!> @file ls_forcing_mod.f90 !------------------------------------------------------------------------------! ! This file is part of PALM. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2017 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: ls_forcing_mod.f90 2233 2017-05-30 18:08:54Z maronga $ ! ! 2232 2017-05-30 17:47:52Z suehring ! Adopt to new topography structure, even though no well-conceived topography ! concept concerning nudging and large-scale for exist so far. ! ! Also adopt to new surface-structure, i.e. fluxes are obtained from data-types ! ! 2104 2017-01-06 16:01:15Z knoop ! Bugfix for approximation related flux input conversion ! ! 2071 2016-11-17 11:22:14Z maronga ! Small bugfix (Resler) ! ! 2037 2016-10-26 11:15:40Z knoop ! Anelastic approximation implemented ! ! 2000 2016-08-20 18:09:15Z knoop ! Forced header and separation lines into 80 columns ! ! 1850 2016-04-08 13:29:27Z maronga ! Module renamed ! ! ! 1682 2015-10-07 23:56:08Z knoop ! Code annotations made doxygen readable ! ! 1602 2015-06-22 07:50:56Z heinze ! PA0370 changed to PA0363 ! ! 1382 2014-04-30 12:15:41Z boeske ! Renamed variables which store large scale forcing tendencies ! pt_lsa -> td_lsa_lpt, pt_subs -> td_sub_lpt, ! q_lsa -> td_lsa_q, q_subs -> td_sub_q, ! high|lowpt_lsa -> high|low_td_lsa_lpt, ... ! ! 1365 2014-04-22 15:03:56Z boeske ! Usage of large scale forcing for pt and q enabled: ! Added new subroutine ls_advec for horizontal large scale advection and large ! scale subsidence, ! error message in init_ls_forcing specified, ! variable t renamed nt ! ! 1353 2014-04-08 15:21:23Z heinze ! REAL constants provided with KIND-attribute ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! ! 1318 2014-03-17 13:35:16Z raasch ! module interfaces removed ! ! 1299 2014-03-06 13:15:21Z heinze ! Ensure a zero large scale vertical velocity at the surface ! Bugfix: typo in case of boundary condition in if-clause ! ! 1276 2014-01-15 13:40:41Z heinze ! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars ! ! 1249 2013-11-06 10:45:47Z heinze ! remove call of user module ! reformatting ! ! 1241 2013-10-30 11:36:58Z heinze ! Initial revision ! ! Description: ! ------------ !> Calculates large scale forcings (geostrophic wind and subsidence velocity) as !> well as surfaces fluxes dependent on time given in an external file (LSF_DATA). !> Code is based in parts on DALES and UCLA-LES. !--------------------------------------------------------------------------------! MODULE ls_forcing_mod PRIVATE PUBLIC init_ls_forcing, ls_forcing_surf, ls_forcing_vert, ls_advec SAVE INTERFACE ls_advec MODULE PROCEDURE ls_advec MODULE PROCEDURE ls_advec_ij END INTERFACE ls_advec CONTAINS !------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !------------------------------------------------------------------------------! SUBROUTINE init_ls_forcing USE arrays_3d, & ONLY: p_surf, pt_surf, q_surf, qsws_surf, shf_surf, td_lsa_lpt, & td_lsa_q, td_sub_lpt, td_sub_q, time_surf, time_vert, & ug_vert, vg_vert, wsubs_vert, zu USE control_parameters, & ONLY: end_time, lsf_surf, lsf_vert, message_string, nlsf USE indices, & ONLY: ngp_sums_ls, nzb, nz, nzt USE kinds USE statistics, & ONLY: sums_ls_l IMPLICIT NONE CHARACTER(100) :: chmess !