1 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! usage of module interfaces removed |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: lpm_advec.f90 1369 2014-04-24 05:57:38Z raasch $ |
---|
27 | ! |
---|
28 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
29 | ! New particle structure integrated. |
---|
30 | ! Kind definition added to all floating point numbers. |
---|
31 | ! |
---|
32 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
33 | ! REAL constants defined as wp_kind |
---|
34 | ! |
---|
35 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
36 | ! ONLY-attribute added to USE-statements, |
---|
37 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
38 | ! kinds are defined in new module kinds, |
---|
39 | ! revision history before 2012 removed, |
---|
40 | ! comment fields (!:) to be used for variable explanations added to |
---|
41 | ! all variable declaration statements |
---|
42 | ! |
---|
43 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
44 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
45 | ! between roughness height and first vertical grid level. |
---|
46 | ! |
---|
47 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
48 | ! code put under GPL (PALM 3.9) |
---|
49 | ! |
---|
50 | ! 849 2012-03-15 10:35:09Z raasch |
---|
51 | ! initial revision (former part of advec_particles) |
---|
52 | ! |
---|
53 | ! |
---|
54 | ! Description: |
---|
55 | ! ------------ |
---|
56 | ! Calculation of new particle positions due to advection using a simple Euler |
---|
57 | ! scheme. Particles may feel inertia effects. SGS transport can be included |
---|
58 | ! using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
59 | !------------------------------------------------------------------------------! |
---|
60 | |
---|
61 | USE arrays_3d, & |
---|
62 | ONLY: de_dx, de_dy, de_dz, diss, e, u, us, usws, v, vsws, w, z0, zu, & |
---|
63 | zw |
---|
64 | |
---|
65 | USE cpulog |
---|
66 | |
---|
67 | USE pegrid |
---|
68 | |
---|
69 | USE control_parameters, & |
---|
70 | ONLY: atmos_ocean_sign, cloud_droplets, dt_3d, dt_3d_reached_l, dz, & |
---|
71 | g, kappa, molecular_viscosity, prandtl_layer, topography, & |
---|
72 | u_gtrans, v_gtrans, simulated_time |
---|
73 | |
---|
74 | USE grid_variables, & |
---|
75 | ONLY: ddx, dx, ddy, dy |
---|
76 | |
---|
77 | USE indices, & |
---|
78 | ONLY: nzb, nzb_s_inner, nzt |
---|
79 | |
---|
80 | USE kinds |
---|
81 | |
---|
82 | USE particle_attributes, & |
---|
83 | ONLY: block_offset, c_0, density_ratio, dt_min_part, grid_particles, & |
---|
84 | iran_part, log_z_z0, number_of_particles, number_of_sublayers, & |
---|
85 | particles, particle_groups, offset_ocean_nzt, & |
---|
86 | offset_ocean_nzt_m1, sgs_wfu_part, sgs_wfv_part, sgs_wfw_part, & |
---|
87 | use_sgs_for_particles, vertical_particle_advection, z0_av_global |
---|
88 | |
---|
89 | USE statistics, & |
---|
90 | ONLY: hom |
---|
91 | |
---|
92 | IMPLICIT NONE |
---|
93 | |
---|
94 | INTEGER(iwp) :: agp !: |
---|
95 | INTEGER(iwp) :: gp_outside_of_building(1:8) !: |
---|
96 | INTEGER(iwp) :: i !: |
---|
97 | INTEGER(iwp) :: ip !: |
---|
98 | INTEGER(iwp) :: j !: |
---|
99 | INTEGER(iwp) :: jp !: |
---|
100 | INTEGER(iwp) :: k !: |
---|
101 | INTEGER(iwp) :: kp !: |
---|
102 | INTEGER(iwp) :: kw !: |
---|
103 | INTEGER(iwp) :: n !: |
---|
104 | INTEGER(iwp) :: nb !: |
---|
105 | INTEGER(iwp) :: num_gp !: |
---|
106 | |
---|
107 | INTEGER(iwp), DIMENSION(0:7) :: start_index !: |
---|
108 | INTEGER(iwp), DIMENSION(0:7) :: end_index !: |
---|
109 | |
---|
110 | REAL(wp) :: aa !: |
---|
111 | REAL(wp) :: bb !: |
---|
112 | REAL(wp) :: cc !: |
---|
113 | REAL(wp) :: d_sum !: |
---|
114 | REAL(wp) :: d_z_p_z0 !: |
---|
115 | REAL(wp) :: dd !: |
---|
116 | REAL(wp) :: de_dx_int_l !: |
---|
117 | REAL(wp) :: de_dx_int_u !: |
---|
118 | REAL(wp) :: de_dy_int_l !: |
---|
119 | REAL(wp) :: de_dy_int_u !: |
---|
120 | REAL(wp) :: de_dt !: |
---|
121 | REAL(wp) :: de_dt_min !: |
---|
122 | REAL(wp) :: de_dz_int_l !: |
---|
123 | REAL(wp) :: de_dz_int_u !: |
---|
124 | REAL(wp) :: diss_int_l !: |
---|
125 | REAL(wp) :: diss_int_u !: |
---|
126 | REAL(wp) :: dt_gap !: |
---|
127 | REAL(wp) :: dt_particle_m !: |
---|
128 | REAL(wp) :: e_int_l !: |
---|
129 | REAL(wp) :: e_int_u !: |
---|
130 | REAL(wp) :: e_mean_int !: |
---|
131 | REAL(wp) :: exp_arg !: |
---|
132 | REAL(wp) :: exp_term !: |
---|
133 | REAL(wp) :: gg !: |
---|
134 | REAL(wp) :: height_int !: |
---|
135 | REAL(wp) :: height_p !: |
---|
136 | REAL(wp) :: lagr_timescale !: |
---|
137 | REAL(wp) :: location(1:30,1:3) !: |
---|
138 | REAL(wp) :: random_gauss !: |
---|
139 | REAL(wp) :: u_int_l !: |
---|
140 | REAL(wp) :: u_int_u !: |
---|
141 | REAL(wp) :: us_int !: |
---|
142 | REAL(wp) :: v_int_l !: |
---|
143 | REAL(wp) :: v_int_u !: |
---|
144 | REAL(wp) :: vv_int !: |
---|
145 | REAL(wp) :: w_int_l !: |
---|
146 | REAL(wp) :: w_int_u !: |
---|
147 | REAL(wp) :: x !: |
---|
148 | REAL(wp) :: y !: |
---|
149 | REAL(wp) :: z_p !: |
---|
150 | |
---|
151 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !: |
---|
152 | REAL(wp), DIMENSION(1:30) :: de_dxi !: |
---|
153 | REAL(wp), DIMENSION(1:30) :: de_dyi !: |
---|
154 | REAL(wp), DIMENSION(1:30) :: de_dzi !: |
---|
155 | REAL(wp), DIMENSION(1:30) :: dissi !: |
---|
156 | REAL(wp), DIMENSION(1:30) :: ei !: |
---|
157 | |
---|
158 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !: |
---|
159 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !: |
---|
160 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !: |
---|
161 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !: |
---|
162 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !: |
---|
163 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !: |
---|
164 | REAL(wp), DIMENSION(number_of_particles) :: e_int !: |
---|
165 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !: |
---|
166 | REAL(wp), DIMENSION(number_of_particles) :: log_z_z0_int !: |
---|
167 | REAL(wp), DIMENSION(number_of_particles) :: u_int !: |
---|
168 | REAL(wp), DIMENSION(number_of_particles) :: v_int !: |
---|
169 | REAL(wp), DIMENSION(number_of_particles) :: w_int !: |
---|
170 | REAL(wp), DIMENSION(number_of_particles) :: xv !: |
---|
171 | REAL(wp), DIMENSION(number_of_particles) :: yv !: |
---|
172 | REAL(wp), DIMENSION(number_of_particles) :: zv !: |
---|
173 | |
---|
174 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !: |
---|
175 | |
---|
176 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
177 | |
---|
178 | ! |
---|
179 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
180 | !-- height and horizontal mean roughness height, which are required for |
---|
181 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
182 | !-- (for particles below first vertical grid level). |
---|
183 | z_p = zu(nzb+1) - zw(nzb) |
---|
184 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
185 | |
---|
186 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
187 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
188 | |
---|
189 | xv = particles(1:number_of_particles)%x |
---|
190 | yv = particles(1:number_of_particles)%y |
---|
191 | zv = particles(1:number_of_particles)%z |
---|
192 | |
---|
193 | DO nb = 0, 7 |
---|
194 | |
---|
195 | i = ip |
---|
196 | j = jp + block_offset(nb)%j_off |
---|
197 | k = kp + block_offset(nb)%k_off |
