[1682] | 1 | !> @file lpm_droplet_condensation.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[849] | 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[2375] | 22 | ! |
---|
[3049] | 23 | ! |
---|
[1891] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: lpm_droplet_condensation.f90 3361 2018-10-16 20:39:37Z banzhafs $ |
---|
[3274] | 27 | ! Modularization of all bulk cloud physics code components |
---|
| 28 | ! |
---|
| 29 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
[3241] | 30 | ! unused variables removed |
---|
| 31 | ! |
---|
| 32 | ! 3049 2018-05-29 13:52:36Z Giersch |
---|
[3045] | 33 | ! Error messages revised |
---|
| 34 | ! |
---|
[3049] | 35 | ! 3045 2018-05-28 07:55:41Z Giersch |
---|
| 36 | ! Error messages revised |
---|
| 37 | ! |
---|
[3045] | 38 | ! 3039 2018-05-24 13:13:11Z schwenkel |
---|
[3039] | 39 | ! bugfix for lcm with grid stretching |
---|
| 40 | ! |
---|
| 41 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 42 | ! Corrected "Former revisions" section |
---|
| 43 | ! |
---|
| 44 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 45 | ! Change in file header (GPL part) |
---|
| 46 | ! |
---|
| 47 | ! 2608 2017-11-13 14:04:26Z schwenkel |
---|
[2608] | 48 | ! Calculation of magnus equation in external module (diagnostic_quantities_mod). |
---|
| 49 | ! |
---|
| 50 | ! 2375 2017-08-29 14:10:28Z schwenkel |
---|
[2375] | 51 | ! Changed ONLY-dependencies |
---|
| 52 | ! |
---|
| 53 | ! 2312 2017-07-14 20:26:51Z hoffmann |
---|
[2312] | 54 | ! Rosenbrock scheme improved. Gas-kinetic effect added. |
---|
[1891] | 55 | ! |
---|
[2001] | 56 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 57 | ! Forced header and separation lines into 80 columns |
---|
[2312] | 58 | ! |
---|
[1891] | 59 | ! 1890 2016-04-22 08:52:11Z hoffmann |
---|
[1890] | 60 | ! Some improvements of the Rosenbrock method. If the Rosenbrock method needs more |
---|
| 61 | ! than 40 iterations to find a sufficient time setp, the model is not aborted. |
---|
[2312] | 62 | ! This might lead to small erros. But they can be assumend as negligible, since |
---|
| 63 | ! the maximum timesetp of the Rosenbrock method after 40 iterations will be |
---|
| 64 | ! smaller than 10^-16 s. |
---|
| 65 | ! |
---|
[1872] | 66 | ! 1871 2016-04-15 11:46:09Z hoffmann |
---|
| 67 | ! Initialization of aerosols added. |
---|
| 68 | ! |
---|
[1851] | 69 | ! 1849 2016-04-08 11:33:18Z hoffmann |
---|
[1852] | 70 | ! Interpolation of supersaturation has been removed because it is not in |
---|
| 71 | ! accordance with the release/depletion of latent heat/water vapor in |
---|
[1849] | 72 | ! interaction_droplets_ptq. |
---|
| 73 | ! Calculation of particle Reynolds number has been corrected. |
---|
[1852] | 74 | ! eps_ros added from modules. |
---|
[1849] | 75 | ! |
---|
[1832] | 76 | ! 1831 2016-04-07 13:15:51Z hoffmann |
---|
| 77 | ! curvature_solution_effects moved to particle_attributes |
---|
| 78 | ! |
---|
[1823] | 79 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 80 | ! Unused variables removed. |
---|
| 81 | ! |
---|
[1683] | 82 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
[2312] | 83 | ! Code annotations made doxygen readable |
---|
| 84 | ! |
---|
[1360] | 85 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
[2312] | 86 | ! New particle structure integrated. |
---|
[1360] | 87 | ! Kind definition added to all floating point numbers. |
