmc_recv_from_server( dts, SIZE( dts ), 0, 102, ierr ) dt_3d = dts(1) ENDIF ! !-- Broadcast the unified time step to all server processes. CALL MPI_BCAST( dt_3d, 1, MPI_REAL, 0, comm2d, ierr ) CALL cpu_log( log_point_s(70), 'PMC model sync', 'stop' ) ! !-- Client domain boundaries in the server indice space. icl = coarse_bound(1) icr = coarse_bound(2) jcs = coarse_bound(3) jcn = coarse_bound(4) IF ( direction == server_to_client ) THEN CALL cpu_log( log_point_s(73), 'PMC Client Recv', 'start' ) CALL pmc_c_getbuffer( WaitTime = WaitTime ) CALL cpu_log( log_point_s(73), 'PMC Client Recv', 'stop' ) CALL pmci_interpolation ELSE ! IF ( direction == server_to_client ) CALL pmci_anterpolation CALL cpu_log( log_point_s(74), 'PMC Client Send', 'start' ) CALL pmc_c_putbuffer( WaitTime = WaitTime ) CALL cpu_log( log_point_s(74), 'PMC Client Send', 'stop' ) ENDIF ENDIF CONTAINS SUBROUTINE pmci_interpolation ! !-- A wrapper routine for all interpolation and extrapolation actions. IMPLICIT NONE ! !-- Add IF-condition here: IF not vertical nesting IF ( nest_bound_l ) THEN ! Left border pe CALL pmci_interp_tril_lr( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, r2yo, r1zo, r2zo, & nzb_u_inner, logc_u_l, logc_ratio_u_l, nzt_topo_nestbc_l, 'l', 'u' ) CALL pmci_interp_tril_lr( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, r2yv, r1zo, r2zo, & nzb_v_inner, logc_v_l, logc_ratio_v_l, nzt_topo_nestbc_l, 'l', 'v' ) CALL pmci_interp_tril_lr( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, r2yo, r1zw, r2zw, & nzb_w_inner, logc_w_l, logc_ratio_w_l, nzt_topo_nestbc_l, 'l', 'w' ) CALL pmci_interp_tril_lr( e, ec, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & nzb_s_inner, logc_u_l, logc_ratio_u_l, nzt_topo_nestbc_l, 'l', 'e' ) CALL pmci_interp_tril_lr( pt, ptc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & nzb_s_inner, logc_u_l, logc_ratio_u_l, nzt_topo_nestbc_l, 'l', 's' ) IF ( humidity .OR. passive_scalar ) THEN CALL pmci_interp_tril_lr( q, qc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & nzb_s_inner, logc_u_l, logc_ratio_u_l, nzt_topo_nestbc_l, 'l', 's' ) ENDIF IF ( nesting_mode == 'one-way' ) THEN CALL pmci_extrap_ifoutflow_lr( u, nzb_u_inner, 'l', 'u' ) CALL pmci_extrap_ifoutflow_lr( v, nzb_v_inner, 'l', 'v' ) CALL pmci_extrap_ifoutflow_lr( w, nzb_w_inner, 'l', 'w' ) CALL pmci_extrap_ifoutflow_lr( e, nzb_s_inner, 'l', 'e' ) CALL pmci_extrap_ifoutflow_lr( pt,nzb_s_inner, 'l', 's' ) IF ( humidity .OR. passive_scalar ) THEN CALL pmci_extrap_ifoutflow_lr( q, nzb_s_inner, 'l', 's' ) ENDIF ENDIF ENDIF IF ( nest_bound_r ) THEN ! Right border pe CALL pmci_interp_tril_lr( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, r2yo, r1zo, r2zo, & nzb_u_inner, logc_u_r, logc_ratio_u_r, nzt_topo_nestbc_r, 'r', 'u' ) CALL pmci_interp_tril_lr( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, r2yv, r1zo, r2zo, & nzb_v_inner, logc_v_r, logc_ratio_v_r, nzt_topo_nestbc_r, 'r', 'v' ) CALL pmci_interp_tril_lr( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, r2yo, r1zw, r2zw, & nzb_w_inner, logc_w_r, logc_ratio_w_r, nzt_topo_nestbc_r, 'r', 'w' ) CALL pmci_interp_tril_lr( e, ec, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & nzb_s_inner, logc_u_r, logc_ratio_u_r, nzt_topo_nestbc_r, 'r', 'e' ) CALL pmci_interp_tril_lr( pt, ptc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & nzb_s_inner, logc_u_r, logc_ratio_u_r, nzt_topo_nestbc_r, 'r', 's' ) IF ( humidity .OR. passive_scalar ) THEN CALL pmci_interp_tril_lr( q, qc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & nzb_s_inner, logc_u_r, logc_ratio_u_r, nzt_topo_nestbc_r, 'r', 's' ) ENDIF IF ( nesting_mode == 'one-way' ) THEN CALL pmci_extrap_ifoutflow_lr( u, nzb_u_inner, 'r', 'u' ) CALL pmci_extrap_ifoutflow_lr( v, nzb_v_inner, 'r', 'v' ) CALL pmci_extrap_ifoutflow_lr( w, nzb_w_inner, 'r', 'w' ) CALL pmci_extrap_ifoutflow_lr( e, nzb_s_inner, 'r', 'e' ) CALL pmci_extrap_ifoutflow_lr( pt,nzb_s_inner, 'r', 's' ) IF ( humidity .OR. passive_scalar ) THEN CALL pmci_extrap_ifoutflow_lr( q, nzb_s_inner, 'r', 's' ) ENDIF ENDIF ENDIF IF ( nest_bound_s ) THEN ! South border pe CALL pmci_interp_tril_sn( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, r2yo, r1zo, r2zo, & nzb_u_inner, logc_u_s, logc_ratio_u_s, nzt_topo_nestbc_s, 's', 'u' ) CALL pmci_interp_tril_sn( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, r2yv, r1zo, r2zo, & nzb_v_inner, logc_v_s, logc_ratio_v_s, nzt_topo_nestbc_s, 's', 'v' ) CALL pmci_interp_tril_sn( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, r2yo, r1zw, r2zw, & nzb_w_inner, logc_w_s, logc_ratio_w_s, nzt_topo_nestbc_s, 's', 'w' ) CALL pmci_interp_tril_sn( e, ec, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & nzb_s_inner, logc_u_s, logc_ratio_u_s, nzt_topo_nestbc_s, 's', 'e' ) CALL pmci_interp_tril_sn( pt, ptc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & nzb_s_inner, logc_u_s, logc_ratio_u_s, nzt_topo_nestbc_s, 's', 's' ) IF ( humidity .OR. passive_scalar ) THEN CALL pmci_interp_tril_sn( q, qc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & nzb_s_inner, logc_u_s, logc_ratio_u_s, nzt_topo_nestbc_s, 's', 's' ) ENDIF IF ( nesting_mode == 'one-way' ) THEN CALL pmci_extrap_ifoutflow_sn( u, nzb_u_inner, 's', 'u' ) CALL pmci_extrap_ifoutflow_sn( v, nzb_v_inner, 's', 'v' ) CALL pmci_extrap_ifoutflow_sn( w, nzb_w_inner, 's', 'w' ) CALL pmci_extrap_ifoutflow_sn( e, nzb_s_inner, 's', 