---|
198 | |
---|
199 | ! |
---|
200 | !-- Interpolate u velocity-component |
---|
201 | DO n = start_index(nb), end_index(nb) |
---|
202 | ! |
---|
203 | !-- Interpolation of the u velocity component onto particle position. |
---|
204 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
205 | !-- linearly in the vertical. An exception is made for particles below |
---|
206 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
207 | !-- case the horizontal particle velocity components are determined using |
---|
208 | !-- Monin-Obukhov relations (if branch). |
---|
209 | !-- First, check if particle is located below first vertical grid level |
---|
210 | !-- (Prandtl-layer height) |
---|
211 | IF ( prandtl_layer .AND. particles(n)%z < z_p ) THEN |
---|
212 | ! |
---|
213 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
214 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
215 | u_int(n) = 0.0_wp |
---|
216 | ELSE |
---|
217 | ! |
---|
218 | !-- Determine the sublayer. Further used as index. |
---|
219 | height_p = ( particles(n)%z - z0_av_global ) & |
---|
220 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
221 | * d_z_p_z0 |
---|
222 | ! |
---|
223 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
224 | !-- interpolate linearly between precalculated logarithm. |
---|
225 | log_z_z0_int(n) = log_z_z0(INT(height_p)) & |
---|
226 | + ( height_p - INT(height_p) ) & |
---|
227 | * ( log_z_z0(INT(height_p)+1) & |
---|
228 | - log_z_z0(INT(height_p)) & |
---|
229 | ) |
---|
230 | ! |
---|
231 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
232 | !-- unstable and stable situations. Even though this is not exact |
---|
233 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
234 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
235 | !-- as sensitivity studies revealed no significant effect of |
---|
236 | !-- using the neutral solution also for un/stable situations. |
---|
237 | !-- Calculated left and bottom index on u grid. |
---|
238 | us_int = 0.5_wp * ( us(j,i) + us(j,i-1) ) |
---|
239 | |
---|
240 | u_int = -usws(j,i) / ( us_int * kappa + 1E-10_wp ) & |
---|
241 | * log_z_z0_int(n) |
---|
242 | |
---|
243 | ENDIF |
---|
244 | ! |
---|
245 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
246 | !-- horizontal and linear interpolation in the vertical direction. |
---|
247 | ELSE |
---|
248 | |
---|
249 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
250 | y = yv(n) - j * dy |
---|
251 | aa = x**2 + y**2 |
---|
252 | bb = ( dx - x )**2 + y**2 |
---|
253 | cc = x**2 + ( dy - y )**2 |
---|
254 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
255 | gg = aa + bb + cc + dd |
---|
256 | |
---|
257 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
258 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
259 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
260 | |
---|
261 | IF ( k == nzt ) THEN |
---|
262 | u_int(n) = u_int_l |
---|
263 | ELSE |
---|
264 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
265 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
266 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
267 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
268 | ( u_int_u - u_int_l ) |
---|
269 | ENDIF |
---|
270 | ENDIF |
---|
271 | |
---|
272 | ENDDO |
---|
273 | |
---|
274 | i = ip + block_offset(nb)%i_off |
---|
275 | j = jp |
---|
276 | k = kp + block_offset(nb)%k_off |
---|
277 | ! |
---|
278 | !-- Same procedure for interpolation of the v velocity-component |
---|
279 | DO n = start_index(nb), end_index(nb) |
---|
280 | IF ( prandtl_layer .AND. particles(n)%z < z_p ) THEN |
---|
281 | |
---|
282 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
283 | ! |
---|
284 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
285 | v_int(n) = 0.0_wp |
---|
286 | ELSE |
---|
287 | ! |
---|
288 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
289 | !-- unstable and stable situations. Even though this is not exact |
---|
290 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
291 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
292 | !-- as sensitivity studies revealed no significant effect of |
---|
293 | !-- using the neutral solution also for un/stable situations. |
---|
294 | !-- Calculated left and bottom index on v grid. |
---|
295 | us_int = 0.5_wp * ( us(j,i) + us(j-1,i) ) |
---|
296 | |
---|
297 | v_int = -vsws(j,i) / ( us_int * kappa + 1E-10_wp ) & |
---|
298 | * log_z_z0_int(n) |
---|
299 | ENDIF |
---|
300 | ELSE |
---|
301 | x = xv(n) - i * dx |
---|
302 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
303 | aa = x**2 + y**2 |
---|
304 | bb = ( dx - x )**2 + y**2 |
---|
305 | cc = x**2 + ( dy - y )**2 |
---|
306 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
307 | gg = aa + bb + cc + dd |
---|
308 | |
---|
309 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
310 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
311 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
312 | |
---|
313 | IF ( k == nzt ) THEN |
---|
314 | v_int(n) = v_int_l |
---|
315 | ELSE |
---|
316 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
317 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
318 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
319 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
320 | ( v_int_u - v_int_l ) |
---|
321 | ENDIF |
---|
322 | ENDIF |
---|
323 | |
---|
324 | ENDDO |
---|
325 | |
---|
326 | i = ip + block_offset(nb)%i_off |
---|
327 | j = jp + block_offset(nb)%j_off |
---|
328 | k = kp-1 |
---|
329 | ! |
---|
330 | !-- Same procedure for interpolation of the w velocity-component |
---|
331 | DO n = start_index(nb), end_index(nb) |
---|
332 | |
---|
333 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
334 | |
---|
335 | x = xv(n) - i * dx |
---|
336 | y = yv(n) - j * dy |
---|
337 | aa = x**2 + y**2 |
---|
338 | bb = ( dx - x )**2 + y**2 |
---|
339 | cc = x**2 + ( dy - y )**2 |
---|
340 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
341 | gg = aa + bb + cc + dd |
---|
342 | |
---|
343 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
344 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
345 | ) / ( 3.0_wp * gg ) |
---|
346 | |
---|
347 | IF ( k == nzt ) THEN |
---|
348 | w_int(n) = w_int_l |
---|
349 | ELSE |
---|
350 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
351 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
352 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
353 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
354 | ) / ( 3.0_wp * gg ) |
---|
355 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dz * & |
---|
356 | ( w_int_u - w_int_l ) |
---|
357 | ENDIF |
---|
358 | |
---|
359 | ELSE |
---|
360 | |
---|
361 | w_int(n) = 0.0_wp |
---|
362 | |
---|
363 | ENDIF |
---|
364 | |
---|
365 | ENDDO |
---|
366 | |
---|
367 | ENDDO |
---|
368 | |
---|
369 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
370 | !-- velocities |
---|
371 | IF ( use_sgs_for_particles ) THEN |
---|
372 | |
---|
373 | IF ( topography == 'flat' ) THEN |
---|
374 | |
---|
375 | DO nb = 0,7 |
---|
376 | |
---|
377 | i = ip + block_offset(nb)%i_off |
---|
378 | j = jp + block_offset(nb)%j_off |
---|
379 | k = kp + block_offset(nb)%k_off |
---|
380 | |
---|
381 | DO n = start_index(nb), end_index(nb) |
---|
382 | ! |
---|
383 | !-- Interpolate TKE |
---|
