!> @file netcdf_data_input_mod.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2018 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: netcdf_data_input_mod.f90 2794 2018-02-07 14:09:43Z kanani $ ! Check if 3D building input is consistent to numeric grid. ! ! 2773 2018-01-30 14:12:54Z suehring ! - Enable initialization with 3D topography. ! - Move check for correct initialization in nesting mode to check_parameters. ! ! 2772 2018-01-29 13:10:35Z suehring ! Initialization of simulation independent on land-surface model. ! ! 2746 2018-01-15 12:06:04Z suehring ! Read plant-canopy variables independently on land-surface model usage ! ! 2718 2018-01-02 08:49:38Z maronga ! Corrected "Former revisions" section ! ! 2711 2017-12-20 17:04:49Z suehring ! Rename subroutine close_file to avoid double-naming. ! ! 2700 2017-12-15 14:12:35Z suehring ! ! 2696 2017-12-14 17:12:51Z kanani ! Initial revision (suehring) ! ! ! ! ! Authors: ! -------- ! @author Matthias Suehring ! ! Description: ! ------------ !> Modulue contains routines to input data according to Palm input data !> standart using dynamic and static input files. !> !> @todo - Order input alphabetically !> @todo - Revise error messages and error numbers !> @todo - Input of missing quantities (chemical species, emission rates) !> @todo - Defninition and input of still missing variable attributes !> @todo - Input of initial geostrophic wind profiles with cyclic conditions. !------------------------------------------------------------------------------! MODULE netcdf_data_input_mod USE control_parameters, & ONLY: coupling_char, io_blocks, io_group USE kinds #if defined ( __netcdf ) USE NETCDF #endif USE pegrid ! !-- Define data type for nesting in larger-scale models like COSMO. !-- Data type comprises u, v, w, pt, and q at lateral and top boundaries. TYPE force_type CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names INTEGER(iwp) :: nt !< number of time levels in dynamic input file INTEGER(iwp) :: nzu !< number of vertical levels on scalar grid in dynamic input file INTEGER(iwp) :: nzw !< number of vertical levels on w grid in dynamic input file INTEGER(iwp) :: tind !< time index for reference time in large-scale forcing data INTEGER(iwp) :: tind_p !< time index for following time in large-scale forcing data LOGICAL :: init = .FALSE. LOGICAL :: interpolated = .FALSE. LOGICAL :: from_file = .FALSE. REAL(wp), DIMENSION(:), ALLOCATABLE :: surface_pressure !< time dependent surface pressure REAL(wp), DIMENSION(:), ALLOCATABLE :: time !< time levels in dynamic input file REAL(wp), DIMENSION(:), ALLOCATABLE :: zu_atmos !< vertical levels at scalar grid in dynamic input file REAL(wp), DIMENSION(:), ALLOCATABLE :: zw_atmos !< vertical levels at w grid in dynamic input file REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_left !< u-component at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_left !< v-component at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_left !< w-component at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_left !< mixing ratio at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_left !< potentital temperautre at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_north !< u-component at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_north !< v-component at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_north !< w-component at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_north !< mixing ratio at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_north !< potentital temperautre at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_right !< u-component at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_right !< v-component at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_right !< w-component at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_right !< mixing ratio at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_right !< potentital temperautre at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_south !< u-component at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_south !< v-component at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_south !< w-component at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_south !< mixing ratio at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_south !< potentital temperautre at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_top !< u-component at top boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_top !< v-component at top boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_top !< w-component at top boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_top !< mixing ratio at top boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_top !< potentital temperautre at top boundary END TYPE force_type TYPE init_type INTEGER(iwp) :: lod_msoil !< level of detail - soil moisture INTEGER(iwp) :: lod_pt !< level of detail - pt INTEGER(iwp) :: lod_q !< level of detail - q INTEGER(iwp) :: lod_tsoil !< level of detail - soil temperature INTEGER(iwp) :: lod_u !< level of detail - u-component INTEGER(iwp) :: lod_v !< level of detail - v-component INTEGER(iwp) :: lod_w !< level of detail - w-component INTEGER(iwp) :: nx !< number of scalar grid points along x in dynamic input file INTEGER(iwp) :: nxu !< number of u grid points along x in dynamic input file INTEGER(iwp) :: ny !< number of scalar grid points along y in dynamic input file INTEGER(iwp) :: nyv !< number of v grid points along y in dynamic input file INTEGER(iwp) :: nzs !< number of vertical soil levels in dynamic input file INTEGER(iwp) :: nzu !< number of vertical levels on scalar grid in dynamic input file INTEGER(iwp) :: nzw !< number of vertical levels on w grid in dynamic input file LOGICAL :: from_file_msoil = .FALSE. !< flag indicating whether soil moisture is already initialized from file LOGICAL :: from_file_pt = .FALSE. !< flag indicating whether pt is already initialized from file LOGICAL :: from_file_q = .FALSE. !< flag indicating whether q is already initialized from file LOGICAL :: from_file_tsoil = .FALSE. !< flag indicating whether soil temperature is already initialized from file LOGICAL :: from_file_u = .FALSE. !< flag indicating whether u is already initialized from file LOGICAL :: from_file_v = .FALSE. !< flag indicating whether v is already initialized from file LOGICAL :: from_file_w = .FALSE. !< flag indicating whether w is already initialized from file REAL(wp) :: fill_msoil !< fill value for soil moisture REAL(wp) :: fill_pt !< fill value for pt REAL(wp) :: fill_q !< fill value for q REAL(wp) :: fill_tsoil !< fill value for soil temperature REAL(wp) :: fill_u !< fill value for u REAL(wp) :: fill_v !< fill value for v REAL(wp) :: fill_w !< fill value for w REAL(wp) :: latitude !< latitude of the southern model boundary REAL(wp) :: longitude !< longitude of the western model boundary REAL(wp), DIMENSION(:), ALLOCATABLE :: msoil_init !< initial vertical profile of soil moisture REAL(wp), DIMENSION(:), ALLOCATABLE :: pt_init !< initial vertical profile of pt REAL(wp), DIMENSION(:), ALLOCATABLE :: q_init !< initial vertical profile of q REAL(wp), DIMENSION(:), ALLOCATABLE :: tsoil_init !< initial vertical profile of soil temperature REAL(wp), DIMENSION(:), ALLOCATABLE :: u_init !< initial vertical profile of u REAL(wp), DIMENSION(:), ALLOCATABLE :: ug_init !< initial vertical profile of ug REAL(wp), DIMENSION(:), ALLOCATABLE :: v_init !< initial vertical profile of v REAL(wp), DIMENSION(:), ALLOCATABLE :: vg_init !< initial vertical profile of ug REAL(wp), DIMENSION(:), ALLOCATABLE :: w_init !< initial vertical profile of w REAL(wp), DIMENSION(:), ALLOCATABLE :: z_soil !< vertical levels in soil in dynamic input file, used for interpolation REAL(wp), DIMENSION(:), ALLOCATABLE :: zu_atmos !< vertical levels at scalar grid in dynamic input file, used for interpolation REAL(wp), DIMENSION(:), ALLOCATABLE :: zw_atmos !< vertical levels at w grid in dynamic input file, used for interpolation REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: msoil !< initial 3d soil moisture provide by Inifor and interpolated onto soil grid REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tsoil !< initial 3d soil temperature provide by Inifor and interpolated onto soil grid END TYPE init_type ! !-- Define data structures for different input data types. !-- 8-bit Integer 2D TYPE int_2d_8bit INTEGER(KIND=1) :: fill = -127 !< fill value INTEGER(KIND=1), DIMENSION(:,:), ALLOCATABLE :: var !< respective variable LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used END TYPE int_2d_8bit ! !-- 32-bit Integer 2D TYPE int_2d_32bit INTEGER(iwp) :: fill = -9999 !< fill value INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: var !< respective variable LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used END TYPE int_2d_32bit ! !-- Define data type to read 2D real variables TYPE real_2d LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used REAL(wp) :: fill = -9999.9_wp !< fill value REAL(wp), DIMENSION(:,:), ALLOCATABLE :: var !< respective variable END TYPE real_2d ! !-- Define data type to read 2D real variables TYPE real_3d LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used INTEGER(iwp) :: nz !< number of grid points along vertical dimension REAL(wp) :: fill = -9999.9_wp !< fill value REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: var !< respective variable END TYPE real_3d ! !-- Define data structure where the dimension and type of the input depends !-- on the given level of detail. !-- For buildings, the input is either 2D float, or 3d byte. TYPE build_in INTEGER(iwp) :: lod = 1 !< level of detail INTEGER(KIND=1) :: fill2 = -127 !< fill value for lod = 2 INTEGER(iwp) :: nz !< number of vertical layers in file INTEGER(KIND=1), DIMENSION(:,:,:), ALLOCATABLE :: var_3d !< 3d variable (lod = 2) REAL(wp), DIMENSION(:), ALLOCATABLE :: z !< vertical coordinate for 3D building, used for consistency check LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used REAL(wp) :: fill1 = -9999.9_wp !< fill values for lod = 1 REAL(wp), DIMENSION(:,:), ALLOCATABLE :: var_2d !< 2d variable (lod = 1) END TYPE build_in ! !-- For soil_type, the input is either 2D or 3D one-byte integer. TYPE soil_in INTEGER(iwp) :: lod = 1 !< level of detail INTEGER(KIND=1) :: fill = -127 !< fill value for lod = 2 INTEGER(KIND=1), DIMENSION(:,:), ALLOCATABLE :: var_2d !< 2d variable (lod = 1) INTEGER(KIND=1), DIMENSION(:,:,:), ALLOCATABLE :: var_3d !< 3d variable (lod = 2) LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used END TYPE soil_in ! !-- Define data type for fractions between surface types TYPE fracs INTEGER(iwp) :: nf !< total number of fractions INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nfracs !< dimension array for fraction LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used REAL(wp) :: fill = -9999.9_wp !< fill value REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: frac !< respective fraction between different surface types END TYPE fracs ! !-- Data type for parameter lists, Depending on the given level of detail, !-- the input is 3D or 4D TYPE pars INTEGER(iwp) :: lod = 1 !< level of detail INTEGER(iwp) :: np !< total number of parameters INTEGER(iwp) :: nz !< vertical dimension - number of soil layers INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: layers !< dimension array for soil layers INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: pars !< dimension array for parameters LOGICAL :: from_file = .FALSE. !< flag indicating whether an input variable is available and read from file or default values are used REAL(wp) :: fill = -9999.9_wp !< fill value REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pars_xy !< respective parameters, level of detail = 1 REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: pars_xyz !< respective parameters, level of detail = 2 END TYPE pars TYPE(force_type) :: force !< input variable for lateral and top boundaries derived from large-scale model TYPE(init_type) :: init_3d !< data structure for the initialization of the 3D flow and soil fields TYPE(init_type) :: init_model !< data structure for the initialization of the model ! !-- Define 2D variables of type NC_BYTE TYPE(int_2d_8bit) :: albedo_type_f !< input variable for albedo type TYPE(int_2d_8bit) :: building_type_f !< input variable for building type TYPE(int_2d_8bit) :: pavement_type_f !< input variable for pavenment type TYPE(int_2d_8bit) :: street_crossing_f !< input variable for water type TYPE(int_2d_8bit) :: street_type_f !< input variable for water type TYPE(int_2d_8bit) :: vegetation_type_f !< input variable for vegetation type TYPE(int_2d_8bit) :: water_type_f !< input variable for water type ! !-- Define 2D variables of type NC_INT TYPE(int_2d_32bit) :: building_id_f !< input variable for building ID ! !-- Define 2D variables of type NC_FLOAT TYPE(real_2d) :: terrain_height_f !< input variable for terrain height ! !-- Define 3D variables of type NC_FLOAT TYPE(real_3d) :: basal_area_density_f !< input variable for basal area density - resolved vegetation TYPE(real_3d) :: leaf_area_density_f !< input variable for leaf area density - resolved vegetation TYPE(real_3d) :: root_area_density_lad_f !< input variable for root area density - resolved vegetation TYPE(real_3d) :: root_area_density_lsm_f !< input variable for root area density - parametrized vegetation ! !-- Define input variable for buildings TYPE(build_in) :: buildings_f !< input variable for buildings ! !-- Define input variables for soil_type TYPE(soil_in) :: soil_type_f !< input variable for soil type TYPE(fracs) :: surface_fraction_f !< input variable for surface fraction TYPE(pars) :: albedo_pars_f !< input variable for albedo parameters TYPE(pars) :: building_pars_f !< input variable for building parameters TYPE(pars) :: pavement_pars_f !< input variable for pavement parameters TYPE(pars) :: pavement_subsurface_pars_f !< input variable for pavement parameters TYPE(pars) :: soil_pars_f !< input variable for soil parameters TYPE(pars) :: vegetation_pars_f !< input variable for vegetation parameters TYPE(pars) :: water_pars_f !< input variable for water parameters CHARACTER(LEN=3) :: char_lod = 'lod' !< name of level-of-detail attribute in NetCDF file CHARACTER(LEN=10) :: char_fill = '_FillValue' !< name of fill value attribute in NetCDF file CHARACTER(LEN=10) :: char_lon = 'origin_lon' !< name of global attribute for longitude in NetCDF file CHARACTER(LEN=10) :: char_lat = 'origin_lat' !< name of global attribute for latitude in NetCDF file CHARACTER(LEN=100) :: input_file_static = 'PIDS_STATIC' !< Name of file which comprises static input data CHARACTER(LEN=100) :: input_file_dynamic = 'PIDS_DYNAMIC' !< Name of file which comprises dynamic input data INTEGER(iwp) :: nc_stat !< return value of nf90 function call LOGICAL :: input_pids_static = .FALSE. !< Flag indicating whether Palm-input-data-standard file containing static information exists LOGICAL :: input_pids_dynamic = .FALSE. !