source: palm/trunk/SOURCE/lpm_init.f90 @ 1314

Last change on this file since 1314 was 1314, checked in by suehring, 8 years ago

Vertical logarithmic interpolation of horizontal particle speed for particles
between roughness height and first vertical grid level.

  • Property svn:keywords set to Id
File size: 23.6 KB
Line 
1 SUBROUTINE lpm_init
2
3!--------------------------------------------------------------------------------!
4! This file is part of PALM.
5!
6! PALM is free software: you can redistribute it and/or modify it under the terms
7! of the GNU General Public License as published by the Free Software Foundation,
8! either version 3 of the License, or (at your option) any later version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2014 Leibniz Universitaet Hannover
18!--------------------------------------------------------------------------------!
19!
20! Current revisions:
21! -----------------
22! Vertical logarithmic interpolation of horizontal particle speed for particles
23! between roughness height and first vertical grid level.
24!
25! Former revisions:
26! -----------------
27! $Id: lpm_init.f90 1314 2014-03-14 18:25:17Z suehring $
28!
29! 1092 2013-02-02 11:24:22Z raasch
30! unused variables removed
31!
32! 1036 2012-10-22 13:43:42Z raasch
33! code put under GPL (PALM 3.9)
34!
35! 849 2012-03-15 10:35:09Z raasch
36! routine renamed: init_particles -> lpm_init
37! de_dx, de_dy, de_dz are allocated here (instead of automatic arrays in
38! advec_particles),
39! sort_particles renamed lpm_sort_arrays, user_init_particles renamed lpm_init
40!
41! 828 2012-02-21 12:00:36Z raasch
42! call of init_kernels, particle feature color renamed class
43!
44! 824 2012-02-17 09:09:57Z raasch
45! particle attributes speed_x|y|z_sgs renamed rvar1|2|3,
46! array particles implemented as pointer
47!
48! 667 2010-12-23 12:06:00Z suehring/gryschka
49! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng for allocation
50! of arrays.
51!
52! 622 2010-12-10 08:08:13Z raasch
53! optional barriers included in order to speed up collective operations
54!
55! 336 2009-06-10 11:19:35Z raasch
56! Maximum number of tails is calculated from maximum number of particles and
57! skip_particles_for_tail,
58! output of messages replaced by message handling routine
59! Bugfix: arrays for tails are allocated with a minimum size of 10 tails if
60! there is no tail initially
61!
62! 150 2008-02-29 08:19:58Z raasch
63! Setting offset_ocean_* needed for calculating vertical indices within ocean
64! runs
65!
66! 117 2007-10-11 03:27:59Z raasch
67! Sorting of particles only in case of cloud droplets
68!
69! 106 2007-08-16 14:30:26Z raasch
70! variable iran replaced by iran_part
71!
72! 82 2007-04-16 15:40:52Z raasch
73! Preprocessor directives for old systems removed
74!
75! 70 2007-03-18 23:46:30Z raasch
76! displacements for mpi_particle_type changed, age_m initialized,
77! particles-package is now part of the default code
78!
79! 16 2007-02-15 13:16:47Z raasch
80! Bugfix: MPI_REAL in MPI_ALLREDUCE replaced by MPI_INTEGER
81!
82! r4 | raasch | 2007-02-13 12:33:16 +0100 (Tue, 13 Feb 2007)
83! RCS Log replace by Id keyword, revision history cleaned up
84!
85! Revision 1.24  2007/02/11 13:00:17  raasch
86! Bugfix: allocation of tail_mask and new_tail_id in case of restart-runs
87! Bugfix: __ was missing in a cpp-directive
88!
89! Revision 1.1  1999/11/25 16:22:38  raasch
90! Initial revision
91!
92!
93! Description:
94! ------------
95! This routine initializes a set of particles and their attributes (position,
96! radius, ..) which are used by the Lagrangian particle model (see lpm).