---|
| 88 | ! |
---|
[1347] | 89 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
[2312] | 90 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
[1347] | 91 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 92 | ! |
---|
[1323] | 93 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 94 | ! REAL constants defined as wp-kind |
---|
| 95 | ! |
---|
[1321] | 96 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 97 | ! ONLY-attribute added to USE-statements, |
---|
| 98 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 99 | ! kinds are defined in new module kinds, |
---|
| 100 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 101 | ! all variable declaration statements |
---|
[1072] | 102 | ! |
---|
[1319] | 103 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 104 | ! module interfaces removed |
---|
| 105 | ! |
---|
[1093] | 106 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 107 | ! unused variables removed |
---|
| 108 | ! |
---|
[1072] | 109 | ! 1071 2012-11-29 16:54:55Z franke |
---|
[1071] | 110 | ! Ventilation effect for evaporation of large droplets included |
---|
| 111 | ! Check for unreasonable results included in calculation of Rosenbrock method |
---|
| 112 | ! since physically unlikely results were observed and for the same |
---|
| 113 | ! reason the first internal time step in Rosenbrock method should be < 1.0E02 in |
---|
| 114 | ! case of evaporation |
---|
| 115 | ! Unnecessary calculation of ql_int removed |
---|
| 116 | ! Unnecessary calculations in Rosenbrock method (d2rdt2, drdt_m, dt_ros_last) |
---|
| 117 | ! removed |
---|
| 118 | ! Bugfix: factor in calculation of surface tension changed from 0.00155 to |
---|
| 119 | ! 0.000155 |
---|
[849] | 120 | ! |
---|
[1037] | 121 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 122 | ! code put under GPL (PALM 3.9) |
---|
| 123 | ! |
---|
[850] | 124 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 125 | ! initial revision (former part of advec_particles) |
---|
[849] | 126 | ! |
---|
[850] | 127 | ! |
---|
[849] | 128 | ! Description: |
---|
| 129 | ! ------------ |
---|
[1682] | 130 | !> Calculates change in droplet radius by condensation/evaporation, using |
---|
| 131 | !> either an analytic formula or by numerically integrating the radius growth |
---|
| 132 | !> equation including curvature and solution effects using Rosenbrocks method |
---|
| 133 | !> (see Numerical recipes in FORTRAN, 2nd edition, p. 731). |
---|
| 134 | !> The analytical formula and growth equation follow those given in |
---|
| 135 | !> Rogers and Yau (A short course in cloud physics, 3rd edition, p. 102/103). |
---|
[849] | 136 | !------------------------------------------------------------------------------! |
---|
[1682] | 137 | SUBROUTINE lpm_droplet_condensation (ip,jp,kp) |
---|
[849] | 138 | |
---|
[2312] | 139 | |
---|
[1320] | 140 | USE arrays_3d, & |
---|
[3274] | 141 | ONLY: dzw, hyp, pt, q, ql_c, ql_v, exner |
---|
[849] | 142 | |
---|
[3274] | 143 | USE basic_constants_and_equations_mod, & |
---|
| 144 | ONLY: l_v, molecular_weight_of_solute, molecular_weight_of_water, & |
---|
[3361] | 145 | magnus, pi, rho_l, rho_s, rd_d_rv, r_v, vanthoff |
---|
[849] | 146 | |
---|
[1320] | 147 | USE control_parameters, & |
---|
[3241] | 148 | ONLY: dt_3d, message_string, molecular_viscosity, rho_surface |
---|
[1822] | 149 | |
---|
[1320] | 150 | USE cpulog, & |
---|