< Flag indicating whether Palm-input-data-standard file containing dynamic information exists SAVE PRIVATE INTERFACE netcdf_data_input_interpolate MODULE PROCEDURE netcdf_data_input_interpolate_1d MODULE PROCEDURE netcdf_data_input_interpolate_1d_soil MODULE PROCEDURE netcdf_data_input_interpolate_2d MODULE PROCEDURE netcdf_data_input_interpolate_3d END INTERFACE netcdf_data_input_interpolate INTERFACE netcdf_data_input_check_dynamic MODULE PROCEDURE netcdf_data_input_check_dynamic END INTERFACE netcdf_data_input_check_dynamic INTERFACE netcdf_data_input_check_static MODULE PROCEDURE netcdf_data_input_check_static END INTERFACE netcdf_data_input_check_static INTERFACE netcdf_data_input_inquire_file MODULE PROCEDURE netcdf_data_input_inquire_file END INTERFACE netcdf_data_input_inquire_file INTERFACE netcdf_data_input_init MODULE PROCEDURE netcdf_data_input_init END INTERFACE netcdf_data_input_init INTERFACE netcdf_data_input_init_3d MODULE PROCEDURE netcdf_data_input_init_3d END INTERFACE netcdf_data_input_init_3d INTERFACE netcdf_data_input_lsf MODULE PROCEDURE netcdf_data_input_lsf END INTERFACE netcdf_data_input_lsf INTERFACE netcdf_data_input_surface_data MODULE PROCEDURE netcdf_data_input_surface_data END INTERFACE netcdf_data_input_surface_data INTERFACE netcdf_data_input_topo MODULE PROCEDURE netcdf_data_input_topo END INTERFACE netcdf_data_input_topo INTERFACE get_variable MODULE PROCEDURE get_variable_1d_int MODULE PROCEDURE get_variable_1d_real MODULE PROCEDURE get_variable_2d_int8 MODULE PROCEDURE get_variable_2d_int32 MODULE PROCEDURE get_variable_2d_real MODULE PROCEDURE get_variable_3d_int8 MODULE PROCEDURE get_variable_3d_real MODULE PROCEDURE get_variable_4d_real END INTERFACE get_variable INTERFACE get_attribute MODULE PROCEDURE get_attribute_real MODULE PROCEDURE get_attribute_int8 MODULE PROCEDURE get_attribute_int32 MODULE PROCEDURE get_attribute_string END INTERFACE get_attribute ! !-- Public variables PUBLIC albedo_pars_f, albedo_type_f, basal_area_density_f, buildings_f, & building_id_f, building_pars_f, building_type_f, force, init_3d, & init_model, input_file_static, input_pids_static, & input_pids_dynamic, leaf_area_density_f, & pavement_pars_f, pavement_subsurface_pars_f, pavement_type_f, & root_area_density_lad_f, root_area_density_lsm_f, soil_pars_f, & soil_type_f, street_crossing_f, street_type_f, surface_fraction_f, & terrain_height_f, vegetation_pars_f, vegetation_type_f, & water_pars_f, water_type_f ! !-- Public subroutines PUBLIC netcdf_data_input_check_dynamic, netcdf_data_input_check_static, & netcdf_data_input_inquire_file, & netcdf_data_input_init, netcdf_data_input_init_3d, & netcdf_data_input_interpolate, netcdf_data_input_lsf, & netcdf_data_input_surface_data, netcdf_data_input_topo CONTAINS !------------------------------------------------------------------------------! ! Description: ! ------------ !> Inquires whether NetCDF input files according to Palm-input-data standard !> exist. Moreover, basic checks are performed. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_inquire_file USE control_parameters, & ONLY: land_surface, message_string, topo_no_distinct, urban_surface IMPLICIT NONE LOGICAL :: check_nest !< flag indicating whether a check passed or not #if defined ( __netcdf ) INQUIRE( FILE = TRIM( input_file_static ) // TRIM( coupling_char ), & EXIST = input_pids_static ) INQUIRE( FILE = TRIM( input_file_dynamic ) // TRIM( coupling_char ), & EXIST = input_pids_dynamic ) #endif ! !-- As long as topography can be input via ASCII format, no distinction !-- between building and terrain can be made. This case, classify all !-- surfaces as default type. Same in case land-surface and urban-surface !-- model are not applied. IF ( .NOT. input_pids_static ) THEN topo_no_distinct = .TRUE. ENDIF END SUBROUTINE netcdf_data_input_inquire_file !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads global attributes required for initialization of the model. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_init IMPLICIT NONE INTEGER(iwp) :: id_mod !< NetCDF id of input file INTEGER(iwp) :: ii !< running index for IO blocks IF ( .NOT. input_pids_static ) RETURN DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_static ) // & TRIM( coupling_char ), id_mod ) ! !-- Read global attribute for latitude and longitude CALL get_attribute( id_mod, char_lat, & init_model%latitude, .TRUE. ) CALL get_attribute( id_mod, char_lon, & init_model%longitude, .TRUE. ) ! !-- Finally, close input file CALL close_input_file( id_mod ) #endif ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO END SUBROUTINE netcdf_data_input_init !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads surface classification data, such as vegetation and soil type, etc. . !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_surface_data USE control_parameters, & ONLY: bc_lr_cyc, bc_ns_cyc, land_surface, message_string, & plant_canopy, urban_surface USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg IMPLICIT NONE CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names !< variable names in static input file INTEGER(iwp) :: i !< running index along x-direction INTEGER(iwp) :: ii !< running index for IO blocks INTEGER(iwp) :: id_surf !< NetCDF id of input file INTEGER(iwp) :: j !< running index along y-direction INTEGER(iwp) :: k !< running index along z-direction INTEGER(iwp) :: k2 !< running index INTEGER(iwp) :: num_vars !< number of variables in input file INTEGER(iwp) :: nz_soil !< number of soil layers in file INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg) :: var_exchange_int !< dummy variables used to exchange 32-bit Integer arrays INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: var_dum_int_3d !< dummy variables used to exchange real arrays REAL(wp), DIMENSION(nysg:nyng,nxlg:nxrg) :: var_exchange_real !< dummy variables used to exchange real arrays REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: var_dum_real_3d !< dummy variables used to exchange real arrays REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: var_dum_real_4d !< dummy variables used to exchange real arrays ! !-- If not static input file is available, skip this routine IF ( .NOT. input_pids_static ) RETURN ! !-- Read plant canopy variables. IF ( plant_canopy ) THEN DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_static ) // & TRIM( coupling_char ) , id_surf ) ! !-- At first, inquire all variable names. !-- This will be used to check whether an optional input variable !-- exist or not. CALL inquire_num_variables( id_surf, num_vars ) ALLOCATE( var_names(1:num_vars) ) CALL inquire_variable_names( id_surf, var_names ) ! !-- Read leaf area density - resolved vegetation IF ( check_existence( var_names, 'leaf_area_density' ) ) THEN leaf_area_density_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & leaf_area_density_f%fill, & .FALSE., 'leaf_area_density' ) ! !-- Inquire number of vertical vegetation layer CALL get_dimension_length( id_surf, leaf_area_density_f%nz, & 'zlad' ) ! !-- Allocate variable for leaf-area density ALLOCATE( leaf_area_density_f%var( & 0:leaf_area_density_f%nz-1, & nys:nyn,nxl:nxr) ) DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_surf, 'leaf_area_density', & i, j, & leaf_area_density_f%var(:,j,i) ) ENDDO ENDDO ELSE leaf_area_density_f%from_file = .FALSE. ENDIF ! !-- Read basal area density - resolved vegetation IF ( check_existence( var_names, 'basal_area_density' ) ) THEN basal_area_density_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & basal_area_density_f%fill, & .FALSE., 'basal_area_density' ) ! !-- Inquire number of vertical vegetation layer CALL get_dimension_length( id_surf, & basal_area_density_f%nz, & 'zlad' ) ! !-- Allocate variable ALLOCATE( basal_area_density_f%var( & 0:basal_area_density_f%nz-1, & nys:nyn,nxl:nxr) ) DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_surf, 'basal_area_density', & i, j, & basal_area_density_f%var(:,j,i) ) ENDDO ENDDO ELSE basal_area_density_f%from_file = .FALSE. ENDIF ! !-- Read root area density - resolved vegetation IF ( check_existence( var_names, 'root_area_density_lad' ) ) THEN root_area_density_lad_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & root_area_density_lad_f%fill, & .FALSE., 'root_area_density_lad' ) ! !-- Inquire number of vertical soil layers CALL get_dimension_length( id_surf, & root_area_density_lad_f%nz, & 'zsoil' ) ! !-- Allocate variable ALLOCATE( root_area_density_lad_f%var & (0:root_area_density_lad_f%nz-1,& nys:nyn,nxl:nxr) ) DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_surf, 'root_area_density_lad', & i, j, & root_area_density_lad_f%var(:,j,i) ) ENDDO ENDDO ELSE root_area_density_lad_f%from_file = .FALSE. ENDIF ! !-- Finally, close input file CALL close_input_file( id_surf ) #endif ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ! !-- Deallocate variable list. Will be re-allocated in case further !-- variables are read from file. IF ( ALLOCATED( var_names ) ) DEALLOCATE( var_names ) ENDIF ! !-- Skip the following if no land-surface or urban-surface module are !-- applied. This case, no one of the following variables is used anyway. IF ( .NOT. land_surface .OR. .NOT. urban_surface ) RETURN ! !-- Initialize dummy arrays used for ghost-point exchange var_exchange_int = 0 var_exchange_real = 0.0_wp DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_static ) // & TRIM( coupling_char ) , id_surf ) ! !-- Inquire all variable names. !-- This will be used to check whether an optional input variable exist !-- or not. CALL inquire_num_variables( id_surf, num_vars ) ALLOCATE( var_names(1:num_vars) ) CALL inquire_variable_names( id_surf, var_names ) ! !-- Read vegetation type and required attributes IF ( check_existence( var_names, 'vegetation_type' ) ) THEN vegetation_type_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & vegetation_type_f%fill, & .FALSE., 'vegetation_type' ) ! !-- PE-wise reading of 2D vegetation type. ALLOCATE ( vegetation_type_f%var(nys:nyn,nxl:nxr) ) DO i = nxl, nxr CALL get_variable( id_surf, 'vegetation_type', & i, vegetation_type_f%var(:,i) ) ENDDO ELSE vegetation_type_f%from_file = .FALSE. ENDIF ! !-- Read soil type and required attributes IF ( check_existence( var_names, 'soil_type' ) ) THEN soil_type_f%from_file = .TRUE. ! !-- Note, lod is currently not on file; skip for the moment ! CALL get_attribute( id_surf, char_lod, & ! soil_type_f%lod, & ! .FALSE., 'soil_type' ) CALL get_attribute( id_surf, char_fill, & soil_type_f%fill, & .FALSE., 'soil_type' ) IF ( soil_type_f%lod == 1 ) THEN ! !-- PE-wise reading of 2D soil type. ALLOCATE ( soil_type_f%var_2d(nys:nyn,nxl:nxr) ) DO i = nxl, nxr CALL get_variable( id_surf, 'soil_type', & i, soil_type_f%var_2d(:,i) ) ENDDO ELSEIF ( soil_type_f%lod == 2 ) THEN ! !-- Obtain number of soil layers from file. CALL get_dimension_length( id_surf, nz_soil, 'zsoil' ) ! !-- PE-wise reading of 3D soil type. ALLOCATE ( soil_type_f%var_3d(0:nz_soil,nys:nyn,nxl:nxr) ) DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_surf, 'soil_type', i, j, & soil_type_f%var_3d(:,j,i) ) ENDDO ENDDO ENDIF ELSE soil_type_f%from_file = .FALSE. ENDIF ! !-- Read pavement type and required attributes IF ( check_existence( var_names, 'pavement_type' ) ) THEN pavement_type_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & pavement_type_f%fill, .FALSE., & 'pavement_type' ) ! !-- PE-wise reading of 2D pavement type. ALLOCATE ( pavement_type_f%var(nys:nyn,nxl:nxr) ) DO i = nxl, nxr CALL get_variable( id_surf, 'pavement_type', & i, pavement_type_f%var(:,i) ) ENDDO ELSE pavement_type_f%from_file = .FALSE. ENDIF ! !-- Read water type and required attributes IF ( check_existence( var_names, 'water_type' ) ) THEN water_type_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, water_type_f%fill, & .FALSE., 'water_type' ) ! !-- PE-wise reading of 2D water type. ALLOCATE ( water_type_f%var(nys:nyn,nxl:nxr) ) DO i = nxl, nxr CALL get_variable( id_surf, 'water_type', i, & water_type_f%var(:,i) ) ENDDO ELSE water_type_f%from_file = .FALSE. ENDIF ! !-- Read surface fractions and related information IF ( check_existence( var_names, 'surface_fraction' ) ) THEN surface_fraction_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & surface_fraction_f%fill, & .FALSE., 'surface_fraction' ) ! !-- Inquire number of surface fractions CALL get_dimension_length( id_surf, & surface_fraction_f%nf, & 'nsurface_fraction' ) ! !-- Allocate dimension array and input array for surface fractions ALLOCATE( surface_fraction_f%nfracs(0:surface_fraction_f%nf-1) ) ALLOCATE( surface_fraction_f%frac(0:surface_fraction_f%nf-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of surface fractions CALL get_variable( id_surf, 'nsurface_fraction', & surface_fraction_f%nfracs ) ! !-- Read surface fractions DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_surf, 'surface_fraction', i, j, & surface_fraction_f%frac(:,j,i) ) ENDDO ENDDO ELSE surface_fraction_f%from_file = .FALSE. ENDIF ! !-- Read building parameters and related information IF ( check_existence( var_names, 'building_pars' ) ) THEN building_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & building_pars_f%fill, & .FALSE., 'building_pars' ) ! !-- Inquire number of building parameters CALL get_dimension_length( id_surf, & building_pars_f%np, & 'nbuilding_pars' ) ! !-- Allocate dimension array and input array for building parameters ALLOCATE( building_pars_f%pars(0:building_pars_f%np-1) ) ALLOCATE( building_pars_f%pars_xy(0:building_pars_f%np-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of building parameters CALL get_variable( id_surf, 'nbuilding_pars', & building_pars_f%pars ) ! !-- Read building_pars DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_surf, 'building_pars', i, j, & building_pars_f%pars_xy(:,j,i) ) ENDDO ENDDO ELSE building_pars_f%from_file = .FALSE. ENDIF ! !-- Read albedo type and required attributes IF ( check_existence( var_names, 'albedo_type' ) ) THEN albedo_type_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, albedo_type_f%fill, & .FALSE., 'albedo_type' ) ! !-- PE-wise reading of 2D water type. ALLOCATE ( albedo_type_f%var(nys:nyn,nxl:nxr) ) DO i = nxl, nxr CALL get_variable( id_surf, 'albedo_type', & i, albedo_type_f%var(:,i) ) ENDDO ELSE albedo_type_f%from_file = .FALSE. ENDIF ! !-- Read albedo parameters and related information IF ( check_existence( var_names, 'albedo_pars' ) ) THEN albedo_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, albedo_pars_f%fill, & .FALSE., 'albedo_pars' ) ! !-- Inquire number of albedo parameters CALL get_dimension_length( id_surf, albedo_pars_f%np, & 'nalbedo_pars' ) ! !-- Allocate dimension array and input array for albedo parameters ALLOCATE( albedo_pars_f%pars(0:albedo_pars_f%np-1) ) ALLOCATE( albedo_pars_f%pars_xy(0:albedo_pars_f%np-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of albedo parameters CALL get_variable( id_surf, 'nalbedo_pars', albedo_pars_f%pars ) DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_surf, 'albedo_pars', i, j, & albedo_pars_f%pars_xy(:,j,i) ) ENDDO ENDDO ELSE albedo_pars_f%from_file = .FALSE. ENDIF ! !-- Read pavement parameters and related information IF ( check_existence( var_names, 'pavement_pars' ) ) THEN pavement_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & pavement_pars_f%fill, & .FALSE., 'pavement_pars' ) ! !