[138] | 1 | MODULE plant_canopy_model_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[257] | 20 | ! Current revisions: |
---|
[138] | 21 | ! ----------------- |
---|
[1485] | 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: plant_canopy_model.f90 1485 2014-10-21 11:09:54Z knoop $ |
---|
| 27 | ! |
---|
| 28 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
[1484] | 29 | ! Changes due to new module structure of the plant canopy model: |
---|
| 30 | ! module plant_canopy_model_mod now contains a subroutine for the |
---|
| 31 | ! initialization of the canopy model (init_plant_canopy), |
---|
| 32 | ! limitation of the canopy drag (previously accounted for by calculation of |
---|
| 33 | ! a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 34 | ! in subroutine timestep) is now realized by the calculation of pre-tendencies |
---|
| 35 | ! and preliminary velocities in subroutine plant_canopy_model, |
---|
| 36 | ! some redundant MPI communication removed in subroutine init_plant_canopy |
---|
| 37 | ! (was previously in init_3d_model), |
---|
| 38 | ! unnecessary 3d-arrays lad_u, lad_v, lad_w removed - lad information on the |
---|
| 39 | ! respective grid is now provided only by lad_s (e.g. in the calculation of |
---|
| 40 | ! the tendency terms or of cum_lai_hf), |
---|
| 41 | ! drag_coefficient, lai, leaf_surface_concentration, |
---|
| 42 | ! scalar_exchange_coefficient, sec and sls renamed to canopy_drag_coeff, |
---|
| 43 | ! cum_lai_hf, leaf_surface_conc, leaf_scalar_exch_coeff, lsec and lsc, |
---|
| 44 | ! respectively, |
---|
| 45 | ! unnecessary 3d-arrays cdc, lsc and lsec now defined as single-value constants, |
---|
| 46 | ! USE-statements and ONLY-lists modified accordingly |
---|
[1341] | 47 | ! |
---|
| 48 | ! 1340 2014-03-25 19:45:13Z kanani |
---|
| 49 | ! REAL constants defined as wp-kind |
---|
| 50 | ! |
---|
[1321] | 51 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 52 | ! ONLY-attribute added to USE-statements, |
---|
| 53 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 54 | ! kinds are defined in new module kinds, |
---|
| 55 | ! old module precision_kind is removed, |
---|
| 56 | ! revision history before 2012 removed, |
---|
| 57 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 58 | ! all variable declaration statements |
---|
[153] | 59 | ! |
---|
[1037] | 60 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 61 | ! code put under GPL (PALM 3.9) |
---|
| 62 | ! |
---|
[139] | 63 | ! 138 2007-11-28 10:03:58Z letzel |
---|
| 64 | ! Initial revision |
---|
| 65 | ! |
---|
[138] | 66 | ! Description: |
---|
| 67 | ! ------------ |
---|
[1484] | 68 | ! 1) Initialization of the canopy model, e.g. construction of leaf area density |
---|
| 69 | ! profile (subroutine init_plant_canopy). |
---|
| 70 | ! 2) Calculation of sinks and sources of momentum, heat and scalar concentration |
---|
| 71 | ! due to canopy elements (subroutine plant_canopy_model). |
---|
[138] | 72 | !------------------------------------------------------------------------------! |
---|
[1484] | 73 | USE arrays_3d, & |
---|
| 74 | ONLY: dzu, dzw, e, q, shf, tend, u, v, w, zu, zw |
---|
[138] | 75 | |
---|
[1484] | 76 | USE indices, & |
---|
| 77 | ONLY: nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, & |
---|
| 78 | nz, nzb, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
| 79 | |
---|
| 80 | USE kinds |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | IMPLICIT NONE |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | CHARACTER (LEN=20) :: canopy_mode = 'block' !: canopy coverage |
---|
| 87 | |
---|
| 88 | INTEGER(iwp) :: pch_index = 0 !: plant canopy height/top index |
---|
| 89 | INTEGER(iwp) :: & |
---|
| 90 | lad_vertical_gradient_level_ind(10) = -9999 !: lad-profile levels (index) |
---|
| 91 | |
---|
| 92 | LOGICAL :: calc_beta_lad_profile = .FALSE. !: switch for calc. of lad from beta func. |
---|
| 93 | LOGICAL :: plant_canopy = .FALSE. !: switch for use of canopy model |
---|
| 94 | |
---|
| 95 | REAL(wp) :: alpha_lad = 9999999.9_wp !: coefficient for lad calculation |
---|
| 96 | REAL(wp) :: beta_lad = 9999999.9_wp !: coefficient for lad calculation |
---|
| 97 | REAL(wp) :: canopy_drag_coeff = 0.0_wp !: canopy drag coefficient (parameter) |
---|
| 98 | REAL(wp) :: cdc = 0.0_wp !: canopy drag coeff. (abbreviation used in equations) |
---|
| 99 | REAL(wp) :: cthf = 0.0_wp !: canopy top heat flux |
---|
| 100 | REAL(wp) :: dt_plant_canopy = 0.0_wp !: timestep account. for canopy drag |
---|
| 101 | REAL(wp) :: lad_surface = 0.0_wp !: lad surface value |
---|
| 102 | REAL(wp) :: lai_beta = 0.0_wp !: leaf area index (lai) for lad calc. |
---|
| 103 | REAL(wp) :: & |
