[1682] | 1 | !> @file land_surface_model.f90 |
---|
[1496] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1691] | 16 | ! Copyright 1997-2015 Leibniz Universitaet Hannover |
---|
[1496] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
| 19 | ! Current revisions: |
---|
| 20 | ! ----------------- |
---|
[1789] | 21 | ! |
---|
| 22 | ! |
---|
| 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: land_surface_model.f90 1789 2016-03-10 11:02:40Z maronga $ |
---|
| 26 | ! |
---|
| 27 | ! 1788 2016-03-10 11:01:04Z maronga |
---|
[1788] | 28 | ! Bugfix: calculate lambda_surface based on temperature gradient between skin |
---|
| 29 | ! layer and soil layer instead of Obukhov length |
---|
| 30 | ! Changed: moved calculation of surface specific humidity to energy balance solver |
---|
| 31 | ! New: water surfaces are available by using a fixed sea surface temperature. |
---|
| 32 | ! The roughness lengths are calculated dynamically using the Charnock |
---|
| 33 | ! parameterization. This involves the new roughness length for moisture z0q. |
---|
| 34 | ! New: modified solution of the energy balance solver and soil model for |
---|
| 35 | ! paved surfaces (i.e. asphalt concrete). |
---|
| 36 | ! Syntax layout improved. |
---|
| 37 | ! Changed: parameter dewfall removed. |
---|
[1758] | 38 | ! |
---|
[1784] | 39 | ! 1783 2016-03-06 18:36:17Z raasch |
---|
| 40 | ! netcdf variables moved to netcdf module |
---|
| 41 | ! |
---|
[1758] | 42 | ! 1757 2016-02-22 15:49:32Z maronga |
---|
[1757] | 43 | ! Bugfix: set tm_soil_m to zero after allocation. Added parameter |
---|
| 44 | ! unscheduled_radiation_calls to control calls of the radiation model based on |
---|
| 45 | ! the skin temperature change during one time step (preliminary version). Set |
---|
| 46 | ! qsws_soil_eb to zero at model start (previously set to qsws_eb). Removed MAX |
---|
| 47 | ! function as it cannot be vectorized. |
---|
[1710] | 48 | ! |
---|
| 49 | ! 1709 2015-11-04 14:47:01Z maronga |
---|
[1709] | 50 | ! Renamed pt_1 and qv_1 to pt1 and qv1. |
---|
| 51 | ! Bugfix: set initial values for t_surface_p in case of restart runs |
---|
| 52 | ! Bugfix: zero resistance caused crash when using radiation_scheme = 'clear-sky' |
---|
| 53 | ! Bugfix: calculation of rad_net when using radiation_scheme = 'clear-sky' |
---|
| 54 | ! Added todo action |
---|
[1698] | 55 | ! |
---|
| 56 | ! 1697 2015-10-28 17:14:10Z raasch |
---|
| 57 | ! bugfix: misplaced cpp-directive |
---|
| 58 | ! |
---|
| 59 | ! 1695 2015-10-27 10:03:11Z maronga |
---|
[1692] | 60 | ! Bugfix: REAL constants provided with KIND-attribute in call of |
---|
[1696] | 61 | ! Replaced rif with ol |
---|
| 62 | ! |
---|
[1692] | 63 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
[1691] | 64 | ! Added skip_time_do_lsm to allow for spin-ups without LSM. Various bugfixes: |
---|
| 65 | ! Soil temperatures are now defined at the edges of the layers, calculation of |
---|
| 66 | ! shb_eb corrected, prognostic equation for skin temperature corrected. Surface |
---|
| 67 | ! fluxes are now directly transfered to atmosphere |
---|
[1552] | 68 | ! |
---|
[1683] | 69 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 70 | ! Code annotations made doxygen readable |
---|
| 71 | ! |
---|
[1591] | 72 | ! 1590 2015-05-08 13:56:27Z maronga |
---|
| 73 | ! Bugfix: definition of character strings requires same length for all elements |
---|
| 74 | ! |
---|
[1586] | 75 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
| 76 | ! Modifications for RRTMG. Changed tables to PARAMETER type. |
---|
| 77 | ! |
---|
[1572] | 78 | ! 1571 2015-03-12 16:12:49Z maronga |
---|
| 79 | ! Removed upper-case variable names. Corrected distribution of precipitation to |
---|
| 80 | ! the liquid water reservoir and the bare soil fractions. |
---|
| 81 | ! |
---|
[1556] | 82 | ! 1555 2015-03-04 17:44:27Z maronga |
---|
| 83 | ! Added output of r_a and r_s |
---|
| 84 | ! |
---|
[1554] | 85 | ! 1553 2015-03-03 17:33:54Z maronga |
---|
| 86 | ! Improved better treatment of roughness lengths. Added default soil temperature |
---|
| 87 | ! profile |
---|
| 88 | ! |
---|
[1552] | 89 | ! 1551 2015-03-03 14:18:16Z maronga |
---|
[1551] | 90 | ! Flux calculation is now done in prandtl_fluxes. Added support for data output. |
---|
| 91 | ! Vertical indices have been replaced. Restart runs are now possible. Some |
---|
| 92 | ! variables have beem renamed. Bugfix in the prognostic equation for the surface |
---|
| 93 | ! temperature. Introduced z0_eb and z0h_eb, which overwrite the setting of |
---|
| 94 | ! roughness_length and z0_factor. Added Clapp & Hornberger parametrization for |
---|
| 95 | ! the hydraulic conductivity. Bugfix for root fraction and extraction |
---|
| 96 | ! calculation |
---|
[1496] | 97 | ! |
---|
[1514] | 98 | ! intrinsic function MAX and MIN |
---|
[1496] | 99 | ! |
---|
[1501] | 100 | ! 1500 2014-12-03 17:42:41Z maronga |
---|
| 101 | ! Corrected calculation of aerodynamic resistance (r_a). |
---|
| 102 | ! Precipitation is now added to liquid water reservoir using LE_liq. |
---|
| 103 | ! Added support for dry runs. |
---|
| 104 | ! |
---|
[1497] | 105 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
| 106 | ! Initial revision |
---|
| 107 | ! |
---|
[1496] | 108 | ! |
---|
| 109 | ! Description: |
---|
| 110 | ! ------------ |
---|
[1682] | 111 | !> Land surface model, consisting of a solver for the energy balance at the |
---|
| 112 | !> surface and a four layer soil scheme. The scheme is similar to the TESSEL |
---|
| 113 | !> scheme implemented in the ECMWF IFS model, with modifications according to |
---|
| 114 | !> H-TESSEL. The implementation is based on the formulation implemented in the |
---|
| 115 | !> DALES and UCLA-LES models. |
---|
| 116 | !> |
---|
[1691] | 117 | !> @todo Consider partial absorption of the net shortwave radiation by the |
---|
[1709] | 118 | !> skin layer. |
---|
[1788] | 119 | !> @todo Improve surface water parameterization |
---|
[1691] | 120 | !> @todo Invert indices (running from -3 to 0. Currently: nzb_soil=0, |
---|
| 121 | !> nzt_soil=3)). |
---|
| 122 | !> @todo Implement surface runoff model (required when performing long-term LES |
---|
| 123 | !> with considerable precipitation. |
---|
[1709] | 124 | !> @todo Fix crashes with radiation_scheme == 'constant' |
---|
[1682] | 125 | !> |
---|
[1709] | 126 | !> @note No time step criterion is required as long as the soil layers do not |
---|
| 127 | !> become too thin. |
---|
[1496] | 128 | !------------------------------------------------------------------------------! |
---|
[1682] | 129 | MODULE land_surface_model_mod |
---|
| 130 | |
---|
[1691] | 131 | USE arrays_3d, & |
---|
[1788] | 132 | ONLY: hyp, ol, pt, pt_p, q, q_p, ql, qsws, shf, ts, us, vpt, z0, z0h, & |
---|
| 133 | z0q |
---|
[1496] | 134 | |
---|
[1691] | 135 | USE cloud_parameters, & |
---|
| 136 | ONLY: cp, hyrho, l_d_cp, l_d_r, l_v, prr, pt_d_t, rho_l, r_d, r_v |
---|
[1496] | 137 | |
---|
[1691] | 138 | USE control_parameters, & |
---|
| 139 | ONLY: cloud_physics, dt_3d, humidity, intermediate_timestep_count, & |
---|
| 140 | initializing_actions, intermediate_timestep_count_max, & |
---|
| 141 | max_masks, precipitation, pt_surface, rho_surface, & |
---|
| 142 | roughness_length, surface_pressure, timestep_scheme, tsc, & |
---|
| 143 | z0h_factor, time_since_reference_point |
---|
[1496] | 144 | |
---|
[1691] | 145 | USE indices, & |
---|
| 146 | ONLY: nbgp, nxlg, nxrg, nyng, nysg, nzb, nzb_s_inner |
---|
[1496] | 147 | |
---|
[1691] | 148 | USE kinds |
---|
[1496] | 149 | |
---|
[1691] | 150 | USE pegrid |
---|
[1496] | 151 | |
---|
[1691] | 152 | USE radiation_model_mod, & |
---|
| 153 | ONLY: force_radiation_call, radiation_scheme, rad_net, rad_sw_in, & |
---|
[1757] | 154 | rad_lw_out, rad_lw_out_change_0, sigma_sb, & |
---|
| 155 | unscheduled_radiation_calls |
---|
[1691] | 156 | |
---|
| 157 | #if defined ( __rrtmg ) |
---|
| 158 | USE radiation_model_mod, & |
---|
[1709] | 159 | ONLY: rrtm_idrv |
---|
[1691] | 160 | #endif |
---|
[1496] | 161 | |
---|
[1691] | 162 | USE statistics, & |
---|
| 163 | ONLY: hom, statistic_regions |
---|
| 164 | |
---|
[1496] | 165 | IMPLICIT NONE |
---|
| 166 | |
---|
| 167 | ! |
---|
| 168 | !-- LSM model constants |
---|
[1682] | 169 | INTEGER(iwp), PARAMETER :: nzb_soil = 0, & !< bottom of the soil model (to be switched) |
---|
| 170 | nzt_soil = 3, & !< top of the soil model (to be switched) |
---|
| 171 | nzs = 4 !< number of soil layers (fixed for now) |
---|
[1496] | 172 | |
---|
| 173 | REAL(wp), PARAMETER :: & |
---|
[1551] | 174 | b_ch = 6.04_wp, & ! Clapp & Hornberger exponent |
---|
| 175 | lambda_h_dry = 0.19_wp, & ! heat conductivity for dry soil |
---|
[1496] | 176 | lambda_h_sm = 3.44_wp, & ! heat conductivity of the soil matrix |
---|
| 177 | lambda_h_water = 0.57_wp, & ! heat conductivity of water |
---|
| 178 | psi_sat = -0.388_wp, & ! soil matrix potential at saturation |
---|
[1551] | 179 | rho_c_soil = 2.19E6_wp, & ! volumetric heat capacity of soil |
---|
| 180 | rho_c_water = 4.20E6_wp, & ! volumetric heat capacity of water |
---|
[1496] | 181 | m_max_depth = 0.0002_wp ! Maximum capacity of the water reservoir (m) |
---|
| 182 | |
---|
| 183 | |
---|
| 184 | ! |
---|
| 185 | !-- LSM variables |
---|
[1788] | 186 | INTEGER(iwp) :: veg_type = 2, & !< NAMELIST veg_type_2d |
---|
| 187 | soil_type = 3 !< NAMELIST soil_type_2d |
---|
[1496] | 188 | |
---|
[1788] | 189 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: soil_type_2d, & !< soil type, 0: user-defined, 1-7: generic (see list) |
---|
| 190 | veg_type_2d !< vegetation type, 0: user-defined, 1-19: generic (see list) |
---|
| 191 | |
---|
| 192 | LOGICAL, DIMENSION(:,:), ALLOCATABLE :: water_surface, & !< flag parameter for water surfaces (classes 14+15) |
---|
| 193 | pave_surface, & !< flag parameter for pavements (asphalt etc.) (class 20) |
---|
| 194 | building_surface !< flag parameter indicating that the surface element is covered by buildings (no LSM actions, not implemented yet) |
---|
| 195 | |
---|
[1691] | 196 | LOGICAL :: conserve_water_content = .TRUE., & !< open or closed bottom surface for the soil model |
---|
| 197 | force_radiation_call_l = .FALSE., & !< flag parameter for unscheduled radiation model calls |
---|
| 198 | land_surface = .FALSE. !< flag parameter indicating wheather the lsm is used |
---|
[1496] | 199 | |
---|
| 200 | ! value 9999999.9_wp -> generic available or user-defined value must be set |
---|
| 201 | ! otherwise -> no generic variable and user setting is optional |
---|
[1682] | 202 | REAL(wp) :: alpha_vangenuchten = 9999999.9_wp, & !< NAMELIST alpha_vg |
---|
| 203 | canopy_resistance_coefficient = 9999999.9_wp, & !< NAMELIST g_d |
---|
| 204 | c_surface = 20000.0_wp, & !< Surface (skin) heat capacity |
---|
| 205 | drho_l_lv, & !< (rho_l * l_v)**-1 |
---|
| 206 | exn, & !< value of the Exner function |
---|