-- Inquire number of pavement parameters CALL get_dimension_length( id_surf, pavement_pars_f%np, & 'npavement_pars' ) ! !-- Allocate dimension array and input array for pavement parameters ALLOCATE( pavement_pars_f%pars(0:pavement_pars_f%np-1) ) ALLOCATE( pavement_pars_f%pars_xy(0:pavement_pars_f%np-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of pavement parameters CALL get_variable( id_surf, 'npavement_pars', & pavement_pars_f%pars ) DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_surf, 'pavement_pars', i, j, & pavement_pars_f%pars_xy(:,j,i) ) ENDDO ENDDO ELSE pavement_pars_f%from_file = .FALSE. ENDIF ! !-- Read pavement subsurface parameters and related information IF ( check_existence( var_names, 'pavement_subsurface_pars' ) ) & THEN pavement_subsurface_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & pavement_subsurface_pars_f%fill, & .FALSE., 'pavement_subsurface_pars' ) ! !-- Inquire number of parameters CALL get_dimension_length( id_surf, & pavement_subsurface_pars_f%np, & 'npavement_subsurface_pars' ) ! !-- Inquire number of soil layers CALL get_dimension_length( id_surf, & pavement_subsurface_pars_f%nz, & 'zsoil' ) ! !-- Allocate dimension array and input array for pavement parameters ALLOCATE( pavement_subsurface_pars_f%pars & (0:pavement_subsurface_pars_f%np-1) ) ALLOCATE( pavement_subsurface_pars_f%pars_xyz & (0:pavement_subsurface_pars_f%np-1, & 0:pavement_subsurface_pars_f%nz-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of pavement parameters CALL get_variable( id_surf, 'npavement_subsurface_pars', & pavement_subsurface_pars_f%pars ) DO i = nxl, nxr DO j = nys, nyn CALL get_variable( & id_surf, 'pavement_subsurface_pars', & i, j, & pavement_subsurface_pars_f%pars_xyz(:,:,j,i),& pavement_subsurface_pars_f%nz, & pavement_subsurface_pars_f%np ) ENDDO ENDDO ELSE pavement_subsurface_pars_f%from_file = .FALSE. ENDIF ! !-- Read vegetation parameters and related information IF ( check_existence( var_names, 'vegetation_pars' ) ) THEN vegetation_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & vegetation_pars_f%fill, & .FALSE., 'vegetation_pars' ) ! !-- Inquire number of vegetation parameters CALL get_dimension_length( id_surf, vegetation_pars_f%np, & 'nvegetation_pars' ) ! !-- Allocate dimension array and input array for surface fractions ALLOCATE( vegetation_pars_f%pars(0:vegetation_pars_f%np-1) ) ALLOCATE( vegetation_pars_f%pars_xy(0:vegetation_pars_f%np-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of the parameters CALL get_variable( id_surf, 'nvegetation_pars', & vegetation_pars_f%pars ) DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_surf, 'vegetation_pars', i, j, & vegetation_pars_f%pars_xy(:,j,i) ) ENDDO ENDDO ELSE vegetation_pars_f%from_file = .FALSE. ENDIF ! !-- Read root parameters/distribution and related information IF ( check_existence( var_names, 'soil_pars' ) ) THEN soil_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & soil_pars_f%fill, & .FALSE., 'soil_pars' ) CALL get_attribute( id_surf, char_lod, & soil_pars_f%lod, & .FALSE., 'soil_pars' ) ! !-- Inquire number of soil parameters CALL get_dimension_length( id_surf, & soil_pars_f%np, & 'nsoil_pars' ) ! !-- Read parameters array ALLOCATE( soil_pars_f%pars(0:soil_pars_f%np-1) ) CALL get_variable( id_surf, 'nsoil_pars', soil_pars_f%pars ) ! !-- In case of level of detail 2, also inquire number of vertical !-- soil layers, allocate memory and read the respective dimension IF ( soil_pars_f%lod == 2 ) THEN CALL get_dimension_length( id_surf, soil_pars_f%nz, 'zsoil' ) ALLOCATE( soil_pars_f%layers(0:soil_pars_f%nz-1) ) CALL get_variable( id_surf, 'zsoil', soil_pars_f%layers ) ENDIF ! !-- Read soil parameters, depending on level of detail IF ( soil_pars_f%lod == 1 ) THEN ALLOCATE( soil_pars_f%pars_xy(0:soil_pars_f%np-1, & nys:nyn,nxl:nxr) ) DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_surf, 'soil_pars', i, j, & soil_pars_f%pars_xy(:,j,i) ) ENDDO ENDDO ELSEIF ( soil_pars_f%lod == 2 ) THEN ALLOCATE( soil_pars_f%pars_xyz(0:soil_pars_f%np-1, & 0:soil_pars_f%nz-1, & nys:nyn,nxl:nxr) ) DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_surf, 'soil_pars', i, j, & soil_pars_f%pars_xyz(:,:,j,i), & soil_pars_f%nz, soil_pars_f%np ) ENDDO ENDDO ENDIF ELSE soil_pars_f%from_file = .FALSE. ENDIF ! !-- Read water parameters and related information IF ( check_existence( var_names, 'water_pars' ) ) THEN water_pars_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & water_pars_f%fill, & .FALSE., 'water_pars' ) ! !-- Inquire number of water parameters CALL get_dimension_length( id_surf, & water_pars_f%np, & 'nwater_pars' ) ! !-- Allocate dimension array and input array for water parameters ALLOCATE( water_pars_f%pars(0:water_pars_f%np-1) ) ALLOCATE( water_pars_f%pars_xy(0:water_pars_f%np-1, & nys:nyn,nxl:nxr) ) ! !-- Get dimension of water parameters CALL get_variable( id_surf, 'nwater_pars', water_pars_f%pars ) DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_surf, 'water_pars', i, j, & water_pars_f%pars_xy(:,j,i) ) ENDDO ENDDO ELSE water_pars_f%from_file = .FALSE. ENDIF ! !-- Read root area density - parametrized vegetation IF ( check_existence( var_names, 'root_area_density_lsm' ) ) THEN root_area_density_lsm_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & root_area_density_lsm_f%fill, & .FALSE., 'root_area_density_lsm' ) ! !-- Obtain number of soil layers from file and allocate variable CALL get_dimension_length( id_surf, root_area_density_lsm_f%nz,& 'zsoil' ) ALLOCATE( root_area_density_lsm_f%var & (0:root_area_density_lsm_f%nz-1, & nys:nyn,nxl:nxr) ) ! !-- Read root-area density DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_surf, 'root_area_density_lsm', & i, j, & root_area_density_lsm_f%var(:,j,i) ) ENDDO ENDDO ELSE root_area_density_lsm_f%from_file = .FALSE. ENDIF ! !-- Read street type and street crossing IF ( check_existence( var_names, 'street_type' ) ) THEN street_type_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & street_type_f%fill, .FALSE., & 'street_type' ) ! !-- PE-wise reading of 2D pavement type. ALLOCATE ( street_type_f%var(nys:nyn,nxl:nxr) ) DO i = nxl, nxr CALL get_variable( id_surf, 'street_type', & i, street_type_f%var(:,i) ) ENDDO ELSE street_type_f%from_file = .FALSE. ENDIF IF ( check_existence( var_names, 'street_crossing' ) ) THEN street_crossing_f%from_file = .TRUE. CALL get_attribute( id_surf, char_fill, & street_crossing_f%fill, .FALSE., & 'street_crossing' ) ! !-- PE-wise reading of 2D pavement type. ALLOCATE ( street_crossing_f%var(nys:nyn,nxl:nxr) ) DO i = nxl, nxr CALL get_variable( id_surf, 'street_crossing', & i, street_crossing_f%var(:,i) ) ENDDO ELSE street_crossing_f%from_file = .FALSE. ENDIF ! !-- Still missing: root_resolved and building_surface_pars. !-- Will be implemented as soon as they are available. ! !-- Finally, close input file CALL close_input_file( id_surf ) #endif ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ! !-- Exchange 1 ghost points for surface variables. Please note, ghost point !-- exchange for 3D parameter lists should be revised by using additional !-- MPI datatypes or rewriting exchange_horiz. !-- Moreover, varialbes will be resized in the following, including ghost !-- points. !-- Start with 2D Integer variables. Please note, for 8-bit integer !-- variables must be swapt to 32-bit integer before calling exchange_horiz. IF ( albedo_type_f%from_file ) THEN var_exchange_int = INT( albedo_type_f%fill, KIND = 1 ) var_exchange_int(nys:nyn,nxl:nxr) = & INT( albedo_type_f%var(nys:nyn,nxl:nxr), KIND = 4 ) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( albedo_type_f%var ) ALLOCATE( albedo_type_f%var(nysg:nyng,nxlg:nxrg) ) albedo_type_f%var = INT( var_exchange_int, KIND = 1 ) ENDIF IF ( pavement_type_f%from_file ) THEN var_exchange_int = INT( pavement_type_f%fill, KIND = 1 ) var_exchange_int(nys:nyn,nxl:nxr) = & INT( pavement_type_f%var(nys:nyn,nxl:nxr), KIND = 4 ) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( pavement_type_f%var ) ALLOCATE( pavement_type_f%var(nysg:nyng,nxlg:nxrg) ) pavement_type_f%var = INT( var_exchange_int, KIND = 1 ) ENDIF IF ( soil_type_f%from_file .AND. ALLOCATED( soil_type_f%var_2d ) ) THEN var_exchange_int = INT( soil_type_f%fill, KIND = 1 ) var_exchange_int(nys:nyn,nxl:nxr) = & INT( soil_type_f%var_2d(nys:nyn,nxl:nxr), KIND = 4 ) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( soil_type_f%var_2d ) ALLOCATE( soil_type_f%var_2d(nysg:nyng,nxlg:nxrg) ) soil_type_f%var_2d = INT( var_exchange_int, KIND = 1 ) ENDIF IF ( vegetation_type_f%from_file ) THEN var_exchange_int = INT( vegetation_type_f%fill, KIND = 1 ) var_exchange_int(nys:nyn,nxl:nxr) = & INT( vegetation_type_f%var(nys:nyn,nxl:nxr), KIND = 4 ) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( vegetation_type_f%var ) ALLOCATE( vegetation_type_f%var(nysg:nyng,nxlg:nxrg) ) vegetation_type_f%var = INT( var_exchange_int, KIND = 1 ) ENDIF IF ( water_type_f%from_file ) THEN var_exchange_int = INT( water_type_f%fill, KIND = 1 ) var_exchange_int(nys:nyn,nxl:nxr) = & INT( water_type_f%var(nys:nyn,nxl:nxr), KIND = 4 ) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( water_type_f%var ) ALLOCATE( water_type_f%var(nysg:nyng,nxlg:nxrg) ) water_type_f%var = INT( var_exchange_int, KIND = 1 ) ENDIF ! !-- Exchange 1 ghost point for 3/4-D variables. For the sake of simplicity, !-- loop further dimensions to use 2D exchange routines. !-- This should be revised later by introducing new MPI datatypes. IF ( soil_type_f%from_file .AND. ALLOCATED( soil_type_f%var_3d ) ) & THEN ALLOCATE( var_dum_int_3d(0:nz_soil,nys:nyn,nxl:nxr) ) var_dum_int_3d = soil_type_f%var_3d DEALLOCATE( soil_type_f%var_3d ) ALLOCATE( soil_type_f%var_3d(0:nz_soil,nysg:nyng,nxlg:nxrg) ) soil_type_f%var_3d = soil_type_f%fill DO k = 0, nz_soil var_exchange_int(nys:nyn,nxl:nxr) = var_dum_int_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) soil_type_f%var_3d(k,:,:) = INT( var_exchange_int(:,:), KIND = 1 ) ENDDO DEALLOCATE( var_dum_int_3d ) ENDIF IF ( surface_fraction_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:surface_fraction_f%nf-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = surface_fraction_f%frac DEALLOCATE( surface_fraction_f%frac ) ALLOCATE( surface_fraction_f%frac(0:surface_fraction_f%nf-1, & nysg:nyng,nxlg:nxrg) ) surface_fraction_f%frac = surface_fraction_f%fill DO k = 0, surface_fraction_f%nf-1 var_exchange_real(nys:nyn,nxl:nxr) = var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) surface_fraction_f%frac(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( building_pars_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:building_pars_f%np-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = building_pars_f%pars_xy DEALLOCATE( building_pars_f%pars_xy ) ALLOCATE( building_pars_f%pars_xy(0:building_pars_f%np-1, & nysg:nyng,nxlg:nxrg) ) building_pars_f%pars_xy = building_pars_f%fill DO k = 0, building_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) building_pars_f%pars_xy(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( albedo_pars_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:albedo_pars_f%np-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = albedo_pars_f%pars_xy DEALLOCATE( albedo_pars_f%pars_xy ) ALLOCATE( albedo_pars_f%pars_xy(0:albedo_pars_f%np-1, & nysg:nyng,nxlg:nxrg) ) albedo_pars_f%pars_xy = albedo_pars_f%fill DO k = 0, albedo_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) albedo_pars_f%pars_xy(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( pavement_pars_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:pavement_pars_f%np-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = pavement_pars_f%pars_xy DEALLOCATE( pavement_pars_f%pars_xy ) ALLOCATE( pavement_pars_f%pars_xy(0:pavement_pars_f%np-1, & nysg:nyng,nxlg:nxrg) ) pavement_pars_f%pars_xy = pavement_pars_f%fill DO k = 0, pavement_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) pavement_pars_f%pars_xy(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( vegetation_pars_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:vegetation_pars_f%np-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = vegetation_pars_f%pars_xy DEALLOCATE( vegetation_pars_f%pars_xy ) ALLOCATE( vegetation_pars_f%pars_xy(0:vegetation_pars_f%np-1, & nysg:nyng,nxlg:nxrg) ) vegetation_pars_f%pars_xy = vegetation_pars_f%fill DO k = 0, vegetation_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) vegetation_pars_f%pars_xy(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( water_pars_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:water_pars_f%np-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = water_pars_f%pars_xy DEALLOCATE( water_pars_f%pars_xy ) ALLOCATE( water_pars_f%pars_xy(0:water_pars_f%np-1, & nysg:nyng,nxlg:nxrg) ) water_pars_f%pars_xy = water_pars_f%fill DO k = 0, water_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) water_pars_f%pars_xy(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( root_area_density_lsm_f%from_file ) THEN ALLOCATE( var_dum_real_3d(0:root_area_density_lsm_f%nz-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = root_area_density_lsm_f%var DEALLOCATE( root_area_density_lsm_f%var ) ALLOCATE( root_area_density_lsm_f%var(0:root_area_density_lsm_f%nz-1,& nysg:nyng,nxlg:nxrg) ) root_area_density_lsm_f%var = root_area_density_lsm_f%fill DO k = 0, root_area_density_lsm_f%nz-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) root_area_density_lsm_f%var(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ENDIF IF ( soil_pars_f%from_file ) THEN IF ( soil_pars_f%lod == 1 ) THEN ALLOCATE( var_dum_real_3d(0:soil_pars_f%np-1,nys:nyn,nxl:nxr) ) var_dum_real_3d = soil_pars_f%pars_xy DEALLOCATE( soil_pars_f%pars_xy ) ALLOCATE( soil_pars_f%pars_xy(0:soil_pars_f%np-1, & nysg:nyng,nxlg:nxrg) ) soil_pars_f%pars_xy = soil_pars_f%fill DO k = 0, soil_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_3d(k,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) soil_pars_f%pars_xy(k,:,:) = var_exchange_real(:,:) ENDDO DEALLOCATE( var_dum_real_3d ) ELSEIF ( soil_pars_f%lod == 2 ) THEN ALLOCATE( var_dum_real_4d(0:soil_pars_f%np-1, & 0:soil_pars_f%nz-1, & nys:nyn,nxl:nxr) ) var_dum_real_4d = soil_pars_f%pars_xyz DEALLOCATE( soil_pars_f%pars_xyz ) ALLOCATE( soil_pars_f%pars_xyz(0:soil_pars_f%np-1, & 0:soil_pars_f%nz-1, & nysg:nyng,nxlg:nxrg) ) soil_pars_f%pars_xyz = soil_pars_f%fill DO k2 = 0, soil_pars_f%nz-1 DO k = 0, soil_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_4d(k,k2,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) soil_pars_f%pars_xyz(k,k2,:,:) = var_exchange_real(:,:) ENDDO ENDDO DEALLOCATE( var_dum_real_4d ) ENDIF ENDIF IF ( pavement_subsurface_pars_f%from_file ) THEN ALLOCATE( var_dum_real_4d(0:pavement_subsurface_pars_f%np-1, & 0:pavement_subsurface_pars_f%nz-1, & nys:nyn,nxl:nxr) ) var_dum_real_4d = pavement_subsurface_pars_f%pars_xyz DEALLOCATE( pavement_subsurface_pars_f%pars_xyz ) ALLOCATE( pavement_subsurface_pars_f%pars_xyz & (0:pavement_subsurface_pars_f%np-1, & 0:pavement_subsurface_pars_f%nz-1, & nysg:nyng,nxlg:nxrg) ) pavement_subsurface_pars_f%pars_xyz = pavement_subsurface_pars_f%fill DO k2 = 0, pavement_subsurface_pars_f%nz-1 DO k = 0, pavement_subsurface_pars_f%np-1 var_exchange_real(nys:nyn,nxl:nxr) = & var_dum_real_4d(k,k2,nys:nyn,nxl:nxr) CALL exchange_horiz_2d( var_exchange_real, nbgp ) pavement_subsurface_pars_f%pars_xyz(k,k2,:,:) = & var_exchange_real(:,:) ENDDO ENDDO DEALLOCATE( var_dum_real_4d ) ENDIF ! !