!> @file netcdf_data_input_mod.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2018 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: netcdf_data_input_mod.f90 3516 2018-11-12 15:49:39Z gronemeier $ ! bugfix: - difference in z coordinate between file and PALM must be <1e-6 ! - output of error 553 for all PEs ! ! 3498 2018-11-07 10:53:03Z gronemeier ! Bugfix: print error message by processor which encounters the error ! ! 3485 2018-11-03 17:09:40Z gronemeier ! - get central meridian from origin_lon if crs does not exist ! - set default origin_lon to 0 ! ! 3483 2018-11-02 14:19:26Z raasch ! bugfix: misplaced directives for netCDF fixed ! ! 3474 2018-10-30 21:07:39Z kanani ! Add UV exposure model input (Schrempf) ! ! 3472 2018-10-30 20:43:50Z suehring ! Salsa implemented ! ! 3464 2018-10-30 18:08:55Z kanani ! Define coordinate reference system (crs) and read from input dataset ! Revise default values for reference coordinates ! ! 3459 2018-10-30 15:04:11Z gronemeier ! from chemistry branch r3443, banzhafs, Russo: ! Uncommented lines on dimension of surface_fractions ! Removed par_emis_time_factor variable, moved to chem_emissions_mod ! Initialized nspec and other emission variables at time of declaration ! Modified EXPERT mode to PRE-PROCESSED mode ! Introduced Chemistry static netcdf file ! Added the routine for reading-in netcdf data for chemistry ! Added routines to get_variable interface specific for chemistry files ! ! 3429 2018-10-25 13:04:23Z knoop ! add default values of origin_x/y/z ! ! 3404 2018-10-23 13:29:11Z suehring ! Consider time-dependent geostrophic wind components in offline nesting ! ! 3376 2018-10-19 10:15:32Z suehring ! Additional check for consistent building initialization implemented ! ! 3347 2018-10-15 14:21:08Z suehring ! Subroutine renamed ! ! 3257 2018-09-17 17:11:46Z suehring ! (from branch resler) ! Formatting ! ! 3298 2018-10-02 12:21:11Z kanani ! Modified EXPERT mode to PRE-PROCESSED mode (Russo) ! Introduced Chemistry static netcdf file (Russo) ! Added the routine for reading-in netcdf data for chemistry (Russo) ! Added routines to get_variable interface specific for chemistry files (Russo) ! ! 3257 2018-09-17 17:11:46Z suehring ! Adjust checks for building_type and building_id, which is necessary after ! topography filtering (building_type and id can be modified by the filtering). ! ! 3254 2018-09-17 10:53:57Z suehring ! Additional check for surface_fractions and and checks for building_id and ! building_type extended. ! ! 3241 2018-09-12 15:02:00Z raasch ! unused variables removed ! ! 3215 2018-08-29 09:58:59Z suehring ! - Separate input of soil properties from input of atmospheric data. This ! enables input of soil properties also in child domains without any ! dependence on atmospheric input ! - Check for missing initial 1D/3D data in dynamic input file ! - Revise checks for matching grid spacing in model and input file ! - Bugfix, add netcdf4_parallel directive for collective read operation ! - Revise error message numbers ! ! 3209 2018-08-27 16:58:37Z suehring ! Read zsoil dimension length only if soil variables are provided ! ! 3183 2018-07-27 14:25:55Z suehring ! Adjust input of dynamic driver according to revised Inifor version. ! Replace simulated_time by time_since_reference_point. ! Rename variables in mesoscale-offline nesting mode. ! ! 3182 2018-07-27 13:36:03Z suehring ! Slightly revise check for surface_fraction in order to check only the relevant ! fractions ! ! 3103 2018-07-04 17:30:52Z suehring ! New check for negative terrain heights ! ! 3089 2018-06-27 13:20:38Z suehring ! Revise call for message routine in case of local data inconsistencies. ! ! 3054 2018-06-01 16:08:59Z gronemeier ! Bugfix: force an MPI abort if errors occur while reading building heights ! from ASCII file ! ! 3053 2018-06-01 12:59:07Z suehring ! Revise checks for variable surface_fraction ! ! 3051 2018-05-30 17:43:55Z suehring ! - Speed-up NetCDF input ! - Revise input routines and remove NetCDF input via IO-blocks since this is ! not working in parallel mode in case blocking collective read operations ! are done ! - Temporarily revoke renaming of input variables in dynamic driver (tend_ug, ! tend_vg, zsoil) in order to keep dynamic input file working with current ! model version ! - More detailed error messages created ! ! 3045 2018-05-28 07:55:41Z Giersch ! Error messages revised ! ! 3041 2018-05-25 10:39:54Z gronemeier ! Add data type for global file attributes ! Add read of global attributes of static driver ! ! 3037 2018-05-24 10:39:29Z gronemeier ! renamed 'depth' to 'zsoil' ! ! 3036 2018-05-24 10:18:26Z gronemeier ! Revision of input vars according to UC2 data standard ! - renamed 'orography_2D' to 'zt' ! - renamed 'buildings_2D' to 'buildings_2d' ! - renamed 'buildings_3D' to 'buildings_3d' ! - renamed 'leaf_are_density' to 'lad' ! - renamed 'basal_are_density' to 'bad' ! - renamed 'root_are_density_lad' to 'root_area_dens_r' ! - renamed 'root_are_density_lsm' to 'root_area_dens_s' ! - renamed 'ls_forcing_ug' to 'tend_ug' ! - renamed 'ls_forcing_vg' to 'tend_vg' ! ! 3019 2018-05-13 07:05:43Z maronga ! Improved reading speed of large NetCDF files ! ! 2963 2018-04-12 14:47:44Z suehring ! - Revise checks for static input variables. ! - Introduce index for vegetation/wall, pavement/green-wall and water/window ! surfaces, for clearer access of surface fraction, albedo, emissivity, etc. . ! ! 2958 2018-04-11 15:38:13Z suehring ! Synchronize longitude and latitude between nested model domains, values are ! taken from the root model. ! ! 2955 2018-04-09 15:14:01Z suehring ! Extend checks for consistent setting of buildings, its ID and type. ! Add log-points to measure CPU time of NetCDF data input. ! ! 2953 2018-04-09 11:26:02Z suehring ! Bugfix in checks for initialization data ! ! 2947 2018-04-04 18:01:41Z suehring ! Checks for dynamic input revised ! ! 2946 2018-04-04 17:01:23Z suehring ! Bugfix for revision 2945, perform checks only if dynamic input file is ! available. ! ! 2945 2018-04-04 16:27:14Z suehring ! - Mimic for topography input slightly revised, in order to enable consistency ! checks ! - Add checks for dimensions in dynamic input file and move already existing ! checks ! ! 2938 2018-03-27 15:52:42Z suehring ! Initial read of geostrophic wind components from dynamic driver. ! ! 2773 2018-01-30 14:12:54Z suehring ! Revise checks for surface_fraction. ! ! 2925 2018-03-23 14:54:11Z suehring ! Check for further inconsistent settings of surface_fractions. ! Some messages slightly rephrased and error numbers renamed. ! ! 2898 2018-03-15 13:03:01Z suehring ! Check if each building has a type. Further, check if dimensions in static ! input file match the model dimensions. ! ! 2897 2018-03-15 11:47:16Z suehring ! Relax restrictions for topography input, terrain and building heights can be ! input separately and are not mandatory any more. ! ! 2874 2018-03-13 10:55:42Z knoop ! Bugfix: wrong placement of netcdf cpp-macros fixed ! ! 2794 2018-02-07 14:09:43Z knoop ! Check if 3D building input is consistent to numeric grid. ! ! 2773 2018-01-30 14:12:54Z suehring ! - Enable initialization with 3D topography. ! - Move check for correct initialization in nesting mode to check_parameters. ! ! 2772 2018-01-29 13:10:35Z suehring ! Initialization of simulation independent on land-surface model. ! ! 2746 2018-01-15 12:06:04Z suehring ! Read plant-canopy variables independently on land-surface model usage ! ! 2718 2018-01-02 08:49:38Z maronga ! Corrected "Former revisions" section ! ! 2711 2017-12-20 17:04:49Z suehring ! Rename subroutine close_file to avoid double-naming. ! ! 2700 2017-12-15 14:12:35Z suehring ! ! 2696 2017-12-14 17:12:51Z kanani ! Initial revision (suehring) ! ! ! ! ! Authors: ! -------- ! @author Matthias Suehring ! ! Description: ! ------------ !> Modulue contains routines to input data according to Palm input data !> standart using dynamic and static input files. !> @todo - Chemistry: revise reading of netcdf file and ajdust formatting according to standard!!! !> @todo - Order input alphabetically !> @todo - Revise error messages and error numbers !> @todo - Input of missing quantities (chemical species, emission rates) !> @todo - Defninition and input of still missing variable attributes !> @todo - Input of initial geostrophic wind profiles with cyclic conditions. !------------------------------------------------------------------------------! MODULE netcdf_data_input_mod USE control_parameters, & ONLY: coupling_char, io_blocks, io_group USE cpulog, & ONLY: cpu_log, log_point_s USE kinds #if defined ( __netcdf ) USE NETCDF #endif USE pegrid USE surface_mod, & ONLY: ind_pav_green, ind_veg_wall, ind_wat_win ! !-- Define type for dimensions. TYPE dims_xy INTEGER(iwp) :: nx !< dimension length in x INTEGER(iwp) :: ny !< dimension length in y INTEGER(iwp) :: nz !< dimension length in z REAL(wp), DIMENSION(:), ALLOCATABLE :: x !< dimension array in x REAL(wp), DIMENSION(:), ALLOCATABLE :: y !< dimension array in y REAL(wp), DIMENSION(:), ALLOCATABLE :: z !< dimension array in z END TYPE dims_xy ! !-- Define data type for nesting in larger-scale models like COSMO. !-- Data type comprises u, v, w, pt, and q at lateral and top boundaries. TYPE nest_offl_type CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names INTEGER(iwp) :: nt !< number of time levels in dynamic input file INTEGER(iwp) :: nzu !< number of vertical levels on scalar grid in dynamic input file INTEGER(iwp) :: nzw !< number of vertical levels on w grid in dynamic input file INTEGER(iwp) :: tind !< time index for reference time in mesoscale-offline nesting INTEGER(iwp) :: tind_p !< time index for following time in mesoscale-offline nesting LOGICAL :: init = .FALSE. LOGICAL :: from_file = .FALSE. REAL(wp), DIMENSION(:), ALLOCATABLE :: surface_pressure !< time dependent surface pressure REAL(wp), DIMENSION(:), ALLOCATABLE :: time !< time levels in dynamic input file REAL(wp), DIMENSION(:), ALLOCATABLE :: zu_atmos !< vertical levels at scalar grid in dynamic input file REAL(wp), DIMENSION(:), ALLOCATABLE :: zw_atmos !< vertical levels at w grid in dynamic input file REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ug !< domain-averaged geostrophic component REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vg !< domain-averaged geostrophic component REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_left !< u-component at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_left !< v-component at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_left !< w-component at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_left !< mixing ratio at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_left !< potentital temperautre at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_north !< u-component at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_north !< v-component at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_north !< w-component at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_north !< mixing ratio at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_north !< potentital temperautre at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_right !< u-component at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_right !< v-component at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_right !< w-component at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_right !< mixing ratio at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_right !< potentital temperautre at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_south !< u-component at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_south !< v-component at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_south !< w-component at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_south !< mixing ratio at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_south !< potentital temperautre at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_top !< u-component at top boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_top !< v-component at top boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_top !< w-component at top boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_top !< mixing ratio at top boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_top !< potentital temperautre at top boundary END TYPE nest_offl_type TYPE init_type CHARACTER(LEN=23) :: origin_time !< reference time of input data INTEGER(iwp) :: lod_msoil !< level of detail - soil moisture INTEGER(iwp) :: lod_pt !< level of detail - pt INTEGER(iwp) :: lod_q !< level of detail - q INTEGER(iwp) :: lod_tsoil !< level of detail - soil temperature INTEGER(iwp) :: lod_u !< level of detail - u-component INTEGER(iwp) :: lod_v !< level of detail - v-component INTEGER(iwp) :: lod_w !< level of detail - w-component INTEGER(iwp) :: nx !< number of scalar grid points along x in dynamic input file INTEGER(iwp) :: nxu !< number of u grid points along x in dynamic input file INTEGER(iwp) :: ny !< number of scalar grid points along y in dynamic input file INTEGER(iwp) :: nyv !< number of v grid points along y in dynamic input file INTEGER(iwp) :: nzs !< number of vertical soil levels in dynamic input file INTEGER(iwp) :: nzu !< number of vertical levels on scalar grid in dynamic input file INTEGER(iwp) :: nzw !< number of vertical levels on w grid in dynamic input file LOGICAL :: from_file_msoil = .FALSE. !< flag indicating whether soil moisture is already initialized from file LOGICAL :: from_file_pt = .FALSE. !< flag indicating whether pt is already initialized from file LOGICAL :: from_file_q = .FALSE. !< flag indicating whether q is already initialized from file LOGICAL :: from_file_tsoil = .FALSE. !< flag indicating whether soil temperature is already initialized from file LOGICAL :: from_file_u = .FALSE. !< flag indicating whether u is already initialized from file LOGICAL :: from_file_ug = .FALSE. !< flag indicating whether ug is already initialized from file LOGICAL :: from_file_v = .FALSE. !< flag indicating whether v is already initialized from file LOGICAL :: from_file_vg = .FALSE. !< flag indicating whether ug is already initialized from file LOGICAL :: from_file_w = .FALSE. !< flag indicating whether w is already initialized from file REAL(wp) :: fill_msoil !< fill value for soil moisture REAL(wp) :: fill_pt !< fill value for pt REAL(wp) :: fill_q !< fill value for q REAL(wp) :: fill_tsoil !< fill value for soil temperature REAL(wp) :: fill_u !< fill value for u REAL(wp) :: fill_v !< fill value for v REAL(wp) :: fill_w !< fill value for w REAL(wp) :: latitude = 0.0_wp !< latitude of the lower left corner REAL(wp) :: longitude = 0.0_wp !< longitude of the lower left corner REAL(wp) :: origin_x = 500000.0_wp !< UTM easting of the lower left corner REAL(wp) :: origin_y = 0.0_wp !< UTM northing of the lower left corner REAL(wp) :: origin_z = 0.0_wp !< reference height of input data REAL(wp) :: rotation_angle = 0.0_wp !< rotation angle of input data REAL(wp), DIMENSION(:), ALLOCATABLE :: msoil_1d !< initial vertical profile of soil moisture REAL(wp), DIMENSION(:), ALLOCATABLE :: pt_init !< initial vertical profile of pt REAL(wp), DIMENSION(:), ALLOCATABLE :: q_init !< initial vertical profile of q REAL(wp), DIMENSION(:), ALLOCATABLE :: tsoil_1d !< initial vertical profile of soil temperature REAL(wp), DIMENSION(:), ALLOCATABLE :: u_init !< initial vertical profile of u REAL(wp), DIMENSION(:), ALLOCATABLE :: ug_init !< initial vertical profile of ug REAL(wp), DIMENSION(:), ALLOCATABLE :: v_init !< initial vertical profile of v REAL(wp), DIMENSION(:), ALLOCATABLE :: vg_init !< initial vertical profile of ug REAL(wp), DIMENSION(:), ALLOCATABLE :: w_init !< initial vertical profile of w REAL(wp), DIMENSION(:), ALLOCATABLE :: z_soil !< vertical levels in soil in dynamic input file, used for interpolation REAL(wp), DIMENSION(:), ALLOCATABLE :: zu_atmos !< vertical levels at scalar grid in dynamic input file, used for interpolation REAL(wp), DIMENSION(:), ALLOCATABLE :: zw_atmos !< vertical levels at w grid in dynamic input file, used for interpolation REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: msoil_3d !< initial 3d soil moisture provide by Inifor and interpolated onto soil grid REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tsoil_3d !< initial 3d soil temperature provide by Inifor and interpolated onto soil grid END TYPE init_type !-- Data type for the general information of chemistry emissions, do not dependent on the particular chemical species TYPE chem_emis_att_type !-DIMENSIONS INTEGER(iwp) :: nspec=0 !< number of chem species for which emission values are provided INTEGER(iwp) :: ncat=0 !< number of emission categories INTEGER(iwp) :: nvoc=0 !< number of VOCs components INTEGER(iwp) :: npm=0 !< number of PMs components INTEGER(iwp) :: nnox=2 !< number of NOx components: NO and NO2 INTEGER(iwp) :: nsox=2 !< number of SOx components: SO and SO4 INTEGER(iwp) :: nhoursyear !< number of hours of a specific year in the HOURLY mode ! of the default mode INTEGER(iwp) :: nmonthdayhour !< number of month days and hours in the MDH mode ! of the default mode INTEGER(iwp) :: dt_emission !< Number of emissions timesteps for one year ! in the pre-processed emissions case !-- 1d emission input variables CHARACTER (LEN=25),ALLOCATABLE, DIMENSION(:) :: pm_name !< Names of PMs components CHARACTER (LEN=25),ALLOCATABLE, DIMENSION(:) :: cat_name !< Emission categories names CHARACTER (LEN=25),ALLOCATABLE, DIMENSION(:) :: species_name !< Names of emission chemical species CHARACTER (LEN=25),ALLOCATABLE, DIMENSION(:) :: voc_name !< Names of VOCs components CHARACTER (LEN=25) :: units !< Units INTEGER(iwp) :: i_hour !< indices for assigning the emission values at different timesteps INTEGER(iwp),ALLOCATABLE, DIMENSION(:) :: cat_index !< Index of emission categories INTEGER(iwp),ALLOCATABLE, DIMENSION(:) :: species_index !< Index of emission chem species REAL(wp),ALLOCATABLE, DIMENSION(:) :: xm !< Molecular masses of emission chem species !-- 2d emission input variables REAL(wp),ALLOCATABLE, DIMENSION(:,:) :: hourly_emis_time_factor !< Time factors for HOURLY emissions (DEFAULT mode) REAL(wp),ALLOCATABLE, DIMENSION(:,:) :: mdh_emis_time_factor !< Time factors for MDH emissions (DEFAULT mode) REAL(wp),ALLOCATABLE, DIMENSION(:,:) :: nox_comp !< Composition of NO and NO2 REAL(wp),ALLOCATABLE, DIMENSION(:,:) :: sox_comp !< Composition of SO2 and SO4 REAL(wp),ALLOCATABLE, DIMENSION(:,:) :: voc_comp !< Composition of different VOC components (number not fixed) !-- 3d emission input variables REAL(wp),ALLOCATABLE, DIMENSION(:,:,:) :: pm_comp !< Composition of different PMs components (number not fixed) END TYPE chem_emis_att_type !-- Data type for the values of chemistry emissions ERUSSO TYPE chem_emis_val_type !REAL(wp),ALLOCATABLE, DIMENSION(:,:) :: stack_height !< stack height !-- 3d emission input variables REAL(wp),ALLOCATABLE, DIMENSION(:,:,:) :: default_emission_data !< Input Values emissions DEFAULT mode !-- 4d emission input variables REAL(wp),ALLOCATABLE, DIMENSION(:,:,:,:) :: preproc_emission_data !< Input Values emissions PRE-PROCESSED mode END TYPE chem_emis_val_type ! !-- Define data structures for different input data types. !-- 8-bit Integer 2D TYPE int_2d_8bit INTEGER(KIND=1) :: fill = -127 !< fill value INTEGER(KIND=1), DIMENSION(:,:), ALLOCATABLE :: var !< respective variable LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used END TYPE int_2d_8bit ! !-- 8-bit Integer 3D TYPE int_3d_8bit INTEGER(KIND=1) :: fill = -127 !< fill value INTEGER(KIND=1), DIMENSION(:,:,:), ALLOCATABLE :: var_3d !< respective variable LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used END TYPE int_3d_8bit ! !-- 32-bit Integer 2D TYPE int_2d_32bit INTEGER(iwp) :: fill = -9999 !< fill value INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: var !< respective variable LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used END TYPE int_2d_32bit ! !-- Define data type to read 2D real variables TYPE real_2d LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used REAL(wp) :: fill = -9999.9_wp !< fill value REAL(wp), DIMENSION(:,:), ALLOCATABLE :: var !< respective variable END TYPE real_2d ! !-- Define data type to read 3D real variables TYPE real_3d LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used INTEGER(iwp) :: nz !< number of grid points along vertical dimension REAL(wp) :: fill = -9999.9_wp !< fill value REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: var !< respective variable END TYPE real_3d ! !-- Define data structure where the dimension and type of the input depends !-- on the given level of detail. !-- For buildings, the input is either 2D float, or 3d byte. TYPE build_in INTEGER(iwp) :: lod = 1 !< level of detail INTEGER(KIND=1) :: fill2 = -127 !< fill value for lod = 2 INTEGER(iwp) :: nz !< number of vertical layers in file INTEGER(KIND=1), DIMENSION(:,:,:), ALLOCATABLE :: var_3d !< 3d variable (lod = 2) REAL(wp), DIMENSION(:), ALLOCATABLE :: z !< vertical coordinate for 3D building, used for consistency check LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used REAL(wp) :: fill1 = -9999.9_wp !< fill values for lod = 1 REAL(wp), DIMENSION(:,:), ALLOCATABLE :: var_2d !< 2d variable (lod = 1) END TYPE build_in ! !-- For soil_type, the input is either 2D or 3D one-byte integer. TYPE soil_in INTEGER(iwp) :: lod = 1 !< level of detail INTEGER(KIND=1) :: fill = -127 !< fill value for lod = 2 INTEGER(KIND=1), DIMENSION(:,:), ALLOCATABLE :: var_2d !< 2d variable (lod = 1) INTEGER(KIND=1), DIMENSION(:,:,:), ALLOCATABLE :: var_3d !< 3d variable (lod = 2) LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used END TYPE soil_in ! !-- Define data type for fractions between surface types TYPE fracs INTEGER(iwp) :: nf !< total number of fractions INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nfracs !< dimension array for fraction LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used REAL(wp) :: fill = -9999.9_wp !< fill value REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: frac !< respective fraction between different surface types END TYPE fracs ! !-- Data type for parameter lists, Depending on the given level of detail, !-- the input is 3D or 4D TYPE pars INTEGER(iwp) :: lod = 1 !< level of detail INTEGER(iwp) :: np !< total number of parameters INTEGER(iwp) :: nz !< vertical dimension - number of soil layers INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: layers !< dimension array for soil layers INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: pars !< dimension array for parameters LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used REAL(wp) :: fill = -9999.9_wp !< fill value REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pars_xy !< respective parameters, level of detail = 1 REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: pars_xyz !< respective parameters, level of detail = 2 END TYPE pars ! !-- Define type for global file attributes !-- Please refer to the PALM data standard for a detailed description of each !-- attribute. TYPE global_atts_type CHARACTER(LEN=12 ) :: acronym !< acronym of institution CHARACTER(LEN=7) :: acronym_char = 'acronym' !< name of attribute CHARACTER(LEN=200) :: author !< first name, last name, email adress CHARACTER(LEN=6) :: author_char = 'author' !< name of attribute CHARACTER(LEN=12 ) :: campaign !< name of campaign CHARACTER(LEN=8) :: campaign_char = 'campaign' !< name of attribute CHARACTER(LEN=200) :: comment !< comment to data CHARACTER(LEN=7) :: comment_char = 'comment' !< name of attribute CHARACTER(LEN=200) :: contact_person !< first name, last name, email adress CHARACTER(LEN=14) :: contact_person_char = 'contact_person' !< name of attribute CHARACTER(LEN=200) :: conventions = 'CF-1.7' !< netCDF convention CHARACTER(LEN=11) :: conventions_char = 'Conventions' !< name of attribute CHARACTER(LEN=23 ) :: creation_time !< creation time of data set CHARACTER(LEN=13) :: creation_time_char = 'creation_time' !< name of attribute CHARACTER(LEN=16 ) :: data_content !< content of data set CHARACTER(LEN=12) :: data_content_char = 'data_content' !< name of attribute CHARACTER(LEN=200) :: dependencies !< dependencies of data set CHARACTER(LEN=12) :: dependencies_char = 'dependencies' !< name of attribute CHARACTER(LEN=200) :: history !< information about data processing CHARACTER(LEN=7) :: history_char = 'history' !< name of attribute CHARACTER(LEN=200) :: institution !