| 207 | e_s = 0.0_wp, & !< saturation water vapour pressure |
---|
| 208 | field_capacity = 9999999.9_wp, & !< NAMELIST m_fc |
---|
| 209 | f_shortwave_incoming = 9999999.9_wp, & !< NAMELIST f_sw_in |
---|
| 210 | hydraulic_conductivity = 9999999.9_wp, & !< NAMELIST gamma_w_sat |
---|
| 211 | ke = 0.0_wp, & !< Kersten number |
---|
[1691] | 212 | lambda_h_sat = 0.0_wp, & !< heat conductivity for saturated soil |
---|
[1682] | 213 | lambda_surface_stable = 9999999.9_wp, & !< NAMELIST lambda_surface_s |
---|
| 214 | lambda_surface_unstable = 9999999.9_wp, & !< NAMELIST lambda_surface_u |
---|
| 215 | leaf_area_index = 9999999.9_wp, & !< NAMELIST lai |
---|
| 216 | l_vangenuchten = 9999999.9_wp, & !< NAMELIST l_vg |
---|
| 217 | min_canopy_resistance = 9999999.9_wp, & !< NAMELIST r_canopy_min |
---|
| 218 | min_soil_resistance = 50.0_wp, & !< NAMELIST r_soil_min |
---|
| 219 | m_total = 0.0_wp, & !< weighted total water content of the soil (m3/m3) |
---|
| 220 | n_vangenuchten = 9999999.9_wp, & !< NAMELIST n_vg |
---|
[1788] | 221 | pave_depth = 9999999.9_wp, & !< depth of the pavement |
---|
| 222 | pave_heat_capacity = 1.94E6_wp, & !< volumetric heat capacity of pavement (e.g. roads) |
---|
| 223 | pave_heat_conductivity = 1.00_wp, & !< heat conductivity for pavements (e.g. roads) |
---|
[1682] | 224 | q_s = 0.0_wp, & !< saturation specific humidity |
---|
| 225 | residual_moisture = 9999999.9_wp, & !< NAMELIST m_res |
---|
| 226 | rho_cp, & !< rho_surface * cp |
---|
| 227 | rho_lv, & !< rho * l_v |
---|
| 228 | rd_d_rv, & !< r_d / r_v |
---|
| 229 | saturation_moisture = 9999999.9_wp, & !< NAMELIST m_sat |
---|
[1691] | 230 | skip_time_do_lsm = 0.0_wp, & !< LSM is not called before this time |
---|
[1682] | 231 | vegetation_coverage = 9999999.9_wp, & !< NAMELIST c_veg |
---|
| 232 | wilting_point = 9999999.9_wp, & !< NAMELIST m_wilt |
---|
| 233 | z0_eb = 9999999.9_wp, & !< NAMELIST z0 (lsm_par) |
---|
[1788] | 234 | z0h_eb = 9999999.9_wp, & !< NAMELIST z0h (lsm_par) |
---|
| 235 | z0q_eb = 9999999.9_wp !< NAMELIST z0q (lsm_par) |
---|
[1496] | 236 | |
---|
[1551] | 237 | REAL(wp), DIMENSION(nzb_soil:nzt_soil) :: & |
---|
[1691] | 238 | ddz_soil_stag, & !< 1/dz_soil_stag |
---|
| 239 | dz_soil_stag, & !< soil grid spacing (center-center) |
---|
| 240 | root_extr = 0.0_wp, & !< root extraction |
---|
[1551] | 241 | root_fraction = (/9999999.9_wp, 9999999.9_wp, & |
---|
[1682] | 242 | 9999999.9_wp, 9999999.9_wp /), & !< distribution of root surface area to the individual soil layers |
---|
| 243 | zs = (/0.07_wp, 0.28_wp, 1.00_wp, 2.89_wp/), & !< soil layer depths (m) |
---|
| 244 | soil_moisture = 0.0_wp !< soil moisture content (m3/m3) |
---|
[1496] | 245 | |
---|
[1551] | 246 | REAL(wp), DIMENSION(nzb_soil:nzt_soil+1) :: & |
---|
[1691] | 247 | soil_temperature = (/290.0_wp, 287.0_wp, 285.0_wp, 283.0_wp, & !< soil temperature (K) |
---|
| 248 | 283.0_wp /), & |
---|
| 249 | ddz_soil, & !< 1/dz_soil |
---|
| 250 | dz_soil !< soil grid spacing (edge-edge) |
---|
[1496] | 251 | |
---|
| 252 | #if defined( __nopointer ) |
---|
[1682] | 253 | REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_surface, & !< surface temperature (K) |
---|
| 254 | t_surface_p, & !< progn. surface temperature (K) |
---|
| 255 | m_liq_eb, & !< liquid water reservoir (m) |
---|
| 256 | m_liq_eb_av, & !< liquid water reservoir (m) |
---|
| 257 | m_liq_eb_p !< progn. liquid water reservoir (m) |
---|
[1496] | 258 | #else |
---|
[1551] | 259 | REAL(wp), DIMENSION(:,:), POINTER :: t_surface, & |
---|
| 260 | t_surface_p, & |
---|
| 261 | m_liq_eb, & |
---|
| 262 | m_liq_eb_p |
---|
[1496] | 263 | |
---|
[1551] | 264 | REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_surface_1, t_surface_2, & |
---|
| 265 | m_liq_eb_av, & |
---|
| 266 | m_liq_eb_1, m_liq_eb_2 |
---|
[1496] | 267 | #endif |
---|
| 268 | |
---|
| 269 | ! |
---|
| 270 | !-- Temporal tendencies for time stepping |
---|
[1682] | 271 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tt_surface_m, & !< surface temperature tendency (K) |
---|
| 272 | tm_liq_eb_m !< liquid water reservoir tendency (m) |
---|
[1496] | 273 | |
---|
| 274 | ! |
---|
| 275 | !-- Energy balance variables |
---|
[1691] | 276 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
[1682] | 277 | alpha_vg, & !< coef. of Van Genuchten |
---|
| 278 | c_liq, & !< liquid water coverage (of vegetated area) |
---|
| 279 | c_liq_av, & !< average of c_liq |
---|
| 280 | c_soil_av, & !< average of c_soil |
---|
| 281 | c_veg, & !< vegetation coverage |
---|
| 282 | c_veg_av, & !< average of c_veg |
---|
| 283 | f_sw_in, & !< fraction of absorbed shortwave radiation by the surface layer (not implemented yet) |
---|
| 284 | ghf_eb, & !< ground heat flux |
---|
| 285 | ghf_eb_av, & !< average of ghf_eb |
---|
| 286 | gamma_w_sat, & !< hydraulic conductivity at saturation |
---|
| 287 | g_d, & !< coefficient for dependence of r_canopy on water vapour pressure deficit |
---|
| 288 | lai, & !< leaf area index |
---|
| 289 | lai_av, & !< average of lai |
---|
[1691] | 290 | lambda_surface_s, & !< coupling between surface and soil (depends on vegetation type) |
---|
| 291 | lambda_surface_u, & !< coupling between surface and soil (depends on vegetation type) |
---|
[1682] | 292 | l_vg, & !< coef. of Van Genuchten |
---|
| 293 | m_fc, & !< soil moisture at field capacity (m3/m3) |
---|
| 294 | m_res, & !< residual soil moisture |
---|
| 295 | m_sat, & !< saturation soil moisture (m3/m3) |
---|
| 296 | m_wilt, & !< soil moisture at permanent wilting point (m3/m3) |
---|
| 297 | n_vg, & !< coef. Van Genuchten |
---|
| 298 | qsws_eb, & !< surface flux of latent heat (total) |
---|
| 299 | qsws_eb_av, & !< average of qsws_eb |
---|
| 300 | qsws_liq_eb, & !< surface flux of latent heat (liquid water portion) |
---|
| 301 | qsws_liq_eb_av, & !< average of qsws_liq_eb |
---|
| 302 | qsws_soil_eb, & !< surface flux of latent heat (soil portion) |
---|
| 303 | qsws_soil_eb_av, & !< average of qsws_soil_eb |
---|
| 304 | qsws_veg_eb, & !< surface flux of latent heat (vegetation portion) |
---|
| 305 | qsws_veg_eb_av, & !< average of qsws_veg_eb |
---|
| 306 | rad_net_l, & !< local copy of rad_net (net radiation at surface) |
---|
| 307 | r_a, & !< aerodynamic resistance |
---|
[1709] | 308 | r_a_av, & !< average of r_a |
---|
[1682] | 309 | r_canopy, & !< canopy resistance |
---|
[1691] | 310 | r_soil, & !< soil resistance |
---|
[1682] | 311 | r_soil_min, & !< minimum soil resistance |
---|
| 312 | r_s, & !< total surface resistance (combination of r_soil and r_canopy) |
---|
[1691] | 313 | r_s_av, & !< average of r_s |
---|
[1682] | 314 | r_canopy_min, & !< minimum canopy (stomatal) resistance |
---|
| 315 | shf_eb, & !< surface flux of sensible heat |
---|
| 316 | shf_eb_av !< average of shf_eb |
---|
[1496] | 317 | |
---|
[1691] | 318 | |
---|
[1496] | 319 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
[1788] | 320 | lambda_h, & !< heat conductivity of soil (W/m/K) |
---|
[1682] | 321 | lambda_w, & !< hydraulic diffusivity of soil (?) |
---|
[1788] | 322 | gamma_w, & !< hydraulic conductivity of soil (W/m/K) |
---|
[1682] | 323 | rho_c_total !< volumetric heat capacity of the actual soil matrix (?) |
---|
[1496] | 324 | |
---|
| 325 | #if defined( __nopointer ) |
---|
| 326 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: & |
---|
[1682] | 327 | t_soil, & !< Soil temperature (K) |
---|
| 328 | t_soil_av, & !< Average of t_soil |
---|
| 329 | t_soil_p, & !< Prog. soil temperature (K) |
---|
| 330 | m_soil, & !< Soil moisture (m3/m3) |
---|
| 331 | m_soil_av, & !< Average of m_soil |
---|
| 332 | m_soil_p !< Prog. soil moisture (m3/m3) |
---|
[1496] | 333 | #else |
---|
| 334 | REAL(wp), DIMENSION(:,:,:), POINTER :: & |
---|
[1551] | 335 | t_soil, t_soil_p, & |
---|
[1496] | 336 | m_soil, m_soil_p |
---|
| 337 | |
---|
| 338 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: & |
---|
[1551] | 339 | t_soil_av, t_soil_1, t_soil_2, & |
---|
| 340 | m_soil_av, m_soil_1, m_soil_2 |
---|
[1496] | 341 | #endif |
---|
| 342 | |
---|
| 343 | |
---|
| 344 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
[1757] | 345 | tt_soil_m, & !< t_soil storage array |
---|
| 346 | tm_soil_m, & !< m_soil storage array |
---|
[1682] | 347 | root_fr !< root fraction (sum=1) |
---|
[1496] | 348 | |
---|
[1551] | 349 | |
---|
[1496] | 350 | ! |
---|
[1551] | 351 | !-- Predefined Land surface classes (veg_type) |
---|
[1788] | 352 | CHARACTER(26), DIMENSION(0:20), PARAMETER :: veg_type_name = (/ & |
---|
[1590] | 353 | 'user defined ', & ! 0 |
---|
| 354 | 'crops, mixed farming ', & ! 1 |
---|
| 355 | 'short grass ', & ! 2 |
---|
[1585] | 356 | 'evergreen needleleaf trees', & ! 3 |
---|
| 357 | 'deciduous needleleaf trees', & ! 4 |
---|
[1590] | 358 | 'evergreen broadleaf trees ', & ! 5 |
---|
| 359 | 'deciduous broadleaf trees ', & ! 6 |
---|
| 360 | 'tall grass ', & ! 7 |
---|
| 361 | 'desert ', & ! 8 |
---|
| 362 | 'tundra ', & ! 9 |
---|
| 363 | 'irrigated crops ', & ! 10 |
---|
| 364 | 'semidesert ', & ! 11 |
---|
| 365 | 'ice caps and glaciers ', & ! 12 |
---|
| 366 | 'bogs and marshes ', & ! 13 |
---|
| 367 | 'inland water ', & ! 14 |
---|
| 368 | 'ocean ', & ! 15 |
---|
| 369 | 'evergreen shrubs ', & ! 16 |
---|
| 370 | 'deciduous shrubs ', & ! 17 |
---|
| 371 | 'mixed forest/woodland ', & ! 18 |
---|
[1788] | 372 | 'interrupted forest ', & ! 19 |
---|
| 373 | 'pavements/roads ' & ! 20 |
---|
[1585] | 374 | /) |
---|
[1496] | 375 | |
---|
| 376 | ! |
---|
[1551] | 377 | !-- Soil model classes (soil_type) |
---|
[1585] | 378 | CHARACTER(12), DIMENSION(0:7), PARAMETER :: soil_type_name = (/ & |
---|
| 379 | 'user defined', & ! 0 |
---|
[1590] | 380 | 'coarse ', & ! 1 |
---|
| 381 | 'medium ', & ! 2 |
---|
| 382 | 'medium-fine ', & ! 3 |
---|
| 383 | 'fine ', & ! 4 |
---|
| 384 | 'very fine ', & ! 5 |
---|
| 385 | 'organic ', & ! 6 |
---|
| 386 | 'loamy (CH) ' & ! 7 |
---|
[1585] | 387 | /) |
---|
[1551] | 388 | ! |
---|
| 389 | !-- Land surface parameters according to the respective classes (veg_type) |
---|
| 390 | |
---|
| 391 | ! |
---|
| 392 | !-- Land surface parameters I |
---|
| 393 | !-- r_canopy_min, lai, c_veg, g_d |
---|
[1788] | 394 | REAL(wp), DIMENSION(0:3,1:20), PARAMETER :: veg_pars = RESHAPE( (/ & |
---|
[1585] | 395 | 180.0_wp, 3.00_wp, 0.90_wp, 0.00_wp, & ! 1 |
---|
| 396 | 110.0_wp, 2.00_wp, 0.85_wp, 0.00_wp, & ! 2 |
---|
| 397 | 500.0_wp, 5.00_wp, 0.90_wp, 0.03_wp, & ! 3 |
---|
| 398 | 500.0_wp, 5.00_wp, 0.90_wp, 0.03_wp, & ! 4 |
---|
| 399 | 175.0_wp, 5.00_wp, 0.90_wp, 0.03_wp, & ! 5 |
---|
| 400 | 240.0_wp, 6.00_wp, 0.99_wp, 0.13_wp, & ! 6 |
---|
| 401 | 100.0_wp, 2.00_wp, 0.70_wp, 0.00_wp, & ! 7 |
---|
| 402 | 250.0_wp, 0.05_wp, 0.00_wp, 0.00_wp, & ! 8 |
---|
| 403 | 80.0_wp, 1.00_wp, 0.50_wp, 0.00_wp, & ! 9 |
---|
| 404 | 180.0_wp, 3.00_wp, 0.90_wp, 0.00_wp, & ! 10 |
---|
| 405 | 150.0_wp, 0.50_wp, 0.10_wp, 0.00_wp, & ! 11 |
---|
