SUBROUTINE lpm_init_sgs_tke !--------------------------------------------------------------------------------! ! This file is part of PALM. ! ! PALM is free software: you can redistribute it and/or modify it under the terms ! of the GNU General Public License as published by the Free Software Foundation, ! either version 3 of the License, or (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2014 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: lpm_init_sgs_tke.f90 1360 2014-04-11 17:20:32Z witha $ ! ! 1359 2014-04-11 17:15:14Z hoffmann ! New particle structure integrated. ! Kind definition added to all floating point numbers. ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! ! 1036 2012-10-22 13:43:42Z raasch ! code put under GPL (PALM 3.9) ! ! 849 2012-03-15 10:35:09Z raasch ! initial revision (former part of advec_particles) ! ! ! Description: ! ------------ ! Calculates quantities required for considering the SGS velocity fluctuations ! in the particle transport by a stochastic approach. The respective ! quantities are: SGS-TKE gradients and horizontally averaged profiles of the ! SGS TKE and the resolved-scale velocity variances. !------------------------------------------------------------------------------! USE arrays_3d, & ONLY: de_dx, de_dy, de_dz, diss, e, u, v, w, zu USE grid_variables, & ONLY: ddx, ddy USE indices, & ONLY: nbgp, ngp_2dh_outer, nx, nxl, nxr, ny, nyn, nys, nz, nzb, & nzb_s_inner, nzb_s_outer, nzt USE kinds USE particle_attributes, & ONLY: sgs_wfu_part, sgs_wfv_part, sgs_wfw_part USE pegrid USE statistics, & ONLY: flow_statistics_called, hom, sums, sums_l IMPLICIT NONE INTEGER(iwp) :: i !: INTEGER(iwp) :: j !: INTEGER(iwp) :: k !: ! !-- TKE gradient along x and y DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 IF ( k <= nzb_s_inner(j,i-1) .AND. k > nzb_s_inner(j,i) .AND. & k > nzb_s_inner(j,i+1) ) & THEN de_dx(k,j,i) = 2.0_wp * sgs_wfu_part * & ( e(k,j,i+1) - e(k,j,i) ) * ddx ELSEIF ( k > nzb_s_inner(j,i-1) .AND. k > nzb_s_inner(j,i) & .AND. k <= nzb_s_inner(j,i+1) ) & THEN de_dx(k,j,i) = 2.0_wp * sgs_wfu_part * & ( e(k,j,i) - e(k,j,i-1) ) * ddx ELSEIF ( k < nzb_s_inner(j,i) .AND. k < nzb_s_inner(j,i+1) ) & THEN de_dx(k,j,i) = 0.0_wp ELSEIF ( k < nzb_s_inner(j,i-1) .AND. k < nzb_s_inner(j,i) ) & THEN de_dx(k,j,i) = 0.0_wp ELSE de_dx(k,j,i) = sgs_wfu_part * ( e(k,j,i+1) - e(k,j,i-1) ) * ddx ENDIF IF ( k <= nzb_s_inner(j-1,i) .AND. k > nzb_s_inner(j,i) .AND. & k > nzb_s_inner(j+1,i) ) & THEN de_dy(k,j,i) = 2.0_wp * sgs_wfv_part * & ( e(k,j+1,i) - e(k,j,i) ) * ddy ELSEIF ( k > nzb_s_inner(j-1,i) .AND. k > nzb_s_inner(j,i) & .AND. k <= nzb_s_inner(j+1,i) ) & THEN de_dy(k,j,i) = 2.0_wp * sgs_wfv_part * & ( e(k,j,i) - e(k,j-1,i) ) * ddy ELSEIF ( k < nzb_s_inner(j,i) .AND. k < nzb_s_inner(j+1,i) ) & THEN de_dy(k,j,i) = 0.0_wp ELSEIF ( k < nzb_s_inner(j-1,i) .AND. k < nzb_s_inner(j,i) ) & THEN de_dy(k,j,i) = 0.0_wp ELSE de_dy(k,j,i) = sgs_wfv_part * ( e(k,j+1,i) - e(k,j-1,i) ) * ddy ENDIF ENDDO ENDDO ENDDO ! !