< CHARACTER(1) :: hash !< INTEGER(iwp) :: ierrn !< INTEGER(iwp) :: finput = 90 !< INTEGER(iwp) :: k !< INTEGER(iwp) :: nt !< REAL(wp) :: fac !< REAL(wp) :: highheight !< REAL(wp) :: highug_vert !< REAL(wp) :: highvg_vert !< REAL(wp) :: highwsubs_vert !< REAL(wp) :: lowheight !< REAL(wp) :: lowug_vert !< REAL(wp) :: lowvg_vert !< REAL(wp) :: lowwsubs_vert !< REAL(wp) :: high_td_lsa_lpt !< REAL(wp) :: low_td_lsa_lpt !< REAL(wp) :: high_td_lsa_q !< REAL(wp) :: low_td_lsa_q !< REAL(wp) :: high_td_sub_lpt !< REAL(wp) :: low_td_sub_lpt !< REAL(wp) :: high_td_sub_q !< REAL(wp) :: low_td_sub_q !< REAL(wp) :: r_dummy !< ALLOCATE( p_surf(0:nlsf), pt_surf(0:nlsf), q_surf(0:nlsf), & qsws_surf(0:nlsf), shf_surf(0:nlsf), & td_lsa_lpt(nzb:nzt+1,0:nlsf), td_lsa_q(nzb:nzt+1,0:nlsf), & td_sub_lpt(nzb:nzt+1,0:nlsf), td_sub_q(nzb:nzt+1,0:nlsf), & time_vert(0:nlsf), time_surf(0:nlsf), & ug_vert(nzb:nzt+1,0:nlsf), vg_vert(nzb:nzt+1,0:nlsf), & wsubs_vert(nzb:nzt+1,0:nlsf) ) p_surf = 0.0_wp; pt_surf = 0.0_wp; q_surf = 0.0_wp; qsws_surf = 0.0_wp shf_surf = 0.0_wp; time_vert = 0.0_wp; td_lsa_lpt = 0.0_wp td_lsa_q = 0.0_wp; td_sub_lpt = 0.0_wp; td_sub_q = 0.0_wp time_surf = 0.0_wp; ug_vert = 0.0_wp; vg_vert = 0.0_wp wsubs_vert = 0.0_wp ! !-- Array for storing large scale forcing and nudging tendencies at each !-- timestep for data output ALLOCATE( sums_ls_l(nzb:nzt+1,0:7) ) sums_ls_l = 0.0_wp ngp_sums_ls = (nz+2)*6 OPEN ( finput, FILE='LSF_DATA', STATUS='OLD', & FORM='FORMATTED', IOSTAT=ierrn ) IF ( ierrn /= 0 ) THEN message_string = 'file LSF_DATA does not exist' CALL message( 'ls_forcing', 'PA0368', 1, 2, 0, 6, 0 ) ENDIF ierrn = 0 ! !-- First three lines of LSF_DATA contain header READ ( finput, FMT='(a100)', IOSTAT=ierrn ) chmess READ ( finput, FMT='(a100)', IOSTAT=ierrn ) chmess READ ( finput, FMT='(a100)', IOSTAT=ierrn ) chmess IF ( ierrn /= 0 ) THEN message_string = 'errors in file LSF_DATA' CALL message( 'ls_forcing', 'PA0369', 1, 2, 0, 6, 0 ) ENDIF ! !-- Surface values are read in nt = 0 ierrn = 0 DO WHILE ( time_surf(nt) < end_time ) nt = nt + 1 READ ( finput, *, IOSTAT = ierrn ) time_surf(nt), shf_surf(nt), & qsws_surf(nt), pt_surf(nt), & q_surf(nt), p_surf(nt) IF ( ierrn < 0 ) THEN WRITE ( message_string, * ) 'No time dependent surface variables ',& 'in&LSF_DATA for end of run found' CALL message( 'ls_forcing', 'PA0363', 1, 2, 0, 6, 0 ) ENDIF ENDDO IF ( time_surf(1) > end_time ) THEN WRITE ( message_string, * ) 'No time dependent surface variables in ',& '&LSF_DATA for end of run found - ', & 'lsf_surf is set to FALSE' CALL message( 'ls_forcing', 'PA0371', 0, 0, 0, 6, 0 ) lsf_surf = .FALSE. ENDIF ! !-- Go to the end of the list with surface variables DO WHILE ( ierrn == 0 ) READ ( finput, *, IOSTAT = ierrn ) r_dummy ENDDO ! !-- Profiles of ug, vg and w_subs are read in (large scale forcing) nt = 0 DO WHILE ( time_vert(nt) < end_time ) nt = nt + 1 hash = "#" ierrn = 1 ! not zero ! !-- Search for the next line consisting of "# time", !