| 406 | 0.0_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 12 |
---|
| 407 | 240.0_wp, 4.00_wp, 0.60_wp, 0.00_wp, & ! 13 |
---|
| 408 | 0.0_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 14 |
---|
| 409 | 0.0_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 15 |
---|
| 410 | 225.0_wp, 3.00_wp, 0.50_wp, 0.00_wp, & ! 16 |
---|
| 411 | 225.0_wp, 1.50_wp, 0.50_wp, 0.00_wp, & ! 17 |
---|
| 412 | 250.0_wp, 5.00_wp, 0.90_wp, 0.03_wp, & ! 18 |
---|
[1788] | 413 | 175.0_wp, 2.50_wp, 0.90_wp, 0.03_wp, & ! 19 |
---|
| 414 | 0.0_wp, 0.00_wp, 0.00_wp, 0.00_wp & ! 20 |
---|
| 415 | /), (/ 4, 20 /) ) |
---|
[1496] | 416 | |
---|
| 417 | ! |
---|
[1788] | 418 | !-- Land surface parameters II z0, z0h, z0q |
---|
| 419 | REAL(wp), DIMENSION(0:2,1:20), PARAMETER :: roughness_par = RESHAPE( (/ & |
---|
| 420 | 0.25_wp, 0.25E-2_wp, 0.25E-2_wp, & ! 1 |
---|
| 421 | 0.20_wp, 0.20E-2_wp, 0.20E-2_wp, & ! 2 |
---|
| 422 | 2.00_wp, 2.00_wp, 2.00_wp, & ! 3 |
---|
| 423 | 2.00_wp, 2.00_wp, 2.00_wp, & ! 4 |
---|
| 424 | 2.00_wp, 2.00_wp, 2.00_wp, & ! 5 |
---|
| 425 | 2.00_wp, 2.00_wp, 2.00_wp, & ! 6 |
---|
| 426 | 0.47_wp, 0.47E-2_wp, 0.47E-2_wp, & ! 7 |
---|
| 427 | 0.013_wp, 0.013E-2_wp, 0.013E-2_wp, & ! 8 |
---|
| 428 | 0.034_wp, 0.034E-2_wp, 0.034E-2_wp, & ! 9 |
---|
| 429 | 0.5_wp, 0.50E-2_wp, 0.50E-2_wp, & ! 10 |
---|
| 430 | 0.17_wp, 0.17E-2_wp, 0.17E-2_wp, & ! 11 |
---|
| 431 | 1.3E-3_wp, 1.3E-4_wp, 1.3E-4_wp, & ! 12 |
---|
| 432 | 0.83_wp, 0.83E-2_wp, 0.83E-2_wp, & ! 13 |
---|
| 433 | 0.00_wp, 0.00_wp, 0.00_wp, & ! 14 |
---|
| 434 | 0.00_wp, 0.00_wp, 0.00_wp, & ! 15 |
---|
| 435 | 0.10_wp, 0.10E-2_wp, 0.10E-2_wp, & ! 16 |
---|
| 436 | 0.25_wp, 0.25E-2_wp, 0.25E-2_wp, & ! 17 |
---|
| 437 | 2.00_wp, 2.00E-2_wp, 2.00E-2_wp, & ! 18 |
---|
| 438 | 1.10_wp, 1.10E-2_wp, 1.10E-2_wp, & ! 19 |
---|
| 439 | 1.0E-4_wp, 1.0E-5_wp, 1.0E-5_wp & ! 20 |
---|
| 440 | /), (/ 3, 20 /) ) |
---|
[1496] | 441 | |
---|
| 442 | ! |
---|
[1551] | 443 | !-- Land surface parameters III lambda_surface_s, lambda_surface_u, f_sw_in |
---|
[1788] | 444 | REAL(wp), DIMENSION(0:2,1:20), PARAMETER :: surface_pars = RESHAPE( (/ & |
---|
[1585] | 445 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 1 |
---|
| 446 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 2 |
---|
| 447 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 3 |
---|
| 448 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 4 |
---|
| 449 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 5 |
---|
| 450 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 6 |
---|
| 451 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 7 |
---|
| 452 | 15.0_wp, 15.0_wp, 0.00_wp, & ! 8 |
---|
| 453 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 9 |
---|
| 454 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 10 |
---|
| 455 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 11 |
---|
| 456 | 58.0_wp, 58.0_wp, 0.00_wp, & ! 12 |
---|
| 457 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 13 |
---|
[1788] | 458 | 1.0E10_wp, 1.0E10_wp, 0.00_wp, & ! 14 |
---|
| 459 | 1.0E10_wp, 1.0E10_wp, 0.00_wp, & ! 15 |
---|
[1585] | 460 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 16 |
---|
| 461 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 17 |
---|
| 462 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 18 |
---|
[1788] | 463 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 19 |
---|
| 464 | 0.0_wp, 0.0_wp, 0.00_wp & ! 20 |
---|
| 465 | /), (/ 3, 20 /) ) |
---|
[1496] | 466 | |
---|
| 467 | ! |
---|
| 468 | !-- Root distribution (sum = 1) level 1, level 2, level 3, level 4, |
---|
[1788] | 469 | REAL(wp), DIMENSION(0:3,1:20), PARAMETER :: root_distribution = RESHAPE( (/ & |
---|
[1585] | 470 | 0.24_wp, 0.41_wp, 0.31_wp, 0.04_wp, & ! 1 |
---|
| 471 | 0.35_wp, 0.38_wp, 0.23_wp, 0.04_wp, & ! 2 |
---|
| 472 | 0.26_wp, 0.39_wp, 0.29_wp, 0.06_wp, & ! 3 |
---|
| 473 | 0.26_wp, 0.38_wp, 0.29_wp, 0.07_wp, & ! 4 |
---|
| 474 | 0.24_wp, 0.38_wp, 0.31_wp, 0.07_wp, & ! 5 |
---|
| 475 | 0.25_wp, 0.34_wp, 0.27_wp, 0.14_wp, & ! 6 |
---|
| 476 | 0.27_wp, 0.27_wp, 0.27_wp, 0.09_wp, & ! 7 |
---|
| 477 | 1.00_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 8 |
---|
| 478 | 0.47_wp, 0.45_wp, 0.08_wp, 0.00_wp, & ! 9 |
---|
| 479 | 0.24_wp, 0.41_wp, 0.31_wp, 0.04_wp, & ! 10 |
---|
| 480 | 0.17_wp, 0.31_wp, 0.33_wp, 0.19_wp, & ! 11 |
---|
| 481 | 0.00_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 12 |
---|
| 482 | 0.25_wp, 0.34_wp, 0.27_wp, 0.11_wp, & ! 13 |
---|
| 483 | 0.00_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 14 |
---|
| 484 | 0.00_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 15 |
---|
| 485 | 0.23_wp, 0.36_wp, 0.30_wp, 0.11_wp, & ! 16 |
---|
| 486 | 0.23_wp, 0.36_wp, 0.30_wp, 0.11_wp, & ! 17 |
---|
| 487 | 0.19_wp, 0.35_wp, 0.36_wp, 0.10_wp, & ! 18 |
---|
[1788] | 488 | 0.19_wp, 0.35_wp, 0.36_wp, 0.10_wp, & ! 19 |
---|
| 489 | 0.00_wp, 0.00_wp, 0.00_wp, 0.00_wp & ! 20 |
---|
| 490 | /), (/ 4, 20 /) ) |
---|
[1496] | 491 | |
---|
| 492 | ! |
---|
| 493 | !-- Soil parameters according to the following porosity classes (soil_type) |
---|
[1551] | 494 | |
---|
[1496] | 495 | ! |
---|
[1551] | 496 | !-- Soil parameters I alpha_vg, l_vg, n_vg, gamma_w_sat |
---|
[1585] | 497 | REAL(wp), DIMENSION(0:3,1:7), PARAMETER :: soil_pars = RESHAPE( (/ & |
---|
[1496] | 498 | 3.83_wp, 1.250_wp, 1.38_wp, 6.94E-6_wp, & ! 1 |
---|
| 499 | 3.14_wp, -2.342_wp, 1.28_wp, 1.16E-6_wp, & ! 2 |
---|
| 500 | 0.83_wp, -0.588_wp, 1.25_wp, 0.26E-6_wp, & ! 3 |
---|
| 501 | 3.67_wp, -1.977_wp, 1.10_wp, 2.87E-6_wp, & ! 4 |
---|
| 502 | 2.65_wp, 2.500_wp, 1.10_wp, 1.74E-6_wp, & ! 5 |
---|
[1551] | 503 | 1.30_wp, 0.400_wp, 1.20_wp, 0.93E-6_wp, & ! 6 |
---|
| 504 | 0.00_wp, 0.00_wp, 0.00_wp, 0.57E-6_wp & ! 7 |
---|
| 505 | /), (/ 4, 7 /) ) |
---|
[1496] | 506 | |
---|
| 507 | ! |
---|
| 508 | !-- Soil parameters II m_sat, m_fc, m_wilt, m_res |
---|
[1585] | 509 | REAL(wp), DIMENSION(0:3,1:7), PARAMETER :: m_soil_pars = RESHAPE( (/ & |
---|
[1496] | 510 | 0.403_wp, 0.244_wp, 0.059_wp, 0.025_wp, & ! 1 |
---|
| 511 | 0.439_wp, 0.347_wp, 0.151_wp, 0.010_wp, & ! 2 |
---|
| 512 | 0.430_wp, 0.383_wp, 0.133_wp, 0.010_wp, & ! 3 |
---|
| 513 | 0.520_wp, 0.448_wp, 0.279_wp, 0.010_wp, & ! 4 |
---|
| 514 | 0.614_wp, 0.541_wp, 0.335_wp, 0.010_wp, & ! 5 |
---|
[1551] | 515 | 0.766_wp, 0.663_wp, 0.267_wp, 0.010_wp, & ! 6 |
---|
| 516 | 0.472_wp, 0.323_wp, 0.171_wp, 0.000_wp & ! 7 |
---|
| 517 | /), (/ 4, 7 /) ) |
---|
[1496] | 518 | |
---|
| 519 | |
---|
| 520 | SAVE |
---|
| 521 | |
---|
| 522 | |
---|
| 523 | PRIVATE |
---|
| 524 | |
---|
| 525 | |
---|
[1551] | 526 | ! |
---|
| 527 | !-- Public parameters, constants and initial values |
---|
| 528 | PUBLIC alpha_vangenuchten, c_surface, canopy_resistance_coefficient, & |
---|
[1788] | 529 | conserve_water_content, field_capacity, & |
---|
[1551] | 530 | f_shortwave_incoming, hydraulic_conductivity, init_lsm, & |
---|
| 531 | init_lsm_arrays, lambda_surface_stable, lambda_surface_unstable, & |
---|
| 532 | land_surface, leaf_area_index, lsm_energy_balance, lsm_soil_model, & |
---|
| 533 | lsm_swap_timelevel, l_vangenuchten, min_canopy_resistance, & |
---|
[1788] | 534 | min_soil_resistance, n_vangenuchten, pave_heat_capacity, & |
---|
| 535 | pave_depth, pave_heat_conductivity, residual_moisture, rho_cp, & |
---|
[1691] | 536 | rho_lv, root_fraction, saturation_moisture, skip_time_do_lsm, & |
---|
| 537 | soil_moisture, soil_temperature, soil_type, soil_type_name, & |
---|
| 538 | vegetation_coverage, veg_type, veg_type_name, wilting_point, z0_eb, & |
---|
[1788] | 539 | z0h_eb, z0q_eb |
---|
[1496] | 540 | |
---|
[1551] | 541 | ! |
---|
[1783] | 542 | !-- Public grid variables |
---|
| 543 | PUBLIC nzb_soil, nzs, nzt_soil, zs |
---|
[1496] | 544 | |
---|
[1551] | 545 | ! |
---|
| 546 | !-- Public 2D output variables |
---|
| 547 | PUBLIC c_liq, c_liq_av, c_soil_av, c_veg, c_veg_av, ghf_eb, ghf_eb_av, & |
---|
| 548 | lai, lai_av, qsws_eb, qsws_eb_av, qsws_liq_eb, qsws_liq_eb_av, & |
---|
| 549 | qsws_soil_eb, qsws_soil_eb_av, qsws_veg_eb, qsws_veg_eb_av, & |
---|
[1555] | 550 | r_a, r_a_av, r_s, r_s_av, shf_eb, shf_eb_av |
---|
[1551] | 551 | |
---|
| 552 | ! |
---|
| 553 | !-- Public prognostic variables |
---|
| 554 | PUBLIC m_liq_eb, m_liq_eb_av, m_soil, m_soil_av, t_soil, t_soil_av |
---|
| 555 | |
---|
[1496] | 556 | INTERFACE init_lsm |
---|
| 557 | MODULE PROCEDURE init_lsm |
---|
| 558 | END INTERFACE init_lsm |
---|
| 559 | |
---|
| 560 | INTERFACE lsm_energy_balance |
---|
| 561 | MODULE PROCEDURE lsm_energy_balance |
---|
| 562 | END INTERFACE lsm_energy_balance |
---|
| 563 | |
---|
| 564 | INTERFACE lsm_soil_model |
---|
| 565 | MODULE PROCEDURE lsm_soil_model |
---|
| 566 | END INTERFACE lsm_soil_model |
---|
| 567 | |
---|
[1551] | 568 | INTERFACE lsm_swap_timelevel |
---|
| 569 | MODULE PROCEDURE lsm_swap_timelevel |
---|
| 570 | END INTERFACE lsm_swap_timelevel |
---|
[1496] | 571 | |
---|
| 572 | CONTAINS |
---|
| 573 | |
---|
| 574 | |
---|
| 575 | !------------------------------------------------------------------------------! |
---|
| 576 | ! Description: |
---|
| 577 | ! ------------ |
---|
[1682] | 578 | !> Allocate land surface model arrays and define pointers |
---|
[1496] | 579 | !------------------------------------------------------------------------------! |
---|
[1551] | 580 | SUBROUTINE init_lsm_arrays |
---|
[1496] | 581 | |
---|
| 582 | |
---|
| 583 | IMPLICIT NONE |
---|
| 584 | |
---|
| 585 | ! |
---|
[1551] | 586 | !-- Allocate surface and soil temperature / humidity |
---|
[1496] | 587 | #if defined( __nopointer ) |
---|
[1551] | 588 | ALLOCATE ( m_liq_eb(nysg:nyng,nxlg:nxrg) ) |
---|
| 589 | ALLOCATE ( m_liq_eb_p(nysg:nyng,nxlg:nxrg) ) |
---|
| 590 | ALLOCATE ( m_soil(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 591 | ALLOCATE ( m_soil_p(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 592 | ALLOCATE ( t_surface(nysg:nyng,nxlg:nxrg) ) |
---|
| 593 | ALLOCATE ( t_surface_p(nysg:nyng,nxlg:nxrg) ) |
---|
| 594 | ALLOCATE ( t_soil(nzb_soil:nzt_soil+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 595 | ALLOCATE ( t_soil_p(nzb_soil:nzt_soil+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 596 | #else |
---|
[1551] | 597 | ALLOCATE ( m_liq_eb_1(nysg:nyng,nxlg:nxrg) ) |
---|
| 598 | ALLOCATE ( m_liq_eb_2(nysg:nyng,nxlg:nxrg) ) |
---|
| 599 | ALLOCATE ( m_soil_1(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 600 | ALLOCATE ( m_soil_2(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 601 | ALLOCATE ( t_surface_1(nysg:nyng,nxlg:nxrg) ) |
---|
| 602 | ALLOCATE ( t_surface_2(nysg:nyng,nxlg:nxrg) ) |
---|
| 603 | ALLOCATE ( t_soil_1(nzb_soil:nzt_soil+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 604 | ALLOCATE ( t_soil_2(nzb_soil:nzt_soil+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 605 | #endif |
---|
| 606 | |
---|
| 607 | ! |
---|
[1551] | 608 | !-- Allocate intermediate timestep arrays |
---|
