!> @file plant_canopy_model_mod.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2019 Leibniz Universitaet Hannover ! Copyright 2017-2019 Institute of Computer Science of the ! Czech Academy of Sciences, Prague !------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: plant_canopy_model_mod.f90 3885 2019-04-11 11:29:34Z forkel $ ! Changes related to global restructuring of location messages and introduction ! of additional debug messages ! ! 3864 2019-04-05 09:01:56Z monakurppa ! unsed variables removed ! ! 3745 2019-02-15 18:57:56Z suehring ! Bugfix in transpiration, floating invalid when temperature ! becomes > 40 degrees ! ! 3744 2019-02-15 18:38:58Z suehring ! Some interface calls moved to module_interface + cleanup ! ! 3655 2019-01-07 16:51:22Z knoop ! unused variables removed ! ! 3589 2018-11-30 15:09:51Z suehring ! Formatting adjustments ! ! 3582 2018-11-29 19:16:36Z suehring ! working precision added to make code Fortran 2008 conform ! ! 3498 2018-11-07 10:53:03Z gronemeier ! corrected revisions section ! ! 3497 2018-11-06 17:15:18Z suehring ! Remove write statement. ! ! 3467 2018-10-30 19:05:21Z suehring ! Add calculation of transpiration for resolved plant canopy (trees, shrubs) ! (V. Fuka, MFF UK Prague, J.Resler, ICS AS, Prague) ! ! Fix reading plant canopy over buildings ! ! 3337 2018-10-12 15:17:09Z kanani ! Fix reading plant canopy over buildings ! ! 3294 2018-10-01 02:37:10Z raasch ! ocean renamed ocean_mode ! ! 3274 2018-09-24 15:42:55Z knoop ! Modularization of all bulk cloud physics code components ! ! 3248 2018-09-14 09:42:06Z sward ! Minor formating changes ! ! 3246 2018-09-13 15:14:50Z sward ! Added error handling for input namelist via parin_fail_message ! ! 3241 2018-09-12 15:02:00Z raasch ! unused variables removed ! ! 3065 2018-06-12 07:03:02Z Giersch ! dz was replaced by the help of zw to allow for vertical stretching ! ! 3049 2018-05-29 13:52:36Z Giersch ! Error messages revised ! ! 3045 2018-05-28 07:55:41Z Giersch ! Error message revised ! ! 3022 2018-05-18 11:12:35Z suehring ! Bugfix in allocation of transpiration rate ! ! 3014 2018-05-09 08:42:38Z maronga ! Bugfix: nzb_do and nzt_do were not used for 3d data output ! Added pc_transpiration_rate ! ! 2977 2018-04-17 10:27:57Z kanani ! Implement changes from branch radiation (r2948-2971) with minor modifications, ! plus some formatting. ! (moh.hefny): ! Add plant canopy type to account for changes in LAD (based on the changes ! done by Resler & Pavel) and correct the error message to PALM Standard. ! ! 2932 2018-03-26 09:39:22Z maronga ! renamed canopy_par to plant_canopy_parameters ! ! 2920 2018-03-22 11:22:01Z kanani ! Move usm_lad_rma and prototype_lad to radiation_model (moh.hefny) ! ! 2892 2018-03-14 15:06:29Z suehring ! Bugfix, read separate ASCII LAD files for parent and child model. ! ! 2770 2018-01-25 15:10:09Z kanani ! Correction of parameter check ! ! 2768 2018-01-24 15:38:29Z kanani ! Added check for output quantity pcm_heatrate, some formatting ! ! 2766 2018-01-22 17:17:47Z kanani ! Increased LEN of canopy mode to 30 ! ! 2746 2018-01-15 12:06:04Z suehring ! Move flag plant canopy to modules ! ! 2718 2018-01-02 08:49:38Z maronga ! Corrected "Former revisions" section ! ! 2701 2017-12-15 15:40:50Z suehring ! Changes from last commit documented ! ! 2698 2017-12-14 18:46:24Z suehring ! Bugfix in get_topography_top_index ! ! 2696 2017-12-14 17:12:51Z kanani ! Change in file header (GPL part) ! Bugfix for vertical loop index pch_index in case of Netcdf input ! Introduce 2D index array incorporate canopy top index ! Check if canopy on top of topography do not exceed vertical dimension ! Add check for canopy_mode in case of Netcdf input. ! Enable _FillValue output for 3d quantities ! Bugfix in reading of PIDS leaf area density (MS) ! ! 2669 2017-12-06 16:03:27Z raasch ! coupling_char removed ! ! 2512 2017-10-04 08:26:59Z raasch ! upper bounds of 3d output changed from nx+1,ny+1 to nx,ny ! no output of ghost layer data ! ! 2318 2017-07-20 17:27:44Z suehring ! Get topography top index via Function call ! ! 2317 2017-07-20 17:27:19Z suehring ! Changed error messages ! ! 2233 2017-05-30 18:08:54Z suehring ! ! 2232 2017-05-30 17:47:52Z suehring ! Adjustments to new topography concept ! ! 2213 2017-04-24 15:10:35Z kanani ! Bugfix: exchange of ghost points in array pc_heating_rate needed for output ! of pcm_heatrate, onetime ghost point exchange of lad_s after initialization. ! Formatting and clean-up of subroutine pcm_read_plant_canopy_3d, ! minor re-organization of canopy-heating initialization. ! ! 2209 2017-04-19 09:34:46Z kanani ! Added 3d output of leaf area density (pcm_lad) and canopy ! heat rate (pcm_heatrate) ! ! 2024 2016-10-12 16:42:37Z kanani ! Added missing lad_s initialization ! ! 2011 2016-09-19 17:29:57Z kanani ! Renamed canopy_heat_flux to pc_heating_rate, since the original meaning/ ! calculation of the quantity has changed, related to the urban surface model ! and similar future applications. ! ! 2007 2016-08-24 15:47:17Z kanani ! Added SUBROUTINE pcm_read_plant_canopy_3d for reading 3d plant canopy data ! from file (new case canopy_mode=read_from_file_3d) in the course of ! introduction of urban surface model, ! introduced variable ext_coef, ! resorted SUBROUTINEs to alphabetical order ! ! 2000 2016-08-20 18:09:15Z knoop ! Forced header and separation lines into 80 columns ! ! 1960 2016-07-12 16:34:24Z suehring ! Separate humidity and passive scalar ! ! 1953 2016-06-21 09:28:42Z suehring ! Bugfix, lad_s and lad must be public ! ! 1826 2016-04-07 12:01:39Z maronga ! Further modularization ! ! 1721 2015-11-16 12:56:48Z raasch ! bugfixes: shf is reduced in areas covered with canopy only, ! canopy is set on top of topography ! ! 1682 2015-10-07 23:56:08Z knoop ! Code annotations made doxygen readable ! ! 1484 2014-10-21 10:53:05Z kanani ! Changes due to new module structure of the plant canopy model: ! module plant_canopy_model_mod now contains a subroutine for the ! initialization of the canopy model (pcm_init), ! limitation of the canopy drag (previously accounted for by calculation of ! a limiting canopy timestep for the determination of the maximum LES timestep ! in subroutine timestep) is now realized by the calculation of pre-tendencies ! and preliminary velocities in subroutine pcm_tendency, ! some redundant MPI communication removed in subroutine pcm_init ! (was previously in init_3d_model), ! unnecessary 3d-arrays lad_u, lad_v, lad_w removed - lad information on the ! respective grid is now provided only by lad_s (e.g. in the calculation of ! the tendency terms or of cum_lai_hf), ! drag_coefficient, lai, leaf_surface_concentration, ! scalar_exchange_coefficient, sec and sls renamed to canopy_drag_coeff, ! cum_lai_hf, leaf_surface_conc, leaf_scalar_exch_coeff, lsec and lsc, ! respectively, ! unnecessary 3d-arrays cdc, lsc and lsec now defined as single-value constants, ! USE-statements and ONLY-lists modified accordingly ! ! 1340 2014-03-25 19:45:13Z kanani ! REAL constants defined as wp-kind ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! old module precision_kind is removed, ! revision history before 2012 removed, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! ! 1036 2012-10-22 13:43:42Z raasch ! code put under GPL (PALM 3.9) ! ! 138 2007-11-28 10:03:58Z letzel ! Initial revision ! ! Description: ! ------------ !> 1) Initialization of the canopy model, e.g. construction of leaf area density !> profile (subroutine pcm_init). !