-- In case of non-cyclic boundary conditions, set Neumann conditions at the !-- lateral boundaries. IF ( .NOT. bc_ns_cyc ) THEN IF ( nys == 0 ) THEN IF ( albedo_type_f%from_file ) & albedo_type_f%var(-1,:) = albedo_type_f%var(0,:) IF ( pavement_type_f%from_file ) & pavement_type_f%var(-1,:) = pavement_type_f%var(0,:) IF ( soil_type_f%from_file ) THEN IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN soil_type_f%var_2d(-1,:) = soil_type_f%var_2d(0,:) ELSE soil_type_f%var_3d(:,-1,:) = soil_type_f%var_3d(:,0,:) ENDIF ENDIF IF ( vegetation_type_f%from_file ) & vegetation_type_f%var(-1,:) = vegetation_type_f%var(0,:) IF ( water_type_f%from_file ) & water_type_f%var(-1,:) = water_type_f%var(0,:) IF ( surface_fraction_f%from_file ) & surface_fraction_f%frac(:,-1,:) = surface_fraction_f%frac(:,0,:) IF ( building_pars_f%from_file ) & building_pars_f%pars_xy(:,-1,:) = building_pars_f%pars_xy(:,0,:) IF ( albedo_pars_f%from_file ) & albedo_pars_f%pars_xy(:,-1,:) = albedo_pars_f%pars_xy(:,0,:) IF ( pavement_pars_f%from_file ) & pavement_pars_f%pars_xy(:,-1,:) = pavement_pars_f%pars_xy(:,0,:) IF ( vegetation_pars_f%from_file ) & vegetation_pars_f%pars_xy(:,-1,:) = & vegetation_pars_f%pars_xy(:,0,:) IF ( water_pars_f%from_file ) & water_pars_f%pars_xy(:,-1,:) = water_pars_f%pars_xy(:,0,:) IF ( root_area_density_lsm_f%from_file ) & root_area_density_lsm_f%var(:,-1,:) = & root_area_density_lsm_f%var(:,0,:) IF ( soil_pars_f%from_file ) THEN IF ( soil_pars_f%lod == 1 ) THEN soil_pars_f%pars_xy(:,-1,:) = soil_pars_f%pars_xy(:,0,:) ELSE soil_pars_f%pars_xyz(:,:,-1,:) = soil_pars_f%pars_xyz(:,:,0,:) ENDIF ENDIF IF ( pavement_subsurface_pars_f%from_file ) & pavement_subsurface_pars_f%pars_xyz(:,:,-1,:) = & pavement_subsurface_pars_f%pars_xyz(:,:,0,:) ENDIF IF ( nyn == ny ) THEN IF ( albedo_type_f%from_file ) & albedo_type_f%var(ny+1,:) = albedo_type_f%var(ny,:) IF ( pavement_type_f%from_file ) & pavement_type_f%var(ny+1,:) = pavement_type_f%var(ny,:) IF ( soil_type_f%from_file ) THEN IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN soil_type_f%var_2d(ny+1,:) = soil_type_f%var_2d(ny,:) ELSE soil_type_f%var_3d(:,ny+1,:) = soil_type_f%var_3d(:,ny,:) ENDIF ENDIF IF ( vegetation_type_f%from_file ) & vegetation_type_f%var(ny+1,:) = vegetation_type_f%var(ny,:) IF ( water_type_f%from_file ) & water_type_f%var(ny+1,:) = water_type_f%var(ny,:) IF ( surface_fraction_f%from_file ) & surface_fraction_f%frac(:,ny+1,:) = & surface_fraction_f%frac(:,ny,:) IF ( building_pars_f%from_file ) & building_pars_f%pars_xy(:,ny+1,:) = & building_pars_f%pars_xy(:,ny,:) IF ( albedo_pars_f%from_file ) & albedo_pars_f%pars_xy(:,ny+1,:) = albedo_pars_f%pars_xy(:,ny,:) IF ( pavement_pars_f%from_file ) & pavement_pars_f%pars_xy(:,ny+1,:) = & pavement_pars_f%pars_xy(:,ny,:) IF ( vegetation_pars_f%from_file ) & vegetation_pars_f%pars_xy(:,ny+1,:) = & vegetation_pars_f%pars_xy(:,ny,:) IF ( water_pars_f%from_file ) & water_pars_f%pars_xy(:,ny+1,:) = water_pars_f%pars_xy(:,ny,:) IF ( root_area_density_lsm_f%from_file ) & root_area_density_lsm_f%var(:,ny+1,:) = & root_area_density_lsm_f%var(:,ny,:) IF ( soil_pars_f%from_file ) THEN IF ( soil_pars_f%lod == 1 ) THEN soil_pars_f%pars_xy(:,ny+1,:) = soil_pars_f%pars_xy(:,ny,:) ELSE soil_pars_f%pars_xyz(:,:,ny+1,:) = & soil_pars_f%pars_xyz(:,:,ny,:) ENDIF ENDIF IF ( pavement_subsurface_pars_f%from_file ) & pavement_subsurface_pars_f%pars_xyz(:,:,ny+1,:) = & pavement_subsurface_pars_f%pars_xyz(:,:,ny,:) ENDIF ENDIF IF ( .NOT. bc_lr_cyc ) THEN IF ( nxl == 0 ) THEN IF ( albedo_type_f%from_file ) & albedo_type_f%var(:,-1) = albedo_type_f%var(:,0) IF ( pavement_type_f%from_file ) & pavement_type_f%var(:,-1) = pavement_type_f%var(:,0) IF ( soil_type_f%from_file ) THEN IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN soil_type_f%var_2d(:,-1) = soil_type_f%var_2d(:,0) ELSE soil_type_f%var_3d(:,:,-1) = soil_type_f%var_3d(:,:,0) ENDIF ENDIF IF ( vegetation_type_f%from_file ) & vegetation_type_f%var(:,-1) = vegetation_type_f%var(:,0) IF ( water_type_f%from_file ) & water_type_f%var(:,-1) = water_type_f%var(:,0) IF ( surface_fraction_f%from_file ) & surface_fraction_f%frac(:,:,-1) = surface_fraction_f%frac(:,:,0) IF ( building_pars_f%from_file ) & building_pars_f%pars_xy(:,:,-1) = building_pars_f%pars_xy(:,:,0) IF ( albedo_pars_f%from_file ) & albedo_pars_f%pars_xy(:,:,-1) = albedo_pars_f%pars_xy(:,:,0) IF ( pavement_pars_f%from_file ) & pavement_pars_f%pars_xy(:,:,-1) = pavement_pars_f%pars_xy(:,:,0) IF ( vegetation_pars_f%from_file ) & vegetation_pars_f%pars_xy(:,:,-1) = & vegetation_pars_f%pars_xy(:,:,0) IF ( water_pars_f%from_file ) & water_pars_f%pars_xy(:,:,-1) = water_pars_f%pars_xy(:,:,0) IF ( root_area_density_lsm_f%from_file ) & root_area_density_lsm_f%var(:,:,-1) = & root_area_density_lsm_f%var(:,:,0) IF ( soil_pars_f%from_file ) THEN IF ( soil_pars_f%lod == 1 ) THEN soil_pars_f%pars_xy(:,:,-1) = soil_pars_f%pars_xy(:,:,0) ELSE soil_pars_f%pars_xyz(:,:,:,-1) = soil_pars_f%pars_xyz(:,:,:,0) ENDIF ENDIF IF ( pavement_subsurface_pars_f%from_file ) & pavement_subsurface_pars_f%pars_xyz(:,:,:,-1) = & pavement_subsurface_pars_f%pars_xyz(:,:,:,0) ENDIF IF ( nxr == nx ) THEN IF ( albedo_type_f%from_file ) & albedo_type_f%var(:,nx+1) = albedo_type_f%var(:,nx) IF ( pavement_type_f%from_file ) & pavement_type_f%var(:,nx+1) = pavement_type_f%var(:,nx) IF ( soil_type_f%from_file ) THEN IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN soil_type_f%var_2d(:,nx+1) = soil_type_f%var_2d(:,nx) ELSE soil_type_f%var_3d(:,:,nx+1) = soil_type_f%var_3d(:,:,nx) ENDIF ENDIF IF ( vegetation_type_f%from_file ) & vegetation_type_f%var(:,nx+1) = vegetation_type_f%var(:,nx) IF ( water_type_f%from_file ) & water_type_f%var(:,nx+1) = water_type_f%var(:,nx) IF ( surface_fraction_f%from_file ) & surface_fraction_f%frac(:,:,nx+1) = & surface_fraction_f%frac(:,:,nx) IF ( building_pars_f%from_file ) & building_pars_f%pars_xy(:,:,nx+1) = & building_pars_f%pars_xy(:,:,nx) IF ( albedo_pars_f%from_file ) & albedo_pars_f%pars_xy(:,:,nx+1) = albedo_pars_f%pars_xy(:,:,nx) IF ( pavement_pars_f%from_file ) & pavement_pars_f%pars_xy(:,:,nx+1) = & pavement_pars_f%pars_xy(:,:,nx) IF ( vegetation_pars_f%from_file ) & vegetation_pars_f%pars_xy(:,:,nx+1) = & vegetation_pars_f%pars_xy(:,:,nx) IF ( water_pars_f%from_file ) & water_pars_f%pars_xy(:,:,nx+1) = water_pars_f%pars_xy(:,:,nx) IF ( root_area_density_lsm_f%from_file ) & root_area_density_lsm_f%var(:,:,nx+1) = & root_area_density_lsm_f%var(:,:,nx) IF ( soil_pars_f%from_file ) THEN IF ( soil_pars_f%lod == 1 ) THEN soil_pars_f%pars_xy(:,:,nx+1) = soil_pars_f%pars_xy(:,:,nx) ELSE soil_pars_f%pars_xyz(:,:,:,nx+1) = & soil_pars_f%pars_xyz(:,:,:,nx) ENDIF ENDIF IF ( pavement_subsurface_pars_f%from_file ) & pavement_subsurface_pars_f%pars_xyz(:,:,:,nx+1) = & pavement_subsurface_pars_f%pars_xyz(:,:,:,nx) ENDIF ENDIF END SUBROUTINE netcdf_data_input_surface_data !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads orography and building information. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_topo USE control_parameters, & ONLY: bc_lr_cyc, bc_ns_cyc, message_string, topography USE indices, & ONLY: nbgp, nx, nxl, nxr, ny, nyn, nys, nzb, nzt IMPLICIT NONE CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names !< variable names in static input file INTEGER(iwp) :: i !< running index along x-direction INTEGER(iwp) :: ii !< running index for IO blocks INTEGER(iwp) :: id_topo !< NetCDF id of topograhy input file INTEGER(iwp) :: j !< running index along y-direction INTEGER(iwp) :: k !< running index along z-direction INTEGER(iwp) :: num_vars !< number of variables in netcdf input file INTEGER(iwp) :: skip_n_rows !< counting variable to skip rows while reading topography file INTEGER(iwp), DIMENSION(nys-nbgp:nyn+nbgp,nxl-nbgp:nxr+nbgp) :: var_exchange_int !< dummy variables used to exchange 32-bit Integer arrays REAL(wp) :: dum !< dummy variable to skip columns while reading topography file IF ( TRIM( topography ) /= 'read_from_file' ) RETURN DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN #if defined ( __netcdf ) ! !-- Input via palm-input data standard IF ( input_pids_static ) THEN ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_static ) // & TRIM( coupling_char ), id_topo ) ! !-- At first, inquire all variable names. !-- This will be used to check whether an input variable exist !-- or not. CALL inquire_num_variables( id_topo, num_vars ) ! !-- Allocate memory to store variable names and inquire them. ALLOCATE( var_names(1:num_vars) ) CALL inquire_variable_names( id_topo, var_names ) ! !-- Terrain height. First, get variable-related _FillValue attribute IF ( check_existence( var_names, 'orography_2D' ) ) THEN terrain_height_f%from_file = .TRUE. CALL get_attribute( id_topo, char_fill, & terrain_height_f%fill, & .FALSE., 'orography_2D' ) ! !-- PE-wise reading of 2D terrain height. ALLOCATE ( terrain_height_f%var(nys:nyn,nxl:nxr) ) DO i = nxl, nxr CALL get_variable( id_topo, 'orography_2D', & i, terrain_height_f%var(:,i) ) ENDDO ELSE terrain_height_f%from_file = .FALSE. ENDIF ! !-- Read building height. First, read its _FillValue attribute, !-- as well as lod attribute buildings_f%from_file = .FALSE. IF ( check_existence( var_names, 'buildings_2D' ) ) THEN buildings_f%from_file = .TRUE. CALL get_attribute( id_topo, char_lod, buildings_f%lod, & .FALSE., 'buildings_2D' ) CALL get_attribute( id_topo, char_fill, & buildings_f%fill1, & .FALSE., 'buildings_2D' ) ! !-- Read 2D topography IF ( buildings_f%lod == 1 ) THEN ALLOCATE ( buildings_f%var_2d(nys:nyn,nxl:nxr) ) DO i = nxl, nxr CALL get_variable( id_topo, 'buildings_2D', & i, buildings_f%var_2d(:,i) ) ENDDO ELSE message_string = 'NetCDF attribute lod ' // & '(level of detail) is not set properly.' CALL message( 'netcdf_data_input_mod', 'PA0999', & 1, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- If available, also read 3D building information. If both are !-- available, use 3D information. IF ( check_existence( var_names, 'buildings_3D' ) ) THEN buildings_f%from_file = .TRUE. CALL get_attribute( id_topo, char_lod, buildings_f%lod, & .FALSE., 'buildings_3D' ) CALL get_attribute( id_topo, char_fill, & buildings_f%fill2, & .FALSE., 'buildings_3D' ) CALL get_dimension_length( id_topo, buildings_f%nz, 'z' ) IF ( buildings_f%lod == 2 ) THEN ALLOCATE( buildings_f%z(nzb:buildings_f%nz-1) ) CALL get_variable( id_topo, 'z', buildings_f%z ) ALLOCATE( buildings_f%var_3d(nzb:buildings_f%nz-1, & nys:nyn,nxl:nxr) ) buildings_f%var_3d = 0 ! !-- Read data PE-wise. Read yz-slices. DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_topo, 'buildings_3D', & i, j, & buildings_f%var_3d(:,j,i) ) ENDDO ENDDO ELSE message_string = 'NetCDF attribute lod ' // & '(level of detail) is not set properly.' CALL message( 'netcdf_data_input_mod', 'PA0999', & 1, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- Read building IDs and its FillValue attribute. Further required !-- for mapping buildings on top of orography. IF ( check_existence( var_names, 'building_id' ) ) THEN building_id_f%from_file = .TRUE. CALL get_attribute( id_topo, char_fill, & building_id_f%fill, .FALSE., & 'building_id' ) ALLOCATE ( building_id_f%var(nys:nyn,nxl:nxr) ) DO i = nxl, nxr CALL get_variable( id_topo, 'building_id', & i, building_id_f%var(:,i) ) ENDDO ELSE building_id_f%from_file = .FALSE. ENDIF ! !-- Read building_type and required attributes. IF ( check_existence( var_names, 'building_type' ) ) THEN building_type_f%from_file = .TRUE. CALL get_attribute( id_topo, char_fill, & building_type_f%fill, .FALSE., & 'building_type' ) ALLOCATE ( building_type_f%var(nys:nyn,nxl:nxr) ) DO i = nxl, nxr CALL get_variable( id_topo, 'building_type', & i, building_type_f%var(:,i) ) ENDDO ELSE building_type_f%from_file = .FALSE. ENDIF ! !-- Close topography input file CALL close_input_file( id_topo ) #endif ! !-- ASCII input ELSE OPEN( 90, FILE='TOPOGRAPHY_DATA'//TRIM( coupling_char ), & STATUS='OLD', FORM='FORMATTED', ERR=10 ) ! !-- Read topography PE-wise. Rows are read from nyn to nys, columns !-- are read from nxl to nxr. At first, ny-nyn rows need to be skipped. skip_n_rows = 0 DO WHILE ( skip_n_rows < ny - nyn ) READ( 90, * ) skip_n_rows = skip_n_rows + 1 ENDDO ! !-- Read data from nyn to nys and nxl to nxr. Therefore, skip !-- column until nxl-1 is reached ALLOCATE ( buildings_f%var_2d(nys:nyn,nxl:nxr) ) DO j = nyn, nys, -1 READ( 90, *, ERR=11, END=11 ) & ( dum, i = 0, nxl-1 ), & ( buildings_f%var_2d(j,i), i = nxl, nxr ) ENDDO GOTO 12 10 message_string = 'file TOPOGRAPHY'//TRIM( coupling_char )// & ' does not exist' CALL message( 'netcdf_data_input_mod', 'PA0208', 1, 2, 0, 6, 0 ) 11 message_string = 'errors in file TOPOGRAPHY_DATA'// & TRIM( coupling_char ) CALL message( 'netcdf_data_input_mod', 'PA0209', 1, 2, 0, 6, 0 ) 12 CLOSE( 90 ) buildings_f%from_file = .TRUE. ENDIF ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ! !-- Check for minimum requirement of topography data in case !-- static input file is used. Note, doing this check in check_parameters !-- will be too late (data will be used for grid inititialization before). IF ( input_pids_static ) THEN IF ( .NOT. terrain_height_f%from_file .OR. & .NOT. building_id_f%from_file .OR. & .NOT. buildings_f%from_file ) THEN message_string = 'Minimum requirement for topography input ' // & 'is not fulfilled. ' // & 'Orography, buildings, as well as building ' // & 'IDs are required.' CALL message( 'netcdf_data_input_mod', 'PA0999', 1, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- Finally, exchange 1 ghost point for building ID and type. !-- In case of non-cyclic boundary conditions set Neumann conditions at the !-- lateral boundaries. IF ( building_id_f%from_file ) THEN var_exchange_int = building_id_f%fill var_exchange_int(nys:nyn,nxl:nxr) = building_id_f%var(nys:nyn,nxl:nxr) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( building_id_f%var ) ALLOCATE( building_id_f%var(nys-nbgp:nyn+nbgp,nxl-nbgp:nxr+nbgp) ) building_id_f%var = var_exchange_int IF ( .NOT. bc_ns_cyc ) THEN IF ( nys == 0 ) building_id_f%var(-1,:) = building_id_f%var(0,:) IF ( nyn == ny ) building_id_f%var(ny+1,:) = building_id_f%var(ny,:) ENDIF IF ( .NOT. bc_lr_cyc ) THEN IF ( nxl == 0 ) building_id_f%var(:,-1) = building_id_f%var(:,0) IF ( nxr == nx ) building_id_f%var(:,nx+1) = building_id_f%var(:,nx) ENDIF ENDIF IF ( building_type_f%from_file ) THEN var_exchange_int = INT( building_type_f%fill, KIND = 4 ) var_exchange_int(nys:nyn,nxl:nxr) = & INT( building_type_f%var(nys:nyn,nxl:nxr), KIND = 4 ) CALL exchange_horiz_2d_int( var_exchange_int, nys, nyn, nxl, nxr, nbgp ) DEALLOCATE( building_type_f%var ) ALLOCATE( building_type_f%var(nys-nbgp:nyn+nbgp,nxl-nbgp:nxr+nbgp) ) building_type_f%var = INT( var_exchange_int, KIND = 1 ) IF ( .NOT. bc_ns_cyc ) THEN IF ( nys == 0 ) building_type_f%var(-1,:) = building_type_f%var(0,:) IF ( nyn == ny ) building_type_f%var(ny+1,:) = building_type_f%var(ny,:) ENDIF IF ( .NOT. bc_lr_cyc ) THEN IF ( nxl == 0 ) building_type_f%var(:,-1) = building_type_f%var(:,0) IF ( nxr == nx ) building_type_f%var(:,nx+1) = building_type_f%var(:,nx) ENDIF ENDIF END SUBROUTINE netcdf_data_input_topo !