| 609 | ALLOCATE ( tm_liq_eb_m(nysg:nyng,nxlg:nxrg) ) |
---|
| 610 | ALLOCATE ( tm_soil_m(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 611 | ALLOCATE ( tt_surface_m(nysg:nyng,nxlg:nxrg) ) |
---|
| 612 | ALLOCATE ( tt_soil_m(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 613 | |
---|
| 614 | ! |
---|
| 615 | !-- Allocate 2D vegetation model arrays |
---|
[1551] | 616 | ALLOCATE ( alpha_vg(nysg:nyng,nxlg:nxrg) ) |
---|
[1788] | 617 | ALLOCATE ( building_surface(nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 618 | ALLOCATE ( c_liq(nysg:nyng,nxlg:nxrg) ) |
---|
| 619 | ALLOCATE ( c_veg(nysg:nyng,nxlg:nxrg) ) |
---|
[1551] | 620 | ALLOCATE ( f_sw_in(nysg:nyng,nxlg:nxrg) ) |
---|
| 621 | ALLOCATE ( ghf_eb(nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 622 | ALLOCATE ( gamma_w_sat(nysg:nyng,nxlg:nxrg) ) |
---|
[1551] | 623 | ALLOCATE ( g_d(nysg:nyng,nxlg:nxrg) ) |
---|
| 624 | ALLOCATE ( lai(nysg:nyng,nxlg:nxrg) ) |
---|
| 625 | ALLOCATE ( l_vg(nysg:nyng,nxlg:nxrg) ) |
---|
| 626 | ALLOCATE ( lambda_surface_u(nysg:nyng,nxlg:nxrg) ) |
---|
| 627 | ALLOCATE ( lambda_surface_s(nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 628 | ALLOCATE ( m_fc(nysg:nyng,nxlg:nxrg) ) |
---|
| 629 | ALLOCATE ( m_res(nysg:nyng,nxlg:nxrg) ) |
---|
| 630 | ALLOCATE ( m_sat(nysg:nyng,nxlg:nxrg) ) |
---|
| 631 | ALLOCATE ( m_wilt(nysg:nyng,nxlg:nxrg) ) |
---|
[1551] | 632 | ALLOCATE ( n_vg(nysg:nyng,nxlg:nxrg) ) |
---|
[1788] | 633 | ALLOCATE ( pave_surface(nysg:nyng,nxlg:nxrg) ) |
---|
[1551] | 634 | ALLOCATE ( qsws_eb(nysg:nyng,nxlg:nxrg) ) |
---|
| 635 | ALLOCATE ( qsws_soil_eb(nysg:nyng,nxlg:nxrg) ) |
---|
| 636 | ALLOCATE ( qsws_liq_eb(nysg:nyng,nxlg:nxrg) ) |
---|
| 637 | ALLOCATE ( qsws_veg_eb(nysg:nyng,nxlg:nxrg) ) |
---|
[1585] | 638 | ALLOCATE ( rad_net_l(nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 639 | ALLOCATE ( r_a(nysg:nyng,nxlg:nxrg) ) |
---|
| 640 | ALLOCATE ( r_canopy(nysg:nyng,nxlg:nxrg) ) |
---|
| 641 | ALLOCATE ( r_soil(nysg:nyng,nxlg:nxrg) ) |
---|
| 642 | ALLOCATE ( r_soil_min(nysg:nyng,nxlg:nxrg) ) |
---|
| 643 | ALLOCATE ( r_s(nysg:nyng,nxlg:nxrg) ) |
---|
[1551] | 644 | ALLOCATE ( r_canopy_min(nysg:nyng,nxlg:nxrg) ) |
---|
| 645 | ALLOCATE ( shf_eb(nysg:nyng,nxlg:nxrg) ) |
---|
[1788] | 646 | ALLOCATE ( soil_type_2d(nysg:nyng,nxlg:nxrg) ) |
---|
| 647 | ALLOCATE ( veg_type_2d(nysg:nyng,nxlg:nxrg) ) |
---|
| 648 | ALLOCATE ( water_surface(nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 649 | |
---|
[1551] | 650 | #if ! defined( __nopointer ) |
---|
[1496] | 651 | ! |
---|
[1585] | 652 | !-- Initial assignment of the pointers |
---|
[1551] | 653 | t_soil => t_soil_1; t_soil_p => t_soil_2 |
---|
| 654 | t_surface => t_surface_1; t_surface_p => t_surface_2 |
---|
| 655 | m_soil => m_soil_1; m_soil_p => m_soil_2 |
---|
| 656 | m_liq_eb => m_liq_eb_1; m_liq_eb_p => m_liq_eb_2 |
---|
| 657 | #endif |
---|
[1496] | 658 | |
---|
| 659 | |
---|
[1551] | 660 | END SUBROUTINE init_lsm_arrays |
---|
[1500] | 661 | |
---|
[1551] | 662 | !------------------------------------------------------------------------------! |
---|
| 663 | ! Description: |
---|
| 664 | ! ------------ |
---|
[1682] | 665 | !> Initialization of the land surface model |
---|
[1551] | 666 | !------------------------------------------------------------------------------! |
---|
| 667 | SUBROUTINE init_lsm |
---|
| 668 | |
---|
| 669 | |
---|
| 670 | IMPLICIT NONE |
---|
| 671 | |
---|
[1682] | 672 | INTEGER(iwp) :: i !< running index |
---|
| 673 | INTEGER(iwp) :: j !< running index |
---|
| 674 | INTEGER(iwp) :: k !< running index |
---|
[1551] | 675 | |
---|
[1709] | 676 | REAL(wp) :: pt1 !< potential temperature at first grid level |
---|
[1551] | 677 | |
---|
[1691] | 678 | |
---|
[1551] | 679 | ! |
---|
| 680 | !-- Calculate Exner function |
---|
[1691] | 681 | exn = ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
[1551] | 682 | |
---|
| 683 | |
---|
| 684 | ! |
---|
| 685 | !-- If no cloud physics is used, rho_surface has not been calculated before |
---|
[1788] | 686 | IF ( .NOT. cloud_physics ) THEN |
---|
[1551] | 687 | rho_surface = surface_pressure * 100.0_wp / ( r_d * pt_surface * exn ) |
---|
| 688 | ENDIF |
---|
| 689 | |
---|
| 690 | ! |
---|
| 691 | !-- Calculate frequently used parameters |
---|
| 692 | rho_cp = cp * rho_surface |
---|
| 693 | rd_d_rv = r_d / r_v |
---|
| 694 | rho_lv = rho_surface * l_v |
---|
| 695 | drho_l_lv = 1.0_wp / (rho_l * l_v) |
---|
| 696 | |
---|
| 697 | ! |
---|
| 698 | !-- Set inital values for prognostic quantities |
---|
| 699 | tt_surface_m = 0.0_wp |
---|
| 700 | tt_soil_m = 0.0_wp |
---|
[1757] | 701 | tm_soil_m = 0.0_wp |
---|
[1551] | 702 | tm_liq_eb_m = 0.0_wp |
---|
| 703 | c_liq = 0.0_wp |
---|
| 704 | |
---|
| 705 | ghf_eb = 0.0_wp |
---|
| 706 | shf_eb = rho_cp * shf |
---|
| 707 | |
---|
[1500] | 708 | IF ( humidity ) THEN |
---|
[1551] | 709 | qsws_eb = rho_l * l_v * qsws |
---|
[1500] | 710 | ELSE |
---|
[1551] | 711 | qsws_eb = 0.0_wp |
---|
[1500] | 712 | ENDIF |
---|
| 713 | |
---|
[1551] | 714 | qsws_liq_eb = 0.0_wp |
---|
[1757] | 715 | qsws_soil_eb = 0.0_wp |
---|
[1551] | 716 | qsws_veg_eb = 0.0_wp |
---|
[1496] | 717 | |
---|
| 718 | r_a = 50.0_wp |
---|
[1551] | 719 | r_s = 50.0_wp |
---|
[1496] | 720 | r_canopy = 0.0_wp |
---|
| 721 | r_soil = 0.0_wp |
---|
| 722 | |
---|
| 723 | ! |
---|
| 724 | !-- Allocate 3D soil model arrays |
---|
[1551] | 725 | ALLOCATE ( root_fr(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 726 | ALLOCATE ( lambda_h(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 727 | ALLOCATE ( rho_c_total(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 728 | |
---|
| 729 | lambda_h = 0.0_wp |
---|
| 730 | ! |
---|
| 731 | !-- If required, allocate humidity-related variables for the soil model |
---|
| 732 | IF ( humidity ) THEN |
---|
[1551] | 733 | ALLOCATE ( lambda_w(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 734 | ALLOCATE ( gamma_w(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 735 | |
---|
| 736 | lambda_w = 0.0_wp |
---|
| 737 | ENDIF |
---|
| 738 | |
---|
| 739 | ! |
---|
| 740 | !-- Calculate grid spacings. Temperature and moisture are defined at |
---|
[1691] | 741 | !-- the edges of the soil layers (_stag), whereas gradients/fluxes are defined |
---|
| 742 | !-- at the centers |
---|
| 743 | dz_soil(nzb_soil) = zs(nzb_soil) |
---|
[1496] | 744 | |
---|
[1691] | 745 | DO k = nzb_soil+1, nzt_soil |
---|
| 746 | dz_soil(k) = zs(k) - zs(k-1) |
---|
[1496] | 747 | ENDDO |
---|
[1691] | 748 | dz_soil(nzt_soil+1) = dz_soil(nzt_soil) |
---|
[1496] | 749 | |
---|
[1691] | 750 | DO k = nzb_soil, nzt_soil-1 |
---|
| 751 | dz_soil_stag(k) = 0.5_wp * (dz_soil(k+1) + dz_soil(k)) |
---|
[1496] | 752 | ENDDO |
---|
[1691] | 753 | dz_soil_stag(nzt_soil) = dz_soil(nzt_soil) |
---|
[1496] | 754 | |
---|
[1551] | 755 | ddz_soil = 1.0_wp / dz_soil |
---|
| 756 | ddz_soil_stag = 1.0_wp / dz_soil_stag |
---|
| 757 | |
---|
[1496] | 758 | ! |
---|
[1551] | 759 | !-- Initialize standard soil types. It is possible to overwrite each |
---|
| 760 | !-- parameter by setting the respecticy NAMELIST variable to a |
---|
| 761 | !-- value /= 9999999.9. |
---|
| 762 | IF ( soil_type /= 0 ) THEN |
---|
| 763 | |
---|
| 764 | IF ( alpha_vangenuchten == 9999999.9_wp ) THEN |
---|
| 765 | alpha_vangenuchten = soil_pars(0,soil_type) |
---|
| 766 | ENDIF |
---|
| 767 | |
---|
| 768 | IF ( l_vangenuchten == 9999999.9_wp ) THEN |
---|
| 769 | l_vangenuchten = soil_pars(1,soil_type) |
---|
| 770 | ENDIF |
---|
| 771 | |
---|
| 772 | IF ( n_vangenuchten == 9999999.9_wp ) THEN |
---|
| 773 | n_vangenuchten = soil_pars(2,soil_type) |
---|
| 774 | ENDIF |
---|
| 775 | |
---|
| 776 | IF ( hydraulic_conductivity == 9999999.9_wp ) THEN |
---|
| 777 | hydraulic_conductivity = soil_pars(3,soil_type) |
---|
| 778 | ENDIF |
---|
| 779 | |
---|
| 780 | IF ( saturation_moisture == 9999999.9_wp ) THEN |
---|
| 781 | saturation_moisture = m_soil_pars(0,soil_type) |
---|
| 782 | ENDIF |
---|
| 783 | |
---|
| 784 | IF ( field_capacity == 9999999.9_wp ) THEN |
---|
| 785 | field_capacity = m_soil_pars(1,soil_type) |
---|
| 786 | ENDIF |
---|
| 787 | |
---|
| 788 | IF ( wilting_point == 9999999.9_wp ) THEN |
---|
| 789 | wilting_point = m_soil_pars(2,soil_type) |
---|
| 790 | ENDIF |
---|
| 791 | |
---|
| 792 | IF ( residual_moisture == 9999999.9_wp ) THEN |
---|
| 793 | residual_moisture = m_soil_pars(3,soil_type) |
---|
| 794 | ENDIF |
---|
| 795 | |
---|
[1496] | 796 | ENDIF |
---|
| 797 | |
---|
[1788] | 798 | ! |
---|
| 799 | !-- Map values to the respective 2D arrays |
---|
[1551] | 800 | alpha_vg = alpha_vangenuchten |
---|
| 801 | l_vg = l_vangenuchten |
---|
| 802 | n_vg = n_vangenuchten |
---|
| 803 | gamma_w_sat = hydraulic_conductivity |
---|
| 804 | m_sat = saturation_moisture |
---|
| 805 | m_fc = field_capacity |
---|
| 806 | m_wilt = wilting_point |
---|
| 807 | m_res = residual_moisture |
---|
| 808 | r_soil_min = min_soil_resistance |
---|
| 809 | |
---|
[1496] | 810 | ! |
---|
[1551] | 811 | !-- Initial run actions |
---|
| 812 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
[1496] | 813 | |
---|
[1551] | 814 | t_soil = 0.0_wp |
---|
| 815 | m_liq_eb = 0.0_wp |
---|
| 816 | m_soil = 0.0_wp |
---|
[1496] | 817 | |
---|
[1551] | 818 | ! |
---|
| 819 | !-- Map user settings of T and q for each soil layer |
---|
| 820 | !-- (make sure that the soil moisture does not drop below the permanent |
---|
| 821 | !-- wilting point) -> problems with devision by zero) |
---|
[1691] | 822 | DO k = nzb_soil, nzt_soil |
---|
[1551] | 823 | t_soil(k,:,:) = soil_temperature(k) |
---|
| 824 | m_soil(k,:,:) = MAX(soil_moisture(k),m_wilt(:,:)) |
---|
| 825 | soil_moisture(k) = MAX(soil_moisture(k),wilting_point) |
---|
| 826 | ENDDO |
---|
| 827 | t_soil(nzt_soil+1,:,:) = soil_temperature(nzt_soil+1) |
---|
[1496] | 828 | |
---|
[1551] | 829 | ! |
---|
| 830 | !-- Calculate surface temperature |
---|
[1691] | 831 | t_surface = pt_surface * exn |
---|
[1496] | 832 | |
---|
| 833 | ! |
---|
[1788] | 834 | !-- Set artifical values for ts and us so that r_a has its initial value |
---|
| 835 | !-- for the first time step |
---|
[1551] | 836 | DO i = nxlg, nxrg |
---|
| 837 | DO j = nysg, nyng |
---|
| 838 | k = nzb_s_inner(j,i) |
---|
| 839 | |
---|
[1691] | 840 | IF ( cloud_physics ) THEN |
---|
[1709] | 841 | pt1 = pt(k+1,j,i) + l_d_cp * pt_d_t(k+1) * ql(k+1,j,i) |
---|
[1691] | 842 | ELSE |
---|
[1709] | 843 | pt1 = pt(k+1,j,i) |
---|
[1691] | 844 | ENDIF |
---|
| 845 | |
---|
[1551] | 846 | ! |
---|
| 847 | !-- Assure that r_a cannot be zero at model start |
---|
[1709] | 848 | IF ( pt1 == pt(k,j,i) ) pt1 = pt1 + 1.0E-10_wp |
---|
[1551] | 849 | |
---|
[1691] | 850 | us(j,i) = 0.1_wp |
---|
[1709] | 851 | ts(j,i) = (pt1 - pt(k,j,i)) / r_a(j,i) |
---|
[1551] | 852 | shf(j,i) = - us(j,i) * ts(j,i) |
---|
| 853 | ENDDO |
---|
| 854 | ENDDO |
---|
| 855 | |
---|
| 856 | ! |
---|
