!> @file lpm_init.f90 !------------------------------------------------------------------------------! ! This file is part of PALM. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2017 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: lpm_init.f90 2123 2017-01-18 12:34:59Z hoffmann $ ! ! 2122 2017-01-18 12:22:54Z hoffmann ! Improved initialization of equilibrium aerosol radii ! Calculation of particle ID ! ! 2000 2016-08-20 18:09:15Z knoop ! Forced header and separation lines into 80 columns ! ! 2016-06-09 16:25:25Z suehring ! Bugfix in determining initial particle height and grid index in case of ! seed_follows_topography. ! Bugfix concerning random positions, ensure that particles do not move more ! than one grid length. ! Bugfix logarithmic interpolation. ! Initial setting of sgs_wf_part. ! ! 1890 2016-04-22 08:52:11Z hoffmann ! Initialization of aerosol equilibrium radius not possible in supersaturated ! environments. Therefore, a maximum supersaturation of -1 % is assumed during ! initialization. ! ! 1873 2016-04-18 14:50:06Z maronga ! Module renamed (removed _mod ! ! 1871 2016-04-15 11:46:09Z hoffmann ! Initialization of aerosols added. ! ! 1850 2016-04-08 13:29:27Z maronga ! Module renamed ! ! 1831 2016-04-07 13:15:51Z hoffmann ! curvature_solution_effects moved to particle_attributes ! ! 1822 2016-04-07 07:49:42Z hoffmann ! Unused variables removed. ! ! 1783 2016-03-06 18:36:17Z raasch ! netcdf module added ! ! 1725 2015-11-17 13:01:51Z hoffmann ! Bugfix: Processor-dependent seed for random function is generated before it is ! used. ! ! 1691 2015-10-26 16:17:44Z maronga ! Renamed prandtl_layer to constant_flux_layer. ! ! 1685 2015-10-08 07:32:13Z raasch ! bugfix concerning vertical index offset in case of ocean ! ! 1682 2015-10-07 23:56:08Z knoop ! Code annotations made doxygen readable ! ! 1575 2015-03-27 09:56:27Z raasch ! initial vertical particle position is allowed to follow the topography ! ! 1359 2014-04-11 17:15:14Z hoffmann ! New particle structure integrated. ! Kind definition added to all floating point numbers. ! lpm_init changed form a subroutine to a module. ! ! 1327 2014-03-21 11:00:16Z raasch ! -netcdf_output ! ! 1322 2014-03-20 16:38:49Z raasch ! REAL functions provided with KIND-attribute ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! revision history before 2012 removed, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! bugfix: #if defined( __parallel ) added ! ! 1314 2014-03-14 18:25:17Z suehring ! Vertical logarithmic interpolation of horizontal particle speed for particles ! between roughness height and first vertical grid level. ! ! 1092 2013-02-02 11:24:22Z raasch ! unused variables removed ! ! 1036 2012-10-22 13:43:42Z raasch ! code put under GPL (PALM 3.9) ! ! 849 2012-03-15 10:35:09Z raasch ! routine renamed: init_particles -> lpm_init ! de_dx, de_dy, de_dz are allocated here (instead of automatic arrays in ! advec_particles), ! sort_particles renamed lpm_sort_arrays, user_init_particles renamed lpm_init ! ! 828 2012-02-21 12:00:36Z raasch ! call of init_kernels, particle feature color renamed class ! ! 824 2012-02-17 09:09:57Z raasch ! particle attributes speed_x|y|z_sgs renamed rvar1|2|3, ! array particles implemented as pointer ! ! 667 2010-12-23 12:06:00Z suehring/gryschka ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng for allocation ! of arrays. ! ! Revision 1.1 1999/11/25 16:22:38 raasch ! Initial revision ! ! ! Description: ! ------------ !> This routine initializes a set of particles and their attributes (position, !> radius, ..) which are used by the Lagrangian particle model (see lpm). !