-- from there onwards the profiles will be read DO WHILE ( .NOT. ( hash == "#" .AND. ierrn == 0 ) ) READ ( finput, *, IOSTAT=ierrn ) hash, time_vert(nt) IF ( ierrn < 0 ) THEN WRITE( message_string, * ) 'No time dependent vertical profiles',& ' in&LSF_DATA for end of run found' CALL message( 'ls_forcing', 'PA0372', 1, 2, 0, 6, 0 ) ENDIF ENDDO IF ( nt == 1 .AND. time_vert(nt) > end_time ) EXIT READ ( finput, *, IOSTAT=ierrn ) lowheight, lowug_vert, lowvg_vert, & lowwsubs_vert, low_td_lsa_lpt, & low_td_lsa_q, low_td_sub_lpt, & low_td_sub_q IF ( ierrn /= 0 ) THEN message_string = 'errors in file LSF_DATA' CALL message( 'ls_forcing', 'PA0369', 1, 2, 0, 6, 0 ) ENDIF READ ( finput, *, IOSTAT=ierrn ) highheight, highug_vert, & highvg_vert, highwsubs_vert, & high_td_lsa_lpt, high_td_lsa_q, & high_td_sub_lpt, high_td_sub_q IF ( ierrn /= 0 ) THEN message_string = 'errors in file LSF_DATA' CALL message( 'ls_forcing', 'PA0369', 1, 2, 0, 6, 0 ) ENDIF DO k = nzb, nzt+1 IF ( highheight < zu(k) ) THEN lowheight = highheight lowug_vert = highug_vert lowvg_vert = highvg_vert lowwsubs_vert = highwsubs_vert low_td_lsa_lpt = high_td_lsa_lpt low_td_lsa_q = high_td_lsa_q low_td_sub_lpt = high_td_sub_lpt low_td_sub_q = high_td_sub_q ierrn = 0 READ ( finput, *, IOSTAT=ierrn ) highheight, highug_vert, & highvg_vert, highwsubs_vert, & high_td_lsa_lpt, & high_td_lsa_q, & high_td_sub_lpt, high_td_sub_q IF ( ierrn /= 0 ) THEN WRITE( message_string, * ) 'zu(nzt+1) = ', zu(nzt+1), 'm ', & 'is higher than the maximum height in LSF_DATA which ',& 'is ', lowheight, 'm. Interpolation on PALM ', & 'grid is not possible.' CALL message( 'ls_forcing', 'PA0395', 1, 2, 0, 6, 0 ) ENDIF ENDIF ! !-- Interpolation of prescribed profiles in space fac = (highheight-zu(k))/(highheight - lowheight) ug_vert(k,nt) = fac * lowug_vert & + ( 1.0_wp - fac ) * highug_vert vg_vert(k,nt) = fac * lowvg_vert & + ( 1.0_wp - fac ) * highvg_vert wsubs_vert(k,nt) = fac * lowwsubs_vert & + ( 1.0_wp - fac ) * highwsubs_vert td_lsa_lpt(k,nt) = fac * low_td_lsa_lpt & + ( 1.0_wp - fac ) * high_td_lsa_lpt td_lsa_q(k,nt) = fac * low_td_lsa_q & + ( 1.0_wp - fac ) * high_td_lsa_q td_sub_lpt(k,nt) = fac * low_td_sub_lpt & + ( 1.0_wp - fac ) * high_td_sub_lpt td_sub_q(k,nt) = fac * low_td_sub_q & + ( 1.0_wp - fac ) * high_td_sub_q ENDDO ENDDO ! !-- Large scale vertical velocity has to be zero at the surface wsubs_vert(nzb,:) = 0.0_wp IF ( time_vert(1) > end_time ) THEN WRITE ( message_string, * ) 'Time dependent large scale profile ', & 'forcing from&LSF_DATA sets in after end of ' , & 'simulation - lsf_vert is set to FALSE' CALL message( 'ls_forcing', 'PA0373', 0, 0, 0, 6, 0 ) lsf_vert = .FALSE. ENDIF CLOSE( finput ) END SUBROUTINE init_ls_forcing !------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !------------------------------------------------------------------------------! SUBROUTINE ls_forcing_surf ( time ) USE arrays_3d, & ONLY: p_surf, pt_surf, q_surf, qsws_surf, shf_surf, & heatflux_input_conversion, waterflux_input_conversion, & time_surf, time_vert, ug, ug_vert, vg, vg_vert USE control_parameters, & ONLY: bc_q_b, ibc_pt_b, ibc_q_b, pt_surface, q_surface, & surface_pressure USE indices, & ONLY: nzb USE kinds USE surface_mod, & ONLY: surf_def_h, surf_lsm_h, surf_usm_h IMPLICIT NONE INTEGER(iwp) :: nt !< REAL(wp) :: dum_surf_flux !< REAL(wp) :: fac !< REAL(wp), INTENT(in) :: time !< ! !