source: palm/trunk/SOURCE/lpm_droplet_collision.f90 @ 3655

Last change on this file since 3655 was 3655, checked in by knoop, 5 years ago

Bugfix: made "unit" and "found" intend INOUT in module interface subroutines + automatic copyright update

  • Property svn:keywords set to Id
File size: 15.4 KB
Line 
1!> @file lpm_droplet_collision.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: lpm_droplet_collision.f90 3655 2019-01-07 16:51:22Z knoop $
27! Modularization of all bulk cloud physics code components
28!
29! 3241 2018-09-12 15:02:00Z raasch
30! unused variables removed
31!
32! 3039 2018-05-24 13:13:11Z schwenkel
33! bugfix for lcm with grid stretching
34!
35! 2718 2018-01-02 08:49:38Z maronga
36! Corrected "Former revisions" section
37!
38! 2696 2017-12-14 17:12:51Z kanani
39! Change in file header (GPL part)
40!
41! 2375 2017-08-29 14:10:28Z schwenkel
42! Changed ONLY-dependencies
43!
44! 2312 2017-07-14 20:26:51Z hoffmann
45! Consideration of aerosol mass during collision. Average impact algorithm has
46! been removed.
47!
48! 2274 2017-06-09 13:27:48Z Giersch
49! Changed error messages
50!
51! 2123 2017-01-18 12:34:59Z hoffmann
52!
53! 2122 2017-01-18 12:22:54Z hoffmann
54! Some reformatting of the code.
55!
56! 2000 2016-08-20 18:09:15Z knoop
57! Forced header and separation lines into 80 columns
58!
59! 1884 2016-04-21 11:11:40Z hoffmann
60! Conservation of mass should only be checked if collisions took place.
61!
62! 1860 2016-04-13 13:21:28Z hoffmann
63! Interpolation of dissipation rate adjusted to more reasonable values.
64!
65! 1822 2016-04-07 07:49:42Z hoffmann
66! Integration of a new collision algortithm based on Shima et al. (2009) and
67! Soelch and Kaercher (2010) called all_or_nothing. The previous implemented
68! collision algorithm is called average_impact. Moreover, both algorithms are
69! now positive definit due to their construction, i.e., no negative weighting
70! factors should occur.
71!
72! 1682 2015-10-07 23:56:08Z knoop
73! Code annotations made doxygen readable
74!
75! 1359 2014-04-11 17:15:14Z hoffmann
76! New particle structure integrated.
77! Kind definition added to all floating point numbers.
78!
79! 1322 2014-03-20 16:38:49Z raasch
80! REAL constants defined as wp_kind
81!
82! 1320 2014-03-20 08:40:49Z raasch
83! ONLY-attribute added to USE-statements,
84! kind-parameters added to all INTEGER and REAL declaration statements,
85! kinds are defined in new module kinds,
86! revision history before 2012 removed,
87! comment fields (!:) to be used for variable explanations added to
88! all variable declaration statements
89!
90! 1092 2013-02-02 11:24:22Z raasch
91! unused variables removed
92!
93! 1071 2012-11-29 16:54:55Z franke
94! Calculation of Hall and Wang kernel now uses collision-coalescence formulation
95! proposed by Wang instead of the continuous collection equation (for more
96! information about new method see PALM documentation)
97! Bugfix: message identifiers added
98!
99! 1036 2012-10-22 13:43:42Z raasch
100! code put under GPL (PALM 3.9)
101!
102! 849 2012-03-15 10:35:09Z raasch
103! initial revision (former part of advec_particles)
104!
105!
106! Description:
107! ------------
108!> Calculates change in droplet radius by collision. Droplet collision is
109!> calculated for each grid box seperately. Collision is parameterized by
110!> using collision kernels. Two different kernels are available:
111!> Hall kernel: Kernel from Hall (1980, J. Atmos. Sci., 2486-2507), which
112!>              considers collision due to pure gravitational effects.