> 2) Calculation of sinks and sources of momentum, heat and scalar concentration !> due to canopy elements (subroutine pcm_tendency). ! ! @todo - precalculate constant terms in pcm_calc_transpiration_rate !------------------------------------------------------------------------------! MODULE plant_canopy_model_mod USE arrays_3d, & ONLY: dzu, dzw, e, exner, hyp, pt, q, s, tend, u, v, w, zu, zw USE basic_constants_and_equations_mod, & ONLY: c_p, degc_to_k, l_v, lv_d_cp, r_d, rd_d_rv USE control_parameters, & ONLY: debug_output, humidity USE indices, & ONLY: nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, & nz, nzb, nzt USE kinds USE pegrid USE surface_mod, & ONLY: get_topography_top_index_ji IMPLICIT NONE CHARACTER (LEN=30) :: canopy_mode = 'block' !< canopy coverage LOGICAL :: plant_canopy_transpiration = .FALSE. !< flag to switch calculation of transpiration and corresponding latent heat !< for resolved plant canopy inside radiation model !< (calls subroutine pcm_calc_transpiration_rate from module plant_canopy_mod) INTEGER(iwp) :: pch_index = 0 !< plant canopy height/top index INTEGER(iwp) :: lad_vertical_gradient_level_ind(10) = -9999 !< lad-profile levels (index) INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch_index_ji !< local plant canopy top LOGICAL :: calc_beta_lad_profile = .FALSE. !< switch for calc. of lad from beta func. REAL(wp) :: alpha_lad = 9999999.9_wp !< coefficient for lad calculation REAL(wp) :: beta_lad = 9999999.9_wp !< coefficient for lad calculation REAL(wp) :: canopy_drag_coeff = 0.0_wp !< canopy drag coefficient (parameter) REAL(wp) :: cdc = 0.0_wp !< canopy drag coeff. (abbreviation used in equations) REAL(wp) :: cthf = 0.0_wp !< canopy top heat flux REAL(wp) :: dt_plant_canopy = 0.0_wp !< timestep account. for canopy drag REAL(wp) :: ext_coef = 0.6_wp !< extinction coefficient REAL(wp) :: lad_surface = 0.0_wp !< lad surface value REAL(wp) :: lai_beta = 0.0_wp !< leaf area index (lai) for lad calc. REAL(wp) :: leaf_scalar_exch_coeff = 0.0_wp !< canopy scalar exchange coeff. REAL(wp) :: leaf_surface_conc = 0.0_wp !< leaf surface concentration REAL(wp) :: lsc = 0.0_wp !< leaf surface concentration REAL(wp) :: lsec = 0.0_wp !< leaf scalar exchange coeff. REAL(wp) :: lad_vertical_gradient(10) = 0.0_wp !< lad gradient REAL(wp) :: lad_vertical_gradient_level(10) = -9999999.9_wp !< lad-prof. levels (in m) REAL(wp) :: lad_type_coef(0:10) = 1.0_wp !< multiplicative coeficients for particular types !< of plant canopy (e.g. deciduous tree during winter) REAL(wp), DIMENSION(:), ALLOCATABLE :: lad !< leaf area density REAL(wp), DIMENSION(:), ALLOCATABLE :: pre_lad !< preliminary lad REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: cum_lai_hf !< cumulative lai for heatflux calc. REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: lad_s !< lad on scalar-grid REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_heating_rate !< plant canopy heating rate REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_transpiration_rate !< plant canopy transpiration rate REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pc_latent_rate !< plant canopy latent heating rate SAVE PRIVATE ! !-- Public functions PUBLIC pcm_calc_transpiration_rate, pcm_check_data_output, & pcm_check_parameters, pcm_data_output_3d, pcm_define_netcdf_grid, & pcm_header, pcm_init, pcm_parin, pcm_tendency ! !-- Public variables and constants PUBLIC cdc, pc_heating_rate, pc_transpiration_rate, pc_latent_rate, & canopy_mode, cthf, dt_plant_canopy, lad, lad_s, pch_index, & plant_canopy_transpiration INTERFACE pcm_calc_transpiration_rate MODULE PROCEDURE pcm_calc_transpiration_rate END INTERFACE pcm_calc_transpiration_rate INTERFACE pcm_check_data_output MODULE PROCEDURE pcm_check_data_output END INTERFACE pcm_check_data_output INTERFACE pcm_check_parameters MODULE PROCEDURE pcm_check_parameters END INTERFACE pcm_check_parameters INTERFACE pcm_data_output_3d MODULE PROCEDURE pcm_data_output_3d END INTERFACE pcm_data_output_3d INTERFACE pcm_define_netcdf_grid MODULE PROCEDURE pcm_define_netcdf_grid END INTERFACE pcm_define_netcdf_grid INTERFACE pcm_header MODULE PROCEDURE pcm_header END INTERFACE pcm_header INTERFACE pcm_init MODULE PROCEDURE pcm_init END INTERFACE pcm_init INTERFACE pcm_parin MODULE PROCEDURE pcm_parin END INTERFACE pcm_parin INTERFACE pcm_read_plant_canopy_3d MODULE PROCEDURE pcm_read_plant_canopy_3d END INTERFACE pcm_read_plant_canopy_3d INTERFACE pcm_tendency MODULE PROCEDURE pcm_tendency MODULE PROCEDURE pcm_tendency_ij END INTERFACE pcm_tendency CONTAINS !------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculation of the plant canopy transpiration rate based on the Jarvis-Stewart !> with parametrizations described in Daudet et al. (1999; Agricult. and Forest !> Meteorol. 97) and Ngao, Adam and Saudreau (2017; Agricult. and Forest Meteorol !> 237-238). Model functions f1-f4 were adapted from Stewart (1998; Agric. !> and Forest. Meteorol. 43) instead, because they are valid for broader intervals !> of values. Funcion f4 used in form present in van Wijk et al. (1998; !> Tree Physiology 20). !> !> This subroutine is called from subroutine radiation_interaction !> after the calculation of radiation in plant canopy boxes. !> (arrays pcbinsw and pcbinlw). !> !------------------------------------------------------------------------------! SUBROUTINE pcm_calc_transpiration_rate(i, j, k, kk, pcbsw, pcblw, pcbtr, pcblh) USE control_parameters, & ONLY: dz USE grid_variables, & ONLY: dx, dy IMPLICIT NONE !-- input parameters INTEGER(iwp), INTENT(IN) :: i, j, k, kk !< indices of the pc gridbox REAL(wp), INTENT(IN) :: pcbsw !< sw radiation in gridbox (W) REAL(wp), INTENT(IN) :: pcblw !< lw radiation in gridbox (W) REAL(wp), INTENT(OUT) :: pcbtr !< transpiration rate dq/dt (kg/kg/s) REAL(wp), INTENT(OUT) :: pcblh !< latent heat from transpiration dT/dt (K/s) !-- variables and parameters for calculation of transpiration rate REAL(wp) :: sat_press, sat_press_d, temp, v_lad REAL(wp) :: d_fact, g_b, g_s, wind_speed, evapor_rate REAL(wp) :: f1, f2, f3, f4, vpd, rswc, e_eq, e_imp, rad REAL(wp), PARAMETER :: gama_psychr = 66 !< psychrometric constant (Pa/K) REAL(wp), PARAMETER :: g_s_max = 0.01 !< maximum stomatal conductivity (m/s) REAL(wp), PARAMETER :: m_soil = 0.4_wp !< soil water content (needs to adjust or take from LSM) REAL(wp), PARAMETER :: m_wilt = 0.01_wp !< wilting point soil water content (needs to adjust or take from LSM) REAL(wp), PARAMETER :: m_sat = 0.51_wp !< saturation soil water content (needs to adjust or take from LSM) REAL(wp), PARAMETER :: t2_min = 0.0_wp !< minimal temperature for calculation of f2 REAL(wp), PARAMETER :: t2_max = 40.0_wp !< maximal temperature for calculation of f2 !-- Temperature (deg C) temp = pt(k,j,i) * exner(k) - degc_to_k !-- Coefficient for conversion of radiation to grid to radiation to unit leaves surface v_lad = 1.0_wp / ( MAX( lad_s(kk,j,i), 1.0e-10_wp ) * dx * dy * dz(1) ) !-- Magnus formula for the saturation pressure (see Ngao, Adam and Saudreau (2017) eq. 1) !-- There are updated formulas available, kept consistent with the rest of the parametrization sat_press = 610.8_wp * exp(17.27_wp * temp/(temp + 237.3_wp)) !-- Saturation pressure derivative (derivative of the above) sat_press_d = sat_press * 17.27_wp * 237.3_wp / (temp + 237.3_wp)**2 !-- Wind speed wind_speed = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) )**2 + & ( 0.5_wp * ( v(k,j,i) + v(k,j,i+1) ) )**2 + & ( 0.5_wp * ( w(k,j,i) + w(k,j,i+1) ) )**2 ) !