-- Interpolation in time of LSF_DATA at the surface nt = 1 DO WHILE ( time > time_surf(nt) ) nt = nt + 1 ENDDO IF ( time /= time_surf(nt) ) THEN nt = nt - 1 ENDIF fac = ( time -time_surf(nt) ) / ( time_surf(nt+1) - time_surf(nt) ) IF ( ibc_pt_b == 0 ) THEN ! !-- In case of Dirichlet boundary condition shf must not !-- be set - it is calculated via MOST in prandtl_fluxes pt_surface = pt_surf(nt) + fac * ( pt_surf(nt+1) - pt_surf(nt) ) ELSEIF ( ibc_pt_b == 1 ) THEN ! !-- In case of Neumann boundary condition pt_surface is needed for !-- calculation of reference density dum_surf_flux = ( shf_surf(nt) + fac * & ( shf_surf(nt+1) - shf_surf(nt) ) & ) * heatflux_input_conversion(nzb) ! !-- Save surface sensible heat flux on default, natural and urban surface !-- type, if required IF ( surf_def_h(0)%ns >= 1 ) surf_def_h(0)%shf(:) = dum_surf_flux IF ( surf_lsm_h%ns >= 1 ) surf_lsm_h%shf(:) = dum_surf_flux IF ( surf_usm_h%ns >= 1 ) surf_usm_h%shf(:) = dum_surf_flux pt_surface = pt_surf(nt) + fac * ( pt_surf(nt+1) - pt_surf(nt) ) ENDIF IF ( ibc_q_b == 0 ) THEN ! !-- In case of Dirichlet boundary condition qsws must not !-- be set - it is calculated via MOST in prandtl_fluxes q_surface = q_surf(nt) + fac * ( q_surf(nt+1) - q_surf(nt) ) ELSEIF ( ibc_q_b == 1 ) THEN dum_surf_flux = ( qsws_surf(nt) + fac * & ( qsws_surf(nt+1) - qsws_surf(nt) ) & ) * waterflux_input_conversion(nzb) ! !-- Save surface sensible heat flux on default, natural and urban surface !-- type, if required IF ( surf_def_h(0)%ns >= 1 ) surf_def_h(0)%qsws(:) = dum_surf_flux IF ( surf_lsm_h%ns >= 1 ) surf_lsm_h%qsws(:) = dum_surf_flux IF ( surf_usm_h%ns >= 1 ) surf_usm_h%qsws(:) = dum_surf_flux ENDIF surface_pressure = p_surf(nt) + fac * ( p_surf(nt+1) - p_surf(nt) ) END SUBROUTINE ls_forcing_surf !------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !------------------------------------------------------------------------------! SUBROUTINE ls_forcing_vert ( time ) USE arrays_3d, & ONLY: time_vert, ug, ug_vert, vg, vg_vert, w_subs, wsubs_vert USE control_parameters, & ONLY: large_scale_subsidence USE kinds IMPLICIT NONE INTEGER(iwp) :: nt !< REAL(wp) :: fac !< REAL(wp), INTENT(in) :: time !< ! !-- Interpolation in time of LSF_DATA for ug, vg and w_subs nt = 1 DO WHILE ( time > time_vert(nt) ) nt = nt + 1 ENDDO IF ( time /= time_vert(nt) ) THEN nt = nt - 1 ENDIF fac = ( time-time_vert(nt) ) / ( time_vert(nt+1)-time_vert(nt) ) ug = ug_vert(:,nt) + fac * ( ug_vert(:,nt+1) - ug_vert(:,nt) ) vg = vg_vert(:,nt) + fac * ( vg_vert(:,nt+1) - vg_vert(:,nt) ) IF ( large_scale_subsidence ) THEN w_subs = wsubs_vert(:,nt) & + fac * ( wsubs_vert(:,nt+1) - wsubs_vert(:,nt) ) ENDIF END SUBROUTINE ls_forcing_vert !------------------------------------------------------------------------------! ! Description: ! ------------ !> Call for all grid points !------------------------------------------------------------------------------! SUBROUTINE ls_advec ( time, prog_var ) USE arrays_3d, & ONLY: td_lsa_lpt, td_lsa_q, td_sub_lpt, td_sub_q, tend, time_vert USE control_parameters, & ONLY: large_scale_subsidence, use_subsidence_tendencies USE indices USE kinds IMPLICIT NONE CHARACTER (LEN=*) :: prog_var !< REAL(wp), INTENT(in) :: time !< REAL(wp) :: fac !< INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: nt !< ! !