384 | x = xv(n) - i * dx |
---|
385 | y = yv(n) - j * dy |
---|
386 | aa = x**2 + y**2 |
---|
387 | bb = ( dx - x )**2 + y**2 |
---|
388 | cc = x**2 + ( dy - y )**2 |
---|
389 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
390 | gg = aa + bb + cc + dd |
---|
391 | |
---|
392 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
393 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
394 | ) / ( 3.0_wp * gg ) |
---|
395 | |
---|
396 | IF ( k+1 == nzt+1 ) THEN |
---|
397 | e_int(n) = e_int_l |
---|
398 | ELSE |
---|
399 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
400 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
401 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
402 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
403 | ) / ( 3.0_wp * gg ) |
---|
404 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
405 | ( e_int_u - e_int_l ) |
---|
406 | ENDIF |
---|
407 | ! |
---|
408 | !-- Needed to avoid NaN particle velocities |
---|
409 | IF ( e_int(n) == 0.0_wp ) THEN |
---|
410 | e_int(n) = 1.0E-20_wp |
---|
411 | ENDIF |
---|
412 | ! |
---|
413 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
414 | !-- all position variables from above (TKE)) |
---|
415 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
416 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
417 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
418 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
419 | ) / ( 3.0_wp * gg ) |
---|
420 | |
---|
421 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
422 | de_dx_int(n) = de_dx_int_l |
---|
423 | ELSE |
---|
424 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
425 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
426 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
427 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
428 | ) / ( 3.0_wp * gg ) |
---|
429 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
430 | ( de_dx_int_u - de_dx_int_l ) |
---|
431 | ENDIF |
---|
432 | ! |
---|
433 | !-- Interpolate the TKE gradient along y |
---|
434 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
435 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
436 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
437 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
438 | ) / ( 3.0_wp * gg ) |
---|
439 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
440 | de_dy_int(n) = de_dy_int_l |
---|
441 | ELSE |
---|
442 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
443 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
444 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
445 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
446 | ) / ( 3.0_wp * gg ) |
---|
447 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
448 | ( de_dy_int_u - de_dy_int_l ) |
---|
449 | ENDIF |
---|
450 | |
---|
451 | ! |
---|
452 | !-- Interpolate the TKE gradient along z |
---|
453 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
454 | de_dz_int(n) = 0.0_wp |
---|
455 | ELSE |
---|
456 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
457 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
458 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
459 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
460 | ) / ( 3.0_wp * gg ) |
---|
461 | |
---|
462 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
463 | de_dz_int(n) = de_dz_int_l |
---|
464 | ELSE |
---|
465 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
466 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
467 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
468 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
469 | ) / ( 3.0_wp * gg ) |
---|
470 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
471 | ( de_dz_int_u - de_dz_int_l ) |
---|
472 | ENDIF |
---|
473 | ENDIF |
---|
474 | |
---|
475 | ! |
---|
476 | !-- Interpolate the dissipation of TKE |
---|
477 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
478 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
479 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
480 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
481 | ) / ( 3.0_wp * gg ) |
---|
482 | |
---|
483 | IF ( k == nzt ) THEN |
---|
484 | diss_int(n) = diss_int_l |
---|
485 | ELSE |
---|
486 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
487 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
488 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
489 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
490 | ) / ( 3.0_wp * gg ) |
---|
491 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
492 | ( diss_int_u - diss_int_l ) |
---|
493 | ENDIF |
---|
494 | |
---|
495 | ENDDO |
---|
496 | ENDDO |
---|
497 | |
---|
498 | ELSE ! non-flat topography, e.g., buildings |
---|
499 | |
---|
500 | DO n = 1, number_of_particles |
---|
501 | |
---|
502 | i = particles(n)%x * ddx |
---|
503 | j = particles(n)%y * ddy |
---|
504 | k = ( zv(n) + 0.5_wp * dz * atmos_ocean_sign ) / dz & |
---|
505 | + offset_ocean_nzt ! only exact if eq.dist |
---|
506 | ! |
---|
507 | !-- In case that there are buildings it has to be determined |
---|
508 | !-- how many of the gridpoints defining the particle box are |
---|
509 | !-- situated within a building |
---|
510 | !-- gp_outside_of_building(1): i,j,k |
---|
511 | !-- gp_outside_of_building(2): i,j+1,k |
---|
512 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
513 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
514 | !-- gp_outside_of_building(5): i+1,j,k |
---|
515 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
516 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
517 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
518 | |
---|
519 | gp_outside_of_building = 0 |
---|
520 | location = 0.0_wp |
---|
521 | num_gp = 0 |
---|
522 | |
---|
523 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
524 | num_gp = num_gp + 1 |
---|
525 | gp_outside_of_building(1) = 1 |
---|
526 | location(num_gp,1) = i * dx |
---|
527 | location(num_gp,2) = j * dy |
---|
528 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
529 | ei(num_gp) = e(k,j,i) |
---|
530 | dissi(num_gp) = diss(k,j,i) |
---|
531 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
532 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
533 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
534 | ENDIF |
---|
535 | |
---|
536 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
537 | THEN |
---|
538 | num_gp = num_gp + 1 |
---|
539 | gp_outside_of_building(2) = 1 |
---|
540 | location(num_gp,1) = i * dx |
---|
541 | location(num_gp,2) = (j+1) * dy |
---|
542 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
543 | ei(num_gp) = e(k,j+1,i) |
---|
544 | dissi(num_gp) = diss(k,j+1,i) |
---|
545 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
546 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
547 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
548 | ENDIF |
---|
549 | |
---|
550 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
551 | num_gp = num_gp + 1 |
---|
552 | gp_outside_of_building(3) = 1 |
---|
553 | location(num_gp,1) = i * dx |
---|
554 | location(num_gp,2) = j * dy |
---|
555 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
556 | ei(num_gp) = e(k+1,j,i) |
---|
557 | dissi(num_gp) = diss(k+1,j,i) |
---|
558 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