'e' ) CALL pmci_extrap_ifoutflow_sn( pt,nzb_s_inner, 's', 's' ) IF ( humidity .OR. passive_scalar ) THEN CALL pmci_extrap_ifoutflow_sn( q, nzb_s_inner, 's', 's' ) ENDIF ENDIF ENDIF IF ( nest_bound_n ) THEN ! North border pe CALL pmci_interp_tril_sn( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, r2yo, r1zo, r2zo, & nzb_u_inner, logc_u_n, logc_ratio_u_n, nzt_topo_nestbc_n, 'n', 'u' ) CALL pmci_interp_tril_sn( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, r2yv, r1zo, r2zo, & nzb_v_inner, logc_v_n, logc_ratio_v_n, nzt_topo_nestbc_n, 'n', 'v' ) CALL pmci_interp_tril_sn( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, r2yo, r1zw, r2zw, & nzb_w_inner, logc_w_n, logc_ratio_w_n, nzt_topo_nestbc_n, 'n', 'w' ) CALL pmci_interp_tril_sn( e, ec, ico,jco,kco,r1xo,r2xo,r1yo,r2yo,r1zo,r2zo, & nzb_s_inner, logc_u_n, logc_ratio_u_n, nzt_topo_nestbc_n, 'n', 'e' ) CALL pmci_interp_tril_sn( pt, ptc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & nzb_s_inner, logc_u_n, logc_ratio_u_n, nzt_topo_nestbc_n, 'n', 's' ) IF ( humidity .OR. passive_scalar ) THEN CALL pmci_interp_tril_sn( q, qc, ico,jco,kco,r1xo,r2xo,r1yo,r2yo,r1zo,r2zo, & nzb_s_inner, logc_u_n, logc_ratio_u_n, nzt_topo_nestbc_n, 'n', 's' ) ENDIF IF ( nesting_mode == 'one-way' ) THEN CALL pmci_extrap_ifoutflow_sn( u, nzb_u_inner, 'n', 'u' ) CALL pmci_extrap_ifoutflow_sn( v, nzb_v_inner, 'n', 'v' ) CALL pmci_extrap_ifoutflow_sn( w, nzb_w_inner, 'n', 'w' ) CALL pmci_extrap_ifoutflow_sn( e, nzb_s_inner, 'n', 'e' ) CALL pmci_extrap_ifoutflow_sn( pt,nzb_s_inner, 'n', 's' ) IF ( humidity .OR. passive_scalar ) THEN CALL pmci_extrap_ifoutflow_sn( q, nzb_s_inner, 'n', 's' ) ENDIF ENDIF ENDIF ! !-- All PEs are top-border PEs CALL pmci_interp_tril_t( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, r2yo, r1zo, r2zo, 'u' ) CALL pmci_interp_tril_t( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, r2yv, r1zo, r2zo, 'v' ) CALL pmci_interp_tril_t( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, r2yo, r1zw, r2zw, 'w' ) CALL pmci_interp_tril_t( e, ec, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, 'e' ) CALL pmci_interp_tril_t( pt, ptc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, 's' ) IF ( humidity .OR. passive_scalar ) THEN CALL pmci_interp_tril_t( q, qc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, 's' ) ENDIF IF ( nesting_mode == 'one-way' ) THEN CALL pmci_extrap_ifoutflow_t( u, 'u' ) CALL pmci_extrap_ifoutflow_t( v, 'v' ) CALL pmci_extrap_ifoutflow_t( w, 'w' ) CALL pmci_extrap_ifoutflow_t( e, 'e' ) CALL pmci_extrap_ifoutflow_t( pt, 's' ) IF ( humidity .OR. passive_scalar ) THEN CALL pmci_extrap_ifoutflow_t( q, 's' ) ENDIF ENDIF END SUBROUTINE pmci_interpolation SUBROUTINE pmci_anterpolation ! !-- A wrapper routine for all anterpolation actions. IMPLICIT NONE CALL pmci_anterp_tophat( u, uc, kceu, iflu, ifuu, jflo, jfuo, kflo, kfuo, nzb_u_inner, 'u' ) CALL pmci_anterp_tophat( v, vc, kceu, iflo, ifuo, jflv, jfuv, kflo, kfuo, nzb_v_inner, 'v' ) CALL pmci_anterp_tophat( w, wc, kcew, iflo, ifuo, jflo, jfuo, kflw, kfuw, nzb_w_inner, 'w' ) CALL pmci_anterp_tophat( pt, ptc, kceu, iflo, ifuo, jflo, jfuo, kflo, kfuo, nzb_s_inner, 's' ) IF ( humidity .OR. passive_scalar ) THEN CALL pmci_anterp_tophat( q, qc, kceu, iflo, ifuo, jflo, jfuo, kflo, kfuo, nzb_s_inner, 's' ) ENDIF END SUBROUTINE pmci_anterpolation SUBROUTINE pmci_interp_tril_lr( f, fc, ic, jc, kc, r1x, r2x, r1y, r2y, r1z, r2z, kb, logc, logc_ratio, & nzt_topo_nestbc, edge, var ) ! !-- Interpolation of ghost-node values used as the client-domain boundary !-- conditions. This subroutine handles the left and right boundaries. !-- This subroutine is based on trilinear interpolation. !-- Constant dz is still assumed. ! !-- Antti Hellsten 22.2.2015. ! !-- Rewritten so that all the coefficients and client-array indices are !-- precomputed in the initialization phase by pmci_init_interp_tril. ! ! Antti Hellsten 3.3.2015. ! !-- Constant dz no more assumed. ! Antti Hellsten 23.3.2015. ! !-- Adapted for non-flat topography. However, the near-wall velocities !-- are log-corrected only over horizontal surfaces, not yet near vertical !-- walls. !-- Antti Hellsten 26.3.2015. ! !-- Indexing in the principal direction (i) is changed. Now, the nest-boundary !-- values are interpolated only into the first ghost-node layers on each later !-- boundary. These values are then simply copied to the second ghost-node layer. ! !-- Antti Hellsten 6.10.2015. IMPLICIT NONE REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), INTENT(IN) :: fc !: REAL(wp), DIMENSION(nzb:nzt_topo_nestbc,nys:nyn,1:2,0:ncorr-1), INTENT(IN) :: logc_ratio !: REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r1x !: REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r2x !: REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r1y !: REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r2y !: REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r1z !: REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r2z !: INTEGER(iwp), DIMENSION(nxlg:nxrg), INTENT(IN) :: ic !: INTEGER(iwp), DIMENSION(nysg:nyng), INTENT(IN) :: jc !: INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: INTEGER(iwp), DIMENSION(nzb:nzt+1), INTENT(IN) :: kc !: INTEGER(iwp), DIMENSION(nzb:nzt_topo_nestbc,nys:nyn,1:2), INTENT(IN) :: logc !: INTEGER(iwp) :: nzt_topo_nestbc !: CHARACTER(LEN=1),INTENT(IN) :: edge !: CHARACTER(LEN=1),INTENT(IN) :: var !: INTEGER(iwp) :: i !: INTEGER(iwp) :: ib !: INTEGER(iwp) :: iw !: INTEGER(iwp) :: j !: INTEGER(iwp) :: jco !: INTEGER(iwp) :: jcorr !: INTEGER(iwp) :: jinc !: INTEGER(iwp) :: jw !: INTEGER(iwp) :: j1 !: INTEGER(iwp) :: k !: INTEGER(iwp) :: kco !: INTEGER(iwp) :: kcorr !: INTEGER(iwp) :: k1 !: INTEGER(iwp) :: l !: INTEGER(iwp) :: m !: INTEGER(iwp) :: n !: INTEGER(iwp) :: kbc !: REAL(wp) :: coarse_dx !: REAL(wp) :: coarse_dy !: REAL(wp) :: coarse_dz !: REAL(wp) :: fkj !: REAL(wp) :: fkjp !: REAL(wp) :: fkpj !: REAL(wp) :: fkpjp !: REAL(wp) :: fk !: REAL(wp) :: fkp !: ! !