< name of responsible institution CHARACTER(LEN=11) :: institution_char = 'institution' !< name of attribute CHARACTER(LEN=200) :: keywords !< keywords of data set CHARACTER(LEN=8) :: keywords_char = 'keywords' !< name of attribute CHARACTER(LEN=200) :: license !< license of data set CHARACTER(LEN=7) :: license_char = 'license' !< name of attribute CHARACTER(LEN=200) :: location !< place which refers to data set CHARACTER(LEN=8) :: location_char = 'location' !< name of attribute CHARACTER(LEN=10) :: origin_lat_char = 'origin_lat' !< name of attribute CHARACTER(LEN=10) :: origin_lon_char = 'origin_lon' !< name of attribute CHARACTER(LEN=23 ) :: origin_time !< reference time CHARACTER(LEN=11) :: origin_time_char = 'origin_time' !< name of attribute CHARACTER(LEN=8) :: origin_x_char = 'origin_x' !< name of attribute CHARACTER(LEN=8) :: origin_y_char = 'origin_y' !< name of attribute CHARACTER(LEN=8) :: origin_z_char = 'origin_z' !< name of attribute CHARACTER(LEN=12) :: palm_version_char = 'palm_version' !< name of attribute CHARACTER(LEN=200) :: references !< literature referring to data set CHARACTER(LEN=10) :: references_char = 'references' !< name of attribute CHARACTER(LEN=14) :: rotation_angle_char = 'rotation_angle' !< name of attribute CHARACTER(LEN=12 ) :: site !< name of model domain CHARACTER(LEN=4) :: site_char = 'site' !< name of attribute CHARACTER(LEN=200) :: source !< source of data set CHARACTER(LEN=6) :: source_char = 'source' !< name of attribute CHARACTER(LEN=200) :: title !< title of data set CHARACTER(LEN=5) :: title_char = 'title' !< name of attribute CHARACTER(LEN=7) :: version_char = 'version' !< name of attribute INTEGER(iwp) :: version !< version of data set REAL(wp) :: origin_lat !< latitude of lower left corner REAL(wp) :: origin_lon !< longitude of lower left corner REAL(wp) :: origin_x !< easting (UTM coordinate) of lower left corner REAL(wp) :: origin_y !< northing (UTM coordinate) of lower left corner REAL(wp) :: origin_z !< reference height REAL(wp) :: palm_version !< PALM version of data set REAL(wp) :: rotation_angle !< rotation angle of coordinate system of data set END TYPE global_atts_type ! !-- Define type for coordinate reference system (crs) TYPE crs_type CHARACTER(LEN=200) :: epsg_code = 'EPSG:25831' !< EPSG code CHARACTER(LEN=200) :: grid_mapping_name = 'transverse_mercator' !< name of grid mapping CHARACTER(LEN=200) :: long_name = 'coordinate reference system' !< name of variable crs CHARACTER(LEN=200) :: units = 'm' !< unit of crs REAL(wp) :: false_easting = 500000.0_wp !< false easting REAL(wp) :: false_northing = 0.0_wp !< false northing REAL(wp) :: inverse_flattening = 298.257223563_wp !< 1/f (default for WGS84) REAL(wp) :: latitude_of_projection_origin = 0.0_wp !< latitude of projection origin REAL(wp) :: longitude_of_central_meridian = 3.0_wp !< longitude of central meridian of UTM zone (default: zone 31) REAL(wp) :: longitude_of_prime_meridian = 0.0_wp !< longitude of prime meridian REAL(wp) :: scale_factor_at_central_meridian = 0.9996_wp !< scale factor of UTM coordinates REAL(wp) :: semi_major_axis = 6378137.0_wp !< length of semi major axis (default for WGS84) END TYPE crs_type ! !-- Define variables TYPE(crs_type) :: coord_ref_sys !< coordinate reference system TYPE(dims_xy) :: dim_static !< data structure for x, y-dimension in static input file TYPE(nest_offl_type) :: nest_offl !< data structure for data input at lateral and top boundaries (provided by Inifor) TYPE(init_type) :: init_3d !< data structure for the initialization of the 3D flow and soil fields TYPE(init_type) :: init_model !< data structure for the initialization of the model ! !-- Define 2D variables of type NC_BYTE TYPE(int_2d_8bit) :: albedo_type_f !< input variable for albedo type TYPE(int_2d_8bit) :: building_type_f !< input variable for building type TYPE(int_2d_8bit) :: pavement_type_f !< input variable for pavenment type TYPE(int_2d_8bit) :: street_crossing_f !< input variable for water type TYPE(int_2d_8bit) :: street_type_f !< input variable for water type TYPE(int_2d_8bit) :: vegetation_type_f !< input variable for vegetation type TYPE(int_2d_8bit) :: water_type_f !< input variable for water type ! !-- Define 3D variables of type NC_BYTE TYPE(int_3d_8bit) :: building_obstruction_f !< input variable for building obstruction TYPE(int_3d_8bit) :: building_obstruction_full !< input variable for building obstruction ! !-- Define 2D variables of type NC_INT TYPE(int_2d_32bit) :: building_id_f !< input variable for building ID ! !-- Define 2D variables of type NC_FLOAT TYPE(real_2d) :: terrain_height_f !< input variable for terrain height TYPE(real_2d) :: uvem_irradiance_f !< input variable for uvem irradiance lookup table TYPE(real_2d) :: uvem_integration_f !< input variable for uvem integration ! !-- Define 3D variables of type NC_FLOAT TYPE(real_3d) :: basal_area_density_f !< input variable for basal area density - resolved vegetation TYPE(real_3d) :: leaf_area_density_f !< input variable for leaf area density - resolved vegetation TYPE(real_3d) :: root_area_density_lad_f !< input variable for root area density - resolved vegetation TYPE(real_3d) :: root_area_density_lsm_f !< input variable for root area density - parametrized vegetation TYPE(real_3d) :: uvem_radiance_f !< input variable for uvem radiance lookup table TYPE(real_3d) :: uvem_projarea_f !< input variable for uvem projection area lookup table ! !-- Define input variable for buildings TYPE(build_in) :: buildings_f !< input variable for buildings ! !-- Define input variables for soil_type TYPE(soil_in) :: soil_type_f !< input variable for soil type TYPE(fracs) :: surface_fraction_f !< input variable for surface fraction TYPE(pars) :: albedo_pars_f !< input variable for albedo parameters TYPE(pars) :: building_pars_f !< input variable for building parameters TYPE(pars) :: pavement_pars_f !< input variable for pavement parameters TYPE(pars) :: pavement_subsurface_pars_f !< input variable for pavement parameters TYPE(pars) :: soil_pars_f !< input variable for soil parameters TYPE(pars) :: vegetation_pars_f !< input variable for vegetation parameters TYPE(pars) :: water_pars_f !< input variable for water parameters TYPE(chem_emis_att_type) :: chem_emis_att !< Input Information of Chemistry Emission Data from netcdf TYPE(chem_emis_val_type), ALLOCATABLE, DIMENSION(:) :: chem_emis !< Input Chemistry Emission Data from netcdf CHARACTER(LEN=3) :: char_lod = 'lod' !< name of level-of-detail attribute in NetCDF file CHARACTER(LEN=10) :: char_fill = '_FillValue' !< name of fill value attribute in NetCDF file CHARACTER(LEN=100) :: input_file_static = 'PIDS_STATIC' !< Name of file which comprises static input data CHARACTER(LEN=100) :: input_file_dynamic = 'PIDS_DYNAMIC' !< Name of file which comprises dynamic input data CHARACTER(LEN=100) :: input_file_chem = 'PIDS_CHEM' !< Name of file which comprises chemistry input data CHARACTER(LEN=100) :: input_file_uvem = 'PIDS_UVEM' !< Name of file which comprises static uv_exposure model input data CHARACTER(LEN=100) :: input_file_vm = 'PIDS_VM' !< Name of file which comprises virtual measurement data CHARACTER (LEN=25), ALLOCATABLE, DIMENSION(:) :: string_values !< output of string variables read from netcdf input files INTEGER(iwp) :: id_emis !< NetCDF id of input file for chemistry emissions: TBD: It has to be removed INTEGER(iwp) :: nc_stat !< return value of nf90 function call LOGICAL :: input_pids_static = .FALSE. !< Flag indicating whether Palm-input-data-standard file containing static information exists LOGICAL :: input_pids_dynamic = .FALSE. !< Flag indicating whether Palm-input-data-standard file containing dynamic information exists LOGICAL :: input_pids_chem = .FALSE. !< Flag indicating whether Palm-input-data-standard file containing chemistry information exists LOGICAL :: input_pids_uvem = .FALSE. !< Flag indicating whether uv-expoure-model input file containing static information exists LOGICAL :: input_pids_vm = .FALSE. !< Flag indicating whether input file for virtual measurements exist LOGICAL :: collective_read = .FALSE. !< Enable NetCDF collective read TYPE(global_atts_type) :: input_file_atts !< global attributes of input file SAVE PRIVATE INTERFACE netcdf_data_input_interpolate MODULE PROCEDURE netcdf_data_input_interpolate_1d MODULE PROCEDURE netcdf_data_input_interpolate_1d_soil MODULE PROCEDURE netcdf_data_input_interpolate_2d MODULE PROCEDURE netcdf_data_input_interpolate_3d END INTERFACE netcdf_data_input_interpolate INTERFACE netcdf_data_input_check_dynamic MODULE PROCEDURE netcdf_data_input_check_dynamic END INTERFACE netcdf_data_input_check_dynamic INTERFACE netcdf_data_input_check_static MODULE PROCEDURE netcdf_data_input_check_static END INTERFACE netcdf_data_input_check_static INTERFACE netcdf_data_input_chemistry_data MODULE PROCEDURE netcdf_data_input_chemistry_data END INTERFACE netcdf_data_input_chemistry_data INTERFACE netcdf_data_input_get_dimension_length MODULE PROCEDURE netcdf_data_input_get_dimension_length END INTERFACE netcdf_data_input_get_dimension_length INTERFACE netcdf_data_input_inquire_file MODULE PROCEDURE netcdf_data_input_inquire_file END INTERFACE netcdf_data_input_inquire_file INTERFACE netcdf_data_input_init MODULE PROCEDURE netcdf_data_input_init END INTERFACE netcdf_data_input_init INTERFACE netcdf_data_input_att MODULE PROCEDURE netcdf_data_input_att_int MODULE PROCEDURE netcdf_data_input_att_real MODULE PROCEDURE netcdf_data_input_att_string END INTERFACE netcdf_data_input_att INTERFACE netcdf_data_input_init_3d MODULE PROCEDURE netcdf_data_input_init_3d END INTERFACE netcdf_data_input_init_3d INTERFACE netcdf_data_input_init_lsm MODULE PROCEDURE netcdf_data_input_init_lsm END INTERFACE netcdf_data_input_init_lsm INTERFACE netcdf_data_input_offline_nesting MODULE PROCEDURE netcdf_data_input_offline_nesting END INTERFACE netcdf_data_input_offline_nesting INTERFACE netcdf_data_input_surface_data MODULE PROCEDURE netcdf_data_input_surface_data END INTERFACE netcdf_data_input_surface_data INTERFACE netcdf_data_input_var MODULE PROCEDURE netcdf_data_input_var_char MODULE PROCEDURE netcdf_data_input_var_real_1d MODULE PROCEDURE netcdf_data_input_var_real_2d END INTERFACE netcdf_data_input_var INTERFACE netcdf_data_input_uvem MODULE PROCEDURE netcdf_data_input_uvem END INTERFACE netcdf_data_input_uvem INTERFACE get_variable MODULE PROCEDURE get_variable_1d_char MODULE PROCEDURE get_variable_1d_int MODULE PROCEDURE get_variable_1d_real MODULE PROCEDURE get_variable_2d_int8 MODULE PROCEDURE get_variable_2d_int32 MODULE PROCEDURE get_variable_2d_real MODULE PROCEDURE get_variable_3d_int8 MODULE PROCEDURE get_variable_3d_real MODULE PROCEDURE get_variable_3d_real_dynamic MODULE PROCEDURE get_variable_4d_to_3d_real MODULE PROCEDURE get_variable_4d_real MODULE PROCEDURE get_variable_5d_to_4d_real MODULE PROCEDURE get_variable_string END INTERFACE get_variable INTERFACE get_variable_pr MODULE PROCEDURE get_variable_pr END INTERFACE get_variable_pr INTERFACE get_attribute MODULE PROCEDURE get_attribute_real MODULE PROCEDURE get_attribute_int8 MODULE PROCEDURE get_attribute_int32 MODULE PROCEDURE get_attribute_string END INTERFACE get_attribute ! !-- Public variables PUBLIC albedo_pars_f, albedo_type_f, basal_area_density_f, buildings_f, & building_id_f, building_pars_f, building_type_f, & chem_emis, chem_emis_att, chem_emis_att_type, chem_emis_val_type, & coord_ref_sys, & init_3d, init_model, input_file_static, input_pids_static, & input_pids_dynamic, input_pids_vm, input_file_vm, & leaf_area_density_f, nest_offl, & pavement_pars_f, pavement_subsurface_pars_f, pavement_type_f, & root_area_density_lad_f, root_area_density_lsm_f, soil_pars_f, & soil_type_f, street_crossing_f, street_type_f, surface_fraction_f, & terrain_height_f, vegetation_pars_f, vegetation_type_f, & water_pars_f, water_type_f ! !-- Public uv exposure variables PUBLIC building_obstruction_f, input_file_uvem, input_pids_uvem, & netcdf_data_input_uvem, & uvem_integration_f, uvem_irradiance_f, & uvem_projarea_f, uvem_radiance_f ! !-- Public subroutines PUBLIC netcdf_data_input_check_dynamic, netcdf_data_input_check_static, & netcdf_data_input_chemistry_data, & netcdf_data_input_get_dimension_length, & netcdf_data_input_inquire_file, & netcdf_data_input_init, netcdf_data_input_init_lsm, & netcdf_data_input_init_3d, netcdf_data_input_att, & netcdf_data_input_interpolate, netcdf_data_input_offline_nesting, & netcdf_data_input_surface_data, netcdf_data_input_topo, & netcdf_data_input_var, get_attribute, get_variable, open_read_file CONTAINS !------------------------------------------------------------------------------! ! Description: ! ------------ !> Inquires whether NetCDF input files according to Palm-input-data standard !> exist. Moreover, basic checks are performed. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_inquire_file USE control_parameters, & ONLY: topo_no_distinct IMPLICIT NONE #if defined ( __netcdf ) INQUIRE( FILE = TRIM( input_file_static ) // TRIM( coupling_char ), & EXIST = input_pids_static ) INQUIRE( FILE = TRIM( input_file_dynamic ) // TRIM( coupling_char ), & EXIST = input_pids_dynamic ) INQUIRE( FILE = TRIM( input_file_chem ) // TRIM( coupling_char ), & EXIST = input_pids_chem ) INQUIRE( FILE = TRIM( input_file_uvem ) // TRIM( coupling_char ), & EXIST = input_pids_uvem ) INQUIRE( FILE = TRIM( input_file_vm ) // TRIM( coupling_char ), & EXIST = input_pids_vm ) #endif ! !-- As long as topography can be input via ASCII format, no distinction !-- between building and terrain can be made. This case, classify all !-- surfaces as default type. Same in case land-surface and urban-surface !-- model are not applied. IF ( .NOT. input_pids_static ) THEN topo_no_distinct = .TRUE. ENDIF END SUBROUTINE netcdf_data_input_inquire_file !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads global attributes and coordinate reference system required for !> initialization of the model. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_init IMPLICIT NONE INTEGER(iwp) :: id_mod !< NetCDF id of input file INTEGER(iwp) :: var_id_crs !< NetCDF id of variable crs IF ( .NOT. input_pids_static ) RETURN #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_static ) // & TRIM( coupling_char ), id_mod ) ! !-- Read global attributes CALL get_attribute( id_mod, input_file_atts%origin_lat_char, & input_file_atts%origin_lat, .TRUE. ) CALL get_attribute( id_mod, input_file_atts%origin_lon_char, & input_file_atts%origin_lon, .TRUE. ) CALL get_attribute( id_mod, input_file_atts%origin_time_char, & input_file_atts%origin_time, .TRUE. ) CALL get_attribute( id_mod, input_file_atts%origin_x_char, & input_file_atts%origin_x, .TRUE. ) CALL get_attribute( id_mod, input_file_atts%origin_y_char, & input_file_atts%origin_y, .TRUE. ) CALL get_attribute( id_mod, input_file_atts%origin_z_char, & input_file_atts%origin_z, .TRUE. ) CALL get_attribute( id_mod, input_file_atts%rotation_angle_char, & input_file_atts%rotation_angle, .TRUE. ) ! !-- Read coordinate reference system if available nc_stat = NF90_INQ_VARID( id_mod, 'crs', var_id_crs ) IF ( nc_stat == NF90_NOERR ) THEN CALL get_attribute( id_mod, 'epsg_code', & coord_ref_sys%epsg_code, & .FALSE., 'crs' ) CALL get_attribute( id_mod, 'false_easting', & coord_ref_sys%false_easting, & .FALSE., 'crs' ) CALL get_attribute( id_mod, 'false_northing', & coord_ref_sys%false_northing, & .FALSE., 'crs' ) CALL get_attribute( id_mod, 'grid_mapping_name', & coord_ref_sys%grid_mapping_name, & .FALSE., 'crs' ) CALL get_attribute( id_mod, 'inverse_flattening', & coord_ref_sys%inverse_flattening, & .FALSE., 'crs' ) CALL get_attribute( id_mod, 'latitude_of_projection_origin', & coord_ref_sys%latitude_of_projection_origin, & .FALSE., 'crs' ) CALL get_attribute( id_mod, 'long_name', & coord_ref_sys%long_name, & .FALSE., 'crs' ) CALL get_attribute( id_mod, 'longitude_of_central_meridian', & coord_ref_sys%longitude_of_central_meridian, & .FALSE., 'crs' ) CALL get_attribute( id_mod, 'longitude_of_prime_meridian', & coord_ref_sys%longitude_of_prime_meridian, & .FALSE., 'crs' ) CALL get_attribute( id_mod, 'scale_factor_at_central_meridian', & coord_ref_sys%scale_factor_at_central_meridian, & .FALSE., 'crs' ) CALL get_attribute( id_mod, 'semi_major_axis', & coord_ref_sys%semi_major_axis, & .FALSE., 'crs' ) CALL get_attribute( id_mod, 'units', & coord_ref_sys%units, & .FALSE., 'crs' ) ELSE ! !-- Calculate central meridian from origin_lon coord_ref_sys%longitude_of_central_meridian = & CEILING( input_file_atts%origin_lon / 6.0_wp ) * 6.0_wp - 3.0_wp ENDIF ! !-- Finally, close input file CALL close_input_file( id_mod ) #endif ! !-- Copy latitude, longitude, origin_z, rotation angle on init type init_model%latitude = input_file_atts%origin_lat init_model%longitude = input_file_atts%origin_lon init_model%origin_time = input_file_atts%origin_time init_model%origin_x = input_file_atts%origin_x init_model%origin_y = input_file_atts%origin_y init_model%origin_z = input_file_atts%origin_z init_model%rotation_angle = input_file_atts%rotation_angle ! !-- In case of nested runs, each model domain might have different longitude !-- and latitude, which would result in different Coriolis parameters and !-- sun-zenith angles. To avoid this, longitude and latitude in each model !-- domain will be set to the values of the root model. Please note, this !-- synchronization is required already here. #if defined( __parallel ) CALL MPI_BCAST( init_model%latitude, 1, MPI_REAL, 0, & MPI_COMM_WORLD, ierr ) CALL MPI_BCAST( init_model%longitude, 1, MPI_REAL, 0, & MPI_COMM_WORLD, ierr ) #endif END SUBROUTINE netcdf_data_input_init !------------------------------------------------------------------------------! ! Description: ! ------------ !> Read an array of characters. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_var_char( val, search_string, id_mod ) IMPLICIT NONE CHARACTER(LEN=*) :: search_string !< name of the variable CHARACTER(LEN=*), DIMENSION(:) :: val !< variable which should be read INTEGER(iwp) :: id_mod !< NetCDF id of input file #if defined ( __netcdf ) ! !-- Read variable CALL get_variable( id_mod, search_string, val ) #endif END SUBROUTINE netcdf_data_input_var_char !------------------------------------------------------------------------------! ! Description: ! ------------ !> Read an 1D array of REAL values. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_var_real_1d( val, search_string, id_mod ) IMPLICIT NONE CHARACTER(LEN=*) :: search_string !< name of the variable INTEGER(iwp) :: id_mod !< NetCDF id of input file REAL(wp), DIMENSION(:) :: val !< variable which should be read #if defined ( __netcdf ) ! !-- Read variable CALL get_variable( id_mod, search_string, val ) #endif END SUBROUTINE netcdf_data_input_var_real_1d !------------------------------------------------------------------------------! ! Description: ! ------------ !> Read an 1D array of REAL values. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_var_real_2d( val, search_string, & id_mod, d1s, d1e, d2s, d2e ) IMPLICIT NONE CHARACTER(LEN=*) :: search_string !< name of the variable INTEGER(iwp) :: id_mod !< NetCDF id of input file INTEGER(iwp) :: d1e !< end index of first dimension to be read INTEGER(iwp) :: d2e !< end index of second dimension to be read INTEGER(iwp) :: d1s !< start index of first dimension to be read INTEGER(iwp) :: d2s !< start index of second dimension to be read REAL(wp), DIMENSION(:,:) :: val !< variable which should be read #if defined ( __netcdf ) ! !-- Read character variable CALL get_variable( id_mod, search_string, val, d1s, d1e, d2s, d2e ) #endif END SUBROUTINE netcdf_data_input_var_real_2d !------------------------------------------------------------------------------! ! Description: ! ------------ !> Read a global string attribute !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_att_string( val, search_string, id_mod, & input_file, global, openclose, & variable_name ) IMPLICIT NONE CHARACTER(LEN=*) :: search_string !< name of the attribue CHARACTER(LEN=*) :: val !< attribute CHARACTER(LEN=*) :: input_file !< name of input file CHARACTER(LEN=*) :: openclose !< string indicating whether NetCDF needs to be opend or closed CHARACTER(LEN=*) :: variable_name !< string indicating whether NetCDF needs to be opend or closed INTEGER(iwp) :: id_mod !< NetCDF id of input file LOGICAL :: global !< flag indicating a global or a variable's attribute #if defined ( __netcdf ) ! !-- Open file in read-only mode if necessary IF ( openclose == 'open' ) THEN CALL open_read_file( TRIM( input_file ) // TRIM( coupling_char ), & id_mod ) ENDIF ! !-- Read global attribute IF ( global ) THEN CALL get_attribute( id_mod, search_string, val, global ) ! !-- Read variable attribute ELSE CALL get_attribute( id_mod, search_string, val, global, variable_name ) ENDIF ! !-- Close input file IF ( openclose == 'close' ) CALL close_input_file( id_mod ) #endif END SUBROUTINE netcdf_data_input_att_string !------------------------------------------------------------------------------! ! Description: ! ------------ !> Read a global integer attribute !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_att_int( val, search_string, id_mod, & input_file, global, openclose, & variable_name ) IMPLICIT NONE CHARACTER(LEN=*) :: search_string !< name of the attribue CHARACTER(LEN=*) :: input_file !< name of input file CHARACTER(LEN=*) :: openclose !< string indicating whether NetCDF needs to be opend or closed CHARACTER(LEN=*) :: variable_name !< string indicating whether NetCDF needs to be opend or closed INTEGER(iwp) :: id_mod !< NetCDF id of input file INTEGER(iwp) :: val !< value of the attribute LOGICAL :: global !< flag indicating a global or a variable's attribute #if defined ( __netcdf ) ! !-- Open file in read-only mode IF ( openclose == 'open' ) THEN CALL open_read_file( TRIM( input_file ) // TRIM( coupling_char ), & id_mod ) ENDIF ! !-- Read global attribute IF ( global ) THEN CALL get_attribute( id_mod, search_string, val, global ) ! !-- Read variable attribute ELSE CALL get_attribute( id_mod, search_string, val, global, variable_name ) ENDIF ! !-- Finally, close input file IF ( openclose == 'close' ) CALL close_input_file( id_mod ) #endif END SUBROUTINE netcdf_data_input_att_int !------------------------------------------------------------------------------! ! Description: ! ------------ !> Read a global real attribute !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_att_real( val, search_string, id_mod, & input_file, global, openclose, & variable_name ) IMPLICIT NONE CHARACTER(LEN=*) :: search_string !< name of the attribue CHARACTER(LEN=*) :: input_file !< name of input file CHARACTER(LEN=*) :: openclose !< string indicating whether NetCDF needs to be opend or closed CHARACTER(LEN=*) :: variable_name !< string indicating whether NetCDF needs to be opend or closed INTEGER(iwp) :: id_mod !< NetCDF id of input file LOGICAL :: global !< flag indicating a global or a variable's attribute REAL(wp) :: val !< value of the attribute #if defined ( __netcdf ) ! !-- Open file in read-only mode IF ( openclose == 'open' ) THEN CALL open_read_file( TRIM( input_file ) // TRIM( coupling_char ), & id_mod ) ENDIF ! !-- Read global attribute IF ( global ) THEN CALL get_attribute( id_mod, search_string, val, global ) ! !-- Read variable attribute ELSE CALL get_attribute( id_mod, search_string, val, global, variable_name ) ENDIF ! !-- Finally, close input file IF ( openclose == 'close' ) CALL close_input_file( id_mod ) #endif END SUBROUTINE netcdf_data_input_att_real !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads Chemistry NETCDF Input data, such as emission values, emission species, etc. . !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_chemistry_data(emt_att,emt) USE chem_modules, & ONLY: do_emis, mode_emis, time_fac_type, & surface_csflux_name USE control_parameters, & ONLY: message_string USE indices, & ONLY: nz, nx, ny, nxl, nxr, nys, nyn, nzb, nzt IMPLICIT NONE TYPE(chem_emis_att_type), INTENT(INOUT) :: emt_att TYPE(chem_emis_val_type), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: emt CHARACTER (LEN=80) :: units='' !< units of chemistry inputs INTEGER(iwp) :: ispec !< index for number of emission species in input INTEGER(iwp), ALLOCATABLE, DIMENSION(:) :: dum_var !< value of variable read from netcdf input INTEGER(iwp) :: errno !< error number NF90_???? function INTEGER(iwp) :: id_var !< variable id ! INTEGER(iwp) :: id_emis !< NetCDF id of input file INTEGER(iwp) :: num_vars !