559 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
560 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
561 | ENDIF |
---|
562 | |
---|
563 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
564 | THEN |
---|
565 | num_gp = num_gp + 1 |
---|
566 | gp_outside_of_building(4) = 1 |
---|
567 | location(num_gp,1) = i * dx |
---|
568 | location(num_gp,2) = (j+1) * dy |
---|
569 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
570 | ei(num_gp) = e(k+1,j+1,i) |
---|
571 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
572 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
573 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
574 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
575 | ENDIF |
---|
576 | |
---|
577 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
578 | THEN |
---|
579 | num_gp = num_gp + 1 |
---|
580 | gp_outside_of_building(5) = 1 |
---|
581 | location(num_gp,1) = (i+1) * dx |
---|
582 | location(num_gp,2) = j * dy |
---|
583 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
584 | ei(num_gp) = e(k,j,i+1) |
---|
585 | dissi(num_gp) = diss(k,j,i+1) |
---|
586 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
587 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
588 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
589 | ENDIF |
---|
590 | |
---|
591 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) & |
---|
592 | THEN |
---|
593 | num_gp = num_gp + 1 |
---|
594 | gp_outside_of_building(6) = 1 |
---|
595 | location(num_gp,1) = (i+1) * dx |
---|
596 | location(num_gp,2) = (j+1) * dy |
---|
597 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
598 | ei(num_gp) = e(k,j+1,i+1) |
---|
599 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
600 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
601 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
602 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
603 | ENDIF |
---|
604 | |
---|
605 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
606 | THEN |
---|
607 | num_gp = num_gp + 1 |
---|
608 | gp_outside_of_building(7) = 1 |
---|
609 | location(num_gp,1) = (i+1) * dx |
---|
610 | location(num_gp,2) = j * dy |
---|
611 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
612 | ei(num_gp) = e(k+1,j,i+1) |
---|
613 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
614 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
615 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
616 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
617 | ENDIF |
---|
618 | |
---|
619 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0)& |
---|
620 | THEN |
---|
621 | num_gp = num_gp + 1 |
---|
622 | gp_outside_of_building(8) = 1 |
---|
623 | location(num_gp,1) = (i+1) * dx |
---|
624 | location(num_gp,2) = (j+1) * dy |
---|
625 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
626 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
627 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
628 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
629 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
630 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
631 | ENDIF |
---|
632 | |
---|
633 | ! |
---|
634 | !-- If all gridpoints are situated outside of a building, then the |
---|
635 | !-- ordinary interpolation scheme can be used. |
---|
636 | IF ( num_gp == 8 ) THEN |
---|
637 | |
---|
638 | x = particles(n)%x - i * dx |
---|
639 | y = particles(n)%y - j * dy |
---|
640 | aa = x**2 + y**2 |
---|
641 | bb = ( dx - x )**2 + y**2 |
---|
642 | cc = x**2 + ( dy - y )**2 |
---|
643 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
644 | gg = aa + bb + cc + dd |
---|
645 | |
---|
646 | e_int_l = ( ( gg - aa ) * e(k,j,i) + ( gg - bb ) * e(k,j,i+1) & |
---|
647 | + ( gg - cc ) * e(k,j+1,i) + ( gg - dd ) * e(k,j+1,i+1) & |
---|
648 | ) / ( 3.0_wp * gg ) |
---|
649 | |
---|
650 | IF ( k == nzt ) THEN |
---|
651 | e_int(n) = e_int_l |
---|
652 | ELSE |
---|
653 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
654 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
655 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
656 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
657 | ) / ( 3.0_wp * gg ) |
---|
658 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
659 | ( e_int_u - e_int_l ) |
---|
660 | ENDIF |
---|
661 | ! |
---|
662 | !-- Needed to avoid NaN particle velocities |
---|
663 | IF ( e_int(n) == 0.0_wp ) THEN |
---|
664 | e_int(n) = 1.0E-20_wp |
---|
665 | ENDIF |
---|
666 | ! |
---|
667 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
668 | !-- and all position variables from above (TKE)) |
---|
669 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
670 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
671 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
672 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
673 | ) / ( 3.0_wp * gg ) |
---|
674 | |
---|
675 | IF ( ( k == nzt ) .OR. ( k == nzb ) ) THEN |
---|
676 | de_dx_int(n) = de_dx_int_l |
---|
677 | ELSE |
---|
678 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
679 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
680 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
681 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
682 | ) / ( 3.0_wp * gg ) |
---|
683 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / & |
---|
684 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
685 | ENDIF |
---|
686 | |
---|
687 | ! |
---|
688 | !-- Interpolate the TKE gradient along y |
---|
689 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
690 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
691 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
692 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
693 | ) / ( 3.0_wp * gg ) |
---|
694 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
695 | de_dy_int(n) = de_dy_int_l |
---|
696 | ELSE |
---|
697 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
698 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
699 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
700 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
701 | ) / ( 3.0_wp * gg ) |
---|
702 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / & |
---|
703 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
704 | ENDIF |
---|
705 | |
---|
706 | ! |
---|
707 | !-- Interpolate the TKE gradient along z |
---|
708 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
709 | de_dz_int(n) = 0.0_wp |
---|
710 | ELSE |
---|
711 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
712 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
713 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
714 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
715 | ) / ( 3.0_wp * gg ) |
---|
716 | |
---|
717 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
718 | de_dz_int(n) = de_dz_int_l |
---|
719 | ELSE |
---|
720 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
721 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
722 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
723 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
724 | ) / ( 3.0_wp * gg ) |
---|
725 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) /& |
---|
726 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
727 | ENDIF |
---|
728 | ENDIF |
---|
729 | |
---|
730 | ! |
---|