---|
| 104 | leaf_scalar_exch_coeff = 0.0_wp !: canopy scalar exchange coeff. |
---|
| 105 | REAL(wp) :: & |
---|
| 106 | leaf_surface_conc = 0.0_wp !: leaf surface concentration |
---|
| 107 | REAL(wp) :: lsec = 0.0_wp !: leaf scalar exchange coeff. |
---|
| 108 | REAL(wp) :: lsc = 0.0_wp !: leaf surface concentration |
---|
| 109 | |
---|
| 110 | REAL(wp) :: & |
---|
| 111 | lad_vertical_gradient(10) = 0.0_wp !: lad gradient |
---|
| 112 | REAL(wp) :: & |
---|
| 113 | lad_vertical_gradient_level(10) = -9999999.9_wp !: lad-prof. levels (in m) |
---|
| 114 | |
---|
| 115 | REAL(wp), DIMENSION(:), ALLOCATABLE :: lad !: leaf area density |
---|
| 116 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pre_lad !: preliminary lad |
---|
| 117 | |
---|
| 118 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
| 119 | canopy_heat_flux !: canopy heat flux |
---|
| 120 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: cum_lai_hf !: cumulative lai for heatflux calc. |
---|
| 121 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: lad_s !: lad on scalar-grid |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | SAVE |
---|
| 125 | |
---|
| 126 | |
---|
[138] | 127 | PRIVATE |
---|
[1484] | 128 | PUBLIC alpha_lad, beta_lad, calc_beta_lad_profile, canopy_drag_coeff, & |
---|
| 129 | canopy_mode, cdc, cthf, dt_plant_canopy, init_plant_canopy, lad, & |
---|
| 130 | lad_s, lad_surface, lad_vertical_gradient, & |
---|
| 131 | lad_vertical_gradient_level, lad_vertical_gradient_level_ind, & |
---|
| 132 | lai_beta, leaf_scalar_exch_coeff, leaf_surface_conc, lsc, lsec, & |
---|
| 133 | pch_index, plant_canopy, plant_canopy_model |
---|
[138] | 134 | |
---|
[1484] | 135 | |
---|
| 136 | INTERFACE init_plant_canopy |
---|
| 137 | MODULE PROCEDURE init_plant_canopy |
---|
| 138 | END INTERFACE init_plant_canopy |
---|
| 139 | |
---|
[138] | 140 | INTERFACE plant_canopy_model |
---|
| 141 | MODULE PROCEDURE plant_canopy_model |
---|
| 142 | MODULE PROCEDURE plant_canopy_model_ij |
---|
| 143 | END INTERFACE plant_canopy_model |
---|
| 144 | |
---|
[1484] | 145 | |
---|
| 146 | |
---|
| 147 | |
---|
[138] | 148 | CONTAINS |
---|
| 149 | |
---|
| 150 | |
---|
| 151 | !------------------------------------------------------------------------------! |
---|
[1484] | 152 | ! Description: |
---|
| 153 | ! ------------ |
---|
| 154 | !-- Initialization of the plant canopy model |
---|
[138] | 155 | !------------------------------------------------------------------------------! |
---|
[1484] | 156 | SUBROUTINE init_plant_canopy |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | USE control_parameters, & |
---|
| 160 | ONLY: dz, ocean, passive_scalar |
---|
| 161 | |
---|
| 162 | |
---|
| 163 | IMPLICIT NONE |
---|
| 164 | |
---|
| 165 | INTEGER(iwp) :: i !: running index |
---|
| 166 | INTEGER(iwp) :: j !: running index |
---|
| 167 | INTEGER(iwp) :: k !: running index |
---|
| 168 | |
---|
| 169 | REAL(wp) :: int_bpdf !: vertical integral for lad-profile construction |
---|
| 170 | REAL(wp) :: dzh !: vertical grid spacing in units of canopy height |
---|
| 171 | REAL(wp) :: gradient !: gradient for lad-profile construction |
---|
| 172 | REAL(wp) :: canopy_height !: canopy height for lad-profile construction |
---|
| 173 | |
---|
| 174 | ! |
---|
| 175 | !-- Allocate one-dimensional arrays for the computation of the |
---|
| 176 | !-- leaf area density (lad) profile |
---|
| 177 | ALLOCATE( lad(0:nz+1), pre_lad(0:nz+1) ) |
---|
| 178 | lad = 0.0_wp |
---|
| 179 | pre_lad = 0.0_wp |
---|
| 180 | |
---|
| 181 | ! |
---|
| 182 | !-- Compute the profile of leaf area density used in the plant |
---|
| 183 | !-- canopy model. The profile can either be constructed from |
---|
| 184 | !-- prescribed vertical gradients of the leaf area density or by |
---|
| 185 | !-- using a beta probability density function (see e.g. Markkanen et al., |
---|
| 186 | !-- 2003: Boundary-Layer Meteorology, 106, 437-459) |
---|
| 187 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
| 188 | |
---|
| 189 | ! |
---|
| 190 | !-- Use vertical gradients for lad-profile construction |
---|
| 191 | i = 1 |
---|
| 192 | gradient = 0.0_wp |
---|
| 193 | |
---|
| 194 | IF ( .NOT. ocean ) THEN |
---|
| 195 | |
---|
| 196 | lad(0) = lad_surface |
---|
| 197 | lad_vertical_gradient_level_ind(1) = 0 |
---|
| 198 | |
---|
| 199 | DO k = 1, pch_index |
---|
| 200 | IF ( i < 11 ) THEN |
---|
| 201 | IF ( lad_vertical_gradient_level(i) < zu(k) .AND. & |
---|
| 202 | lad_vertical_gradient_level(i) >= 0.0_wp ) THEN |
---|
| 203 | gradient = lad_vertical_gradient(i) |
---|
| 204 | lad_vertical_gradient_level_ind(i) = k - 1 |
---|
| 205 | i = i + 1 |
---|
| 206 | ENDIF |
---|