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads initialization data of u, v, w, pt, q, geostrophic wind components, !> as well as soil moisture and soil temperature, derived from larger-scale !> model (COSMO) by Inifor. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_init_3d USE arrays_3d, & ONLY: q, pt, u, v, w USE control_parameters, & ONLY: bc_lr_cyc, bc_ns_cyc, forcing, humidity, land_surface, & message_string, neutral, surface_pressure USE indices, & ONLY: nx, nxl, nxlu, nxr, ny, nyn, nys, nysv, nzb, nzt IMPLICIT NONE CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names INTEGER(iwp) :: i !< running index along x-direction INTEGER(iwp) :: ii !< running index for IO blocks INTEGER(iwp) :: id_dynamic !< NetCDF id of dynamic input file INTEGER(iwp) :: j !< running index along y-direction INTEGER(iwp) :: k !< running index along z-direction INTEGER(iwp) :: num_vars !< number of variables in netcdf input file INTEGER(iwp) :: off_i !< offset in x-direction used for reading the u-component INTEGER(iwp) :: off_j !< offset in y-direction used for reading the v-component ! !-- Skip routine if no input file with dynamic input data is available. IF ( .NOT. input_pids_dynamic ) RETURN ! !-- Please note, Inifor is designed to provide initial data for u and v for !-- the prognostic grid points in case of lateral Dirichlet conditions. !-- This means that Inifor provides data from nxlu:nxr (for u) and !-- from nysv:nyn (for v) at the left and south domain boundary, respectively. !-- However, as work-around for the moment, PALM will run with cyclic !-- conditions and will be initialized with data provided by Inifor !-- boundaries in case of Dirichlet. !-- Hence, simply set set nxlu/nysv to 1 (will be reset to its original value !-- at the end of this routine. IF ( bc_lr_cyc .AND. nxl == 0 ) nxlu = 1 IF ( bc_ns_cyc .AND. nys == 0 ) nysv = 1 DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_dynamic ) // & TRIM( coupling_char ), id_dynamic ) ! !-- At first, inquire all variable names. CALL inquire_num_variables( id_dynamic, num_vars ) ! !-- Allocate memory to store variable names. ALLOCATE( var_names(1:num_vars) ) CALL inquire_variable_names( id_dynamic, var_names ) ! !-- Read vertical dimension of scalar und w grid. Will be used for !-- inter- and extrapolation in case of stretched numeric grid. !-- This will be removed when Inifor is able to handle stretched grids. CALL get_dimension_length( id_dynamic, init_3d%nzu, 'z' ) CALL get_dimension_length( id_dynamic, init_3d%nzw, 'zw' ) CALL get_dimension_length( id_dynamic, init_3d%nzs, 'depth' ) ! !-- Read also the horizontal dimensions. These are used just used fo !-- checking the compatibility with the PALM grid before reading. CALL get_dimension_length( id_dynamic, init_3d%nx, 'x' ) CALL get_dimension_length( id_dynamic, init_3d%nxu, 'xu' ) CALL get_dimension_length( id_dynamic, init_3d%ny, 'y' ) CALL get_dimension_length( id_dynamic, init_3d%nyv, 'yv' ) ! !-- Check for correct horizontal dimension. Please note, u- and v-grid !-- hase 1 grid point less on Inifor grid. IF ( init_3d%nx-1 /= nx .OR. init_3d%nxu-1 /= nx - 1 .OR. & init_3d%ny-1 /= ny .OR. init_3d%nyv-1 /= ny - 1 ) THEN message_string = 'Number of inifor grid points does not ' // & 'match the number of numeric grid points.' CALL message( 'netcdf_data_input_mod', 'PA0999', 1, 2, 0, 6, 0 ) ENDIF ! !-- Read vertical dimensions. Later, these are required for eventual !-- inter- and extrapolations of the initialization data. IF ( check_existence( var_names, 'z' ) ) THEN ALLOCATE( init_3d%zu_atmos(1:init_3d%nzu) ) CALL get_variable( id_dynamic, 'z', init_3d%zu_atmos ) ENDIF IF ( check_existence( var_names, 'zw' ) ) THEN ALLOCATE( init_3d%zw_atmos(1:init_3d%nzw) ) CALL get_variable( id_dynamic, 'zw', init_3d%zw_atmos ) ENDIF IF ( check_existence( var_names, 'depth' ) ) THEN ALLOCATE( init_3d%z_soil(1:init_3d%nzs) ) CALL get_variable( id_dynamic, 'depth', init_3d%z_soil ) ENDIF ! !-- Read geostrophic wind components ! IF ( check_existence( var_names, 'ls_forcing_ug' ) ) THEN ! ! ENDIF ! IF ( check_existence( var_names, 'ls_forcing_vg' ) ) THEN ! ! ENDIF ! !-- Read inital 3D data of u, v, w, pt and q, !-- derived from COSMO model. Read PE-wise yz-slices. !-- Please note, the u-, v- and w-component are defined on different !-- grids with one element less in the x-, y-, !-- and z-direction, respectively. Hence, reading is subdivided !-- into separate loops. Moreover, i and j are used !-- as start index in the NF90 interface. !-- The passed arguments for u, and v are (i,j)-1, respectively, !-- in contrast to the remaining quantities. This is because in case !-- of forcing is applied, the input data for u and v has one !-- element less along the x- and y-direction respectively. !-- Read u-component IF ( check_existence( var_names, 'init_u' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, init_3d%fill_u, & .FALSE., 'init_u' ) CALL get_attribute( id_dynamic, char_lod, init_3d%lod_u, & .FALSE., 'init_u' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_u == 1 ) THEN ALLOCATE( init_3d%u_init(nzb:nzt+1) ) init_3d%u_init = 0.0_wp CALL get_variable( id_dynamic, 'init_u', & init_3d%u_init(nzb+1:nzt+1) ) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_u == 2 ) THEN ! !-- Set offset value. In case of Dirichlet conditions at the left !-- domain boundary, the u component starts at nxl+1. This case, !-- the passed start-index for reading the NetCDF data is shifted !-- by -1. off_i = 1 !MERGE( 1, 0, forcing ) DO i = nxlu, nxr DO j = nys, nyn CALL get_variable( id_dynamic, 'init_u', i-off_i, j, & u(nzb+1:nzt+1,j,i) ) ENDDO ENDDO ENDIF init_3d%from_file_u = .TRUE. ENDIF ! !-- Read v-component IF ( check_existence( var_names, 'init_v' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, init_3d%fill_v, & .FALSE., 'init_v' ) CALL get_attribute( id_dynamic, char_lod, init_3d%lod_v, & .FALSE., 'init_v' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_v == 1 ) THEN ALLOCATE( init_3d%v_init(nzb:nzt+1) ) init_3d%v_init = 0.0_wp CALL get_variable( id_dynamic, 'init_v', & init_3d%v_init(nzb+1:nzt+1) ) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_v == 2 ) THEN ! !-- Set offset value. In case of Dirichlet conditions at the south !-- domain boundary, the v component starts at nys+1. This case, !-- the passed start-index for reading the NetCDF data is shifted !-- by -1. off_j = 1 !MERGE( 1, 0, forcing ) DO i = nxl, nxr DO j = nysv, nyn CALL get_variable( id_dynamic, 'init_v', i, j-off_j, & v(nzb+1:nzt+1,j,i) ) ENDDO ENDDO ENDIF init_3d%from_file_v = .TRUE. ENDIF ! !-- Read w-component IF ( check_existence( var_names, 'init_w' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, init_3d%fill_w, & .FALSE., 'init_w' ) CALL get_attribute( id_dynamic, char_lod, init_3d%lod_w, & .FALSE., 'init_w' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_w == 1 ) THEN ALLOCATE( init_3d%w_init(nzb:nzt+1) ) init_3d%w_init = 0.0_wp CALL get_variable( id_dynamic, 'init_w', & init_3d%w_init(nzb+1:nzt) ) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_w == 2 ) THEN DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_dynamic, 'init_w', i, j, & w(nzb+1:nzt,j,i) ) ENDDO ENDDO ENDIF init_3d%from_file_w = .TRUE. ENDIF ! !-- Read potential temperature IF ( .NOT. neutral ) THEN IF ( check_existence( var_names, 'init_pt' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, init_3d%fill_pt, & .FALSE., 'init_pt' ) CALL get_attribute( id_dynamic, char_lod, init_3d%lod_pt, & .FALSE., 'init_pt' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_pt == 1 ) THEN ALLOCATE( init_3d%pt_init(nzb:nzt+1) ) CALL get_variable( id_dynamic, 'init_pt', & init_3d%pt_init(nzb+1:nzt+1) ) ! !-- Set Neumann surface boundary condition for initial profil init_3d%pt_init(nzb) = init_3d%pt_init(nzb+1) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_pt == 2 ) THEN DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_dynamic, 'init_pt', i, j, & pt(nzb+1:nzt+1,j,i) ) ENDDO ENDDO ENDIF init_3d%from_file_pt = .TRUE. ENDIF ENDIF ! !-- Read mixing ratio IF ( humidity ) THEN IF ( check_existence( var_names, 'init_qv' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, init_3d%fill_q, & .FALSE., 'init_qv' ) CALL get_attribute( id_dynamic, char_lod, init_3d%lod_q, & .FALSE., 'init_qv' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_q == 1 ) THEN ALLOCATE( init_3d%q_init(nzb:nzt+1) ) CALL get_variable( id_dynamic, 'init_qv', & init_3d%q_init(nzb+1:nzt+1) ) ! !-- Set Neumann surface boundary condition for initial profil init_3d%q_init(nzb) = init_3d%q_init(nzb+1) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_q == 2 ) THEN DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_dynamic, 'init_qv', i, j, & q(nzb+1:nzt+1,j,i) ) ENDDO ENDDO ENDIF init_3d%from_file_q = .TRUE. ENDIF ENDIF ! !-- Read soil moisture IF ( land_surface ) THEN IF ( check_existence( var_names, 'init_soil_m' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, & init_3d%fill_msoil, & .FALSE., 'init_soil_m' ) CALL get_attribute( id_dynamic, char_lod, & init_3d%lod_msoil, & .FALSE., 'init_soil_m' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_msoil == 1 ) THEN ALLOCATE( init_3d%msoil_init(0:init_3d%nzs-1) ) CALL get_variable( id_dynamic, 'init_soil_m', & init_3d%msoil_init(0:init_3d%nzs-1) ) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_msoil == 2 ) THEN ! need to be corrected ALLOCATE ( init_3d%msoil(0:init_3d%nzs-1,nys:nyn,nxl:nxr) ) DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_dynamic, 'init_soil_m', i, j,& init_3d%msoil(0:init_3d%nzs-1,j,i) ) ENDDO ENDDO ENDIF init_3d%from_file_msoil = .TRUE. ENDIF ! !-- Read soil temperature IF ( check_existence( var_names, 'init_soil_t' ) ) THEN ! !-- Read attributes for the fill value and level-of-detail CALL get_attribute( id_dynamic, char_fill, & init_3d%fill_tsoil, & .FALSE., 'init_soil_t' ) CALL get_attribute( id_dynamic, char_lod, & init_3d%lod_tsoil, & .FALSE., 'init_soil_t' ) ! !-- level-of-detail 1 - read initialization profile IF ( init_3d%lod_tsoil == 1 ) THEN ALLOCATE( init_3d%tsoil_init(0:init_3d%nzs-1) ) CALL get_variable( id_dynamic, 'init_soil_t', & init_3d%tsoil_init(0:init_3d%nzs-1) ) ! !-- level-of-detail 2 - read 3D initialization data ELSEIF ( init_3d%lod_tsoil == 2 ) THEN ! need to be corrected ALLOCATE ( init_3d%tsoil(0:init_3d%nzs-1,nys:nyn,nxl:nxr) ) DO i = nxl, nxr DO j = nys, nyn CALL get_variable( id_dynamic, 'init_soil_t', i, j,& init_3d%tsoil(0:init_3d%nzs-1,j,i) ) ENDDO ENDDO ENDIF init_3d%from_file_tsoil = .TRUE. ENDIF ENDIF ! !-- Close input file CALL close_input_file( id_dynamic ) #endif ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ! !-- Finally, check if the input data has any fill values. IF ( init_3d%from_file_u ) THEN IF ( ANY( u(nzb+1:nzt+1,nys:nyn,nxlu:nxr) == init_3d%fill_u ) ) THEN message_string = 'NetCDF input for u_init must not contain ' // & 'any _FillValues' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDIF IF ( init_3d%from_file_v ) THEN IF ( ANY( v(nzb+1:nzt+1,nysv:nyn,nxl:nxr) == init_3d%fill_v ) ) THEN message_string = 'NetCDF input for v_init must not contain ' // & 'any _FillValues' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDIF IF ( init_3d%from_file_w ) THEN IF ( ANY( w(nzb+1:nzt,nys:nyn,nxl:nxr) == init_3d%fill_w ) ) THEN message_string = 'NetCDF input for w_init must not contain ' // & 'any _FillValues' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDIF IF ( init_3d%from_file_pt ) THEN IF ( ANY( pt(nzb+1:nzt+1,nys:nyn,nxl:nxr) == init_3d%fill_pt ) ) THEN message_string = 'NetCDF input for pt_init must not contain ' // & 'any _FillValues' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDIF IF ( init_3d%from_file_q ) THEN IF ( ANY( q(nzb+1:nzt+1,nys:nyn,nxl:nxr) == init_3d%fill_q ) ) THEN message_string = 'NetCDF input for q_init must not contain ' // & 'any _FillValues' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- Workaround for cyclic conditions. Please see above for further explanation. IF ( bc_lr_cyc .AND. nxl == 0 ) nxlu = nxl IF ( bc_ns_cyc .AND. nys == 0 ) nysv = nys END SUBROUTINE netcdf_data_input_init_3d !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads data at lateral and top boundaries derived from larger-scale model !> (COSMO) by Inifor. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_lsf USE control_parameters, & ONLY: force_bound_l, force_bound_n, force_bound_r, force_bound_s, & forcing, humidity, message_string, neutral, simulated_time USE indices, & ONLY: nx, nxl, nxlu, nxr, ny, nyn, nys, nysv, nzb, nzt IMPLICIT NONE INTEGER(iwp) :: i !< running index along x-direction INTEGER(iwp) :: ii !< running index for IO blocks INTEGER(iwp) :: id_dynamic !< NetCDF id of dynamic input file INTEGER(iwp) :: j !< running index along y-direction INTEGER(iwp) :: k !< running index along z-direction INTEGER(iwp) :: num_vars !< number of variables in netcdf input file INTEGER(iwp) :: t !< running index time dimension REAL(wp) :: dum !< dummy variable to skip columns while reading topography file force%from_file = MERGE( .TRUE., .FALSE., input_pids_dynamic ) ! !-- Skip input if no forcing from larger-scale models is applied. IF ( .NOT. forcing ) RETURN DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_dynamic ) // & TRIM( coupling_char ), id_dynamic ) ! !-- Initialize INIFOR forcing. IF ( .NOT. force%init ) THEN ! !-- At first, inquire all variable names. CALL inquire_num_variables( id_dynamic, num_vars ) ! !-- Allocate memory to store variable names. ALLOCATE( force%var_names(1:num_vars) ) CALL inquire_variable_names( id_dynamic, force%var_names ) ! !-- Read time dimension, allocate memory and finally read time array CALL get_dimension_length( id_dynamic, force%nt, 'time' ) IF ( check_existence( force%var_names, 'time' ) ) THEN ALLOCATE( force%time(0:force%nt-1) ) CALL get_variable( id_dynamic, 'time', force%time ) ENDIF ! !-- Read vertical dimension of scalar und w grid CALL get_dimension_length( id_dynamic, force%nzu, 'z' ) CALL get_dimension_length( id_dynamic, force%nzw, 'zw' ) IF ( check_existence( force%var_names, 'z' ) ) THEN ALLOCATE( force%zu_atmos(1:force%nzu) ) CALL get_variable( id_dynamic, 'z', force%zu_atmos ) ENDIF IF ( check_existence( force%var_names, 'zw' ) ) THEN ALLOCATE( force%zw_atmos(1:force%nzw) ) CALL get_variable( id_dynamic, 'zw', force%zw_atmos ) ENDIF ! !-- Read surface pressure IF ( check_existence( force%var_names, & 'surface_forcing_surface_pressure' ) ) THEN ALLOCATE( force%surface_pressure(0:force%nt-1) ) CALL get_variable( id_dynamic, & 'surface_forcing_surface_pressure', & force%surface_pressure ) ENDIF ! !-- Set control flag to indicate that initialization is already done force%init = .TRUE. ENDIF ! !-- Obtain time index for current input starting at 0. !-- @todo: At the moment time, in INIFOR and simulated time correspond !-- to each other. If required, adjust to daytime. force%tind = MINLOC( ABS( force%time - simulated_time ), DIM = 1 )& - 1 force%tind_p = force%tind + 1 ! !-- Read data at lateral and top boundaries. Please note, at left and !