| 857 | !-- Actions for restart runs |
---|
| 858 | ELSE |
---|
| 859 | |
---|
| 860 | DO i = nxlg, nxrg |
---|
| 861 | DO j = nysg, nyng |
---|
| 862 | k = nzb_s_inner(j,i) |
---|
| 863 | t_surface(j,i) = pt(k,j,i) * exn |
---|
| 864 | ENDDO |
---|
| 865 | ENDDO |
---|
| 866 | |
---|
| 867 | ENDIF |
---|
| 868 | |
---|
[1691] | 869 | DO k = nzb_soil, nzt_soil |
---|
[1551] | 870 | root_fr(k,:,:) = root_fraction(k) |
---|
| 871 | ENDDO |
---|
[1496] | 872 | |
---|
[1551] | 873 | IF ( veg_type /= 0 ) THEN |
---|
| 874 | IF ( min_canopy_resistance == 9999999.9_wp ) THEN |
---|
| 875 | min_canopy_resistance = veg_pars(0,veg_type) |
---|
| 876 | ENDIF |
---|
| 877 | IF ( leaf_area_index == 9999999.9_wp ) THEN |
---|
| 878 | leaf_area_index = veg_pars(1,veg_type) |
---|
| 879 | ENDIF |
---|
| 880 | IF ( vegetation_coverage == 9999999.9_wp ) THEN |
---|
| 881 | vegetation_coverage = veg_pars(2,veg_type) |
---|
| 882 | ENDIF |
---|
| 883 | IF ( canopy_resistance_coefficient == 9999999.9_wp ) THEN |
---|
| 884 | canopy_resistance_coefficient= veg_pars(3,veg_type) |
---|
| 885 | ENDIF |
---|
| 886 | IF ( lambda_surface_stable == 9999999.9_wp ) THEN |
---|
| 887 | lambda_surface_stable = surface_pars(0,veg_type) |
---|
| 888 | ENDIF |
---|
| 889 | IF ( lambda_surface_unstable == 9999999.9_wp ) THEN |
---|
| 890 | lambda_surface_unstable = surface_pars(1,veg_type) |
---|
| 891 | ENDIF |
---|
| 892 | IF ( f_shortwave_incoming == 9999999.9_wp ) THEN |
---|
| 893 | f_shortwave_incoming = surface_pars(2,veg_type) |
---|
| 894 | ENDIF |
---|
| 895 | IF ( z0_eb == 9999999.9_wp ) THEN |
---|
| 896 | roughness_length = roughness_par(0,veg_type) |
---|
| 897 | z0_eb = roughness_par(0,veg_type) |
---|
| 898 | ENDIF |
---|
| 899 | IF ( z0h_eb == 9999999.9_wp ) THEN |
---|
| 900 | z0h_eb = roughness_par(1,veg_type) |
---|
| 901 | ENDIF |
---|
[1788] | 902 | IF ( z0q_eb == 9999999.9_wp ) THEN |
---|
| 903 | z0q_eb = roughness_par(2,veg_type) |
---|
| 904 | ENDIF |
---|
| 905 | z0h_factor = z0h_eb / ( z0_eb + 1.0E-20_wp ) |
---|
[1496] | 906 | |
---|
[1551] | 907 | IF ( ANY( root_fraction == 9999999.9_wp ) ) THEN |
---|
[1691] | 908 | DO k = nzb_soil, nzt_soil |
---|
[1551] | 909 | root_fr(k,:,:) = root_distribution(k,veg_type) |
---|
| 910 | root_fraction(k) = root_distribution(k,veg_type) |
---|
| 911 | ENDDO |
---|
| 912 | ENDIF |
---|
[1496] | 913 | |
---|
[1553] | 914 | ELSE |
---|
| 915 | |
---|
| 916 | IF ( z0_eb == 9999999.9_wp ) THEN |
---|
| 917 | z0_eb = roughness_length |
---|
| 918 | ENDIF |
---|
| 919 | IF ( z0h_eb == 9999999.9_wp ) THEN |
---|
| 920 | z0h_eb = z0_eb * z0h_factor |
---|
| 921 | ENDIF |
---|
[1788] | 922 | IF ( z0q_eb == 9999999.9_wp ) THEN |
---|
| 923 | z0q_eb = z0_eb * z0h_factor |
---|
| 924 | ENDIF |
---|
[1553] | 925 | |
---|
[1496] | 926 | ENDIF |
---|
| 927 | |
---|
| 928 | ! |
---|
[1788] | 929 | !-- For surfaces covered with pavement, set depth of the pavement (with dry |
---|
| 930 | !-- soil below). The depth must be greater than the first soil layer depth |
---|
| 931 | IF ( veg_type == 20 ) THEN |
---|
| 932 | IF ( pave_depth == 9999999.9_wp ) THEN |
---|
| 933 | pave_depth = zs(nzb_soil) |
---|
| 934 | ELSE |
---|
| 935 | pave_depth = MAX( zs(nzb_soil), pave_depth ) |
---|
| 936 | ENDIF |
---|
| 937 | ENDIF |
---|
| 938 | |
---|
| 939 | ! |
---|
| 940 | !-- Map vegetation and soil types to 2D array to allow for heterogeneous |
---|
| 941 | !-- surfaces via user interface see below |
---|
| 942 | veg_type_2d = veg_type |
---|
| 943 | soil_type_2d = soil_type |
---|
| 944 | |
---|
| 945 | ! |
---|
| 946 | !-- Map vegetation parameters to the respective 2D arrays |
---|
[1551] | 947 | r_canopy_min = min_canopy_resistance |
---|
| 948 | lai = leaf_area_index |
---|
| 949 | c_veg = vegetation_coverage |
---|
| 950 | g_d = canopy_resistance_coefficient |
---|
| 951 | lambda_surface_s = lambda_surface_stable |
---|
| 952 | lambda_surface_u = lambda_surface_unstable |
---|
| 953 | f_sw_in = f_shortwave_incoming |
---|
| 954 | z0 = z0_eb |
---|
| 955 | z0h = z0h_eb |
---|
[1788] | 956 | z0q = z0q_eb |
---|
[1551] | 957 | |
---|
| 958 | ! |
---|
[1496] | 959 | !-- Possibly do user-defined actions (e.g. define heterogeneous land surface) |
---|
| 960 | CALL user_init_land_surface |
---|
| 961 | |
---|
[1788] | 962 | ! |
---|
| 963 | !-- Set flag parameter if vegetation type was set to a water surface. Also |
---|
| 964 | !-- set temperature to a constant value in all "soil" layers. |
---|
| 965 | DO i = nxlg, nxrg |
---|
| 966 | DO j = nysg, nyng |
---|
| 967 | IF ( veg_type_2d(j,i) == 14 .OR. veg_type_2d(j,i) == 15 ) THEN |
---|
| 968 | water_surface(j,i) = .TRUE. |
---|
| 969 | ELSEIF ( veg_type_2d(j,i) == 20 ) THEN |
---|
| 970 | pave_surface(j,i) = .TRUE. |
---|
| 971 | m_soil(:,j,i) = 0.0_wp |
---|
| 972 | ENDIF |
---|
[1500] | 973 | |
---|
[1788] | 974 | ENDDO |
---|
| 975 | ENDDO |
---|
| 976 | |
---|
| 977 | ! |
---|
| 978 | !-- Calculate new roughness lengths (for water surfaces only) |
---|
| 979 | CALL calc_z0_water_surface |
---|
| 980 | |
---|
[1551] | 981 | t_soil_p = t_soil |
---|
| 982 | m_soil_p = m_soil |
---|
| 983 | m_liq_eb_p = m_liq_eb |
---|
[1709] | 984 | t_surface_p = t_surface |
---|
[1496] | 985 | |
---|
[1709] | 986 | |
---|
| 987 | |
---|
[1551] | 988 | !-- Store initial profiles of t_soil and m_soil (assuming they are |
---|
| 989 | !-- horizontally homogeneous on this PE) |
---|
| 990 | hom(nzb_soil:nzt_soil,1,90,:) = SPREAD( t_soil(nzb_soil:nzt_soil, & |
---|
| 991 | nysg,nxlg), 2, & |
---|
| 992 | statistic_regions+1 ) |
---|
| 993 | hom(nzb_soil:nzt_soil,1,92,:) = SPREAD( m_soil(nzb_soil:nzt_soil, & |
---|
| 994 | nysg,nxlg), 2, & |
---|
| 995 | statistic_regions+1 ) |
---|
| 996 | |
---|
[1496] | 997 | END SUBROUTINE init_lsm |
---|
| 998 | |
---|
| 999 | |
---|
| 1000 | |
---|
| 1001 | !------------------------------------------------------------------------------! |
---|
| 1002 | ! Description: |
---|
| 1003 | ! ------------ |
---|
[1682] | 1004 | !> Solver for the energy balance at the surface. |
---|
[1496] | 1005 | !------------------------------------------------------------------------------! |
---|
| 1006 | SUBROUTINE lsm_energy_balance |
---|
| 1007 | |
---|
| 1008 | |
---|
| 1009 | IMPLICIT NONE |
---|
| 1010 | |
---|
[1682] | 1011 | INTEGER(iwp) :: i !< running index |
---|
| 1012 | INTEGER(iwp) :: j !< running index |
---|
| 1013 | INTEGER(iwp) :: k, ks !< running index |
---|
[1496] | 1014 | |
---|
[1788] | 1015 | REAL(wp) :: c_surface_tmp,& !< temporary variable for storing the volumetric heat capacity of the surface |
---|
| 1016 | f1, & !< resistance correction term 1 |
---|
[1682] | 1017 | f2, & !< resistance correction term 2 |
---|
| 1018 | f3, & !< resistance correction term 3 |
---|
| 1019 | m_min, & !< minimum soil moisture |
---|
| 1020 | e, & !< water vapour pressure |
---|
| 1021 | e_s, & !< water vapour saturation pressure |
---|
| 1022 | e_s_dt, & !< derivate of e_s with respect to T |
---|
| 1023 | tend, & !< tendency |
---|
| 1024 | dq_s_dt, & !< derivate of q_s with respect to T |
---|
| 1025 | coef_1, & !< coef. for prognostic equation |
---|
| 1026 | coef_2, & !< coef. for prognostic equation |
---|
| 1027 | f_qsws, & !< factor for qsws_eb |
---|
| 1028 | f_qsws_veg, & !< factor for qsws_veg_eb |
---|
| 1029 | f_qsws_soil, & !< factor for qsws_soil_eb |
---|
| 1030 | f_qsws_liq, & !< factor for qsws_liq_eb |
---|
| 1031 | f_shf, & !< factor for shf_eb |
---|
| 1032 | lambda_surface, & !< Current value of lambda_surface |
---|
[1691] | 1033 | m_liq_eb_max, & !< maxmimum value of the liq. water reservoir |
---|
[1709] | 1034 | pt1, & !< potential temperature at first grid level |
---|
| 1035 | qv1 !< specific humidity at first grid level |
---|
[1496] | 1036 | |
---|
| 1037 | ! |
---|
| 1038 | !-- Calculate the exner function for the current time step |
---|
| 1039 | exn = ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
| 1040 | |
---|
[1691] | 1041 | DO i = nxlg, nxrg |
---|
| 1042 | DO j = nysg, nyng |
---|
[1500] | 1043 | k = nzb_s_inner(j,i) |
---|
[1496] | 1044 | |
---|
| 1045 | ! |
---|
[1788] | 1046 | !-- Set lambda_surface according to stratification between skin layer and soil |
---|
| 1047 | IF ( .NOT. pave_surface(j,i) ) THEN |
---|
| 1048 | |
---|
| 1049 | c_surface_tmp = c_surface |
---|
| 1050 | |
---|
| 1051 | IF ( t_surface(j,i) >= t_soil(nzb_soil,j,i)) THEN |
---|
| 1052 | lambda_surface = lambda_surface_s(j,i) |
---|
| 1053 | ELSE |
---|
| 1054 | lambda_surface = lambda_surface_u(j,i) |
---|
| 1055 | ENDIF |
---|
[1496] | 1056 | ELSE |
---|
[1788] | 1057 | |
---|
| 1058 | c_surface_tmp = pave_heat_capacity * dz_soil(nzb_soil) * 0.5_wp |
---|
| 1059 | lambda_surface = pave_heat_conductivity * ddz_soil(nzb_soil) |
---|
| 1060 | |
---|
[1496] | 1061 | ENDIF |
---|
[1500] | 1062 | |
---|
[1496] | 1063 | ! |
---|
[1500] | 1064 | !-- First step: calculate aerodyamic resistance. As pt, us, ts |
---|
| 1065 | !-- are not available for the prognostic time step, data from the last |
---|
| 1066 | !-- time step is used here. Note that this formulation is the |
---|
| 1067 | !-- equivalent to the ECMWF formulation using drag coefficients |
---|
[1691] | 1068 | IF ( cloud_physics ) THEN |
---|
[1709] | 1069 | pt1 = pt(k+1,j,i) + l_d_cp * pt_d_t(k+1) * ql(k+1,j,i) |
---|
| 1070 | qv1 = q(k+1,j,i) - ql(k+1,j,i) |
---|
[1691] | 1071 | ELSE |
---|
[1709] | 1072 | pt1 = pt(k+1,j,i) |
---|
| 1073 | qv1 = q(k+1,j,i) |
---|
[1691] | 1074 | ENDIF |
---|
[1496] | 1075 | |
---|
[1709] | 1076 | r_a(j,i) = (pt1 - pt(k,j,i)) / (ts(j,i) * us(j,i) + 1.0E-20_wp) |
---|
[1691] | 1077 | |
---|
[1496] | 1078 | ! |
---|
[1709] | 1079 | !-- Make sure that the resistance does not drop to zero |
---|
| 1080 | IF ( ABS(r_a(j,i)) < 1.0E-10_wp ) r_a(j,i) = 1.0E-10_wp |
---|
| 1081 | |
---|
| 1082 | ! |
---|
[1496] | 1083 | !-- Second step: calculate canopy resistance r_canopy |
---|
| 1084 | !-- f1-f3 here are defined as 1/f1-f3 as in ECMWF documentation |
---|
| 1085 | |
---|
[1551] | 1086 | !-- f1: correction for incoming shortwave radiation (stomata close at |
---|
| 1087 | !-- night) |
---|
[1585] | 1088 | IF ( radiation_scheme /= 'constant' ) THEN |
---|
[1709] | 1089 | f1 = MIN( 1.0_wp, ( 0.004_wp * rad_sw_in(k,j,i) + 0.05_wp ) / & |
---|
| 1090 | (0.81_wp * (0.004_wp * rad_sw_in(k,j,i) & |
---|
[1585] | 1091 | + 1.0_wp)) ) |
---|
[1551] | 1092 | ELSE |
---|
| 1093 | f1 = 1.0_wp |
---|
| 1094 | ENDIF |
---|
[1496] | 1095 | |
---|
[1709] | 1096 | |
---|
[1496] | 1097 | ! |
---|
[1551] | 1098 | !-- f2: correction for soil moisture availability to plants (the |
---|
| 1099 | !-- integrated soil moisture must thus be considered here) |
---|
| 1100 | !-- f2 = 0 for very dry soils |
---|
[1496] | 1101 | m_total = 0.0_wp |
---|
[1691] | 1102 | DO ks = nzb_soil, nzt_soil |
---|
[1551] | 1103 | m_total = m_total + root_fr(ks,j,i) & |
---|
| 1104 | * MAX(m_soil(ks,j,i),m_wilt(j,i)) |
---|
[1496] | 1105 | ENDDO |
---|