| 207 | ENDIF |
---|
| 208 | IF ( gradient /= 0.0_wp ) THEN |
---|
| 209 | IF ( k /= 1 ) THEN |
---|
| 210 | lad(k) = lad(k-1) + dzu(k) * gradient |
---|
| 211 | ELSE |
---|
| 212 | lad(k) = lad_surface + dzu(k) * gradient |
---|
| 213 | ENDIF |
---|
| 214 | ELSE |
---|
| 215 | lad(k) = lad(k-1) |
---|
| 216 | ENDIF |
---|
| 217 | ENDDO |
---|
| 218 | |
---|
| 219 | ENDIF |
---|
| 220 | |
---|
| 221 | ! |
---|
| 222 | !-- In case of no given leaf area density gradients, choose a vanishing |
---|
| 223 | !-- gradient. This information is used for the HEADER and the RUN_CONTROL |
---|
| 224 | !-- file. |
---|
| 225 | IF ( lad_vertical_gradient_level(1) == -9999999.9_wp ) THEN |
---|
| 226 | lad_vertical_gradient_level(1) = 0.0_wp |
---|
| 227 | ENDIF |
---|
| 228 | |
---|
| 229 | ELSE |
---|
| 230 | |
---|
| 231 | ! |
---|
| 232 | !-- Use beta function for lad-profile construction |
---|
| 233 | int_bpdf = 0.0_wp |
---|
| 234 | canopy_height = pch_index * dz |
---|
| 235 | |
---|
| 236 | DO k = nzb, pch_index |
---|
| 237 | int_bpdf = int_bpdf + & |
---|
| 238 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & |
---|
| 239 | ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( beta_lad-1.0_wp ) ) * & |
---|
| 240 | ( ( zw(k+1)-zw(k) ) / canopy_height ) ) |
---|
| 241 | ENDDO |
---|
| 242 | |
---|
| 243 | ! |
---|
| 244 | !-- Preliminary lad profile (defined on w-grid) |
---|
| 245 | DO k = nzb, pch_index |
---|
| 246 | pre_lad(k) = lai_beta * & |
---|
| 247 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & |
---|
| 248 | ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( beta_lad-1.0_wp ) ) / & |
---|
| 249 | int_bpdf & |
---|
| 250 | ) / canopy_height |
---|
| 251 | ENDDO |
---|
| 252 | |
---|
| 253 | ! |
---|
| 254 | !-- Final lad profile (defined on scalar-grid level, since most prognostic |
---|
| 255 | !-- quantities are defined there, hence, less interpolation is required |
---|
| 256 | !-- when calculating the canopy tendencies) |
---|
| 257 | lad(0) = pre_lad(0) |
---|
| 258 | DO k = nzb+1, pch_index |
---|
| 259 | lad(k) = 0.5 * ( pre_lad(k-1) + pre_lad(k) ) |
---|
| 260 | ENDDO |
---|
| 261 | |
---|
| 262 | ENDIF |
---|
| 263 | |
---|
| 264 | ! |
---|
| 265 | !-- Allocate 3D-array for the leaf area density (lad_s). In case of a |
---|
| 266 | !-- prescribed canopy-top heat flux (cthf), allocate 3D-arrays for |
---|
| 267 | !-- the cumulative leaf area index (cum_lai_hf) and the canopy heat flux. |
---|
| 268 | ALLOCATE( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 269 | |
---|
| 270 | IF ( cthf /= 0.0_wp ) THEN |
---|
| 271 | ALLOCATE( cum_lai_hf(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 272 | canopy_heat_flux(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 273 | ENDIF |
---|
| 274 | |
---|
| 275 | ! |
---|
| 276 | !-- Initialize canopy parameters cdc (canopy drag coefficient), |
---|
| 277 | !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) |
---|
| 278 | !-- with the prescribed values |
---|
| 279 | cdc = canopy_drag_coeff |
---|
| 280 | lsec = leaf_scalar_exch_coeff |
---|
| 281 | lsc = leaf_surface_conc |
---|
| 282 | |
---|
| 283 | ! |
---|
| 284 | !-- Initialization of the canopy coverage in the model domain: |
---|
| 285 | !-- Setting the parameter canopy_mode = 'block' initializes a canopy, which |
---|
| 286 | !-- fully covers the domain surface |
---|
| 287 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
| 288 | |
---|
| 289 | CASE( 'block' ) |
---|
| 290 | |
---|
| 291 | DO i = nxlg, nxrg |
---|
| 292 | DO j = nysg, nyng |
---|
| 293 | lad_s(:,j,i) = lad(:) |
---|
| 294 | ENDDO |
---|
| 295 | ENDDO |
---|
| 296 | |
---|
| 297 | CASE DEFAULT |
---|
| 298 | |
---|
| 299 | ! |
---|
| 300 | !-- The DEFAULT case is reached either if the parameter |
---|
| 301 | !-- canopy mode contains a wrong character string or if the |
---|
| 302 | !-- user has coded a special case in the user interface. |
---|
| 303 | !-- There, the subroutine user_init_plant_canopy checks |
---|
| 304 | !-- which of these two conditions applies. |
---|
| 305 | CALL user_init_plant_canopy |
---|
| 306 | |
---|
| 307 | END SELECT |
---|
| 308 | |
---|
| 309 | ! |
---|
| 310 | !-- Initialization of the canopy heat source distribution |
---|
| 311 | IF ( cthf /= 0.0_wp ) THEN |
---|
| 312 | ! |
---|
| 313 | !-- Piecewise calculation of the leaf area index by vertical |
---|
| 314 | !-- integration of the leaf area density |
---|
| 315 | cum_lai_hf(:,:,:) = 0.0_wp |
---|
| 316 | DO i = nxlg, nxrg |
---|
| 317 | DO j = nysg, nyng |
---|
| 318 | DO k = pch_index-1, 0, -1 |
---|
| 319 | IF ( k == pch_index-1 ) THEN |
---|
| 320 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 321 | ( 0.5_wp * lad_s(k+1,j,i) * & |