-- right domain boundary, yz-layers are read for u, v, w, pt and q. !-- For the v-component, the data starts at nysv, while for the other !-- quantities the data starts at nys. This is equivalent at the north !-- and south domain boundary for the u-component. !-- The function get_variable_bc assumes the start indices with respect !-- to the netcdf file convention (data starts at index 1). For this !-- reason, nys+1 / nxl+1 are passed instead of nys / nxl. For the !-- the u- and v-component at the north/south, and left/right boundary, !-- nxlu and nysv are passed, respectively, since these always starts !-- at index 1 in case of forcing. IF ( force_bound_l ) THEN DO j = nys, nyn DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_left_u', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & j+1, 1, & force%u_left(t-force%tind,nzb+1:nzt+1,j) ) ENDDO ENDDO DO j = nysv, nyn DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_left_v', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & j, 1, & force%v_left(t-force%tind,nzb+1:nzt+1,j) ) ENDDO ENDDO DO j = nys, nyn DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, & 'ls_forcing_left_w', & t+1, & nzb+1, nzt-(nzb+1) + 1, & j+1, 1, & force%w_left(t-force%tind,nzb+1:nzt,j) ) ENDDO ENDDO IF ( .NOT. neutral ) THEN DO j = nys, nyn DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, & 'ls_forcing_left_pt', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & j+1, 1, & force%pt_left(t-force%tind,nzb+1:nzt+1,j) ) ENDDO ENDDO ENDIF IF ( humidity ) THEN DO j = nys, nyn DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, & 'ls_forcing_left_qv', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & j+1, 1, & force%q_left(t-force%tind,nzb+1:nzt+1,j) ) ENDDO ENDDO ENDIF ENDIF IF ( force_bound_r ) THEN DO j = nys, nyn DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_right_u', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & j+1, 1, & force%u_right(t-force%tind,nzb+1:nzt+1,j) ) ENDDO ENDDO DO j = nysv, nyn DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_right_v', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & j, 1, & force%v_right(t-force%tind,nzb+1:nzt+1,j) ) ENDDO ENDDO DO j = nys, nyn DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_right_w', & t+1, & nzb+1, nzt-(nzb+1)+1, & j+1, 1, & force%w_right(t-force%tind,nzb+1:nzt,j) ) ENDDO ENDDO IF ( .NOT. neutral ) THEN DO j = nys, nyn DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, & 'ls_forcing_right_pt', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & j+1, 1, & force%pt_right(t-force%tind,nzb+1:nzt+1,j) ) ENDDO ENDDO ENDIF IF ( humidity ) THEN DO j = nys, nyn DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, & 'ls_forcing_right_qv', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & j+1, 1, & force%q_right(t-force%tind,nzb+1:nzt+1,j) ) ENDDO ENDDO ENDIF ENDIF IF ( force_bound_n ) THEN DO i = nxlu, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_north_u', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & i, 1, & force%u_north(t-force%tind,nzb+1:nzt+1,i) ) ENDDO ENDDO DO i = nxl, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_north_v', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & i+1, 1, & force%v_north(t-force%tind,nzb+1:nzt+1,i) ) ENDDO ENDDO DO i = nxl, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_north_w', & t+1, & nzb+1, nzt-(nzb+1)+1, & i+1, 1, & force%w_north(t-force%tind,nzb+1:nzt,i) ) ENDDO ENDDO IF ( .NOT. neutral ) THEN DO i = nxl, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, & 'ls_forcing_north_pt', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & i+1, 1, & force%pt_north(t-force%tind,nzb+1:nzt+1,i) ) ENDDO ENDDO ENDIF IF ( humidity ) THEN DO i = nxl, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, & 'ls_forcing_north_qv', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & i+1, 1, & force%q_north(t-force%tind,nzb+1:nzt+1,i) ) ENDDO ENDDO ENDIF ENDIF IF ( force_bound_s ) THEN DO i = nxlu, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_south_u', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & i, 1, & force%u_south(t-force%tind,nzb+1:nzt+1,i) ) ENDDO ENDDO DO i = nxl, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_south_v', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & i+1, 1, & force%v_south(t-force%tind,nzb+1:nzt+1,i) ) ENDDO ENDDO DO i = nxl, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_south_w', & t+1, & nzb+1, nzt-(nzb+1)+1, & i+1, 1, & force%w_south(t-force%tind,nzb+1:nzt,i) ) ENDDO ENDDO IF ( .NOT. neutral ) THEN DO i = nxl, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, & 'ls_forcing_south_pt', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & i+1, 1, & force%pt_south(t-force%tind,nzb+1:nzt+1,i) ) ENDDO ENDDO ENDIF IF ( humidity ) THEN DO i = nxl, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, & 'ls_forcing_south_qv', & t+1, & nzb+1, nzt+1-(nzb+1)+1, & i+1, 1, & force%q_south(t-force%tind,nzb+1:nzt+1,i) ) ENDDO ENDDO ENDIF ENDIF ! !-- Top boundary DO i = nxlu, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_top_u', & t+1, & nys+1, nyn-nys+1, & i, 1, & force%u_top(t-force%tind,nys:nyn,i) ) ENDDO ENDDO DO i = nxl, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_top_v', & t+1, & nysv, nyn-nysv+1, & i+1, 1, & force%v_top(t-force%tind,nysv:nyn,i) ) ENDDO ENDDO DO i = nxl, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_top_w', & t+1, & nys+1, nyn-nys+1, & i+1, 1, & force%w_top(t-force%tind,nys:nyn,i) ) ENDDO ENDDO IF ( .NOT. neutral ) THEN DO i = nxl, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_top_pt', & t+1, & nys+1, nyn-nys+1, & i+1, 1, & force%pt_top(t-force%tind,nys:nyn,i) ) ENDDO ENDDO ENDIF IF ( humidity ) THEN DO i = nxl, nxr DO t = force%tind, force%tind_p CALL get_variable_bc( id_dynamic, 'ls_forcing_top_qv', & t+1, & nys+1, nyn-nys+1, & i+1, 1, & force%q_top(t-force%tind,nys:nyn,i) ) ENDDO ENDDO ENDIF ! !-- Close input file CALL close_input_file( id_dynamic ) #endif ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ! !-- Finally, after data input set control flag indicating that vertical !-- inter- and/or extrapolation is required. !-- Please note, inter/extrapolation of INIFOR data is only a workaroud, !-- as long as INIFOR delivers vertically equidistant data. force%interpolated = .FALSE. END SUBROUTINE netcdf_data_input_lsf !------------------------------------------------------------------------------! ! Description: ! ------------ !> Checks input file for consistency and minimum requirements. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_check_dynamic USE control_parameters, & ONLY: initializing_actions, forcing, message_string IMPLICIT NONE ! !-- In case of forcing, check whether dynamic input file is present IF ( .NOT. input_pids_dynamic .AND. forcing ) THEN message_string = 'forcing = .TRUE. requires dynamic input file ' // & TRIM( input_file_dynamic ) // TRIM( coupling_char ) CALL message( 'netcdf_data_input_mod', 'PA0430', 1, 2, 0, 6, 0 ) ENDIF ! !-- Dynamic input file must also be present if initialization via inifor is !-- prescribed. IF ( .NOT. input_pids_dynamic .AND. & TRIM( initializing_actions ) == 'inifor' ) THEN message_string = 'initializing_actions = inifor requires dynamic ' //& 'input file ' // TRIM( input_file_dynamic ) // & TRIM( coupling_char ) CALL message( 'netcdf_data_input_mod', 'PA0430', 1, 2, 0, 6, 0 ) ENDIF END SUBROUTINE netcdf_data_input_check_dynamic !------------------------------------------------------------------------------! ! Description: ! ------------ !> Checks input file for consistency and minimum requirements. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_check_static USE arrays_3d, & ONLY: zu USE control_parameters, & ONLY: land_surface, message_string, urban_surface USE indices, & ONLY: nxl, nxr, nyn, nys IMPLICIT NONE INTEGER(iwp) :: i !< loop index along x-direction INTEGER(iwp) :: j !< loop index along y-direction INTEGER(iwp) :: n_surf !< number of different surface types at given location LOGICAL :: check_passed !< flag indicating if a check passed ! !-- Return if no static input file is available IF ( .NOT. input_pids_static ) RETURN ! !-- Check orography for fill-values. For the moment, give an error message. !-- More advanced methods, e.g. a nearest neighbor algorithm as used in GIS !-- systems might be implemented later. IF ( ANY( terrain_height_f%var == terrain_height_f%fill ) ) THEN message_string = 'NetCDF variable orography_2D is not ' // & 'allowed to have missing data' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ! !-- If 3D buildings are read, check if building information is consistent !-- to numeric grid. IF ( buildings_f%from_file ) THEN IF ( buildings_f%lod == 2 ) THEN IF ( buildings_f%nz > SIZE( zu ) ) THEN message_string = 'Reading 3D building data - too much ' // & 'data points along the vertical coordinate.' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF IF ( ANY( buildings_f%z(0:buildings_f%nz-1) /= & zu(0:buildings_f%nz-1) ) ) THEN message_string = 'Reading 3D building data - vertical ' // & 'coordinate do not match numeric grid.' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Skip further checks concerning buildings and natural surface properties !-- if no urban surface and land surface model are applied. IF ( .NOT. land_surface .OR. .NOT. urban_surface ) RETURN ! !-- Check for minimum requirement of surface-classification data in case !-- static input file is used. IF ( .NOT. vegetation_type_f%from_file .OR. & .NOT. pavement_type_f%from_file .OR. & .NOT. building_type_f%from_file .OR. & .NOT. water_type_f%from_file .OR. & .NOT. soil_type_f%from_file ) THEN message_string = 'Minimum requirement for surface classification ' //& 'is not fulfilled. At least ' // & 'vegetation_type, pavement_type, ' // & 'building_type, soil_type and water_type are '// & 'required.' CALL message( 'netcdf_data_input_mod', 'PA0999', 1, 2, 0, 6, 0 ) ENDIF ! !-- Check for general availability of input variables. !-- If vegetation_type is 0 at any location, vegetation_pars as well as !-- root_area_density_lsm are required. IF ( vegetation_type_f%from_file ) THEN IF ( ANY( vegetation_type_f%var == 0 ) ) THEN IF ( .NOT. vegetation_pars_f%from_file ) THEN message_string = 'If vegegation_type = 0 at any location, ' // & 'vegetation_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF IF ( .NOT. root_area_density_lsm_f%from_file ) THEN message_string = 'If vegegation_type = 0 at any location, ' // & 'root_area_density_lsm is required' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- If soil_type is zero at any location, soil_pars is required. IF ( soil_type_f%from_file ) THEN check_passed = .TRUE. IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN IF ( ANY( soil_type_f%var_2d == 0 ) ) THEN IF ( .NOT. soil_pars_f%from_file ) check_passed = .FALSE. ENDIF ELSE IF ( ANY( soil_type_f%var_3d == 0 ) ) THEN IF ( .NOT. soil_pars_f%from_file ) check_passed = .FALSE. ENDIF ENDIF IF ( .NOT. check_passed ) THEN message_string = 'If soil_type = 0 at any location, ' // & 'soil_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- If building_type is zero at any location, building_pars is required. IF ( building_type_f%from_file ) THEN IF ( ANY( building_type_f%var == 0 ) ) THEN IF ( .NOT. building_pars_f%from_file ) THEN message_string = 'If building_type = 0 at any location, ' // & 'building_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- If albedo_type is zero at any location, albedo_pars is required. IF ( albedo_type_f%from_file ) THEN IF ( ANY( albedo_type_f%var == 0 ) ) THEN IF ( .NOT. albedo_pars_f%from_file ) THEN message_string = 'If albedo_type = 0 at any location, ' // & 'albedo_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- If pavement_type is zero at any location, pavement_pars is required. IF ( pavement_type_f%from_file ) THEN IF ( ANY( pavement_type_f%var == 0 ) ) THEN IF ( .NOT. pavement_pars_f%from_file ) THEN message_string = 'If pavement_type = 0 at any location, ' // & 'pavement_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- If pavement_type is zero at any location, also pavement_subsurface_pars !-- is required. IF ( pavement_type_f%from_file ) THEN IF ( ANY( pavement_type_f%var == 0 ) ) THEN IF ( .NOT. pavement_subsurface_pars_f%from_file ) THEN message_string = 'If pavement_type = 0 at any location, ' // & 'pavement_subsurface_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- If water_type is zero at any location, water_pars is required. IF ( water_type_f%from_file ) THEN IF ( ANY( water_type_f%var == 0 ) ) THEN IF ( .NOT. water_pars_f%from_file ) THEN message_string = 'If water_type = 0 at any location, ' // & 'water_pars is required' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check for local consistency of the input data. DO i = nxl, nxr DO j = nys, nyn ! !-- For each (y,x)-location at least one of the parameters !-- vegetation_type, pavement_type, building_type, or water_type !-- must be set to a nonĀ­missing value. IF ( vegetation_type_f%var(j,i) == vegetation_type_f%fill .AND. & pavement_type_f%var(j,i) == pavement_type_f%fill .AND. & building_type_f%var(j,i) == building_type_f%fill .AND. & water_type_f%var(j,i) == water_type_f%fill ) THEN message_string = 'At least one of the paramters ' // & 'vegetation_type, pavement_type, ' // & 'building_type, or water_type must be set '// & 'to a non-missing value' CALL message( 'netcdf_data_input_mod', 'PA0999', 2, 2, 0, 6, 0 ) ENDIF ! !-- Note that a soil_type is required for each location (y,x) where !-- either vegetation_type or pavement_type is a nonĀ­missing value. IF ( ( vegetation_type_f%var(j,i) /= vegetation_type_f%fill .OR. & pavement_type_f%var(j,i) /= pavement_type_f%fill ) ) THEN check_passed = .TRUE. IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN IF ( soil_type_f%var_2d(j,i) == soil_type_f%fill ) & check_passed = .FALSE. ELSE IF ( ANY( soil_type_f%var_3d(:,j,i) == soil_type_f%fill) ) & check_passed = .FALSE. ENDIF IF ( .NOT. check_passed ) THEN message_string = 'soil_type is required for each '// & 'location (y,x) where vegetation_type or ' // & 'pavement_type is a non-missing value.' CALL message( 'netcdf_data_input_mod', 'PA0999', & 2, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- Check for consistency of surface fraction. If more than one type !-- is set, surface fraction need to be given and the sum must not !-- be larger than 1. n_surf = 0 IF ( vegetation_type_f%var(j,i) /= vegetation_type_f%fill ) & n_surf = n_surf + 1 IF ( water_type_f%var(j,i) /= water_type_f%fill ) & n_surf = n_surf + 1 IF ( pavement_type_f%var(j,i) /= pavement_type_f%fill ) & n_surf = n_surf + 1 IF ( n_surf > 1 ) THEN IF ( ANY ( surface_fraction_f%frac(:,j,i) == & surface_fraction_f%fill ) ) THEN message_string = 'If more than one surface type is ' // & 'given at a location, surface_fraction ' // & 'must be provided.' CALL message( 'netcdf_data_input_mod', 'PA0999', & 2, 2, 0, 6, 0 ) ENDIF IF ( SUM ( surface_fraction_f%frac(:,j,i) ) > 1.0_wp ) THEN message_string = 'surface_fraction must not exceed 1' CALL message( 'netcdf_data_input_mod', 'PA0999', & 2, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- Check vegetation_pars. If vegetation_type is 0, all parameters !