97!------------------------------------------------------------------------------!
98
99    USE arrays_3d
100    USE cloud_parameters
101    USE control_parameters
102    USE dvrp_variables
103    USE grid_variables
104    USE indices
105    USE lpm_collision_kernels_mod
106    USE particle_attributes
107    USE pegrid
108    USE random_function_mod
109
110
111    IMPLICIT NONE
112
113    INTEGER ::  i, j, k, n, nn
114#if defined( __parallel )
115    INTEGER, DIMENSION(3) ::  blocklengths, displacements, types
116#endif
117    LOGICAL ::  uniform_particles_l
118    REAL    ::  height_int, height_p, pos_x, pos_y, pos_z, z_p,            &
119                z0_av_local = 0.0
120
121
122#if defined( __parallel )
123!
124!-- Define MPI derived datatype for FORTRAN datatype particle_type (see module
125!-- particle_attributes). Integer length is 4 byte, Real is 8 byte
126    blocklengths(1)  = 19;  blocklengths(2)  =   4;  blocklengths(3)  =   1
127    displacements(1) =  0;  displacements(2) = 152;  displacements(3) = 168
128
129    types(1) = MPI_REAL
130    types(2) = MPI_INTEGER
131    types(3) = MPI_UB
132    CALL MPI_TYPE_STRUCT( 3, blocklengths, displacements, types, &
133                          mpi_particle_type, ierr )
134    CALL MPI_TYPE_COMMIT( mpi_particle_type, ierr )
135#endif
136
137!
138!-- In case of oceans runs, the vertical index calculations need an offset,
139!-- because otherwise the k indices will become negative
140    IF ( ocean )  THEN
141       offset_ocean_nzt    = nzt
142       offset_ocean_nzt_m1 = nzt - 1
143    ENDIF
144
145
146!
147!-- Check the number of particle groups.
148    IF ( number_of_particle_groups > max_number_of_particle_groups )  THEN
149       WRITE( message_string, * ) 'max_number_of_particle_groups =',      &
150                                  max_number_of_particle_groups ,         &
151                                  '&number_of_particle_groups reset to ', &
152                                  max_number_of_particle_groups
153       CALL message( 'lpm_init', 'PA0213', 0, 1, 0, 6, 0 )
154       number_of_particle_groups = max_number_of_particle_groups
155    ENDIF
156
157!
158!-- Set default start positions, if necessary
159    IF ( psl(1) == 9999999.9 )  psl(1) = -0.5 * dx
160    IF ( psr(1) == 9999999.9 )  psr(1) = ( nx + 0.5 ) * dx
161    IF ( pss(1) == 9999999.9 )  pss(1) = -0.5 * dy
162    IF ( psn(1) == 9999999.9 )  psn(1) = ( ny + 0.5 ) * dy
163    IF ( psb(1) == 9999999.9 )  psb(1) = zu(nz/2)
164    IF ( pst(1) == 9999999.9 )  pst(1) = psb(1)
165
166    IF ( pdx(1) == 9999999.9  .OR.  pdx(1) == 0.0 )  pdx(1) = dx
167    IF ( pdy(1) == 9999999.9  .OR.  pdy(1) == 0.0 )  pdy(1) = dy
168    IF ( pdz(1) == 9999999.9  .OR.  pdz(1) == 0.0 )  pdz(1) = zu(2) - zu(1)
169
170    DO  j = 2, number_of_particle_groups
171       IF ( psl(j) == 9999999.9 )  psl(j) = psl(j-1)
172       IF ( psr(j) == 9999999.9 )  psr(j) = psr(j-1)
173       IF ( pss(j) == 9999999.9 )  pss(j) = pss(j-1)
174       IF ( psn(j) == 9999999.9 )  psn(j) = psn(j-1)
175       IF ( psb(j) == 9999999.9 )  psb(j) = psb(j-1)
176       IF ( pst(j) == 9999999.9 )  pst(j) = pst(j-1)
177       IF ( pdx(j) == 9999999.9  .OR.  pdx(j) == 0.0 )  pdx(j) = pdx(j-1)
178       IF ( pdy(j) == 9999999.9  .OR.  pdy(j) == 0.0 )  pdy(j) = pdy(j-1)
179       IF ( pdz(j) == 9999999.9  .OR.  pdz(j) == 0.0 )  pdz(j) = pdz(j-1)
180    ENDDO
181
182!