---|
| 322 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 323 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 324 | lad_s(k,j,i) ) + & |
---|
| 325 | lad_s(k+1,j,i) ) * & |
---|
| 326 | ( zu(k+1) - zw(k) ) ) |
---|
| 327 | ELSE |
---|
| 328 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
| 329 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+2,j,i) + & |
---|
| 330 | lad_s(k+1,j,i) ) + & |
---|
| 331 | lad_s(k+1,j,i) ) * & |
---|
| 332 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
| 333 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
| 334 | lad_s(k,j,i) ) + & |
---|
| 335 | lad_s(k+1,j,i) ) * & |
---|
| 336 | ( zu(k+1) - zw(k) ) ) |
---|
| 337 | ENDIF |
---|
| 338 | ENDDO |
---|
| 339 | ENDDO |
---|
| 340 | ENDDO |
---|
| 341 | |
---|
| 342 | ! |
---|
| 343 | !-- Calculation of the upward kinematic vertical heat flux within the |
---|
| 344 | !-- canopy |
---|
| 345 | DO i = nxlg, nxrg |
---|
| 346 | DO j = nysg, nyng |
---|
| 347 | DO k = 0, pch_index |
---|
| 348 | canopy_heat_flux(k,j,i) = cthf * & |
---|
| 349 | exp( -0.6_wp * cum_lai_hf(k,j,i) ) |
---|
| 350 | ENDDO |
---|
| 351 | ENDDO |
---|
| 352 | ENDDO |
---|
| 353 | |
---|
| 354 | ! |
---|
| 355 | !-- The surface heat flux is set to the surface value of the calculated |
---|
| 356 | !-- in-canopy heat flux distribution |
---|
| 357 | shf(:,:) = canopy_heat_flux(0,:,:) |
---|
| 358 | |
---|
| 359 | ENDIF |
---|
| 360 | |
---|
| 361 | |
---|
| 362 | |
---|
| 363 | END SUBROUTINE init_plant_canopy |
---|
| 364 | |
---|
| 365 | |
---|
| 366 | |
---|
| 367 | !------------------------------------------------------------------------------! |
---|
| 368 | ! Description: |
---|
| 369 | ! ------------ |
---|
| 370 | !-- Calculation of the tendency terms, accounting for the effect of the plant |
---|
| 371 | !-- canopy on momentum and scalar quantities. |
---|
| 372 | !-- |
---|
| 373 | !-- The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
| 374 | !-- (defined on scalar grid), as initialized in subroutine init_plant_canopy. |
---|
| 375 | !-- The lad on the w-grid is vertically interpolated from the surrounding |
---|
| 376 | !-- lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
| 377 | !-- k = pch_index. Here, the lad is zero. |
---|
| 378 | !-- |
---|
| 379 | !-- The canopy drag must be limited (previously accounted for by calculation of |
---|
| 380 | !-- a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 381 | !-- in subroutine timestep), since it is physically impossible that the canopy |
---|
| 382 | !-- drag alone can locally change the sign of a velocity component. This |
---|
| 383 | !-- limitation is realized by calculating preliminary tendencies and velocities. |
---|
| 384 | !-- It is subsequently checked if the preliminary new velocity has a different |
---|
| 385 | !-- sign than the current velocity. If so, the tendency is limited in a way that |
---|
| 386 | !-- the velocity can at maximum be reduced to zero by the canopy drag. |
---|
| 387 | !-- |
---|
| 388 | !-- |
---|
| 389 | !-- Call for all grid points |
---|
| 390 | !------------------------------------------------------------------------------! |
---|
[138] | 391 | SUBROUTINE plant_canopy_model( component ) |
---|
| 392 | |
---|
| 393 | |
---|
[1320] | 394 | USE control_parameters, & |
---|
[1484] | 395 | ONLY: dt_3d, message_string |
---|
[1320] | 396 | |
---|
| 397 | USE kinds |
---|
| 398 | |
---|
[138] | 399 | IMPLICIT NONE |
---|
| 400 | |
---|
[1484] | 401 | INTEGER(iwp) :: component !: prognostic variable (u,v,w,pt,q,e) |
---|
| 402 | INTEGER(iwp) :: i !: running index |
---|
| 403 | INTEGER(iwp) :: j !: running index |
---|
| 404 | INTEGER(iwp) :: k !: running index |
---|
| 405 | |
---|
| 406 | REAL(wp) :: ddt_3d !: inverse of the LES timestep (dt_3d) |
---|
| 407 | REAL(wp) :: lad_local !: local lad value |
---|
| 408 | REAL(wp) :: pre_tend !: preliminary tendency |
---|
| 409 | REAL(wp) :: pre_u !: preliminary u-value |
---|
| 410 | REAL(wp) :: pre_v !: preliminary v-value |
---|
| 411 | REAL(wp) :: pre_w !: preliminary w-value |
---|
| 412 | |
---|
| 413 | |
---|
| 414 | ddt_3d = 1.0_wp / dt_3d |
---|
[138] | 415 | |
---|
| 416 | ! |
---|
[1484] | 417 | !-- Compute drag for the three velocity components and the SGS-TKE: |
---|
[138] | 418 | SELECT CASE ( component ) |
---|
| 419 | |
---|
| 420 | ! |
---|
| 421 | !-- u-component |
---|
| 422 | CASE ( 1 ) |
---|
| 423 | DO i = nxlu, nxr |
---|
| 424 | DO j = nys, nyn |
---|
| 425 | DO k = nzb_u_inner(j,i)+1, pch_index |
---|
[1484] | 426 | |
---|
| 427 | ! |
---|
| 428 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 429 | !-- the lad on the u-grid at index (k,j,i) is equal to |