------------------------------------------------------------------------------! MODULE lpm_init_mod USE arrays_3d, & ONLY: de_dx, de_dy, de_dz, zu, zw, z0 USE control_parameters, & ONLY: cloud_droplets, constant_flux_layer, current_timestep_number, & dz, initializing_actions, message_string, ocean, simulated_time USE grid_variables, & ONLY: ddx, dx, ddy, dy USE indices, & ONLY: nx, nxl, nxlg, nxrg, nxr, ny, nyn, nys, nyng, nysg, nz, nzb, & nzb_w_inner, nzt USE kinds USE lpm_collision_kernels_mod, & ONLY: init_kernels USE netcdf_interface, & ONLY: netcdf_data_format USE particle_attributes, & ONLY: alloc_factor, bc_par_b, bc_par_lr, bc_par_ns, bc_par_t, & block_offset, block_offset_def, collision_kernel, & curvature_solution_effects, & density_ratio, grid_particles, & initial_weighting_factor, ibc_par_b, ibc_par_lr, ibc_par_ns, & ibc_par_t, iran_part, log_z_z0, & max_number_of_particle_groups, maximum_number_of_particles, & min_nr_particle, mpi_particle_type, & number_of_particles, & number_of_particle_groups, number_of_sublayers, & offset_ocean_nzt, offset_ocean_nzt_m1, & particles, particle_advection_start, particle_groups, & particle_groups_type, particles_per_point, & particle_type, pdx, pdy, pdz, & prt_count, psb, psl, psn, psr, pss, pst, & radius, random_start_position, read_particles_from_restartfile,& seed_follows_topography, sgs_wf_part, sort_count, & total_number_of_particles, & use_sgs_for_particles, & write_particle_statistics, uniform_particles, zero_particle, & z0_av_global USE pegrid USE random_function_mod, & ONLY: random_function IMPLICIT NONE PRIVATE INTEGER(iwp), PARAMETER :: PHASE_INIT = 1 !< INTEGER(iwp), PARAMETER, PUBLIC :: PHASE_RELEASE = 2 !< INTERFACE lpm_init MODULE PROCEDURE lpm_init END INTERFACE lpm_init INTERFACE lpm_create_particle MODULE PROCEDURE lpm_create_particle END INTERFACE lpm_create_particle PUBLIC lpm_init, lpm_create_particle CONTAINS !------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !------------------------------------------------------------------------------! SUBROUTINE lpm_init USE lpm_collision_kernels_mod, & ONLY: init_kernels IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< #if defined( __parallel ) INTEGER(iwp), DIMENSION(3) :: blocklengths !< INTEGER(iwp), DIMENSION(3) :: displacements !< INTEGER(iwp), DIMENSION(3) :: types !< #endif REAL(wp) :: height_int !< REAL(wp) :: height_p !< REAL(wp) :: z_p !< REAL(wp) :: z0_av_local !< #if defined( __parallel ) ! !-- Define MPI derived datatype for FORTRAN datatype particle_type (see module !-- particle_attributes). Integer length is 4 byte, Real is 8 byte blocklengths(1) = 19; blocklengths(2) = 6; blocklengths(3) = 1 displacements(1) = 0; displacements(2) = 152; displacements(3) = 176 types(1) = MPI_REAL types(2) = MPI_INTEGER types(3) = MPI_UB CALL MPI_TYPE_STRUCT( 3, blocklengths, displacements, types, & mpi_particle_type, ierr ) CALL MPI_TYPE_COMMIT( mpi_particle_type, ierr ) #endif ! !-- In case of oceans runs, the vertical index calculations need an offset, !-- because otherwise the k indices will become negative IF ( ocean ) THEN offset_ocean_nzt = nzt offset_ocean_nzt_m1 = nzt - 1 ENDIF ! !-- Define block offsets for dividing a gridcell in 8 sub cells block_offset(0) = block_offset_def (-1,-1,-1) block_offset(1) = block_offset_def (-1,-1, 0) block_offset(2) = block_offset_def (-1, 0,-1) block_offset(3) = block_offset_def (-1, 0, 0) block_offset(4) = block_offset_def ( 0,-1,-1) block_offset(5) = block_offset_def ( 0,-1, 0) block_offset(6) = block_offset_def ( 0, 0,-1) block_offset(7) = block_offset_def ( 0, 0, 0) ! !-- Check the number of particle groups. IF ( number_of_particle_groups > max_number_of_particle_groups ) THEN WRITE( message_string, * ) 'max_number_of_particle_groups =', & max_number_of_particle_groups , & '&number_of_particle_groups reset to ', & max_number_of_particle_groups CALL message( 'lpm_init', 'PA0213', 0, 1, 0, 6, 0 ) number_of_particle_groups = max_number_of_particle_groups ENDIF ! !