183!-- Allocate arrays required for calculating particle SGS velocities
184    IF ( use_sgs_for_particles )  THEN
185       ALLOCATE( de_dx(nzb:nzt+1,nysg:nyng,nxlg:nxrg), &
186                 de_dy(nzb:nzt+1,nysg:nyng,nxlg:nxrg), &
187                 de_dz(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
188    ENDIF
189
190!
191!-- Allocate array required for logarithmic vertical interpolation of
192!-- horizontal particle velocities between the surface and the first vertical
193!-- grid level. In order to avoid repeated CPU cost-intensive CALLS of
194!-- intrinsic FORTRAN procedure LOG(z/z0), LOG(z/z0) is precalculated for
195!-- several heights. Splitting into 20 sublayers turned out to be sufficient.
196!-- To obtain exact height levels of particles, linear interpolation is applied
197!-- (see lpm_advec.f90).
198    IF ( prandtl_layer )  THEN
199       
200       ALLOCATE ( log_z_z0(0:number_of_sublayers) ) 
201       z_p         = zu(nzb+1) - zw(nzb)
202
203!
204!--    Calculate horizontal mean value of z0 used for logartihmic
205!--    interpolation. Note: this is not exact for heterogeneous z0.
206!--    However, sensitivity studies showed that the effect is
207!--    negligible.
208       z0_av_local  = SUM( z0(nys:nyn,nxl:nxr) )
209       z0_av_global = 0.0
210
211       CALL MPI_ALLREDUCE(z0_av_local, z0_av_global, 1, MPI_REAL, MPI_SUM, &
212                          comm2d, ierr )
213
214       z0_av_global = z0_av_global  / ( ( ny + 1 ) * ( nx + 1 ) )
215!
216!--    Horizontal wind speed is zero below and at z0
217       log_z_z0(0) = 0.0   
218!
219!--    Calculate vertical depth of the sublayers
220       height_int  = ( z_p - z0_av_global ) / REAL( number_of_sublayers ) 
221!
222!--    Precalculate LOG(z/z0)
223       height_p    = 0.0
224       DO  k = 1, number_of_sublayers
225
226          height_p    = height_p + height_int
227          log_z_z0(k) = LOG( height_p / z0_av_global )
228
229       ENDDO
230
231
232    ENDIF
233
234!
235!-- Initialize collision kernels
236    IF ( collision_kernel /= 'none' )  CALL init_kernels
237
238!
239!-- For the first model run of a possible job chain initialize the
240!-- particles, otherwise read the particle data from restart file.
241    IF ( TRIM( initializing_actions ) == 'read_restart_data'  &
242         .AND.  read_particles_from_restartfile )  THEN
243
244       CALL lpm_read_restart_file
245
246    ELSE
247
248!
249!--    Allocate particle arrays and set attributes of the initial set of
250!--    particles, which can be also periodically released at later times.
251!--    Also allocate array for particle tail coordinates, if needed.
252       ALLOCATE( prt_count(nzb:nzt+1,nysg:nyng,nxlg:nxrg),       &
253                 prt_start_index(nzb:nzt+1,nysg:nyng,nxlg:nxrg), &
254                 particle_mask(maximum_number_of_particles),     &
255                 part_1(maximum_number_of_particles),            &
256                 part_2(maximum_number_of_particles)  )
257
258       particles => part_1
259
260       sort_count = 0
261
262!