< number of variables in netcdf input file INTEGER(iwp) :: len_dims,len_dims_2 !< Length of dimensions INTEGER(iwp) :: max_string_length=25 !< Variable for the maximum length of a string CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names !< Name of Variables REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: dum_var_3d !< variable for storing temporary data of 3-dimensional ! variables read from netcdf for chemistry emissions REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: dum_var_4d !< variable for storing temporary data of 5-dimensional !< variables read from netcdf for chemistry emissions !-- !> Start the processing of the data CALL location_message( 'starting allocation of chemistry emissions arrays', .FALSE. ) !> Parameterized mode of the emissions IF (TRIM(mode_emis)=="PARAMETERIZED" .OR. TRIM(mode_emis)=="parameterized") THEN ispec=1 emt_att%nspec=0 !number of species DO WHILE (TRIM( surface_csflux_name( ispec ) ) /= 'novalue' ) emt_att%nspec=emt_att%nspec+1 ispec=ispec+1 ENDDO !-- allocate emission values data type arrays ALLOCATE(emt(emt_att%nspec)) !-- Read EMISSION SPECIES NAMES !Assign values ALLOCATE(emt_att%species_name(emt_att%nspec)) DO ispec=1,emt_att%nspec emt_att%species_name(ispec) = TRIM(surface_csflux_name(ispec)) ENDDO !> DEFAULT AND PRE-PROCESSED MODE ELSE #if defined ( __netcdf ) IF ( .NOT. input_pids_chem ) RETURN !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_chem ) // & TRIM( coupling_char ), id_emis ) !-- inquire number of variables CALL inquire_num_variables( id_emis, num_vars ) !-- Get General Dimension Lengths: only number of species and number of categories. ! the other dimensions depend on the mode of the emissions or on the presence of specific components !nspecies CALL netcdf_data_input_get_dimension_length( id_emis, emt_att%nspec, 'nspecies' ) !-- Allocate emission values data type arrays ALLOCATE(emt(1:emt_att%nspec)) !-- Read EMISSION SPECIES NAMES !Allocate Arrays ALLOCATE(emt_att%species_name(emt_att%nspec)) !Call get Variable CALL get_variable( id_emis, 'emission_name', string_values, emt_att%nspec ) emt_att%species_name=string_values ! If allocated, Deallocate var_string, an array only used for reading-in strings IF (ALLOCATED(string_values)) DEALLOCATE(string_values) !-- Read EMISSION SPECIES INDEX !Allocate Arrays ALLOCATE(emt_att%species_index(emt_att%nspec)) !Call get Variable CALL get_variable( id_emis, 'emission_index', emt_att%species_index ) !-- Now the routine has to distinguish between DEFAULT and PRE-PROCESSED chemistry emission modes IF (TRIM(mode_emis)=="DEFAULT" .OR. TRIM(mode_emis)=="default") THEN !number of categories CALL netcdf_data_input_get_dimension_length( id_emis, emt_att%ncat, 'ncat' ) !-- Read EMISSION CATEGORIES INDEX !Allocate Arrays ALLOCATE(emt_att%cat_index(emt_att%ncat)) !Call get Variable CALL get_variable( id_emis, 'emission_cat_index', emt_att%cat_index ) DO ispec=1,emt_att%nspec !-- EMISSION_VOC_NAME (1-DIMENSIONAL) IF (TRIM(emt_att%species_name(ispec))=="VOC" .OR. TRIM(emt_att%species_name(ispec))=="voc") THEN !Allocate Array CALL netcdf_data_input_get_dimension_length( id_emis, emt_att%nvoc, 'nvoc' ) ALLOCATE(emt_att%voc_name(1:emt_att%nvoc)) !Read-in Variable CALL get_variable( id_emis,"emission_voc_name",string_values, emt_att%nvoc) emt_att%voc_name=string_values IF (ALLOCATED(string_values)) DEALLOCATE(string_values) !-- COMPOSITION VOC (2-DIMENSIONAL) !Allocate Array ALLOCATE(emt_att%voc_comp(1:emt_att%ncat,1:emt_att%nvoc)) !Read-in Variable ! CALL get_variable(id_emis,"composition_voc",emt%voc_comp,1,1,emt%ncat,emt%nvoc) CALL get_variable(id_emis,"composition_voc",emt_att%voc_comp,1,emt_att%ncat,1,emt_att%nvoc) ENDIF !-- EMISSION_PM_NAME (1-DIMENSIONAL) IF (TRIM(emt_att%species_name(ispec))=="PM" .OR. TRIM(emt_att%species_name(ispec))=="pm") THEN CALL netcdf_data_input_get_dimension_length( id_emis, emt_att%npm, 'npm' ) ALLOCATE(emt_att%pm_name(1:emt_att%npm)) !Read-in Variable CALL get_variable( id_emis,"pm_name",string_values, emt_att%npm) emt_att%pm_name=string_values IF (ALLOCATED(string_values)) DEALLOCATE(string_values) !-- COMPOSITION PM (3-DIMENSIONAL) !Allocate len_dims=3 !> number of PMs: PM1, PM2.5 and PM10 ALLOCATE(emt_att%pm_comp(1:emt_att%ncat,1:emt_att%npm,1:len_dims)) !Read-in Variable CALL get_variable(id_emis,"composition_pm",emt_att%pm_comp,1,emt_att%ncat,1,emt_att%npm,1,len_dims) ENDIF !-- COMPOSITION_NOX (2-DIMENSIONAL) IF (TRIM(emt_att%species_name(ispec))=="NOx" .OR. TRIM(emt_att%species_name(ispec))=="nox") THEN !Allocate array ALLOCATE(emt_att%nox_comp(1:emt_att%ncat,1:emt_att%nnox)) !Read-in Variable CALL get_variable(id_emis,"composition_nox",emt_att%nox_comp,1,emt_att%ncat,1,emt_att%nnox) ENDIF !-- COMPOSITION-SOX (2-DIMENSIONAL) IF (TRIM(emt_att%species_name(ispec))=="SOx" .OR. TRIM(emt_att%species_name(ispec))=="sox") THEN ALLOCATE(emt_att%sox_comp(1:emt_att%ncat,1:emt_att%nsox)) !Read-in Variable CALL get_variable(id_emis,"composition_sox",emt_att%sox_comp,1,emt_att%ncat,1,emt_att%nsox) ENDIF ENDDO !>ispec !-- For reading the emission time factors, the distinction between HOUR and MDH data is necessary !-- EMISSION_TIME_SCALING_FACTORS !-- HOUR IF (TRIM(time_fac_type)=="HOUR" .OR. TRIM(time_fac_type)=="hour") THEN !-- Allocate Array CALL netcdf_data_input_get_dimension_length( id_emis, emt_att%nhoursyear, 'nhoursyear' ) ALLOCATE(emt_att%hourly_emis_time_factor(1:emt_att%ncat,1:emt_att%nhoursyear)) !Read-in Variable CALL get_variable(id_emis,"emission_time_factors",emt_att%hourly_emis_time_factor,1, & emt_att%ncat,1,emt_att%nhoursyear) !-- MDH ELSE IF (TRIM(time_fac_type) == "MDH" .OR. TRIM(time_fac_type) == "mdh") THEN !-- Allocate Array CALL netcdf_data_input_get_dimension_length( id_emis, emt_att%nmonthdayhour, 'nmonthdayhour' ) ALLOCATE(emt_att%mdh_emis_time_factor(1:emt_att%ncat,1:emt_att%nmonthdayhour)) !-- Read-in Variable CALL get_variable(id_emis,"emission_time_factors",emt_att%mdh_emis_time_factor,1, & emt_att%ncat,1,emt_att%nmonthdayhour) ELSE message_string = 'We are in the DEFAULT chemistry emissions mode: ' // & ' !no time-factor type specified!' // & 'Please, specify the value of time_fac_type:' // & ' either "MDH" or "HOUR"' CALL message( 'netcdf_data_input_chemistry_data', 'CM0200', 2, 2, 0, 6, 0 ) ENDIF !-- Finally read-in the emission values and their units (DEFAULT mode) DO ispec=1,emt_att%nspec IF ( .NOT. ALLOCATED( emt(ispec)%default_emission_data ) ) & ALLOCATE(emt(ispec)%default_emission_data(1:emt_att%ncat,1:ny+1,1:nx+1)) ALLOCATE(dum_var_3d(1:emt_att%ncat,nys+1:nyn+1,nxl+1:nxr+1)) CALL get_variable(id_emis,"emission_values",dum_var_3d,ispec,1,emt_att%ncat,nys,nyn,nxl,nxr) emt(ispec)%default_emission_data(:,nys+1:nyn+1,nxl+1:nxr+1) = & dum_var_3d(1:emt_att%ncat,nys+1:nyn+1,nxl+1:nxr+1) DEALLOCATE (dum_var_3d) ENDDO !-- UNITS CALL get_attribute(id_emis,"units",emt_att%units,.FALSE.,"emission_values") !-- PRE-PROCESSED MODE -- ELSE IF (TRIM(mode_emis)=="PRE-PROCESSED" .OR. TRIM(mode_emis)=="pre-processed") THEN !-- In the PRE-PROCESSED mode, only the VOC names, the VOC_composition, the emission values and their units remain to be read at this point DO ispec=1,emt_att%nspec !-- EMISSION_VOC_NAME (1-DIMENSIONAL) IF (TRIM(emt_att%species_name(ispec))=="VOC" .OR. TRIM(emt_att%species_name(ispec))=="voc") THEN !Allocate Array CALL netcdf_data_input_get_dimension_length( id_emis, emt_att%nvoc, 'nvoc' ) ALLOCATE(emt_att%voc_name(1:emt_att%nvoc)) !Read-in Variable CALL get_variable( id_emis,"emission_voc_name",string_values, emt_att%nvoc) emt_att%voc_name=string_values IF (ALLOCATED(string_values)) DEALLOCATE(string_values) !-- COMPOSITION VOC (2-DIMENSIONAL) !Allocate Array ALLOCATE(emt_att%voc_comp(1:emt_att%ncat,1:emt_att%nvoc)) !Read-in Variable CALL get_variable(id_emis,"composition_voc",emt_att%voc_comp,1,emt_att%ncat,1,emt_att%nvoc) ENDIF ENDDO !> ispec !-- EMISSION_VALUES (4-DIMENSIONAL) !Calculate temporal dimension length CALL netcdf_data_input_get_dimension_length( id_emis, emt_att%dt_emission, 'time' ) DO ispec=1,emt_att%nspec !Allocation for the entire domain has to be done only for the first processor between all the subdomains IF ( .NOT. ALLOCATED( emt(ispec)%preproc_emission_data ) ) & ALLOCATE(emt(ispec)%preproc_emission_data(emt_att%dt_emission,1,1:ny+1,1:nx+1)) !> allocate variable where to pass emission values read from netcdf ALLOCATE(dum_var_4d(1:emt_att%dt_emission,1,nys+1:nyn+1,nxl+1:nxr+1)) !Read-in Variable CALL get_variable(id_emis,"emission_values",dum_var_4d,ispec,1,emt_att%dt_emission,1,1,nys,nyn,nxl,nxr) emt(ispec)%preproc_emission_data(:,1,nys+1:nyn+1,nxl+1:nxr+1) = & dum_var_4d(1:emt_att%dt_emission,1,nys+1:nyn+1,nxl+1:nxr+1) DEALLOCATE ( dum_var_4d ) ENDDO !-- UNITS CALL get_attribute(id_emis,"units",emt_att%units,.FALSE.,"emission_values") ENDIF CALL close_input_file( id_emis ) #endif ENDIF END SUBROUTINE netcdf_data_input_chemistry_data !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads surface classification data, such as vegetation and soil type, etc. . !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_surface_data USE control_parameters, & ONLY: bc_lr_cyc, bc_ns_cyc, land_surface, plant_canopy, & urban_surface USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg IMPLICIT NONE CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names !< variable names in static input file INTEGER(iwp) :: id_surf !< NetCDF id of input file INTEGER(iwp) :: k !< running index along z-direction INTEGER(iwp) :: k2 !< running index INTEGER(iwp) :: num_vars !< number of variables in input file INTEGER(iwp) :: nz_soil !< number of soil layers in file INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg) :: var_exchange_int !< dummy variables used to exchange 32-bit Integer arrays INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: var_dum_int_3d !< dummy variables used to exchange real arrays REAL(wp), DIMENSION(nysg:nyng,nxlg:nxrg) :: var_exchange_real !< dummy variables used to exchange real arrays REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: var_dum_real_3d !< dummy variables used to exchange real arrays REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: var_dum_real_4d !< dummy variables used to exchange real arrays ! !-- If not static input file is available, skip this routine IF ( .NOT. input_pids_static ) RETURN ! !-- Measure CPU time CALL cpu_log( log_point_s(82), 'NetCDF input', 'start' ) ! !-- Read plant canopy variables. IF ( plant_canopy ) THEN #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_static ) // & TRIM( coupling_char ) , id_surf ) ! !-- At first, inquire all variable names. !-- This will be used to check whether an optional input variable !-- exist or not. CALL inquire_num_variables( id_surf, num_vars ) ALLOCATE( var_names(1:num_vars) ) CALL inquire_variable_names( id_surf, var_names ) ! !-- Read leaf area density - resolved vegetation IF ( check_existence( var_names, 'lad' ) ) THEN leaf_area_density_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & leaf_area_density_f%fill, & .FALSE., 'lad' ) ! !-- Inquire number of vertical vegetation layer CALL netcdf_data_input_get_dimension_length( id_surf, & leaf_area_density_f%nz, & 'zlad' ) ! !-- Allocate variable for leaf-area density ALLOCATE( leaf_area_density_f%var( 0:leaf_area_density_f%nz-1, & nys:nyn,nxl:nxr) ) CALL get_variable( id_surf, 'lad', leaf_area_density_f%var, & nxl, nxr, nys, nyn, & 0, leaf_area_density_f%nz-1 ) ELSE leaf_area_density_f%from_file = .FALSE. ENDIF ! !-- Read basal area density - resolved vegetation IF ( check_existence( var_names, 'bad' ) ) THEN basal_area_density_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & basal_area_density_f%fill, & .FALSE., 'bad' ) ! !-- Inquire number of vertical vegetation layer CALL netcdf_data_input_get_dimension_length( id_surf, & basal_area_density_f%nz, & 'zlad' ) ! !-- Allocate variable ALLOCATE( basal_area_density_f%var(0:basal_area_density_f%nz-1, & nys:nyn,nxl:nxr) ) CALL get_variable( id_surf, 'bad', basal_area_density_f%var, & nxl, nxr, nys, nyn, & 0, basal_area_density_f%nz-1 ) ELSE basal_area_density_f%from_file = .FALSE. ENDIF ! !-- Read root area density - resolved vegetation IF ( check_existence( var_names, 'root_area_dens_r' ) ) THEN root_area_density_lad_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & root_area_density_lad_f%fill, & .FALSE., 'root_area_dens_r' ) ! !-- Inquire number of vertical soil layers CALL netcdf_data_input_get_dimension_length( id_surf, & root_area_density_lad_f%nz, & 'zsoil' ) ! !-- Allocate variable ALLOCATE( root_area_density_lad_f%var & (0:root_area_density_lad_f%nz-1, & nys:nyn,nxl:nxr) ) CALL get_variable( id_surf, 'root_area_dens_r', & root_area_density_lad_f%var, & nxl, nxr, nys, nyn, & 0, root_area_density_lad_f%nz-1 ) ELSE root_area_density_lad_f%from_file = .FALSE. ENDIF ! !-- Finally, close input file CALL close_input_file( id_surf ) #endif ENDIF ! !-- Deallocate variable list. Will be re-allocated in case further !-- variables are read from file. IF ( ALLOCATED( var_names ) ) DEALLOCATE( var_names ) ! !-- Skip the following if no land-surface or urban-surface module are !-- applied. This case, no one of the following variables is used anyway. IF ( .NOT. land_surface .AND. .NOT. urban_surface ) RETURN ! !-- Initialize dummy arrays used for ghost-point exchange var_exchange_int = 0 var_exchange_real = 0.0_wp #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_static ) // & TRIM( coupling_char ) , id_surf ) ! !-- Inquire all variable names. !-- This will be used to check whether an optional input variable exist !-- or not. CALL inquire_num_variables( id_surf, num_vars ) ALLOCATE( var_names(1:num_vars) ) CALL inquire_variable_names( id_surf, var_names ) ! !-- Read vegetation type and required attributes IF ( check_existence( var_names, 'vegetation_type' ) ) THEN vegetation_type_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & vegetation_type_f%fill, & .FALSE., 'vegetation_type' ) ALLOCATE ( vegetation_type_f%var(nys:nyn,nxl:nxr) ) CALL get_variable( id_surf, 'vegetation_type', & vegetation_type_f%var, nxl, nxr, nys, nyn ) ELSE vegetation_type_f%from_file = .FALSE. ENDIF ! !-- Read soil type and required attributes IF ( check_existence( var_names, 'soil_type' ) ) THEN soil_type_f%from_file = .TRUE. ! !-- Note, lod is currently not on file; skip for the moment ! CALL get_attribute( id_surf, char_lod, & ! soil_type_f%lod, & ! .FALSE., 'soil_type' ) CALL get_attribute( id_surf, char_fill, & soil_type_f%fill, & .FALSE., 'soil_type' ) IF ( soil_type_f%lod == 1 ) THEN ALLOCATE ( soil_type_f%var_2d(nys:nyn,nxl:nxr) ) CALL get_variable( id_surf, 'soil_type', soil_type_f%var_2d, & nxl, nxr, nys, nyn ) ELSEIF ( soil_type_f%lod == 2 ) THEN ! !-- Obtain number of soil layers from file. CALL netcdf_data_input_get_dimension_length( id_surf, nz_soil, & 'zsoil' ) ALLOCATE ( soil_type_f%var_3d(0:nz_soil,nys:nyn,nxl:nxr) ) CALL get_variable( id_surf, 'soil_type', soil_type_f%var_3d, & nxl, nxr, nys, nyn, 0, nz_soil ) ENDIF ELSE soil_type_f%from_file = .FALSE. ENDIF ! !-- Read pavement type and required attributes IF ( check_existence( var_names, 'pavement_type' ) ) THEN pavement_type_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & pavement_type_f%fill, .FALSE., & 'pavement_type' ) ALLOCATE ( pavement_type_f%var(nys:nyn,nxl:nxr) ) CALL get_variable( id_surf, 'pavement_type', pavement_type_f%var, & nxl, nxr, nys, nyn ) ELSE pavement_type_f%from_file = .FALSE. ENDIF ! !-- Read water type and required attributes IF ( check_existence( var_names, 'water_type' ) ) THEN water_type_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, water_type_f%fill, & .FALSE., 'water_type' ) ALLOCATE ( water_type_f%var(nys:nyn,nxl:nxr) ) CALL get_variable( id_surf, 'water_type', water_type_f%var, & nxl, nxr, nys, nyn ) ELSE water_type_f%from_file = .FALSE. ENDIF ! !-- Read relative surface fractions of vegetation, pavement and water. IF ( check_existence( var_names, 'surface_fraction' ) ) THEN surface_fraction_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & surface_fraction_f%fill, & .FALSE., 'surface_fraction' ) ! !-- Inquire number of surface fractions CALL netcdf_data_input_get_dimension_length( id_surf, & surface_fraction_f%nf, & 'nsurface_fraction' ) ! !-- Allocate dimension array and input array for surface fractions ALLOCATE( surface_fraction_f%nfracs(0:surface_fraction_f%nf-1) ) ALLOCATE( surface_fraction_f%frac(0:surface_fraction_f%nf-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of surface fractions CALL get_variable( id_surf, 'nsurface_fraction', & surface_fraction_f%nfracs ) ! !-- Read surface fractions CALL get_variable( id_surf, 'surface_fraction', & surface_fraction_f%frac, nxl, nxr, nys, nyn, & 0, surface_fraction_f%nf-1 ) ELSE surface_fraction_f%from_file = .FALSE. ENDIF ! !-- Read building parameters and related information IF ( check_existence( var_names, 'building_pars' ) ) THEN building_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & building_pars_f%fill, & .FALSE., 'building_pars' ) ! !-- Inquire number of building parameters CALL netcdf_data_input_get_dimension_length( id_surf, & building_pars_f%np, & 'nbuilding_pars' ) ! !-- Allocate dimension array and input array for building parameters ALLOCATE( building_pars_f%pars(0:building_pars_f%np-1) ) ALLOCATE( building_pars_f%pars_xy(0:building_pars_f%np-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of building parameters CALL get_variable( id_surf, 'nbuilding_pars', & building_pars_f%pars ) ! !-- Read building_pars CALL get_variable( id_surf, 'building_pars', & building_pars_f%pars_xy, nxl, nxr, nys, nyn, & 0, building_pars_f%np-1 ) ELSE building_pars_f%from_file = .FALSE. ENDIF ! !-- Read albedo type and required attributes IF ( check_existence( var_names, 'albedo_type' ) ) THEN albedo_type_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, albedo_type_f%fill, & .FALSE., 'albedo_type' ) ALLOCATE ( albedo_type_f%var(nys:nyn,nxl:nxr) ) CALL get_variable( id_surf, 'albedo_type', albedo_type_f%var, & nxl, nxr, nys, nyn ) ELSE albedo_type_f%from_file = .FALSE. ENDIF ! !-- Read albedo parameters and related information IF ( check_existence( var_names, 'albedo_pars' ) ) THEN albedo_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, albedo_pars_f%fill, & .FALSE., 'albedo_pars' ) ! !-- Inquire number of albedo parameters CALL netcdf_data_input_get_dimension_length( id_surf, & albedo_pars_f%np, & 'nalbedo_pars' ) ! !-- Allocate dimension array and input array for albedo parameters ALLOCATE( albedo_pars_f%pars(0:albedo_pars_f%np-1) ) ALLOCATE( albedo_pars_f%pars_xy(0:albedo_pars_f%np-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of albedo parameters CALL get_variable( id_surf, 'nalbedo_pars', albedo_pars_f%pars ) CALL get_variable( id_surf, 'albedo_pars', albedo_pars_f%pars_xy, & nxl, nxr, nys, nyn, & 0, albedo_pars_f%np-1 ) ELSE albedo_pars_f%from_file = .FALSE. ENDIF ! !-- Read pavement parameters and related information IF ( check_existence( var_names, 'pavement_pars' ) ) THEN pavement_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & pavement_pars_f%fill, & .FALSE., 'pavement_pars' ) ! !-- Inquire number of pavement parameters CALL netcdf_data_input_get_dimension_length( id_surf, & pavement_pars_f%np, & 'npavement_pars' ) ! !-- Allocate dimension array and input array for pavement parameters ALLOCATE( pavement_pars_f%pars(0:pavement_pars_f%np-1) ) ALLOCATE( pavement_pars_f%pars_xy(0:pavement_pars_f%np-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of pavement parameters CALL get_variable( id_surf, 'npavement_pars', pavement_pars_f%pars ) CALL get_variable( id_surf, 'pavement_pars', pavement_pars_f%pars_xy,& nxl, nxr, nys, nyn, & 0, pavement_pars_f%np-1 ) ELSE pavement_pars_f%from_file = .FALSE. ENDIF ! !-- Read pavement subsurface parameters and related information IF ( check_existence( var_names, 'pavement_subsurface_pars' ) ) & THEN pavement_subsurface_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & pavement_subsurface_pars_f%fill, & .FALSE., 'pavement_subsurface_pars' ) ! !-- Inquire number of parameters CALL netcdf_data_input_get_dimension_length( id_surf, & pavement_subsurface_pars_f%np, & 'npavement_subsurface_pars' ) ! !-- Inquire number of soil layers CALL netcdf_data_input_get_dimension_length( id_surf, & pavement_subsurface_pars_f%nz, & 'zsoil' ) ! !-- Allocate dimension array and input array for pavement parameters ALLOCATE( pavement_subsurface_pars_f%pars & (0:pavement_subsurface_pars_f%np-1) ) ALLOCATE( pavement_subsurface_pars_f%pars_xyz & (0:pavement_subsurface_pars_f%np-1, & 0:pavement_subsurface_pars_f%nz-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of pavement parameters CALL get_variable( id_surf, 'npavement_subsurface_pars', & pavement_subsurface_pars_f%pars ) CALL get_variable( id_surf, 'pavement_subsurface_pars', & pavement_subsurface_pars_f%pars_xyz, & nxl, nxr, nys, nyn, & 0, pavement_subsurface_pars_f%nz-1, & 0, pavement_subsurface_pars_f%np-1 ) ELSE pavement_subsurface_pars_f%from_file = .FALSE. ENDIF ! !-- Read vegetation parameters and related information IF ( check_existence( var_names, 'vegetation_pars' ) ) THEN vegetation_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & vegetation_pars_f%fill, & .FALSE., 'vegetation_pars' ) ! !-- Inquire number of vegetation parameters CALL netcdf_data_input_get_dimension_length( id_surf, & vegetation_pars_f%np, & 'nvegetation_pars' ) ! !-- Allocate dimension array and input array for surface fractions ALLOCATE( vegetation_pars_f%pars(0:vegetation_pars_f%np-1) ) ALLOCATE( vegetation_pars_f%pars_xy(0:vegetation_pars_f%np-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of the parameters CALL get_variable( id_surf, 'nvegetation_pars', & vegetation_pars_f%pars ) CALL get_variable( id_surf, 'vegetation_pars', & vegetation_pars_f%pars_xy, nxl, nxr, nys, nyn, & 0, vegetation_pars_f%np-1 ) ELSE vegetation_pars_f%from_file = .FALSE. ENDIF ! !-- Read root parameters/distribution and related information IF ( check_existence( var_names, 'soil_pars' ) ) THEN soil_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & soil_pars_f%fill, & .FALSE., 'soil_pars' ) CALL get_attribute( id_surf, char_lod, & soil_pars_f%lod, & .FALSE., 'soil_pars' ) ! !-- Inquire number of soil parameters CALL netcdf_data_input_get_dimension_length( id_surf, & soil_pars_f%np, & 'nsoil_pars' ) ! !-- Read parameters array ALLOCATE( soil_pars_f%pars(0:soil_pars_f%np-1) ) CALL get_variable( id_surf, 'nsoil_pars', soil_pars_f%pars ) ! !-- In case of level of detail 2, also inquire number of vertical !-- soil layers, allocate memory and read the respective dimension IF ( soil_pars_f%lod == 2 ) THEN CALL netcdf_data_input_get_dimension_length( id_surf, & soil_pars_f%nz, & 'zsoil' ) ALLOCATE( soil_pars_f%layers(0:soil_pars_f%nz-1) ) CALL get_variable( id_surf, 'zsoil', soil_pars_f%layers ) ENDIF ! !-- Read soil parameters, depending on level of detail IF ( soil_pars_f%lod == 1 ) THEN ALLOCATE( soil_pars_f%pars_xy(0:soil_pars_f%np-1, & nys:nyn,nxl:nxr) ) CALL get_variable( id_surf, 'soil_pars', soil_pars_f%pars_xy, & nxl, nxr, nys, nyn, 0, soil_pars_f%np-1 ) ELSEIF ( soil_pars_f%lod == 2 ) THEN ALLOCATE( soil_pars_f%pars_xyz(0:soil_pars_f%np-1, & 0:soil_pars_f%nz-1, & nys:nyn,nxl:nxr) ) CALL get_variable( id_surf, 'soil_pars', & soil_pars_f%pars_xyz, & nxl, nxr, nys, nyn, 0, soil_pars_f%nz-1, & 0, soil_pars_f%np-1 ) ENDIF ELSE soil_pars_f%from_file = .FALSE. ENDIF ! !-- Read water parameters and related information IF ( check_existence( var_names, 'water_pars' ) ) THEN water_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & water_pars_f%fill, & .FALSE., 'water_pars' ) ! !-- Inquire number of water parameters CALL netcdf_data_input_get_dimension_length( id_surf, & water_pars_f%np, & 'nwater_pars' ) ! !-- Allocate dimension array and input array for water parameters ALLOCATE( water_pars_f%pars(0:water_pars_f%np-1) ) ALLOCATE( water_pars_f%pars_xy(0:water_pars_f%np-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of water parameters CALL get_variable( id_surf, 'nwater_pars', water_pars_f%pars ) CALL get_variable( id_surf, 'water_pars', water_pars_f%pars_xy, & nxl, nxr, nys, nyn, 0, water_pars_f%np-1 ) ELSE water_pars_f%from_file = .FALSE. ENDIF ! !-- Read root area density - parametrized vegetation IF ( check_existence( var_names, 'root_area_dens_s' ) ) THEN root_area_density_lsm_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & root_area_density_lsm_f%fill, & .FALSE., 'root_area_dens_s' ) ! !