731 | !-- Interpolate the dissipation of TKE |
---|
732 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
733 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
734 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
735 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
736 | ) / ( 3.0_wp * gg ) |
---|
737 | |
---|
738 | IF ( k == nzt ) THEN |
---|
739 | diss_int(n) = diss_int_l |
---|
740 | ELSE |
---|
741 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
742 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
743 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
744 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
745 | ) / ( 3.0_wp * gg ) |
---|
746 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz *& |
---|
747 | ( diss_int_u - diss_int_l ) |
---|
748 | ENDIF |
---|
749 | |
---|
750 | ELSE |
---|
751 | |
---|
752 | ! |
---|
753 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
754 | !-- Neumann boundary condition has to be applied |
---|
755 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
756 | gp_outside_of_building(5) == 0 ) THEN |
---|
757 | num_gp = num_gp + 1 |
---|
758 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
759 | location(num_gp,2) = j * dy |
---|
760 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
761 | ei(num_gp) = e(k,j,i) |
---|
762 | dissi(num_gp) = diss(k,j,i) |
---|
763 | de_dxi(num_gp) = 0.0_wp |
---|
764 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
765 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
766 | ENDIF |
---|
767 | |
---|
768 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
769 | gp_outside_of_building(1) == 0 ) THEN |
---|
770 | num_gp = num_gp + 1 |
---|
771 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
772 | location(num_gp,2) = j * dy |
---|
773 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
774 | ei(num_gp) = e(k,j,i+1) |
---|
775 | dissi(num_gp) = diss(k,j,i+1) |
---|
776 | de_dxi(num_gp) = 0.0_wp |
---|
777 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
778 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
779 | ENDIF |
---|
780 | |
---|
781 | ! |
---|
782 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
783 | !-- then Neumann boundary condition has to be applied |
---|
784 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
785 | gp_outside_of_building(6) == 0 ) THEN |
---|
786 | num_gp = num_gp + 1 |
---|
787 | location(num_gp,1) = (i+1) * dx |
---|
788 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
789 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
790 | ei(num_gp) = e(k,j,i+1) |
---|
791 | dissi(num_gp) = diss(k,j,i+1) |
---|
792 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
793 | de_dyi(num_gp) = 0.0_wp |
---|
794 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
795 | ENDIF |
---|
796 | |
---|
797 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
798 | gp_outside_of_building(5) == 0 ) THEN |
---|
799 | num_gp = num_gp + 1 |
---|
800 | location(num_gp,1) = (i+1) * dx |
---|
801 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
802 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
803 | ei(num_gp) = e(k,j+1,i+1) |
---|
804 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
805 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
806 | de_dyi(num_gp) = 0.0_wp |
---|
807 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
808 | ENDIF |
---|
809 | |
---|
810 | ! |
---|
811 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
812 | !-- Neumann boundary condition has to be applied |
---|
813 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
814 | gp_outside_of_building(6) == 0 ) THEN |
---|
815 | num_gp = num_gp + 1 |
---|
816 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
817 | location(num_gp,2) = (j+1) * dy |
---|
818 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
819 | ei(num_gp) = e(k,j+1,i) |
---|
820 | dissi(num_gp) = diss(k,j+1,i) |
---|
821 | de_dxi(num_gp) = 0.0_wp |
---|
822 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
823 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
824 | ENDIF |
---|
825 | |
---|
826 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
827 | gp_outside_of_building(2) == 0 ) THEN |
---|
828 | num_gp = num_gp + 1 |
---|
829 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
830 | location(num_gp,2) = (j+1) * dy |
---|
831 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
832 | ei(num_gp) = e(k,j+1,i+1) |
---|
833 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
834 | de_dxi(num_gp) = 0.0_wp |
---|
835 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
836 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
837 | ENDIF |
---|
838 | |
---|
839 | ! |
---|
840 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
841 | !-- Neumann boundary condition has to be applied |
---|
842 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
843 | gp_outside_of_building(2) == 0 ) THEN |
---|
844 | num_gp = num_gp + 1 |
---|
845 | location(num_gp,1) = i * dx |
---|
846 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
847 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
848 | ei(num_gp) = e(k,j,i) |
---|
849 | dissi(num_gp) = diss(k,j,i) |
---|
850 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
851 | de_dyi(num_gp) = 0.0_wp |
---|
852 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
853 | ENDIF |
---|
854 | |
---|
855 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
856 | gp_outside_of_building(1) == 0 ) THEN |
---|
857 | num_gp = num_gp + 1 |
---|
858 | location(num_gp,1) = i * dx |
---|
859 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
860 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
861 | ei(num_gp) = e(k,j+1,i) |
---|
862 | dissi(num_gp) = diss(k,j+1,i) |
---|
863 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
864 | de_dyi(num_gp) = 0.0_wp |
---|
865 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
866 | ENDIF |
---|
867 | |
---|
868 | ! |
---|
869 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
870 | !-- Neumann boundary condition has to be applied |
---|
871 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
872 | gp_outside_of_building(7) == 0 ) THEN |
---|
873 | num_gp = num_gp + 1 |
---|
874 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
875 | location(num_gp,2) = j * dy |
---|
876 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
877 | ei(num_gp) = e(k+1,j,i) |
---|
878 | dissi(num_gp) = diss(k+1,j,i) |
---|
879 | de_dxi(num_gp) = 0.0_wp |
---|
880 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
881 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
882 | ENDIF |
---|
883 | |
---|
884 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
885 | gp_outside_of_building(3) == 0 ) THEN |
---|
886 | num_gp = num_gp + 1 |
---|
887 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
888 | location(num_gp,2) = j * dy |
---|
889 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
890 | ei(num_gp) = e(k+1,j,i+1) |
---|
891 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
892 | de_dxi(num_gp) = 0.0_wp |
---|
893 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
894 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
895 | ENDIF |
---|
896 | |
---|
897 | ! |
---|
898 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
899 | !-- Neumann boundary condition has to be applied |