| 151 | ONLY: cpu_log, log_point_s |
---|
[849] | 152 | |
---|
[1320] | 153 | USE grid_variables, & |
---|
[1822] | 154 | ONLY: dx, dy |
---|
[1071] | 155 | |
---|
[1320] | 156 | USE lpm_collision_kernels_mod, & |
---|
| 157 | ONLY: rclass_lbound, rclass_ubound |
---|
[849] | 158 | |
---|
[1320] | 159 | USE kinds |
---|
| 160 | |
---|
| 161 | USE particle_attributes, & |
---|
[3241] | 162 | ONLY: curvature_solution_effects, number_of_particles, & |
---|
| 163 | particles, radius_classes, use_kernel_tables |
---|
[1320] | 164 | |
---|
| 165 | IMPLICIT NONE |
---|
| 166 | |
---|
[1682] | 167 | INTEGER(iwp) :: ip !< |
---|
| 168 | INTEGER(iwp) :: jp !< |
---|
| 169 | INTEGER(iwp) :: kp !< |
---|
| 170 | INTEGER(iwp) :: n !< |
---|
[1320] | 171 | |
---|
[1849] | 172 | REAL(wp) :: afactor !< curvature effects |
---|
[1682] | 173 | REAL(wp) :: arg !< |
---|
[1849] | 174 | REAL(wp) :: bfactor !< solute effects |
---|
[1682] | 175 | REAL(wp) :: ddenom !< |
---|
| 176 | REAL(wp) :: delta_r !< |
---|
[1849] | 177 | REAL(wp) :: diameter !< diameter of cloud droplets |
---|
[2312] | 178 | REAL(wp) :: diff_coeff !< diffusivity for water vapor |
---|
[1682] | 179 | REAL(wp) :: drdt !< |
---|
| 180 | REAL(wp) :: dt_ros !< |
---|
| 181 | REAL(wp) :: dt_ros_sum !< |
---|
| 182 | REAL(wp) :: d2rdtdr !< |
---|
[1849] | 183 | REAL(wp) :: e_a !< current vapor pressure |
---|
| 184 | REAL(wp) :: e_s !< current saturation vapor pressure |
---|
[2312] | 185 | REAL(wp) :: error !< local truncation error in Rosenbrock |
---|
| 186 | REAL(wp) :: k1 !< |
---|
| 187 | REAL(wp) :: k2 !< |
---|
| 188 | REAL(wp) :: r_err !< First order estimate of Rosenbrock radius |
---|
| 189 | REAL(wp) :: r_ros !< Rosenbrock radius |
---|
| 190 | REAL(wp) :: r_ros_ini !< initial Rosenbrock radius |
---|
| 191 | REAL(wp) :: r0 !< gas-kinetic lengthscale |
---|
| 192 | REAL(wp) :: sigma !< surface tension of water |
---|
| 193 | REAL(wp) :: thermal_conductivity !< thermal conductivity for water |
---|
[1849] | 194 | REAL(wp) :: t_int !< temperature |
---|
| 195 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
[2312] | 196 | REAL(wp) :: re_p !< particle Reynolds number |
---|
[1849] | 197 | ! |
---|
[2312] | 198 | !-- Parameters for Rosenbrock method (see Verwer et al., 1999) |
---|
| 199 | REAL(wp), PARAMETER :: prec = 1.0E-3_wp !< precision of Rosenbrock solution |
---|
| 200 | REAL(wp), PARAMETER :: q_increase = 1.5_wp !< increase factor in timestep |
---|
| 201 | REAL(wp), PARAMETER :: q_decrease = 0.9_wp !< decrease factor in timestep |
---|
| 202 | REAL(wp), PARAMETER :: gamma = 0.292893218814_wp !< = 1.0 - 1.0 / SQRT(2.0) |
---|
[849] | 203 | ! |
---|
[1849] | 204 | !-- Parameters for terminal velocity |
---|
| 205 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
| 206 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
| 207 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
| 208 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
| 209 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
| 210 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
[849] | 211 | |
---|
[1849] | 212 | REAL(wp), DIMENSION(number_of_particles) :: ventilation_effect !< |
---|
| 213 | REAL(wp), DIMENSION(number_of_particles) :: new_r !< |
---|
[849] | 214 | |
---|
[1849] | 215 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'start' ) |
---|
[849] | 216 | |
---|
| 217 | ! |
---|
[2312] | 218 | !-- Absolute temperature |