-- Obtain number of soil layers from file and allocate variable CALL netcdf_data_input_get_dimension_length( id_surf, & root_area_density_lsm_f%nz, & 'zsoil' ) ALLOCATE( root_area_density_lsm_f%var & (0:root_area_density_lsm_f%nz-1, & nys:nyn,nxl:nxr) ) ! !-- Read root-area density CALL get_variable( id_surf, 'root_area_dens_s', & root_area_density_lsm_f%var, & nxl, nxr, nys, nyn, & 0, root_area_density_lsm_f%nz-1 ) ELSE root_area_density_lsm_f%from_file = .FALSE. ENDIF ! !-- Read street type and street crossing IF ( check_existence( var_names, 'street_type' ) ) THEN street_type_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & street_type_f%fill, .FALSE., & 'street_type' ) ALLOCATE ( street_type_f%var(nys:nyn,nxl:nxr) ) CALL get_variable( id_surf, 'street_type', street_type_f%var, & nxl, nxr, nys, nyn ) ELSE street_type_f%from_file = .FALSE. ENDIF IF ( check_existence( var_names, 'street_crossing' ) ) THEN street_crossing_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & street_crossing_f%fill, .FALSE., & 'street_crossing' ) ALLOCATE ( street_crossing_f%var(nys:nyn,nxl:nxr) ) CALL get_variable( id_surf, 'street_crossing', & street_crossing_f%var, nxl, nxr, nys, nyn ) ELSE street_crossing_f%from_file = .FALSE. ENDIF ! !-- Still missing: root_resolved and building_surface_pars. !-- Will be implemented as soon as they are available. ! !-- Finally, close input file CALL close_input_file( id_surf ) #endif ! !-- End of CPU measurement CALL cpu_log( log_point_s(82), 'NetCDF input', 'stop' ) ! !-- Exchange 1 ghost points for surface variables. Please note, ghost point !-- exchange for 3D parameter lists should be revised by using additional !-- MPI datatypes or rewriting exchange_horiz. !-- Moreover, varialbes will be resized in the following, including ghost !-- points. !-- Start with 2D Integer variables. Please note, for 8-bit integer !-- variables must be swapt to 32-bit integer before calling exchange_horiz. IF ( albedo_type_f%from_file ) THEN var_exchange_int = INT( albedo_type_f%fill, KIND = 1 ) var_exchange_int(nys:nyn,nxl:nxr) = & INT( albedo_type_f%var(nys:nyn,nxl:nxr), KIND = 4 ) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( albedo_type_f%var ) ALLOCATE( albedo_type_f%var(nysg:nyng,nxlg:nxrg) ) albedo_type_f%var = INT( var_exchange_int, KIND = 1 ) ENDIF IF ( pavement_type_f%from_file ) THEN var_exchange_int = INT( pavement_type_f%fill, KIND = 1 ) var_exchange_int(nys:nyn,nxl:nxr) = & INT( pavement_type_f%var(nys:nyn,nxl:nxr), KIND = 4 ) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( pavement_type_f%var ) ALLOCATE( pavement_type_f%var(nysg:nyng,nxlg:nxrg) ) pavement_type_f%var = INT( var_exchange_int, KIND = 1 ) ENDIF IF ( soil_type_f%from_file .AND. ALLOCATED( soil_type_f%var_2d ) ) THEN var_exchange_int = INT( soil_type_f%fill, KIND = 1 ) var_exchange_int(nys:nyn,nxl:nxr) = & INT( soil_type_f%var_2d(nys:nyn,nxl:nxr), KIND = 4 ) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( soil_type_f%var_2d ) ALLOCATE( soil_type_f%var_2d(nysg:nyng,nxlg:nxrg) ) soil_type_f%var_2d = INT( var_exchange_int, KIND = 1 ) ENDIF IF ( vegetation_type_f%from_file ) THEN var_exchange_int = INT( vegetation_type_f%fill, KIND = 1 ) var_exchange_int(nys:nyn,nxl:nxr) = & INT( vegetation_type_f%var(nys:nyn,nxl:nxr), KIND = 4 ) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( vegetation_type_f%var ) ALLOCATE( vegetation_type_f%var(nysg:nyng,nxlg:nxrg) ) vegetation_type_f%var = INT( var_exchange_int, KIND = 1 ) ENDIF IF ( water_type_f%from_file ) THEN var_exchange_int = INT( water_type_f%fill, KIND = 1 ) var_exchange_int(nys:nyn,nxl:nxr) = & INT( water_type_f%var(nys:nyn,nxl:nxr), KIND = 4 ) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( water_type_f%var ) ALLOCATE( water_type_f%var(nysg:nyng,nxlg:nxrg) ) water_type_f%var = INT( var_exchange_int, KIND = 1 ) ENDIF ! !-- Exchange 1 ghost point for 3/4-D variables. For the sake of simplicity, !-- loop further dimensions to use 2D exchange routines. !-- This should be revised later by introducing new MPI datatypes. IF ( soil_type_f%from_file .AND. ALLOCATED( soil_type_f%var_3d ) ) & THEN ALLOCATE( var_dum_int_3d(0:nz_soil,nys:nyn,nxl:nxr) ) var_dum_int_3d = soil_type_f%var_3d DEALLOCATE( soil_type_f%var_3d ) ALLOCATE( soil_type_f%var_3d(0:nz_soil,nysg:nyng,nxlg:nxrg) ) soil_type_f%var_3d = soil_type_f%fill DO k = 0, nz_soil var_exchange_int(nys:nyn,nxl:nxr) = var_dum_int_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) soil_type_f%var_3d(k,:,:) = INT( var_exchange_int(:,:), KIND = 1 ) ENDDO DEALLOCATE( var_dum_int_3d ) ENDIF IF ( surface_fraction_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:surface_fraction_f%nf-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = surface_fraction_f%frac DEALLOCATE( surface_fraction_f%frac ) ALLOCATE( surface_fraction_f%frac(0:surface_fraction_f%nf-1, & nysg:nyng,nxlg:nxrg) ) surface_fraction_f%frac = surface_fraction_f%fill DO k = 0, surface_fraction_f%nf-1 var_exchange_real(nys:nyn,nxl:nxr) = var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) surface_fraction_f%frac(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( building_pars_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:building_pars_f%np-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = building_pars_f%pars_xy DEALLOCATE( building_pars_f%pars_xy ) ALLOCATE( building_pars_f%pars_xy(0:building_pars_f%np-1, & nysg:nyng,nxlg:nxrg) ) building_pars_f%pars_xy = building_pars_f%fill DO k = 0, building_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) building_pars_f%pars_xy(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( albedo_pars_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:albedo_pars_f%np-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = albedo_pars_f%pars_xy DEALLOCATE( albedo_pars_f%pars_xy ) ALLOCATE( albedo_pars_f%pars_xy(0:albedo_pars_f%np-1, & nysg:nyng,nxlg:nxrg) ) albedo_pars_f%pars_xy = albedo_pars_f%fill DO k = 0, albedo_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) albedo_pars_f%pars_xy(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( pavement_pars_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:pavement_pars_f%np-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = pavement_pars_f%pars_xy DEALLOCATE( pavement_pars_f%pars_xy ) ALLOCATE( pavement_pars_f%pars_xy(0:pavement_pars_f%np-1, & nysg:nyng,nxlg:nxrg) ) pavement_pars_f%pars_xy = pavement_pars_f%fill DO k = 0, pavement_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) pavement_pars_f%pars_xy(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( vegetation_pars_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:vegetation_pars_f%np-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = vegetation_pars_f%pars_xy DEALLOCATE( vegetation_pars_f%pars_xy ) ALLOCATE( vegetation_pars_f%pars_xy(0:vegetation_pars_f%np-1, & nysg:nyng,nxlg:nxrg) ) vegetation_pars_f%pars_xy = vegetation_pars_f%fill DO k = 0, vegetation_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) vegetation_pars_f%pars_xy(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( water_pars_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:water_pars_f%np-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = water_pars_f%pars_xy DEALLOCATE( water_pars_f%pars_xy ) ALLOCATE( water_pars_f%pars_xy(0:water_pars_f%np-1, & nysg:nyng,nxlg:nxrg) ) water_pars_f%pars_xy = water_pars_f%fill DO k = 0, water_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) water_pars_f%pars_xy(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( root_area_density_lsm_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:root_area_density_lsm_f%nz-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = root_area_density_lsm_f%var DEALLOCATE( root_area_density_lsm_f%var ) ALLOCATE( root_area_density_lsm_f%var(0:root_area_density_lsm_f%nz-1,& nysg:nyng,nxlg:nxrg) ) root_area_density_lsm_f%var = root_area_density_lsm_f%fill DO k = 0, root_area_density_lsm_f%nz-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) root_area_density_lsm_f%var(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( soil_pars_f%from_file ) THEN IF ( soil_pars_f%lod == 1 ) THEN ALLOCATE( var_dum_real_3d(0:soil_pars_f%np-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = soil_pars_f%pars_xy DEALLOCATE( soil_pars_f%pars_xy ) ALLOCATE( soil_pars_f%pars_xy(0:soil_pars_f%np-1, & nysg:nyng,nxlg:nxrg) ) soil_pars_f%pars_xy = soil_pars_f%fill DO k = 0, soil_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) soil_pars_f%pars_xy(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ELSEIF ( soil_pars_f%lod == 2 ) THEN ALLOCATE( var_dum_real_4d(0:soil_pars_f%np-1, & 0:soil_pars_f%nz-1, & nys:nyn,nxl:nxr) ) var_dum_real_4d = soil_pars_f%pars_xyz DEALLOCATE( soil_pars_f%pars_xyz ) ALLOCATE( soil_pars_f%pars_xyz(0:soil_pars_f%np-1, & 0:soil_pars_f%nz-1, & nysg:nyng,nxlg:nxrg) ) soil_pars_f%pars_xyz = soil_pars_f%fill DO k2 = 0, soil_pars_f%nz-1 DO k = 0, soil_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_4d(k,k2,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) soil_pars_f%pars_xyz(k,k2,:,:) = var_exchange_real(:,:) ENDDO ENDDO DEALLOCATE( var_dum_real_4d ) ENDIF ENDIF IF ( pavement_subsurface_pars_f%from_file ) THEN ALLOCATE( var_dum_real_4d(0:pavement_subsurface_pars_f%np-1, & 0:pavement_subsurface_pars_f%nz-1, & nys:nyn,nxl:nxr) ) var_dum_real_4d = pavement_subsurface_pars_f%pars_xyz DEALLOCATE( pavement_subsurface_pars_f%pars_xyz ) ALLOCATE( pavement_subsurface_pars_f%pars_xyz & (0:pavement_subsurface_pars_f%np-1, & 0:pavement_subsurface_pars_f%nz-1, & nysg:nyng,nxlg:nxrg) ) pavement_subsurface_pars_f%pars_xyz = pavement_subsurface_pars_f%fill DO k2 = 0, pavement_subsurface_pars_f%nz-1 DO k = 0, pavement_subsurface_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_4d(k,k2,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) pavement_subsurface_pars_f%pars_xyz(k,k2,:,:) = & var_exchange_real(:,:) ENDDO ENDDO DEALLOCATE( var_dum_real_4d ) ENDIF ! !-- In case of non-cyclic boundary conditions, set Neumann conditions at the !-- lateral boundaries. IF ( .NOT. bc_ns_cyc ) THEN IF ( nys == 0 ) THEN IF ( albedo_type_f%from_file ) & albedo_type_f%var(-1,:) = albedo_type_f%var(0,:) IF ( pavement_type_f%from_file ) & pavement_type_f%var(-1,:) = pavement_type_f%var(0,:) IF ( soil_type_f%from_file ) THEN IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN soil_type_f%var_2d(-1,:) = soil_type_f%var_2d(0,:) ELSE soil_type_f%var_3d(:,-1,:) = soil_type_f%var_3d(:,0,:) ENDIF ENDIF IF ( vegetation_type_f%from_file ) & vegetation_type_f%var(-1,:) = vegetation_type_f%var(0,:) IF ( water_type_f%from_file ) & water_type_f%var(-1,:) = water_type_f%var(0,:) IF ( surface_fraction_f%from_file ) & surface_fraction_f%frac(:,-1,:) = surface_fraction_f%frac(:,0,:) IF ( building_pars_f%from_file ) & building_pars_f%pars_xy(:,-1,:) = building_pars_f%pars_xy(:,0,:) IF ( albedo_pars_f%from_file ) & albedo_pars_f%pars_xy(:,-1,:) = albedo_pars_f%pars_xy(:,0,:) IF ( pavement_pars_f%from_file ) & pavement_pars_f%pars_xy(:,-1,:) = pavement_pars_f%pars_xy(:,0,:) IF ( vegetation_pars_f%from_file ) & vegetation_pars_f%pars_xy(:,-1,:) = & vegetation_pars_f%pars_xy(:,0,:) IF ( water_pars_f%from_file ) & water_pars_f%pars_xy(:,-1,:) = water_pars_f%pars_xy(:,0,:) IF ( root_area_density_lsm_f%from_file ) & root_area_density_lsm_f%var(:,-1,:) = & root_area_density_lsm_f%var(:,0,:) IF ( soil_pars_f%from_file ) THEN IF ( soil_pars_f%lod == 1 ) THEN soil_pars_f%pars_xy(:,-1,:) = soil_pars_f%pars_xy(:,0,:) ELSE soil_pars_f%pars_xyz(:,:,-1,:) = soil_pars_f%pars_xyz(:,:,0,:) ENDIF ENDIF IF ( pavement_subsurface_pars_f%from_file ) & pavement_subsurface_pars_f%pars_xyz(:,:,-1,:) = & pavement_subsurface_pars_f%pars_xyz(:,:,0,:) ENDIF IF ( nyn == ny ) THEN IF ( albedo_type_f%from_file ) & albedo_type_f%var(ny+1,:) = albedo_type_f%var(ny,:) IF ( pavement_type_f%from_file ) & pavement_type_f%var(ny+1,:) = pavement_type_f%var(ny,:) IF ( soil_type_f%from_file ) THEN IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN soil_type_f%var_2d(ny+1,:) = soil_type_f%var_2d(ny,:) ELSE soil_type_f%var_3d(:,ny+1,:) = soil_type_f%var_3d(:,ny,:) ENDIF ENDIF IF ( vegetation_type_f%from_file ) & vegetation_type_f%var(ny+1,:) = vegetation_type_f%var(ny,:) IF ( water_type_f%from_file ) & water_type_f%var(ny+1,:) = water_type_f%var(ny,:) IF ( surface_fraction_f%from_file ) & surface_fraction_f%frac(:,ny+1,:) = & surface_fraction_f%frac(:,ny,:) IF ( building_pars_f%from_file ) & building_pars_f%pars_xy(:,ny+1,:) = & building_pars_f%pars_xy(:,ny,:) IF ( albedo_pars_f%from_file ) & albedo_pars_f%pars_xy(:,ny+1,:) = albedo_pars_f%pars_xy(:,ny,:) IF ( pavement_pars_f%from_file ) & pavement_pars_f%pars_xy(:,ny+1,:) = & pavement_pars_f%pars_xy(:,ny,:) IF ( vegetation_pars_f%from_file ) & vegetation_pars_f%pars_xy(:,ny+1,:) = & vegetation_pars_f%pars_xy(:,ny,:) IF ( water_pars_f%from_file ) & water_pars_f%pars_xy(:,ny+1,:) = water_pars_f%pars_xy(:,ny,:) IF ( root_area_density_lsm_f%from_file ) & root_area_density_lsm_f%var(:,ny+1,:) = & root_area_density_lsm_f%var(:,ny,:) IF ( soil_pars_f%from_file ) THEN IF ( soil_pars_f%lod == 1 ) THEN soil_pars_f%pars_xy(:,ny+1,:) = soil_pars_f%pars_xy(:,ny,:) ELSE soil_pars_f%pars_xyz(:,:,ny+1,:) = & soil_pars_f%pars_xyz(:,:,ny,:) ENDIF ENDIF IF ( pavement_subsurface_pars_f%from_file ) & pavement_subsurface_pars_f%pars_xyz(:,:,ny+1,:) = & pavement_subsurface_pars_f%pars_xyz(:,:,ny,:) ENDIF ENDIF IF ( .NOT. bc_lr_cyc ) THEN IF ( nxl == 0 ) THEN IF ( albedo_type_f%from_file ) & albedo_type_f%var(:,-1) = albedo_type_f%var(:,0) IF ( pavement_type_f%from_file ) & pavement_type_f%var(:,-1) = pavement_type_f%var(:,0) IF ( soil_type_f%from_file ) THEN IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN soil_type_f%var_2d(:,-1) = soil_type_f%var_2d(:,0) ELSE soil_type_f%var_3d(:,:,-1) = soil_type_f%var_3d(:,:,0) ENDIF ENDIF IF ( vegetation_type_f%from_file ) & vegetation_type_f%var(:,-1) = vegetation_type_f%var(:,0) IF ( water_type_f%from_file ) & water_type_f%var(:,-1) = water_type_f%var(:,0) IF ( surface_fraction_f%from_file ) & surface_fraction_f%frac(:,:,-1) = surface_fraction_f%frac(:,:,0) IF ( building_pars_f%from_file ) & building_pars_f%pars_xy(:,:,-1) = building_pars_f%pars_xy(:,:,0) IF ( albedo_pars_f%from_file ) & albedo_pars_f%pars_xy(:,:,-1) = albedo_pars_f%pars_xy(:,:,0) IF ( pavement_pars_f%from_file ) & pavement_pars_f%pars_xy(:,:,-1) = pavement_pars_f%pars_xy(:,:,0) IF ( vegetation_pars_f%from_file ) & vegetation_pars_f%pars_xy(:,:,-1) = & vegetation_pars_f%pars_xy(:,:,0) IF ( water_pars_f%from_file ) & water_pars_f%pars_xy(:,:,-1) = water_pars_f%pars_xy(:,:,0) IF ( root_area_density_lsm_f%from_file ) & root_area_density_lsm_f%var(:,:,-1) = & root_area_density_lsm_f%var(:,:,0) IF ( soil_pars_f%from_file ) THEN IF ( soil_pars_f%lod == 1 ) THEN soil_pars_f%pars_xy(:,:,-1) = soil_pars_f%pars_xy(:,:,0) ELSE soil_pars_f%pars_xyz(:,:,:,-1) = soil_pars_f%pars_xyz(:,:,:,0) ENDIF ENDIF IF ( pavement_subsurface_pars_f%from_file ) & pavement_subsurface_pars_f%pars_xyz(:,:,:,-1) = & pavement_subsurface_pars_f%pars_xyz(:,:,:,0) ENDIF IF ( nxr == nx ) THEN IF ( albedo_type_f%from_file ) & albedo_type_f%var(:,nx+1) = albedo_type_f%var(:,nx) IF ( pavement_type_f%from_file ) & pavement_type_f%var(:,nx+1) = pavement_type_f%var(:,nx) IF ( soil_type_f%from_file ) THEN IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN soil_type_f%var_2d(:,nx+1) = soil_type_f%var_2d(:,nx) ELSE soil_type_f%var_3d(:,:,nx+1) = soil_type_f%var_3d(:,:,nx) ENDIF ENDIF IF ( vegetation_type_f%from_file ) & vegetation_type_f%var(:,nx+1) = vegetation_type_f%var(:,nx) IF ( water_type_f%from_file ) & water_type_f%var(:,nx+1) = water_type_f%var(:,nx) IF ( surface_fraction_f%from_file ) & surface_fraction_f%frac(:,:,nx+1) = & surface_fraction_f%frac(:,:,nx) IF ( building_pars_f%from_file ) & building_pars_f%pars_xy(:,:,nx+1) = & building_pars_f%pars_xy(:,:,nx) IF ( albedo_pars_f%from_file ) & albedo_pars_f%pars_xy(:,:,nx+1) = albedo_pars_f%pars_xy(:,:,nx) IF ( pavement_pars_f%from_file ) & pavement_pars_f%pars_xy(:,:,nx+1) = & pavement_pars_f%pars_xy(:,:,nx) IF ( vegetation_pars_f%from_file ) & vegetation_pars_f%pars_xy(:,:,nx+1) = & vegetation_pars_f%pars_xy(:,:,nx) IF ( water_pars_f%from_file ) & water_pars_f%pars_xy(:,:,nx+1) = water_pars_f%pars_xy(:,:,nx) IF ( root_area_density_lsm_f%from_file ) & root_area_density_lsm_f%var(:,:,nx+1) = & root_area_density_lsm_f%var(:,:,nx) IF ( soil_pars_f%from_file ) THEN IF ( soil_pars_f%lod == 1 ) THEN soil_pars_f%pars_xy(:,:,nx+1) = soil_pars_f%pars_xy(:,:,nx) ELSE soil_pars_f%pars_xyz(:,:,:,nx+1) = & soil_pars_f%pars_xyz(:,:,:,nx) ENDIF ENDIF IF ( pavement_subsurface_pars_f%from_file ) & pavement_subsurface_pars_f%pars_xyz(:,:,:,nx+1) = & pavement_subsurface_pars_f%pars_xyz(:,:,:,nx) ENDIF ENDIF END SUBROUTINE netcdf_data_input_surface_data !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads uvem lookup table information. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_uvem USE indices, & ONLY: nxl, nxr, nyn, nys IMPLICIT NONE CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names !< variable names in static input file INTEGER(iwp) :: id_uvem !< NetCDF id of uvem lookup table input file INTEGER(iwp) :: nli = 35 !< dimension length of lookup table in x INTEGER(iwp) :: nlj = 9 !< dimension length of lookup table in y INTEGER(iwp) :: nlk = 90 !< dimension length of lookup table in z INTEGER(iwp) :: num_vars !< number of variables in netcdf input file ! !-- Input via uv exposure model lookup table input IF ( input_pids_uvem ) THEN #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_uvem ) // & TRIM( coupling_char ), id_uvem ) ! !-- At first, inquire all variable names. !-- This will be used to check whether an input variable exist or not. CALL inquire_num_variables( id_uvem, num_vars ) ! !-- Allocate memory to store variable names and inquire them. ALLOCATE( var_names(1:num_vars) ) CALL inquire_variable_names( id_uvem, var_names ) ! ! !-- uvem integration IF ( check_existence( var_names, 'int_factors' ) ) THEN uvem_integration_f%from_file = .TRUE. ! !-- Input 2D uvem integration. ALLOCATE ( uvem_integration_f%var(0:nlj,0:nli) ) CALL get_variable( id_uvem, 'int_factors', uvem_integration_f%var, 0, nli, 0, nlj ) ELSE uvem_integration_f%from_file = .FALSE. ENDIF ! ! ! !-- uvem irradiance IF ( check_existence( var_names, 'irradiance' ) ) THEN uvem_irradiance_f%from_file = .TRUE. ! !-- Input 2D uvem irradiance. ALLOCATE ( uvem_irradiance_f%var(0:nlk, 0:2) ) CALL get_variable( id_uvem, 'irradiance', uvem_irradiance_f%var, 0, 2, 0, nlk ) ELSE uvem_irradiance_f%from_file = .FALSE. ENDIF ! ! ! !-- uvem porjection areas IF ( check_existence( var_names, 'projarea' ) ) THEN uvem_projarea_f%from_file = .TRUE. ! !-- Input 3D uvem projection area (human geometgry) ALLOCATE ( uvem_projarea_f%var(0:2,0:nlj,0:nli) ) CALL get_variable( id_uvem, 'projarea', uvem_projarea_f%var, 0, nli, 0, nlj, 0, 2 ) ELSE uvem_projarea_f%from_file = .FALSE. ENDIF ! ! ! !-- uvem radiance IF ( check_existence( var_names, 'radiance' ) ) THEN uvem_radiance_f%from_file = .TRUE. ! !-- Input 3D uvem radiance ALLOCATE ( uvem_radiance_f%var(0:nlk,0:nlj,0:nli) ) CALL get_variable( id_uvem, 'radiance', uvem_radiance_f%var, 0, nli, 0, nlj, 0, nlk ) ELSE uvem_radiance_f%from_file = .FALSE. ENDIF ! ! ! !-- Read building obstruction IF ( check_existence( var_names, 'obstruction' ) ) THEN building_obstruction_full%from_file = .TRUE. !-- Input 3D uvem building obstruction ALLOCATE ( building_obstruction_full%var_3d(0:44,0:2,0:2) ) CALL get_variable( id_uvem, 'obstruction', building_obstruction_full%var_3d,0, 2, 0, 2, 0, 44 ) ELSE building_obstruction_full%from_file = .FALSE. ENDIF ! IF ( check_existence( var_names, 'obstruction' ) ) THEN building_obstruction_f%from_file = .TRUE. ! !-- Input 3D uvem building obstruction ALLOCATE ( building_obstruction_f%var_3d(0:44,nys:nyn,nxl:nxr) ) ! CALL get_variable( id_uvem, 'obstruction', building_obstruction_f%var_3d, & nxl, nxr, nys, nyn, 0, 44 ) ELSE building_obstruction_f%from_file = .FALSE. ENDIF ! ! ! ! !-- Close uvem lookup table input file CALL close_input_file( id_uvem ) #else CONTINUE #endif ENDIF END SUBROUTINE netcdf_data_input_uvem !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads orography and building information. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_topo USE control_parameters, & ONLY: bc_lr_cyc, bc_ns_cyc, message_string, topography USE indices, & ONLY: nbgp, nx, nxl, nxr, ny, nyn, nys, nzb IMPLICIT NONE CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names !< variable names in static input file INTEGER(iwp) :: i !< running index along x-direction INTEGER(iwp) :: ii !< running index for IO blocks INTEGER(iwp) :: id_topo !< NetCDF id of topograhy input file INTEGER(iwp) :: j !< running index along y-direction INTEGER(iwp) :: num_vars !< number of variables in netcdf input file INTEGER(iwp) :: skip_n_rows !< counting variable to skip rows while reading topography file INTEGER(iwp), DIMENSION(nys-nbgp:nyn+nbgp,nxl-nbgp:nxr+nbgp) :: var_exchange_int !< dummy variables used to exchange 32-bit Integer arrays REAL(wp) :: dum !< dummy variable to skip columns while reading topography file ! !-- CPU measurement CALL cpu_log( log_point_s(83), 'NetCDF/ASCII input topo', 'start' ) ! !-- Input via palm-input data standard IF ( input_pids_static ) THEN #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_static ) // & TRIM( coupling_char ), id_topo ) ! !-- At first, inquire all variable names. !-- This will be used to check whether an input variable exist !-- or not. CALL inquire_num_variables( id_topo, num_vars ) ! !-- Allocate memory to store variable names and inquire them. ALLOCATE( var_names(1:num_vars) ) CALL inquire_variable_names( id_topo, var_names ) ! !-- Read x, y - dimensions. Only required for consistency checks. CALL netcdf_data_input_get_dimension_length( id_topo, dim_static%nx, 'x' ) CALL netcdf_data_input_get_dimension_length( id_topo, dim_static%ny, 'y' ) ALLOCATE( dim_static%x(0:dim_static%nx-1) ) ALLOCATE( dim_static%y(0:dim_static%ny-1) ) CALL get_variable( id_topo, 'x', dim_static%x ) CALL get_variable( id_topo, 'y', dim_static%y ) ! !-- Terrain height. First, get variable-related _FillValue attribute IF ( check_existence( var_names, 'zt' ) ) THEN terrain_height_f%from_file = .TRUE. CALL get_attribute( id_topo, char_fill, terrain_height_f%fill, & .FALSE., 'zt' ) ! !-- Input 2D terrain height. ALLOCATE ( terrain_height_f%var(nys:nyn,nxl:nxr) ) CALL get_variable( id_topo, 'zt', terrain_height_f%var, & nxl, nxr, nys, nyn ) ELSE terrain_height_f%from_file = .FALSE. ENDIF ! !-- Read building height. First, read its _FillValue attribute, !-- as well as lod attribute buildings_f%from_file = .FALSE. IF ( check_existence( var_names, 'buildings_2d' ) ) THEN buildings_f%from_file = .TRUE. CALL get_attribute( id_topo, char_lod, buildings_f%lod, & .FALSE., 'buildings_2d' ) CALL get_attribute( id_topo, char_fill, buildings_f%fill1, & .FALSE., 'buildings_2d' ) ! !-- Read 2D buildings IF ( buildings_f%lod == 1 ) THEN ALLOCATE ( buildings_f%var_2d(nys:nyn,nxl:nxr) ) CALL get_variable( id_topo, 'buildings_2d', & buildings_f%var_2d, & nxl, nxr, nys, nyn ) ELSE message_string = 'NetCDF attribute lod ' // & '(level of detail) is not set ' // & 'properly for buildings_2d.' CALL message( 'netcdf_data_input_mod', 'PA0540', & 1, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- If available, also read 3D building information. If both are !-- available, use 3D information. IF ( check_existence( var_names, 'buildings_3d' ) ) THEN buildings_f%from_file = .TRUE. CALL get_attribute( id_topo, char_lod, buildings_f%lod, & .FALSE., 'buildings_3d' ) CALL get_attribute( id_topo, char_fill, buildings_f%fill2, & .FALSE., 'buildings_3d' ) CALL netcdf_data_input_get_dimension_length( id_topo, & buildings_f%nz, 'z' ) ! !-- Read 3D buildings IF ( buildings_f%lod == 2 ) THEN ALLOCATE( buildings_f%z(nzb:buildings_f%nz-1) ) CALL get_variable( id_topo, 'z', buildings_f%z ) ALLOCATE( buildings_f%var_3d(nzb:buildings_f%nz-1, & nys:nyn,nxl:nxr) ) buildings_f%var_3d = 0 CALL get_variable( id_topo, 'buildings_3d', & buildings_f%var_3d, & nxl, nxr, nys, nyn, 0, buildings_f%nz-1 ) ELSE message_string = 'NetCDF attribute lod ' // & '(level of detail) is not set ' // & 'properly for buildings_3d.' CALL message( 'netcdf_data_input_mod', 'PA0541', & 1, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- Read building IDs and its FillValue attribute. Further required !