-- Aerodynamic conductivity (Daudet et al. (1999) eq. 14 g_b = 0.01_wp * wind_speed + 0.0071_wp !-- Radiation flux per leaf surface unit rad = pcbsw * v_lad !-- First function for calculation of stomatal conductivity (radiation dependency) !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 17 f1 = rad * (1000._wp+42.1_wp) / 1000._wp / (rad+42.1_wp) !-- Second function for calculation of stomatal conductivity (temperature dependency) !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 21 f2 = MAX(t2_min, (temp-t2_min) * MAX(0.0_wp,t2_max-temp)**((t2_max-16.9_wp)/(16.9_wp-t2_min)) / & ((16.9_wp-t2_min) * (t2_max-16.9_wp)**((t2_max-16.9_wp)/(16.9_wp-t2_min))) ) !-- Water pressure deficit !-- Ngao, Adam and Saudreau (2017) eq. 6 but with water vapour partial pressure vpd = max( sat_press - q(k,j,i) * hyp(k) / rd_d_rv, 0._wp ) !-- Third function for calculation of stomatal conductivity (water pressure deficit dependency) !-- Ngao, Adam and Saudreau (2017) Table 1, limited from below according to Stewart (1988) !-- The coefficients of the linear dependence should better correspond to broad-leaved trees !-- than the coefficients from Stewart (1988) which correspond to conifer trees. vpd = MIN(MAX(vpd,770.0_wp),3820.0_wp) f3 = -2e-4_wp * vpd + 1.154_wp !-- Fourth function for calculation of stomatal conductivity (soil moisture dependency) !-- Residual soil water content !-- van Wijk et al. (1998; Tree Physiology 20) eq. 7 !-- TODO - over LSM surface might be calculated from LSM parameters rswc = ( m_sat - m_soil ) / ( m_sat - m_wilt ) !-- van Wijk et al. (1998; Tree Physiology 20) eq. 5-6 (it is a reformulation of eq. 22-23 of Stewart(1988)) f4 = MAX(0._wp, MIN(1.0_wp - 0.041_wp * EXP(3.2_wp * rswc), 1.0_wp - 0.041_wp)) !-- Stomatal conductivity !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 12 !-- (notation according to Ngao, Adam and Saudreau (2017) and others) g_s = g_s_max * f1 * f2 * f3 * f4 + 1.0e-10_wp !-- Decoupling factor !-- Daudet et al. (1999) eq. 6 d_fact = (sat_press_d / gama_psychr + 2._wp ) / & (sat_press_d / gama_psychr + 2._wp + 2 * g_b / g_s ) !-- Equilibrium evaporation rate !-- Daudet et al. (1999) eq. 4 e_eq = (pcbsw + pcblw) * v_lad * sat_press_d / & gama_psychr /( sat_press_d / gama_psychr + 2.0_wp ) / l_v !-- Imposed evaporation rate !-- Daudet et al. (1999) eq. 5 e_imp = r_d * pt(k,j,i) * exner(k) / hyp(k) * c_p * g_s * vpd / gama_psychr / l_v !-- Evaporation rate !-- Daudet et al. (1999) eq. 3 !-- (evaporation rate is limited to non-negative values) evapor_rate = MAX(d_fact * e_eq + ( 1.0_wp - d_fact ) * e_imp, 0.0_wp) !-- Conversion of evaporation rate to q tendency in gridbox !-- dq/dt = E * LAD * V_g / (rho_air * V_g) pcbtr = evapor_rate * r_d * pt(k,j,i) * exner(k) * lad_s(kk,j,i) / hyp(k) !-- = dq/dt !-- latent heat from evaporation pcblh = pcbtr * lv_d_cp !-- = - dT/dt END SUBROUTINE pcm_calc_transpiration_rate !------------------------------------------------------------------------------! ! Description: ! ------------ !> Check data output for plant canopy model !------------------------------------------------------------------------------! SUBROUTINE pcm_check_data_output( var, unit ) USE control_parameters, & ONLY: message_string, urban_surface IMPLICIT NONE CHARACTER (LEN=*) :: unit !< CHARACTER (LEN=*) :: var !< SELECT CASE ( TRIM( var ) ) CASE ( 'pcm_heatrate' ) IF ( cthf == 0.0_wp .AND. .NOT. urban_surface ) THEN message_string = 'output of "' // TRIM( var ) // '" requi' // & 'res setting of parameter cthf /= 0.0' CALL message( 'pcm_check_data_output', 'PA1000', 1, 2, 0, 6, 0 ) ENDIF unit = 'K s-1' CASE ( 'pcm_transpirationrate' ) unit = 'kg kg-1 s-1' CASE ( 'pcm_latentrate' ) unit = 'K s-1' CASE ( 'pcm_bowenratio' ) unit = 'K s-1' CASE ( 'pcm_lad' ) unit = 'm2 m-3' CASE DEFAULT unit = 'illegal' END SELECT END SUBROUTINE pcm_check_data_output !------------------------------------------------------------------------------! ! Description: ! ------------ !> Check parameters routine for plant canopy model !------------------------------------------------------------------------------! SUBROUTINE pcm_check_parameters USE control_parameters, & ONLY: coupling_char, message_string USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model, microphysics_seifert USE netcdf_data_input_mod, & ONLY: input_file_static, input_pids_static IMPLICIT NONE IF ( canopy_drag_coeff == 0.0_wp ) THEN message_string = 'plant_canopy = .TRUE. requires a non-zero drag '// & 'coefficient & given value is canopy_drag_coeff = 0.0' CALL message( 'pcm_check_parameters', 'PA0041', 1, 2, 0, 6, 0 ) ENDIF IF ( ( alpha_lad /= 9999999.9_wp .AND. beta_lad == 9999999.9_wp ) .OR.& beta_lad /= 9999999.9_wp .AND. alpha_lad == 9999999.9_wp ) THEN message_string = 'using the beta function for the construction ' // & 'of the leaf area density profile requires ' // & 'both alpha_lad and beta_lad to be /= 9999999.9' CALL message( 'pcm_check_parameters', 'PA0118', 1, 2, 0, 6, 0 ) ENDIF IF ( calc_beta_lad_profile .AND. lai_beta == 0.0_wp ) THEN message_string = 'using the beta function for the construction ' // & 'of the leaf area density profile requires ' // & 'a non-zero lai_beta, but given value is ' // & 'lai_beta = 0.0' CALL message( 'pcm_check_parameters', 'PA0119', 1, 2, 0, 6, 0 ) ENDIF IF ( calc_beta_lad_profile .AND. lad_surface /= 0.0_wp ) THEN message_string = 'simultaneous setting of alpha_lad /= 9999999.9 '// & 'combined with beta_lad /= 9999999.9 ' // & 'and lad_surface /= 0.0 is not possible, ' // & 'use either vertical gradients or the beta ' // & 'function for the construction of the leaf area '// & 'density profile' CALL message( 'pcm_check_parameters', 'PA0120', 1, 2, 0, 6, 0 ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN message_string = 'plant_canopy = .TRUE. requires cloud_scheme /=' // & ' seifert_beheng' CALL message( 'pcm_check_parameters', 'PA0360', 1, 2, 0, 6, 0 ) ENDIF ! !-- If dynamic input file is used, canopy need to be read from file IF ( input_pids_static .AND. & TRIM( canopy_mode ) /= 'read_from_file_3d' ) THEN message_string = 'Usage of dynamic input file ' // & TRIM( input_file_static ) // & TRIM( coupling_char ) // ' requires ' // & 'canopy_mode = read_from_file_3d' CALL message( 'pcm_check_parameters', 'PA0999', 1, 2, 0, 6, 0 ) ENDIF END SUBROUTINE pcm_check_parameters !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Subroutine defining 3D output variables !------------------------------------------------------------------------------! SUBROUTINE pcm_data_output_3d( av, variable, found, local_pf, fill_value, & nzb_do, nzt_do ) USE indices USE kinds IMPLICIT NONE CHARACTER (LEN=*) :: variable !< INTEGER(iwp) :: av !< INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: k_topo !< topography top index INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) LOGICAL :: found !