-- Check which edge is to be handled: left or right. Note the assumption that the same PE never !-- holds both left and right nest boundaries. Should this be changed? IF ( edge == 'l' ) THEN IF ( var == 'u' ) THEN ! For u, nxl is a ghost node, but not for the other variables. i = nxl ib = nxl - 1 ELSE i = nxl - 1 ib = nxl - 2 ENDIF ELSEIF ( edge == 'r' ) THEN i = nxr + 1 ib = nxr + 2 ENDIF DO j = nys, nyn + 1 DO k = kb(j,i), nzt + 1 l = ic(i) m = jc(j) n = kc(k) fkj = r1x(i) * fc(n,m,l) + r2x(i) * fc(n,m,l+1) fkjp = r1x(i) * fc(n,m+1,l) + r2x(i) * fc(n,m+1,l+1) fkpj = r1x(i) * fc(n+1,m,l) + r2x(i) * fc(n+1,m,l+1) fkpjp = r1x(i) * fc(n+1,m+1,l) + r2x(i) * fc(n+1,m+1,l+1) fk = r1y(j) * fkj + r2y(j) * fkjp fkp = r1y(j) * fkpj + r2y(j) * fkpjp f(k,j,i) = r1z(k) * fk + r2z(k) * fkp ENDDO ENDDO ! !-- Generalized log-law-correction algorithm. !-- Doubly two-dimensional index arrays logc(:,:,1:2) and log-ratio arrays !-- logc_ratio(:,:,1:2,0:ncorr-1) have been precomputed in subroutine pmci_init_loglaw_correction. ! !-- Solid surface below the node IF ( var == 'u' .OR. var == 'v' ) THEN DO j = nys, nyn k = kb(j,i) + 1 IF ( ( logc(k,j,1) /= 0 ) .AND. ( logc(k,j,2) == 0 ) ) THEN k1 = logc(k,j,1) DO kcorr=0,ncorr - 1 kco = k + kcorr f(kco,j,i) = logc_ratio(k,j,1,kcorr) * f(k1,j,i) ENDDO ENDIF ENDDO ENDIF ! !-- In case of non-flat topography, also vertical walls and corners need to be treated. !-- Only single and double wall nodes are corrected. Triple and higher-multiple wall nodes !-- are not corrected as the log law would not be valid anyway in such locations. IF ( topography /= 'flat' ) THEN IF ( var == 'u' .OR. var == 'w' ) THEN ! !-- Solid surface only on south/north side of the node DO j = nys, nyn DO k = kb(j,i) + 1, nzt_topo_nestbc IF ( ( logc(k,j,2) /= 0 ) .AND. ( logc(k,j,1) == 0 ) ) THEN ! !-- Direction of the wall-normal index is carried in as the sign of logc. jinc = SIGN( 1, logc(k,j,2) ) j1 = ABS( logc(k,j,2) ) DO jcorr=0, ncorr - 1 jco = j + jinc * jcorr f(k,jco,i) = logc_ratio(k,j,2,jcorr) * f(k,j1,i) ENDDO ENDIF ENDDO ENDDO ENDIF ! !-- Solid surface on both below and on south/north side of the node IF ( var == 'u' ) THEN DO j = nys, nyn k = kb(j,i) + 1 IF ( ( logc(k,j,2) /= 0 ) .AND. ( logc(k,j,1) /= 0 ) ) THEN k1 = logc(k,j,1) jinc = SIGN( 1, logc(k,j,2) ) j1 = ABS( logc(k,j,2) ) DO jcorr = 0, ncorr - 1 jco = j + jinc * jcorr DO kcorr = 0, ncorr - 1 kco = k + kcorr f(kco,jco,i) = 0.5_wp * ( logc_ratio(k,j,1,kcorr) * f(k1,j,i) & + logc_ratio(k,j,2,jcorr) * f(k,j1,i) ) ENDDO ENDDO ENDIF ENDDO ENDIF ENDIF ! ( topography /= 'flat' ) ! !-- Rescale if f is the TKE. IF ( var == 'e') THEN IF ( edge == 'l' ) THEN DO j = nys, nyn + 1 DO k = kb(j,i), nzt + 1 f(k,j,i) = tkefactor_l(k,j) * f(k,j,i) ENDDO ENDDO ELSEIF ( edge == 'r' ) THEN DO j = nys, nyn + 1 DO k = kb(j,i), nzt + 1 f(k,j,i) = tkefactor_r(k,j) * f(k,j,i) ENDDO ENDDO ENDIF ENDIF ! !-- Store the boundary values also into the second ghost node layer. f(0:nzt+1,nys:nyn+1,ib) = f(0:nzt+1,nys:nyn+1,i) END SUBROUTINE pmci_interp_tril_lr SUBROUTINE pmci_interp_tril_sn( f, fc, ic, jc, kc, r1x, r2x, r1y, r2y, r1z, r2z, kb, logc, logc_ratio, & nzt_topo_nestbc, edge, var ) ! !-- Interpolation of ghost-node values used as the client-domain boundary !-- conditions. This subroutine handles the south and north boundaries. !-- This subroutine is based on trilinear interpolation. !-- Constant dz is still assumed. ! !-- Antti Hellsten 22.2.2015. ! !-- Rewritten so that all the coefficients and client-array indices are !-- precomputed in the initialization phase by pmci_init_interp_tril. ! !-- Antti Hellsten 3.3.2015. ! !-- Constant dz no more assumed. !-- Antti Hellsten 23.3.2015. ! !-- Adapted for non-flat topography. However, the near-wall velocities !-- are log-corrected only over horifontal surfaces, not yet near vertical !-- walls. !-- Antti Hellsten 26.3.2015. ! !-- Indexing in the principal direction (j) is changed. Now, the nest-boundary !-- values are interpolated only into the first ghost-node layers on each later !-- boundary. These values are then simply copied to the second ghost-node layer. ! !