-- for mapping buildings on top of orography. IF ( check_existence( var_names, 'building_id' ) ) THEN building_id_f%from_file = .TRUE. CALL get_attribute( id_topo, char_fill, & building_id_f%fill, .FALSE., & 'building_id' ) ALLOCATE ( building_id_f%var(nys:nyn,nxl:nxr) ) CALL get_variable( id_topo, 'building_id', building_id_f%var, & nxl, nxr, nys, nyn ) ELSE building_id_f%from_file = .FALSE. ENDIF ! !-- Read building_type and required attributes. IF ( check_existence( var_names, 'building_type' ) ) THEN building_type_f%from_file = .TRUE. CALL get_attribute( id_topo, char_fill, & building_type_f%fill, .FALSE., & 'building_type' ) ALLOCATE ( building_type_f%var(nys:nyn,nxl:nxr) ) CALL get_variable( id_topo, 'building_type', building_type_f%var, & nxl, nxr, nys, nyn ) ELSE building_type_f%from_file = .FALSE. ENDIF ! !-- Close topography input file CALL close_input_file( id_topo ) #else CONTINUE #endif ! !-- ASCII input ELSEIF ( TRIM( topography ) == 'read_from_file' ) THEN DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN OPEN( 90, FILE='TOPOGRAPHY_DATA'//TRIM( coupling_char ), & STATUS='OLD', FORM='FORMATTED', ERR=10 ) ! !-- Read topography PE-wise. Rows are read from nyn to nys, columns !-- are read from nxl to nxr. At first, ny-nyn rows need to be skipped. skip_n_rows = 0 DO WHILE ( skip_n_rows < ny - nyn ) READ( 90, * ) skip_n_rows = skip_n_rows + 1 ENDDO ! !-- Read data from nyn to nys and nxl to nxr. Therefore, skip !-- column until nxl-1 is reached ALLOCATE ( buildings_f%var_2d(nys:nyn,nxl:nxr) ) DO j = nyn, nys, -1 READ( 90, *, ERR=11, END=11 ) & ( dum, i = 0, nxl-1 ), & ( buildings_f%var_2d(j,i), i = nxl, nxr ) ENDDO GOTO 12 10 message_string = 'file TOPOGRAPHY_DATA'// & TRIM( coupling_char )// ' does not exist' CALL message( 'netcdf_data_input_mod', 'PA0208', 1, 2, 0, 6, 0 ) 11 message_string = 'errors in file TOPOGRAPHY_DATA'// & TRIM( coupling_char ) CALL message( 'netcdf_data_input_mod', 'PA0209', 2, 2, 0, 6, 0 ) 12 CLOSE( 90 ) buildings_f%from_file = .TRUE. ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ENDIF ! !-- End of CPU measurement CALL cpu_log( log_point_s(83), 'NetCDF/ASCII input topo', 'stop' ) ! !-- Check for minimum requirement to setup building topography. If buildings !-- are provided, also an ID and a type are required. !-- Note, doing this check in check_parameters !-- will be too late (data will be used for grid inititialization before). IF ( input_pids_static ) THEN IF ( buildings_f%from_file .AND. & .NOT. building_id_f%from_file ) THEN message_string = 'If building heigths are prescribed in ' // & 'static input file, also an ID is required.' CALL message( 'netcdf_data_input_mod', 'PA0542', 1, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- In case no terrain height is provided by static input file, allocate !-- array nevertheless and set terrain height to 0, which simplifies !-- topography initialization. IF ( .NOT. terrain_height_f%from_file ) THEN ALLOCATE ( terrain_height_f%var(nys:nyn,nxl:nxr) ) terrain_height_f%var = 0.0_wp ENDIF ! !-- Finally, exchange 1 ghost point for building ID and type. !-- In case of non-cyclic boundary conditions set Neumann conditions at the !-- lateral boundaries. IF ( building_id_f%from_file ) THEN var_exchange_int = building_id_f%fill var_exchange_int(nys:nyn,nxl:nxr) = building_id_f%var(nys:nyn,nxl:nxr) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( building_id_f%var ) ALLOCATE( building_id_f%var(nys-nbgp:nyn+nbgp,nxl-nbgp:nxr+nbgp) ) building_id_f%var = var_exchange_int IF ( .NOT. bc_ns_cyc ) THEN IF ( nys == 0 ) building_id_f%var(-1,:) = building_id_f%var(0,:) IF ( nyn == ny ) building_id_f%var(ny+1,:) = building_id_f%var(ny,:) ENDIF IF ( .NOT. bc_lr_cyc ) THEN IF ( nxl == 0 ) building_id_f%var(:,-1) = building_id_f%var(:,0) IF ( nxr == nx ) building_id_f%var(:,nx+1) = building_id_f%var(:,nx) ENDIF ENDIF IF ( building_type_f%from_file ) THEN var_exchange_int = INT( building_type_f%fill, KIND = 4 ) var_exchange_int(nys:nyn,nxl:nxr) = & INT( building_type_f%var(nys:nyn,nxl:nxr), KIND = 4 ) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( building_type_f%var ) ALLOCATE( building_type_f%var(nys-nbgp:nyn+nbgp,nxl-nbgp:nxr+nbgp) ) building_type_f%var = INT( var_exchange_int, KIND = 1 ) IF ( .NOT. bc_ns_cyc ) THEN IF ( nys == 0 ) building_type_f%var(-1,:) = building_type_f%var(0,:) IF ( nyn == ny ) building_type_f%var(ny+1,:) = building_type_f%var(ny,:) ENDIF IF ( .NOT. bc_lr_cyc ) THEN IF ( nxl == 0 ) building_type_f%var(:,-1) = building_type_f%var(:,0) IF ( nxr == nx ) building_type_f%var(:,nx+1) = building_type_f%var(:,nx) ENDIF ENDIF END SUBROUTINE netcdf_data_input_topo !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads initialization data of u, v, w, pt, q, geostrophic wind components, !> as well as soil moisture and soil temperature, derived from larger-scale !> model (COSMO) by Inifor. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_init_3d USE arrays_3d, & ONLY: q, pt, u, v, w, zu, zw USE control_parameters, & ONLY: bc_lr_cyc, bc_ns_cyc, humidity, message_string, neutral USE indices, & ONLY: nx, nxl, nxlu, nxr, ny, nyn, nys, nysv, nzb, nz, nzt IMPLICIT NONE CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names LOGICAL :: dynamic_3d = .TRUE. !< flag indicating that 3D data is read from dynamic file INTEGER(iwp) :: id_dynamic !< NetCDF id of dynamic input file INTEGER(iwp) :: num_vars !< number of variables in netcdf input file LOGICAL :: check_passed !< flag indicating if a check passed ! !-- Skip routine if no input file with dynamic input data is available. IF ( .NOT. input_pids_dynamic ) RETURN ! !-- Please note, Inifor is designed to provide initial data for u and v for !-- the prognostic grid points in case of lateral Dirichlet conditions. !-- This means that Inifor provides data from nxlu:nxr (for u) and !-- from nysv:nyn (for v) at the left and south domain boundary, respectively. !-- However, as work-around for the moment, PALM will run with cyclic !-- conditions and will be initialized with data provided by Inifor !-- boundaries in case of Dirichlet. !-- Hence, simply set set nxlu/nysv to 1 (will be reset to its original value !-- at the end of this routine. IF ( bc_lr_cyc .AND. nxl == 0 ) nxlu = 1 IF ( bc_ns_cyc .AND. nys == 0 ) nysv = 1 ! !-- CPU measurement CALL cpu_log( log_point_s(85), 'NetCDF input init', 'start' ) #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_dynamic ) // & TRIM( coupling_char ), id_dynamic ) ! !-- At first, inquire all variable names. CALL inquire_num_variables( id_dynamic, num_vars ) ! !-- Allocate memory to store variable names. ALLOCATE( var_names(1:num_vars) ) CALL inquire_variable_names( id_dynamic, var_names ) ! !-- Read vertical dimension of scalar und w grid. CALL netcdf_data_input_get_dimension_length( id_dynamic, init_3d%nzu, 'z' ) CALL netcdf_data_input_get_dimension_length( id_dynamic, init_3d%nzw, 'zw' ) ! !-- Read also the horizontal dimensions. These are used just used fo !-- checking the compatibility with the PALM grid before reading. CALL netcdf_data_input_get_dimension_length( id_dynamic, init_3d%nx, 'x' ) CALL netcdf_data_input_get_dimension_length( id_dynamic, init_3d%nxu, 'xu' ) CALL netcdf_data_input_get_dimension_length( id_dynamic, init_3d%ny, 'y' ) CALL netcdf_data_input_get_dimension_length( id_dynamic, init_3d%nyv, 'yv' ) ! !-- Check for correct horizontal and vertical dimension. Please note, !-- checks are performed directly here and not called from !-- check_parameters as some varialbes are still not allocated there. !-- Moreover, please note, u- and v-grid has 1 grid point less on !-- Inifor grid. IF ( init_3d%nx-1 /= nx .OR. init_3d%nxu-1 /= nx - 1 .OR. & init_3d%ny-1 /= ny .OR. init_3d%nyv-1 /= ny - 1 ) THEN message_string = 'Number of inifor horizontal grid points '// & 'does not match the number of numeric grid '// & 'points.' CALL message( 'netcdf_data_input_mod', 'PA0543', 1, 2, 0, 6, 0 ) ENDIF IF ( init_3d%nzu /= nz ) THEN message_string = 'Number of inifor vertical grid points ' // & 'does not match the number of numeric grid '// & 'points.' CALL message( 'netcdf_data_input_mod', 'PA0543', 1, 2, 0, 6, 0 ) ENDIF ! !-- Read vertical dimensions. Later, these are required for eventual !-- inter- and extrapolations of the initialization data. IF ( check_existence( var_names, 'z' ) ) THEN ALLOCATE( init_3d%zu_atmos(1:init_3d%nzu) ) CALL get_variable( id_dynamic, 'z', init_3d%zu_atmos ) ENDIF IF ( check_existence( var_names, 'zw' ) ) THEN ALLOCATE( init_3d%zw_atmos(1:init_3d%nzw) ) CALL get_variable( id_dynamic, 'zw', init_3d%zw_atmos ) ENDIF ! !-- Check for consistency between vertical coordinates in dynamic !-- driver and numeric grid. !-- Please note, depending on compiler options both may be !-- equal up to a certain threshold, and differences between !-- the numeric grid and vertical coordinate in the driver can built- !-- up to 10E-1-10E-0 m. For this reason, the check is performed not !-- for exactly matching values. IF ( ANY( ABS( zu(1:nzt) - init_3d%zu_atmos(1:init_3d%nzu) ) & > 10E-1 ) .OR. & ANY( ABS( zw(1:nzt-1) - init_3d%zw_atmos(1:init_3d%nzw) ) & > 10E-1 ) ) THEN message_string = 'Vertical grid in dynamic driver does not '// & 'match the numeric grid.' CALL message( 'netcdf_data_input_mod', 'PA0543', 1, 2, 0, 6, 0 ) ENDIF ! !-- Read initial geostrophic wind components at !-- t = 0 (index 1 in file). IF ( check_existence( var_names, 'ls_forcing_ug' ) ) THEN ALLOCATE( init_3d%ug_init(nzb:nzt+1) ) init_3d%ug_init = 0.0_wp CALL get_variable_pr( id_dynamic, 'ls_forcing_ug', 1, & init_3d%ug_init(1:nzt) ) ! !-- Set top-boundary condition (Neumann) init_3d%ug_init(nzt+1) = init_3d%ug_init(nzt) init_3d%from_file_ug = .TRUE. ELSE init_3d%from_file_ug = .FALSE. ENDIF IF ( check_existence( var_names, 'ls_forcing_vg' ) ) THEN ALLOCATE( init_3d%vg_init(nzb:nzt+1) ) init_3d%vg_init = 0.0_wp CALL get_variable_pr( id_dynamic, 'ls_forcing_vg', 1, & init_3d%vg_init(1:nzt) ) ! !-- Set top-boundary condition (Neumann) init_3d%vg_init(nzt+1) = init_3d%vg_init(nzt) init_3d%from_file_vg = .TRUE. ELSE init_3d%from_file_vg = .FALSE. ENDIF ! !-- Read inital 3D data of u, v, w, pt and q, !-- derived from COSMO model. Read PE-wise yz-slices. !-- Please note, the u-, v- and w-component are defined on different !-- grids with one element less in the x-, y-, !-- and z-direction, respectively. Hence, reading is subdivided !-- into separate loops. !-- Read u-component IF ( check_existence( var_names, 'init_atmosphere_u' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, init_3d%fill_u, & .FALSE., 'init_atmosphere_u' ) CALL get_attribute( id_dynamic, char_lod, init_3d%lod_u, & .FALSE., 'init_atmosphere_u' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_u == 1 ) THEN ALLOCATE( init_3d%u_init(nzb:nzt+1) ) init_3d%u_init = 0.0_wp CALL get_variable( id_dynamic, 'init_atmosphere_u', & init_3d%u_init(nzb+1:nzt) ) ! !-- Set top-boundary condition (Neumann) init_3d%u_init(nzt+1) = init_3d%u_init(nzt) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_u == 2 ) THEN CALL get_variable( id_dynamic, 'init_atmosphere_u', & u(nzb+1:nzt,nys:nyn,nxlu:nxr), & nxlu, nys+1, nzb+1, & nxr-nxlu+1, nyn-nys+1, init_3d%nzu, & dynamic_3d ) ! !-- Set value at leftmost model grid point nxl = 0. This is because !-- Inifor provides data only from 1:nx-1 since it assumes non-cyclic !-- conditions. IF ( nxl == 0 ) & u(nzb+1:nzt,nys:nyn,nxl) = u(nzb+1:nzt,nys:nyn,nxlu) ! !-- Set bottom and top-boundary u(nzb,:,:) = u(nzb+1,:,:) u(nzt+1,:,:) = u(nzt,:,:) ENDIF init_3d%from_file_u = .TRUE. ELSE message_string = 'Missing initial data for u-component' CALL message( 'netcdf_data_input_mod', 'PA0544', 1, 2, 0, 6, 0 ) ENDIF ! !-- Read v-component IF ( check_existence( var_names, 'init_atmosphere_v' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, init_3d%fill_v, & .FALSE., 'init_atmosphere_v' ) CALL get_attribute( id_dynamic, char_lod, init_3d%lod_v, & .FALSE., 'init_atmosphere_v' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_v == 1 ) THEN ALLOCATE( init_3d%v_init(nzb:nzt+1) ) init_3d%v_init = 0.0_wp CALL get_variable( id_dynamic, 'init_atmosphere_v', & init_3d%v_init(nzb+1:nzt) ) ! !-- Set top-boundary condition (Neumann) init_3d%v_init(nzt+1) = init_3d%v_init(nzt) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_v == 2 ) THEN CALL get_variable( id_dynamic, 'init_atmosphere_v', & v(nzb+1:nzt,nysv:nyn,nxl:nxr), & nxl+1, nysv, nzb+1, & nxr-nxl+1, nyn-nysv+1, init_3d%nzu, & dynamic_3d ) ! !-- Set value at southmost model grid point nys = 0. This is because !-- Inifor provides data only from 1:ny-1 since it assumes non-cyclic !-- conditions. IF ( nys == 0 ) & v(nzb+1:nzt,nys,nxl:nxr) = v(nzb+1:nzt,nysv,nxl:nxr) ! !-- Set bottom and top-boundary v(nzb,:,:) = v(nzb+1,:,:) v(nzt+1,:,:) = v(nzt,:,:) ENDIF init_3d%from_file_v = .TRUE. ELSE message_string = 'Missing initial data for v-component' CALL message( 'netcdf_data_input_mod', 'PA0544', 1, 2, 0, 6, 0 ) ENDIF ! !-- Read w-component IF ( check_existence( var_names, 'init_atmosphere_w' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, init_3d%fill_w, & .FALSE., 'init_atmosphere_w' ) CALL get_attribute( id_dynamic, char_lod, init_3d%lod_w, & .FALSE., 'init_atmosphere_w' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_w == 1 ) THEN ALLOCATE( init_3d%w_init(nzb:nzt+1) ) init_3d%w_init = 0.0_wp CALL get_variable( id_dynamic, 'init_atmosphere_w', & init_3d%w_init(nzb+1:nzt-1) ) ! !-- Set top-boundary condition (Neumann) init_3d%w_init(nzt:nzt+1) = init_3d%w_init(nzt-1) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_w == 2 ) THEN CALL get_variable( id_dynamic, 'init_atmosphere_w', & w(nzb+1:nzt-1,nys:nyn,nxl:nxr), & nxl+1, nys+1, nzb+1, & nxr-nxl+1, nyn-nys+1, init_3d%nzw, & dynamic_3d ) ! !-- Set bottom and top-boundary w(nzb,:,:) = 0.0_wp w(nzt,:,:) = w(nzt-1,:,:) w(nzt+1,:,:) = w(nzt-1,:,:) ENDIF init_3d%from_file_w = .TRUE. ELSE message_string = 'Missing initial data for w-component' CALL message( 'netcdf_data_input_mod', 'PA0544', 1, 2, 0, 6, 0 ) ENDIF ! !-- Read potential temperature IF ( .NOT. neutral ) THEN IF ( check_existence( var_names, 'init_atmosphere_pt' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, init_3d%fill_pt, & .FALSE., 'init_atmosphere_pt' ) CALL get_attribute( id_dynamic, char_lod, init_3d%lod_pt, & .FALSE., 'init_atmosphere_pt' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_pt == 1 ) THEN ALLOCATE( init_3d%pt_init(nzb:nzt+1) ) CALL get_variable( id_dynamic, 'init_atmosphere_pt', & init_3d%pt_init(nzb+1:nzt) ) ! !-- Set Neumann top and surface boundary condition for initial !-- profil init_3d%pt_init(nzb) = init_3d%pt_init(nzb+1) init_3d%pt_init(nzt+1) = init_3d%pt_init(nzt) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_pt == 2 ) THEN CALL get_variable( id_dynamic, 'init_atmosphere_pt', & pt(nzb+1:nzt,nys:nyn,nxl:nxr), & nxl+1, nys+1, nzb+1, & nxr-nxl+1, nyn-nys+1, init_3d%nzu, & dynamic_3d ) ! !-- Set bottom and top-boundary pt(nzb,:,:) = pt(nzb+1,:,:) pt(nzt+1,:,:) = pt(nzt,:,:) ENDIF init_3d%from_file_pt = .TRUE. ELSE message_string = 'Missing initial data for ' // & 'potential temperature' CALL message( 'netcdf_data_input_mod', 'PA0544', 1, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- Read mixing ratio IF ( humidity ) THEN IF ( check_existence( var_names, 'init_atmosphere_qv' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, init_3d%fill_q, & .FALSE., 'init_atmosphere_qv' ) CALL get_attribute( id_dynamic, char_lod, init_3d%lod_q, & .FALSE., 'init_atmosphere_qv' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_q == 1 ) THEN ALLOCATE( init_3d%q_init(nzb:nzt+1) ) CALL get_variable( id_dynamic, 'init_atmosphere_qv', & init_3d%q_init(nzb+1:nzt) ) ! !-- Set bottom and top boundary condition (Neumann) init_3d%q_init(nzb) = init_3d%q_init(nzb+1) init_3d%q_init(nzt+1) = init_3d%q_init(nzt) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_q == 2 ) THEN CALL get_variable( id_dynamic, 'init_atmosphere_qv', & q(nzb+1:nzt,nys:nyn,nxl:nxr), & nxl+1, nys+1, nzb+1, & nxr-nxl+1, nyn-nys+1, init_3d%nzu, & dynamic_3d ) ! !-- Set bottom and top-boundary q(nzb,:,:) = q(nzb+1,:,:) q(nzt+1,:,:) = q(nzt,:,:) ENDIF init_3d%from_file_q = .TRUE. ELSE message_string = 'Missing initial data for ' // & 'mixing ratio' CALL message( 'netcdf_data_input_mod', 'PA0544', 1, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- Close input file CALL close_input_file( id_dynamic ) #endif ! !-- End of CPU measurement CALL cpu_log( log_point_s(85), 'NetCDF input init', 'stop' ) ! !-- Finally, check if the input data has any fill values. Please note, !-- checks depend on the LOD of the input data. IF ( init_3d%from_file_u ) THEN check_passed = .TRUE. IF ( init_3d%lod_u == 1 ) THEN IF ( ANY( init_3d%u_init(nzb+1:nzt+1) == init_3d%fill_u ) ) & check_passed = .FALSE. ELSEIF ( init_3d%lod_u == 2 ) THEN IF ( ANY( u(nzb+1:nzt+1,nys:nyn,nxlu:nxr) == init_3d%fill_u ) ) & check_passed = .FALSE. ENDIF IF ( .NOT. check_passed ) THEN message_string = 'NetCDF input for init_atmosphere_u must ' // & 'not contain any _FillValues' CALL message( 'netcdf_data_input_mod', 'PA0545', 2, 2, 0, 6, 0 ) ENDIF ENDIF IF ( init_3d%from_file_v ) THEN check_passed = .TRUE. IF ( init_3d%lod_v == 1 ) THEN IF ( ANY( init_3d%v_init(nzb+1:nzt+1) == init_3d%fill_v ) ) & check_passed = .FALSE. ELSEIF ( init_3d%lod_v == 2 ) THEN IF ( ANY( v(nzb+1:nzt+1,nysv:nyn,nxl:nxr) == init_3d%fill_v ) ) & check_passed = .FALSE. ENDIF IF ( .NOT. check_passed ) THEN message_string = 'NetCDF input for init_atmosphere_v must ' // & 'not contain any _FillValues' CALL message( 'netcdf_data_input_mod', 'PA0545', 2, 2, 0, 6, 0 ) ENDIF ENDIF IF ( init_3d%from_file_w ) THEN check_passed = .TRUE. IF ( init_3d%lod_w == 1 ) THEN IF ( ANY( init_3d%w_init(nzb+1:nzt) == init_3d%fill_w ) ) & check_passed = .FALSE. ELSEIF ( init_3d%lod_w == 2 ) THEN IF ( ANY( w(nzb+1:nzt,nys:nyn,nxl:nxr) == init_3d%fill_w ) ) & check_passed = .FALSE. ENDIF IF ( .NOT. check_passed ) THEN message_string = 'NetCDF input for init_atmosphere_w must ' // & 'not contain any _FillValues' CALL message( 'netcdf_data_input_mod', 'PA0545', 2, 2, 0, 6, 0 ) ENDIF ENDIF IF ( init_3d%from_file_pt ) THEN check_passed = .TRUE. IF ( init_3d%lod_pt == 1 ) THEN IF ( ANY( init_3d%pt_init(nzb+1:nzt+1) == init_3d%fill_pt ) ) & check_passed = .FALSE. ELSEIF ( init_3d%lod_pt == 2 ) THEN IF ( ANY( pt(nzb+1:nzt+1,nys:nyn,nxl:nxr) == init_3d%fill_pt ) ) & check_passed = .FALSE. ENDIF IF ( .NOT. check_passed ) THEN message_string = 'NetCDF input for init_atmosphere_pt must ' // & 'not contain any _FillValues' CALL message( 'netcdf_data_input_mod', 'PA0545', 2, 2, 0, 6, 0 ) ENDIF ENDIF IF ( init_3d%from_file_q ) THEN check_passed = .TRUE. IF ( init_3d%lod_q == 1 ) THEN IF ( ANY( init_3d%q_init(nzb+1:nzt+1) == init_3d%fill_q ) ) & check_passed = .FALSE. ELSEIF ( init_3d%lod_q == 2 ) THEN IF ( ANY( q(nzb+1:nzt+1,nys:nyn,nxl:nxr) == init_3d%fill_q ) ) & check_passed = .FALSE. ENDIF IF ( .NOT. check_passed ) THEN message_string = 'NetCDF input for init_atmosphere_q must ' // & 'not contain any _FillValues' CALL message( 'netcdf_data_input_mod', 'PA0545', 2, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- Workaround for cyclic conditions. Please see above for further explanation. IF ( bc_lr_cyc .AND. nxl == 0 ) nxlu = nxl IF ( bc_ns_cyc .AND. nys == 0 ) nysv = nys END SUBROUTINE netcdf_data_input_init_3d !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads initialization data of u, v, w, pt, q, geostrophic wind components, !> as well as soil moisture and soil temperature, derived from larger-scale !> model (COSMO) by Inifor. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_init_lsm USE control_parameters, & ONLY: message_string USE indices, & ONLY: nx, nxl, nxr, ny, nyn, nys IMPLICIT NONE CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names INTEGER(iwp) :: id_dynamic !< NetCDF id of dynamic input file INTEGER(iwp) :: num_vars !< number of variables in netcdf input file ! !-- Skip routine if no input file with dynamic input data is available. IF ( .NOT. input_pids_dynamic ) RETURN ! !-- CPU measurement CALL cpu_log( log_point_s(85), 'NetCDF input init', 'start' ) #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_dynamic ) // & TRIM( coupling_char ), id_dynamic ) ! !-- At first, inquire all variable names. CALL inquire_num_variables( id_dynamic, num_vars ) ! !-- Allocate memory to store variable names. ALLOCATE( var_names(1:num_vars) ) CALL inquire_variable_names( id_dynamic, var_names ) ! !-- Read vertical dimension for soil depth. IF ( check_existence( var_names, 'zsoil' ) ) & CALL netcdf_data_input_get_dimension_length( id_dynamic, init_3d%nzs,& 'zsoil' ) ! !-- Read also the horizontal dimensions required for soil initialization. !-- Please note, in case of non-nested runs or in case of root domain, !-- these data is already available, but will be read again for the sake !-- of clearness. CALL netcdf_data_input_get_dimension_length( id_dynamic, init_3d%nx, & 'x' ) CALL netcdf_data_input_get_dimension_length( id_dynamic, init_3d%ny, & 'y' ) ! !-- Check for correct horizontal and vertical dimension. Please note, !-- in case of non-nested runs or in case of root domain, these checks !-- are already performed IF ( init_3d%nx-1 /= nx .OR. init_3d%ny-1 /= ny ) THEN message_string = 'Number of inifor horizontal grid points '// & 'does not match the number of numeric grid points.' CALL message( 'netcdf_data_input_mod', 'PA0543', 1, 2, 0, 6, 0 ) ENDIF ! !-- Read vertical dimensions. Later, these are required for eventual !-- inter- and extrapolations of the initialization data. IF ( check_existence( var_names, 'zsoil' ) ) THEN ALLOCATE( init_3d%z_soil(1:init_3d%nzs) ) CALL get_variable( id_dynamic, 'zsoil', init_3d%z_soil ) ENDIF ! !-- Read initial data for soil moisture IF ( check_existence( var_names, 'init_soil_m' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, & init_3d%fill_msoil, & .FALSE., 'init_soil_m' ) CALL get_attribute( id_dynamic, char_lod, & init_3d%lod_msoil, & .FALSE., 'init_soil_m' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_msoil == 1 ) THEN ALLOCATE( init_3d%msoil_1d(0:init_3d%nzs-1) ) CALL get_variable( id_dynamic, 'init_soil_m', & init_3d%msoil_1d(0:init_3d%nzs-1) ) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_msoil == 2 ) THEN ALLOCATE ( init_3d%msoil_3d(0:init_3d%nzs-1,nys:nyn,nxl:nxr) ) CALL get_variable( id_dynamic, 'init_soil_m', & init_3d%msoil_3d(0:init_3d%nzs-1,nys:nyn,nxl:nxr),& nxl, nxr, nys, nyn, 0, init_3d%nzs-1 ) ENDIF init_3d%from_file_msoil = .TRUE. ENDIF ! !-- Read soil temperature IF ( check_existence( var_names, 'init_soil_t' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, & init_3d%fill_tsoil, & .FALSE., 'init_soil_t' ) CALL get_attribute( id_dynamic, char_lod, & init_3d%lod_tsoil, & .FALSE., 'init_soil_t' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_tsoil == 1 ) THEN ALLOCATE( init_3d%tsoil_1d(0:init_3d%nzs-1) ) CALL get_variable( id_dynamic, 'init_soil_t', & init_3d%tsoil_1d(0:init_3d%nzs-1) ) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_tsoil == 2 ) THEN ALLOCATE ( init_3d%tsoil_3d(0:init_3d%nzs-1,nys:nyn,nxl:nxr) ) CALL get_variable( id_dynamic, 'init_soil_t', & init_3d%tsoil_3d(0:init_3d%nzs-1,nys:nyn,nxl:nxr),& nxl, nxr, nys, nyn, 0, init_3d%nzs-1 ) ENDIF init_3d%from_file_tsoil = .TRUE. ENDIF ! !-- Close input file CALL close_input_file( id_dynamic ) #endif ! !-- End of CPU measurement CALL cpu_log( log_point_s(85), 'NetCDF input init', 'stop' ) END SUBROUTINE netcdf_data_input_init_lsm !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads data at lateral and top boundaries derived from larger-scale model !> (COSMO) by Inifor. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_offline_nesting USE control_parameters, & ONLY: bc_dirichlet_l, bc_dirichlet_n, bc_dirichlet_r, & bc_dirichlet_s, humidity, neutral, nesting_offline, & time_since_reference_point USE indices, & ONLY: nxl, nxlu, nxr, nyn, nys, nysv, nzb, nzt IMPLICIT NONE INTEGER(iwp) :: id_dynamic !< NetCDF id of dynamic input file INTEGER(iwp) :: num_vars !< number of variables in netcdf input file INTEGER(iwp) :: t !< running index time dimension nest_offl%from_file = MERGE( .TRUE., .FALSE., input_pids_dynamic ) ! !-- Skip input if no forcing from larger-scale models is applied. IF ( .NOT. nesting_offline ) RETURN ! !-- CPU measurement CALL cpu_log( log_point_s(86), 'NetCDF input forcing', 'start' ) #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_dynamic ) // & TRIM( coupling_char ), id_dynamic ) ! !-- Initialize INIFOR forcing. IF ( .NOT. nest_offl%init ) THEN ! !