-- Set default start positions, if necessary IF ( psl(1) == 9999999.9_wp ) psl(1) = -0.5_wp * dx IF ( psr(1) == 9999999.9_wp ) psr(1) = ( nx + 0.5_wp ) * dx IF ( pss(1) == 9999999.9_wp ) pss(1) = -0.5_wp * dy IF ( psn(1) == 9999999.9_wp ) psn(1) = ( ny + 0.5_wp ) * dy IF ( psb(1) == 9999999.9_wp ) psb(1) = zu(nz/2) IF ( pst(1) == 9999999.9_wp ) pst(1) = psb(1) IF ( pdx(1) == 9999999.9_wp .OR. pdx(1) == 0.0_wp ) pdx(1) = dx IF ( pdy(1) == 9999999.9_wp .OR. pdy(1) == 0.0_wp ) pdy(1) = dy IF ( pdz(1) == 9999999.9_wp .OR. pdz(1) == 0.0_wp ) pdz(1) = zu(2) - zu(1) DO j = 2, number_of_particle_groups IF ( psl(j) == 9999999.9_wp ) psl(j) = psl(j-1) IF ( psr(j) == 9999999.9_wp ) psr(j) = psr(j-1) IF ( pss(j) == 9999999.9_wp ) pss(j) = pss(j-1) IF ( psn(j) == 9999999.9_wp ) psn(j) = psn(j-1) IF ( psb(j) == 9999999.9_wp ) psb(j) = psb(j-1) IF ( pst(j) == 9999999.9_wp ) pst(j) = pst(j-1) IF ( pdx(j) == 9999999.9_wp .OR. pdx(j) == 0.0_wp ) pdx(j) = pdx(j-1) IF ( pdy(j) == 9999999.9_wp .OR. pdy(j) == 0.0_wp ) pdy(j) = pdy(j-1) IF ( pdz(j) == 9999999.9_wp .OR. pdz(j) == 0.0_wp ) pdz(j) = pdz(j-1) ENDDO ! !-- Allocate arrays required for calculating particle SGS velocities. !-- Initialize prefactor required for stoachastic Weil equation. IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN ALLOCATE( de_dx(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & de_dy(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & de_dz(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) sgs_wf_part = 1.0_wp / 3.0_wp ENDIF ! !-- Allocate array required for logarithmic vertical interpolation of !-- horizontal particle velocities between the surface and the first vertical !-- grid level. In order to avoid repeated CPU cost-intensive CALLS of !-- intrinsic FORTRAN procedure LOG(z/z0), LOG(z/z0) is precalculated for !-- several heights. Splitting into 20 sublayers turned out to be sufficient. !-- To obtain exact height levels of particles, linear interpolation is applied !-- (see lpm_advec.f90). IF ( constant_flux_layer ) THEN ALLOCATE ( log_z_z0(0:number_of_sublayers) ) z_p = zu(nzb+1) - zw(nzb) ! !-- Calculate horizontal mean value of z0 used for logartihmic !-- interpolation. Note: this is not exact for heterogeneous z0. !-- However, sensitivity studies showed that the effect is !-- negligible. z0_av_local = SUM( z0(nys:nyn,nxl:nxr) ) z0_av_global = 0.0_wp #if defined( __parallel ) CALL MPI_ALLREDUCE(z0_av_local, z0_av_global, 1, MPI_REAL, MPI_SUM, & comm2d, ierr ) #else z0_av_global = z0_av_local #endif z0_av_global = z0_av_global / ( ( ny + 1 ) * ( nx + 1 ) ) ! !-- Horizontal wind speed is zero below and at z0 log_z_z0(0) = 0.0_wp ! !-- Calculate vertical depth of the sublayers height_int = ( z_p - z0_av_global ) / REAL( number_of_sublayers, KIND=wp ) ! !-- Precalculate LOG(z/z0) height_p = z0_av_global DO k = 1, number_of_sublayers height_p = height_p + height_int log_z_z0(k) = LOG( height_p / z0_av_global ) ENDDO ENDIF ! !-- Check boundary condition and set internal variables SELECT CASE ( bc_par_b ) CASE ( 'absorb' ) ibc_par_b = 1 CASE ( 'reflect' ) ibc_par_b = 2 CASE DEFAULT WRITE( message_string, * ) 'unknown boundary condition ', & 'bc_par_b = "', TRIM( bc_par_b ), '"' CALL message( 'lpm_init', 'PA0217', 1, 2, 0, 6, 0 ) END SELECT SELECT CASE ( bc_par_t ) CASE ( 'absorb' ) ibc_par_t = 1 CASE ( 'reflect' ) ibc_par_t = 2 CASE DEFAULT WRITE( message_string, * ) 'unknown boundary condition ', & 'bc_par_t = "', TRIM( bc_par_t ), '"' CALL message( 'lpm_init', 'PA0218', 1, 2, 0, 6, 0 ) END SELECT SELECT CASE ( bc_par_lr ) CASE ( 'cyclic' ) ibc_par_lr = 0 CASE ( 'absorb' ) ibc_par_lr = 1 CASE ( 'reflect' ) ibc_par_lr = 2 CASE DEFAULT WRITE( message_string, * ) 'unknown boundary condition ', & 'bc_par_lr = "', TRIM( bc_par_lr ), '"' CALL message( 'lpm_init', 'PA0219', 1, 2, 0, 6, 0 ) END SELECT SELECT CASE ( bc_par_ns ) CASE ( 'cyclic' ) ibc_par_ns = 0 CASE ( 'absorb' ) ibc_par_ns = 1 CASE ( 'reflect' ) ibc_par_ns = 2 CASE DEFAULT WRITE( message_string, * ) 'unknown boundary condition ', & 'bc_par_ns = "', TRIM( bc_par_ns ), '"' CALL message( 'lpm_init', 'PA0220', 1, 2, 0, 6, 0 ) END SELECT ! !