263!--    Initialize all particles with dummy values (otherwise errors may
264!--    occur within restart runs). The reason for this is still not clear
265!--    and may be presumably caused by errors in the respective user-interface.
266       particles = particle_type( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, &
267                                  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, &
268                                  0.0, 0, 0, 0, 0 )
269       particle_groups = particle_groups_type( 0.0, 0.0, 0.0, 0.0 )
270
271!
272!--    Set the default particle size used for dvrp plots
273       IF ( dvrp_psize == 9999999.9 )  dvrp_psize = 0.2 * dx
274
275!
276!--    Set values for the density ratio and radius for all particle
277!--    groups, if necessary
278       IF ( density_ratio(1) == 9999999.9 )  density_ratio(1) = 0.0
279       IF ( radius(1)        == 9999999.9 )  radius(1) = 0.0
280       DO  i = 2, number_of_particle_groups
281          IF ( density_ratio(i) == 9999999.9 )  THEN
282             density_ratio(i) = density_ratio(i-1)
283          ENDIF
284          IF ( radius(i) == 9999999.9 )  radius(i) = radius(i-1)
285       ENDDO
286
287       DO  i = 1, number_of_particle_groups
288          IF ( density_ratio(i) /= 0.0  .AND.  radius(i) == 0 )  THEN
289             WRITE( message_string, * ) 'particle group #', i, 'has a', &
290                                        'density ratio /= 0 but radius = 0'
291             CALL message( 'lpm_init', 'PA0215', 1, 2, 0, 6, 0 )
292          ENDIF
293          particle_groups(i)%density_ratio = density_ratio(i)
294          particle_groups(i)%radius        = radius(i)
295       ENDDO
296
297!
298!--    Calculate particle positions and store particle attributes, if
299!--    particle is situated on this PE
300       n = 0
301
302       DO  i = 1, number_of_particle_groups
303
304          pos_z = psb(i)
305
306          DO WHILE ( pos_z <= pst(i) )
307
308             pos_y = pss(i)
309
310             DO WHILE ( pos_y <= psn(i) )
311
312                IF ( pos_y >= ( nys - 0.5 ) * dy  .AND.  &
313                     pos_y <  ( nyn + 0.5 ) * dy )  THEN
314
315                   pos_x = psl(i)
316
317                   DO WHILE ( pos_x <= psr(i) )
318
319                      IF ( pos_x >= ( nxl - 0.5 ) * dx  .AND.  &
320                           pos_x <  ( nxr + 0.5 ) * dx )  THEN
321
322                         DO  j = 1, particles_per_point
323
324                            n = n + 1
325                            IF ( n > maximum_number_of_particles )  THEN
326                               WRITE( message_string, * ) 'number of initial', &
327                                      'particles (', n, ') exceeds',           &
328                                      '&maximum_number_of_particles (',        &
329                                      maximum_number_of_particles, ') on PE ', &
330                                             myid
331                               CALL message( 'lpm_init', 'PA0216', 2, 2, -1, 6,&
332                                             1 )
333                            ENDIF
334                            particles(n)%x             = pos_x
335                            particles(n)%y             = pos_y
336                            particles(n)%z             = pos_z
337                            particles(n)%age           = 0.0
338                            particles(n)%age_m         = 0.0
339                            particles(n)%dt_sum        = 0.0
340                            particles(n)%dvrp_psize    = dvrp_psize
341                            particles(n)%e_m           = 0.0
342                            IF ( curvature_solution_effects )  THEN
343!
344!--                            Initial values (internal timesteps, derivative)
345!--                            for Rosenbrock method
346                               particles(n)%rvar1      = 1.0E-12
347                               particles(n)%rvar2      = 1.0E-3
348                               particles(n)%rvar3      = -9999999.9
349                            ELSE
350!