-- At first, inquire all variable names. CALL inquire_num_variables( id_dynamic, num_vars ) ! !-- Allocate memory to store variable names. ALLOCATE( nest_offl%var_names(1:num_vars) ) CALL inquire_variable_names( id_dynamic, nest_offl%var_names ) ! !-- Read time dimension, allocate memory and finally read time array CALL netcdf_data_input_get_dimension_length( id_dynamic, & nest_offl%nt, 'time' ) IF ( check_existence( nest_offl%var_names, 'time' ) ) THEN ALLOCATE( nest_offl%time(0:nest_offl%nt-1) ) CALL get_variable( id_dynamic, 'time', nest_offl%time ) ENDIF ! !-- Read vertical dimension of scalar und w grid CALL netcdf_data_input_get_dimension_length( id_dynamic, & nest_offl%nzu, 'z' ) CALL netcdf_data_input_get_dimension_length( id_dynamic, & nest_offl%nzw, 'zw' ) IF ( check_existence( nest_offl%var_names, 'z' ) ) THEN ALLOCATE( nest_offl%zu_atmos(1:nest_offl%nzu) ) CALL get_variable( id_dynamic, 'z', nest_offl%zu_atmos ) ENDIF IF ( check_existence( nest_offl%var_names, 'zw' ) ) THEN ALLOCATE( nest_offl%zw_atmos(1:nest_offl%nzw) ) CALL get_variable( id_dynamic, 'zw', nest_offl%zw_atmos ) ENDIF ! !-- Read surface pressure IF ( check_existence( nest_offl%var_names, & 'surface_forcing_surface_pressure' ) ) THEN ALLOCATE( nest_offl%surface_pressure(0:nest_offl%nt-1) ) CALL get_variable( id_dynamic, & 'surface_forcing_surface_pressure', & nest_offl%surface_pressure ) ENDIF ! !-- Set control flag to indicate that initialization is already done nest_offl%init = .TRUE. ENDIF ! !-- Obtain time index for current input starting at 0. !-- @todo: At the moment INIFOR and simulated time correspond !-- to each other. If required, adjust to daytime. nest_offl%tind = MINLOC( ABS( nest_offl%time - & time_since_reference_point ), DIM = 1 ) & - 1 nest_offl%tind_p = nest_offl%tind + 1 ! !-- Read geostrophic wind components DO t = nest_offl%tind, nest_offl%tind_p CALL get_variable_pr( id_dynamic, 'ls_forcing_ug', t+1, & nest_offl%ug(t-nest_offl%tind,nzb+1:nzt) ) CALL get_variable_pr( id_dynamic, 'ls_forcing_vg', t+1, & nest_offl%vg(t-nest_offl%tind,nzb+1:nzt) ) ENDDO ! !-- Read data at lateral and top boundaries. Please note, at left and !-- right domain boundary, yz-layers are read for u, v, w, pt and q. !-- For the v-component, the data starts at nysv, while for the other !-- quantities the data starts at nys. This is equivalent at the north !-- and south domain boundary for the u-component. !-- Further, lateral data is not accessed by parallel IO, indicated by the !-- last passed flag in the subroutine get_variable(). This is because !-- not every PE participates in this collective blocking read operation. IF ( bc_dirichlet_l ) THEN CALL get_variable( id_dynamic, 'ls_forcing_left_u', & nest_offl%u_left(0:1,nzb+1:nzt,nys:nyn), & nys+1, nzb+1, nest_offl%tind+1, & nyn-nys+1, nest_offl%nzu, 2, .FALSE. ) CALL get_variable( id_dynamic, 'ls_forcing_left_v', & nest_offl%v_left(0:1,nzb+1:nzt,nysv:nyn), & nysv, nzb+1, nest_offl%tind+1, & nyn-nysv+1, nest_offl%nzu, 2, .FALSE. ) CALL get_variable( id_dynamic, 'ls_forcing_left_w', & nest_offl%w_left(0:1,nzb+1:nzt-1,nys:nyn), & nys+1, nzb+1, nest_offl%tind+1, & nyn-nys+1, nest_offl%nzw, 2, .FALSE. ) IF ( .NOT. neutral ) THEN CALL get_variable( id_dynamic, 'ls_forcing_left_pt', & nest_offl%pt_left(0:1,nzb+1:nzt,nys:nyn), & nys+1, nzb+1, nest_offl%tind+1, & nyn-nys+1, nest_offl%nzu, 2, .FALSE. ) ENDIF IF ( humidity ) THEN CALL get_variable( id_dynamic, 'ls_forcing_left_qv', & nest_offl%q_left(0:1,nzb+1:nzt,nys:nyn), & nys+1, nzb+1, nest_offl%tind+1, & nyn-nys+1, nest_offl%nzu, 2, .FALSE. ) ENDIF ENDIF IF ( bc_dirichlet_r ) THEN CALL get_variable( id_dynamic, 'ls_forcing_right_u', & nest_offl%u_right(0:1,nzb+1:nzt,nys:nyn), & nys+1, nzb+1, nest_offl%tind+1, & nyn-nys+1, nest_offl%nzu, 2, .FALSE. ) CALL get_variable( id_dynamic, 'ls_forcing_right_v', & nest_offl%v_right(0:1,nzb+1:nzt,nysv:nyn), & nysv, nzb+1, nest_offl%tind+1, & nyn-nysv+1, nest_offl%nzu, 2, .FALSE. ) CALL get_variable( id_dynamic, 'ls_forcing_right_w', & nest_offl%w_right(0:1,nzb+1:nzt-1,nys:nyn), & nys+1, nzb+1, nest_offl%tind+1, & nyn-nys+1, nest_offl%nzw, 2, .FALSE. ) IF ( .NOT. neutral ) THEN CALL get_variable( id_dynamic, 'ls_forcing_right_pt', & nest_offl%pt_right(0:1,nzb+1:nzt,nys:nyn), & nys+1, nzb+1, nest_offl%tind+1, & nyn-nys+1, nest_offl%nzu, 2, .FALSE. ) ENDIF IF ( humidity ) THEN CALL get_variable( id_dynamic, 'ls_forcing_right_qv', & nest_offl%q_right(0:1,nzb+1:nzt,nys:nyn), & nys+1, nzb+1, nest_offl%tind+1, & nyn-nys+1, nest_offl%nzu, 2, .FALSE. ) ENDIF ENDIF IF ( bc_dirichlet_n ) THEN CALL get_variable( id_dynamic, 'ls_forcing_north_u', & nest_offl%u_north(0:1,nzb+1:nzt,nxlu:nxr), & nxlu, nzb+1, nest_offl%tind+1, & nxr-nxlu+1, nest_offl%nzu, 2, .FALSE. ) CALL get_variable( id_dynamic, 'ls_forcing_north_v', & nest_offl%v_north(0:1,nzb+1:nzt,nxl:nxr), & nxl+1, nzb+1, nest_offl%tind+1, & nxr-nxl+1, nest_offl%nzu, 2, .FALSE. ) CALL get_variable( id_dynamic, 'ls_forcing_north_w', & nest_offl%w_north(0:1,nzb+1:nzt-1,nxl:nxr), & nxl+1, nzb+1, nest_offl%tind+1, & nxr-nxl+1, nest_offl%nzw, 2, .FALSE. ) IF ( .NOT. neutral ) THEN CALL get_variable( id_dynamic, 'ls_forcing_north_pt', & nest_offl%pt_north(0:1,nzb+1:nzt,nxl:nxr), & nxl+1, nzb+1, nest_offl%tind+1, & nxr-nxl+1, nest_offl%nzu, 2, .FALSE. ) ENDIF IF ( humidity ) THEN CALL get_variable( id_dynamic, 'ls_forcing_north_qv', & nest_offl%q_north(0:1,nzb+1:nzt,nxl:nxr), & nxl+1, nzb+1, nest_offl%tind+1, & nxr-nxl+1, nest_offl%nzu, 2, .FALSE. ) ENDIF ENDIF IF ( bc_dirichlet_s ) THEN CALL get_variable( id_dynamic, 'ls_forcing_south_u', & nest_offl%u_south(0:1,nzb+1:nzt,nxlu:nxr), & nxlu, nzb+1, nest_offl%tind+1, & nxr-nxlu+1, nest_offl%nzu, 2, .FALSE. ) CALL get_variable( id_dynamic, 'ls_forcing_south_v', & nest_offl%v_south(0:1,nzb+1:nzt,nxl:nxr), & nxl+1, nzb+1, nest_offl%tind+1, & nxr-nxl+1, nest_offl%nzu, 2, .FALSE. ) CALL get_variable( id_dynamic, 'ls_forcing_south_w', & nest_offl%w_south(0:1,nzb+1:nzt-1,nxl:nxr), & nxl+1, nzb+1, nest_offl%tind+1, & nxr-nxl+1, nest_offl%nzw, 2, .FALSE. ) IF ( .NOT. neutral ) THEN CALL get_variable( id_dynamic, 'ls_forcing_south_pt', & nest_offl%pt_south(0:1,nzb+1:nzt,nxl:nxr), & nxl+1, nzb+1, nest_offl%tind+1, & nxr-nxl+1, nest_offl%nzu, 2, .FALSE. ) ENDIF IF ( humidity ) THEN CALL get_variable( id_dynamic, 'ls_forcing_south_qv', & nest_offl%q_south(0:1,nzb+1:nzt,nxl:nxr), & nxl+1, nzb+1, nest_offl%tind+1, & nxr-nxl+1, nest_offl%nzu, 2, .FALSE. ) ENDIF ENDIF ! !-- Top boundary CALL get_variable( id_dynamic, 'ls_forcing_top_u', & nest_offl%u_top(0:1,nys:nyn,nxlu:nxr), & nxlu, nys+1, nest_offl%tind+1, & nxr-nxlu+1, nyn-nys+1, 2, .TRUE. ) CALL get_variable( id_dynamic, 'ls_forcing_top_v', & nest_offl%v_top(0:1,nysv:nyn,nxl:nxr), & nxl+1, nysv, nest_offl%tind+1, & nxr-nxl+1, nyn-nysv+1, 2, .TRUE. ) CALL get_variable( id_dynamic, 'ls_forcing_top_w', & nest_offl%w_top(0:1,nys:nyn,nxl:nxr), & nxl+1, nys+1, nest_offl%tind+1, & nxr-nxl+1, nyn-nys+1, 2, .TRUE. ) IF ( .NOT. neutral ) THEN CALL get_variable( id_dynamic, 'ls_forcing_top_pt', & nest_offl%pt_top(0:1,nys:nyn,nxl:nxr), & nxl+1, nys+1, nest_offl%tind+1, & nxr-nxl+1, nyn-nys+1, 2, .TRUE. ) ENDIF IF ( humidity ) THEN CALL get_variable( id_dynamic, 'ls_forcing_top_qv', & nest_offl%q_top(0:1,nys:nyn,nxl:nxr), & nxl+1, nys+1, nest_offl%tind+1, & nxr-nxl+1, nyn-nys+1, 2, .TRUE. ) ENDIF ! !-- Close input file CALL close_input_file( id_dynamic ) #endif ! !-- End of CPU measurement CALL cpu_log( log_point_s(86), 'NetCDF input forcing', 'stop' ) END SUBROUTINE netcdf_data_input_offline_nesting !------------------------------------------------------------------------------! ! Description: ! ------------ !> Checks input file for consistency and minimum requirements. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_check_dynamic USE control_parameters, & ONLY: initializing_actions, message_string, nesting_offline IMPLICIT NONE ! !-- In case of forcing, check whether dynamic input file is present IF ( .NOT. input_pids_dynamic .AND. nesting_offline ) THEN message_string = 'nesting_offline = .TRUE. requires dynamic ' // & 'input file ' // & TRIM( input_file_dynamic ) // TRIM( coupling_char ) CALL message( 'netcdf_data_input_mod', 'PA0546', 1, 2, 0, 6, 0 ) ENDIF ! !-- Dynamic input file must also be present if initialization via inifor is !-- prescribed. IF ( .NOT. input_pids_dynamic .AND. & TRIM( initializing_actions ) == 'inifor' ) THEN message_string = 'initializing_actions = inifor requires dynamic ' //& 'input file ' // TRIM( input_file_dynamic ) // & TRIM( coupling_char ) CALL message( 'netcdf_data_input_mod', 'PA0547', 1, 2, 0, 6, 0 ) ENDIF END SUBROUTINE netcdf_data_input_check_dynamic !------------------------------------------------------------------------------! ! Description: ! ------------ !> Checks input file for consistency and minimum requirements. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_check_static USE arrays_3d, & ONLY: zu USE control_parameters, & ONLY: land_surface, message_string, urban_surface USE grid_variables, & ONLY: dx, dy USE indices, & ONLY: nx, nxl, nxr, ny, nyn, nys IMPLICIT NONE INTEGER(iwp) :: i !< loop index along x-direction INTEGER(iwp) :: j !< loop index along y-direction INTEGER(iwp) :: n_surf !< number of different surface types at given location LOGICAL :: check_passed !< flag indicating if a check passed ! !-- Return if no static input file is available IF ( .NOT. input_pids_static ) RETURN ! !-- Check whether dimension size in input file matches the model dimensions IF ( dim_static%nx-1 /= nx .OR. dim_static%ny-1 /= ny ) THEN message_string = 'Static input file: horizontal dimension in ' // & 'x- and/or y-direction ' // & 'do not match the respective model dimension' CALL message( 'netcdf_data_input_mod', 'PA0548', 1, 2, 0, 6, 0 ) ENDIF ! !-- Check if grid spacing of provided input data matches the respective !-- grid spacing in the model. IF ( ABS( dim_static%x(1) - dim_static%x(0) - dx ) > 10E-6_wp .OR. & ABS( dim_static%y(1) - dim_static%y(0) - dy ) > 10E-6_wp ) THEN message_string = 'Static input file: horizontal grid spacing ' // & 'in x- and/or y-direction ' // & 'do not match the respective model grid spacing.' CALL message( 'netcdf_data_input_mod', 'PA0549', 1, 2, 0, 6, 0 ) ENDIF ! !-- Check for correct dimension of surface_fractions, should run from 0-2. IF ( surface_fraction_f%from_file ) THEN IF ( surface_fraction_f%nf-1 > 2 ) THEN message_string = 'nsurface_fraction must not be larger than 3.' CALL message( 'netcdf_data_input_mod', 'PA0580', 1, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- Check orography for fill-values. For the moment, give an error message. !-- More advanced methods, e.g. a nearest neighbor algorithm as used in GIS !-- systems might be implemented later. !-- Please note, if no terrain height is provided, it is set to 0. IF ( ANY( terrain_height_f%var == terrain_height_f%fill ) ) THEN message_string = 'NetCDF variable zt is not ' // & 'allowed to have missing data' CALL message( 'netcdf_data_input_mod', 'PA0550', 2, 2, myid, 6, 0 ) ENDIF ! !-- Check for negative terrain heights IF ( ANY( terrain_height_f%var < 0.0_wp ) ) THEN message_string = 'NetCDF variable zt is not ' // & 'allowed to have negative values' CALL message( 'netcdf_data_input_mod', 'PA0551', 2, 2, myid, 6, 0 ) ENDIF ! !-- If 3D buildings are read, check if building information is consistent !-- to numeric grid. IF ( buildings_f%from_file ) THEN IF ( buildings_f%lod == 2 ) THEN IF ( buildings_f%nz > SIZE( zu ) ) THEN message_string = 'Reading 3D building data - too much ' // & 'data points along the vertical coordinate.' CALL message( 'netcdf_data_input_mod', 'PA0552', 2, 2, 0, 6, 0 ) ENDIF IF ( ANY( ABS( buildings_f%z(0:buildings_f%nz-1) - & zu(0:buildings_f%nz-1) ) > 1E-6_wp ) ) THEN message_string = 'Reading 3D building data - vertical ' // & 'coordinate do not match numeric grid.' CALL message( 'netcdf_data_input_mod', 'PA0553', 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Skip further checks concerning buildings and natural surface properties !-- if no urban surface and land surface model are applied. IF ( .NOT. land_surface .AND. .NOT. urban_surface ) RETURN ! !-- Check for minimum requirement of surface-classification data in case !-- static input file is used. IF ( ( .NOT. vegetation_type_f%from_file .OR. & .NOT. pavement_type_f%from_file .OR. & .NOT. water_type_f%from_file .OR. & .NOT. soil_type_f%from_file ) .OR. & ( urban_surface .AND. .NOT. building_type_f%from_file ) ) THEN message_string = 'Minimum requirement for surface classification ' //& 'is not fulfilled. At least ' // & 'vegetation_type, pavement_type, ' // & 'soil_type and water_type are '// & 'required. If urban-surface model is applied, ' // & 'also building_type ist required' CALL message( 'netcdf_data_input_mod', 'PA0554', 1, 2, 0, 6, 0 ) ENDIF ! !-- Check for general availability of input variables. !-- If vegetation_type is 0 at any location, vegetation_pars as well as !-- root_area_dens_s are required. IF ( vegetation_type_f%from_file ) THEN IF ( ANY( vegetation_type_f%var == 0 ) ) THEN IF ( .NOT. vegetation_pars_f%from_file ) THEN message_string = 'If vegetation_type = 0 at any location, ' // & 'vegetation_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0555', 2, 2, -1, 6, 0 ) ENDIF IF ( .NOT. root_area_density_lsm_f%from_file ) THEN message_string = 'If vegetation_type = 0 at any location, ' // & 'root_area_dens_s is required' CALL message( 'netcdf_data_input_mod', 'PA0556', 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- If soil_type is zero at any location, soil_pars is required. IF ( soil_type_f%from_file ) THEN check_passed = .TRUE. IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN IF ( ANY( soil_type_f%var_2d == 0 ) ) THEN IF ( .NOT. soil_pars_f%from_file ) check_passed = .FALSE. ENDIF ELSE IF ( ANY( soil_type_f%var_3d == 0 ) ) THEN IF ( .NOT. soil_pars_f%from_file ) check_passed = .FALSE. ENDIF ENDIF IF ( .NOT. check_passed ) THEN message_string = 'If soil_type = 0 at any location, ' // & 'soil_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0557', 2, 2, myid, 6, 0 ) ENDIF ENDIF ! !-- If building_type is zero at any location, building_pars is required. IF ( building_type_f%from_file ) THEN IF ( ANY( building_type_f%var == 0 ) ) THEN IF ( .NOT. building_pars_f%from_file ) THEN message_string = 'If building_type = 0 at any location, ' // & 'building_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0558', 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- If building_type is provided, also building_id is needed IF ( building_type_f%from_file .AND. .NOT. building_id_f%from_file ) & THEN message_string = 'If building_type is provided, also building_id '// & 'is required' CALL message( 'netcdf_data_input_mod', 'PA0519', 2, 2, myid, 6, 0 ) ENDIF ! !-- If albedo_type is zero at any location, albedo_pars is required. IF ( albedo_type_f%from_file ) THEN IF ( ANY( albedo_type_f%var == 0 ) ) THEN IF ( .NOT. albedo_pars_f%from_file ) THEN message_string = 'If albedo_type = 0 at any location, ' // & 'albedo_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0559', 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- If pavement_type is zero at any location, pavement_pars is required. IF ( pavement_type_f%from_file ) THEN IF ( ANY( pavement_type_f%var == 0 ) ) THEN IF ( .NOT. pavement_pars_f%from_file ) THEN message_string = 'If pavement_type = 0 at any location, ' // & 'pavement_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0560', 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- If pavement_type is zero at any location, also pavement_subsurface_pars !-- is required. IF ( pavement_type_f%from_file ) THEN IF ( ANY( pavement_type_f%var == 0 ) ) THEN IF ( .NOT. pavement_subsurface_pars_f%from_file ) THEN message_string = 'If pavement_type = 0 at any location, ' // & 'pavement_subsurface_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0561', 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- If water_type is zero at any location, water_pars is required. IF ( water_type_f%from_file ) THEN IF ( ANY( water_type_f%var == 0 ) ) THEN IF ( .NOT. water_pars_f%from_file ) THEN message_string = 'If water_type = 0 at any location, ' // & 'water_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0562', 2, 2,myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check for local consistency of the input data. DO i = nxl, nxr DO j = nys, nyn ! !-- For each (y,x)-location at least one of the parameters !-- vegetation_type, pavement_type, building_type, or water_type !-- must be set to a non­missing value. IF ( vegetation_type_f%var(j,i) == vegetation_type_f%fill .AND. & pavement_type_f%var(j,i) == pavement_type_f%fill .AND. & building_type_f%var(j,i) == building_type_f%fill .AND. & water_type_f%var(j,i) == water_type_f%fill ) THEN WRITE( message_string, * ) 'At least one of the parameters '// & 'vegetation_type, pavement_type, ' // & 'building_type, or water_type must be set '// & 'to a non-missing value. Grid point: ', j, i CALL message( 'netcdf_data_input_mod', 'PA0563', 2, 2, myid, 6, 0 ) ENDIF ! !-- Note that a soil_type is required for each location (y,x) where !-- either vegetation_type or pavement_type is a non­missing value. IF ( ( vegetation_type_f%var(j,i) /= vegetation_type_f%fill .OR. & pavement_type_f%var(j,i) /= pavement_type_f%fill ) ) THEN check_passed = .TRUE. IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN IF ( soil_type_f%var_2d(j,i) == soil_type_f%fill ) & check_passed = .FALSE. ELSE IF ( ANY( soil_type_f%var_3d(:,j,i) == soil_type_f%fill) ) & check_passed = .FALSE. ENDIF IF ( .NOT. check_passed ) THEN message_string = 'soil_type is required for each '// & 'location (y,x) where vegetation_type or ' // & 'pavement_type is a non-missing value.' CALL message( 'netcdf_data_input_mod', 'PA0564', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ! !-- Check for consistency of surface fraction. If more than one type !-- is set, surface fraction need to be given and the sum must not !-- be larger than 1. n_surf = 0 IF ( vegetation_type_f%var(j,i) /= vegetation_type_f%fill ) & n_surf = n_surf + 1 IF ( water_type_f%var(j,i) /= water_type_f%fill ) & n_surf = n_surf + 1 IF ( pavement_type_f%var(j,i) /= pavement_type_f%fill ) & n_surf = n_surf + 1 IF ( n_surf > 1 ) THEN IF ( .NOT. surface_fraction_f%from_file ) THEN message_string = 'If more than one surface type is ' // & 'given at a location, surface_fraction ' // & 'must be provided.' CALL message( 'netcdf_data_input_mod', 'PA0565', & 2, 2, myid, 6, 0 ) ELSEIF ( ANY ( surface_fraction_f%frac(:,j,i) == & surface_fraction_f%fill ) ) THEN message_string = 'If more than one surface type is ' // & 'given at a location, surface_fraction ' // & 'must be provided.' CALL message( 'netcdf_data_input_mod', 'PA0565', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ! !-- Check for further mismatches. e.g. relative fractions exceed 1 or !-- vegetation_type is set but surface vegetation fraction is zero, !-- etc.. IF ( surface_fraction_f%from_file ) THEN ! !-- Sum of relative fractions must not exceed 1. IF ( SUM ( surface_fraction_f%frac(0:2,j,i) ) > 1.0_wp ) THEN message_string = 'surface_fraction must not exceed 1' CALL message( 'netcdf_data_input_mod', 'PA0566', & 2, 2, myid, 6, 0 ) ENDIF ! !-- Relative fraction for a type must not be zero at locations where !-- this type is set. IF ( & ( vegetation_type_f%var(j,i) /= vegetation_type_f%fill .AND.& ( surface_fraction_f%frac(ind_veg_wall,j,i) == 0.0_wp .OR. & surface_fraction_f%frac(ind_veg_wall,j,i) == & surface_fraction_f%fill ) & ) .OR. & ( pavement_type_f%var(j,i) /= pavement_type_f%fill .AND. & ( surface_fraction_f%frac(ind_pav_green,j,i) == 0.0_wp .OR. & surface_fraction_f%frac(ind_pav_green,j,i) == & surface_fraction_f%fill ) & ) .OR. & ( water_type_f%var(j,i) /= water_type_f%fill .AND. & ( surface_fraction_f%frac(ind_wat_win,j,i) == 0.0_wp .OR. & surface_fraction_f%frac(ind_wat_win,j,i) == & surface_fraction_f%fill ) & ) ) THEN WRITE( message_string, * ) 'Mismatch in setting of ' // & 'surface_fraction. Vegetation-, pavement-, or '// & 'water surface is given at (i,j) = ( ', i, j, & ' ), but surface fraction is 0 for the given type.' CALL message( 'netcdf_data_input_mod', 'PA0567', & 2, 2, myid, 6, 0 ) ENDIF ! !-- Relative fraction for a type must not contain non-zero values !-- if this type is not set. IF ( & ( vegetation_type_f%var(j,i) == vegetation_type_f%fill .AND.& ( surface_fraction_f%frac(ind_veg_wall,j,i) /= 0.0_wp .AND. & surface_fraction_f%frac(ind_veg_wall,j,i) /= & surface_fraction_f%fill ) & ) .OR. & ( pavement_type_f%var(j,i) == pavement_type_f%fill .AND. & ( surface_fraction_f%frac(ind_pav_green,j,i) /= 0.0_wp .AND. & surface_fraction_f%frac(ind_pav_green,j,i) /= & surface_fraction_f%fill ) & ) .OR. & ( water_type_f%var(j,i) == water_type_f%fill .AND. & ( surface_fraction_f%frac(ind_wat_win,j,i) /= 0.0_wp .AND. & surface_fraction_f%frac(ind_wat_win,j,i) /= & surface_fraction_f%fill ) & ) ) THEN WRITE( message_string, * ) 'Mismatch in setting of ' // & 'surface_fraction. Vegetation-, pavement-, or '// & 'water surface is not given at (i,j) = ( ', i, j, & ' ), but surface fraction is not 0 for the ' // & 'given type.' CALL message( 'netcdf_data_input_mod', 'PA0568', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ! !-- Check vegetation_pars. If vegetation_type is 0, all parameters !-- need to be set, otherwise, single parameters set by !-- vegetation_type can be overwritten. IF ( vegetation_type_f%from_file ) THEN IF ( vegetation_type_f%var(j,i) == 0 ) THEN IF ( ANY( vegetation_pars_f%pars_xy(:,j,i) == & vegetation_pars_f%fill ) ) THEN message_string = 'If vegetation_type(y,x) = 0, all ' // & 'parameters of vegetation_pars at '// & 'this location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0569', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check root distribution. If vegetation_type is 0, all levels must !-- be set. IF ( vegetation_type_f%from_file ) THEN IF ( vegetation_type_f%var(j,i) == 0 ) THEN IF ( ANY( root_area_density_lsm_f%var(:,j,i) == & root_area_density_lsm_f%fill ) ) THEN message_string = 'If vegetation_type(y,x) = 0, all ' // & 'levels of root_area_dens_s ' // & 'must be set at this location.' CALL message( 'netcdf_data_input_mod', 'PA0570', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check soil parameters. If soil_type is 0, all parameters !-- must be set. IF ( soil_type_f%from_file ) THEN check_passed = .TRUE. IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN IF ( soil_type_f%var_2d(j,i) == 0 ) THEN IF ( ANY( soil_pars_f%pars_xy(:,j,i) == & soil_pars_f%fill ) ) check_passed = .FALSE. ENDIF ELSE IF ( ANY( soil_type_f%var_3d(:,j,i) == 0 ) ) THEN IF ( ANY( soil_pars_f%pars_xy(:,j,i) == & soil_pars_f%fill ) ) check_passed = .FALSE. ENDIF ENDIF IF ( .NOT. check_passed ) THEN message_string = 'If soil_type(y,x) = 0, all levels of ' //& 'soil_pars at this location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0571', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ! !-- Check building parameters. If building_type is 0, all parameters !-- must be set. IF ( building_type_f%from_file ) THEN IF ( building_type_f%var(j,i) == 0 ) THEN IF ( ANY( building_pars_f%pars_xy(:,j,i) == & building_pars_f%fill ) ) THEN message_string = 'If building_type(y,x) = 0, all ' // & 'parameters of building_pars at this '//& 'location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0572', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check if building_type is set at each building and vice versa. IF ( building_type_f%from_file .AND. buildings_f%from_file ) THEN IF ( buildings_f%lod == 1 ) THEN IF ( buildings_f%var_2d(j,i) /= buildings_f%fill1 .AND. & building_type_f%var(j,i) == building_type_f%fill ) THEN WRITE( message_string, * ) 'Each location where a ' // & 'building is set requires a type ' // & '( and vice versa ) in case the ' // & 'urban-surface model is applied. ' // & 'i, j = ', i, j CALL message( 'netcdf_data_input_mod', 'PA0573', & 2, 2, myid, 6, 0 ) ENDIF ENDIF IF ( buildings_f%lod == 2 ) THEN IF ( ANY( buildings_f%var_3d(:,j,i) == 1 ) .AND. & building_type_f%var(j,i) == building_type_f%fill ) THEN WRITE( message_string, * ) 'Each location where a ' // & 'building is set requires a type ' // & '( and vice versa ) in case the ' // & 'urban-surface model is applied. ' // & 'i, j = ', i, j CALL message( 'netcdf_data_input_mod', 'PA0573', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check if at each location where a building is present also an ID !