-- Interpolation in time of LSF_DATA nt = 1 DO WHILE ( time > time_vert(nt) ) nt = nt + 1 ENDDO IF ( time /= time_vert(nt) ) THEN nt = nt - 1 ENDIF fac = ( time-time_vert(nt) ) / ( time_vert(nt+1)-time_vert(nt) ) ! !-- Add horizontal large scale advection tendencies of pt and q SELECT CASE ( prog_var ) CASE ( 'pt' ) DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt tend(k,j,i) = tend(k,j,i) + td_lsa_lpt(k,nt) + fac * & ( td_lsa_lpt(k,nt+1) - td_lsa_lpt(k,nt) ) *& MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO ENDDO ENDDO CASE ( 'q' ) DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt tend(k,j,i) = tend(k,j,i) + td_lsa_q(k,nt) + fac * & ( td_lsa_q(k,nt+1) - td_lsa_q(k,nt) ) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO ENDDO ENDDO END SELECT ! !-- Subsidence of pt and q with prescribed subsidence tendencies IF ( large_scale_subsidence .AND. use_subsidence_tendencies ) THEN SELECT CASE ( prog_var ) CASE ( 'pt' ) DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt tend(k,j,i) = tend(k,j,i) + td_sub_lpt(k,nt) + fac * & ( td_sub_lpt(k,nt+1) - td_sub_lpt(k,nt) )*& MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO ENDDO ENDDO CASE ( 'q' ) DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt tend(k,j,i) = tend(k,j,i) + td_sub_q(k,nt) + fac * & ( td_sub_q(k,nt+1) - td_sub_q(k,nt) ) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO ENDDO ENDDO END SELECT ENDIF END SUBROUTINE ls_advec !------------------------------------------------------------------------------! ! Description: ! ------------ !> Call for grid point i,j !------------------------------------------------------------------------------! SUBROUTINE ls_advec_ij ( i, j, time, prog_var ) USE arrays_3d, & ONLY: td_lsa_lpt, td_lsa_q, td_sub_lpt, td_sub_q, tend, time_vert USE control_parameters, & ONLY: large_scale_subsidence, use_subsidence_tendencies USE indices USE kinds IMPLICIT NONE CHARACTER (LEN=*) :: prog_var !< REAL(wp), INTENT(in) :: time !< REAL(wp) :: fac !< INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: nt !< ! !-- Interpolation in time of LSF_DATA nt = 1 DO WHILE ( time > time_vert(nt) ) nt = nt + 1 ENDDO IF ( time /= time_vert(nt) ) THEN nt = nt - 1 ENDIF fac = ( time-time_vert(nt) ) / ( time_vert(nt+1)-time_vert(nt) ) ! !-- Add horizontal large scale advection tendencies of pt and q SELECT CASE ( prog_var ) CASE ( 'pt' ) DO k = nzb+1, nzt tend(k,j,i) = tend(k,j,i) + td_lsa_lpt(k,nt) & + fac * ( td_lsa_lpt(k,nt+1) - td_lsa_lpt(k,nt) )*& MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO CASE ( 'q' ) DO k = nzb+1, nzt tend(k,j,i) = tend(k,j,i) + td_lsa_q(k,nt) & + fac * ( td_lsa_q(k,nt+1) - td_lsa_q(k,nt) ) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO END SELECT ! !-- Subsidence of pt and q with prescribed profiles IF ( large_scale_subsidence .AND. use_subsidence_tendencies ) THEN SELECT CASE ( prog_var ) CASE ( 'pt' ) DO k = nzb+1, nzt tend(k,j,i) = tend(k,j,i) + td_sub_lpt(k,nt) + fac * & ( td_sub_lpt(k,nt+1) - td_sub_lpt(k,nt) ) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO CASE ( 'q' ) DO k = nzb+1, nzt tend(k,j,i) = tend(k,j,i) + td_sub_q(k,nt) + fac * & ( td_sub_q(k,nt+1) - td_sub_q(k,nt) ) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO END SELECT ENDIF END SUBROUTINE ls_advec_ij END MODULE ls_forcing_mod