113!> Wang kernel: Beside gravitational effects (treated with the Hall-kernel) also
114!>              the effects of turbulence on the collision are considered using
115!>              parameterizations of Ayala et al. (2008, New J. Phys., 10,
116!>              075015) and Wang and Grabowski (2009, Atmos. Sci. Lett., 10,
117!>              1-8). This kernel includes three possible effects of turbulence:
118!>              the modification of the relative velocity between the droplets,
119!>              the effect of preferential concentration, and the enhancement of
120!>              collision efficiencies.
121!------------------------------------------------------------------------------!
122 SUBROUTINE lpm_droplet_collision (i,j,k)
123
124    USE arrays_3d,                                                             &
125        ONLY:  diss, dzw, ql_v, ql_vp
126
127    USE basic_constants_and_equations_mod,                                     &
128        ONLY:  pi, rho_l, rho_s
129
130    USE control_parameters,                                                    &
131        ONLY:  dt_3d, message_string
132
133    USE cpulog,                                                                &
134        ONLY:  cpu_log, log_point_s
135
136    USE grid_variables,                                                        &
137        ONLY:  dx, dy
138
139    USE kinds
140
141    USE lpm_collision_kernels_mod,                                             &
142        ONLY:  ckernel, recalculate_kernel
143
144    USE particle_attributes,                                                   &
145        ONLY:  curvature_solution_effects, dissipation_classes, hall_kernel,   &
146               iran_part, number_of_particles, particles, particle_type,       &
147               prt_count, use_kernel_tables, wang_kernel
148
149    USE random_function_mod,                                                   &
150        ONLY:  random_function
151
152    USE pegrid
153
154    IMPLICIT NONE
155
156    INTEGER(iwp) ::  eclass   !<
157    INTEGER(iwp) ::  i        !<
158    INTEGER(iwp) ::  j        !<
159    INTEGER(iwp) ::  k        !<
160    INTEGER(iwp) ::  n        !<
161    INTEGER(iwp) ::  m        !<
162    INTEGER(iwp) ::  rclass_l !<
163    INTEGER(iwp) ::  rclass_s !<
164
165    REAL(wp) ::  collection_probability  !< probability for collection
166    REAL(wp) ::  ddV                     !< inverse grid box volume
167    REAL(wp) ::  epsilon                 !< dissipation rate
168    REAL(wp) ::  factor_volume_to_mass   !< 4.0 / 3.0 * pi * rho_l
169    REAL(wp) ::  xm                      !< droplet mass of super-droplet m
170    REAL(wp) ::  xn                      !< droplet mass of super-droplet n
171    REAL(wp) ::  xsm                     !< aerosol mass of super-droplet m
172    REAL(wp) ::  xsn                     !< aerosol mass of super-droplet n
173
174    REAL(wp), DIMENSION(:), ALLOCATABLE ::  weight    !< weighting factor
175    REAL(wp), DIMENSION(:), ALLOCATABLE ::  mass      !< total mass of super droplet
176    REAL(wp), DIMENSION(:), ALLOCATABLE ::  aero_mass !< total aerosol mass of super droplet
177
178    CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'start' )
179
180    number_of_particles   = prt_count(k,j,i)
181    factor_volume_to_mass = 4.0_wp / 3.0_wp * pi * rho_l
182    ddV                   = 1.0_wp / ( dx * dy * dzw(k) )
183!
184!-- Collision requires at least one super droplet inside the box
185    IF ( number_of_particles > 0 )  THEN
186
187       IF ( use_kernel_tables )  THEN
188!
189!--       Fast method with pre-calculated collection kernels for
190!--       discrete radius- and dissipation-classes.
191          IF ( wang_kernel )  THEN
192             eclass = INT( diss(k,j,i) * 1.0E4_wp / 600.0_wp * &
193                           dissipation_classes ) + 1
194             epsilon = diss(k,j,i)
195          ELSE
196             epsilon = 0.0_wp
197          ENDIF
198
199          IF ( hall_kernel  .OR.  epsilon * 1.0E4_wp < 0.001_wp )  THEN
200             eclass = 0   ! Hall kernel is used
201          ELSE
202             eclass = MIN( dissipation_classes, eclass )
203          ENDIF
204
205       ELSE
206!