-- TKE gradient along z, including bottom and top boundary conditions DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+2, nzt-1 de_dz(k,j,i) = 2.0_wp * sgs_wfw_part * & ( e(k+1,j,i) - e(k-1,j,i) ) / ( zu(k+1)-zu(k-1) ) ENDDO k = nzb_s_inner(j,i) de_dz(nzb:k,j,i) = 0.0_wp de_dz(k+1,j,i) = 2.0_wp * sgs_wfw_part * & ( e(k+2,j,i) - e(k+1,j,i) ) / ( zu(k+2) - zu(k+1) ) de_dz(nzt,j,i) = 0.0_wp de_dz(nzt+1,j,i) = 0.0_wp ENDDO ENDDO ! !-- Lateral boundary conditions CALL exchange_horiz( de_dx, nbgp ) CALL exchange_horiz( de_dy, nbgp ) CALL exchange_horiz( de_dz, nbgp ) CALL exchange_horiz( diss, nbgp ) ! !-- Calculate the horizontally averaged profiles of SGS TKE and resolved !-- velocity variances (they may have been already calculated in routine !-- flow_statistics). IF ( .NOT. flow_statistics_called ) THEN ! !-- First calculate horizontally averaged profiles of the horizontal !-- velocities. sums_l(:,1,0) = 0.0_wp sums_l(:,2,0) = 0.0_wp DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_outer(j,i), nzt+1 sums_l(k,1,0) = sums_l(k,1,0) + u(k,j,i) sums_l(k,2,0) = sums_l(k,2,0) + v(k,j,i) ENDDO ENDDO ENDDO #if defined( __parallel ) ! !-- Compute total sum from local sums IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) #else sums(:,1) = sums_l(:,1,0) sums(:,2) = sums_l(:,2,0) #endif ! !-- Final values are obtained by division by the total number of grid !-- points used for the summation. hom(:,1,1,0) = sums(:,1) / ngp_2dh_outer(:,0) ! u hom(:,1,2,0) = sums(:,2) / ngp_2dh_outer(:,0) ! v ! !-- Now calculate the profiles of SGS TKE and the resolved-scale !-- velocity variances sums_l(:,8,0) = 0.0_wp sums_l(:,30,0) = 0.0_wp sums_l(:,31,0) = 0.0_wp sums_l(:,32,0) = 0.0_wp DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_outer(j,i), nzt+1 sums_l(k,8,0) = sums_l(k,8,0) + e(k,j,i) sums_l(k,30,0) = sums_l(k,30,0) + ( u(k,j,i) - hom(k,1,1,0) )**2 sums_l(k,31,0) = sums_l(k,31,0) + ( v(k,j,i) - hom(k,1,2,0) )**2 sums_l(k,32,0) = sums_l(k,32,0) + w(k,j,i)**2 ENDDO ENDDO ENDDO #if defined( __parallel ) ! !-- Compute total sum from local sums IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,8,0), sums(nzb,8), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,30,0), sums(nzb,30), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,31,0), sums(nzb,31), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,32,0), sums(nzb,32), nzt+2-nzb, & MPI_REAL, MPI_SUM, comm2d, ierr ) #else sums(:,8) = sums_l(:,8,0) sums(:,30) = sums_l(:,30,0) sums(:,31) = sums_l(:,31,0) sums(:,32) = sums_l(:,32,0) #endif ! !-- Final values are obtained by division by the total number of grid !-- points used for the summation. hom(:,1,8,0) = sums(:,8) / ngp_2dh_outer(:,0) ! e hom(:,1,30,0) = sums(:,30) / ngp_2dh_outer(:,0) ! u*2 hom(:,1,31,0) = sums(:,31) / ngp_2dh_outer(:,0) ! v*2 hom(:,1,32,0) = sums(:,32) / ngp_2dh_outer(:,0) ! w*2 ENDIF END SUBROUTINE lpm_init_sgs_tke