-- need to be set, otherwise, single parameters set by !-- vegetation_type can be overwritten. IF ( vegetation_type_f%from_file ) THEN IF ( vegetation_type_f%var(j,i) == 0 ) THEN IF ( ANY( vegetation_pars_f%pars_xy(:,j,i) == & vegetation_pars_f%fill ) ) THEN message_string = 'If vegetation_type(y,x) = 0, all ' // & 'parameters of vegetation_pars at '// & 'this location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0999', & 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check root distribution. If vegetation_type is 0, all levels must !-- be set. IF ( vegetation_type_f%from_file ) THEN IF ( vegetation_type_f%var(j,i) == 0 ) THEN IF ( ANY( root_area_density_lsm_f%var(:,j,i) == & root_area_density_lsm_f%fill ) ) THEN message_string = 'If vegetation_type(y,x) = 0, all ' // & 'levels of root_area_density_lsm ' // & 'must be set at this location.' CALL message( 'netcdf_data_input_mod', 'PA0999', & 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check soil parameters. If soil_type is 0, all parameters !-- must be set. IF ( soil_type_f%from_file ) THEN check_passed = .TRUE. IF ( ALLOCATED( soil_type_f%var_2d ) ) THEN IF ( soil_type_f%var_2d(j,i) == 0 ) THEN IF ( ANY( soil_pars_f%pars_xy(:,j,i) == & soil_pars_f%fill ) ) check_passed = .FALSE. ENDIF ELSE IF ( ANY( soil_type_f%var_3d(:,j,i) == 0 ) ) THEN IF ( ANY( soil_pars_f%pars_xy(:,j,i) == & soil_pars_f%fill ) ) check_passed = .FALSE. ENDIF ENDIF IF ( .NOT. check_passed ) THEN message_string = 'If soil_type(y,x) = 0, all levels of ' //& 'soil_pars at this location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0999', & 2, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- Check building parameters. If building_type is 0, all parameters !-- must be set. IF ( building_type_f%from_file ) THEN IF ( building_type_f%var(j,i) == 0 ) THEN IF ( ANY( building_pars_f%pars_xy(:,j,i) == & building_pars_f%fill ) ) THEN message_string = 'If building_type(y,x) = 0, all ' // & 'parameters of building_pars at this '//& 'location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0999', & 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check if building_type is set at each building ! IF ( building_type_f%from_file .AND. buildings_f%from_file ) THEN ! IF ( buildings_f%var_2d(j,i) /= buildings_f%fill1 .AND. & ! building_type_f%var(j,i) == building_type_f%fill ) THEN ! WRITE( message_string, * ) 'Each building requires ' // & ! ' a type. i, j = ', i, j ! CALL message( 'netcdf_data_input_mod', 'PA0999', & ! 2, 2, 0, 6, 0 ) ! ENDIF ! ENDIF ! !-- Check albedo parameters. If albedo_type is 0, all parameters !-- must be set. IF ( albedo_type_f%from_file ) THEN IF ( albedo_type_f%var(j,i) == 0 ) THEN IF ( ANY( albedo_pars_f%pars_xy(:,j,i) == & albedo_pars_f%fill ) ) THEN message_string = 'If albedo_type(y,x) = 0, all ' // & 'parameters of albedo_pars at this ' // & 'location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0999', & 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check pavement parameters. If pavement_type is 0, all parameters !-- of pavement_pars must be set at this location. IF ( pavement_type_f%from_file ) THEN IF ( pavement_type_f%var(j,i) == 0 ) THEN IF ( ANY( pavement_pars_f%pars_xy(:,j,i) == & pavement_pars_f%fill ) ) THEN message_string = 'If pavement_type(y,x) = 0, all ' // & 'parameters of pavement_pars at this '//& 'location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0999', & 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check pavement-subsurface parameters. If pavement_type is 0, !-- all parameters of pavement_subsurface_pars must be set at this !-- location. IF ( pavement_type_f%from_file ) THEN IF ( pavement_type_f%var(j,i) == 0 ) THEN IF ( ANY( pavement_subsurface_pars_f%pars_xyz(:,:,j,i) == & pavement_subsurface_pars_f%fill ) ) THEN message_string = 'If pavement_type(y,x) = 0, all ' // & 'parameters of ' // & 'pavement_subsurface_pars at this '// & 'location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0999', & 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Check water parameters. If water_type is 0, all parameters !-- must be set at this location. IF ( water_type_f%from_file ) THEN IF ( water_type_f%var(j,i) == 0 ) THEN IF ( ANY( water_pars_f%pars_xy(:,j,i) == & water_pars_f%fill ) ) THEN message_string = 'If water_type(y,x) = 0, all ' // & 'parameters of water_pars at this ' // & 'location must be set.' CALL message( 'netcdf_data_input_mod', 'PA0999', & 2, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ENDDO ENDDO END SUBROUTINE netcdf_data_input_check_static !------------------------------------------------------------------------------! ! Description: ! ------------ !> Vertical interpolation and extrapolation of 1D variables. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_interpolate_1d( var, z_grid, z_file) IMPLICIT NONE LOGICAL :: top !< flag indicating extrapolation at model top INTEGER(iwp) :: k !< running index z-direction file INTEGER(iwp) :: kk !< running index z-direction stretched model grid INTEGER(iwp) :: kl !< lower index bound along z-direction INTEGER(iwp) :: ku !< upper index bound along z-direction INTEGER(iwp) :: nz_file !< number of vertical levels on file REAL(wp), DIMENSION(:) :: z_grid !< grid levels on numeric grid REAL(wp), DIMENSION(:) :: z_file !< grid levels on file grid REAL(wp), DIMENSION(:), INTENT(INOUT) :: var !< treated variable REAL(wp), DIMENSION(:), ALLOCATABLE :: var_tmp !< temporary variable kl = LBOUND(var,1) ku = UBOUND(var,1) ALLOCATE( var_tmp(kl:ku) ) DO k = kl, ku kk = MINLOC( ABS( z_file - z_grid(k) ), DIM = 1 ) IF ( kk < ku ) THEN IF ( z_file(kk) - z_grid(k) <= 0.0_wp ) THEN var_tmp(k) = var(kk) + & ( var(kk+1) - var(kk) ) / & ( z_file(kk+1) - z_file(kk) ) * & ( z_grid(k) - z_file(kk) ) ELSEIF ( z_file(kk) - z_grid(k) > 0.0_wp ) THEN var_tmp(k) = var(kk-1) + & ( var(kk) - var(kk-1) ) / & ( z_file(kk) - z_file(kk-1) ) * & ( z_grid(k) - z_file(kk-1) ) ENDIF ! !-- Extrapolate ELSE var_tmp(k) = var(ku) + ( var(ku) - var(ku-1) ) / & ( z_file(ku) - z_file(ku-1) ) * & ( z_grid(k) - z_file(ku) ) ENDIF ENDDO var(:) = var_tmp(:) DEALLOCATE( var_tmp ) END SUBROUTINE netcdf_data_input_interpolate_1d !------------------------------------------------------------------------------! ! Description: ! ------------ !> Vertical interpolation and extrapolation of 1D variables from Inifor grid !> onto Palm grid, where both have same dimension. Please note, the passed !> paramter list in 1D version is different compared to 2D version. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_interpolate_1d_soil( var, var_file, & z_grid, z_file, & nzb_var, nzt_var, & nzb_file, nzt_file ) IMPLICIT NONE INTEGER(iwp) :: i !< running index x-direction INTEGER(iwp) :: j !< running index y-direction INTEGER(iwp) :: k !< running index z-direction file INTEGER(iwp) :: kk !< running index z-direction stretched model grid INTEGER(iwp) :: ku !< upper index bound along z-direction for varialbe from file INTEGER(iwp) :: nzb_var !< lower bound of final array INTEGER(iwp) :: nzt_var !< upper bound of final array INTEGER(iwp) :: nzb_file !< lower bound of file array INTEGER(iwp) :: nzt_file !< upper bound of file array ! LOGICAL, OPTIONAL :: depth !< flag indicating reverse z-axis, i.e. depth instead of height, e.g. in case of ocean or soil REAL(wp), DIMENSION(nzb_var:nzt_var) :: z_grid !< grid levels on numeric grid REAL(wp), DIMENSION(nzb_file:nzt_file) :: z_file !< grid levels on file grid REAL(wp), DIMENSION(nzb_var:nzt_var) :: var !< treated variable REAL(wp), DIMENSION(nzb_file:nzt_file) :: var_file !< temporary variable ku = nzt_file DO k = nzb_var, nzt_var ! !-- Determine index on Inifor grid which is closest to the actual height kk = MINLOC( ABS( z_file - z_grid(k) ), DIM = 1 ) ! !-- If closest index on Inifor grid is smaller than top index, !-- interpolate the data IF ( kk < nzt_file ) THEN IF ( z_file(kk) - z_grid(k) <= 0.0_wp ) THEN var(k) = var_file(kk) + ( var_file(kk+1) - var_file(kk) ) / & ( z_file(kk+1) - z_file(kk) ) * & ( z_grid(k) - z_file(kk) ) ELSEIF ( z_file(kk) - z_grid(k) > 0.0_wp ) THEN var(k) = var_file(kk-1) + ( var_file(kk) - var_file(kk-1) ) / & ( z_file(kk) - z_file(kk-1) ) * & ( z_grid(k) - z_file(kk-1) ) ENDIF ! !-- Extrapolate if actual height is above the highest Inifor level ELSE var(k) = var_file(ku) + ( var_file(ku) - var_file(ku-1) ) / & ( z_file(ku) - z_file(ku-1) ) * & ( z_grid(k) - z_file(ku) ) ENDIF ENDDO END SUBROUTINE netcdf_data_input_interpolate_1d_soil !------------------------------------------------------------------------------! ! Description: ! ------------ !> Vertical interpolation and extrapolation of 2D variables at lateral boundaries. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_interpolate_2d( var, z_grid, z_file) IMPLICIT NONE LOGICAL :: top !< flag indicating extrapolation at model top INTEGER(iwp) :: i !< running index x- or y -direction INTEGER(iwp) :: il !< lower index bound along x- or y-direction INTEGER(iwp) :: iu !< upper index bound along x- or y-direction INTEGER(iwp) :: k !< running index z-direction file INTEGER(iwp) :: kk !< running index z-direction stretched model grid INTEGER(iwp) :: kl !< lower index bound along z-direction INTEGER(iwp) :: ku !< upper index bound along z-direction INTEGER(iwp) :: nz_file !< number of vertical levels on file REAL(wp), DIMENSION(:) :: z_grid !< grid levels on numeric grid REAL(wp), DIMENSION(:) :: z_file !< grid levels on file grid REAL(wp), DIMENSION(:,:), INTENT(INOUT) :: var !< treated variable REAL(wp), DIMENSION(:), ALLOCATABLE :: var_tmp !< temporary variable il = LBOUND(var,2) iu = UBOUND(var,2) kl = LBOUND(var,1) ku = UBOUND(var,1) ALLOCATE( var_tmp(kl:ku) ) DO i = il, iu DO k = kl, ku kk = MINLOC( ABS( z_file - z_grid(k) ), DIM = 1 ) IF ( kk < ku ) THEN IF ( z_file(kk) - z_grid(k) <= 0.0_wp ) THEN var_tmp(k) = var(kk,i) + & ( var(kk+1,i) - var(kk,i) ) / & ( z_file(kk+1) - z_file(kk) ) * & ( z_grid(k) - z_file(kk) ) ELSEIF ( z_file(kk) - z_grid(k) > 0.0_wp ) THEN var_tmp(k) = var(kk-1,i) + & ( var(kk,i) - var(kk-1,i) ) / & ( z_file(kk) - z_file(kk-1) ) * & ( z_grid(k) - z_file(kk-1) ) ENDIF ! !-- Extrapolate ELSE var_tmp(k) = var(ku,i) + ( var(ku,i) - var(ku-1,i) ) / & ( z_file(ku) - z_file(ku-1) ) * & ( z_grid(k) - z_file(ku) ) ENDIF ENDDO var(:,i) = var_tmp(:) ENDDO DEALLOCATE( var_tmp ) END SUBROUTINE netcdf_data_input_interpolate_2d !------------------------------------------------------------------------------! ! Description: ! ------------ !> Vertical interpolation and extrapolation of 3D variables. !------------------------------------------------------------------------------! SUBROUTINE netcdf_data_input_interpolate_3d( var, z_grid, z_file ) IMPLICIT NONE INTEGER(iwp) :: i !< running index x-direction INTEGER(iwp) :: il !< lower index bound along x-direction INTEGER(iwp) :: iu !< upper index bound along x-direction INTEGER(iwp) :: j !< running index y-direction INTEGER(iwp) :: jl !< lower index bound along x-direction INTEGER(iwp) :: ju !< upper index bound along x-direction INTEGER(iwp) :: k !< running index z-direction file INTEGER(iwp) :: kk !< running index z-direction stretched model grid INTEGER(iwp) :: kl !< lower index bound along z-direction INTEGER(iwp) :: ku !< upper index bound along z-direction INTEGER(iwp) :: nz_file !< number of vertical levels on file REAL(wp), DIMENSION(:) :: z_grid !< grid levels on numeric grid REAL(wp), DIMENSION(:) :: z_file !< grid levels on file grid REAL(wp), DIMENSION(:,:,:), INTENT(INOUT) :: var !< treated variable REAL(wp), DIMENSION(:), ALLOCATABLE :: var_tmp !< temporary variable il = LBOUND(var,3) iu = UBOUND(var,3) jl = LBOUND(var,2) ju = UBOUND(var,2) kl = LBOUND(var,1) ku = UBOUND(var,1) ALLOCATE( var_tmp(kl:ku) ) DO i = il, iu DO j = jl, ju DO k = kl, ku kk = MINLOC( ABS( z_file - z_grid(k) ), DIM = 1 ) IF ( kk < ku ) THEN IF ( z_file(kk) - z_grid(k) <= 0.0_wp ) THEN var_tmp(k) = var(kk,j,i) + & ( var(kk+1,j,i) - var(kk,j,i) ) / & ( z_file(kk+1) - z_file(kk) ) * & ( z_grid(k) - z_file(kk) ) ELSEIF ( z_file(kk) - z_grid(k) > 0.0_wp ) THEN var_tmp(k) = var(kk-1,j,i) + & ( var(kk,j,i) - var(kk-1,j,i) ) / & ( z_file(kk) - z_file(kk-1) ) * & ( z_grid(k) - z_file(kk-1) ) ENDIF ! !-- Extrapolate ELSE var_tmp(k) = var(ku,j,i) + & ( var(ku,j,i) - var(ku-1,j,i) ) / & ( z_file(ku) - z_file(ku-1) ) * & ( z_grid(k) - z_file(ku) ) ENDIF ENDDO var(:,j,i) = var_tmp(:) ENDDO ENDDO DEALLOCATE( var_tmp ) END SUBROUTINE netcdf_data_input_interpolate_3d !------------------------------------------------------------------------------! ! Description: ! ------------ !> Checks if a given variables is on file !------------------------------------------------------------------------------! FUNCTION check_existence( vars_in_file, var_name ) IMPLICIT NONE CHARACTER(LEN=*) :: var_name !< variable to be checked CHARACTER(LEN=*), DIMENSION(:) :: vars_in_file !< list of variables in file INTEGER(iwp) :: i !< loop variable LOGICAL :: check_existence !< flag indicating whether a variable exist or not - actual return value i = 1 check_existence = .FALSE. DO WHILE ( i <= SIZE( vars_in_file ) ) check_existence = TRIM( vars_in_file(i) ) == TRIM( var_name ) .OR. & check_existence i = i + 1 ENDDO RETURN END FUNCTION check_existence !------------------------------------------------------------------------------! ! Description: ! ------------ !> Closes an existing netCDF file. !------------------------------------------------------------------------------! SUBROUTINE close_input_file( id ) #if defined( __netcdf ) USE pegrid IMPLICIT NONE INTEGER(iwp), INTENT(INOUT) :: id !< file id nc_stat = NF90_CLOSE( id ) CALL handle_error( 'close', 537 ) #endif END SUBROUTINE close_input_file !------------------------------------------------------------------------------! ! Description: ! ------------ !> Opens an existing netCDF file for reading only and returns its id. !------------------------------------------------------------------------------! SUBROUTINE open_read_file( filename, id ) #if defined( __netcdf ) USE pegrid IMPLICIT NONE CHARACTER (LEN=*), INTENT(IN) :: filename !< filename INTEGER(iwp), INTENT(INOUT) :: id !< file id LOGICAL :: file_open = .FALSE. nc_stat = NF90_OPEN( filename, NF90_NOWRITE, id ) CALL handle_error( 'open_read_file', 536 ) #endif END SUBROUTINE open_read_file !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads global or variable-related attributes of type INTEGER (32-bit) !------------------------------------------------------------------------------! SUBROUTINE get_attribute_int32( id, attribute_name, value, global, & variable_name ) #if defined( __netcdf ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: attribute_name !< attribute name CHARACTER(LEN=*), OPTIONAL :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp), INTENT(INOUT) :: value !< read value LOGICAL, INTENT(IN) :: global !< flag indicating global attribute ! !-- Read global attribute IF ( global ) THEN nc_stat = NF90_GET_ATT( id, NF90_GLOBAL, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_int32 global', 522 ) ! !-- Read attributes referring to a single variable. Therefore, first inquire !