207!--       Collection kernels are re-calculated for every new
208!--       grid box. First, allocate memory for kernel table.
209!--       Third dimension is 1, because table is re-calculated for
210!--       every new dissipation value.
211          ALLOCATE( ckernel(1:number_of_particles,1:number_of_particles,1:1) )
212!
213!--       Now calculate collection kernel for this box. Note that
214!--       the kernel is based on the previous time step
215          CALL recalculate_kernel( i, j, k )
216
217       ENDIF
218!
219!--    Temporary fields for total mass of super-droplet, aerosol mass, and
220!--    weighting factor are allocated.
221       ALLOCATE(mass(1:number_of_particles), weight(1:number_of_particles))
222       IF ( curvature_solution_effects )  ALLOCATE(aero_mass(1:number_of_particles))
223
224       mass(1:number_of_particles)   = particles(1:number_of_particles)%weight_factor * &
225                                       particles(1:number_of_particles)%radius**3     * &
226                                       factor_volume_to_mass
227
228       weight(1:number_of_particles) = particles(1:number_of_particles)%weight_factor
229
230       IF ( curvature_solution_effects )  THEN
231          aero_mass(1:number_of_particles) = particles(1:number_of_particles)%weight_factor * &
232                                             particles(1:number_of_particles)%aux1**3       * &
233                                             4.0 / 3.0 * pi * rho_s
234       ENDIF
235!
236!--    Calculate collision/coalescence
237       DO  n = 1, number_of_particles
238
239          DO  m = n, number_of_particles
240!
241!--          For collisions, the weighting factor of at least one super-droplet
242!--          needs to be larger or equal to one.
243             IF ( MIN( weight(n), weight(m) ) .LT. 1.0 )  CYCLE
244!
245!--          Get mass of individual droplets (aerosols)
246             xn = mass(n) / weight(n)
247             xm = mass(m) / weight(m)
248             IF ( curvature_solution_effects )  THEN
249                xsn = aero_mass(n) / weight(n)
250                xsm = aero_mass(m) / weight(m)
251             ENDIF
252!
253!--          Probability that the necessary collisions take place
254             IF ( use_kernel_tables )  THEN
255                rclass_l = particles(n)%class
256                rclass_s = particles(m)%class
257
258                collection_probability  = MAX( weight(n), weight(m) ) *     &
259                                          ckernel(rclass_l,rclass_s,eclass) * ddV * dt_3d
260             ELSE
261                collection_probability  = MAX( weight(n), weight(m) ) *     &
262                                          ckernel(n,m,1) * ddV * dt_3d
263             ENDIF
264!
265!--          Calculate the number of collections and consider multiple collections.
266!--          (Accordingly, p_crit will be 0.0, 1.0, 2.0, ...)
267             IF ( collection_probability - FLOOR(collection_probability)    &
268                  .GT. random_function( iran_part ) )  THEN
269                collection_probability = FLOOR(collection_probability) + 1.0_wp
270             ELSE
271                collection_probability = FLOOR(collection_probability)
272             ENDIF
273
274             IF ( collection_probability .GT. 0.0 )  THEN
275!
276!--             Super-droplet n collects droplets of super-droplet m
277                IF ( weight(n) .LT. weight(m) )  THEN
278
279                   mass(n)   = mass(n)   + weight(n) * xm * collection_probability
280                   weight(m) = weight(m) - weight(n)      * collection_probability
281                   mass(m)   = mass(m)   - weight(n) * xm * collection_probability
282                   IF ( curvature_solution_effects )  THEN
283                      aero_mass(n) = aero_mass(n) + weight(n) * xsm * collection_probability
284                      aero_mass(m) = aero_mass(m) - weight(n) * xsm * collection_probability
285                   ENDIF
286
287                ELSEIF ( weight(m) .LT. weight(n) )  THEN
288
289                   mass(m)   = mass(m)   + weight(m) * xn * collection_probability
290                   weight(n) = weight(n) - weight(m)      * collection_probability
291                   mass(n)   = mass(n)   - weight(m) * xn * collection_probability
292                   IF ( curvature_solution_effects )  THEN
293                      aero_mass(m) = aero_mass(m) + weight(m) * xsn * collection_probability
294                      aero_mass(n) = aero_mass(n) - weight(m) * xsn * collection_probability
295                   ENDIF
296
297                ELSE
298!