---|
| 430 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
| 431 | !-- surrounding lad_s, because this would yield smaller lad |
---|
| 432 | !-- at the canopy boundaries than inside of the canopy. |
---|
| 433 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
| 434 | !-- boundary on the u-grid equals lad_s(k,j,i). |
---|
| 435 | lad_local = lad_s(k,j,i) |
---|
| 436 | IF ( lad_local == 0.0_wp .AND. & |
---|
| 437 | lad_s(k,j,i-1) > 0.0_wp ) THEN |
---|
| 438 | lad_local = lad_s(k,j,i-1) |
---|
| 439 | ENDIF |
---|
| 440 | |
---|
| 441 | pre_tend = 0.0_wp |
---|
| 442 | pre_u = 0.0_wp |
---|
| 443 | ! |
---|
| 444 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 445 | pre_tend = - cdc * & |
---|
| 446 | lad_local * & |
---|
| 447 | SQRT( u(k,j,i)**2 + & |
---|
| 448 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 449 | v(k,j,i) + & |
---|
| 450 | v(k,j+1,i) + & |
---|
| 451 | v(k,j+1,i-1) ) & |
---|
| 452 | )**2 + & |
---|
| 453 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 454 | w(k-1,j,i) + & |
---|
| 455 | w(k,j,i-1) + & |
---|
| 456 | w(k,j,i) ) & |
---|
| 457 | )**2 & |
---|
| 458 | ) * & |
---|
| 459 | u(k,j,i) |
---|
| 460 | |
---|
| 461 | ! |
---|
| 462 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 463 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 464 | ! |
---|
| 465 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 466 | !-- and in case the signs are different, limit the tendency |
---|
| 467 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
| 468 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 469 | ELSE |
---|
| 470 | pre_tend = pre_tend |
---|
| 471 | ENDIF |
---|
| 472 | ! |
---|
| 473 | !-- Calculate final tendency |
---|
| 474 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 475 | |
---|
[138] | 476 | ENDDO |
---|
| 477 | ENDDO |
---|
| 478 | ENDDO |
---|
| 479 | |
---|
| 480 | ! |
---|
| 481 | !-- v-component |
---|
| 482 | CASE ( 2 ) |
---|
| 483 | DO i = nxl, nxr |
---|
| 484 | DO j = nysv, nyn |
---|
| 485 | DO k = nzb_v_inner(j,i)+1, pch_index |
---|
[1484] | 486 | |
---|
| 487 | ! |
---|
| 488 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 489 | !-- the lad on the v-grid at index (k,j,i) is equal to |
---|
| 490 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
| 491 | !-- surrounding lad_s, because this would yield smaller lad |
---|
| 492 | !-- at the canopy boundaries than inside of the canopy. |
---|
| 493 | !-- For the same reason, the lad at the northmost(j+1) canopy |
---|
| 494 | !-- boundary on the v-grid equals lad_s(k,j,i). |
---|
| 495 | lad_local = lad_s(k,j,i) |
---|
| 496 | IF ( lad_local == 0.0_wp .AND. & |
---|
| 497 | lad_s(k,j-1,i) > 0.0_wp ) THEN |
---|
| 498 | lad_local = lad_s(k,j-1,i) |
---|
| 499 | ENDIF |
---|
| 500 | |
---|
| 501 | pre_tend = 0.0_wp |
---|
| 502 | pre_v = 0.0_wp |
---|
| 503 | ! |
---|
| 504 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 505 | pre_tend = - cdc * & |
---|
| 506 | lad_local * & |
---|
| 507 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 508 | u(k,j-1,i+1) + & |
---|
| 509 | u(k,j,i) + & |
---|
| 510 | u(k,j,i+1) ) & |
---|
| 511 | )**2 + & |
---|
| 512 | v(k,j,i)**2 + & |
---|
| 513 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 514 | w(k-1,j,i) + & |
---|
| 515 | w(k,j-1,i) + & |
---|
| 516 | w(k,j,i) ) & |
---|
| 517 | )**2 & |
---|
| 518 | ) * & |
---|
| 519 | v(k,j,i) |
---|
| 520 | |
---|
| 521 | ! |
---|
| 522 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 523 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 524 | ! |
---|
| 525 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 526 | !-- and in case the signs are different, limit the tendency |
---|
| 527 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
| 528 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 529 | ELSE |
---|
| 530 | pre_tend = pre_tend |
---|
| 531 | ENDIF |
---|
| 532 | ! |
---|
| 533 | !-- Calculate final tendency |
---|
| 534 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 535 | |
---|
[138] | 536 | ENDDO |
---|
| 537 | ENDDO |
---|
| 538 | ENDDO |
---|
| 539 | |
---|
| 540 | ! |
---|
| 541 | !-- w-component |
---|
| 542 | CASE ( 3 ) |
---|
| 543 | DO i = nxl, nxr |
---|
| 544 | DO j = nys, nyn |
---|
[1484] | 545 | DO k = nzb_w_inner(j,i)+1, pch_index-1 |
---|
| 546 | |
---|
| 547 | pre_tend = 0.0_wp |
---|
| 548 | pre_w = 0.0_wp |
---|
| 549 | ! |
---|
| 550 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 551 | pre_tend = - cdc * & |
---|
| 552 | (0.5_wp * & |
---|
| 553 | ( lad_s(k+1,j,i) + lad_s(k,j,i) )) * & |
---|
| 554 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 555 | u(k,j,i+1) + & |
---|