-- Initialize collision kernels IF ( collision_kernel /= 'none' ) CALL init_kernels ! !-- For the first model run of a possible job chain initialize the !-- particles, otherwise read the particle data from restart file. IF ( TRIM( initializing_actions ) == 'read_restart_data' & .AND. read_particles_from_restartfile ) THEN CALL lpm_read_restart_file ELSE ! !-- Allocate particle arrays and set attributes of the initial set of !-- particles, which can be also periodically released at later times. ALLOCATE( prt_count(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & grid_particles(nzb+1:nzt,nys:nyn,nxl:nxr) ) maximum_number_of_particles = 0 number_of_particles = 0 sort_count = 0 prt_count = 0 ! !-- initialize counter for particle IDs grid_particles%id_counter = 0 ! !-- Initialize all particles with dummy values (otherwise errors may !-- occur within restart runs). The reason for this is still not clear !-- and may be presumably caused by errors in the respective user-interface. zero_particle = particle_type( 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & 0, 0, 0, 0, .FALSE., -1 ) particle_groups = particle_groups_type( 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp ) ! !-- Set values for the density ratio and radius for all particle !-- groups, if necessary IF ( density_ratio(1) == 9999999.9_wp ) density_ratio(1) = 0.0_wp IF ( radius(1) == 9999999.9_wp ) radius(1) = 0.0_wp DO i = 2, number_of_particle_groups IF ( density_ratio(i) == 9999999.9_wp ) THEN density_ratio(i) = density_ratio(i-1) ENDIF IF ( radius(i) == 9999999.9_wp ) radius(i) = radius(i-1) ENDDO DO i = 1, number_of_particle_groups IF ( density_ratio(i) /= 0.0_wp .AND. radius(i) == 0 ) THEN WRITE( message_string, * ) 'particle group #', i, 'has a', & 'density ratio /= 0 but radius = 0' CALL message( 'lpm_init', 'PA0215', 1, 2, 0, 6, 0 ) ENDIF particle_groups(i)%density_ratio = density_ratio(i) particle_groups(i)%radius = radius(i) ENDDO ! !-- Set a seed value for the random number generator to be exclusively !-- used for the particle code. The generated random numbers should be !-- different on the different PEs. iran_part = iran_part + myid CALL lpm_create_particle (PHASE_INIT) ! !-- User modification of initial particles CALL user_lpm_init ! !-- Open file for statistical informations about particle conditions IF ( write_particle_statistics ) THEN CALL check_open( 80 ) WRITE ( 80, 8000 ) current_timestep_number, simulated_time, & number_of_particles, & maximum_number_of_particles CALL close_file( 80 ) ENDIF ENDIF ! !-- To avoid programm abort, assign particles array to the local version of !-- first grid cell number_of_particles = prt_count(nzb+1,nys,nxl) particles => grid_particles(nzb+1,nys,nxl)%particles(1:number_of_particles) ! !-- Formats 8000 FORMAT (I6,1X,F7.2,4X,I10,71X,I10) END SUBROUTINE lpm_init !------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !------------------------------------------------------------------------------! SUBROUTINE lpm_create_particle (phase) USE lpm_exchange_horiz_mod, & ONLY: lpm_exchange_horiz, lpm_move_particle, realloc_particles_array USE lpm_pack_arrays_mod, & ONLY: lpm_pack_all_arrays USE particle_attributes, & ONLY: deleted_particles, monodisperse_aerosols IMPLICIT NONE INTEGER(iwp) :: alloc_size !