---|
900 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
901 | gp_outside_of_building(8) == 0 ) THEN |
---|
902 | num_gp = num_gp + 1 |
---|
903 | location(num_gp,1) = (i+1) * dx |
---|
904 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
905 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
906 | ei(num_gp) = e(k+1,j,i+1) |
---|
907 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
908 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
909 | de_dyi(num_gp) = 0.0_wp |
---|
910 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
911 | ENDIF |
---|
912 | |
---|
913 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
914 | gp_outside_of_building(7) == 0 ) THEN |
---|
915 | num_gp = num_gp + 1 |
---|
916 | location(num_gp,1) = (i+1) * dx |
---|
917 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
918 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
919 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
920 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
921 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
922 | de_dyi(num_gp) = 0.0_wp |
---|
923 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
924 | ENDIF |
---|
925 | |
---|
926 | ! |
---|
927 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
928 | !-- Neumann boundary condition has to be applied |
---|
929 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
930 | gp_outside_of_building(8) == 0 ) THEN |
---|
931 | num_gp = num_gp + 1 |
---|
932 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
933 | location(num_gp,2) = (j+1) * dy |
---|
934 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
935 | ei(num_gp) = e(k+1,j+1,i) |
---|
936 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
937 | de_dxi(num_gp) = 0.0_wp |
---|
938 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
939 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
940 | ENDIF |
---|
941 | |
---|
942 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
943 | gp_outside_of_building(4) == 0 ) THEN |
---|
944 | num_gp = num_gp + 1 |
---|
945 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
946 | location(num_gp,2) = (j+1) * dy |
---|
947 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
948 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
949 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
950 | de_dxi(num_gp) = 0.0_wp |
---|
951 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
952 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
953 | ENDIF |
---|
954 | |
---|
955 | ! |
---|
956 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
957 | !-- Neumann boundary condition has to be applied |
---|
958 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
959 | gp_outside_of_building(4) == 0 ) THEN |
---|
960 | num_gp = num_gp + 1 |
---|
961 | location(num_gp,1) = i * dx |
---|
962 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
963 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
964 | ei(num_gp) = e(k+1,j,i) |
---|
965 | dissi(num_gp) = diss(k+1,j,i) |
---|
966 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
967 | de_dyi(num_gp) = 0.0_wp |
---|
968 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
969 | ENDIF |
---|
970 | |
---|
971 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
972 | gp_outside_of_building(3) == 0 ) THEN |
---|
973 | num_gp = num_gp + 1 |
---|
974 | location(num_gp,1) = i * dx |
---|
975 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
976 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
977 | ei(num_gp) = e(k+1,j+1,i) |
---|
978 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
979 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
980 | de_dyi(num_gp) = 0.0_wp |
---|
981 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
982 | ENDIF |
---|
983 | |
---|
984 | ! |
---|
985 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
986 | !-- Neumann boundary condition has to be applied |
---|
987 | !-- (only one case as only building beneath is possible) |
---|
988 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
989 | gp_outside_of_building(3) == 1 ) THEN |
---|
990 | num_gp = num_gp + 1 |
---|
991 | location(num_gp,1) = i * dx |
---|
992 | location(num_gp,2) = j * dy |
---|
993 | location(num_gp,3) = k * dz |
---|
994 | ei(num_gp) = e(k+1,j,i) |
---|
995 | dissi(num_gp) = diss(k+1,j,i) |
---|
996 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
997 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
998 | de_dzi(num_gp) = 0.0_wp |
---|
999 | ENDIF |
---|
1000 | |
---|
1001 | ! |
---|
1002 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
1003 | !-- Neumann boundary condition has to be applied |
---|
1004 | !-- (only one case as only building beneath is possible) |
---|
1005 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
1006 | gp_outside_of_building(7) == 1 ) THEN |
---|
1007 | num_gp = num_gp + 1 |
---|
1008 | location(num_gp,1) = (i+1) * dx |
---|
1009 | location(num_gp,2) = j * dy |
---|
1010 | location(num_gp,3) = k * dz |
---|
1011 | ei(num_gp) = e(k+1,j,i+1) |
---|
1012 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
1013 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
1014 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
1015 | de_dzi(num_gp) = 0.0_wp |
---|
1016 | ENDIF |
---|
1017 | |
---|
1018 | ! |
---|
1019 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
1020 | !-- Neumann boundary condition has to be applied |
---|
1021 | !-- (only one case as only building beneath is possible) |
---|
1022 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
1023 | gp_outside_of_building(4) == 1 ) THEN |
---|
1024 | num_gp = num_gp + 1 |
---|
1025 | location(num_gp,1) = i * dx |
---|
1026 | location(num_gp,2) = (j+1) * dy |
---|
1027 | location(num_gp,3) = k * dz |
---|
1028 | ei(num_gp) = e(k+1,j+1,i) |
---|
1029 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
1030 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
1031 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
1032 | de_dzi(num_gp) = 0.0_wp |
---|
1033 | ENDIF |
---|
1034 | |
---|
1035 | ! |
---|
1036 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
1037 | !-- Neumann boundary condition has to be applied |
---|
1038 | !-- (only one case as only building beneath is possible) |
---|
1039 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
1040 | gp_outside_of_building(8) == 1 ) THEN |
---|
1041 | num_gp = num_gp + 1 |
---|
1042 | location(num_gp,1) = (i+1) * dx |
---|
1043 | location(num_gp,2) = (j+1) * dy |
---|
1044 | location(num_gp,3) = k * dz |
---|
1045 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1046 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1047 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
1048 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
1049 | de_dzi(num_gp) = 0.0_wp |
---|
1050 | ENDIF |
---|
1051 | |
---|
1052 | ! |
---|
1053 | !-- Carry out the interpolation |
---|
1054 | IF ( num_gp == 1 ) THEN |
---|
1055 | ! |
---|
1056 | !-- If only one of the gridpoints is situated outside of the |
---|
1057 | !-- building, it follows that the values at the particle |
---|
1058 | !-- location are the same as the gridpoint values |
---|
1059 | e_int(n) = ei(num_gp) |
---|
1060 | diss_int(n) = dissi(num_gp) |
---|
1061 | de_dx_int(n) = de_dxi(num_gp) |
---|
1062 | de_dy_int(n) = de_dyi(num_gp) |