| 556 | u(k+1,j,i) + & |
---|
| 557 | u(k+1,j,i+1) ) & |
---|
| 558 | )**2 + & |
---|
| 559 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 560 | v(k,j+1,i) + & |
---|
| 561 | v(k+1,j,i) + & |
---|
| 562 | v(k+1,j+1,i) ) & |
---|
| 563 | )**2 + & |
---|
| 564 | w(k,j,i)**2 & |
---|
| 565 | ) * & |
---|
| 566 | w(k,j,i) |
---|
| 567 | ! |
---|
| 568 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 569 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 570 | ! |
---|
| 571 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 572 | !-- and in case the signs are different, limit the tendency |
---|
| 573 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
| 574 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 575 | ELSE |
---|
| 576 | pre_tend = pre_tend |
---|
| 577 | ENDIF |
---|
| 578 | ! |
---|
| 579 | !-- Calculate final tendency |
---|
| 580 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 581 | |
---|
[138] | 582 | ENDDO |
---|
| 583 | ENDDO |
---|
| 584 | ENDDO |
---|
| 585 | |
---|
| 586 | ! |
---|
[153] | 587 | !-- potential temperature |
---|
[138] | 588 | CASE ( 4 ) |
---|
| 589 | DO i = nxl, nxr |
---|
| 590 | DO j = nys, nyn |
---|
| 591 | DO k = nzb_s_inner(j,i)+1, pch_index |
---|
[1484] | 592 | tend(k,j,i) = tend(k,j,i) + & |
---|
| 593 | ( canopy_heat_flux(k,j,i) - & |
---|
| 594 | canopy_heat_flux(k-1,j,i) ) / dzw(k) |
---|
[153] | 595 | ENDDO |
---|
| 596 | ENDDO |
---|
| 597 | ENDDO |
---|
| 598 | |
---|
| 599 | ! |
---|
| 600 | !-- scalar concentration |
---|
| 601 | CASE ( 5 ) |
---|
| 602 | DO i = nxl, nxr |
---|
| 603 | DO j = nys, nyn |
---|
| 604 | DO k = nzb_s_inner(j,i)+1, pch_index |
---|
[1484] | 605 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 606 | lsec * & |
---|
| 607 | lad_s(k,j,i) * & |
---|
| 608 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 609 | u(k,j,i+1) ) & |
---|
| 610 | )**2 + & |
---|
| 611 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 612 | v(k,j+1,i) ) & |
---|
| 613 | )**2 + & |
---|
| 614 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 615 | w(k,j,i) ) & |
---|
| 616 | )**2 & |
---|
| 617 | ) * & |
---|
| 618 | ( q(k,j,i) - lsc ) |
---|
[153] | 619 | ENDDO |
---|
| 620 | ENDDO |
---|
| 621 | ENDDO |
---|
| 622 | |
---|
| 623 | ! |
---|
| 624 | !-- sgs-tke |
---|
| 625 | CASE ( 6 ) |
---|
| 626 | DO i = nxl, nxr |
---|
| 627 | DO j = nys, nyn |
---|
| 628 | DO k = nzb_s_inner(j,i)+1, pch_index |
---|
[1484] | 629 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 630 | 2.0_wp * cdc * & |
---|
| 631 | lad_s(k,j,i) * & |
---|
| 632 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 633 | u(k,j,i+1) ) & |
---|
| 634 | )**2 + & |
---|
| 635 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 636 | v(k,j+1,i) ) & |
---|
| 637 | )**2 + & |
---|
| 638 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 639 | w(k+1,j,i) ) & |
---|
| 640 | )**2 & |
---|
| 641 | ) * & |
---|
| 642 | e(k,j,i) |
---|
[138] | 643 | ENDDO |
---|
| 644 | ENDDO |
---|
| 645 | ENDDO |
---|
[1484] | 646 | |
---|
| 647 | |
---|
[138] | 648 | CASE DEFAULT |
---|
| 649 | |
---|
[257] | 650 | WRITE( message_string, * ) 'wrong component: ', component |
---|
| 651 | CALL message( 'plant_canopy_model', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 652 | |
---|
| 653 | END SELECT |
---|
| 654 | |
---|
| 655 | END SUBROUTINE plant_canopy_model |
---|
| 656 | |
---|
| 657 | |
---|
| 658 | !------------------------------------------------------------------------------! |
---|
[1484] | 659 | ! Description: |
---|
| 660 | ! ------------ |
---|
| 661 | !-- Calculation of the tendency terms, accounting for the effect of the plant |
---|
| 662 | !-- canopy on momentum and scalar quantities. |
---|
| 663 | !-- |
---|
| 664 | !-- The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
| 665 | !-- (defined on scalar grid), as initialized in subroutine init_plant_canopy. |
---|
| 666 | !-- The lad on the w-grid is vertically interpolated from the surrounding |
---|
| 667 | !-- lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
| 668 | !-- k = pch_index. Here, the lad is zero. |
---|
| 669 | !-- |
---|
| 670 | !-- The canopy drag must be limited (previously accounted for by calculation of |
---|
| 671 | !-- a limiting canopy timestep for the determination of the maximum LES timestep |
---|
| 672 | !-- in subroutine timestep), since it is physically impossible that the canopy |
---|
| 673 | !-- drag alone can locally change the sign of a velocity component. This |
---|
| 674 | !-- limitation is realized by calculating preliminary tendencies and velocities. |
---|
| 675 | !-- It is subsequently checked if the preliminary new velocity has a different |