< relative increase of allocated memory for particles INTEGER(iwp) :: i !< loop variable ( particle groups ) INTEGER(iwp) :: ip !< index variable along x INTEGER(iwp) :: j !< loop variable ( particles per point ) INTEGER(iwp) :: jp !< index variable along y INTEGER(iwp) :: kp !< index variable along z INTEGER(iwp) :: loop_stride !< loop variable for initialization INTEGER(iwp) :: n !< loop variable ( number of particles ) INTEGER(iwp) :: new_size !< new size of allocated memory for particles INTEGER(iwp), INTENT(IN) :: phase !< mode of inititialization INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: local_count !< start address of new particle INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: local_start !< start address of new particle LOGICAL :: first_stride !< flag for initialization REAL(wp) :: pos_x !< increment for particle position in x REAL(wp) :: pos_y !< increment for particle position in y REAL(wp) :: pos_z !< increment for particle position in z REAL(wp) :: rand_contr !< dummy argument for random position TYPE(particle_type),TARGET :: tmp_particle !< temporary particle used for initialization ! !-- Calculate particle positions and store particle attributes, if !-- particle is situated on this PE DO loop_stride = 1, 2 first_stride = (loop_stride == 1) IF ( first_stride ) THEN local_count = 0 ! count number of particles ELSE local_count = prt_count ! Start address of new particles ENDIF n = 0 DO i = 1, number_of_particle_groups pos_z = psb(i) DO WHILE ( pos_z <= pst(i) ) pos_y = pss(i) DO WHILE ( pos_y <= psn(i) ) IF ( pos_y >= ( nys - 0.5_wp ) * dy .AND. & pos_y < ( nyn + 0.5_wp ) * dy ) THEN pos_x = psl(i) xloop: DO WHILE ( pos_x <= psr(i) ) IF ( pos_x >= ( nxl - 0.5_wp ) * dx .AND. & pos_x < ( nxr + 0.5_wp ) * dx ) THEN DO j = 1, particles_per_point n = n + 1 tmp_particle%x = pos_x tmp_particle%y = pos_y tmp_particle%z = pos_z tmp_particle%age = 0.0_wp tmp_particle%age_m = 0.0_wp tmp_particle%dt_sum = 0.0_wp tmp_particle%user = 0.0_wp !unused, free for the user tmp_particle%e_m = 0.0_wp IF ( curvature_solution_effects ) THEN ! !-- Initial values (internal timesteps, derivative) !-- for Rosenbrock method tmp_particle%rvar1 = 1.0E-6_wp !last Rosenbrock timestep tmp_particle%rvar2 = 0.1E-6_wp !dry aerosol radius tmp_particle%rvar3 = -9999999.9_wp !unused in this configuration ELSE ! !-- Initial values for SGS velocities tmp_particle%rvar1 = 0.0_wp tmp_particle%rvar2 = 0.0_wp tmp_particle%rvar3 = 0.0_wp ENDIF tmp_particle%speed_x = 0.0_wp tmp_particle%speed_y = 0.0_wp tmp_particle%speed_z = 0.0_wp tmp_particle%origin_x = pos_x tmp_particle%origin_y = pos_y tmp_particle%origin_z = pos_z tmp_particle%radius = particle_groups(i)%radius tmp_particle%weight_factor = initial_weighting_factor tmp_particle%class = 1 tmp_particle%group = i tmp_particle%id1 = 0 tmp_particle%id2 = 0 tmp_particle%particle_mask = .TRUE. tmp_particle%block_nr = -1 ! !-- Determine the grid indices of the particle position ip = ( tmp_particle%x + 0.5_wp * dx ) * ddx jp = ( tmp_particle%y + 0.5_wp * dy ) * ddy kp = tmp_particle%z / dz + 1 + offset_ocean_nzt IF ( seed_follows_topography ) THEN ! !-- Particle height is given relative to topography kp = kp + nzb_w_inner(jp,ip) tmp_particle%z = tmp_particle%z + & zw(nzb_w_inner(jp,ip)) IF ( kp > nzt ) THEN pos_x = pos_x + pdx(i) CYCLE xloop ENDIF ELSEIF ( .NOT. seed_follows_topography .AND. & tmp_particle%z <= zw(nzb_w_inner(jp,ip)) ) THEN pos_x = pos_x + pdx(i) CYCLE xloop ENDIF local_count(kp,jp,ip) = local_count(kp,jp,ip) + 1 IF ( .NOT. first_stride ) THEN IF ( ip < nxl .OR. jp < nys .OR. kp < nzb+1 ) THEN write(6,*) 'xl ',ip,jp,kp,nxl,nys,nzb+1 ENDIF IF ( ip > nxr .OR. jp > nyn .OR. kp > nzt ) THEN write(6,*) 