< REAL(wp) :: fill_value REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< found = .TRUE. local_pf = REAL( fill_value, KIND = 4 ) SELECT CASE ( TRIM( variable ) ) CASE ( 'pcm_heatrate' ) IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn IF ( pch_index_ji(j,i) /= 0 ) THEN k_topo = get_topography_top_index_ji( j, i, 's' ) DO k = k_topo, k_topo + pch_index_ji(j,i) local_pf(i,j,k) = pc_heating_rate(k-k_topo,j,i) ENDDO ENDIF ENDDO ENDDO ENDIF CASE ( 'pcm_transpirationrate' ) IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn IF ( pch_index_ji(j,i) /= 0 ) THEN k_topo = get_topography_top_index_ji( j, i, 's' ) DO k = k_topo, k_topo + pch_index_ji(j,i) local_pf(i,j,k) = pc_transpiration_rate(k-k_topo,j,i) ENDDO ENDIF ENDDO ENDDO ENDIF CASE ( 'pcm_latentrate' ) IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn IF ( pch_index_ji(j,i) /= 0 ) THEN k_topo = get_topography_top_index_ji( j, i, 's' ) DO k = k_topo, k_topo + pch_index_ji(j,i) local_pf(i,j,k) = pc_latent_rate(k-k_topo,j,i) ENDDO ENDIF ENDDO ENDDO ENDIF CASE ( 'pcm_bowenratio' ) IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn IF ( pch_index_ji(j,i) /= 0 ) THEN k_topo = get_topography_top_index_ji( j, i, 's' ) DO k = k_topo, k_topo + pch_index_ji(j,i) IF ( pc_latent_rate(k-k_topo,j,i) /= 0._wp ) THEN local_pf(i,j,k) = pc_heating_rate(k-k_topo,j,i) / & pc_latent_rate(k-k_topo,j,i) ENDIF ENDDO ENDIF ENDDO ENDDO ENDIF CASE ( 'pcm_lad' ) IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn IF ( pch_index_ji(j,i) /= 0 ) THEN k_topo = get_topography_top_index_ji( j, i, 's' ) DO k = k_topo, k_topo + pch_index_ji(j,i) local_pf(i,j,k) = lad_s(k-k_topo,j,i) ENDDO ENDIF ENDDO ENDDO ENDIF CASE DEFAULT found = .FALSE. END SELECT END SUBROUTINE pcm_data_output_3d !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Subroutine defining appropriate grid for netcdf variables. !> It is called from subroutine netcdf. !------------------------------------------------------------------------------! SUBROUTINE pcm_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) IMPLICIT NONE CHARACTER (LEN=*), INTENT(IN) :: var !< LOGICAL, INTENT(OUT) :: found !< CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< found = .TRUE. ! !-- Check for the grid SELECT CASE ( TRIM( var ) ) CASE ( 'pcm_heatrate', 'pcm_lad', 'pcm_transpirationrate', 'pcm_latentrate', 'pcm_bowenratio') grid_x = 'x' grid_y = 'y' grid_z = 'zu' CASE DEFAULT found = .FALSE. grid_x = 'none' grid_y = 'none' grid_z = 'none' END SELECT END SUBROUTINE pcm_define_netcdf_grid !------------------------------------------------------------------------------! ! Description: ! ------------ !> Header output for plant canopy model !------------------------------------------------------------------------------! SUBROUTINE pcm_header ( io ) USE control_parameters, & ONLY: passive_scalar IMPLICIT NONE CHARACTER (LEN=10) :: coor_chr !< CHARACTER (LEN=86) :: coordinates !< CHARACTER (LEN=86) :: gradients !< CHARACTER (LEN=86) :: leaf_area_density !< CHARACTER (LEN=86) :: slices !< INTEGER(iwp) :: i !< INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file INTEGER(iwp) :: k !< REAL(wp) :: canopy_height !< canopy height (in m) canopy_height = zw(pch_index) WRITE ( io, 1 ) canopy_mode, canopy_height, pch_index, & canopy_drag_coeff IF ( passive_scalar ) THEN WRITE ( io, 2 ) leaf_scalar_exch_coeff, & leaf_surface_conc ENDIF ! !-- Heat flux at the top of vegetation WRITE ( io, 3 ) cthf ! !-- Leaf area density profile, calculated either from given vertical !-- gradients or from beta probability density function. IF ( .NOT. calc_beta_lad_profile ) THEN !-- Building output strings, starting with surface value WRITE ( leaf_area_density, '(F7.4)' ) lad_surface gradients = '------' slices = ' 0' coordinates = ' 0.0' i = 1 DO WHILE ( i < 11 .AND. lad_vertical_gradient_level_ind(i) & /= -9999 ) WRITE (coor_chr,'(F7.2)') lad(lad_vertical_gradient_level_ind(i)) leaf_area_density = TRIM( leaf_area_density ) // ' ' // & TRIM( coor_chr ) WRITE (coor_chr,'(F7.2)') lad_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(I7)') lad_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE (coor_chr,'(F7.1)') lad_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) i = i + 1 ENDDO WRITE ( io, 4 ) TRIM( coordinates ), TRIM( leaf_area_density ), & TRIM( gradients ), TRIM( slices ) ELSE WRITE ( leaf_area_density, '(F7.4)' ) lad_surface coordinates = ' 0.0' DO k = 1, pch_index WRITE (coor_chr,'(F7.2)') lad(k) leaf_area_density = TRIM( leaf_area_density ) // ' ' // & TRIM( coor_chr ) WRITE (coor_chr,'(F7.1)') zu(k) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) ENDDO WRITE ( io, 5 ) TRIM( coordinates ), TRIM( leaf_area_density ), & alpha_lad, beta_lad, lai_beta ENDIF 1 FORMAT (//' Vegetation canopy (drag) model:'/ & ' ------------------------------'// & ' Canopy mode: ', A / & ' Canopy height: ',F6.2,'m (',I4,' grid points)' / & ' Leaf drag coefficient: ',F6.2 /) 2 FORMAT (/ ' Scalar exchange coefficient: ',F6.2 / & ' Scalar concentration at leaf surfaces in kg/m**3: ',F6.2 /) 3 FORMAT (' Predefined constant heatflux at the top of the vegetation: ',F6.2, & ' K m/s') 4 FORMAT (/ ' Characteristic levels of the leaf area density:'// & ' Height: ',A,' m'/ & ' Leaf area density: ',A,' m**2/m**3'/ & ' Gradient: ',A,' m**2/m**4'/ & ' Gridpoint: ',A) 5 FORMAT (//' Characteristic levels of the leaf area density and coefficients:'& // ' Height: ',A,' m'/ & ' Leaf area density: ',A,' m**2/m**3'/ & ' Coefficient alpha: ',F6.2 / & ' Coefficient beta: ',F6.2 / & ' Leaf area index: ',F6.2,' m**2/m**2' /) END SUBROUTINE pcm_header !------------------------------------------------------------------------------! ! Description: ! ------------ !> Initialization of the plant canopy model !------------------------------------------------------------------------------! SUBROUTINE pcm_init USE control_parameters, & ONLY: message_string, ocean_mode USE netcdf_data_input_mod, & ONLY: leaf_area_density_f USE surface_mod, & ONLY: surf_def_h, surf_lsm_h, surf_usm_h IMPLICIT NONE INTEGER(iwp) :: i !< running index INTEGER(iwp) :: j !< running index INTEGER(iwp) :: k !< running index INTEGER(iwp) :: m !< running index REAL(wp) :: int_bpdf !< vertical integral for lad-profile construction REAL(wp) :: gradient !< gradient for lad-profile construction REAL(wp) :: canopy_height !< canopy height for lad-profile construction IF ( debug_output ) CALL debug_message( 'pcm_init', 'start' ) ! !-- Allocate one-dimensional arrays for the computation of the !-- leaf area density (lad) profile ALLOCATE( lad(0:nz+1), pre_lad(0:nz+1) ) lad = 0.0_wp pre_lad = 0.0_wp ! !-- Set flag that indicates that the lad-profile shall be calculated by using !-- a beta probability density function IF ( alpha_lad /= 9999999.9_wp .AND. beta_lad /= 9999999.9_wp ) THEN calc_beta_lad_profile = .TRUE. ENDIF ! !-- Compute the profile of leaf area density used in the plant !-- canopy model. The profile can either be constructed from !-- prescribed vertical gradients of the leaf area density or by !-- using a beta probability density function (see e.g. Markkanen et al., !-- 2003: Boundary-Layer Meteorology, 106, 437-459) IF ( .NOT. calc_beta_lad_profile ) THEN ! !-- Use vertical gradients for lad-profile construction i = 1 gradient = 0.0_wp IF ( .NOT. ocean_mode ) THEN lad(0) = lad_surface lad_vertical_gradient_level_ind(1) = 0 DO k = 1, pch_index IF ( i < 11 ) THEN IF ( lad_vertical_gradient_level(i) < zu(k) .AND. & lad_vertical_gradient_level(i) >= 0.0_wp ) THEN gradient = lad_vertical_gradient(i) lad_vertical_gradient_level_ind(i) = k - 1 i = i + 1 ENDIF ENDIF IF ( gradient /= 0.0_wp ) THEN IF ( k /= 1 ) THEN lad(k) = lad(k-1) + dzu(k) * gradient ELSE lad(k) = lad_surface + dzu(k) * gradient ENDIF ELSE lad(k) = lad(k-1) ENDIF ENDDO ENDIF ! !-- In case of no given leaf area density gradients, choose a vanishing !-- gradient. This information is used for the HEADER and the RUN_CONTROL !-- file. IF ( lad_vertical_gradient_level(1) == -9999999.9_wp ) THEN lad_vertical_gradient_level(1) = 0.0_wp ENDIF ELSE ! !