-- Antti Hellsten 6.10.2015. IMPLICIT NONE REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), INTENT(IN) :: fc !: REAL(wp), DIMENSION(nzb:nzt_topo_nestbc,nxl:nxr,1:2,0:ncorr-1), INTENT(IN) :: logc_ratio !: REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r1x !: REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r2x !: REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r1y !: REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r2y !: REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r1z !: REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r2z !: INTEGER(iwp), DIMENSION(nxlg:nxrg), INTENT(IN) :: ic !: INTEGER(iwp), DIMENSION(nysg:nyng), INTENT(IN) :: jc !: INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: INTEGER(iwp), DIMENSION(nzb:nzt+1), INTENT(IN) :: kc !: INTEGER(iwp), DIMENSION(nzb:nzt_topo_nestbc,nxl:nxr,1:2), INTENT(IN) :: logc !: INTEGER(iwp) :: nzt_topo_nestbc !: CHARACTER(LEN=1), INTENT(IN) :: edge !: CHARACTER(LEN=1), INTENT(IN) :: var !: INTEGER(iwp) :: i !: INTEGER(iwp) :: iinc !: INTEGER(iwp) :: icorr !: INTEGER(iwp) :: ico !: INTEGER(iwp) :: i1 !: INTEGER(iwp) :: j !: INTEGER(iwp) :: jb !: INTEGER(iwp) :: k !: INTEGER(iwp) :: kcorr !: INTEGER(iwp) :: kco !: INTEGER(iwp) :: k1 !: INTEGER(iwp) :: l !: INTEGER(iwp) :: m !: INTEGER(iwp) :: n !: REAL(wp) :: coarse_dx !: REAL(wp) :: coarse_dy !: REAL(wp) :: coarse_dz !: REAL(wp) :: fk !: REAL(wp) :: fkj !: REAL(wp) :: fkjp !: REAL(wp) :: fkpj !: REAL(wp) :: fkpjp !: REAL(wp) :: fkp !: ! !-- Check which edge is to be handled: south or north. Note the assumption that the same PE never !-- holds both south and north nest boundaries. Should this be changed? IF ( edge == 's' ) THEN IF ( var == 'v' ) THEN ! For v, nys is a ghost node, but not for the other variables. j = nys jb = nys - 1 ELSE j = nys - 1 jb = nys - 2 ENDIF ELSEIF ( edge == 'n' ) THEN j = nyn + 1 jb = nyn + 2 ENDIF DO i = nxl, nxr + 1 DO k = kb(j,i), nzt + 1 l = ic(i) m = jc(j) n = kc(k) fkj = r1x(i) * fc(n,m,l) + r2x(i) * fc(n,m,l+1) fkjp = r1x(i) * fc(n,m+1,l) + r2x(i) * fc(n,m+1,l+1) fkpj = r1x(i) * fc(n+1,m,l) + r2x(i) * fc(n+1,m,l+1) fkpjp = r1x(i) * fc(n+1,m+1,l) + r2x(i) * fc(n+1,m+1,l+1) fk = r1y(j) * fkj + r2y(j) * fkjp fkp = r1y(j) * fkpj + r2y(j) * fkpjp f(k,j,i) = r1z(k) * fk + r2z(k) * fkp ENDDO ENDDO ! !-- Generalized log-law-correction algorithm. !-- Multiply two-dimensional index arrays logc(:,:,1:2) and log-ratio arrays !-- logc_ratio(:,:,1:2,0:ncorr-1) have been precomputed in subroutine pmci_init_loglaw_correction. ! !-- Solid surface below the node IF ( var == 'u' .OR. var == 'v' ) THEN DO i = nxl, nxr k = kb(j,i) + 1 IF ( ( logc(k,i,1) /= 0 ) .AND. ( logc(k,i,2) == 0 ) ) THEN k1 = logc(k,i,1) DO kcorr = 0, ncorr - 1 kco = k + kcorr f(kco,j,i) = logc_ratio(k,i,1,kcorr) * f(k1,j,i) ENDDO ENDIF ENDDO ENDIF ! !-- In case of non-flat topography, also vertical walls and corners need to be treated. !-- Only single and double wall nodes are corrected. !-- Triple and higher-multiple wall nodes are not corrected as it would be extremely complicated !-- and the log law would not be valid anyway in such locations. IF ( topography /= 'flat' ) THEN IF ( var == 'v' .OR. var == 'w' ) THEN DO i = nxl, nxr DO k = kb(j,i), nzt_topo_nestbc ! !-- Solid surface only on left/right side of the node IF ( ( logc(k,i,2) /= 0 ) .AND. ( logc(k,i,1) == 0 ) ) THEN ! !-- Direction of the wall-normal index is carried in as the sign of logc. iinc = SIGN( 1, logc(k,i,2) ) i1 = ABS( logc(k,i,2) ) DO icorr = 0, ncorr - 1 ico = i + iinc * icorr f(k,j,ico) = logc_ratio(k,i,2,icorr) * f(k,j,i1) ENDDO ENDIF ENDDO ENDDO ENDIF ! !-- Solid surface on both below and on left/right side of the node IF ( var == 'v' ) THEN DO i = nxl, nxr k = kb(j,i) + 1 IF ( ( logc(k,i,2) /= 0 ) .AND. ( logc(k,i,1) /= 0 ) ) THEN k1 = logc(k,i,1) iinc = SIGN( 1, logc(k,i,2) ) i1 = ABS( logc(k,i,2) ) DO icorr = 0, ncorr - 1 ico = i + iinc * icorr DO kcorr = 0, ncorr - 1 kco = k + kcorr f(kco,i,ico) = 0.5_wp * ( logc_ratio(k,i,1,kcorr) * f(k1,j,i) & + logc_ratio(k,i,2,icorr) * f(k,j,i1) ) ENDDO ENDDO ENDIF ENDDO ENDIF ENDIF ! ( topography /= 'flat' ) ! !-- Rescale if f is the TKE. IF ( var == 'e') THEN IF ( edge == 's' ) THEN DO i = nxl, nxr + 1 DO k = kb(j,i), nzt + 1 f(k,j,i) = tkefactor_s(k,i) * f(k,j,i) ENDDO ENDDO ELSEIF ( edge == 'n' ) THEN DO i = nxl, nxr + 1 DO k = kb(j,i), nzt + 1 f(k,j,i) = tkefactor_n(k,i) * f(k,j,i) ENDDO ENDDO ENDIF ENDIF ! !-- Store the boundary values also into the second ghost node layer. f(0:nzt+1,jb,nxl:nxr+1) = f(0:nzt+1,j,nxl:nxr+1) END SUBROUTINE pmci_interp_tril_sn SUBROUTINE pmci_interp_tril_t( f, fc, ic, jc, kc, r1x, r2x, r1y, r2y, r1z, r2z, var ) ! !-- Interpolation of ghost-node values used as the client-domain boundary !-- conditions. This subroutine handles the top boundary. !-- This subroutine is based on trilinear interpolation. !-- Constant dz is still assumed. ! !-- Antti Hellsten 23.2.2015. ! ! !-- Rewritten so that all the coefficients and client-array indices are !-- precomputed in the initialization phase by pmci_init_interp_tril. ! !-- Antti Hellsten 3.3.2015. ! !-- Constant dz no more assumed. !-- Antti Hellsten 23.3.2015. ! !-- Indexing in the principal direction (k) is changed. Now, the nest-boundary !-- values are interpolated only into the first ghost-node layer. Actually there is !-- only one ghost-node layer in the k-direction. ! !