'xu ',ip,jp,kp,nxr,nyn,nzt ENDIF grid_particles(kp,jp,ip)%particles(local_count(kp,jp,ip)) = tmp_particle ENDIF ENDDO ENDIF pos_x = pos_x + pdx(i) ENDDO xloop ENDIF pos_y = pos_y + pdy(i) ENDDO pos_z = pos_z + pdz(i) ENDDO ENDDO IF ( first_stride ) THEN DO ip = nxl, nxr DO jp = nys, nyn DO kp = nzb+1, nzt IF ( phase == PHASE_INIT ) THEN IF ( local_count(kp,jp,ip) > 0 ) THEN alloc_size = MAX( INT( local_count(kp,jp,ip) * & ( 1.0_wp + alloc_factor / 100.0_wp ) ), & min_nr_particle ) ELSE alloc_size = min_nr_particle ENDIF ALLOCATE(grid_particles(kp,jp,ip)%particles(1:alloc_size)) DO n = 1, alloc_size grid_particles(kp,jp,ip)%particles(n) = zero_particle ENDDO ELSEIF ( phase == PHASE_RELEASE ) THEN IF ( local_count(kp,jp,ip) > 0 ) THEN new_size = local_count(kp,jp,ip) + prt_count(kp,jp,ip) alloc_size = MAX( INT( new_size * ( 1.0_wp + & alloc_factor / 100.0_wp ) ), min_nr_particle ) IF( alloc_size > SIZE( grid_particles(kp,jp,ip)%particles) ) THEN CALL realloc_particles_array(ip,jp,kp,alloc_size) ENDIF ENDIF ENDIF ENDDO ENDDO ENDDO ENDIF ENDDO local_start = prt_count+1 prt_count = local_count ! !-- Calculate particle IDs DO ip = nxl, nxr DO jp = nys, nyn DO kp = nzb+1, nzt number_of_particles = prt_count(kp,jp,ip) IF ( number_of_particles <= 0 ) CYCLE particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) DO n = local_start(kp,jp,ip), number_of_particles !only new particles particles(n)%id1 = 10000 * grid_particles(kp,jp,ip)%id_counter + kp particles(n)%id2 = 10000 * jp + ip grid_particles(kp,jp,ip)%id_counter = & grid_particles(kp,jp,ip)%id_counter + 1 ENDDO ENDDO ENDDO ENDDO ! !-- Initialize aerosol background spectrum IF ( curvature_solution_effects .AND. .NOT. monodisperse_aerosols ) THEN CALL lpm_init_aerosols(local_start) ENDIF ! !-- Add random fluctuation to particle positions. IF ( random_start_position ) THEN DO ip = nxl, nxr DO jp = nys, nyn DO kp = nzb+1, nzt number_of_particles = prt_count(kp,jp,ip) IF ( number_of_particles <= 0 ) CYCLE particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) ! !-- Move only new particles. Moreover, limit random fluctuation !-- in order to prevent that particles move more than one grid box, !-- which would lead to problems concerning particle exchange !-- between processors in case pdx/pdy are larger than dx/dy, !-- respectively. DO n = local_start(kp,jp,ip), number_of_particles IF ( psl(particles(n)%group) /= psr(particles(n)%group) ) THEN rand_contr = ( random_function( iran_part ) - 0.5_wp ) * & pdx(particles(n)%group) particles(n)%x = particles(n)%x + & MERGE( rand_contr, SIGN( dx, rand_contr ), & ABS( rand_contr ) < dx & ) ENDIF IF ( pss(particles(n)%group) /= psn(particles(n)%group) ) THEN rand_contr = ( random_function( iran_part ) - 0.5_wp ) * & pdy(particles(n)%group) particles(n)%y = particles(n)%y + & MERGE( rand_contr, SIGN( dy, rand_contr ), & ABS( rand_contr ) < dy & ) ENDIF IF ( psb(particles(n)%group) /= pst(particles(n)%group) ) THEN rand_contr = ( random_function( iran_part ) - 0.5_wp ) * & pdz(particles(n)%group) particles(n)%z = particles(n)%z + & MERGE( rand_contr, SIGN( dz, rand_contr ), & ABS( rand_contr ) < dz & ) ENDIF ENDDO ! !-- Identify particles located outside the model domain and reflect !-- or absorb them if necessary. CALL lpm_boundary_conds( 'bottom/top' ) ! !-- Furthermore, remove particles located in topography. Note, as !-- the particle speed is still zero at this point, wall !-- reflection boundary conditions will not work in this case. particles => & grid_particles(kp,jp,ip)%particles(1:number_of_particles) DO n = local_start(kp,jp,ip), number_of_particles i = ( particles(n)%x + 0.5_wp * dx ) * ddx j = ( particles(n)%y + 0.5_wp * dy ) * ddy IF ( particles(n)%z <= zw(nzb_w_inner(j,i)) ) THEN particles(n)%particle_mask = .FALSE. deleted_particles = deleted_particles + 1 ENDIF ENDDO ENDDO ENDDO ENDDO ! !