-- Use beta function for lad-profile construction int_bpdf = 0.0_wp canopy_height = zw(pch_index) DO k = 0, pch_index int_bpdf = int_bpdf + & ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & beta_lad-1.0_wp ) ) & * ( ( zw(k+1)-zw(k) ) / canopy_height ) ) ENDDO ! !-- Preliminary lad profile (defined on w-grid) DO k = 0, pch_index pre_lad(k) = lai_beta * & ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) & * ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( & beta_lad-1.0_wp ) ) / int_bpdf & ) / canopy_height ENDDO ! !-- Final lad profile (defined on scalar-grid level, since most prognostic !-- quantities are defined there, hence, less interpolation is required !-- when calculating the canopy tendencies) lad(0) = pre_lad(0) DO k = 1, pch_index lad(k) = 0.5 * ( pre_lad(k-1) + pre_lad(k) ) ENDDO ENDIF ! !-- Allocate 3D-array for the leaf area density (lad_s). ALLOCATE( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ! !-- Initialize canopy parameters cdc (canopy drag coefficient), !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) !-- with the prescribed values cdc = canopy_drag_coeff lsec = leaf_scalar_exch_coeff lsc = leaf_surface_conc ! !-- Initialization of the canopy coverage in the model domain: !-- Setting the parameter canopy_mode = 'block' initializes a canopy, which !-- fully covers the domain surface SELECT CASE ( TRIM( canopy_mode ) ) CASE( 'block' ) DO i = nxlg, nxrg DO j = nysg, nyng lad_s(:,j,i) = lad(:) ENDDO ENDDO CASE ( 'read_from_file_3d' ) ! !-- Initialize LAD with data from file. If LAD is given in NetCDF file, !-- use these values, else take LAD profiles from ASCII file. !-- Please note, in NetCDF file LAD is only given up to the maximum !-- canopy top, indicated by leaf_area_density_f%nz. lad_s = 0.0_wp IF ( leaf_area_density_f%from_file ) THEN ! !-- Set also pch_index, used to be the upper bound of the vertical !-- loops. Therefore, use the global top of the canopy layer. pch_index = leaf_area_density_f%nz - 1 DO i = nxl, nxr DO j = nys, nyn DO k = 0, leaf_area_density_f%nz - 1 IF ( leaf_area_density_f%var(k,j,i) /= & leaf_area_density_f%fill ) & lad_s(k,j,i) = leaf_area_density_f%var(k,j,i) ENDDO ENDDO ENDDO CALL exchange_horiz( lad_s, nbgp ) ! ! ASCII file !-- Initialize canopy parameters cdc (canopy drag coefficient), !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) !-- from file which contains complete 3D data (separate vertical profiles for !-- each location). ELSE CALL pcm_read_plant_canopy_3d ENDIF CASE DEFAULT ! !-- The DEFAULT case is reached either if the parameter !-- canopy mode contains a wrong character string or if the !-- user has coded a special case in the user interface. !-- There, the subroutine user_init_plant_canopy checks !-- which of these two conditions applies. CALL user_init_plant_canopy END SELECT ! !-- Initialize 2D index array indicating canopy top index. ALLOCATE( pch_index_ji(nysg:nyng,nxlg:nxrg) ) pch_index_ji = 0 DO i = nxl, nxr DO j = nys, nyn DO k = 0, pch_index IF ( lad_s(k,j,i) /= 0 ) pch_index_ji(j,i) = k ENDDO ! !-- Check whether topography and local vegetation on top exceed !-- height of the model domain. k = get_topography_top_index_ji( j, i, 's' ) IF ( k + pch_index_ji(j,i) >= nzt + 1 ) THEN message_string = 'Local vegetation height on top of ' // & 'topography exceeds height of model domain.' CALL message( 'pcm_init', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDDO ENDDO CALL exchange_horiz_2d_int( pch_index_ji, nys, nyn, nxl, nxr, nbgp ) ! !-- Calculate global pch_index value (index of top of plant canopy from ground) pch_index = MAXVAL( pch_index_ji ) ! !-- Exchange pch_index from all processors #if defined( __parallel ) CALL MPI_ALLREDUCE( MPI_IN_PLACE, pch_index, 1, MPI_INTEGER, & MPI_MAX, comm2d, ierr) #endif !-- Allocation of arrays pc_heating_rate, pc_transpiration_rate and pc_latent_rate ALLOCATE( pc_heating_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) IF ( humidity ) THEN ALLOCATE( pc_transpiration_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) pc_transpiration_rate = 0.0_wp ALLOCATE( pc_latent_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) pc_latent_rate = 0.0_wp ENDIF ! !-- Initialization of the canopy heat source distribution due to heating !-- of the canopy layers by incoming solar radiation, in case that a non-zero !-- value is set for the canopy top heat flux (cthf), which equals the !-- available net radiation at canopy top. !-- The heat source distribution is calculated by a decaying exponential !-- function of the downward cumulative leaf area index (cum_lai_hf), !-- assuming that the foliage inside the plant canopy is heated by solar !-- radiation penetrating the canopy layers according to the distribution !-- of net radiation as suggested by Brown & Covey (1966; Agric. Meteorol. 3, !-- 73–96). This approach has been applied e.g. by Shaw & Schumann (1992; !-- Bound.-Layer Meteorol. 61, 47–64). !-- When using the radiation_interactions, canopy heating (pc_heating_rate) !-- and plant canopy transpiration (pc_transpiration_rate, pc_latent_rate) !-- are calculated in the RTM after the calculation of radiation. !-- We cannot use variable radiation_interactions here to determine the situation !-- as it is assigned in init_3d_model after the call of pcm_init. IF ( cthf /= 0.0_wp ) THEN ALLOCATE( cum_lai_hf(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ! !-- Piecewise calculation of the cumulative leaf area index by vertical !-- integration of the leaf area density cum_lai_hf(:,:,:) = 0.0_wp DO i = nxlg, nxrg DO j = nysg, nyng DO k = pch_index_ji(j,i)-1, 0, -1 IF ( k == pch_index_ji(j,i)-1 ) THEN cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & ( 0.5_wp * lad_s(k+1,j,i) * & ( zw(k+1) - zu(k+1) ) ) + & ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & lad_s(k,j,i) ) + & lad_s(k+1,j,i) ) * & ( zu(k+1) - zw(k) ) ) ELSE cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & ( 0.5_wp * ( 0.5_wp * ( lad_s(k+2,j,i) + & lad_s(k+1,j,i) ) + & lad_s(k+1,j,i) ) * & ( zw(k+1) - zu(k+1) ) ) + & ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & lad_s(k,j,i) ) + & lad_s(k+1,j,i) ) * & ( zu(k+1) - zw(k) ) ) ENDIF ENDDO ENDDO ENDDO ! !-- In areas with canopy the surface value of the canopy heat !-- flux distribution overrides the surface heat flux (shf) !-- Start with default surface type DO m = 1, surf_def_h(0)%ns k = surf_def_h(0)%k(m) IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & surf_def_h(0)%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) ENDDO ! !-- Natural surfaces DO m = 1, surf_lsm_h%ns k = surf_lsm_h%k(m) IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & surf_lsm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) ENDDO ! !-- Urban surfaces DO m = 1, surf_usm_h%ns k = surf_usm_h%k(m) IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & surf_usm_h%shf(m) = cthf * exp( -ext_coef * cum_lai_hf(0,j,i) ) ENDDO ! ! !-- Calculation of the heating rate (K/s) within the different layers of !-- the plant canopy. Calculation is only necessary in areas covered with !-- canopy. !-- Within the different canopy layers the plant-canopy heating !-- rate (pc_heating_rate) is calculated as the vertical !-- divergence of the canopy heat fluxes at the top and bottom !-- of the respective layer DO i = nxlg, nxrg DO j = nysg, nyng DO k = 1, pch_index_ji(j,i) IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) THEN pc_heating_rate(k,j,i) = cthf * & ( exp(-ext_coef*cum_lai_hf(k,j,i)) - & exp(-ext_coef*cum_lai_hf(k-1,j,i) ) ) / dzw(k) ENDIF ENDDO ENDDO ENDDO ENDIF IF ( debug_output ) CALL debug_message( 'pcm_init', 'end' ) END SUBROUTINE pcm_init !