---|
[3274] | 219 | t_int = pt(kp,jp,ip) * exner(kp) |
---|
[849] | 220 | ! |
---|
[2312] | 221 | !-- Saturation vapor pressure (Eq. 10 in Bolton, 1980) |
---|
[2608] | 222 | e_s = magnus( t_int ) |
---|
[1849] | 223 | ! |
---|
[2312] | 224 | !-- Current vapor pressure |
---|
[3361] | 225 | e_a = q(kp,jp,ip) * hyp(kp) / ( q(kp,jp,ip) + rd_d_rv ) |
---|
[2312] | 226 | ! |
---|
| 227 | !-- Thermal conductivity for water (from Rogers and Yau, Table 7.1) |
---|
| 228 | thermal_conductivity = 7.94048E-05_wp * t_int + 0.00227011_wp |
---|
| 229 | ! |
---|
| 230 | !-- Moldecular diffusivity of water vapor in air (Hall und Pruppacher, 1976) |
---|
| 231 | diff_coeff = 0.211E-4_wp * ( t_int / 273.15_wp )**1.94_wp * & |
---|
| 232 | ( 101325.0_wp / hyp(kp) ) |
---|
| 233 | ! |
---|
| 234 | !-- Lengthscale for gas-kinetic effects (from Mordy, 1959, p. 23): |
---|
| 235 | r0 = diff_coeff / 0.036_wp * SQRT( 2.0_wp * pi / ( r_v * t_int ) ) |
---|
| 236 | ! |
---|
| 237 | !-- Calculate effects of heat conductivity and diffusion of water vapor on the |
---|
| 238 | !-- diffusional growth process (usually known as 1.0 / (F_k + F_d) ) |
---|
| 239 | ddenom = 1.0_wp / ( rho_l * r_v * t_int / ( e_s * diff_coeff ) + & |
---|
[1849] | 240 | ( l_v / ( r_v * t_int ) - 1.0_wp ) * rho_l * & |
---|
[2312] | 241 | l_v / ( thermal_conductivity * t_int ) & |
---|
[1849] | 242 | ) |
---|
[1359] | 243 | new_r = 0.0_wp |
---|
[1849] | 244 | ! |
---|
| 245 | !-- Determine ventilation effect on evaporation of large drops |
---|
[1359] | 246 | DO n = 1, number_of_particles |
---|
[1849] | 247 | |
---|
| 248 | IF ( particles(n)%radius >= 4.0E-5_wp .AND. e_a / e_s < 1.0_wp ) THEN |
---|
[849] | 249 | ! |
---|
[1849] | 250 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
| 251 | !-- 1993, J. Appl. Meteorol.) |
---|
| 252 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 253 | IF ( diameter <= d0_rog ) THEN |
---|
| 254 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 255 | ELSE |
---|
| 256 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 257 | ENDIF |
---|
[849] | 258 | ! |
---|
[2312] | 259 | !-- Calculate droplet's Reynolds number |
---|
[1849] | 260 | re_p = 2.0_wp * particles(n)%radius * w_s / molecular_viscosity |
---|
[1071] | 261 | ! |
---|
[1359] | 262 | !-- Ventilation coefficient (Rogers and Yau, 1989): |
---|
| 263 | IF ( re_p > 2.5_wp ) THEN |
---|
[1849] | 264 | ventilation_effect(n) = 0.78_wp + 0.28_wp * SQRT( re_p ) |
---|
[1071] | 265 | ELSE |
---|
[1849] | 266 | ventilation_effect(n) = 1.0_wp + 0.09_wp * re_p |
---|
[1071] | 267 | ENDIF |
---|
[1849] | 268 | ELSE |
---|
[1071] | 269 | ! |
---|
[2312] | 270 | !-- For small droplets or in supersaturated environments, the ventilation |
---|
[1849] | 271 | !-- effect does not play a role |
---|
| 272 | ventilation_effect(n) = 1.0_wp |
---|
[849] | 273 | ENDIF |
---|
[1359] | 274 | ENDDO |
---|
[849] | 275 | |
---|
[2312] | 276 | IF( .NOT. curvature_solution_effects ) then |
---|
[849] | 277 | ! |
---|
[2312] | 278 | !-- Use analytic model for diffusional growth including gas-kinetic |
---|
| 279 | !-- effects (Mordy, 1959) but without the impact of aerosols. |
---|
[1849] | 280 | DO n = 1, number_of_particles |
---|
[2312] | 281 | arg = ( particles(n)%radius + r0 )**2 + 2.0_wp * dt_3d * ddenom * & |
---|
| 282 | ventilation_effect(n) * & |
---|
| 283 | ( e_a / e_s - 1.0_wp ) |
---|
| 284 | arg = MAX( arg, ( 0.01E-6 + r0 )**2 ) |