---|
1063 | de_dz_int(n) = de_dzi(num_gp) |
---|
1064 | ELSE IF ( num_gp > 1 ) THEN |
---|
1065 | |
---|
1066 | d_sum = 0.0_wp |
---|
1067 | ! |
---|
1068 | !-- Evaluation of the distances between the gridpoints |
---|
1069 | !-- contributing to the interpolated values, and the particle |
---|
1070 | !-- location |
---|
1071 | DO agp = 1, num_gp |
---|
1072 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
1073 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
1074 | + ( zv(n)-location(agp,3) )**2 |
---|
1075 | d_sum = d_sum + d_gp_pl(agp) |
---|
1076 | ENDDO |
---|
1077 | |
---|
1078 | ! |
---|
1079 | !-- Finally the interpolation can be carried out |
---|
1080 | e_int(n) = 0.0_wp |
---|
1081 | diss_int(n) = 0.0_wp |
---|
1082 | de_dx_int(n) = 0.0_wp |
---|
1083 | de_dy_int(n) = 0.0_wp |
---|
1084 | de_dz_int(n) = 0.0_wp |
---|
1085 | DO agp = 1, num_gp |
---|
1086 | e_int(n) = e_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1087 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
1088 | diss_int(n) = diss_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1089 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
1090 | de_dx_int(n) = de_dx_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1091 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
1092 | de_dy_int(n) = de_dy_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1093 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
1094 | de_dz_int(n) = de_dz_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1095 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
1096 | ENDDO |
---|
1097 | |
---|
1098 | ENDIF |
---|
1099 | |
---|
1100 | ENDIF |
---|
1101 | ENDDO |
---|
1102 | ENDIF |
---|
1103 | |
---|
1104 | DO nb = 0,7 |
---|
1105 | i = ip + block_offset(nb)%i_off |
---|
1106 | j = jp + block_offset(nb)%j_off |
---|
1107 | k = kp + block_offset(nb)%k_off |
---|
1108 | |
---|
1109 | DO n = start_index(nb), end_index(nb) |
---|
1110 | ! |
---|
1111 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
1112 | !-- resolved-scale velocity variances and use the interpolated values |
---|
1113 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
1114 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
1115 | !-- of turbulent kinetic energy. |
---|
1116 | IF ( k == 0 ) THEN |
---|
1117 | e_mean_int = hom(0,1,8,0) |
---|
1118 | ELSE |
---|
1119 | e_mean_int = hom(k,1,8,0) + & |
---|
1120 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
1121 | ( zu(k+1) - zu(k) ) * & |
---|
1122 | ( zv(n) - zu(k) ) |
---|
1123 | ENDIF |
---|
1124 | |
---|
1125 | ! kw = particles(n)%z / dz |
---|
1126 | kw = kp-1 ! ok for ocean??? ( + offset_ocean_nzt_m1 ???) |
---|
1127 | |
---|
1128 | IF ( k == 0 ) THEN |
---|
1129 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
1130 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
1131 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
1132 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
1133 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
1134 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
1135 | ELSE |
---|
1136 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
1137 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
1138 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
1139 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
1140 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
1141 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
1142 | ENDIF |
---|
1143 | |
---|
1144 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
1145 | ! |
---|
1146 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
1147 | !-- an educated guess for the given case. |
---|
1148 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
1149 | fs_int(n) = 1.0_wp |
---|
1150 | ELSE |
---|
1151 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
1152 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
1153 | ENDIF |
---|
1154 | |
---|
1155 | ENDDO |
---|
1156 | ENDDO |
---|
1157 | |
---|
1158 | DO n = 1, number_of_particles |
---|
1159 | |
---|
1160 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
1161 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
1162 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
1163 | |
---|
1164 | ENDDO |
---|
1165 | |
---|
1166 | DO n = 1, number_of_particles |
---|
1167 | ! |
---|
1168 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
1169 | lagr_timescale = ( 4.0_wp * e_int(n) ) / & |
---|
1170 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) ) |
---|
1171 | |
---|
1172 | ! |
---|
1173 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
1174 | !-- complete the current LES timestep. |
---|
1175 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
1176 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale, dt_gap ) |
---|
1177 | |
---|
1178 | ! |
---|
1179 | !-- The particle timestep should not be too small in order to prevent |
---|
1180 | !-- the number of particle timesteps of getting too large |
---|
1181 | IF ( dt_particle(n) < dt_min_part .AND. dt_min_part < dt_gap ) THEN |
---|
1182 | dt_particle(n) = dt_min_part |
---|
1183 | ENDIF |
---|
1184 | |
---|
1185 | ! |
---|
1186 | !-- Calculate the SGS velocity components |
---|
1187 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
1188 | ! |
---|
1189 | !-- For new particles the SGS components are derived from the SGS |
---|
1190 | !-- TKE. Limit the Gaussian random number to the interval |
---|
1191 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
1192 | !-- from becoming unrealistically large. |
---|
1193 | particles(n)%rvar1 = SQRT( 2.0_wp * sgs_wfu_part * e_int(n) ) * & |
---|
1194 | ( rg(n,1) - 1.0_wp ) |
---|
1195 | particles(n)%rvar2 = SQRT( 2.0_wp * sgs_wfv_part * e_int(n) ) * & |
---|
1196 | ( rg(n,2) - 1.0_wp ) |
---|
1197 | particles(n)%rvar3 = SQRT( 2.0_wp * sgs_wfw_part * e_int(n) ) * & |
---|
1198 | ( rg(n,3) - 1.0_wp ) |
---|
1199 | |
---|
1200 | ELSE |
---|
1201 | ! |
---|
1202 | !-- Restriction of the size of the new timestep: compared to the |
---|
1203 | !-- previous timestep the increase must not exceed 200% |
---|
1204 | |
---|
1205 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
1206 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
1207 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
1208 | ENDIF |
---|
1209 | |
---|
1210 | ! |
---|
1211 | !-- For old particles the SGS components are correlated with the |
---|
1212 | !-- values from the previous timestep. Random numbers have also to |
---|
1213 | !-- be limited (see above). |
---|
1214 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
1215 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
1216 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
1217 | !-- value for the change of TKE |
---|
1218 | |
---|
1219 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
1220 | |
---|
1221 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
1222 | |
---|
1223 | IF ( de_dt < de_dt_min ) THEN |
---|
1224 | de_dt = de_dt_min |
---|
1225 | ENDIF |
---|
1226 | |
---|
1227 | particles(n)%rvar1 = particles(n)%rvar1 - fs_int(n) * c_0 * & |
---|
1228 | diss_int(n) * particles(n)%rvar1 * dt_particle(n) / & |
---|
1229 | ( 4.0_wp * sgs_wfu_part * e_int(n) ) + & |
---|
1230 | ( 2.0_wp * sgs_wfu_part * de_dt * & |
---|
1231 | particles(n)%rvar1 / & |
---|