| 1106 | |
---|
[1788] | 1107 | IF ( m_total > m_wilt(j,i) .AND. m_total < m_fc(j,i) ) THEN |
---|
[1496] | 1108 | f2 = ( m_total - m_wilt(j,i) ) / (m_fc(j,i) - m_wilt(j,i) ) |
---|
[1691] | 1109 | ELSEIF ( m_total >= m_fc(j,i) ) THEN |
---|
[1551] | 1110 | f2 = 1.0_wp |
---|
[1496] | 1111 | ELSE |
---|
| 1112 | f2 = 1.0E-20_wp |
---|
| 1113 | ENDIF |
---|
| 1114 | |
---|
| 1115 | ! |
---|
| 1116 | !-- Calculate water vapour pressure at saturation |
---|
[1551] | 1117 | e_s = 0.01_wp * 610.78_wp * EXP( 17.269_wp * ( t_surface(j,i) & |
---|
| 1118 | - 273.16_wp ) / ( t_surface(j,i) - 35.86_wp ) ) |
---|
[1496] | 1119 | |
---|
| 1120 | ! |
---|
| 1121 | !-- f3: correction for vapour pressure deficit |
---|
[1551] | 1122 | IF ( g_d(j,i) /= 0.0_wp ) THEN |
---|
[1496] | 1123 | ! |
---|
| 1124 | !-- Calculate vapour pressure |
---|
[1709] | 1125 | e = qv1 * surface_pressure / 0.622_wp |
---|
[1551] | 1126 | f3 = EXP ( -g_d(j,i) * (e_s - e) ) |
---|
[1496] | 1127 | ELSE |
---|
| 1128 | f3 = 1.0_wp |
---|
| 1129 | ENDIF |
---|
| 1130 | |
---|
| 1131 | ! |
---|
[1551] | 1132 | !-- Calculate canopy resistance. In case that c_veg is 0 (bare soils), |
---|
| 1133 | !-- this calculation is obsolete, as r_canopy is not used below. |
---|
[1496] | 1134 | !-- To do: check for very dry soil -> r_canopy goes to infinity |
---|
[1551] | 1135 | r_canopy(j,i) = r_canopy_min(j,i) / (lai(j,i) * f1 * f2 * f3 & |
---|
| 1136 | + 1.0E-20_wp) |
---|
[1496] | 1137 | |
---|
| 1138 | ! |
---|
[1551] | 1139 | !-- Third step: calculate bare soil resistance r_soil. The Clapp & |
---|
| 1140 | !-- Hornberger parametrization does not consider c_veg. |
---|
[1788] | 1141 | IF ( soil_type_2d(j,i) /= 7 ) THEN |
---|
[1551] | 1142 | m_min = c_veg(j,i) * m_wilt(j,i) + (1.0_wp - c_veg(j,i)) * & |
---|
| 1143 | m_res(j,i) |
---|
| 1144 | ELSE |
---|
| 1145 | m_min = m_wilt(j,i) |
---|
| 1146 | ENDIF |
---|
[1496] | 1147 | |
---|
[1551] | 1148 | f2 = ( m_soil(nzb_soil,j,i) - m_min ) / ( m_fc(j,i) - m_min ) |
---|
[1513] | 1149 | f2 = MAX(f2,1.0E-20_wp) |
---|
[1551] | 1150 | f2 = MIN(f2,1.0_wp) |
---|
[1496] | 1151 | |
---|
| 1152 | r_soil(j,i) = r_soil_min(j,i) / f2 |
---|
| 1153 | |
---|
| 1154 | ! |
---|
[1788] | 1155 | !-- Calculate the maximum possible liquid water amount on plants and |
---|
| 1156 | !-- bare surface. For vegetated surfaces, a maximum depth of 0.2 mm is |
---|
| 1157 | !-- assumed, while paved surfaces might hold up 1 mm of water. The |
---|
| 1158 | !-- liquid water fraction for paved surfaces is calculated after |
---|
| 1159 | !-- Noilhan & Planton (1989), while the ECMWF formulation is used for |
---|
| 1160 | !-- vegetated surfaces and bare soils. |
---|
| 1161 | IF ( pave_surface(j,i) ) THEN |
---|
| 1162 | m_liq_eb_max = m_max_depth * 5.0_wp |
---|
| 1163 | c_liq(j,i) = MIN( 1.0_wp, (m_liq_eb(j,i) / m_liq_eb_max)**0.67 ) |
---|
| 1164 | ELSE |
---|
| 1165 | m_liq_eb_max = m_max_depth * ( c_veg(j,i) * lai(j,i) & |
---|
| 1166 | + (1.0_wp - c_veg(j,i)) ) |
---|
| 1167 | c_liq(j,i) = MIN( 1.0_wp, m_liq_eb(j,i) / m_liq_eb_max ) |
---|
| 1168 | ENDIF |
---|
[1496] | 1169 | |
---|
[1551] | 1170 | ! |
---|
| 1171 | !-- Calculate saturation specific humidity |
---|
[1496] | 1172 | q_s = 0.622_wp * e_s / surface_pressure |
---|
[1500] | 1173 | |
---|
| 1174 | ! |
---|
[1551] | 1175 | !-- In case of dewfall, set evapotranspiration to zero |
---|
| 1176 | !-- All super-saturated water is then removed from the air |
---|
[1788] | 1177 | IF ( humidity .AND. q_s <= qv1 ) THEN |
---|
[1551] | 1178 | r_canopy(j,i) = 0.0_wp |
---|
| 1179 | r_soil(j,i) = 0.0_wp |
---|
[1691] | 1180 | ENDIF |
---|
[1496] | 1181 | |
---|
| 1182 | ! |
---|
| 1183 | !-- Calculate coefficients for the total evapotranspiration |
---|
[1788] | 1184 | !-- In case of water surface, set vegetation and soil fluxes to zero. |
---|
| 1185 | !-- For pavements, only evaporation of liquid water is possible. |
---|
| 1186 | IF ( water_surface(j,i) ) THEN |
---|
| 1187 | f_qsws_veg = 0.0_wp |
---|
| 1188 | f_qsws_soil = 0.0_wp |
---|
| 1189 | f_qsws_liq = rho_lv / r_a(j,i) |
---|
| 1190 | ELSEIF ( pave_surface (j,i) ) THEN |
---|
| 1191 | f_qsws_veg = 0.0_wp |
---|
| 1192 | f_qsws_soil = 0.0_wp |
---|
| 1193 | f_qsws_liq = rho_lv * c_liq(j,i) / r_a(j,i) |
---|
| 1194 | ELSE |
---|
| 1195 | f_qsws_veg = rho_lv * c_veg(j,i) * (1.0_wp - c_liq(j,i))/ & |
---|
| 1196 | (r_a(j,i) + r_canopy(j,i)) |
---|
| 1197 | f_qsws_soil = rho_lv * (1.0_wp - c_veg(j,i)) / (r_a(j,i) + & |
---|
[1551] | 1198 | r_soil(j,i)) |
---|
[1788] | 1199 | f_qsws_liq = rho_lv * c_veg(j,i) * c_liq(j,i) / r_a(j,i) |
---|
| 1200 | ENDIF |
---|
[1500] | 1201 | ! |
---|
| 1202 | !-- If soil moisture is below wilting point, plants do no longer |
---|
| 1203 | !-- transpirate. |
---|
[1691] | 1204 | ! IF ( m_soil(k,j,i) < m_wilt(j,i) ) THEN |
---|
[1551] | 1205 | ! f_qsws_veg = 0.0_wp |
---|
| 1206 | ! ENDIF |
---|
[1496] | 1207 | |
---|
[1551] | 1208 | f_shf = rho_cp / r_a(j,i) |
---|
| 1209 | f_qsws = f_qsws_veg + f_qsws_soil + f_qsws_liq |
---|
| 1210 | |
---|
| 1211 | ! |
---|
[1496] | 1212 | !-- Calculate derivative of q_s for Taylor series expansion |
---|
[1571] | 1213 | e_s_dt = e_s * ( 17.269_wp / (t_surface(j,i) - 35.86_wp) - & |
---|
[1551] | 1214 | 17.269_wp*(t_surface(j,i) - 273.16_wp) & |
---|
| 1215 | / (t_surface(j,i) - 35.86_wp)**2 ) |
---|
[1496] | 1216 | |
---|
[1571] | 1217 | dq_s_dt = 0.622_wp * e_s_dt / surface_pressure |
---|
[1496] | 1218 | |
---|
| 1219 | ! |
---|
| 1220 | !-- Add LW up so that it can be removed in prognostic equation |
---|
[1691] | 1221 | rad_net_l(j,i) = rad_net(j,i) + rad_lw_out(nzb,j,i) |
---|
[1496] | 1222 | |
---|
[1788] | 1223 | ! |
---|
| 1224 | !-- Calculate new skin temperature |
---|
[1500] | 1225 | IF ( humidity ) THEN |
---|
[1691] | 1226 | #if defined ( __rrtmg ) |
---|
[1496] | 1227 | ! |
---|
[1500] | 1228 | !-- Numerator of the prognostic equation |
---|
[1709] | 1229 | coef_1 = rad_net_l(j,i) + rad_lw_out_change_0(j,i) & |
---|
[1691] | 1230 | * t_surface(j,i) - rad_lw_out(nzb,j,i) & |
---|
[1709] | 1231 | + f_shf * pt1 + f_qsws * ( qv1 - q_s & |
---|
[1571] | 1232 | + dq_s_dt * t_surface(j,i) ) + lambda_surface & |
---|
[1551] | 1233 | * t_soil(nzb_soil,j,i) |
---|
[1496] | 1234 | |
---|
| 1235 | ! |
---|
[1500] | 1236 | !-- Denominator of the prognostic equation |
---|
[1709] | 1237 | coef_2 = rad_lw_out_change_0(j,i) + f_qsws * dq_s_dt & |
---|
[1691] | 1238 | + lambda_surface + f_shf / exn |
---|
| 1239 | #else |
---|
[1496] | 1240 | |
---|
[1691] | 1241 | ! |
---|
| 1242 | !-- Numerator of the prognostic equation |
---|
| 1243 | coef_1 = rad_net_l(j,i) + 3.0_wp * sigma_sb & |
---|
| 1244 | * t_surface(j,i) ** 4 & |
---|
[1709] | 1245 | + f_shf * pt1 + f_qsws * ( qv1 & |
---|
[1691] | 1246 | - q_s + dq_s_dt * t_surface(j,i) ) & |
---|
| 1247 | + lambda_surface * t_soil(nzb_soil,j,i) |
---|
| 1248 | |
---|
| 1249 | ! |
---|
[1709] | 1250 | !-- Denominator of the prognostic equation |
---|
| 1251 | coef_2 = 4.0_wp * sigma_sb * t_surface(j,i) ** 3 + f_qsws & |
---|
| 1252 | * dq_s_dt + lambda_surface + f_shf / exn |
---|
[1691] | 1253 | |
---|
| 1254 | #endif |
---|
[1500] | 1255 | ELSE |
---|
| 1256 | |
---|
[1691] | 1257 | #if defined ( __rrtmg ) |
---|
[1500] | 1258 | ! |
---|
| 1259 | !-- Numerator of the prognostic equation |
---|
[1709] | 1260 | coef_1 = rad_net_l(j,i) + rad_lw_out_change_0(j,i) & |
---|
[1691] | 1261 | * t_surface(j,i) - rad_lw_out(nzb,j,i) & |
---|
[1709] | 1262 | + f_shf * pt1 + lambda_surface & |
---|
[1551] | 1263 | * t_soil(nzb_soil,j,i) |
---|
[1500] | 1264 | |
---|
| 1265 | ! |
---|
| 1266 | !-- Denominator of the prognostic equation |
---|
[1709] | 1267 | coef_2 = rad_lw_out_change_0(j,i) + lambda_surface + f_shf / exn |
---|
[1691] | 1268 | #else |
---|
| 1269 | |
---|
| 1270 | ! |
---|
| 1271 | !-- Numerator of the prognostic equation |
---|
| 1272 | coef_1 = rad_net_l(j,i) + 3.0_wp * sigma_sb & |
---|
[1709] | 1273 | * t_surface(j,i) ** 4 + f_shf * pt1 & |
---|
[1691] | 1274 | + lambda_surface * t_soil(nzb_soil,j,i) |
---|
| 1275 | |
---|
| 1276 | ! |
---|
| 1277 | !-- Denominator of the prognostic equation |
---|
[1571] | 1278 | coef_2 = 4.0_wp * sigma_sb * t_surface(j,i) ** 3 & |
---|
[1551] | 1279 | + lambda_surface + f_shf / exn |
---|
[1691] | 1280 | #endif |
---|
[1500] | 1281 | ENDIF |
---|
| 1282 | |
---|
[1496] | 1283 | tend = 0.0_wp |
---|
| 1284 | |
---|
| 1285 | ! |
---|
[1551] | 1286 | !-- Implicit solution when the surface layer has no heat capacity, |
---|
[1496] | 1287 | !-- otherwise use RK3 scheme. |
---|
[1788] | 1288 | t_surface_p(j,i) = ( coef_1 * dt_3d * tsc(2) + c_surface_tmp * & |
---|
| 1289 | t_surface(j,i) ) / ( c_surface_tmp + coef_2 & |
---|
| 1290 | * dt_3d * tsc(2) ) |
---|
| 1291 | |
---|
[1496] | 1292 | ! |
---|
| 1293 | !-- Add RK3 term |
---|
[1788] | 1294 | IF ( c_surface_tmp /= 0.0_wp ) THEN |
---|
[1496] | 1295 | |
---|
[1691] | 1296 | t_surface_p(j,i) = t_surface_p(j,i) + dt_3d * tsc(3) & |
---|
| 1297 | * tt_surface_m(j,i) |
---|
| 1298 | |
---|
[1496] | 1299 | ! |
---|
[1691] | 1300 | !-- Calculate true tendency |
---|
| 1301 | tend = (t_surface_p(j,i) - t_surface(j,i) - dt_3d * tsc(3) & |
---|
| 1302 | * tt_surface_m(j,i)) / (dt_3d * tsc(2)) |
---|
[1496] | 1303 | ! |
---|
[1691] | 1304 | !-- Calculate t_surface tendencies for the next Runge-Kutta step |
---|
| 1305 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1306 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1307 | tt_surface_m(j,i) = tend |
---|
| 1308 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1309 | intermediate_timestep_count_max ) THEN |
---|
| 1310 | tt_surface_m(j,i) = -9.5625_wp * tend + 5.3125_wp & |
---|
| 1311 | * tt_surface_m(j,i) |
---|
| 1312 | ENDIF |
---|
[1496] | 1313 | ENDIF |
---|
| 1314 | ENDIF |
---|
| 1315 | |
---|
| 1316 | ! |
---|
[1757] | 1317 | !-- In case of fast changes in the skin temperature, it is possible to |
---|
| 1318 | !-- update the radiative fluxes independently from the prescribed |
---|
| 1319 | !-- radiation call frequency. This effectively prevents oscillations, |
---|
| 1320 | !-- especially when setting skip_time_do_radiation /= 0. The threshold |
---|
| 1321 | !-- value of 0.2 used here is just a first guess. This method should be |
---|
| 1322 | !-- revised in the future as tests have shown that the threshold is |
---|
| 1323 | !-- often reached, when no oscillations would occur (causes immense |
---|
| 1324 | !-- computing time for the radiation code). |
---|
[1788] | 1325 | IF ( ABS( t_surface_p(j,i) - t_surface(j,i) ) > 0.2_wp .AND. & |
---|
[1757] | 1326 | unscheduled_radiation_calls ) THEN |
---|
[1691] | 1327 | force_radiation_call_l = .TRUE. |
---|
| 1328 | ENDIF |
---|
| 1329 | |
---|
| 1330 | pt(k,j,i) = t_surface_p(j,i) / exn |
---|
| 1331 | |
---|
| 1332 | ! |
---|
[1496] | 1333 | !-- Calculate fluxes |
---|
[1691] | 1334 | #if defined ( __rrtmg ) |
---|