351!--                            Initial values for SGS velocities
352                               particles(n)%rvar1      = 0.0
353                               particles(n)%rvar2      = 0.0
354                               particles(n)%rvar3      = 0.0
355                            ENDIF
356                            particles(n)%speed_x       = 0.0
357                            particles(n)%speed_y       = 0.0
358                            particles(n)%speed_z       = 0.0
359                            particles(n)%origin_x      = pos_x
360                            particles(n)%origin_y      = pos_y
361                            particles(n)%origin_z      = pos_z
362                            particles(n)%radius      = particle_groups(i)%radius
363                            particles(n)%weight_factor =initial_weighting_factor
364                            particles(n)%class         = 1
365                            particles(n)%group         = i
366                            particles(n)%tailpoints    = 0
367                            IF ( use_particle_tails  .AND. &
368                                 MOD( n, skip_particles_for_tail ) == 0 )  THEN
369                               number_of_tails         = number_of_tails + 1
370!
371!--                            This is a temporary provisional setting (see
372!--                            further below!)
373                               particles(n)%tail_id    = number_of_tails
374                            ELSE
375                               particles(n)%tail_id    = 0
376                            ENDIF
377
378                         ENDDO
379
380                      ENDIF
381
382                      pos_x = pos_x + pdx(i)
383
384                   ENDDO
385
386                ENDIF
387
388                pos_y = pos_y + pdy(i)
389
390             ENDDO
391
392             pos_z = pos_z + pdz(i)
393
394          ENDDO
395
396       ENDDO
397
398       number_of_initial_particles = n
399       number_of_particles         = n
400
401!
402!--    Calculate the number of particles and tails of the total domain
403#if defined( __parallel )
404       IF ( collective_wait )  CALL MPI_BARRIER( comm2d, ierr )
405       CALL MPI_ALLREDUCE( number_of_particles, total_number_of_particles, 1, &
406                           MPI_INTEGER, MPI_SUM, comm2d, ierr )
407       IF ( collective_wait )  CALL MPI_BARRIER( comm2d, ierr )
408       CALL MPI_ALLREDUCE( number_of_tails, total_number_of_tails, 1, &
409                           MPI_INTEGER, MPI_SUM, comm2d, ierr )
410#else
411       total_number_of_particles = number_of_particles
412       total_number_of_tails     = number_of_tails
413#endif
414
415!
416!--    Set a seed value for the random number generator to be exclusively
417!--    used for the particle code. The generated random numbers should be
418!--    different on the different PEs.
419       iran_part = iran_part + myid
420
421!
422!--    User modification of initial particles
423       CALL user_lpm_init
424
425!
426!--    Store the initial set of particles for release at later times
427       IF ( number_of_initial_particles /= 0 )  THEN
428          ALLOCATE( initial_particles(1:number_of_initial_particles) )
429          initial_particles(1:number_of_initial_particles) = &
430                                        particles(1:number_of_initial_particles)
431       ENDIF
432
433!
434!--    Add random fluctuation to particle positions
435       IF ( random_start_position )  THEN
436
437          DO  n = 1, number_of_initial_particles
438             IF ( psl(particles(n)%group) /= psr(particles(n)%group) )  THEN
439                particles(n)%x = particles(n)%x + &
440                                 ( random_function( iran_part ) - 0.5 ) * &
441                                 pdx(particles(n)%group)
442                IF ( particles(n)%<=  ( nxl - 0.5 ) * dx )  THEN
443                   particles(n)%x = ( nxl - 0.4999999999 ) * dx
444                ELSEIF ( particles(n)%>=  ( nxr + 0.5 ) * dx )  THEN
445                   particles(n)%x = ( nxr + 0.4999999999 ) * dx
446                ENDIF
447             ENDIF
448             IF ( pss(particles(n)%group) /= psn(particles(n)%group) )  THEN
449                particles(n)%y = particles(n)%y + &
450                                 ( random_function( iran_part ) - 0.5 ) * &
451                                 pdy(particles(n)%group)
452                IF ( particles(n)%<=  ( nys - 0.5 ) * dy )  THEN
453                   particles(n)%y = ( nys - 0.4999999999 ) * dy
454                ELSEIF ( particles(n)%>=  ( nyn + 0.5 ) * dy )  THEN
455                   particles(n)%y = ( nyn + 0.4999999999 ) * dy
456                ENDIF
457             ENDIF
458             IF ( psb(particles(n)%group) /= pst(particles(n)%group) )  THEN
459                particles(n)%z = particles(n)%z + &
460                                 ( random_function( iran_part ) - 0.5 ) * &
461                                 pdz(particles(n)%group)
462             ENDIF
463          ENDDO
464       ENDIF
465
466!