-- is set and vice versa. IF ( buildings_f%from_file ) THEN IF ( buildings_f%lod == 1 ) THEN IF ( buildings_f%var_2d(j,i) /= buildings_f%fill1 .AND. & building_id_f%var(j,i) == building_id_f%fill ) THEN WRITE( message_string, * ) 'Each location where a ' // & 'building is set requires an ID ' // & '( and vice versa ). i, j = ', i, j CALL message( 'netcdf_data_input_mod', 'PA0574', & 2, 2, myid, 6, 0 ) ENDIF ELSEIF ( buildings_f%lod == 2 ) THEN IF ( ANY( buildings_f%var_3d(:,j,i) == 1 ) .AND. & building_id_f%var(j,i) == building_id_f%fill ) THEN WRITE( message_string, * ) 'Each location where a ' // & 'building is set requires an ID ' // & '( and vice versa ). i, j = ', i, j CALL message( 'netcdf_data_input_mod', 'PA0574', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check if building ID is set where a bulding is defined. IF ( buildings_f%from_file ) THEN IF ( buildings_f%lod == 1 ) THEN IF ( buildings_f%var_2d(j,i) /= buildings_f%fill1 .AND. & building_id_f%var(j,i) == building_id_f%fill ) THEN WRITE( message_string, * ) 'Each building grid point '// & 'requires an ID.', i, j CALL message( 'netcdf_data_input_mod', 'PA0575', & 2, 2, myid, 6, 0 ) ENDIF ELSEIF ( buildings_f%lod == 2 ) THEN IF ( ANY( buildings_f%var_3d(:,j,i) == 1 ) .AND. & building_id_f%var(j,i) == building_id_f%fill ) THEN WRITE( message_string, * ) 'Each building grid point '// & 'requires an ID.', i, j CALL message( 'netcdf_data_input_mod', 'PA0575', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check albedo parameters. If albedo_type is 0, all parameters !-- must be set. IF ( albedo_type_f%from_file ) THEN IF ( albedo_type_f%var(j,i) == 0 ) THEN IF ( ANY( albedo_pars_f%pars_xy(:,j,i) == & albedo_pars_f%fill ) ) THEN message_string = 'If albedo_type(y,x) = 0, all ' // & 'parameters of albedo_pars at this ' // & 'location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0576', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check pavement parameters. If pavement_type is 0, all parameters !-- of pavement_pars must be set at this location. IF ( pavement_type_f%from_file ) THEN IF ( pavement_type_f%var(j,i) == 0 ) THEN IF ( ANY( pavement_pars_f%pars_xy(:,j,i) == & pavement_pars_f%fill ) ) THEN message_string = 'If pavement_type(y,x) = 0, all ' // & 'parameters of pavement_pars at this '//& 'location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0577', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check pavement-subsurface parameters. If pavement_type is 0, !-- all parameters of pavement_subsurface_pars must be set at this !-- location. IF ( pavement_type_f%from_file ) THEN IF ( pavement_type_f%var(j,i) == 0 ) THEN IF ( ANY( pavement_subsurface_pars_f%pars_xyz(:,:,j,i) == & pavement_subsurface_pars_f%fill ) ) THEN message_string = 'If pavement_type(y,x) = 0, all ' // & 'parameters of ' // & 'pavement_subsurface_pars at this '// & 'location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0578', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check water parameters. If water_type is 0, all parameters !-- must be set at this location. IF ( water_type_f%from_file ) THEN IF ( water_type_f%var(j,i) == 0 ) THEN IF ( ANY( water_pars_f%pars_xy(:,j,i) == & water_pars_f%fill ) ) THEN message_string = 'If water_type(y,x) = 0, all ' // & 'parameters of water_pars at this ' // & 'location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0579', & 2, 2, myid, 6, 0 ) ENDIF ENDIF ENDIF ENDDO ENDDO END SUBROUTINE netcdf_data_input_check_static !------------------------------------------------------------------------------! ! Description: ! ------------ !> Vertical interpolation and extrapolation of 1D variables. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_interpolate_1d( var, z_grid, z_file) IMPLICIT NONE INTEGER(iwp) :: k !< running index z-direction file INTEGER(iwp) :: kk !< running index z-direction stretched model grid INTEGER(iwp) :: kl !< lower index bound along z-direction INTEGER(iwp) :: ku !< upper index bound along z-direction REAL(wp), DIMENSION(:) :: z_grid !< grid levels on numeric grid REAL(wp), DIMENSION(:) :: z_file !< grid levels on file grid REAL(wp), DIMENSION(:), INTENT(INOUT) :: var !< treated variable REAL(wp), DIMENSION(:), ALLOCATABLE :: var_tmp !< temporary variable kl = LBOUND(var,1) ku = UBOUND(var,1) ALLOCATE( var_tmp(kl:ku) ) DO k = kl, ku kk = MINLOC( ABS( z_file - z_grid(k) ), DIM = 1 ) IF ( kk < ku ) THEN IF ( z_file(kk) - z_grid(k) <= 0.0_wp ) THEN var_tmp(k) = var(kk) + & ( var(kk+1) - var(kk) ) / & ( z_file(kk+1) - z_file(kk) ) * & ( z_grid(k) - z_file(kk) ) ELSEIF ( z_file(kk) - z_grid(k) > 0.0_wp ) THEN var_tmp(k) = var(kk-1) + & ( var(kk) - var(kk-1) ) / & ( z_file(kk) - z_file(kk-1) ) * & ( z_grid(k) - z_file(kk-1) ) ENDIF ! !-- Extrapolate ELSE var_tmp(k) = var(ku) + ( var(ku) - var(ku-1) ) / & ( z_file(ku) - z_file(ku-1) ) * & ( z_grid(k) - z_file(ku) ) ENDIF ENDDO var(:) = var_tmp(:) DEALLOCATE( var_tmp ) END SUBROUTINE netcdf_data_input_interpolate_1d !------------------------------------------------------------------------------! ! Description: ! ------------ !> Vertical interpolation and extrapolation of 1D variables from Inifor grid !> onto Palm grid, where both have same dimension. Please note, the passed !> paramter list in 1D version is different compared to 2D version. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_interpolate_1d_soil( var, var_file, & z_grid, z_file, & nzb_var, nzt_var, & nzb_file, nzt_file ) IMPLICIT NONE INTEGER(iwp) :: k !< running index z-direction file INTEGER(iwp) :: kk !< running index z-direction stretched model grid INTEGER(iwp) :: ku !< upper index bound along z-direction for varialbe from file INTEGER(iwp) :: nzb_var !< lower bound of final array INTEGER(iwp) :: nzt_var !< upper bound of final array INTEGER(iwp) :: nzb_file !< lower bound of file array INTEGER(iwp) :: nzt_file !< upper bound of file array ! LOGICAL, OPTIONAL :: zsoil !< flag indicating reverse z-axis, i.e. zsoil instead of height, e.g. in case of ocean or soil REAL(wp), DIMENSION(nzb_var:nzt_var) :: z_grid !< grid levels on numeric grid REAL(wp), DIMENSION(nzb_file:nzt_file) :: z_file !< grid levels on file grid REAL(wp), DIMENSION(nzb_var:nzt_var) :: var !< treated variable REAL(wp), DIMENSION(nzb_file:nzt_file) :: var_file !< temporary variable ku = nzt_file DO k = nzb_var, nzt_var ! !-- Determine index on Inifor grid which is closest to the actual height kk = MINLOC( ABS( z_file - z_grid(k) ), DIM = 1 ) ! !-- If closest index on Inifor grid is smaller than top index, !-- interpolate the data IF ( kk < nzt_file ) THEN IF ( z_file(kk) - z_grid(k) <= 0.0_wp ) THEN var(k) = var_file(kk) + ( var_file(kk+1) - var_file(kk) ) / & ( z_file(kk+1) - z_file(kk) ) * & ( z_grid(k) - z_file(kk) ) ELSEIF ( z_file(kk) - z_grid(k) > 0.0_wp ) THEN var(k) = var_file(kk-1) + ( var_file(kk) - var_file(kk-1) ) / & ( z_file(kk) - z_file(kk-1) ) * & ( z_grid(k) - z_file(kk-1) ) ENDIF ! !-- Extrapolate if actual height is above the highest Inifor level ELSE var(k) = var_file(ku) + ( var_file(ku) - var_file(ku-1) ) / & ( z_file(ku) - z_file(ku-1) ) * & ( z_grid(k) - z_file(ku) ) ENDIF ENDDO END SUBROUTINE netcdf_data_input_interpolate_1d_soil !------------------------------------------------------------------------------! ! Description: ! ------------ !> Vertical interpolation and extrapolation of 2D variables at lateral boundaries. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_interpolate_2d( var, z_grid, z_file) IMPLICIT NONE INTEGER(iwp) :: i !< running index x- or y -direction INTEGER(iwp) :: il !< lower index bound along x- or y-direction INTEGER(iwp) :: iu !< upper index bound along x- or y-direction INTEGER(iwp) :: k !< running index z-direction file INTEGER(iwp) :: kk !< running index z-direction stretched model grid INTEGER(iwp) :: kl !< lower index bound along z-direction INTEGER(iwp) :: ku !< upper index bound along z-direction REAL(wp), DIMENSION(:) :: z_grid !< grid levels on numeric grid REAL(wp), DIMENSION(:) :: z_file !< grid levels on file grid REAL(wp), DIMENSION(:,:), INTENT(INOUT) :: var !< treated variable REAL(wp), DIMENSION(:), ALLOCATABLE :: var_tmp !< temporary variable il = LBOUND(var,2) iu = UBOUND(var,2) kl = LBOUND(var,1) ku = UBOUND(var,1) ALLOCATE( var_tmp(kl:ku) ) DO i = il, iu DO k = kl, ku kk = MINLOC( ABS( z_file - z_grid(k) ), DIM = 1 ) IF ( kk < ku ) THEN IF ( z_file(kk) - z_grid(k) <= 0.0_wp ) THEN var_tmp(k) = var(kk,i) + & ( var(kk+1,i) - var(kk,i) ) / & ( z_file(kk+1) - z_file(kk) ) * & ( z_grid(k) - z_file(kk) ) ELSEIF ( z_file(kk) - z_grid(k) > 0.0_wp ) THEN var_tmp(k) = var(kk-1,i) + & ( var(kk,i) - var(kk-1,i) ) / & ( z_file(kk) - z_file(kk-1) ) * & ( z_grid(k) - z_file(kk-1) ) ENDIF ! !-- Extrapolate ELSE var_tmp(k) = var(ku,i) + ( var(ku,i) - var(ku-1,i) ) / & ( z_file(ku) - z_file(ku-1) ) * & ( z_grid(k) - z_file(ku) ) ENDIF ENDDO var(:,i) = var_tmp(:) ENDDO DEALLOCATE( var_tmp ) END SUBROUTINE netcdf_data_input_interpolate_2d !------------------------------------------------------------------------------! ! Description: ! ------------ !> Vertical interpolation and extrapolation of 3D variables. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_interpolate_3d( var, z_grid, z_file ) IMPLICIT NONE INTEGER(iwp) :: i !< running index x-direction INTEGER(iwp) :: il !< lower index bound along x-direction INTEGER(iwp) :: iu !< upper index bound along x-direction INTEGER(iwp) :: j !< running index y-direction INTEGER(iwp) :: jl !< lower index bound along x-direction INTEGER(iwp) :: ju !< upper index bound along x-direction INTEGER(iwp) :: k !< running index z-direction file INTEGER(iwp) :: kk !< running index z-direction stretched model grid INTEGER(iwp) :: kl !< lower index bound along z-direction INTEGER(iwp) :: ku !< upper index bound along z-direction REAL(wp), DIMENSION(:) :: z_grid !< grid levels on numeric grid REAL(wp), DIMENSION(:) :: z_file !< grid levels on file grid REAL(wp), DIMENSION(:,:,:), INTENT(INOUT) :: var !< treated variable REAL(wp), DIMENSION(:), ALLOCATABLE :: var_tmp !< temporary variable il = LBOUND(var,3) iu = UBOUND(var,3) jl = LBOUND(var,2) ju = UBOUND(var,2) kl = LBOUND(var,1) ku = UBOUND(var,1) ALLOCATE( var_tmp(kl:ku) ) DO i = il, iu DO j = jl, ju DO k = kl, ku kk = MINLOC( ABS( z_file - z_grid(k) ), DIM = 1 ) IF ( kk < ku ) THEN IF ( z_file(kk) - z_grid(k) <= 0.0_wp ) THEN var_tmp(k) = var(kk,j,i) + & ( var(kk+1,j,i) - var(kk,j,i) ) / & ( z_file(kk+1) - z_file(kk) ) * & ( z_grid(k) - z_file(kk) ) ELSEIF ( z_file(kk) - z_grid(k) > 0.0_wp ) THEN var_tmp(k) = var(kk-1,j,i) + & ( var(kk,j,i) - var(kk-1,j,i) ) / & ( z_file(kk) - z_file(kk-1) ) * & ( z_grid(k) - z_file(kk-1) ) ENDIF ! !-- Extrapolate ELSE var_tmp(k) = var(ku,j,i) + & ( var(ku,j,i) - var(ku-1,j,i) ) / & ( z_file(ku) - z_file(ku-1) ) * & ( z_grid(k) - z_file(ku) ) ENDIF ENDDO var(:,j,i) = var_tmp(:) ENDDO ENDDO DEALLOCATE( var_tmp ) END SUBROUTINE netcdf_data_input_interpolate_3d !------------------------------------------------------------------------------! ! Description: ! ------------ !> Checks if a given variables is on file !------------------------------------------------------------------------------! FUNCTION check_existence( vars_in_file, var_name ) IMPLICIT NONE CHARACTER(LEN=*) :: var_name !< variable to be checked CHARACTER(LEN=*), DIMENSION(:) :: vars_in_file !< list of variables in file INTEGER(iwp) :: i !< loop variable LOGICAL :: check_existence !< flag indicating whether a variable exist or not - actual return value i = 1 check_existence = .FALSE. DO WHILE ( i <= SIZE( vars_in_file ) ) check_existence = TRIM( vars_in_file(i) ) == TRIM( var_name ) .OR. & check_existence i = i + 1 ENDDO RETURN END FUNCTION check_existence !------------------------------------------------------------------------------! ! Description: ! ------------ !> Closes an existing netCDF file. !------------------------------------------------------------------------------! SUBROUTINE close_input_file( id ) #if defined( __netcdf ) USE pegrid IMPLICIT NONE INTEGER(iwp), INTENT(INOUT) :: id !< file id nc_stat = NF90_CLOSE( id ) CALL handle_error( 'close', 540 ) #endif END SUBROUTINE close_input_file !------------------------------------------------------------------------------! ! Description: ! ------------ !> Opens an existing netCDF file for reading only and returns its id. !------------------------------------------------------------------------------! SUBROUTINE open_read_file( filename, id ) #if defined( __netcdf ) USE pegrid IMPLICIT NONE CHARACTER (LEN=*), INTENT(IN) :: filename !< filename INTEGER(iwp), INTENT(INOUT) :: id !< file id #if defined( __netcdf4_parallel ) ! if __netcdf4_parallel is defined, parrallel NetCDF will be used unconditionally nc_stat = NF90_OPEN( filename, IOR( NF90_WRITE, NF90_MPIIO ), id, & COMM = comm2d, INFO = MPI_INFO_NULL ) IF(nc_stat /= NF90_NOERR ) THEN !possible NetCDF 3 file nc_stat = NF90_OPEN( filename, NF90_NOWRITE, id ) collective_read = .FALSE. ELSE collective_read = .TRUE. END IF #else ! All MPI processes open und read nc_stat = NF90_OPEN( filename, NF90_NOWRITE, id ) #endif CALL handle_error( 'open_read_file', 539 ) #endif END SUBROUTINE open_read_file !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads global or variable-related attributes of type INTEGER (32-bit) !------------------------------------------------------------------------------! SUBROUTINE get_attribute_int32( id, attribute_name, value, global, & variable_name ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: attribute_name !< attribute name CHARACTER(LEN=*), OPTIONAL :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp), INTENT(INOUT) :: value !< read value LOGICAL, INTENT(IN) :: global !< flag indicating global attribute #if defined( __netcdf ) ! !-- Read global attribute IF ( global ) THEN nc_stat = NF90_GET_ATT( id, NF90_GLOBAL, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_int32 global', 522, attribute_name ) ! !-- Read attributes referring to a single variable. Therefore, first inquire !-- variable id ELSE nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) CALL handle_error( 'get_attribute_int32', 522, attribute_name ) nc_stat = NF90_GET_ATT( id, id_var, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_int32', 522, attribute_name ) ENDIF #endif END SUBROUTINE get_attribute_int32 !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads global or variable-related attributes of type INTEGER (8-bit) !------------------------------------------------------------------------------! SUBROUTINE get_attribute_int8( id, attribute_name, value, global, & variable_name ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: attribute_name !< attribute name CHARACTER(LEN=*), OPTIONAL :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(KIND=1), INTENT(INOUT) :: value !< read value LOGICAL, INTENT(IN) :: global !< flag indicating global attribute #if defined( __netcdf ) ! !-- Read global attribute IF ( global ) THEN nc_stat = NF90_GET_ATT( id, NF90_GLOBAL, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_int8 global', 523, attribute_name ) ! !-- Read attributes referring to a single variable. Therefore, first inquire !-- variable id ELSE nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) CALL handle_error( 'get_attribute_int8', 523, attribute_name ) nc_stat = NF90_GET_ATT( id, id_var, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_int8', 523, attribute_name ) ENDIF #endif END SUBROUTINE get_attribute_int8 !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads global or variable-related attributes of type REAL !------------------------------------------------------------------------------! SUBROUTINE get_attribute_real( id, attribute_name, value, global, & variable_name ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: attribute_name !< attribute name CHARACTER(LEN=*), OPTIONAL :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id LOGICAL, INTENT(IN) :: global !< flag indicating global attribute REAL(wp), INTENT(INOUT) :: value !< read value #if defined( __netcdf ) ! !-- Read global attribute IF ( global ) THEN nc_stat = NF90_GET_ATT( id, NF90_GLOBAL, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_real global', 524, attribute_name ) ! !-- Read attributes referring to a single variable. Therefore, first inquire !-- variable id ELSE nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) CALL handle_error( 'get_attribute_real', 524, attribute_name ) nc_stat = NF90_GET_ATT( id, id_var, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_real', 524, attribute_name ) ENDIF #endif END SUBROUTINE get_attribute_real !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads global or variable-related attributes of type CHARACTER !> Remark: reading attributes of type NF_STRING return an error code 56 - !> Attempt to convert between text & numbers. !------------------------------------------------------------------------------! SUBROUTINE get_attribute_string( id, attribute_name, value, global, & variable_name ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: attribute_name !< attribute name CHARACTER(LEN=*), OPTIONAL :: variable_name !< variable name CHARACTER(LEN=*), INTENT(INOUT) :: value !< read value INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id LOGICAL, INTENT(IN) :: global !< flag indicating global attribute #if defined( __netcdf ) ! !-- Read global attribute IF ( global ) THEN nc_stat = NF90_GET_ATT( id, NF90_GLOBAL, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_string global', 525, attribute_name ) ! !-- Read attributes referring to a single variable. Therefore, first inquire !-- variable id ELSE nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) CALL handle_error( 'get_attribute_string', 525, attribute_name ) nc_stat = NF90_GET_ATT( id, id_var, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_string',525, attribute_name ) ENDIF #endif END SUBROUTINE get_attribute_string !------------------------------------------------------------------------------! ! Description: ! ------------ !> Get dimension array for a given dimension !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_get_dimension_length( id, dim_len, & variable_name ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< dimension name CHARACTER(LEN=100) :: dum !< dummy variable to receive return character INTEGER(iwp) :: dim_len !< dimension size INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_dim !< dimension id #if defined( __netcdf ) ! !-- First, inquire dimension ID nc_stat = NF90_INQ_DIMID( id, TRIM( variable_name ), id_dim ) CALL handle_error( 'netcdf_data_input_get_dimension_length', 526, & variable_name ) ! !-- Inquire dimension length nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim, dum, LEN = dim_len ) CALL handle_error( 'netcdf_data_input_get_dimension_length', 526, & variable_name ) #endif END SUBROUTINE netcdf_data_input_get_dimension_length !------------------------------------------------------------------------------! ! Description: ! ------------ !> Routine for reading-in a character string from the chem emissions netcdf !> input file. !------------------------------------------------------------------------------! SUBROUTINE get_variable_string( id, variable_name, var_string, names_number) #if defined( __netcdf ) USE indices USE pegrid IMPLICIT NONE CHARACTER (LEN=25), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: var_string CHARACTER(LEN=*) :: variable_name !> variable name CHARACTER (LEN=1), ALLOCATABLE, DIMENSION(:,:) :: tmp_var_string !> variable to be read INTEGER(iwp), INTENT(IN) :: id !> file id INTEGER(iwp), INTENT(IN) :: names_number !> number of names INTEGER(iwp) :: id_var !> variable id INTEGER(iwp) :: i,j !> index to go through the length of the dimensions INTEGER(iwp) :: max_string_length=25 !> this is both the maximum length of a name, but also ! the number of the components of the first dimensions ! (rows) ALLOCATE(tmp_var_string(max_string_length,names_number)) ALLOCATE(var_string(names_number)) !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) !-- Get variable !-- Start cycle over the emission species DO i = 1, names_number !-- read the first letter of each component nc_stat = NF90_GET_VAR( id, id_var, var_string(i), start = (/ 1,i /), & count = (/ 1,1 /) ) CALL handle_error( 'get_variable_string', 701 ) !-- Start cycle over charachters DO j = 1, max_string_length !-- read the rest of the components of the name nc_stat = NF90_GET_VAR( id, id_var, tmp_var_string(j,i), start = (/ j,i /),& count = (/ 1,1 /) ) CALL handle_error( 'get_variable_string', 702 ) IF ( iachar(tmp_var_string(j,i) ) == 0 ) THEN tmp_var_string(j,i)='' ENDIF IF ( j>1 ) THEN !-- Concatenate first letter of the name and the others var_string(i)=TRIM(var_string(i)) // TRIM(tmp_var_string(j,i)) ENDIF ENDDO ENDDO #endif END SUBROUTINE get_variable_string !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a character variable in a 1D array !------------------------------------------------------------------------------! SUBROUTINE get_variable_1d_char( id, variable_name, var ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name CHARACTER(LEN=*), DIMENSION(:), INTENT(INOUT) :: var !< variable to be read INTEGER(iwp) :: i !< running index over variable dimension INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< dimension id INTEGER(iwp), DIMENSION(2) :: dimid !< dimension IDs INTEGER(iwp), DIMENSION(2) :: dimsize !< dimension size #if defined( __netcdf ) ! !-- First, inquire variable ID nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) CALL handle_error( 'get_variable_1d_int', 527, variable_name ) ! !-- Inquire dimension IDs nc_stat = NF90_INQUIRE_VARIABLE( id, id_var, dimids = dimid(1:2) ) CALL handle_error( 'get_variable_1d_char', 527, variable_name ) ! !-- Read dimesnion length nc_stat = NF90_INQUIRE_DIMENSION( id, dimid(1), LEN = dimsize(1) ) nc_stat = NF90_INQUIRE_DIMENSION( id, dimid(2), LEN = dimsize(2) ) ! !-- Read character array. Note, each element is read individually, in order !-- to better separate single strings. DO i = 1, dimsize(2) nc_stat = NF90_GET_VAR( id, id_var, var(i), & start = (/ 1, i /), & count = (/ dimsize(1), 1 /) ) CALL handle_error( 'get_variable_1d_char', 527, variable_name ) ENDDO #endif END SUBROUTINE get_variable_1d_char !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 1D integer variable from file. !------------------------------------------------------------------------------! SUBROUTINE get_variable_1d_int( id, variable_name, var ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< dimension id INTEGER(iwp), DIMENSION(:), INTENT(INOUT) :: var !< variable to be read #if defined( __netcdf ) ! !-- First, inquire variable ID nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) CALL handle_error( 'get_variable_1d_int', 527, variable_name ) ! !-- Inquire dimension length nc_stat = NF90_GET_VAR( id, id_var, var ) CALL handle_error( 'get_variable_1d_int', 527, variable_name ) #endif END SUBROUTINE get_variable_1d_int !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 1D float variable from file. !------------------------------------------------------------------------------! SUBROUTINE get_variable_1d_real( id, variable_name, var ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< dimension id REAL(wp), DIMENSION(:), INTENT(INOUT) :: var !< variable to be read #if defined( __netcdf ) ! !-- First, inquire variable ID nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) CALL handle_error( 'get_variable_1d_real', 528, variable_name ) ! !-- Inquire dimension length nc_stat = NF90_GET_VAR( id, id_var, var ) CALL handle_error( 'get_variable_1d_real', 528, variable_name ) #endif END SUBROUTINE get_variable_1d_real !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a time-dependent 1D float variable from file. !------------------------------------------------------------------------------! SUBROUTINE get_variable_pr( id, variable_name, t, var ) #if defined( __netcdf ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp), DIMENSION(1:2) :: id_dim !< dimension ids INTEGER(iwp) :: id_var !< dimension id INTEGER(iwp) :: n_file !< number of data-points in file along z dimension INTEGER(iwp), INTENT(IN) :: t !< timestep number REAL(wp), DIMENSION(:), INTENT(INOUT) :: var !< variable to be read ! !-- First, inquire variable ID nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Inquire dimension size of vertical dimension nc_stat = NF90_INQUIRE_VARIABLE( id, id_var, DIMIDS = id_dim ) nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim(1), LEN = n_file ) ! !