[1709] | 1335 | rad_net_l(j,i) = rad_net_l(j,i) + rad_lw_out_change_0(j,i) & |
---|
[1691] | 1336 | * t_surface(j,i) - rad_lw_out(nzb,j,i) & |
---|
[1709] | 1337 | - rad_lw_out_change_0(j,i) * t_surface_p(j,i) |
---|
[1691] | 1338 | |
---|
| 1339 | IF ( rrtm_idrv == 1 ) THEN |
---|
| 1340 | rad_net(j,i) = rad_net_l(j,i) |
---|
| 1341 | rad_lw_out(nzb,j,i) = rad_lw_out(nzb,j,i) & |
---|
[1709] | 1342 | + rad_lw_out_change_0(j,i) & |
---|
[1691] | 1343 | * ( t_surface_p(j,i) - t_surface(j,i) ) |
---|
| 1344 | ENDIF |
---|
| 1345 | #else |
---|
| 1346 | rad_net_l(j,i) = rad_net_l(j,i) + 3.0_wp * sigma_sb & |
---|
| 1347 | * t_surface(j,i)**4 - 4.0_wp * sigma_sb & |
---|
| 1348 | * t_surface(j,i)**3 * t_surface_p(j,i) |
---|
| 1349 | #endif |
---|
| 1350 | |
---|
[1551] | 1351 | ghf_eb(j,i) = lambda_surface * (t_surface_p(j,i) & |
---|
| 1352 | - t_soil(nzb_soil,j,i)) |
---|
[1496] | 1353 | |
---|
[1709] | 1354 | shf_eb(j,i) = - f_shf * ( pt1 - pt(k,j,i) ) |
---|
[1691] | 1355 | |
---|
| 1356 | shf(j,i) = shf_eb(j,i) / rho_cp |
---|
| 1357 | |
---|
[1500] | 1358 | IF ( humidity ) THEN |
---|
[1709] | 1359 | qsws_eb(j,i) = - f_qsws * ( qv1 - q_s + dq_s_dt & |
---|
[1571] | 1360 | * t_surface(j,i) - dq_s_dt * t_surface_p(j,i) ) |
---|
[1496] | 1361 | |
---|
[1691] | 1362 | qsws(j,i) = qsws_eb(j,i) / rho_lv |
---|
| 1363 | |
---|
[1709] | 1364 | qsws_veg_eb(j,i) = - f_qsws_veg * ( qv1 - q_s & |
---|
[1571] | 1365 | + dq_s_dt * t_surface(j,i) - dq_s_dt & |
---|
[1551] | 1366 | * t_surface_p(j,i) ) |
---|
| 1367 | |
---|
[1709] | 1368 | qsws_soil_eb(j,i) = - f_qsws_soil * ( qv1 - q_s & |
---|
[1571] | 1369 | + dq_s_dt * t_surface(j,i) - dq_s_dt & |
---|
[1551] | 1370 | * t_surface_p(j,i) ) |
---|
| 1371 | |
---|
[1709] | 1372 | qsws_liq_eb(j,i) = - f_qsws_liq * ( qv1 - q_s & |
---|
[1571] | 1373 | + dq_s_dt * t_surface(j,i) - dq_s_dt & |
---|
[1551] | 1374 | * t_surface_p(j,i) ) |
---|
[1500] | 1375 | ENDIF |
---|
[1788] | 1376 | |
---|
[1500] | 1377 | ! |
---|
| 1378 | !-- Calculate the true surface resistance |
---|
[1691] | 1379 | IF ( qsws_eb(j,i) == 0.0_wp ) THEN |
---|
[1551] | 1380 | r_s(j,i) = 1.0E10_wp |
---|
[1496] | 1381 | ELSE |
---|
[1788] | 1382 | r_s(j,i) = - rho_lv * ( qv1 - q_s + dq_s_dt & |
---|
[1571] | 1383 | * t_surface(j,i) - dq_s_dt * t_surface_p(j,i) ) & |
---|
[1551] | 1384 | / qsws_eb(j,i) - r_a(j,i) |
---|
[1496] | 1385 | ENDIF |
---|
| 1386 | |
---|
| 1387 | ! |
---|
| 1388 | !-- Calculate change in liquid water reservoir due to dew fall or |
---|
[1500] | 1389 | !-- evaporation of liquid water |
---|
| 1390 | IF ( humidity ) THEN |
---|
[1496] | 1391 | ! |
---|
[1571] | 1392 | !-- If precipitation is activated, add rain water to qsws_liq_eb |
---|
| 1393 | !-- and qsws_soil_eb according the the vegetation coverage. |
---|
[1500] | 1394 | !-- precipitation_rate is given in mm. |
---|
| 1395 | IF ( precipitation ) THEN |
---|
[1571] | 1396 | |
---|
| 1397 | ! |
---|
| 1398 | !-- Add precipitation to liquid water reservoir, if possible. |
---|
[1788] | 1399 | !-- Otherwise, add the water to soil. In case of |
---|
| 1400 | !-- pavements, the exceeding water amount is implicitely removed |
---|
| 1401 | !-- as runoff as qsws_soil_eb is then not used in the soil model |
---|
[1691] | 1402 | IF ( m_liq_eb(j,i) /= m_liq_eb_max ) THEN |
---|
[1571] | 1403 | qsws_liq_eb(j,i) = qsws_liq_eb(j,i) & |
---|
[1691] | 1404 | + c_veg(j,i) * prr(k,j,i) * hyrho(k) & |
---|
[1571] | 1405 | * 0.001_wp * rho_l * l_v |
---|
| 1406 | ELSE |
---|
| 1407 | qsws_soil_eb(j,i) = qsws_soil_eb(j,i) & |
---|
[1691] | 1408 | + c_veg(j,i) * prr(k,j,i) * hyrho(k) & |
---|
[1571] | 1409 | * 0.001_wp * rho_l * l_v |
---|
| 1410 | ENDIF |
---|
| 1411 | |
---|
| 1412 | !-- Add precipitation to bare soil according to the bare soil |
---|
| 1413 | !-- coverage. |
---|
| 1414 | qsws_soil_eb(j,i) = qsws_soil_eb(j,i) * (1.0_wp & |
---|
[1691] | 1415 | - c_veg(j,i)) * prr(k,j,i) * hyrho(k) & |
---|
[1571] | 1416 | * 0.001_wp * rho_l * l_v |
---|
[1496] | 1417 | ENDIF |
---|
[1691] | 1418 | |
---|
[1500] | 1419 | ! |
---|
| 1420 | !-- If the air is saturated, check the reservoir water level |
---|
[1691] | 1421 | IF ( qsws_eb(j,i) < 0.0_wp ) THEN |
---|
| 1422 | |
---|
[1500] | 1423 | ! |
---|
[1551] | 1424 | !-- Check if reservoir is full (avoid values > m_liq_eb_max) |
---|
| 1425 | !-- In that case, qsws_liq_eb goes to qsws_soil_eb. In this |
---|
| 1426 | !-- case qsws_veg_eb is zero anyway (because c_liq = 1), |
---|
| 1427 | !-- so that tend is zero and no further check is needed |
---|
[1691] | 1428 | IF ( m_liq_eb(j,i) == m_liq_eb_max ) THEN |
---|
[1551] | 1429 | qsws_soil_eb(j,i) = qsws_soil_eb(j,i) & |
---|
| 1430 | + qsws_liq_eb(j,i) |
---|
| 1431 | qsws_liq_eb(j,i) = 0.0_wp |
---|
[1500] | 1432 | ENDIF |
---|
[1496] | 1433 | |
---|
| 1434 | ! |
---|
[1551] | 1435 | !-- In case qsws_veg_eb becomes negative (unphysical behavior), |
---|
| 1436 | !-- let the water enter the liquid water reservoir as dew on the |
---|
[1500] | 1437 | !-- plant |
---|
[1691] | 1438 | IF ( qsws_veg_eb(j,i) < 0.0_wp ) THEN |
---|
[1551] | 1439 | qsws_liq_eb(j,i) = qsws_liq_eb(j,i) + qsws_veg_eb(j,i) |
---|
| 1440 | qsws_veg_eb(j,i) = 0.0_wp |
---|
[1500] | 1441 | ENDIF |
---|
| 1442 | ENDIF |
---|
[1496] | 1443 | |
---|
[1551] | 1444 | tend = - qsws_liq_eb(j,i) * drho_l_lv |
---|
[1496] | 1445 | |
---|
[1551] | 1446 | m_liq_eb_p(j,i) = m_liq_eb(j,i) + dt_3d * ( tsc(2) * tend & |
---|
| 1447 | + tsc(3) * tm_liq_eb_m(j,i) ) |
---|
[1496] | 1448 | |
---|
| 1449 | ! |
---|
[1500] | 1450 | !-- Check if reservoir is overfull -> reduce to maximum |
---|
| 1451 | !-- (conservation of water is violated here) |
---|
[1551] | 1452 | m_liq_eb_p(j,i) = MIN(m_liq_eb_p(j,i),m_liq_eb_max) |
---|
[1496] | 1453 | |
---|
| 1454 | ! |
---|
[1500] | 1455 | !-- Check if reservoir is empty (avoid values < 0.0) |
---|
| 1456 | !-- (conservation of water is violated here) |
---|
[1551] | 1457 | m_liq_eb_p(j,i) = MAX(m_liq_eb_p(j,i),0.0_wp) |
---|
[1496] | 1458 | |
---|
| 1459 | |
---|
| 1460 | ! |
---|
[1551] | 1461 | !-- Calculate m_liq_eb tendencies for the next Runge-Kutta step |
---|
[1500] | 1462 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1463 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[1551] | 1464 | tm_liq_eb_m(j,i) = tend |
---|
[1500] | 1465 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1466 | intermediate_timestep_count_max ) THEN |
---|
[1551] | 1467 | tm_liq_eb_m(j,i) = -9.5625_wp * tend + 5.3125_wp & |
---|
| 1468 | * tm_liq_eb_m(j,i) |
---|
[1500] | 1469 | ENDIF |
---|
[1496] | 1470 | ENDIF |
---|
| 1471 | |
---|
[1500] | 1472 | ENDIF |
---|
| 1473 | |
---|
[1496] | 1474 | ENDDO |
---|
[1500] | 1475 | ENDDO |
---|
[1496] | 1476 | |
---|
[1691] | 1477 | ! |
---|
| 1478 | !-- Make a logical OR for all processes. Force radiation call if at |
---|
[1757] | 1479 | !-- least one processor reached the threshold change in skin temperature |
---|
[1788] | 1480 | IF ( unscheduled_radiation_calls .AND. intermediate_timestep_count & |
---|
[1757] | 1481 | == intermediate_timestep_count_max-1 ) THEN |
---|
[1697] | 1482 | #if defined( __parallel ) |
---|
[1691] | 1483 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1484 | CALL MPI_ALLREDUCE( force_radiation_call_l, force_radiation_call, & |
---|
| 1485 | 1, MPI_LOGICAL, MPI_LOR, comm2d, ierr ) |
---|
| 1486 | #else |
---|
| 1487 | force_radiation_call = force_radiation_call_l |
---|
| 1488 | #endif |
---|
| 1489 | force_radiation_call_l = .FALSE. |
---|
| 1490 | ENDIF |
---|
| 1491 | |
---|
[1788] | 1492 | ! |
---|
| 1493 | !-- Calculate surface specific humidity |
---|
| 1494 | IF ( humidity ) THEN |
---|
| 1495 | CALL calc_q_surface |
---|
| 1496 | ENDIF |
---|
[1691] | 1497 | |
---|
[1788] | 1498 | ! |
---|
| 1499 | !-- Calculate new roughness lengths (for water surfaces only) |
---|
| 1500 | CALL calc_z0_water_surface |
---|
| 1501 | |
---|
| 1502 | |
---|
[1496] | 1503 | END SUBROUTINE lsm_energy_balance |
---|
| 1504 | |
---|
| 1505 | |
---|
| 1506 | !------------------------------------------------------------------------------! |
---|
| 1507 | ! Description: |
---|
| 1508 | ! ------------ |
---|
[1682] | 1509 | !> Soil model as part of the land surface model. The model predicts soil |
---|
| 1510 | !> temperature and water content. |
---|
[1496] | 1511 | !------------------------------------------------------------------------------! |
---|
| 1512 | SUBROUTINE lsm_soil_model |
---|
| 1513 | |
---|
| 1514 | |
---|
| 1515 | IMPLICIT NONE |
---|
| 1516 | |
---|
[1682] | 1517 | INTEGER(iwp) :: i !< running index |
---|
| 1518 | INTEGER(iwp) :: j !< running index |
---|
| 1519 | INTEGER(iwp) :: k !< running index |
---|
[1496] | 1520 | |
---|
[1682] | 1521 | REAL(wp) :: h_vg !< Van Genuchten coef. h |
---|
[1496] | 1522 | |
---|
[1682] | 1523 | REAL(wp), DIMENSION(nzb_soil:nzt_soil) :: gamma_temp, & !< temp. gamma |
---|
[1691] | 1524 | lambda_temp, & !< temp. lambda |
---|
| 1525 | tend !< tendency |
---|
[1496] | 1526 | |
---|
[1691] | 1527 | DO i = nxlg, nxrg |
---|
| 1528 | DO j = nysg, nyng |
---|
[1788] | 1529 | |
---|
| 1530 | IF ( pave_surface(j,i) ) THEN |
---|
| 1531 | rho_c_total(nzb_soil,j,i) = pave_heat_capacity |
---|
| 1532 | lambda_temp(nzb_soil) = pave_heat_conductivity |
---|
| 1533 | ENDIF |
---|
| 1534 | |
---|
| 1535 | IF ( .NOT. water_surface(j,i) ) THEN |
---|
| 1536 | DO k = nzb_soil, nzt_soil |
---|
| 1537 | |
---|
| 1538 | |
---|
| 1539 | IF ( pave_surface(j,i) .AND. zs(k) <= pave_depth ) THEN |
---|
| 1540 | |
---|
| 1541 | rho_c_total(k,j,i) = pave_heat_capacity |
---|
| 1542 | lambda_temp(k) = pave_heat_conductivity |
---|
| 1543 | |
---|
| 1544 | ELSE |
---|
[1496] | 1545 | ! |
---|
[1788] | 1546 | !-- Calculate volumetric heat capacity of the soil, taking |
---|
| 1547 | !-- into account water content |
---|
| 1548 | rho_c_total(k,j,i) = (rho_c_soil * (1.0_wp - m_sat(j,i)) & |
---|
| 1549 | + rho_c_water * m_soil(k,j,i)) |
---|
[1496] | 1550 | |
---|
| 1551 | ! |
---|
[1788] | 1552 | !-- Calculate soil heat conductivity at the center of the soil |
---|
| 1553 | !-- layers |
---|
| 1554 | lambda_h_sat = lambda_h_sm ** (1.0_wp - m_sat(j,i)) * & |
---|
| 1555 | lambda_h_water ** m_soil(k,j,i) |
---|
[1691] | 1556 | |
---|
[1788] | 1557 | ke = 1.0_wp + LOG10(MAX(0.1_wp,m_soil(k,j,i) / m_sat(j,i))) |
---|
[1691] | 1558 | |
---|
[1788] | 1559 | lambda_temp(k) = ke * (lambda_h_sat - lambda_h_dry) + & |
---|
| 1560 | lambda_h_dry |
---|
| 1561 | ENDIF |
---|
[1496] | 1562 | |
---|
[1788] | 1563 | ENDDO |
---|
[1496] | 1564 | |
---|
| 1565 | ! |
---|
[1788] | 1566 | !-- Calculate soil heat conductivity (lambda_h) at the _stag level |
---|
| 1567 | !-- using linear interpolation. For pavement surface, the |
---|
| 1568 | !-- true pavement depth is considered |
---|
| 1569 | DO k = nzb_soil, nzt_soil-1 |
---|
| 1570 | IF ( pave_surface(j,i) .AND. zs(k) < pave_depth & |
---|
| 1571 | .AND. zs(k+1) > pave_depth ) THEN |
---|