------------------------------------------------------------------------------! ! Description: ! ------------ !> Parin for &plant_canopy_parameters for plant canopy model !------------------------------------------------------------------------------! SUBROUTINE pcm_parin USE control_parameters, & ONLY: message_string, plant_canopy IMPLICIT NONE CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file NAMELIST /plant_canopy_parameters/ & alpha_lad, beta_lad, canopy_drag_coeff, & canopy_mode, cthf, & lad_surface, lad_type_coef, & lad_vertical_gradient, & lad_vertical_gradient_level, & lai_beta, & leaf_scalar_exch_coeff, & leaf_surface_conc, pch_index, & plant_canopy_transpiration NAMELIST /canopy_par/ alpha_lad, beta_lad, canopy_drag_coeff, & canopy_mode, cthf, & lad_surface, lad_type_coef, & lad_vertical_gradient, & lad_vertical_gradient_level, & lai_beta, & leaf_scalar_exch_coeff, & leaf_surface_conc, pch_index, & plant_canopy_transpiration line = ' ' ! !-- Try to find radiation model package REWIND ( 11 ) line = ' ' DO WHILE ( INDEX( line, '&plant_canopy_parameters' ) == 0 ) READ ( 11, '(A)', END=12 ) line ENDDO BACKSPACE ( 11 ) ! !-- Read user-defined namelist READ ( 11, plant_canopy_parameters, ERR = 10 ) ! !-- Set flag that indicates that the radiation model is switched on plant_canopy = .TRUE. GOTO 14 10 BACKSPACE( 11 ) READ( 11 , '(A)') line CALL parin_fail_message( 'plant_canopy_parameters', line ) ! !-- Try to find old namelist 12 REWIND ( 11 ) line = ' ' DO WHILE ( INDEX( line, '&canopy_par' ) == 0 ) READ ( 11, '(A)', END=14 ) line ENDDO BACKSPACE ( 11 ) ! !-- Read user-defined namelist READ ( 11, canopy_par, ERR = 13, END = 14 ) message_string = 'namelist canopy_par is deprecated and will be ' // & 'removed in near future. Please use namelist ' // & 'plant_canopy_parameters instead' CALL message( 'pcm_parin', 'PA0487', 0, 1, 0, 6, 0 ) ! !-- Set flag that indicates that the radiation model is switched on plant_canopy = .TRUE. GOTO 14 13 BACKSPACE( 11 ) READ( 11 , '(A)') line CALL parin_fail_message( 'canopy_par', line ) 14 CONTINUE END SUBROUTINE pcm_parin !------------------------------------------------------------------------------! ! Description: ! ------------ ! !> Loads 3D plant canopy data from file. File format is as follows: !> !> num_levels !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) !> ... !> !> i.e. first line determines number of levels and further lines represent plant !> canopy data, one line per column and variable. In each data line, !> dtype represents variable to be set: !> !> dtype=1: leaf area density (lad_s) !> dtype=2....n: some additional plant canopy input data quantity !> !> Zeros are added automatically above num_levels until top of domain. Any !> non-specified (x,y) columns have zero values as default. !------------------------------------------------------------------------------! SUBROUTINE pcm_read_plant_canopy_3d USE control_parameters, & ONLY: coupling_char, message_string USE indices, & ONLY: nbgp IMPLICIT NONE INTEGER(iwp) :: dtype !< type of input data (1=lad) INTEGER(iwp) :: pctype !< type of plant canopy (deciduous,non-deciduous,...) INTEGER(iwp) :: i, j !< running index INTEGER(iwp) :: nzp !< number of vertical layers of plant canopy INTEGER(iwp) :: nzpltop !< INTEGER(iwp) :: nzpl !< INTEGER(iwp) :: kk !< REAL(wp), DIMENSION(:), ALLOCATABLE :: col !< vertical column of input data ! !-- Initialize lad_s array lad_s = 0.0_wp ! !-- Open and read plant canopy input data OPEN(152, FILE='PLANT_CANOPY_DATA_3D' // TRIM( coupling_char ), & ACCESS='SEQUENTIAL', ACTION='READ', STATUS='OLD', & FORM='FORMATTED', ERR=515) READ(152, *, ERR=516, END=517) nzp !< read first line = number of vertical layers nzpltop = MIN(nzt+1, nzb+nzp-1) nzpl = nzpltop - nzb + 1 !< no. of layers to assign ALLOCATE( col(0:nzp-1) ) DO READ(152, *, ERR=516, END=517) dtype, i, j, pctype, col(:) IF ( i < nxlg .OR. i > nxrg .OR. j < nysg .OR. j > nyng ) CYCLE SELECT CASE (dtype) CASE( 1 ) !< leaf area density ! !-- This is just the pure canopy layer assumed to be grounded to !-- a flat domain surface. At locations where plant canopy sits !-- on top of any kind of topography, the vertical plant column !-- must be "lifted", which is done in SUBROUTINE pcm_tendency. IF ( pctype < 0 .OR. pctype > 10 ) THEN !< incorrect plant canopy type WRITE( message_string, * ) 'Incorrect type of plant canopy. ' // & 'Allowed values 0 <= pctype <= 10, ' // & 'but pctype is ', pctype CALL message( 'pcm_read_plant_canopy_3d', 'PA0349', 1, 2, 0, 6, 0 ) ENDIF kk = get_topography_top_index_ji( j, i, 's' ) lad_s(nzb:nzpltop-kk, j, i) = col(kk:nzpl-1)*lad_type_coef(pctype) CASE DEFAULT WRITE(message_string, '(a,i2,a)') & 'Unknown record type in file PLANT_CANOPY_DATA_3D: "', dtype, '"' CALL message( 'pcm_read_plant_canopy_3d', 'PA0530', 1, 2, 0, 6, 0 ) END SELECT ENDDO 515 message_string = 'error opening file PLANT_CANOPY_DATA_3D' CALL message( 'pcm_read_plant_canopy_3d', 'PA0531', 1, 2, 0, 6, 0 ) 516 message_string = 'error reading file PLANT_CANOPY_DATA_3D' CALL message( 'pcm_read_plant_canopy_3d', 'PA0532', 1, 2, 0, 6, 0 ) 517 CLOSE(152) DEALLOCATE( col ) CALL exchange_horiz( lad_s, nbgp ) END SUBROUTINE pcm_read_plant_canopy_3d !------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculation of the tendency terms, accounting for the effect of the plant !> canopy on momentum and scalar quantities. !> !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 !> (defined on scalar grid), as initialized in subroutine pcm_init. !> The lad on the w-grid is vertically interpolated from the surrounding !> lad_s. The upper boundary of the canopy is defined on the w-grid at !> k = pch_index. Here, the lad is zero. !> !> The canopy drag must be limited (previously accounted for by calculation of !> a limiting canopy timestep for the determination of the maximum LES timestep !> in subroutine timestep), since it is physically impossible that the canopy !> drag alone can locally change the sign of a velocity component. This !> limitation is realized by calculating preliminary tendencies and velocities. !> It is subsequently checked if the preliminary new velocity has a different !> sign than the current velocity. If so, the tendency is limited in a way that !> the velocity can at maximum be reduced to zero by the canopy drag. !> !> !> Call for all grid points !------------------------------------------------------------------------------! SUBROUTINE pcm_tendency( component ) USE control_parameters, & ONLY: dt_3d, message_string USE kinds IMPLICIT NONE INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) INTEGER(iwp) :: i !< running index INTEGER(iwp) :: j !< running index INTEGER(iwp) :: k !< running index INTEGER(iwp) :: k_wall !< vertical index of topography top INTEGER(iwp) :: kk !< running index for flat lad arrays REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) REAL(wp) :: lad_local !< local lad value REAL(wp) :: pre_tend !< preliminary tendency REAL(wp) :: pre_u !< preliminary u-value REAL(wp) :: pre_v !< preliminary v-value REAL(wp) :: pre_w !< preliminary w-value ddt_3d = 1.0_wp / dt_3d ! !-- Compute drag for the three velocity components and the SGS-TKE: SELECT CASE ( component ) ! !-- u-component CASE ( 1 ) DO i = nxlu, nxr DO j = nys, nyn ! !-- Determine topography-top index on u-grid k_wall = get_topography_top_index_ji( j, i, 'u' ) DO k = k_wall+1, k_wall + pch_index_ji(j,i) kk = k - k_wall !