-- Read variable. nc_stat = NF90_GET_VAR( id, id_var, var, & start = (/ 1, t /), & count = (/ n_file, 1 /) ) CALL handle_error( 'get_variable_pr', 529, variable_name ) #endif END SUBROUTINE get_variable_pr !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 2D REAL variable from a file. Reading is done processor-wise, !> i.e. each core reads its own domain in slices along x. !------------------------------------------------------------------------------! SUBROUTINE get_variable_2d_real( id, variable_name, var, is, ie, js, je ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp) :: i !< running index along x direction INTEGER(iwp) :: ie !< start index for subdomain input along x direction INTEGER(iwp) :: is !< end index for subdomain input along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp) :: j !< running index along y direction INTEGER(iwp) :: je !< start index for subdomain input along y direction INTEGER(iwp) :: js !< end index for subdomain input along y direction REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tmp !< temporary variable to read data from file according !< to its reverse memory access REAL(wp), DIMENSION(:,:), INTENT(INOUT) :: var !< variable to be read #if defined( __netcdf ) ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Check for collective read-operation and set respective NetCDF flags if !-- required. IF ( collective_read ) THEN #if defined( __netcdf4_parallel ) nc_stat = NF90_VAR_PAR_ACCESS (id, id_var, NF90_COLLECTIVE) #endif ENDIF !Temporary solution for reading emission chemistry files: TBD: we should discuss whether remove it or not IF ( id==id_emis ) THEN !-- Allocate temporary variable according to memory access on file. ALLOCATE( tmp(is:ie,js:je) ) !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, tmp, & start = (/ is, js /), & count = (/ ie-is+1 , je-js+1 /) ) var=tmp CALL handle_error( 'get_variable_2d_real', 530, variable_name ) !TBD: the error number shuld be changed, but since the solution is ! provisory, we give the same as below DEALLOCATE( tmp ) !> Original Subroutine part ELSE ! !-- Allocate temporary variable according to memory access on file. ALLOCATE( tmp(is:ie,js:je) ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, tmp, & start = (/ is+1, js+1 /), & count = (/ ie-is + 1, je-js+1 /) ) CALL handle_error( 'get_variable_2d_real', 530, variable_name ) ! !-- Resort data. Please note, dimension subscripts of var all start at 1. DO i = is, ie DO j = js, je var(j-js+1,i-is+1) = tmp(i,j) ENDDO ENDDO DEALLOCATE( tmp ) ENDIF #endif END SUBROUTINE get_variable_2d_real !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 2D 32-bit INTEGER variable from file. Reading is done processor-wise, !> i.e. each core reads its own domain in slices along x. !------------------------------------------------------------------------------! SUBROUTINE get_variable_2d_int32( id, variable_name, var, is, ie, js, je ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp) :: i !< running index along x direction INTEGER(iwp) :: ie !< start index for subdomain input along x direction INTEGER(iwp) :: is !< end index for subdomain input along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp) :: j !< running index along y direction INTEGER(iwp) :: je !< start index for subdomain input along y direction INTEGER(iwp) :: js !< end index for subdomain input along y direction INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: tmp !< temporary variable to read data from file according !< to its reverse memory access INTEGER(iwp), DIMENSION(:,:), INTENT(INOUT) :: var !< variable to be read #if defined( __netcdf ) ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Check for collective read-operation and set respective NetCDF flags if !-- required. IF ( collective_read ) THEN #if defined( __netcdf4_parallel ) nc_stat = NF90_VAR_PAR_ACCESS (id, id_var, NF90_COLLECTIVE) #endif ENDIF ! !-- Allocate temporary variable according to memory access on file. ALLOCATE( tmp(is:ie,js:je) ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, tmp, & start = (/ is+1, js+1 /), & count = (/ ie-is + 1, je-js+1 /) ) CALL handle_error( 'get_variable_2d_int32', 531, variable_name ) ! !-- Resort data. Please note, dimension subscripts of var all start at 1. DO i = is, ie DO j = js, je var(j-js+1,i-is+1) = tmp(i,j) ENDDO ENDDO DEALLOCATE( tmp ) #endif END SUBROUTINE get_variable_2d_int32 !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 2D 8-bit INTEGER variable from file. Reading is done processor-wise, !> i.e. each core reads its own domain in slices along x. !------------------------------------------------------------------------------! SUBROUTINE get_variable_2d_int8( id, variable_name, var, is, ie, js, je ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp) :: i !< running index along x direction INTEGER(iwp) :: ie !< start index for subdomain input along x direction INTEGER(iwp) :: is !< end index for subdomain input along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp) :: j !< running index along y direction INTEGER(iwp) :: je !< start index for subdomain input along y direction INTEGER(iwp) :: js !< end index for subdomain input along y direction INTEGER(KIND=1), DIMENSION(:,:), ALLOCATABLE :: tmp !< temporary variable to read data from file according !< to its reverse memory access INTEGER(KIND=1), DIMENSION(:,:), INTENT(INOUT) :: var !< variable to be read #if defined( __netcdf ) ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Check for collective read-operation and set respective NetCDF flags if !-- required. IF ( collective_read ) THEN #if defined( __netcdf4_parallel ) nc_stat = NF90_VAR_PAR_ACCESS (id, id_var, NF90_COLLECTIVE) #endif ENDIF ! !-- Allocate temporary variable according to memory access on file. ALLOCATE( tmp(is:ie,js:je) ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, tmp, & start = (/ is+1, js+1 /), & count = (/ ie-is + 1, je-js+1 /) ) CALL handle_error( 'get_variable_2d_int8', 532, variable_name ) ! !-- Resort data. Please note, dimension subscripts of var all start at 1. DO i = is, ie DO j = js, je var(j-js+1,i-is+1) = tmp(i,j) ENDDO ENDDO DEALLOCATE( tmp ) #endif END SUBROUTINE get_variable_2d_int8 !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 3D 8-bit INTEGER variable from file. !------------------------------------------------------------------------------! SUBROUTINE get_variable_3d_int8( id, variable_name, var, is, ie, js, je, & ks, ke ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp) :: i !< index along x direction INTEGER(iwp) :: ie !< start index for subdomain input along x direction INTEGER(iwp) :: is !< end index for subdomain input along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp) :: j !< index along y direction INTEGER(iwp) :: je !< start index for subdomain input along y direction INTEGER(iwp) :: js !< end index for subdomain input along y direction INTEGER(iwp) :: k !< index along any 3rd dimension INTEGER(iwp) :: ke !< start index of 3rd dimension INTEGER(iwp) :: ks !< end index of 3rd dimension INTEGER(KIND=1), DIMENSION(:,:,:), ALLOCATABLE :: tmp !< temporary variable to read data from file according !< to its reverse memory access INTEGER(KIND=1), DIMENSION(:,:,:), INTENT(INOUT) :: var !< variable to be read #if defined( __netcdf ) ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Check for collective read-operation and set respective NetCDF flags if !-- required. IF ( collective_read ) THEN #if defined( __netcdf4_parallel ) nc_stat = NF90_VAR_PAR_ACCESS (id, id_var, NF90_COLLECTIVE) #endif ENDIF ! !-- Allocate temporary variable according to memory access on file. ALLOCATE( tmp(is:ie,js:je,ks:ke) ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, tmp, & start = (/ is+1, js+1, ks+1 /), & count = (/ ie-is+1, je-js+1, ke-ks+1 /) ) CALL handle_error( 'get_variable_3d_int8', 533, variable_name ) ! !-- Resort data. Please note, dimension subscripts of var all start at 1. DO i = is, ie DO j = js, je DO k = ks, ke var(k-ks+1,j-js+1,i-is+1) = tmp(i,j,k) ENDDO ENDDO ENDDO DEALLOCATE( tmp ) #endif END SUBROUTINE get_variable_3d_int8 !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 3D float variable from file. !------------------------------------------------------------------------------! SUBROUTINE get_variable_3d_real( id, variable_name, var, is, ie, js, je, & ks, ke ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp) :: i !< index along x direction INTEGER(iwp) :: ie !< start index for subdomain input along x direction INTEGER(iwp) :: is !< end index for subdomain input along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp) :: j !< index along y direction INTEGER(iwp) :: je !< start index for subdomain input along y direction INTEGER(iwp) :: js !< end index for subdomain input along y direction INTEGER(iwp) :: k !< index along any 3rd dimension INTEGER(iwp) :: ke !< start index of 3rd dimension INTEGER(iwp) :: ks !< end index of 3rd dimension REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tmp !< temporary variable to read data from file according !< to its reverse memory access REAL(wp), DIMENSION(:,:,:), INTENT(INOUT) :: var !< variable to be read #if defined( __netcdf ) ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Check for collective read-operation and set respective NetCDF flags if !-- required. IF ( collective_read ) THEN #if defined( __netcdf4_parallel ) nc_stat = NF90_VAR_PAR_ACCESS (id, id_var, NF90_COLLECTIVE) #endif ENDIF ! !-- Allocate temporary variable according to memory access on file. ALLOCATE( tmp(is:ie,js:je,ks:ke) ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, tmp, & start = (/ is+1, js+1, ks+1 /), & count = (/ ie-is+1, je-js+1, ke-ks+1 /) ) CALL handle_error( 'get_variable_3d_real', 534, variable_name ) ! !-- Resort data. Please note, dimension subscripts of var all start at 1. DO i = is, ie DO j = js, je DO k = ks, ke var(k-ks+1,j-js+1,i-is+1) = tmp(i,j,k) ENDDO ENDDO ENDDO DEALLOCATE( tmp ) #endif END SUBROUTINE get_variable_3d_real !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 4D float variable from file. !------------------------------------------------------------------------------! SUBROUTINE get_variable_4d_real( id, variable_name, var, is, ie, js, je, & k1s, k1e, k2s, k2e ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp) :: i !< index along x direction INTEGER(iwp) :: ie !< start index for subdomain input along x direction INTEGER(iwp) :: is !< end index for subdomain input along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp) :: j !< index along y direction INTEGER(iwp) :: je !< start index for subdomain input along y direction INTEGER(iwp) :: js !< end index for subdomain input along y direction INTEGER(iwp) :: k1 !< index along 3rd direction INTEGER(iwp) :: k1e !< start index for 3rd dimension INTEGER(iwp) :: k1s !< end index for 3rd dimension INTEGER(iwp) :: k2 !< index along 4th direction INTEGER(iwp) :: k2e !< start index for 4th dimension INTEGER(iwp) :: k2s !< end index for 4th dimension REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tmp !< temporary variable to read data from file according !< to its reverse memory access REAL(wp), DIMENSION(:,:,:,:), INTENT(INOUT) :: var !< variable to be read #if defined( __netcdf ) ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Check for collective read-operation and set respective NetCDF flags if !-- required. IF ( collective_read ) THEN #if defined( __netcdf4_parallel ) nc_stat = NF90_VAR_PAR_ACCESS (id, id_var, NF90_COLLECTIVE) #endif ENDIF !Temporary solution for reading emission chemistry files: IF ( id==id_emis ) THEN !-- Allocate temporary variable according to memory access on file. ALLOCATE( tmp(is:ie,js:je,k1s:k1e,k2s:k2e) ) !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, tmp, & start = (/ is, js, k1s+1, k2s+1 /), & count = (/ ie-is+1 , je-js+1, k1e-k1s+1, k2e-k2s+1 /) ) var=tmp CALL handle_error( 'get_variable_4d_real', 535, variable_name ) DEALLOCATE( tmp ) !> Original subroutine part ELSE ! !-- Allocate temporary variable according to memory access on file. ALLOCATE( tmp(is:ie,js:je,k1s:k1e,k2s:k2e) ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, tmp, & start = (/ is+1, js+1, k1s+1, k2s+1 /), & count = (/ ie-is+1, je-js+1, & k1e-k1s+1, k2e-k2s+1 /) ) CALL handle_error( 'get_variable_4d_real', 535, variable_name ) ! !-- Resort data. Please note, dimension subscripts of var all start at 1. DO i = is, ie DO j = js, je DO k1 = k1s, k1e DO k2 = k2s, k2e var(k2-k2s+1,k1-k1s+1,j-js+1,i-is+1) = tmp(i,j,k1,k2) ENDDO ENDDO ENDDO ENDDO DEALLOCATE( tmp ) ENDIF #endif END SUBROUTINE get_variable_4d_real !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 4D float variable from file and store it to a 3-d variable. !------------------------------------------------------------------------------! SUBROUTINE get_variable_4d_to_3d_real( id, variable_name, var, ns, is, ie, js, je, & ks, ke ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp) :: ns !< start index for subdomain input along n dimension: ns coincides here with ne, since, we select only one value along the 1st dimension n INTEGER(iwp) :: i !< index along x direction INTEGER(iwp) :: ie !< end index for subdomain input along x direction INTEGER(iwp) :: is !< start index for subdomain input along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp) :: j !< index along y direction INTEGER(iwp) :: je !< end index for subdomain input along y direction INTEGER(iwp) :: js !< start index for subdomain input along y direction INTEGER(iwp) :: k !< index along any 4th dimension INTEGER(iwp) :: ke !< end index of 4th dimension INTEGER(iwp) :: ks !< start index of 4th dimension REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tmp !< temporary variable to read data from file according !< to its reverse memory access REAL(wp), DIMENSION(:,:,:), INTENT(INOUT) :: var !< variable where the read data have to be stored: one dimension is reduced in the process #if defined( __netcdf ) ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Check for collective read-operation and set respective NetCDF flags if !-- required. IF ( collective_read ) THEN nc_stat = NF90_VAR_PAR_ACCESS (id, id_var, NF90_COLLECTIVE) ENDIF !Temporary solution for reading emission chemistry files: IF ( id==id_emis ) THEN !-- Allocate temporary variable according to memory access on file. ALLOCATE( tmp(is:ie,js:je,ks:ke) ) !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, tmp(is:ie,js:je,ks:ke), & start = (/ ns, is, js+1, ks+1 /), & count = (/ 1, ie-is+1 , je-js+1, ke-ks+1 /) ) var=tmp(:,:,:) CALL handle_error( 'get_variable_4d_to_3d_real', 536, variable_name ) DEALLOCATE( tmp ) ELSE ! !-- Allocate temporary variable according to memory access on file. ALLOCATE( tmp(is:ie,js:je,ks:ke) ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, tmp, & start = (/ ns+1, is+1, js+1, ks+1 /), & count = (/ 1, ie-is+1, je-js+1, ke-ks+1 /) ) CALL handle_error( 'get_variable_4d_to_3d_real', 536, variable_name ) ! !-- Resort data. Please note, dimension subscripts of var all start at 1. DO i = is, ie DO j = js, je DO k = ks, ke var(k-ks+1,j-js+1,i-is+1) = tmp(i,j,k) ENDDO ENDDO ENDDO DEALLOCATE( tmp ) ENDIF #endif END SUBROUTINE get_variable_4d_to_3d_real !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 3D float variables from dynamic driver, such as time-dependent xy-, !> xz- or yz-boundary data as well as 3D initialization data. Please note, !> the passed arguments are start indices and number of elements in each !> dimension, which is in contrast to the other 3d versions where start- and !> end indices are passed. The different handling of 3D dynamic variables is !> due to its asymmetry for the u- and v component. !------------------------------------------------------------------------------! SUBROUTINE get_variable_3d_real_dynamic( id, variable_name, var, & i1s, i2s, i3s, & count_1, count_2, count_3, & par_access ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name LOGICAL :: par_access !< additional flag indicating whether parallel read operations should be performed or not INTEGER(iwp) :: count_1 !< number of elements to be read along 1st dimension (with respect to file) INTEGER(iwp) :: count_2 !< number of elements to be read along 2nd dimension (with respect to file) INTEGER(iwp) :: count_3 !< number of elements to be read along 3rd dimension (with respect to file) INTEGER(iwp) :: i1 !< running index along 1st dimension on file INTEGER(iwp) :: i1s !< start index for subdomain input along 1st dimension (with respect to file) INTEGER(iwp) :: i2 !< running index along 2nd dimension on file INTEGER(iwp) :: i2s !< start index for subdomain input along 2nd dimension (with respect to file) INTEGER(iwp) :: i3 !< running index along 3rd dimension on file INTEGER(iwp) :: i3s !< start index of 3rd dimension, in dynamic file this is either time (2D boundary) or z (3D) INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp) :: lb1 !< lower bound of 1st dimension (with respect to file) INTEGER(iwp) :: lb2 !< lower bound of 2nd dimension (with respect to file) INTEGER(iwp) :: lb3 !< lower bound of 3rd dimension (with respect to file) INTEGER(iwp) :: ub1 !< upper bound of 1st dimension (with respect to file) INTEGER(iwp) :: ub2 !< upper bound of 2nd dimension (with respect to file) INTEGER(iwp) :: ub3 !< upper bound of 3rd dimension (with respect to file) REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tmp !< temporary variable to read data from file according !< to its reverse memory access REAL(wp), DIMENSION(:,:,:), INTENT(INOUT) :: var !< input variable #if defined( __netcdf ) ! !-- Inquire variable id. nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Check for collective read-operation and set respective NetCDF flags if !-- required. !-- Please note, in contrast to the other input routines where each PEs !-- reads its subdomain data, dynamic input data not by all PEs, only !-- by those which encompass lateral model boundaries. Hence, collective !-- read operations are only enabled for top-boundary data. IF ( collective_read .AND. par_access ) THEN #if defined( __netcdf4_parallel ) nc_stat = NF90_VAR_PAR_ACCESS (id, id_var, NF90_COLLECTIVE) #endif ENDIF ! !-- Allocate temporary variable according to memory access on file. !-- Therefore, determine dimension bounds of input array. lb1 = LBOUND(var,3) ub1 = UBOUND(var,3) lb2 = LBOUND(var,2) ub2 = UBOUND(var,2) lb3 = LBOUND(var,1) ub3 = UBOUND(var,1) ALLOCATE( tmp(lb1:ub1,lb2:ub2,lb3:ub3) ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, tmp, & start = (/ i1s, i2s, i3s /), & count = (/ count_1, count_2, count_3 /) ) CALL handle_error( 'get_variable_3d_real_dynamic', 537, variable_name ) ! !-- Resort data. Please note, dimension subscripts of var all start at 1. DO i3 = lb3, ub3 DO i2 = lb2, ub2 DO i1 = lb1, ub1 var(i3,i2,i1) = tmp(i1,i2,i3) ENDDO ENDDO ENDDO DEALLOCATE( tmp ) #endif END SUBROUTINE get_variable_3d_real_dynamic !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 5D float variable from file and store it to a 4-d variable. !------------------------------------------------------------------------------! SUBROUTINE get_variable_5d_to_4d_real( id, variable_name, var, & ns, ts, te, is, ie, js, je, ks, ke ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp) :: ns !< start index for subdomain input along n dimension: ns coincides here with ne, since, we select only one value along the 1st dimension n INTEGER(iwp) :: t !< index along t direction INTEGER(iwp) :: te !< end index for subdomain input along t direction INTEGER(iwp) :: ts !< start index for subdomain input along t direction INTEGER(iwp) :: i !< index along x direction INTEGER(iwp) :: ie !< end index for subdomain input along x direction INTEGER(iwp) :: is !< start index for subdomain input along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp) :: j !< index along y direction INTEGER(iwp) :: je !< end index for subdomain input along y direction INTEGER(iwp) :: js !< start index for subdomain input along y direction INTEGER(iwp) :: k !< index along any 5th dimension INTEGER(iwp) :: ke !< end index of 5th dimension INTEGER(iwp) :: ks !< start index of 5th dimension REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tmp !< temporary variable to read data from file according ! to its reverse memory access REAL(wp), DIMENSION(:,:,:,:), INTENT(INOUT) :: var !< variable to be read #if defined( __netcdf ) ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Check for collective read-operation and set respective NetCDF flags if !-- required. IF ( collective_read ) THEN nc_stat = NF90_VAR_PAR_ACCESS (id, id_var, NF90_COLLECTIVE) ENDIF !Temporary solution for reading emission chemistry files: IF ( id==id_emis ) THEN !-- Allocate temporary variable according to memory access on file. ALLOCATE( tmp(ts:te,1,js+1:je+1,ks+1:ke+1) ) !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, tmp(ts:te,1,js+1:je+1,ks+1:ke+1), & start = (/ ns, ts, 1, js+1, ks+1 /), & count = (/ 1, te-ts+1, 1, je-js+1, ke-ks+1 /) ) var=tmp CALL handle_error( 'get_variable_5d_to_4d_real', 538, variable_name ) DEALLOCATE( tmp ) !> Original Subroutine part ELSE ! !-- Allocate temporary variable according to memory access on file. ALLOCATE( tmp(ks:ke,js:je,is:is,ts:te) ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, tmp, & start = (/ ks+1, js+1, is+1, ts+1, ns /), & count = (/ ke-ks+1, je-js+1, ie-is+1, te-ts+1, 1 /) ) CALL handle_error( 'get_variable_5d_to_4d_real', 538, variable_name ) ! !-- Resort data. Please note, dimension subscripts of var all start at 1. DO t = ts, te DO i = is, ie DO j = js, je DO k = ks, ke var(t-ts+1,i-is+1,j-js+1,k-ks+1) = tmp(k,j,i,t) ENDDO ENDDO ENDDO ENDDO DEALLOCATE( tmp ) ENDIF #endif END SUBROUTINE get_variable_5d_to_4d_real !------------------------------------------------------------------------------! ! Description: ! ------------ !> Inquires the number of variables in a file !------------------------------------------------------------------------------! SUBROUTINE inquire_num_variables( id, num_vars ) USE indices USE pegrid IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp), INTENT(INOUT) :: num_vars !< number of variables in a file #if defined( __netcdf ) nc_stat = NF90_INQUIRE( id, NVARIABLES = num_vars ) CALL handle_error( 'inquire_num_variables', 539 ) #endif END SUBROUTINE inquire_num_variables !------------------------------------------------------------------------------! ! Description: ! ------------ !> Inquires the variable names belonging to a file. !------------------------------------------------------------------------------! SUBROUTINE inquire_variable_names( id, var_names ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*), DIMENSION(:), INTENT(INOUT) :: var_names !< return variable - variable names INTEGER(iwp) :: i !< loop variable INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: num_vars !< number of variables (unused return parameter) INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: varids !< dummy array to strore variable ids temporarily #if defined( __netcdf ) ALLOCATE( varids(1:SIZE(var_names)) ) nc_stat = NF90_INQ_VARIDS( id, NVARS = num_vars, VARIDS = varids ) CALL handle_error( 'inquire_variable_names', 540 ) DO i = 1, SIZE(var_names) nc_stat = NF90_INQUIRE_VARIABLE( id, varids(i), NAME = var_names(i) ) CALL handle_error( 'inquire_variable_names', 540 ) ENDDO DEALLOCATE( varids ) #endif END SUBROUTINE inquire_variable_names !------------------------------------------------------------------------------! ! Description: ! ------------ !> Prints out a text message corresponding to the current status. !------------------------------------------------------------------------------! SUBROUTINE handle_error( routine_name, errno, name ) USE control_parameters, & ONLY: message_string IMPLICIT NONE CHARACTER(LEN=6) :: message_identifier CHARACTER(LEN=*) :: routine_name CHARACTER(LEN=*), OPTIONAL :: name INTEGER(iwp) :: errno #if defined( __netcdf ) IF ( nc_stat /= NF90_NOERR ) THEN WRITE( message_identifier, '(''NC'',I4.4)' ) errno IF ( PRESENT( name ) ) THEN message_string = "Problem reading attribute/variable - " // & TRIM(name) // ": " // & TRIM( NF90_STRERROR( nc_stat ) ) ELSE message_string = TRIM( NF90_STRERROR( nc_stat ) ) ENDIF CALL message( routine_name, message_identifier, 2, 2, myid, 6, 1 ) ENDIF #endif END SUBROUTINE handle_error END MODULE netcdf_data_input_mod