467!--    Sort particles in the sequence the gridboxes are stored in the memory.
468!--    Only required if cloud droplets are used.
469       IF ( cloud_droplets )  CALL lpm_sort_arrays
470
471!
472!--    Open file for statistical informations about particle conditions
473       IF ( write_particle_statistics )  THEN
474          CALL check_open( 80 )
475          WRITE ( 80, 8000 )  current_timestep_number, simulated_time, &
476                              number_of_initial_particles,             &
477                              maximum_number_of_particles
478          CALL close_file( 80 )
479       ENDIF
480
481!
482!--    Check if particles are really uniform in color and radius (dvrp_size)
483!--    (uniform_particles is preset TRUE)
484       IF ( uniform_particles )  THEN
485          IF ( number_of_initial_particles == 0 )  THEN
486             uniform_particles_l = .TRUE.
487          ELSE
488             n = number_of_initial_particles
489             IF ( MINVAL( particles(1:n)%dvrp_psize  ) ==     &
490                  MAXVAL( particles(1:n)%dvrp_psize  )  .AND. &
491                  MINVAL( particles(1:n)%class ) ==     &
492                  MAXVAL( particles(1:n)%class ) )  THEN
493                uniform_particles_l = .TRUE.
494             ELSE
495                uniform_particles_l = .FALSE.
496             ENDIF
497          ENDIF
498
499#if defined( __parallel )
500          IF ( collective_wait )  CALL MPI_BARRIER( comm2d, ierr )
501          CALL MPI_ALLREDUCE( uniform_particles_l, uniform_particles, 1, &
502                              MPI_LOGICAL, MPI_LAND, comm2d, ierr )
503#else
504          uniform_particles = uniform_particles_l
505#endif
506
507       ENDIF
508
509!
510!--    Particles will probably become none-uniform, if their size and color
511!--    will be determined by flow variables
512       IF ( particle_color /= 'none'  .OR.  particle_dvrpsize /= 'none' )  THEN
513          uniform_particles = .FALSE.
514       ENDIF
515
516!
517!--    Set the beginning of the particle tails and their age
518       IF ( use_particle_tails )  THEN
519!
520!--       Choose the maximum number of tails with respect to the maximum number
521!--       of particles and skip_particles_for_tail
522          maximum_number_of_tails = maximum_number_of_particles / &
523                                    skip_particles_for_tail
524
525!
526!--       Create a minimum number of tails in case that there is no tail
527!--       initially (otherwise, index errors will occur when adressing the
528!--       arrays below)
529          IF ( maximum_number_of_tails == 0 )  maximum_number_of_tails = 10
530
531          ALLOCATE( particle_tail_coordinates(maximum_number_of_tailpoints,5, &
532                    maximum_number_of_tails),                                 &
533                    new_tail_id(maximum_number_of_tails),                     &
534                    tail_mask(maximum_number_of_tails) )
535
536          particle_tail_coordinates  = 0.0
537          minimum_tailpoint_distance = minimum_tailpoint_distance**2
538          number_of_initial_tails    = number_of_tails
539
540          nn = 0
541          DO  n = 1, number_of_particles
542!