-- variable id ELSE nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) CALL handle_error( 'get_attribute_int32', 522 ) nc_stat = NF90_GET_ATT( id, id_var, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_int32', 522 ) ENDIF #endif END SUBROUTINE get_attribute_int32 !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads global or variable-related attributes of type INTEGER (8-bit) !------------------------------------------------------------------------------! SUBROUTINE get_attribute_int8( id, attribute_name, value, global, & variable_name ) #if defined( __netcdf ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: attribute_name !< attribute name CHARACTER(LEN=*), OPTIONAL :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(KIND=1), INTENT(INOUT) :: value !< read value LOGICAL, INTENT(IN) :: global !< flag indicating global attribute ! !-- Read global attribute IF ( global ) THEN nc_stat = NF90_GET_ATT( id, NF90_GLOBAL, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_int8 global', 523 ) ! !-- Read attributes referring to a single variable. Therefore, first inquire !-- variable id ELSE nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) CALL handle_error( 'get_attribute_int8', 523 ) nc_stat = NF90_GET_ATT( id, id_var, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_int8', 523 ) ENDIF #endif END SUBROUTINE get_attribute_int8 !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads global or variable-related attributes of type REAL !------------------------------------------------------------------------------! SUBROUTINE get_attribute_real( id, attribute_name, value, global, & variable_name ) #if defined( __netcdf ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: attribute_name !< attribute name CHARACTER(LEN=*), OPTIONAL :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id LOGICAL, INTENT(IN) :: global !< flag indicating global attribute REAL(wp), INTENT(INOUT) :: value !< read value ! !-- Read global attribute IF ( global ) THEN nc_stat = NF90_GET_ATT( id, NF90_GLOBAL, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_real global', 524 ) ! !-- Read attributes referring to a single variable. Therefore, first inquire !-- variable id ELSE nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) CALL handle_error( 'get_attribute_real', 524 ) nc_stat = NF90_GET_ATT( id, id_var, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_real', 524 ) ENDIF #endif END SUBROUTINE get_attribute_real !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads global or variable-related attributes of type CHARACTER !> Remark: reading attributes of type NF_STRING return an error code 56 - !> Attempt to convert between text & numbers. !------------------------------------------------------------------------------! SUBROUTINE get_attribute_string( id, attribute_name, value, global, & variable_name ) #if defined( __netcdf ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: attribute_name !< attribute name CHARACTER(LEN=*), OPTIONAL :: variable_name !< variable name CHARACTER(LEN=*), INTENT(INOUT) :: value !< read value INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id LOGICAL, INTENT(IN) :: global !< flag indicating global attribute ! !-- Read global attribute IF ( global ) THEN nc_stat = NF90_GET_ATT( id, NF90_GLOBAL, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_string global', 525 ) ! !-- Read attributes referring to a single variable. Therefore, first inquire !-- variable id ELSE nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) CALL handle_error( 'get_attribute_string', 525 ) nc_stat = NF90_GET_ATT( id, id_var, TRIM( attribute_name ), value ) CALL handle_error( 'get_attribute_string',525 ) ENDIF #endif END SUBROUTINE get_attribute_string !------------------------------------------------------------------------------! ! Description: ! ------------ !> Get dimension array for a given dimension !------------------------------------------------------------------------------! SUBROUTINE get_dimension_length( id, dim_len, variable_name ) #if defined( __netcdf ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< dimension name CHARACTER(LEN=100) :: dum !< dummy variable to receive return character INTEGER(iwp) :: dim_len !< dimension size INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_dim !< dimension id ! !-- First, inquire dimension ID nc_stat = NF90_INQ_DIMID( id, TRIM( variable_name ), id_dim ) CALL handle_error( 'get_dimension_length', 526 ) ! !-- Inquire dimension length nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim, dum, LEN = dim_len ) CALL handle_error( 'get_dimension_length', 526 ) #endif END SUBROUTINE get_dimension_length !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 1D integer variable from file. !------------------------------------------------------------------------------! SUBROUTINE get_variable_1d_int( id, variable_name, var ) #if defined( __netcdf ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< dimension id INTEGER(iwp), DIMENSION(:), INTENT(INOUT) :: var !< variable to be read ! !-- First, inquire variable ID nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) CALL handle_error( 'get_variable_1d_int', 527 ) ! !-- Inquire dimension length nc_stat = NF90_GET_VAR( id, id_var, var ) CALL handle_error( 'get_variable_1d_int', 527 ) #endif END SUBROUTINE get_variable_1d_int !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 1D float variable from file. !------------------------------------------------------------------------------! SUBROUTINE get_variable_1d_real( id, variable_name, var ) #if defined( __netcdf ) USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< dimension id REAL(wp), DIMENSION(:), INTENT(INOUT) :: var !< variable to be read ! !-- First, inquire variable ID nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) CALL handle_error( 'get_variable_1d_real', 527 ) ! !-- Inquire dimension length nc_stat = NF90_GET_VAR( id, id_var, var ) CALL handle_error( 'get_variable_1d_real', 527 ) #endif END SUBROUTINE get_variable_1d_real !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 2D REAL variable from a file. Reading is done processor-wise, !> i.e. each core reads its own domain in slices along x. !------------------------------------------------------------------------------! SUBROUTINE get_variable_2d_real( id, variable_name, i, var ) #if defined( __netcdf ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: i !< index along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id REAL(wp), DIMENSION(nys:nyn), INTENT(INOUT) :: var !< variable to be read ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, var(nys:nyn), & start = (/ i+1, nys+1 /), & count = (/ 1, nyn - nys + 1 /) ) CALL handle_error( 'get_variable_2d_real', 528 ) #endif END SUBROUTINE get_variable_2d_real !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 2D 32-bit INTEGER variable from file. Reading is done processor-wise, !> i.e. each core reads its own domain in slices along x. !------------------------------------------------------------------------------! SUBROUTINE get_variable_2d_int32( id, variable_name, i, var ) #if defined( __netcdf ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: i !< index along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp), DIMENSION(nys:nyn), INTENT(INOUT) :: var !< variable to be read ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, var(nys:nyn), & start = (/ i+1, nys+1 /), & count = (/ 1, nyn - nys + 1 /) ) CALL handle_error( 'get_variable_2d_int32', 529 ) #endif END SUBROUTINE get_variable_2d_int32 !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 2D 8-bit INTEGER variable from file. Reading is done processor-wise, !> i.e. each core reads its own domain in slices along x. !------------------------------------------------------------------------------! SUBROUTINE get_variable_2d_int8( id, variable_name, i, var ) #if defined( __netcdf ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: i !< index along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(KIND=1), DIMENSION(nys:nyn), INTENT(INOUT) :: var !< variable to be read ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, var(nys:nyn), & start = (/ i+1, nys+1 /), & count = (/ 1, nyn - nys + 1 /) ) CALL handle_error( 'get_variable_2d_int8', 530 ) #endif END SUBROUTINE get_variable_2d_int8 !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 3D 8-bit INTEGER variable from file. !------------------------------------------------------------------------------! SUBROUTINE get_variable_3d_int8( id, variable_name, i, j, var ) #if defined( __netcdf ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: i !< index along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp), INTENT(IN) :: j !< index along y direction INTEGER(iwp) :: n_file !< number of data-points along 3rd dimension INTEGER(iwp), DIMENSION(1:3) :: id_dim INTEGER( KIND = 1 ), DIMENSION(nzb:nzt+1), INTENT(INOUT) :: var !< variable to be read ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Get length of first dimension, required for the count parameter. !-- Therefore, first inquired dimension ids nc_stat = NF90_INQUIRE_VARIABLE( id, id_var, DIMIDS = id_dim ) nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim(3), LEN = n_file ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, var, & start = (/ i+1, j+1, 1 /), & count = (/ 1, 1, n_file /) ) CALL handle_error( 'get_variable_3d_int8', 531 ) #endif END SUBROUTINE get_variable_3d_int8 !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 3D float variable from file. !------------------------------------------------------------------------------! SUBROUTINE get_variable_3d_real( id, variable_name, i, j, var ) #if defined( __netcdf ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: i !< index along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp), INTENT(IN) :: j !< index along y direction INTEGER(iwp) :: n3 !< number of data-points along 3rd dimension INTEGER(iwp), DIMENSION(3) :: id_dim REAL(wp), DIMENSION(:), INTENT(INOUT) :: var !< variable to be read ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Get length of first dimension, required for the count parameter. !-- Therefore, first inquired dimension ids nc_stat = NF90_INQUIRE_VARIABLE( id, id_var, DIMIDS = id_dim ) nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim(3), LEN = n3 ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, var, & start = (/ i+1, j+1, 1 /), & count = (/ 1, 1, n3 /) ) CALL handle_error( 'get_variable_3d_real', 532 ) #endif END SUBROUTINE get_variable_3d_real !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 4D float variable from file. Note, in constrast to 3D versions, !> dimensions are already inquired and passed so that they are known here. !------------------------------------------------------------------------------! SUBROUTINE get_variable_4d_real( id, variable_name, i, j, var, n3, n4 ) #if defined( __netcdf ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp), INTENT(IN) :: i !< index along x direction INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp), INTENT(IN) :: j !< index along y direction INTEGER(iwp), INTENT(IN) :: n3 !< number of data-points along 3rd dimension INTEGER(iwp), INTENT(IN) :: n4 !< number of data-points along 4th dimension INTEGER(iwp), DIMENSION(3) :: id_dim REAL(wp), DIMENSION(:,:), INTENT(INOUT) :: var !< variable to be read ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, var, & start = (/ i+1, j+1, 1, 1 /), & count = (/ 1, 1, n3, n4 /) ) CALL handle_error( 'get_variable_4d_real', 533 ) #endif END SUBROUTINE get_variable_4d_real !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads a 3D float variable at left, right, north, south and top boundaries. !------------------------------------------------------------------------------! SUBROUTINE get_variable_bc( id, variable_name, t_start, & i2_s, count_2, i3_s, count_3, var ) #if defined( __netcdf ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*) :: variable_name !< variable name INTEGER(iwp) :: count_2 !< number of elements in second dimension INTEGER(iwp) :: count_3 !< number of elements in third dimension (usually 1) INTEGER(iwp) :: i2_s !< start index of second dimension INTEGER(iwp) :: i3_s !< start index of third dimension INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: id_var !< variable id INTEGER(iwp) :: t_start !< start index at time dimension with respect to netcdf convention REAL(wp), DIMENSION(:), INTENT(INOUT) :: var !< input variable ! !-- Inquire variable id nc_stat = NF90_INQ_VARID( id, TRIM( variable_name ), id_var ) ! !-- Get variable nc_stat = NF90_GET_VAR( id, id_var, var, & start = (/ i3_s, i2_s, t_start /), & count = (/ count_3, count_2, 1 /) ) CALL handle_error( 'get_variable_bc', 532 ) #endif END SUBROUTINE get_variable_bc !------------------------------------------------------------------------------! ! Description: ! ------------ !> Inquires the number of variables in a file !------------------------------------------------------------------------------! SUBROUTINE inquire_num_variables( id, num_vars ) #if defined( __netcdf ) USE indices USE pegrid IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp), INTENT(INOUT) :: num_vars !< number of variables in a file nc_stat = NF90_INQUIRE( id, NVARIABLES = num_vars ) CALL handle_error( 'inquire_num_variables', 534 ) #endif END SUBROUTINE inquire_num_variables !------------------------------------------------------------------------------! ! Description: ! ------------ !> Inquires the variable names belonging to a file. !------------------------------------------------------------------------------! SUBROUTINE inquire_variable_names( id, var_names ) #if defined( __netcdf ) USE indices USE pegrid IMPLICIT NONE CHARACTER(LEN=*), DIMENSION(:), INTENT(INOUT) :: var_names !< return variable - variable names INTEGER(iwp) :: i !< loop variable INTEGER(iwp), INTENT(IN) :: id !< file id INTEGER(iwp) :: num_vars !< number of variables (unused return parameter) INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: varids !< dummy array to strore variable ids temporarily ALLOCATE( varids(1:SIZE(var_names)) ) nc_stat = NF90_INQ_VARIDS( id, NVARS = num_vars, VARIDS = varids ) CALL handle_error( 'inquire_variable_names', 535 ) DO i = 1, SIZE(var_names) nc_stat = NF90_INQUIRE_VARIABLE( id, varids(i), NAME = var_names(i) ) CALL handle_error( 'inquire_variable_names', 535 ) ENDDO DEALLOCATE( varids ) #endif END SUBROUTINE inquire_variable_names !------------------------------------------------------------------------------! ! Description: ! ------------ !> Prints out a text message corresponding to the current status. !------------------------------------------------------------------------------! SUBROUTINE handle_error( routine_name, errno ) #if defined( __netcdf ) USE control_parameters, & ONLY: message_string IMPLICIT NONE CHARACTER(LEN=6) :: message_identifier CHARACTER(LEN=*) :: routine_name INTEGER(iwp) :: errno IF ( nc_stat /= NF90_NOERR ) THEN WRITE( message_identifier, '(''NC'',I4.4)' ) errno message_string = TRIM( NF90_STRERROR( nc_stat ) ) CALL message( routine_name, message_identifier, 2, 2, 0, 6, 1 ) ENDIF #endif END SUBROUTINE handle_error END MODULE netcdf_data_input_mod