-- Antti Hellsten 6.10.2015. ! IMPLICIT NONE REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), INTENT(IN) :: fc !: REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r1x !: REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r2x !: REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r1y !: REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r2y !: REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r1z !: REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r2z !: INTEGER(iwp), DIMENSION(nxlg:nxrg), INTENT(IN) :: ic !: INTEGER(iwp), DIMENSION(nysg:nyng), INTENT(IN) :: jc !: INTEGER(iwp), DIMENSION(nzb:nzt+1), INTENT(IN) :: kc !: CHARACTER(LEN=1), INTENT(IN) :: var !: INTEGER(iwp) :: i !: INTEGER(iwp) :: j !: INTEGER(iwp) :: k !: INTEGER(iwp) :: l !: INTEGER(iwp) :: m !: INTEGER(iwp) :: n !: REAL(wp) :: coarse_dx !: REAL(wp) :: coarse_dy !: REAL(wp) :: coarse_dz !: REAL(wp) :: fk !: REAL(wp) :: fkj !: REAL(wp) :: fkjp !: REAL(wp) :: fkpj !: REAL(wp) :: fkpjp !: REAL(wp) :: fkp !: IF ( var == 'w' ) THEN k = nzt ELSE k = nzt + 1 ENDIF DO i = nxl - 1, nxr + 1 DO j = nys - 1, nyn + 1 l = ic(i) m = jc(j) n = kc(k) fkj = r1x(i) * fc(n,m,l) + r2x(i) * fc(n,m,l+1) fkjp = r1x(i) * fc(n,m+1,l) + r2x(i) * fc(n,m+1,l+1) fkpj = r1x(i) * fc(n+1,m,l) + r2x(i) * fc(n+1,m,l+1) fkpjp = r1x(i) * fc(n+1,m+1,l) + r2x(i) * fc(n+1,m+1,l+1) fk = r1y(j) * fkj + r2y(j) * fkjp fkp = r1y(j) * fkpj + r2y(j) * fkpjp f(k,j,i) = r1z(k) * fk + r2z(k) * fkp ENDDO ENDDO ! !-- Just fill up the second ghost-node layer for w. IF ( var == 'w' ) THEN f(nzt+1,:,:) = f(nzt,:,:) ENDIF ! !-- Rescale if f is the TKE. !-- It is assumed that the bottom surface never reaches the top !--- boundary of a nest domain. IF ( var == 'e') THEN DO i = nxl, nxr DO j = nys, nyn f(k,j,i) = tkefactor_t(j,i) * f(k,j,i) ENDDO ENDDO ENDIF END SUBROUTINE pmci_interp_tril_t SUBROUTINE pmci_extrap_ifoutflow_lr( f, kb, edge, var ) ! !-- After the interpolation of ghost-node values for the client-domain boundary !-- conditions, this subroutine checks if there is a local outflow through the !-- boundary. In that case this subroutine overwrites the interpolated values !-- by values extrapolated from the domain. This subroutine handles the left and !-- right boundaries. !-- However, this operation is only needed in case of one-way coupling. ! !-- Antti Hellsten 9.3.2015. ! !-- Indexing in the principal direction (i) is changed. Now, the nest-boundary !-- values are interpolated only into the first ghost-node layers on each later !-- boundary. These values are then simply copied to the second ghost-node layer. ! !-- Antti Hellsten 6.10.2015. ! IMPLICIT NONE REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: CHARACTER(LEN=1),INTENT(IN) :: edge !: CHARACTER(LEN=1),INTENT(IN) :: var !: INTEGER(iwp) :: i !: INTEGER(iwp) :: ib !: INTEGER(iwp) :: ied !: INTEGER(iwp) :: j !: INTEGER(iwp) :: k !: REAL(wp) :: outnor !: REAL(wp) :: vdotnor !: ! !-- Check which edge is to be handled: left or right. IF ( edge == 'l' ) THEN IF ( var == 'u' ) THEN i = nxl ib = nxl - 1 ied = nxl + 1 ELSE i = nxl - 1 ib = nxl - 2 ied = nxl ENDIF outnor = -1.0_wp ELSEIF ( edge == 'r' ) THEN i = nxr + 1 ib = nxr + 2 ied = nxr outnor = 1.0_wp ENDIF DO j = nys, nyn + 1 DO k = kb(j,i), nzt +1 vdotnor = outnor * u(k,j,ied) IF ( vdotnor > 0.0_wp ) THEN ! Local outflow. f(k,j,i) = f(k,j,ied) ENDIF ENDDO IF ( (var == 'u' ) .OR. (var == 'v' ) .OR. (var == 'w') ) THEN f(kb(j,i),j,i) = 0.0_wp ENDIF ENDDO ! !-- Store the updated boundary values also into the second ghost node layer. f(0:nzt,nys:nyn+1,ib) = f(0:nzt,nys:nyn+1,i) END SUBROUTINE pmci_extrap_ifoutflow_lr SUBROUTINE pmci_extrap_ifoutflow_sn( f, kb, edge, var ) ! !-- After the interpolation of ghost-node values for the client-domain boundary !-- conditions, this subroutine checks if there is a local outflow through the !-- boundary. In that case this subroutine overwrites the interpolated values !-- by values extrapolated from the domain. This subroutine handles the south and !-- north boundaries. ! !-- Antti Hellsten 9.3.2015. ! !-- Indexing in the principal direction (j) is changed. Now, the nest-boundary !-- values are interpolated only into the first ghost-node layers on each later !-- boundary. These values are then simply copied to the second ghost-node layer. ! !-- Antti Hellsten 6.10.2015. IMPLICIT NONE REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: CHARACTER(LEN=1), INTENT(IN) :: edge !: CHARACTER(LEN=1), INTENT(IN) :: var !: INTEGER(iwp) :: i !: INTEGER(iwp) :: j !: INTEGER(iwp) :: jb !: INTEGER(iwp) :: jed !: INTEGER(iwp) :: k !: REAL(wp) :: outnor !: REAL(wp) :: vdotnor !: ! !-- Check which edge is to be handled: left or right. IF ( edge == 's' ) THEN IF ( var == 'v' ) THEN j = nys jb = nys - 1 jed = nys + 1 ELSE j = nys - 1 jb = nys - 2 jed = nys ENDIF outnor = -1.0_wp ELSEIF ( edge == 'n' ) THEN j = nyn + 1 jb = nyn + 2 jed = nyn outnor = 1.0_wp ENDIF DO i = nxl, nxr + 1 DO k = kb(j,i), nzt + 1 vdotnor = outnor * v(k,jed,i) IF ( vdotnor > 0.0_wp ) THEN ! Local outflow. f(k,j,i) = f(k,jed,i) ENDIF ENDDO IF ( (var == 'u' ) .OR. (var == 'v' ) .OR. (var == 'w') ) THEN f(kb(j,i),j,i) = 0.0_wp ENDIF ENDDO ! !-- Store the updated boundary values also into the second ghost node layer. f(0:nzt,jb,nxl:nxr+1) = f(0:nzt,j,nxl:nxr+1) END SUBROUTINE pmci_extrap_ifoutflow_sn SUBROUTINE pmci_extrap_ifoutflow_t( f, var ) ! !-- Interpolation of ghost-node values used as the client-domain boundary !-- conditions. This subroutine handles the top boundary. !-- This subroutine is based on trilinear interpolation. ! !-- Antti Hellsten 23.2.2015. ! ! !-- Rewritten so that all the coefficients and client-array indices are !-- precomputed in the initialization phase by init_interp_tril. ! !-- Antti Hellsten 3.3.2015. ! !-- Indexing in the principal direction (k) is changed. Now, the nest-boundary !-- values are extrapolated only into the first ghost-node layer. Actually there is !-- only one ghost-node layer in the k-direction. ! !