- lad arrays are defined flat ! !-- In order to create sharp boundaries of the plant canopy, !-- the lad on the u-grid at index (k,j,i) is equal to !-- lad_s(k,j,i), rather than being interpolated from the !-- surrounding lad_s, because this would yield smaller lad !-- at the canopy boundaries than inside of the canopy. !-- For the same reason, the lad at the rightmost(i+1)canopy !-- boundary on the u-grid equals lad_s(k,j,i). lad_local = lad_s(kk,j,i) IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp )& THEN lad_local = lad_s(kk,j,i-1) ENDIF pre_tend = 0.0_wp pre_u = 0.0_wp ! !-- Calculate preliminary value (pre_tend) of the tendency pre_tend = - cdc * & lad_local * & SQRT( u(k,j,i)**2 + & ( 0.25_wp * ( v(k,j,i-1) + & v(k,j,i) + & v(k,j+1,i) + & v(k,j+1,i-1) ) & )**2 + & ( 0.25_wp * ( w(k-1,j,i-1) + & w(k-1,j,i) + & w(k,j,i-1) + & w(k,j,i) ) & )**2 & ) * & u(k,j,i) ! !-- Calculate preliminary new velocity, based on pre_tend pre_u = u(k,j,i) + dt_3d * pre_tend ! !-- Compare sign of old velocity and new preliminary velocity, !-- and in case the signs are different, limit the tendency IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN pre_tend = - u(k,j,i) * ddt_3d ELSE pre_tend = pre_tend ENDIF ! !-- Calculate final tendency tend(k,j,i) = tend(k,j,i) + pre_tend ENDDO ENDDO ENDDO ! !-- v-component CASE ( 2 ) DO i = nxl, nxr DO j = nysv, nyn ! !-- Determine topography-top index on v-grid k_wall = get_topography_top_index_ji( j, i, 'v' ) DO k = k_wall+1, k_wall + pch_index_ji(j,i) kk = k - k_wall !- lad arrays are defined flat ! !-- In order to create sharp boundaries of the plant canopy, !-- the lad on the v-grid at index (k,j,i) is equal to !-- lad_s(k,j,i), rather than being interpolated from the !-- surrounding lad_s, because this would yield smaller lad !-- at the canopy boundaries than inside of the canopy. !-- For the same reason, the lad at the northmost(j+1) canopy !-- boundary on the v-grid equals lad_s(k,j,i). lad_local = lad_s(kk,j,i) IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp )& THEN lad_local = lad_s(kk,j-1,i) ENDIF pre_tend = 0.0_wp pre_v = 0.0_wp ! !-- Calculate preliminary value (pre_tend) of the tendency pre_tend = - cdc * & lad_local * & SQRT( ( 0.25_wp * ( u(k,j-1,i) + & u(k,j-1,i+1) + & u(k,j,i) + & u(k,j,i+1) ) & )**2 + & v(k,j,i)**2 + & ( 0.25_wp * ( w(k-1,j-1,i) + & w(k-1,j,i) + & w(k,j-1,i) + & w(k,j,i) ) & )**2 & ) * & v(k,j,i) ! !-- Calculate preliminary new velocity, based on pre_tend pre_v = v(k,j,i) + dt_3d * pre_tend ! !-- Compare sign of old velocity and new preliminary velocity, !-- and in case the signs are different, limit the tendency IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN pre_tend = - v(k,j,i) * ddt_3d ELSE pre_tend = pre_tend ENDIF ! !-- Calculate final tendency tend(k,j,i) = tend(k,j,i) + pre_tend ENDDO ENDDO ENDDO ! !-- w-component CASE ( 3 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Determine topography-top index on w-grid k_wall = get_topography_top_index_ji( j, i, 'w' ) DO k = k_wall+1, k_wall + pch_index_ji(j,i) - 1 kk = k - k_wall !- lad arrays are defined flat pre_tend = 0.0_wp pre_w = 0.0_wp ! !-- Calculate preliminary value (pre_tend) of the tendency pre_tend = - cdc * & (0.5_wp * & ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & SQRT( ( 0.25_wp * ( u(k,j,i) + & u(k,j,i+1) + & u(k+1,j,i) + & u(k+1,j,i+1) ) & )**2 + & ( 0.25_wp * ( v(k,j,i) + & v(k,j+1,i) + & v(k+1,j,i) + & v(k+1,j+1,i) ) & )**2 + & w(k,j,i)**2 & ) * & w(k,j,i) ! !-- Calculate preliminary new velocity, based on pre_tend pre_w = w(k,j,i) + dt_3d * pre_tend ! !-- Compare sign of old velocity and new preliminary velocity, !-- and in case the signs are different, limit the tendency IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN pre_tend = - w(k,j,i) * ddt_3d ELSE pre_tend = pre_tend ENDIF ! !-- Calculate final tendency tend(k,j,i) = tend(k,j,i) + pre_tend ENDDO ENDDO ENDDO ! !-- potential temperature CASE ( 4 ) IF ( humidity ) THEN DO i = nxl, nxr DO j = nys, nyn !-- Determine topography-top index on scalar-grid k_wall = get_topography_top_index_ji( j, i, 's' ) DO k = k_wall+1, k_wall + pch_index_ji(j,i) kk = k - k_wall !- lad arrays are defined flat tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) - pc_latent_rate(kk,j,i) ENDDO ENDDO ENDDO ELSE DO i = nxl, nxr DO j = nys, nyn !-- Determine topography-top index on scalar-grid k_wall = get_topography_top_index_ji( j, i, 's' ) DO k = k_wall+1, k_wall + pch_index_ji(j,i) kk = k - k_wall !- lad arrays are defined flat tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) ENDDO ENDDO ENDDO ENDIF ! !-- humidity CASE ( 5 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Determine topography-top index on scalar-grid k_wall = get_topography_top_index_ji( j, i, 's' ) DO k = k_wall+1, k_wall + pch_index_ji(j,i) kk = k - k_wall !- lad arrays are defined flat IF ( .NOT. plant_canopy_transpiration ) THEN ! pc_transpiration_rate is calculated in radiation model ! in case of plant_canopy_transpiration = .T. ! to include also the dependecy to the radiation ! in the plant canopy box pc_transpiration_rate(kk,j,i) = - lsec & * lad_s(kk,j,i) * & SQRT( ( 0.5_wp * ( u(k,j,i) + & u(k,j,i+1) ) & )**2 + & ( 0.5_wp * ( v(k,j,i) + & v(k,j+1,i) ) & )**2 + & ( 0.5_wp * ( w(k-1,j,i) + & w(k,j,i) ) & )**2 & ) * & ( q(k,j,i) - lsc ) ENDIF tend(k,j,i) = tend(k,j,i) + pc_transpiration_rate(kk,j,i) ENDDO ENDDO ENDDO ! !-- sgs-tke CASE ( 6 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Determine topography-top index on scalar-grid k_wall = get_topography_top_index_ji( j, i, 's' ) DO k = k_wall+1, k_wall + pch_index_ji(j,i) kk = k - k_wall !- lad arrays are defined flat tend(k,j,i) = tend(k,j,i) - & 2.0_wp * cdc * & lad_s(kk,j,i) * & SQRT( ( 0.5_wp * ( u(k,j,i) + & u(k,j,i+1) ) & )**2 + & ( 0.5_wp * ( v(k,j,i) + & v(k,j+1,i) ) & )**2 + & ( 0.5_wp * ( w(k,j,i) + & w(k+1,j,i) ) & )**2 & ) * & e(k,j,i) ENDDO ENDDO ENDDO ! !-- scalar concentration CASE ( 7 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Determine topography-top index on scalar-grid k_wall = get_topography_top_index_ji( j, i, 's' ) DO k = k_wall+1, k_wall + pch_index_ji(j,i) kk = k - k_wall !- lad arrays are defined flat tend(k,j,i) = tend(k,j,i) - & lsec * & lad_s(kk,j,i) * & SQRT( ( 0.5_wp * ( u(k,j,i) + & u(k,j,i+1) ) & )**2 + & ( 0.5_wp * ( v(k,j,i) + & v(k,j+1,i) ) & )**2 + & ( 0.5_wp * ( w(k-1,j,i) + & w(k,j,i) ) & )**2 & ) * & ( s(k,j,i) - lsc ) ENDDO ENDDO ENDDO CASE DEFAULT WRITE( message_string, * ) 'wrong component: ', component CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) END SELECT END SUBROUTINE pcm_tendency !------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculation of the tendency terms, accounting for the effect of the plant !> canopy on momentum and scalar quantities. !> !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 !> (defined on scalar grid), as initialized in subroutine pcm_init. !> The lad on the w-grid is vertically interpolated from the surrounding !> lad_s. The upper boundary of the canopy is defined on the w-grid at !> k = pch_index. Here, the lad is zero. !> !> The canopy drag must be limited (previously accounted for by calculation of !> a limiting canopy timestep for the determination of the maximum LES timestep !> in subroutine timestep), since it is physically impossible that the canopy !> drag alone can locally change the sign of a velocity component. This !