---|
| 676 | !-- sign than the current velocity. If so, the tendency is limited in a way that |
---|
| 677 | !-- the velocity can at maximum be reduced to zero by the canopy drag. |
---|
| 678 | !-- |
---|
| 679 | !-- |
---|
| 680 | !-- Call for grid point i,j |
---|
[138] | 681 | !------------------------------------------------------------------------------! |
---|
| 682 | SUBROUTINE plant_canopy_model_ij( i, j, component ) |
---|
| 683 | |
---|
| 684 | |
---|
[1320] | 685 | USE control_parameters, & |
---|
[1484] | 686 | ONLY: dt_3d, message_string |
---|
[1320] | 687 | |
---|
| 688 | USE kinds |
---|
| 689 | |
---|
[138] | 690 | IMPLICIT NONE |
---|
| 691 | |
---|
[1484] | 692 | INTEGER(iwp) :: component !: prognostic variable (u,v,w,pt,q,e) |
---|
| 693 | INTEGER(iwp) :: i !: running index |
---|
| 694 | INTEGER(iwp) :: j !: running index |
---|
| 695 | INTEGER(iwp) :: k !: running index |
---|
[138] | 696 | |
---|
[1484] | 697 | REAL(wp) :: ddt_3d !: inverse of the LES timestep (dt_3d) |
---|
| 698 | REAL(wp) :: lad_local !: local lad value |
---|
| 699 | REAL(wp) :: pre_tend !: preliminary tendency |
---|
| 700 | REAL(wp) :: pre_u !: preliminary u-value |
---|
| 701 | REAL(wp) :: pre_v !: preliminary v-value |
---|
| 702 | REAL(wp) :: pre_w !: preliminary w-value |
---|
| 703 | |
---|
| 704 | |
---|
| 705 | ddt_3d = 1.0_wp / dt_3d |
---|
| 706 | |
---|
[138] | 707 | ! |
---|
[1484] | 708 | !-- Compute drag for the three velocity components and the SGS-TKE |
---|
[142] | 709 | SELECT CASE ( component ) |
---|
[138] | 710 | |
---|
| 711 | ! |
---|
[142] | 712 | !-- u-component |
---|
[1484] | 713 | CASE ( 1 ) |
---|
| 714 | DO k = nzb_u_inner(j,i)+1, pch_index |
---|
[138] | 715 | |
---|
| 716 | ! |
---|
[1484] | 717 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 718 | !-- the lad on the u-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 719 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 720 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 721 | !-- than inside of the canopy. |
---|
| 722 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
| 723 | !-- boundary on the u-grid equals lad_s(k,j,i). |
---|
| 724 | lad_local = lad_s(k,j,i) |
---|
| 725 | IF ( lad_local == 0.0_wp .AND. & |
---|
| 726 | lad_s(k,j,i-1) > 0.0_wp ) THEN |
---|
| 727 | lad_local = lad_s(k,j,i-1) |
---|
| 728 | ENDIF |
---|
| 729 | |
---|
| 730 | pre_tend = 0.0_wp |
---|
| 731 | pre_u = 0.0_wp |
---|
| 732 | ! |
---|
| 733 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 734 | pre_tend = - cdc * & |
---|
| 735 | lad_local * & |
---|
| 736 | SQRT( u(k,j,i)**2 + & |
---|
| 737 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
| 738 | v(k,j,i) + & |
---|
| 739 | v(k,j+1,i) + & |
---|
| 740 | v(k,j+1,i-1) ) & |
---|
| 741 | )**2 + & |
---|
| 742 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
| 743 | w(k-1,j,i) + & |
---|
| 744 | w(k,j,i-1) + & |
---|
| 745 | w(k,j,i) ) & |
---|
| 746 | )**2 & |
---|
| 747 | ) * & |
---|
| 748 | u(k,j,i) |
---|
| 749 | |
---|
| 750 | ! |
---|
| 751 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 752 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
| 753 | ! |
---|
| 754 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 755 | !-- and in case the signs are different, limit the tendency |
---|
| 756 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
| 757 | pre_tend = - u(k,j,i) * ddt_3d |
---|
| 758 | ELSE |
---|
| 759 | pre_tend = pre_tend |
---|
| 760 | ENDIF |
---|
| 761 | ! |
---|
| 762 | !-- Calculate final tendency |
---|
| 763 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 764 | ENDDO |
---|
| 765 | |
---|
| 766 | |
---|
| 767 | ! |
---|
[142] | 768 | !-- v-component |
---|
[1484] | 769 | CASE ( 2 ) |
---|
| 770 | DO k = nzb_v_inner(j,i)+1, pch_index |
---|
[138] | 771 | |
---|
| 772 | ! |
---|
[1484] | 773 | !-- In order to create sharp boundaries of the plant canopy, |
---|
| 774 | !-- the lad on the v-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
| 775 | !-- rather than being interpolated from the surrounding lad_s, |
---|
| 776 | !-- because this would yield smaller lad at the canopy boundaries |
---|
| 777 | !-- than inside of the canopy. |
---|
| 778 | !-- For the same reason, the lad at the northmost(j+1)canopy |
---|
| 779 | !-- boundary on the v-grid equals lad_s(k,j,i). |
---|
| 780 | lad_local = lad_s(k,j,i) |
---|
| 781 | IF ( lad_local == 0.0_wp .AND. & |
---|
| 782 | lad_s(k,j-1,i) > 0.0_wp ) THEN |
---|
| 783 | lad_local = lad_s(k,j-1,i) |
---|
| 784 | ENDIF |
---|
| 785 | |
---|
| 786 | pre_tend = 0.0_wp |
---|
| 787 | pre_v = 0.0_wp |
---|
| 788 | ! |
---|
| 789 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 790 | pre_tend = - cdc * & |