-- Antti Hellsten 6.10.2015. IMPLICIT NONE REAL(wp), DIMENSION(nzb:nzt+1,nys-nbgp:nyn+nbgp,nxl-nbgp:nxr+nbgp), INTENT(INOUT) :: f !: CHARACTER(LEN=1), INTENT(IN) :: var !: INTEGER(iwp) :: i !: INTEGER(iwp) :: j !: INTEGER(iwp) :: k !: INTEGER(iwp) :: ked !: REAL(wp) :: vdotnor !: IF ( var == 'w' ) THEN k = nzt ked = nzt - 1 ELSE k = nzt + 1 ked = nzt ENDIF DO i = nxl, nxr DO j = nys, nyn vdotnor = w(ked,j,i) IF ( vdotnor > 0.0_wp ) THEN !: Local outflow. f(k,j,i) = f(ked,j,i) ENDIF ENDDO ENDDO ! !-- Just fill up the second ghost-node layer for w. IF ( var == 'w' ) THEN f(nzt+1,:,:) = f(nzt,:,:) ENDIF END SUBROUTINE pmci_extrap_ifoutflow_t SUBROUTINE pmci_anterp_tophat( f, fc, kce, ifl, ifu, jfl, jfu, kfl, kfu, kb, var ) ! !-- Anterpolation of internal-node values to be used as the server-domain !-- values. This subroutine is based on the first-order numerical !-- integration of the fine-grid values contained within the coarse-grid !-- cell. ! !-- Antti Hellsten 16.9.2015. ! IMPLICIT NONE REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(IN) :: f !: REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), INTENT(INOUT) :: fc !: INTEGER(iwp), DIMENSION(icl:icr), INTENT(IN) :: ifl !: INTEGER(iwp), DIMENSION(icl:icr), INTENT(IN) :: ifu !: INTEGER(iwp), DIMENSION(jcs:jcn), INTENT(IN) :: jfl !: INTEGER(iwp), DIMENSION(jcs:jcn), INTENT(IN) :: jfu !: INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: may be unnecessary INTEGER(iwp), INTENT(IN) :: kce !: INTEGER(iwp), DIMENSION(0:kce), INTENT(IN) :: kfl !: INTEGER(iwp), DIMENSION(0:kce), INTENT(IN) :: kfu !: CHARACTER(LEN=1), INTENT(IN) :: var !: INTEGER(iwp) :: i !: INTEGER(iwp) :: icb !: INTEGER(iwp) :: ice !: INTEGER(iwp) :: ifc !: INTEGER(iwp) :: ijfc !: INTEGER(iwp) :: j !: INTEGER(iwp) :: jcb !: INTEGER(iwp) :: jce !: INTEGER(iwp) :: k !: INTEGER(iwp) :: kcb !: INTEGER(iwp) :: l !: INTEGER(iwp) :: m !: INTEGER(iwp) :: n !: INTEGER(iwp) :: nfc !: REAL(wp) :: cellsum !: REAL(wp) :: f1f !: REAL(wp) :: fra !: icb = icl ice = icr jcb = jcs jce = jcn ! !-- Define the index bounds icb, ice, jcb and jce. !-- Note that kcb is simply zero and kce enters here as a parameter and it is !-- determined in init_anterp_tophat IF ( nest_bound_l ) THEN IF ( var == 'u' ) THEN icb = icl + nhll + 1 ELSE icb = icl + nhll ENDIF ENDIF IF ( nest_bound_r ) THEN ice = icr - nhlr ENDIF IF ( nest_bound_s ) THEN IF ( var == 'v' ) THEN jcb = jcs + nhls + 1 ELSE jcb = jcs + nhls ENDIF ENDIF IF ( nest_bound_n ) THEN jce = jcn - nhln ENDIF kcb = 0 ! !-- Note that l,m, and n are coarse-grid indices and i,j, and k are fine-grid indices. DO l = icb, ice ifc = ifu(l) - ifl(l) + 1 DO m = jcb, jce ijfc = ifc * ( jfu(m) - jfl(m) +1 ) ! !-- How to deal with the lower bound of k in case of non-flat topography? !kcb = MIN( kb(jfl(m),ifl(l)), kb(jfu(m),ifl(l)), kb(jfl(m),ifu(l)), kb(jfu(m),ifu(l)) ) ! Something wrong with this. DO n = kcb, kce nfc = ijfc * ( kfu(n) - kfl(n) + 1 ) cellsum = 0.0 DO i = ifl(l), ifu(l) DO j = jfl(m), jfu(m) DO k = kfl(n), kfu(n) cellsum = cellsum + f(k,j,i) ENDDO ENDDO ENDDO ! !-- Spatial under-relaxation. fra = frax(l) * fray(m) * fraz(n) !-- TO_DO: why not KIND=wp ? fc(n,m,l) = ( 1.0_wp - fra ) * fc(n,m,l) + fra * cellsum / REAL( nfc, KIND=KIND(cellsum) ) ENDDO ENDDO ENDDO END SUBROUTINE pmci_anterp_tophat #endif END SUBROUTINE pmci_client_datatrans SUBROUTINE pmci_update_new #if defined( __parallel ) ! !-- Copy the interpolated/anterpolated boundary values to the _p !-- arrays, too, to make sure the interpolated/anterpolated boundary !-- values are carried over from one RK inner step to another. !-- So far works only with the cpp-switch __nopointer. ! !-- Antti Hellsten 8.3.2015 ! !-- Just debugging w(nzt+1,:,:) = w(nzt,:,:) u_p = u v_p = v w_p = w e_p = e pt_p = pt IF ( humidity .OR. passive_scalar ) THEN q_p = q ENDIF ! !-- TO_DO: Find out later if nesting would work without __nopointer. #endif END SUBROUTINE pmci_update_new SUBROUTINE pmci_set_array_pointer( name, client_id, nz_cl ) IMPLICIT NONE INTEGER, INTENT(IN) :: client_id !: INTEGER, INTENT(IN) :: nz_cl !: CHARACTER(LEN=*), INTENT(IN) :: name !: #if defined( __parallel ) REAL(wp), POINTER, DIMENSION(:,:) :: p_2d !: REAL(wp), POINTER, DIMENSION(:,:) :: p_2d_sec !: REAL(wp), POINTER, DIMENSION(:,:,:) :: p_3d !: REAL(wp), POINTER, DIMENSION(:,:,:) :: p_3d_sec !: INTEGER(iwp) :: ierr !: INTEGER(iwp) :: istat !: NULLIFY( p_3d ) NULLIFY( p_2d ) ! !-- List of array names, which can be coupled !-- In case of 3D please change also the second array for the pointer version IF ( TRIM(name) == "u" ) p_3d => u IF ( TRIM(name) == "v" ) p_3d => v IF ( TRIM(name) == "w" ) p_3d => w IF ( TRIM(name) == "e" ) p_3d => e IF ( TRIM(name) == "pt" ) p_3d => pt IF ( TRIM(name) == "q" ) p_3d => q ! !-- This is just an example for a 2D array, not active for coupling !-- Please note, that z0 has to be declared as TARGET array in modules.f90 ! IF ( TRIM(name) == "z0" ) p_2d => z0 #if defined( __nopointer ) IF ( ASSOCIATED( p_3d ) ) THEN CALL pmc_s_set_dataarray( client_id, p_3d, nz_cl, nz ) ELSEIF ( ASSOCIATED( p_2d ) ) THEN CALL pmc_s_set_dataarray( client_id, p_2d ) ELSE ! !-- Give only one message for the root domain IF ( myid == 0 .AND. cpl_id == 1 ) THEN message_string = 'pointer for array "' // TRIM( name ) // & '" can''t be associated' CALL message( 'pmci_set_array_pointer', 'PA0117', 3, 2, 0, 6, 0 ) ELSE ! !