1232 | ( 2.0_wp * sgs_wfu_part * e_int(n) ) + & |
---|
1233 | de_dx_int(n) & |
---|
1234 | ) * dt_particle(n) / 2.0_wp + & |
---|
1235 | SQRT( fs_int(n) * c_0 * diss_int(n) ) * & |
---|
1236 | ( rg(n,1) - 1.0_wp ) * & |
---|
1237 | SQRT( dt_particle(n) ) |
---|
1238 | |
---|
1239 | particles(n)%rvar2 = particles(n)%rvar2 - fs_int(n) * c_0 * & |
---|
1240 | diss_int(n) * particles(n)%rvar2 * dt_particle(n) / & |
---|
1241 | ( 4.0_wp * sgs_wfv_part * e_int(n) ) + & |
---|
1242 | ( 2.0_wp * sgs_wfv_part * de_dt * & |
---|
1243 | particles(n)%rvar2 / & |
---|
1244 | ( 2.0_wp * sgs_wfv_part * e_int(n) ) + & |
---|
1245 | de_dy_int(n) & |
---|
1246 | ) * dt_particle(n) / 2.0_wp + & |
---|
1247 | SQRT( fs_int(n) * c_0 * diss_int(n) ) * & |
---|
1248 | ( rg(n,2) - 1.0_wp ) * & |
---|
1249 | SQRT( dt_particle(n) ) |
---|
1250 | |
---|
1251 | particles(n)%rvar3 = particles(n)%rvar3 - fs_int(n) * c_0 * & |
---|
1252 | diss_int(n) * particles(n)%rvar3 * dt_particle(n) / & |
---|
1253 | ( 4.0_wp * sgs_wfw_part * e_int(n) ) + & |
---|
1254 | ( 2.0_wp * sgs_wfw_part * de_dt * & |
---|
1255 | particles(n)%rvar3 / & |
---|
1256 | ( 2.0_wp * sgs_wfw_part * e_int(n) ) + & |
---|
1257 | de_dz_int(n) & |
---|
1258 | ) * dt_particle(n) / 2.0_wp + & |
---|
1259 | SQRT( fs_int(n) * c_0 * diss_int(n) ) * & |
---|
1260 | ( rg(n,3) - 1.0_wp ) * & |
---|
1261 | SQRT( dt_particle(n) ) |
---|
1262 | |
---|
1263 | ENDIF |
---|
1264 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
1265 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
1266 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
1267 | |
---|
1268 | ! |
---|
1269 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
1270 | !-- for calculating the SGS particle velocities at the next timestep |
---|
1271 | particles(n)%e_m = e_int(n) |
---|
1272 | ENDDO |
---|
1273 | |
---|
1274 | ELSE |
---|
1275 | ! |
---|
1276 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
1277 | !-- be set |
---|
1278 | dt_particle = dt_3d |
---|
1279 | |
---|
1280 | ENDIF |
---|
1281 | ! |
---|
1282 | !-- Store the old age of the particle ( needed to prevent that a |
---|
1283 | !-- particle crosses several PEs during one timestep, and for the |
---|
1284 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
1285 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
1286 | |
---|
1287 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
1288 | |
---|
1289 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
1290 | DO n = 1, number_of_particles |
---|
1291 | |
---|
1292 | ! |
---|
1293 | !-- Particle advection |
---|
1294 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
1295 | ! |
---|
1296 | !-- Pure passive transport (without particle inertia) |
---|
1297 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
1298 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
1299 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
1300 | |
---|
1301 | particles(n)%speed_x = u_int(n) |
---|
1302 | particles(n)%speed_y = v_int(n) |
---|
1303 | particles(n)%speed_z = w_int(n) |
---|
1304 | |
---|
1305 | ELSE |
---|
1306 | ! |
---|
1307 | !-- Transport of particles with inertia |
---|
1308 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
1309 | dt_particle(n) |
---|
1310 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
1311 | dt_particle(n) |
---|
1312 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
1313 | dt_particle(n) |
---|
1314 | |
---|
1315 | ! |
---|
1316 | !-- Update of the particle velocity |
---|
1317 | IF ( cloud_droplets ) THEN |
---|
1318 | exp_arg = 4.5_wp * dens_ratio(n) * molecular_viscosity / & |
---|
1319 | ( particles(n)%radius )**2 * & |
---|
1320 | ( 1.0_wp + 0.15_wp * ( 2.0_wp * particles(n)%radius & |
---|
1321 | * SQRT( ( u_int(n) - particles(n)%speed_x )**2 + & |
---|
1322 | ( v_int(n) - particles(n)%speed_y )**2 + & |
---|
1323 | ( w_int(n) - particles(n)%speed_z )**2 ) & |
---|
1324 | / molecular_viscosity )**0.687_wp & |
---|
1325 | ) |
---|
1326 | |
---|
1327 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
1328 | ELSEIF ( use_sgs_for_particles ) THEN |
---|
1329 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1330 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
1331 | ELSE |
---|
1332 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1333 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
1334 | ENDIF |
---|
1335 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
1336 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
1337 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
1338 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
1339 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
1340 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
1341 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
1342 | ENDIF |
---|
1343 | |
---|
1344 | ENDDO |
---|
1345 | |
---|
1346 | ELSE |
---|
1347 | |
---|
1348 | DO n = 1, number_of_particles |
---|
1349 | |
---|
1350 | !-- Transport of particles with inertia |
---|
1351 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
1352 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
1353 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
1354 | ! |
---|
1355 | !-- Update of the particle velocity |
---|
1356 | IF ( cloud_droplets ) THEN |
---|
1357 | |
---|
1358 | exp_arg = 4.5_wp * dens_ratio(n) * molecular_viscosity / & |
---|
1359 | ( particles(n)%radius )**2 * & |
---|
1360 | ( 1.0_wp + 0.15_wp * ( 2.0_wp * particles(n)%radius * & |
---|
1361 | SQRT( ( u_int(n) - particles(n)%speed_x )**2 + & |
---|
1362 | ( v_int(n) - particles(n)%speed_y )**2 + & |
---|
1363 | ( w_int(n) - particles(n)%speed_z )**2 ) / & |
---|
1364 | molecular_viscosity )**0.687_wp & |
---|
1365 | ) |
---|
1366 | |
---|
1367 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
1368 | ELSEIF ( use_sgs_for_particles ) THEN |
---|
1369 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1370 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
1371 | ELSE |
---|
1372 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1373 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
1374 | ENDIF |
---|
1375 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
1376 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
1377 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
1378 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
1379 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
1380 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
1381 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
1382 | ENDDO |
---|
1383 | |
---|
1384 | ENDIF |
---|
1385 | |
---|
1386 | DO n = 1, number_of_particles |
---|
1387 | ! |
---|
1388 | !-- Increment the particle age and the total time that the particle |
---|
1389 | !-- has advanced within the particle timestep procedure |
---|
1390 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
1391 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
1392 | |
---|
1393 | ! |
---|
1394 | !-- Check whether there is still a particle that has not yet completed |
---|
1395 | !-- the total LES timestep |
---|
1396 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
1397 | dt_3d_reached_l = .FALSE. |
---|
1398 | ENDIF |
---|
1399 | |
---|
1400 | ENDDO |
---|
1401 | |
---|
1402 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
1403 | |
---|
1404 | END SUBROUTINE lpm_advec |
---|