---|
| 285 | new_r(n) = SQRT( arg ) - r0 |
---|
[1849] | 286 | ENDDO |
---|
[1359] | 287 | |
---|
[2312] | 288 | ELSE |
---|
[1849] | 289 | ! |
---|
[2312] | 290 | !-- Integrate the diffusional growth including gas-kinetic (Mordy, 1959), |
---|
| 291 | !-- as well as curvature and solute effects (e.g., Köhler, 1936). |
---|
[849] | 292 | ! |
---|
[2312] | 293 | !-- Curvature effect (afactor) with surface tension (sigma) by Straka (2009) |
---|
| 294 | sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp ) |
---|
[1071] | 295 | ! |
---|
[2312] | 296 | !-- Solute effect (afactor) |
---|
| 297 | afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int ) |
---|
[849] | 298 | |
---|
[2312] | 299 | DO n = 1, number_of_particles |
---|
[849] | 300 | ! |
---|
[2312] | 301 | !-- Solute effect (bfactor) |
---|
| 302 | bfactor = vanthoff * rho_s * particles(n)%aux1**3 * & |
---|
| 303 | molecular_weight_of_water / ( rho_l * molecular_weight_of_solute ) |
---|
[1071] | 304 | |
---|
[2312] | 305 | dt_ros = particles(n)%aux2 ! use previously stored Rosenbrock timestep |
---|
| 306 | dt_ros_sum = 0.0_wp |
---|
[1871] | 307 | |
---|
[2312] | 308 | r_ros = particles(n)%radius ! initialize Rosenbrock particle radius |
---|
| 309 | r_ros_ini = r_ros |
---|
[849] | 310 | ! |
---|
[2312] | 311 | !-- Integrate growth equation using a 2nd-order Rosenbrock method |
---|
| 312 | !-- (see Verwer et al., 1999, Eq. (3.2)). The Rosenbrock method adjusts |
---|
| 313 | !-- its with internal timestep to minimize the local truncation error. |
---|
| 314 | DO WHILE ( dt_ros_sum < dt_3d ) |
---|
[1071] | 315 | |
---|
[2312] | 316 | dt_ros = MIN( dt_ros, dt_3d - dt_ros_sum ) |
---|
[1871] | 317 | |
---|
[2312] | 318 | DO |
---|
[849] | 319 | |
---|
[2312] | 320 | drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0 - & |
---|
[1849] | 321 | afactor / r_ros + & |
---|
| 322 | bfactor / r_ros**3 & |
---|
[2312] | 323 | ) / ( r_ros + r0 ) |
---|
[1849] | 324 | |
---|
[2312] | 325 | d2rdtdr = -ddenom * ventilation_effect(n) * ( & |
---|
| 326 | (e_a / e_s - 1.0) * r_ros**4 - & |
---|
| 327 | afactor * r0 * r_ros**2 - & |
---|
| 328 | 2.0 * afactor * r_ros**3 + & |
---|
| 329 | 3.0 * bfactor * r0 + & |
---|
| 330 | 4.0 * bfactor * r_ros & |
---|
| 331 | ) & |
---|
| 332 | / ( r_ros**4 * ( r_ros + r0 )**2 ) |
---|
[849] | 333 | |
---|
[2312] | 334 | k1 = drdt / ( 1.0 - gamma * dt_ros * d2rdtdr ) |
---|
[849] | 335 | |
---|
[2312] | 336 | r_ros = MAX(r_ros_ini + k1 * dt_ros, particles(n)%aux1) |
---|
| 337 | r_err = r_ros |
---|
[849] | 338 | |
---|
[2312] | 339 | drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0 - & |
---|
| 340 | afactor / r_ros + & |
---|
| 341 | bfactor / r_ros**3 & |
---|
| 342 | ) / ( r_ros + r0 ) |
---|
[849] | 343 | |
---|
[2312] | 344 | k2 = ( drdt - dt_ros * 2.0 * gamma * d2rdtdr * k1 ) / & |
---|
| 345 | ( 1.0 - dt_ros * gamma * d2rdtdr ) |
---|
[849] | 346 | |
---|
[2312] | 347 | r_ros = MAX(r_ros_ini + dt_ros * ( 1.5 * k1 + 0.5 * k2), particles(n)%aux1) |
---|
| 348 | ! |
---|
| 349 | !-- Check error of the solution, and reduce dt_ros if necessary. |
---|
| 350 | error = ABS(r_err - r_ros) / r_ros |
---|
| 351 | IF ( error .GT. prec ) THEN |
---|
| 352 | dt_ros = SQRT( q_decrease * prec / error ) * dt_ros |
---|
| 353 | r_ros = r_ros_ini |
---|
[849] | 354 | ELSE |
---|
[2312] | 355 | dt_ros_sum = dt_ros_sum + dt_ros |
---|