-- Avoid others to continue CALL MPI_BARRIER( comm2d, ierr ) ENDIF ENDIF #else !-- TO_DO: Why aren't the other pointers (p_3d) not set to u_1, v_1, etc.?? IF ( TRIM(name) == "u" ) p_3d_sec => u_2 IF ( TRIM(name) == "v" ) p_3d_sec => v_2 IF ( TRIM(name) == "w" ) p_3d_sec => w_2 IF ( TRIM(name) == "e" ) p_3d_sec => e_2 IF ( TRIM(name) == "pt" ) p_3d_sec => pt_2 IF ( TRIM(name) == "q" ) p_3d_sec => q_2 IF ( ASSOCIATED( p_3d ) ) THEN CALL pmc_s_set_dataarray( client_id, p_3d, nz_cl, nz, & array_2 = p_3d_sec ) ELSEIF ( ASSOCIATED( p_2d ) ) THEN CALL pmc_s_set_dataarray( client_id, p_2d ) ELSE ! !-- Give only one message for the root domain IF ( myid == 0 .AND. cpl_id == 1 ) THEN message_string = 'pointer for array "' // TRIM( name ) // & '" can''t be associated' CALL message( 'pmci_set_array_pointer', 'PA0117', 3, 2, 0, 6, 0 ) ELSE ! !-- Avoid others to continue CALL MPI_BARRIER( comm2d, ierr ) ENDIF ENDIF #endif #endif END SUBROUTINE pmci_set_array_pointer SUBROUTINE pmci_create_client_arrays( name, is, ie, js, je, nzc ) IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: ie !: INTEGER(iwp), INTENT(IN) :: is !: INTEGER(iwp), INTENT(IN) :: je !: INTEGER(iwp), INTENT(IN) :: js !: INTEGER(iwp), INTENT(IN) :: nzc !: Note that nzc is cg%nz CHARACTER(LEN=*), INTENT(IN) :: name !: #if defined( __parallel ) REAL(wp), POINTER,DIMENSION(:,:) :: p_2d !: REAL(wp), POINTER,DIMENSION(:,:,:) :: p_3d !: INTEGER(iwp) :: ierr !: INTEGER(iwp) :: istat !: NULLIFY( p_3d ) NULLIFY( p_2d ) ! !-- List of array names, which can be coupled. !-- AH: Note that the k-range of the *c arrays is changed from 1:nz to 0:nz+1. IF ( TRIM( name ) == "u" ) THEN IF ( .NOT. ALLOCATED( uc ) ) ALLOCATE( uc(0:nzc+1, js:je, is:ie) ) p_3d => uc ELSEIF ( TRIM( name ) == "v" ) THEN IF ( .NOT. ALLOCATED( vc ) ) ALLOCATE( vc(0:nzc+1, js:je, is:ie) ) p_3d => vc ELSEIF ( TRIM( name ) == "w" ) THEN IF ( .NOT. ALLOCATED( wc ) ) ALLOCATE( wc(0:nzc+1, js:je, is:ie) ) p_3d => wc ELSEIF ( TRIM( name ) == "e" ) THEN IF ( .NOT. ALLOCATED( ec ) ) ALLOCATE( ec(0:nzc+1, js:je, is:ie) ) p_3d => ec ELSEIF ( TRIM( name ) == "pt") THEN IF ( .NOT. ALLOCATED( ptc ) ) ALLOCATE( ptc(0:nzc+1, js:je, is:ie) ) p_3d => ptc ELSEIF ( TRIM( name ) == "q") THEN IF ( .NOT. ALLOCATED( qc ) ) ALLOCATE( qc(0:nzc+1, js:je, is:ie) ) p_3d => qc !ELSEIF (trim(name) == "z0") then !IF (.not.allocated(z0c)) allocate(z0c(js:je, is:ie)) !p_2d => z0c ENDIF IF ( ASSOCIATED( p_3d ) ) THEN CALL pmc_c_set_dataarray( p_3d ) ELSEIF ( ASSOCIATED( p_2d ) ) THEN CALL pmc_c_set_dataarray( p_2d ) ELSE ! !-- Give only one message for the first client domain IF ( myid == 0 .AND. cpl_id == 2 ) THEN message_string = 'pointer for array "' // TRIM( name ) // & '" can''t be associated' CALL message( 'pmci_create_client_arrays', 'PA0170', 3, 2, 0, 6, 0 ) ELSE ! !-- Avoid others to continue CALL MPI_BARRIER( comm2d, ierr ) ENDIF ENDIF #endif END SUBROUTINE pmci_create_client_arrays SUBROUTINE pmci_server_initialize #if defined( __parallel ) IMPLICIT NONE INTEGER(iwp) :: client_id !: INTEGER(iwp) :: m !: REAL(wp) :: waittime !: DO m = 1, SIZE( pmc_server_for_client ) - 1 client_id = pmc_server_for_client(m) CALL pmc_s_fillbuffer( client_id, waittime=waittime ) ENDDO #endif END SUBROUTINE pmci_server_initialize SUBROUTINE pmci_client_initialize #if defined( __parallel ) IMPLICIT NONE INTEGER(iwp) :: i !: INTEGER(iwp) :: icl !: INTEGER(iwp) :: icr !: INTEGER(iwp) :: j !: INTEGER(iwp) :: jcn !: INTEGER(iwp) :: jcs !: REAL(wp) :: waittime !: IF ( cpl_id > 1 ) THEN ! Root id is never a client ! !-- Client domain boundaries in the server indice space. icl = coarse_bound(1) icr = coarse_bound(2) jcs = coarse_bound(3) jcn = coarse_bound(4) ! !-- Get data from server CALL pmc_c_getbuffer( waittime = waittime ) ! !-- The interpolation. CALL pmci_interp_tril_all ( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, r2yo, r1zo, r2zo, nzb_u_inner, 'u' ) CALL pmci_interp_tril_all ( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, r2yv, r1zo, r2zo, nzb_v_inner, 'v' ) CALL pmci_interp_tril_all ( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, r2yo, r1zw, r2zw, nzb_w_inner, 'w' ) CALL pmci_interp_tril_all ( e, ec, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, nzb_s_inner, 'e' ) CALL pmci_interp_tril_all ( pt, ptc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, nzb_s_inner, 's' ) IF ( humidity .OR. passive_scalar ) THEN CALL pmci_interp_tril_all ( q, qc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, nzb_s_inner, 's' ) ENDIF IF ( topography /= 'flat' ) THEN ! !-- Inside buildings set velocities and TKE back to zero. !-- Other scalars (pt, q, s, km, kh, p, sa, ...) are ignored at present, !-- maybe revise later. DO i = nxlg, nxrg DO j = nysg, nyng u(nzb:nzb_u_inner(j,i),j,i) = 0.0_wp v(nzb:nzb_v_inner(j,i),j,i) = 0.0_wp w(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp e(nzb:nzb_s_inner(j,i),j,i) = 0.0_wp u_p(nzb:nzb_u_inner(j,i),j,i) = 0.0_wp v_p(nzb:nzb_v_inner(j,i),j,i) = 0.0_wp w_p(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp e_p(nzb:nzb_s_inner(j,i),j,i) = 0.0_wp ENDDO ENDDO ENDIF ENDIF CONTAINS SUBROUTINE pmci_interp_tril_all( f, fc, ic, jc, kc, r1x, r2x, r1y, r2y, r1z, r2z, kb, var ) ! !-- Interpolation of the internal values for the client-domain initialization. !-- This subroutine is based on trilinear interpolation. !-- Coding based on interp_tril_lr/sn/t ! !