299!--                Collisions of particles of the same weighting factor.
300!--                Particle n collects 1/2 weight(n) droplets of particle m,
301!--                particle m collects 1/2 weight(m) droplets of particle n.
302!--                The total mass mass changes accordingly.
303!--                If n = m, the first half of the droplets coalesces with the
304!--                second half of the droplets; mass is unchanged because
305!--                xm = xn for n = m.
306!--
307!--                Note: For m = n this equation is an approximation only
308!--                valid for weight >> 1 (which is usually the case). The
309!--                approximation is weight(n)-1 = weight(n).
310                   mass(n)   = mass(n)   + 0.5_wp * weight(n) * ( xm - xn )
311                   mass(m)   = mass(m)   + 0.5_wp * weight(m) * ( xn - xm )
312                   IF ( curvature_solution_effects )  THEN
313                      aero_mass(n) = aero_mass(n) + 0.5_wp * weight(n) * ( xsm - xsn )
314                      aero_mass(m) = aero_mass(m) + 0.5_wp * weight(m) * ( xsn - xsm )
315                   ENDIF
316                   weight(n) = weight(n) - 0.5_wp * weight(m)
317                   weight(m) = weight(n)
318
319                ENDIF
320
321             ENDIF
322
323          ENDDO
324
325          ql_vp(k,j,i) = ql_vp(k,j,i) + mass(n) / factor_volume_to_mass
326
327       ENDDO
328
329       IF ( ANY(weight < 0.0_wp) )  THEN
330             WRITE( message_string, * ) 'negative weighting factor'
331             CALL message( 'lpm_droplet_collision', 'PA0028',      &
332                            2, 2, -1, 6, 1 )
333       ENDIF
334
335       particles(1:number_of_particles)%radius = ( mass(1:number_of_particles) /   &
336                                                   ( weight(1:number_of_particles) &
337                                                     * factor_volume_to_mass       &
338                                                   )                               &
339                                                 )**0.33333333333333_wp
340
341       IF ( curvature_solution_effects )  THEN
342          particles(1:number_of_particles)%aux1 = ( aero_mass(1:number_of_particles) / &
343                                                    ( weight(1:number_of_particles)    &
344                                                      * 4.0_wp / 3.0_wp * pi * rho_s   &
345                                                    )                                  &
346                                                  )**0.33333333333333_wp
347       ENDIF
348
349       particles(1:number_of_particles)%weight_factor = weight(1:number_of_particles)
350
351       DEALLOCATE( weight, mass )
352       IF ( curvature_solution_effects )  DEALLOCATE( aero_mass )
353       IF ( .NOT. use_kernel_tables )  DEALLOCATE( ckernel )
354
355!
356!--    Check if LWC is conserved during collision process
357       IF ( ql_v(k,j,i) /= 0.0_wp )  THEN
358          IF ( ql_vp(k,j,i) / ql_v(k,j,i) >= 1.0001_wp  .OR.                      &
359               ql_vp(k,j,i) / ql_v(k,j,i) <= 0.9999_wp )  THEN
360             WRITE( message_string, * ) ' LWC is not conserved during',           &
361                                        ' collision! ',                           &
362                                        ' LWC after condensation: ', ql_v(k,j,i), &
363                                        ' LWC after collision: ', ql_vp(k,j,i)
364             CALL message( 'lpm_droplet_collision', 'PA0040', 2, 2, -1, 6, 1 )
365          ENDIF
366       ENDIF
367
368    ENDIF
369
370    CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'stop' )
371
372 END SUBROUTINE lpm_droplet_collision
Note: See TracBrowser for help on using the repository browser.