> limitation is realized by calculating preliminary tendencies and velocities. !> It is subsequently checked if the preliminary new velocity has a different !> sign than the current velocity. If so, the tendency is limited in a way that !> the velocity can at maximum be reduced to zero by the canopy drag. !> !> !> Call for grid point i,j !------------------------------------------------------------------------------! SUBROUTINE pcm_tendency_ij( i, j, component ) USE control_parameters, & ONLY: dt_3d, message_string USE kinds IMPLICIT NONE INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) INTEGER(iwp) :: i !< running index INTEGER(iwp) :: j !< running index INTEGER(iwp) :: k !< running index INTEGER(iwp) :: k_wall !< vertical index of topography top INTEGER(iwp) :: kk !< running index for flat lad arrays REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) REAL(wp) :: lad_local !< local lad value REAL(wp) :: pre_tend !< preliminary tendency REAL(wp) :: pre_u !< preliminary u-value REAL(wp) :: pre_v !< preliminary v-value REAL(wp) :: pre_w !< preliminary w-value ddt_3d = 1.0_wp / dt_3d ! !-- Compute drag for the three velocity components and the SGS-TKE SELECT CASE ( component ) ! !-- u-component CASE ( 1 ) ! !-- Determine topography-top index on u-grid k_wall = get_topography_top_index_ji( j, i, 'u' ) DO k = k_wall + 1, k_wall + pch_index_ji(j,i) kk = k - k_wall !- lad arrays are defined flat ! !-- In order to create sharp boundaries of the plant canopy, !-- the lad on the u-grid at index (k,j,i) is equal to lad_s(k,j,i), !-- rather than being interpolated from the surrounding lad_s, !-- because this would yield smaller lad at the canopy boundaries !-- than inside of the canopy. !-- For the same reason, the lad at the rightmost(i+1)canopy !-- boundary on the u-grid equals lad_s(k,j,i). lad_local = lad_s(kk,j,i) IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp ) THEN lad_local = lad_s(kk,j,i-1) ENDIF pre_tend = 0.0_wp pre_u = 0.0_wp ! !-- Calculate preliminary value (pre_tend) of the tendency pre_tend = - cdc * & lad_local * & SQRT( u(k,j,i)**2 + & ( 0.25_wp * ( v(k,j,i-1) + & v(k,j,i) + & v(k,j+1,i) + & v(k,j+1,i-1) ) & )**2 + & ( 0.25_wp * ( w(k-1,j,i-1) + & w(k-1,j,i) + & w(k,j,i-1) + & w(k,j,i) ) & )**2 & ) * & u(k,j,i) ! !-- Calculate preliminary new velocity, based on pre_tend pre_u = u(k,j,i) + dt_3d * pre_tend ! !-- Compare sign of old velocity and new preliminary velocity, !-- and in case the signs are different, limit the tendency IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN pre_tend = - u(k,j,i) * ddt_3d ELSE pre_tend = pre_tend ENDIF ! !-- Calculate final tendency tend(k,j,i) = tend(k,j,i) + pre_tend ENDDO ! !-- v-component CASE ( 2 ) ! !-- Determine topography-top index on v-grid k_wall = get_topography_top_index_ji( j, i, 'v' ) DO k = k_wall + 1, k_wall + pch_index_ji(j,i) kk = k - k_wall !- lad arrays are defined flat ! !-- In order to create sharp boundaries of the plant canopy, !-- the lad on the v-grid at index (k,j,i) is equal to lad_s(k,j,i), !-- rather than being interpolated from the surrounding lad_s, !-- because this would yield smaller lad at the canopy boundaries !-- than inside of the canopy. !-- For the same reason, the lad at the northmost(j+1)canopy !-- boundary on the v-grid equals lad_s(k,j,i). lad_local = lad_s(kk,j,i) IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp ) THEN lad_local = lad_s(kk,j-1,i) ENDIF pre_tend = 0.0_wp pre_v = 0.0_wp ! !-- Calculate preliminary value (pre_tend) of the tendency pre_tend = - cdc * & lad_local * & SQRT( ( 0.25_wp * ( u(k,j-1,i) + & u(k,j-1,i+1) + & u(k,j,i) + & u(k,j,i+1) ) & )**2 + & v(k,j,i)**2 + & ( 0.25_wp * ( w(k-1,j-1,i) + & w(k-1,j,i) + & w(k,j-1,i) + & w(k,j,i) ) & )**2 & ) * & v(k,j,i) ! !-- Calculate preliminary new velocity, based on pre_tend pre_v = v(k,j,i) + dt_3d * pre_tend ! !-- Compare sign of old velocity and new preliminary velocity, !-- and in case the signs are different, limit the tendency IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN pre_tend = - v(k,j,i) * ddt_3d ELSE pre_tend = pre_tend ENDIF ! !-- Calculate final tendency tend(k,j,i) = tend(k,j,i) + pre_tend ENDDO ! !-- w-component CASE ( 3 ) ! !-- Determine topography-top index on w-grid k_wall = get_topography_top_index_ji( j, i, 'w' ) DO k = k_wall + 1, k_wall + pch_index_ji(j,i) - 1 kk = k - k_wall !- lad arrays are defined flat pre_tend = 0.0_wp pre_w = 0.0_wp ! !-- Calculate preliminary value (pre_tend) of the tendency pre_tend = - cdc * & (0.5_wp * & ( lad_s(kk+1,j,i) + lad_s(kk,j,i) )) * & SQRT( ( 0.25_wp * ( u(k,j,i) + & u(k,j,i+1) + & u(k+1,j,i) + & u(k+1,j,i+1) ) & )**2 + & ( 0.25_wp * ( v(k,j,i) + & v(k,j+1,i) + & v(k+1,j,i) + & v(k+1,j+1,i) ) & )**2 + & w(k,j,i)**2 & ) * & w(k,j,i) ! !-- Calculate preliminary new velocity, based on pre_tend pre_w = w(k,j,i) + dt_3d * pre_tend ! !-- Compare sign of old velocity and new preliminary velocity, !-- and in case the signs are different, limit the tendency IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN pre_tend = - w(k,j,i) * ddt_3d ELSE pre_tend = pre_tend ENDIF ! !-- Calculate final tendency tend(k,j,i) = tend(k,j,i) + pre_tend ENDDO ! !-- potential temperature CASE ( 4 ) ! !-- Determine topography-top index on scalar grid k_wall = get_topography_top_index_ji( j, i, 's' ) IF ( humidity ) THEN DO k = k_wall + 1, k_wall + pch_index_ji(j,i) kk = k - k_wall !- lad arrays are defined flat tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) - & pc_latent_rate(kk,j,i) ENDDO ELSE DO k = k_wall + 1, k_wall + pch_index_ji(j,i) kk = k - k_wall !- lad arrays are defined flat tend(k,j,i) = tend(k,j,i) + pc_heating_rate(kk,j,i) ENDDO ENDIF ! !-- humidity CASE ( 5 ) ! !-- Determine topography-top index on scalar grid k_wall = get_topography_top_index_ji( j, i, 's' ) DO k = k_wall + 1, k_wall + pch_index_ji(j,i) kk = k - k_wall !- lad arrays are defined flat IF ( .NOT. plant_canopy_transpiration ) THEN ! pc_transpiration_rate is calculated in radiation model ! in case of plant_canopy_transpiration = .T. ! to include also the dependecy to the radiation ! in the plant canopy box pc_transpiration_rate(kk,j,i) = - lsec & * lad_s(kk,j,i) * & SQRT( ( 0.5_wp * ( u(k,j,i) + & u(k,j,i+1) ) & )**2 + & ( 0.5_wp * ( v(k,j,i) + & v(k,j+1,i) ) & )**2 + & ( 0.5_wp * ( w(k-1,j,i) + & w(k,j,i) ) & )**2 & ) * & ( q(k,j,i) - lsc ) ENDIF tend(k,j,i) = tend(k,j,i) + pc_transpiration_rate(kk,j,i) ENDDO ! !-- sgs-tke CASE ( 6 ) ! !-- Determine topography-top index on scalar grid k_wall = get_topography_top_index_ji( j, i, 's' ) DO k = k_wall + 1, k_wall + pch_index_ji(j,i) kk = k - k_wall tend(k,j,i) = tend(k,j,i) - & 2.0_wp * cdc * & lad_s(kk,j,i) * & SQRT( ( 0.5_wp * ( u(k,j,i) + & u(k,j,i+1) ) & )**2 + & ( 0.5_wp * ( v(k,j,i) + & v(k,j+1,i) ) & )**2 + & ( 0.5_wp * ( w(k,j,i) + & w(k+1,j,i) ) & )**2 & ) * & e(k,j,i) ENDDO ! !-- scalar concentration CASE ( 7 ) ! !-- Determine topography-top index on scalar grid k_wall = get_topography_top_index_ji( j, i, 's' ) DO k = k_wall + 1, k_wall + pch_index_ji(j,i) kk = k - k_wall tend(k,j,i) = tend(k,j,i) - & lsec * & lad_s(kk,j,i) * & SQRT( ( 0.5_wp * ( u(k,j,i) + & u(k,j,i+1) ) & )**2 + & ( 0.5_wp * ( v(k,j,i) + & v(k,j+1,i) ) & )**2 + & ( 0.5_wp * ( w(k-1,j,i) + & w(k,j,i) ) & )**2 & ) * & ( s(k,j,i) - lsc ) ENDDO CASE DEFAULT WRITE( message_string, * ) 'wrong component: ', component CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) END SELECT END SUBROUTINE pcm_tendency_ij END MODULE plant_canopy_model_mod