-- Antti Hellsten 20.10.2015. IMPLICIT NONE REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), INTENT(IN) :: fc !: REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r1x !: REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r2x !: REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r1y !: REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r2y !: REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r1z !: REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r2z !: INTEGER(iwp), DIMENSION(nxlg:nxrg), INTENT(IN) :: ic !: INTEGER(iwp), DIMENSION(nysg:nyng), INTENT(IN) :: jc !: INTEGER(iwp), DIMENSION(nzb:nzt+1), INTENT(IN) :: kc !: INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: CHARACTER(LEN=1), INTENT(IN) :: var !: INTEGER(iwp) :: i !: INTEGER(iwp) :: ib !: INTEGER(iwp) :: ie !: INTEGER(iwp) :: j !: INTEGER(iwp) :: jb !: INTEGER(iwp) :: je !: INTEGER(iwp) :: k !: INTEGER(iwp) :: k1 !: INTEGER(iwp) :: kbc !: INTEGER(iwp) :: l !: INTEGER(iwp) :: m !: INTEGER(iwp) :: n !: REAL(wp) :: fk !: REAL(wp) :: fkj !: REAL(wp) :: fkjp !: REAL(wp) :: fkp !: REAL(wp) :: fkpj !: REAL(wp) :: fkpjp !: REAL(wp) :: logratio !: REAL(wp) :: logzuc1 !: REAL(wp) :: zuc1 !: ib = nxl ie = nxr jb = nys je = nyn IF ( nest_bound_l ) THEN ib = nxl - 1 IF ( var == 'u' ) THEN ! For u, nxl is a ghost node, but not for the other variables. ib = nxl ENDIF ENDIF IF ( nest_bound_s ) THEN jb = nys - 1 IF ( var == 'v' ) THEN ! For v, nys is a ghost node, but not for the other variables. jb = nys ENDIF ENDIF IF ( nest_bound_r ) THEN ie = nxr + 1 ENDIF IF ( nest_bound_n ) THEN je = nyn + 1 ENDIF ! !-- Trilinear interpolation. DO i = ib, ie DO j = jb, je DO k = kb(j,i), nzt + 1 l = ic(i) m = jc(j) n = kc(k) fkj = r1x(i) * fc(n,m,l) + r2x(i) * fc(n,m,l+1) fkjp = r1x(i) * fc(n,m+1,l) + r2x(i) * fc(n,m+1,l+1) fkpj = r1x(i) * fc(n+1,m,l) + r2x(i) * fc(n+1,m,l+1) fkpjp = r1x(i) * fc(n+1,m+1,l) + r2x(i) * fc(n+1,m+1,l+1) fk = r1y(j) * fkj + r2y(j) * fkjp fkp = r1y(j) * fkpj + r2y(j) * fkpjp f(k,j,i) = r1z(k) * fk + r2z(k) * fkp ENDDO ENDDO ENDDO ! !-- Correct the interpolated values of u and v in near-wall nodes, i.e. in !-- the nodes below the coarse-grid nodes with k=1. The corrction is only made !-- over horizontal wall surfaces in this phase. For the nest boundary conditions, !-- a corresponding corrections is made for all vertical walls, too. IF ( var == 'u' .OR. var == 'v' ) THEN DO i = ib, nxr DO j = jb, nyn kbc = 1 DO WHILE ( cg%zu(kbc) < zu(kb(j,i)) ) ! kbc is the first coarse-grid point above the surface. kbc = kbc + 1 ENDDO zuc1 = cg%zu(kbc) k1 = kb(j,i) + 1 DO WHILE ( zu(k1) < zuc1 ) k1 = k1 + 1 ENDDO logzuc1 = LOG( ( zu(k1) - zu(kb(j,i)) ) / z0(j,i) ) k = kb(j,i) + 1 DO WHILE ( zu(k) < zuc1 ) logratio = ( LOG( ( zu(k) - zu(kb(j,i)) ) / z0(j,i)) ) / logzuc1 f(k,j,i) = logratio * f(k1,j,i) k = k + 1 ENDDO f(kb(j,i),j,i) = 0.0_wp ENDDO ENDDO ELSEIF ( var == 'w' ) THEN DO i = ib, nxr DO j = jb, nyn f(kb(j,i),j,i) = 0.0_wp ENDDO ENDDO ENDIF END SUBROUTINE pmci_interp_tril_all #endif END SUBROUTINE pmci_client_initialize SUBROUTINE pmci_ensure_nest_mass_conservation #if defined( __parallel ) ! !-- Adjust the volume-flow rate through the top boundary !-- so that the net volume flow through all boundaries !-- of the current nest domain becomes zero. IMPLICIT NONE INTEGER(iwp) :: i !: INTEGER(iwp) :: ierr !: INTEGER(iwp) :: j !: INTEGER(iwp) :: k !: REAL(wp) :: dxdy !: REAL(wp) :: innor !: REAL(wp), DIMENSION(1:3) :: volume_flow_l !: REAL(wp) :: w_lt !: ! !-- Sum up the volume flow through the left/right boundaries. volume_flow(1) = 0.0_wp volume_flow_l(1) = 0.0_wp IF ( nest_bound_l ) THEN i = 0 innor = dy DO j = nys, nyn DO k = nzb_u_inner(j,i) + 1, nzt volume_flow_l(1) = volume_flow_l(1) + innor * u(k,j,i) * dzw(k) ENDDO ENDDO ENDIF IF ( nest_bound_r ) THEN i = nx + 1 innor = -dy DO j = nys, nyn DO k = nzb_u_inner(j,i) + 1, nzt volume_flow_l(1) = volume_flow_l(1) + innor * u(k,j,i) * dzw(k) ENDDO ENDDO ENDIF #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_l(1), volume_flow(1), 1, MPI_REAL, & MPI_SUM, comm2d, ierr ) #else volume_flow(1) = volume_flow_l(1) #endif ! !-- Sum up the volume flow through the south/north boundaries. volume_flow(2) = 0.0_wp volume_flow_l(2) = 0.0_wp IF ( nest_bound_s ) THEN j = 0 innor = dx DO i = nxl, nxr DO k = nzb_v_inner(j,i) + 1, nzt volume_flow_l(2) = volume_flow_l(2) + innor * v(k,j,i) * dzw(k) ENDDO ENDDO ENDIF IF ( nest_bound_n ) THEN j = ny + 1 innor = -dx DO i = nxl, nxr DO k = nzb_v_inner(j,i)+1, nzt volume_flow_l(2) = volume_flow_l(2) + innor * v(k,j,i) * dzw(k) ENDDO ENDDO ENDIF #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_l(2), volume_flow(2), 1, MPI_REAL, & MPI_SUM, comm2d, ierr ) #else volume_flow(2) = volume_flow_l(2) #endif ! !-- Sum up the volume flow through the top boundary. volume_flow(3) = 0.0_wp volume_flow_l(3) = 0.0_wp dxdy = dx * dy k = nzt DO i = nxl, nxr DO j = nys, nyn volume_flow_l(3) = volume_flow_l(3) - w(k,j,i) * dxdy ENDDO ENDDO #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_l(3), volume_flow(3), 1, MPI_REAL, & MPI_SUM, comm2d, ierr ) #else volume_flow(3) = volume_flow_l(3) #endif ! !-- Correct the top-boundary value of w. w_lt = (volume_flow(1) + volume_flow(2) + volume_flow(3)) / area_t DO i = nxl, nxr DO j = nys, nyn DO k = nzt, nzt + 1 w(k,j,i) = w(k,j,i) + w_lt ENDDO ENDDO ENDDO #endif END SUBROUTINE pmci_ensure_nest_mass_conservation END MODULE pmc_interface