-- Exchange particles between grid cells and processors CALL lpm_move_particle CALL lpm_exchange_horiz ENDIF ! !-- In case of random_start_position, delete particles identified by !-- lpm_exchange_horiz and lpm_boundary_conds. Then sort particles into blocks, !-- which is needed for a fast interpolation of the LES fields on the particle !-- position. CALL lpm_pack_all_arrays ! !-- Determine maximum number of particles (i.e., all possible particles that !-- have been allocated) and the current number of particles DO ip = nxl, nxr DO jp = nys, nyn DO kp = nzb+1, nzt maximum_number_of_particles = maximum_number_of_particles & + SIZE(grid_particles(kp,jp,ip)%particles) number_of_particles = number_of_particles & + prt_count(kp,jp,ip) ENDDO ENDDO ENDDO ! !-- Calculate the number of particles of the total domain #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( number_of_particles, total_number_of_particles, 1, & MPI_INTEGER, MPI_SUM, comm2d, ierr ) #else total_number_of_particles = number_of_particles #endif RETURN END SUBROUTINE lpm_create_particle SUBROUTINE lpm_init_aerosols(local_start) USE arrays_3d, & ONLY: hyp, pt, q USE cloud_parameters, & ONLY: l_d_rv, rho_l, r_v USE constants, & ONLY: pi USE kinds USE particle_attributes, & ONLY: init_aerosol_probabilistic, molecular_weight_of_solute, & molecular_weight_of_water, n1, n2, n3, rho_s, rm1, rm2, rm3, & s1, s2, s3, vanthoff IMPLICIT NONE REAL(wp), DIMENSION(:), ALLOCATABLE :: cdf !< CDF of aerosol spectrum REAL(wp), DIMENSION(:), ALLOCATABLE :: r_temp !< dry aerosol radius spectrum REAL(wp) :: afactor !< curvature effects REAL(wp) :: bfactor !< solute effects REAL(wp) :: dr !< width of radius bin REAL(wp) :: e_a !< vapor pressure REAL(wp) :: e_s !< saturation vapor pressure REAL(wp) :: n_init !< sum of all aerosol concentrations REAL(wp) :: pdf !< PDF of aerosol spectrum REAL(wp) :: rmin = 1.0e-8_wp !< minimum aerosol radius REAL(wp) :: rmax = 1.0e-6_wp !< maximum aerosol radius REAL(wp) :: rs_rand !< random number REAL(wp) :: r_mid !< mean radius REAL(wp) :: sigma !< surface tension REAL(wp) :: t_int !< temperature REAL(wp) :: weight_sum !< sum of all weighting factors INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(IN) :: local_start !< INTEGER(iwp) :: n !< INTEGER(iwp) :: nn !< INTEGER(iwp) :: no_bins = 999 !< number of bins INTEGER(iwp) :: ip !< INTEGER(iwp) :: jp !< INTEGER(iwp) :: kp !< LOGICAL :: new_pdf = .FALSE. !< check if aerosol PDF has to be recalculated ! !-- Compute aerosol background distribution IF ( init_aerosol_probabilistic ) THEN ALLOCATE( cdf(0:no_bins), r_temp(0:no_bins) ) DO n = 0, no_bins r_temp(n) = EXP( LOG(rmin) + ( LOG(rmax) - LOG(rmin ) ) / & REAL(no_bins, KIND=wp) * REAL(n, KIND=wp) ) cdf(n) = 0.0_wp n_init = n1 + n2 + n3 IF ( n1 > 0.0_wp ) THEN cdf(n) = cdf(n) + n1 / n_init * ( 0.5_wp + 0.5_wp * & ERF( LOG( r_temp(n) / rm1 ) / & ( SQRT(2.0_wp) * LOG(s1) ) & ) ) ENDIF IF ( n2 > 0.0_wp ) THEN cdf(n) = cdf(n) + n2 / n_init * ( 0.5_wp + 0.5_wp * & ERF( LOG( r_temp(n) / rm2 ) / & ( SQRT(2.0_wp) * LOG(s2) ) & ) ) ENDIF IF ( n3 > 0.0_wp ) THEN cdf(n) = cdf(n) + n3 / n_init * ( 0.5_wp + 0.5_wp * & ERF( LOG( r_temp(n) / rm3 ) / & ( SQRT(2.0_wp) * LOG(s3) ) & ) ) ENDIF ENDDO ENDIF DO ip = nxl, nxr DO jp = nys, nyn DO kp = nzb+1, nzt number_of_particles = prt_count(kp,jp,ip) IF ( number_of_particles <= 0 ) CYCLE particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) ! !-- Initialize the aerosols with a predefined spectral distribution !-- of the dry radius (logarithmically increasing bins) and a varying !