---|
| 791 | lad_local * & |
---|
| 792 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
| 793 | u(k,j-1,i+1) + & |
---|
| 794 | u(k,j,i) + & |
---|
| 795 | u(k,j,i+1) ) & |
---|
| 796 | )**2 + & |
---|
| 797 | v(k,j,i)**2 + & |
---|
| 798 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
| 799 | w(k-1,j,i) + & |
---|
| 800 | w(k,j-1,i) + & |
---|
| 801 | w(k,j,i) ) & |
---|
| 802 | )**2 & |
---|
| 803 | ) * & |
---|
| 804 | v(k,j,i) |
---|
| 805 | |
---|
| 806 | ! |
---|
| 807 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 808 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
| 809 | ! |
---|
| 810 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 811 | !-- and in case the signs are different, limit the tendency |
---|
| 812 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
| 813 | pre_tend = - v(k,j,i) * ddt_3d |
---|
| 814 | ELSE |
---|
| 815 | pre_tend = pre_tend |
---|
| 816 | ENDIF |
---|
| 817 | ! |
---|
| 818 | !-- Calculate final tendency |
---|
| 819 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 820 | ENDDO |
---|
| 821 | |
---|
| 822 | |
---|
| 823 | ! |
---|
[142] | 824 | !-- w-component |
---|
[1484] | 825 | CASE ( 3 ) |
---|
| 826 | DO k = nzb_w_inner(j,i)+1, pch_index-1 |
---|
[138] | 827 | |
---|
[1484] | 828 | pre_tend = 0.0_wp |
---|
| 829 | pre_w = 0.0_wp |
---|
[138] | 830 | ! |
---|
[1484] | 831 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
| 832 | pre_tend = - cdc * & |
---|
| 833 | (0.5_wp * & |
---|
| 834 | ( lad_s(k+1,j,i) + lad_s(k,j,i) )) * & |
---|
| 835 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
| 836 | u(k,j,i+1) + & |
---|
| 837 | u(k+1,j,i) + & |
---|
| 838 | u(k+1,j,i+1) ) & |
---|
| 839 | )**2 + & |
---|
| 840 | ( 0.25_wp * ( v(k,j,i) + & |
---|
| 841 | v(k,j+1,i) + & |
---|
| 842 | v(k+1,j,i) + & |
---|
| 843 | v(k+1,j+1,i) ) & |
---|
| 844 | )**2 + & |
---|
| 845 | w(k,j,i)**2 & |
---|
| 846 | ) * & |
---|
| 847 | w(k,j,i) |
---|
| 848 | ! |
---|
| 849 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
| 850 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
| 851 | ! |
---|
| 852 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
| 853 | !-- and in case the signs are different, limit the tendency |
---|
| 854 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
| 855 | pre_tend = - w(k,j,i) * ddt_3d |
---|
| 856 | ELSE |
---|
| 857 | pre_tend = pre_tend |
---|
| 858 | ENDIF |
---|
| 859 | ! |
---|
| 860 | !-- Calculate final tendency |
---|
| 861 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
| 862 | ENDDO |
---|
| 863 | |
---|
| 864 | ! |
---|
[153] | 865 | !-- potential temperature |
---|
| 866 | CASE ( 4 ) |
---|
| 867 | DO k = nzb_s_inner(j,i)+1, pch_index |
---|
[1484] | 868 | tend(k,j,i) = tend(k,j,i) + & |
---|
| 869 | ( canopy_heat_flux(k,j,i) - & |
---|
| 870 | canopy_heat_flux(k-1,j,i) ) / dzw(k) |
---|
[153] | 871 | ENDDO |
---|
| 872 | |
---|
| 873 | |
---|
| 874 | ! |
---|
| 875 | !-- scalar concentration |
---|
| 876 | CASE ( 5 ) |
---|
| 877 | DO k = nzb_s_inner(j,i)+1, pch_index |
---|
[1484] | 878 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 879 | lsec * & |
---|
| 880 | lad_s(k,j,i) * & |
---|
| 881 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 882 | u(k,j,i+1) ) & |
---|
| 883 | )**2 + & |
---|
| 884 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 885 | v(k,j+1,i) ) & |
---|
| 886 | )**2 + & |
---|
| 887 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
| 888 | w(k,j,i) ) & |
---|
| 889 | )**2 & |
---|
| 890 | ) * & |
---|
| 891 | ( q(k,j,i) - lsc ) |
---|
[153] | 892 | ENDDO |
---|
| 893 | |
---|
| 894 | ! |
---|
[142] | 895 | !-- sgs-tke |
---|
[1484] | 896 | CASE ( 6 ) |
---|
| 897 | DO k = nzb_s_inner(j,i)+1, pch_index |
---|
| 898 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 899 | 2.0_wp * cdc * & |
---|
| 900 | lad_s(k,j,i) * & |
---|
| 901 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
| 902 | u(k,j,i+1) ) & |
---|
| 903 | )**2 + & |
---|
| 904 | ( 0.5_wp * ( v(k,j,i) + & |
---|
| 905 | v(k,j+1,i) ) & |
---|
| 906 | )**2 + & |
---|
| 907 | ( 0.5_wp * ( w(k,j,i) + & |
---|
| 908 | w(k+1,j,i) ) & |
---|
| 909 | )**2 & |
---|
| 910 | ) * & |
---|
| 911 | e(k,j,i) |
---|
| 912 | ENDDO |
---|
[138] | 913 | |
---|
[142] | 914 | CASE DEFAULT |
---|
[138] | 915 | |
---|
[257] | 916 | WRITE( message_string, * ) 'wrong component: ', component |
---|
| 917 | CALL message( 'plant_canopy_model', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
[138] | 918 | |
---|
[142] | 919 | END SELECT |
---|
[138] | 920 | |
---|
| 921 | END SUBROUTINE plant_canopy_model_ij |
---|
| 922 | |
---|
| 923 | END MODULE plant_canopy_model_mod |
---|