| 356 | dt_ros = q_increase * dt_ros |
---|
| 357 | r_ros_ini = r_ros |
---|
| 358 | EXIT |
---|
[849] | 359 | ENDIF |
---|
| 360 | |
---|
[2312] | 361 | END DO |
---|
[849] | 362 | |
---|
[2312] | 363 | END DO !Rosenbrock loop |
---|
[849] | 364 | ! |
---|
[2312] | 365 | !-- Store new particle radius |
---|
| 366 | new_r(n) = r_ros |
---|
[849] | 367 | ! |
---|
[2312] | 368 | !-- Store internal time step value for next PALM step |
---|
| 369 | particles(n)%aux2 = dt_ros |
---|
[849] | 370 | |
---|
[2312] | 371 | ENDDO !Particle loop |
---|
[849] | 372 | |
---|
[2312] | 373 | ENDIF |
---|
[849] | 374 | |
---|
[2312] | 375 | DO n = 1, number_of_particles |
---|
[849] | 376 | ! |
---|
[2312] | 377 | !-- Sum up the change in liquid water for the respective grid |
---|
| 378 | !-- box for the computation of the release/depletion of water vapor |
---|
| 379 | !-- and heat. |
---|
[1890] | 380 | ql_c(kp,jp,ip) = ql_c(kp,jp,ip) + particles(n)%weight_factor * & |
---|
[1359] | 381 | rho_l * 1.33333333_wp * pi * & |
---|
| 382 | ( new_r(n)**3 - particles(n)%radius**3 ) / & |
---|
[3039] | 383 | ( rho_surface * dx * dy * dzw(kp) ) |
---|
[2312] | 384 | ! |
---|
| 385 | !-- Check if the increase in liqid water is not too big. If this is the case, |
---|
| 386 | !-- the model timestep might be too long. |
---|
[1890] | 387 | IF ( ql_c(kp,jp,ip) > 100.0_wp ) THEN |
---|
[3045] | 388 | WRITE( message_string, * ) 'k=',kp,' j=',jp,' i=',ip, & |
---|
[3046] | 389 | ' ql_c=',ql_c(kp,jp,ip), '&part(',n,')%wf=', & |
---|
[849] | 390 | particles(n)%weight_factor,' delta_r=',delta_r |
---|
| 391 | CALL message( 'lpm_droplet_condensation', 'PA0143', 2, 2, -1, 6, 1 ) |
---|
| 392 | ENDIF |
---|
| 393 | ! |
---|
[2312] | 394 | !-- Check if the change in the droplet radius is not too big. If this is the |
---|
| 395 | !-- case, the model timestep might be too long. |
---|
| 396 | delta_r = new_r(n) - particles(n)%radius |
---|
| 397 | IF ( delta_r < 0.0_wp .AND. new_r(n) < 0.0_wp ) THEN |
---|
[3045] | 398 | WRITE( message_string, * ) '#1 k=',kp,' j=',jp,' i=',ip, & |
---|
| 399 | ' e_s=',e_s, ' e_a=',e_a,' t_int=',t_int, & |
---|
[3046] | 400 | '&delta_r=',delta_r, & |
---|
[849] | 401 | ' particle_radius=',particles(n)%radius |
---|
| 402 | CALL message( 'lpm_droplet_condensation', 'PA0144', 2, 2, -1, 6, 1 ) |
---|
| 403 | ENDIF |
---|
| 404 | ! |
---|
| 405 | !-- Sum up the total volume of liquid water (needed below for |
---|
| 406 | !-- re-calculating the weighting factors) |
---|
[1890] | 407 | ql_v(kp,jp,ip) = ql_v(kp,jp,ip) + particles(n)%weight_factor * new_r(n)**3 |
---|
[849] | 408 | ! |
---|
| 409 | !-- Determine radius class of the particle needed for collision |
---|
[2312] | 410 | IF ( use_kernel_tables ) THEN |
---|
[1359] | 411 | particles(n)%class = ( LOG( new_r(n) ) - rclass_lbound ) / & |
---|
| 412 | ( rclass_ubound - rclass_lbound ) * & |
---|
[849] | 413 | radius_classes |
---|
| 414 | particles(n)%class = MIN( particles(n)%class, radius_classes ) |
---|
| 415 | particles(n)%class = MAX( particles(n)%class, 1 ) |
---|
| 416 | ENDIF |
---|
[2312] | 417 | ! |
---|
| 418 | !-- Store new radius to particle features |
---|
| 419 | particles(n)%radius = new_r(n) |
---|
[849] | 420 | |
---|
| 421 | ENDDO |
---|
| 422 | |
---|
| 423 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'stop' ) |
---|
| 424 | |
---|
| 425 | |
---|
| 426 | END SUBROUTINE lpm_droplet_condensation |
---|