543!--          Only for those particles marked above with a provisional tail_id
544!--          tails will be created. Particles now get their final tail_id.
545             IF ( particles(n)%tail_id /= 0 )  THEN
546
547                nn = nn + 1
548                particles(n)%tail_id = nn
549
550                particle_tail_coordinates(1,1,nn) = particles(n)%x
551                particle_tail_coordinates(1,2,nn) = particles(n)%y
552                particle_tail_coordinates(1,3,nn) = particles(n)%z
553                particle_tail_coordinates(1,4,nn) = particles(n)%class
554                particles(n)%tailpoints = 1
555                IF ( minimum_tailpoint_distance /= 0.0 )  THEN
556                   particle_tail_coordinates(2,1,nn) = particles(n)%x
557                   particle_tail_coordinates(2,2,nn) = particles(n)%y
558                   particle_tail_coordinates(2,3,nn) = particles(n)%z
559                   particle_tail_coordinates(2,4,nn) = particles(n)%class
560                   particle_tail_coordinates(1:2,5,nn) = 0.0
561                   particles(n)%tailpoints = 2
562                ENDIF
563
564             ENDIF
565          ENDDO
566       ENDIF
567
568!
569!--    Plot initial positions of particles (only if particle advection is
570!--    switched on from the beginning of the simulation (t=0))
571       IF ( particle_advection_start == 0.0 )  CALL data_output_dvrp
572
573    ENDIF
574
575!
576!-- Check boundary condition and set internal variables
577    SELECT CASE ( bc_par_b )
578   
579       CASE ( 'absorb' )
580          ibc_par_b = 1
581
582       CASE ( 'reflect' )
583          ibc_par_b = 2
584         
585       CASE DEFAULT
586          WRITE( message_string, * )  'unknown boundary condition ',   &
587                                       'bc_par_b = "', TRIM( bc_par_b ), '"'
588          CALL message( 'lpm_init', 'PA0217', 1, 2, 0, 6, 0 )
589         
590    END SELECT
591    SELECT CASE ( bc_par_t )
592   
593       CASE ( 'absorb' )
594          ibc_par_t = 1
595
596       CASE ( 'reflect' )
597          ibc_par_t = 2
598         
599       CASE DEFAULT
600          WRITE( message_string, * ) 'unknown boundary condition ',   &
601                                     'bc_par_t = "', TRIM( bc_par_t ), '"'
602          CALL message( 'lpm_init', 'PA0218', 1, 2, 0, 6, 0 )
603         
604    END SELECT
605    SELECT CASE ( bc_par_lr )
606
607       CASE ( 'cyclic' )
608          ibc_par_lr = 0
609
610       CASE ( 'absorb' )
611          ibc_par_lr = 1
612
613       CASE ( 'reflect' )
614          ibc_par_lr = 2
615         
616       CASE DEFAULT
617          WRITE( message_string, * ) 'unknown boundary condition ',   &
618                                     'bc_par_lr = "', TRIM( bc_par_lr ), '"'
619          CALL message( 'lpm_init', 'PA0219', 1, 2, 0, 6, 0 )
620         
621    END SELECT
622    SELECT CASE ( bc_par_ns )
623
624       CASE ( 'cyclic' )
625          ibc_par_ns = 0
626
627       CASE ( 'absorb' )
628          ibc_par_ns = 1
629
630       CASE ( 'reflect' )
631          ibc_par_ns = 2
632         
633       CASE DEFAULT
634          WRITE( message_string, * ) 'unknown boundary condition ',   &
635                                     'bc_par_ns = "', TRIM( bc_par_ns ), '"'
636          CALL message( 'lpm_init', 'PA0220', 1, 2, 0, 6, 0 )
637         
638    END SELECT
639!
640!-- Formats
6418000 FORMAT (I6,1X,F7.2,4X,I6,71X,I6)
642
643 END SUBROUTINE lpm_init
Note: See TracBrowser for help on using the repository browser.