-- weighting factor IF ( .NOT. init_aerosol_probabilistic ) THEN new_pdf = .FALSE. IF ( .NOT. ALLOCATED( r_temp ) ) THEN new_pdf = .TRUE. ELSE IF ( SIZE( r_temp ) .NE. & number_of_particles - local_start(kp,jp,ip) + 2 ) THEN new_pdf = .TRUE. DEALLOCATE( r_temp ) ENDIF ENDIF IF ( new_pdf ) THEN no_bins = number_of_particles + 1 - local_start(kp,jp,ip) ALLOCATE( r_temp(0:no_bins) ) DO n = 0, no_bins r_temp(n) = EXP( LOG(rmin) + ( LOG(rmax) - LOG(rmin ) ) / & REAL(no_bins, KIND=wp) * & REAL(n, KIND=wp) ) ENDDO ENDIF ! !-- Calculate radius and concentration of each aerosol DO n = local_start(kp,jp,ip), number_of_particles nn = n - local_start(kp,jp,ip) r_mid = SQRT( r_temp(nn) * r_temp(nn+1) ) dr = r_temp(nn+1) - r_temp(nn) pdf = 0.0_wp n_init = n1 + n2 + n3 IF ( n1 > 0.0_wp ) THEN pdf = pdf + n1 / n_init * ( 1.0_wp / ( r_mid * LOG(s1) * & SQRT( 2.0_wp * pi ) & ) * & EXP( -( LOG( r_mid / rm1 ) )**2 / & ( 2.0_wp * LOG(s1)**2 ) & ) & ) ENDIF IF ( n2 > 0.0_wp ) THEN pdf = pdf + n2 / n_init * ( 1.0_wp / ( r_mid * LOG(s2) * & SQRT( 2.0_wp * pi ) & ) * & EXP( -( LOG( r_mid / rm2 ) )**2 / & ( 2.0_wp * LOG(s2)**2 ) & ) & ) ENDIF IF ( n3 > 0.0_wp ) THEN pdf = pdf + n3 / n_init * ( 1.0_wp / ( r_mid * LOG(s3) * & SQRT( 2.0_wp * pi ) & ) * & EXP( -( LOG( r_mid / rm3 ) )**2 / & ( 2.0_wp * LOG(s3)**2 ) & ) & ) ENDIF particles(n)%rvar2 = r_mid particles(n)%weight_factor = pdf * dr END DO ! !-- Adjust weighting factors to initialize the same number of aerosols !-- in every grid box weight_sum = SUM(particles(local_start(kp,jp,ip):number_of_particles)%weight_factor) particles(local_start(kp,jp,ip):number_of_particles)%weight_factor = & particles(local_start(kp,jp,ip):number_of_particles)%weight_factor / & weight_sum * initial_weighting_factor * ( no_bins + 1 ) ENDIF ! !-- Initialize the aerosols with a predefined weighting factor but !-- a randomly choosen dry radius IF ( init_aerosol_probabilistic ) THEN DO n = local_start(kp,jp,ip), number_of_particles !only new particles rs_rand = -1.0_wp DO WHILE ( rs_rand .LT. cdf(0) .OR. rs_rand .GE. cdf(no_bins) ) rs_rand = random_function( iran_part ) ENDDO ! !-- Determine aerosol dry radius by a random number generator DO nn = 0, no_bins-1 IF ( cdf(nn) .LE. rs_rand .AND. cdf(nn+1) .GT. rs_rand ) THEN particles(n)%rvar2 = r_temp(nn) + ( r_temp(nn+1) - r_temp(nn) ) / & ( cdf(nn+1) - cdf(nn) ) * ( rs_rand - cdf(nn) ) EXIT ENDIF ENDDO ENDDO ENDIF ! !-- Set particle radius to equilibrium radius based on the environmental !-- supersaturation (Khvorostyanov and Curry, 2007, JGR). This avoids !-- the sometimes lengthy growth toward their equilibrium radius within !-- the simulation. t_int = pt(kp,jp,ip) * ( hyp(kp) / 100000.0_wp )**0.286_wp e_s = 611.0_wp * EXP( l_d_rv * ( 3.6609E-3_wp - 1.0_wp / t_int ) ) e_a = q(kp,jp,ip) * hyp(kp) / ( 0.378_wp * q(kp,jp,ip) + 0.622_wp ) sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp ) afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int ) bfactor = vanthoff * molecular_weight_of_water * & rho_s / ( molecular_weight_of_solute * rho_l ) ! !-- The formula is only valid for subsaturated environments. For !-- supersaturations higher than -5 %, the supersaturation is set to -5%. IF ( e_a / e_s >= 0.95_wp ) e_a = 0.95_wp * e_s DO n = local_start(kp,jp,ip), number_of_particles !only new particles ! !-- For details on this equation, see Eq. (14) of Khvorostyanov and !-- Curry (2007, JGR) particles(n)%radius = bfactor**0.3333333_wp * & particles(n)%rvar2 / ( 1.0_wp - e_a / e_s )**0.3333333_wp / & ( 1.0_wp + ( afactor / ( 3.0_wp * bfactor**0.3333333_wp * & particles(n)%rvar2 ) ) / & ( 1.0_wp - e_a / e_s )**0.6666666_wp & ) ENDDO ENDDO ENDDO ENDDO ! !-- Deallocate used arrays IF ( ALLOCATED(r_temp) ) DEALLOCATE( r_temp ) IF ( ALLOCATED(cdf) ) DEALLOCATE( cdf ) END SUBROUTINE lpm_init_aerosols END MODULE lpm_init_mod