| 1572 | lambda_h(k,j,i) = ( pave_depth - zs(k) ) / dz_soil(k+1) & |
---|
| 1573 | * lambda_temp(k) & |
---|
| 1574 | + ( 1.0_wp - ( pave_depth - zs(k) ) & |
---|
| 1575 | / dz_soil(k+1) ) * lambda_temp(k+1) |
---|
| 1576 | ELSE |
---|
| 1577 | lambda_h(k,j,i) = ( lambda_temp(k+1) + lambda_temp(k) ) & |
---|
| 1578 | * 0.5_wp |
---|
| 1579 | ENDIF |
---|
| 1580 | ENDDO |
---|
| 1581 | lambda_h(nzt_soil,j,i) = lambda_temp(nzt_soil) |
---|
[1496] | 1582 | |
---|
[1788] | 1583 | |
---|
| 1584 | |
---|
| 1585 | |
---|
[1496] | 1586 | ! |
---|
[1788] | 1587 | !-- Prognostic equation for soil temperature t_soil |
---|
| 1588 | tend(:) = 0.0_wp |
---|
[1496] | 1589 | |
---|
[1788] | 1590 | tend(nzb_soil) = (1.0_wp/rho_c_total(nzb_soil,j,i)) * & |
---|
| 1591 | ( lambda_h(nzb_soil,j,i) * ( t_soil(nzb_soil+1,j,i) & |
---|
| 1592 | - t_soil(nzb_soil,j,i) ) * ddz_soil(nzb_soil+1) & |
---|
| 1593 | + ghf_eb(j,i) ) * ddz_soil_stag(nzb_soil) |
---|
[1691] | 1594 | |
---|
[1788] | 1595 | DO k = nzb_soil+1, nzt_soil |
---|
| 1596 | tend(k) = (1.0_wp/rho_c_total(k,j,i)) & |
---|
| 1597 | * ( lambda_h(k,j,i) & |
---|
| 1598 | * ( t_soil(k+1,j,i) - t_soil(k,j,i) ) & |
---|
| 1599 | * ddz_soil(k+1) & |
---|
| 1600 | - lambda_h(k-1,j,i) & |
---|
| 1601 | * ( t_soil(k,j,i) - t_soil(k-1,j,i) ) & |
---|
| 1602 | * ddz_soil(k) & |
---|
| 1603 | ) * ddz_soil_stag(k) |
---|
[1691] | 1604 | |
---|
[1788] | 1605 | ENDDO |
---|
[1691] | 1606 | |
---|
[1788] | 1607 | t_soil_p(nzb_soil:nzt_soil,j,i) = t_soil(nzb_soil:nzt_soil,j,i)& |
---|
| 1608 | + dt_3d * ( tsc(2) & |
---|
| 1609 | * tend(nzb_soil:nzt_soil) & |
---|
| 1610 | + tsc(3) & |
---|
| 1611 | * tt_soil_m(:,j,i) ) |
---|
[1496] | 1612 | |
---|
| 1613 | ! |
---|
[1788] | 1614 | !-- Calculate t_soil tendencies for the next Runge-Kutta step |
---|
| 1615 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1616 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1617 | DO k = nzb_soil, nzt_soil |
---|
| 1618 | tt_soil_m(k,j,i) = tend(k) |
---|
| 1619 | ENDDO |
---|
| 1620 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1621 | intermediate_timestep_count_max ) THEN |
---|
| 1622 | DO k = nzb_soil, nzt_soil |
---|
| 1623 | tt_soil_m(k,j,i) = -9.5625_wp * tend(k) + 5.3125_wp & |
---|
[1551] | 1624 | * tt_soil_m(k,j,i) |
---|
[1788] | 1625 | ENDDO |
---|
| 1626 | ENDIF |
---|
[1496] | 1627 | ENDIF |
---|
| 1628 | |
---|
| 1629 | |
---|
[1788] | 1630 | DO k = nzb_soil, nzt_soil |
---|
[1551] | 1631 | |
---|
[1496] | 1632 | ! |
---|
[1788] | 1633 | !-- Calculate soil diffusivity at the center of the soil layers |
---|
| 1634 | lambda_temp(k) = (- b_ch * gamma_w_sat(j,i) * psi_sat & |
---|
| 1635 | / m_sat(j,i) ) * ( MAX( m_soil(k,j,i), & |
---|
| 1636 | m_wilt(j,i) ) / m_sat(j,i) )**( & |
---|
| 1637 | b_ch + 2.0_wp ) |
---|
[1496] | 1638 | |
---|
| 1639 | ! |
---|
[1788] | 1640 | !-- Parametrization of Van Genuchten |
---|
| 1641 | IF ( soil_type /= 7 ) THEN |
---|
[1551] | 1642 | ! |
---|
[1788] | 1643 | !-- Calculate the hydraulic conductivity after Van Genuchten |
---|
| 1644 | !-- (1980) |
---|
| 1645 | h_vg = ( ( (m_res(j,i) - m_sat(j,i)) / ( m_res(j,i) - & |
---|
| 1646 | MAX( m_soil(k,j,i), m_wilt(j,i) ) ) )**( & |
---|
| 1647 | n_vg(j,i) / (n_vg(j,i) - 1.0_wp ) ) - 1.0_wp & |
---|
| 1648 | )**( 1.0_wp / n_vg(j,i) ) / alpha_vg(j,i) |
---|
[1496] | 1649 | |
---|
[1691] | 1650 | |
---|
[1788] | 1651 | gamma_temp(k) = gamma_w_sat(j,i) * ( ( (1.0_wp + & |
---|
| 1652 | ( alpha_vg(j,i) * h_vg )**n_vg(j,i))**( & |
---|
| 1653 | 1.0_wp - 1.0_wp / n_vg(j,i) ) - ( & |
---|
| 1654 | alpha_vg(j,i) * h_vg )**( n_vg(j,i) & |
---|
| 1655 | - 1.0_wp) )**2 ) & |
---|
| 1656 | / ( ( 1.0_wp + ( alpha_vg(j,i) * h_vg & |
---|
| 1657 | )**n_vg(j,i) )**( ( 1.0_wp - 1.0_wp & |
---|
| 1658 | / n_vg(j,i) ) *( l_vg(j,i) + 2.0_wp) ) ) |
---|
[1496] | 1659 | |
---|
[1551] | 1660 | ! |
---|
[1788] | 1661 | !-- Parametrization of Clapp & Hornberger |
---|
| 1662 | ELSE |
---|
| 1663 | gamma_temp(k) = gamma_w_sat(j,i) * ( m_soil(k,j,i) & |
---|
| 1664 | / m_sat(j,i) )**(2.0_wp * b_ch + 3.0_wp) |
---|
| 1665 | ENDIF |
---|
[1551] | 1666 | |
---|
[1788] | 1667 | ENDDO |
---|
[1496] | 1668 | |
---|
| 1669 | ! |
---|
[1788] | 1670 | !-- Prognostic equation for soil moisture content. Only performed, |
---|
| 1671 | !-- when humidity is enabled in the atmosphere and the surface type |
---|
| 1672 | !-- is not pavement (implies dry soil below). |
---|
| 1673 | IF ( humidity .AND. .NOT. pave_surface(j,i) ) THEN |
---|
| 1674 | ! |
---|
| 1675 | !-- Calculate soil diffusivity (lambda_w) at the _stag level |
---|
| 1676 | !-- using linear interpolation. To do: replace this with |
---|
| 1677 | !-- ECMWF-IFS Eq. 8.81 |
---|
| 1678 | DO k = nzb_soil, nzt_soil-1 |
---|
[1496] | 1679 | |
---|
[1788] | 1680 | lambda_w(k,j,i) = ( lambda_temp(k+1) + lambda_temp(k) ) & |
---|
| 1681 | * 0.5_wp |
---|
| 1682 | gamma_w(k,j,i) = ( gamma_temp(k+1) + gamma_temp(k) ) & |
---|
| 1683 | * 0.5_wp |
---|
[1496] | 1684 | |
---|
[1788] | 1685 | ENDDO |
---|
[1496] | 1686 | |
---|
| 1687 | ! |
---|
| 1688 | ! |
---|
[1788] | 1689 | !-- In case of a closed bottom (= water content is conserved), set |
---|
| 1690 | !-- hydraulic conductivity to zero to that no water will be lost |
---|
| 1691 | !-- in the bottom layer. |
---|
| 1692 | IF ( conserve_water_content ) THEN |
---|
| 1693 | gamma_w(nzt_soil,j,i) = 0.0_wp |
---|
| 1694 | ELSE |
---|
| 1695 | gamma_w(nzt_soil,j,i) = gamma_temp(nzt_soil) |
---|
| 1696 | ENDIF |
---|
[1496] | 1697 | |
---|
[1788] | 1698 | !-- The root extraction (= root_extr * qsws_veg_eb / (rho_l * l_v)) |
---|
| 1699 | !-- ensures the mass conservation for water. The transpiration of |
---|
| 1700 | !-- plants equals the cumulative withdrawals by the roots in the |
---|
| 1701 | !-- soil. The scheme takes into account the availability of water |
---|
| 1702 | !-- in the soil layers as well as the root fraction in the |
---|
| 1703 | !-- respective layer. Layer with moisture below wilting point will |
---|
| 1704 | !-- not contribute, which reflects the preference of plants to |
---|
| 1705 | !-- take water from moister layers. |
---|
[1496] | 1706 | |
---|
| 1707 | ! |
---|
[1788] | 1708 | !-- Calculate the root extraction (ECMWF 7.69, the sum of root_extr |
---|
| 1709 | !-- = 1). The energy balance solver guarantees a positive |
---|
| 1710 | !-- transpiration, so that there is no need for an additional check. |
---|
[1691] | 1711 | DO k = nzb_soil, nzt_soil |
---|
[1788] | 1712 | IF ( m_soil(k,j,i) > m_wilt(j,i) ) THEN |
---|
| 1713 | m_total = m_total + root_fr(k,j,i) * m_soil(k,j,i) |
---|
| 1714 | ENDIF |
---|
| 1715 | ENDDO |
---|
[1496] | 1716 | |
---|
[1788] | 1717 | IF ( m_total > 0.0_wp ) THEN |
---|
| 1718 | DO k = nzb_soil, nzt_soil |
---|
| 1719 | IF ( m_soil(k,j,i) > m_wilt(j,i) ) THEN |
---|
| 1720 | root_extr(k) = root_fr(k,j,i) * m_soil(k,j,i) / m_total |
---|
| 1721 | ELSE |
---|
| 1722 | root_extr(k) = 0.0_wp |
---|
| 1723 | ENDIF |
---|
| 1724 | ENDDO |
---|
| 1725 | ENDIF |
---|
| 1726 | |
---|
[1496] | 1727 | ! |
---|
[1788] | 1728 | !-- Prognostic equation for soil water content m_soil. |
---|
| 1729 | tend(:) = 0.0_wp |
---|
| 1730 | |
---|
| 1731 | tend(nzb_soil) = ( lambda_w(nzb_soil,j,i) * ( & |
---|
[1551] | 1732 | m_soil(nzb_soil+1,j,i) - m_soil(nzb_soil,j,i) ) & |
---|
[1691] | 1733 | * ddz_soil(nzb_soil+1) - gamma_w(nzb_soil,j,i) - ( & |
---|
[1788] | 1734 | root_extr(nzb_soil) * qsws_veg_eb(j,i) & |
---|
| 1735 | + qsws_soil_eb(j,i) ) * drho_l_lv ) & |
---|
| 1736 | * ddz_soil_stag(nzb_soil) |
---|
[1496] | 1737 | |
---|
[1788] | 1738 | DO k = nzb_soil+1, nzt_soil-1 |
---|
| 1739 | tend(k) = ( lambda_w(k,j,i) * ( m_soil(k+1,j,i) & |
---|
| 1740 | - m_soil(k,j,i) ) * ddz_soil(k+1) & |
---|
| 1741 | - gamma_w(k,j,i) & |
---|
| 1742 | - lambda_w(k-1,j,i) * (m_soil(k,j,i) - & |
---|
| 1743 | m_soil(k-1,j,i)) * ddz_soil(k) & |
---|
| 1744 | + gamma_w(k-1,j,i) - (root_extr(k) & |
---|
| 1745 | * qsws_veg_eb(j,i) * drho_l_lv) & |
---|
| 1746 | ) * ddz_soil_stag(k) |
---|
[1496] | 1747 | |
---|
[1788] | 1748 | ENDDO |
---|
| 1749 | tend(nzt_soil) = ( - gamma_w(nzt_soil,j,i) & |
---|
| 1750 | - lambda_w(nzt_soil-1,j,i) & |
---|
| 1751 | * (m_soil(nzt_soil,j,i) & |
---|
| 1752 | - m_soil(nzt_soil-1,j,i)) & |
---|
| 1753 | * ddz_soil(nzt_soil) & |
---|
| 1754 | + gamma_w(nzt_soil-1,j,i) - ( & |
---|
| 1755 | root_extr(nzt_soil) & |
---|
| 1756 | * qsws_veg_eb(j,i) * drho_l_lv ) & |
---|
| 1757 | ) * ddz_soil_stag(nzt_soil) |
---|
[1496] | 1758 | |
---|
[1788] | 1759 | m_soil_p(nzb_soil:nzt_soil,j,i) = m_soil(nzb_soil:nzt_soil,j,i)& |
---|
| 1760 | + dt_3d * ( tsc(2) * tend(:) & |
---|
| 1761 | + tsc(3) * tm_soil_m(:,j,i) ) |
---|
| 1762 | |
---|
[1496] | 1763 | ! |
---|
[1788] | 1764 | !-- Account for dry soils (find a better solution here!) |
---|
| 1765 | DO k = nzb_soil, nzt_soil |
---|
| 1766 | IF ( m_soil_p(k,j,i) < 0.0_wp ) m_soil_p(k,j,i) = 0.0_wp |
---|
| 1767 | ENDDO |
---|
[1496] | 1768 | |
---|
| 1769 | ! |
---|
[1788] | 1770 | !-- Calculate m_soil tendencies for the next Runge-Kutta step |
---|
| 1771 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1772 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1773 | DO k = nzb_soil, nzt_soil |
---|
| 1774 | tm_soil_m(k,j,i) = tend(k) |
---|
| 1775 | ENDDO |
---|
| 1776 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1777 | intermediate_timestep_count_max ) THEN |
---|
| 1778 | DO k = nzb_soil, nzt_soil |
---|
| 1779 | tm_soil_m(k,j,i) = -9.5625_wp * tend(k) + 5.3125_wp& |
---|
[1496] | 1780 | * tm_soil_m(k,j,i) |
---|
[1788] | 1781 | ENDDO |
---|
| 1782 | ENDIF |
---|
[1496] | 1783 | ENDIF |
---|
[1788] | 1784 | |
---|
[1496] | 1785 | ENDIF |
---|
| 1786 | |
---|
| 1787 | ENDIF |
---|
| 1788 | |
---|
| 1789 | ENDDO |
---|
| 1790 | ENDDO |
---|
| 1791 | |
---|
[1788] | 1792 | END SUBROUTINE lsm_soil_model |
---|
| 1793 | |
---|
| 1794 | |
---|
| 1795 | !------------------------------------------------------------------------------! |
---|
| 1796 | ! Description: |
---|
| 1797 | ! ------------ |
---|
| 1798 | !> Calculation of roughness length for open water (lakes, ocean). The |
---|
| 1799 | !> parameterization follows Charnock (1955). Two different implementations |
---|
| 1800 | !> are available: as in ECMWF-IFS (Beljaars 1994) or as in FLake (Subin et al. |
---|
| 1801 | !> 2012) |
---|
| 1802 | !------------------------------------------------------------------------------! |
---|
| 1803 | SUBROUTINE calc_z0_water_surface |
---|
| 1804 | |
---|
| 1805 | USE control_parameters, & |
---|
| 1806 | ONLY: g, kappa, molecular_viscosity |
---|
| 1807 | |
---|
| 1808 | IMPLICIT NONE |
---|
| 1809 | |
---|
| 1810 | INTEGER :: i !< running index |
---|
| 1811 | INTEGER :: j !< running index |
---|
| 1812 | |
---|
| 1813 | REAL(wp), PARAMETER :: alpha_ch = 0.018_wp !< Charnock constant (0.01-0.11). Use 0.01 for FLake and 0.018 for ECMWF |
---|
| 1814 | ! REAL(wp), PARAMETER :: pr_number = 0.71_wp !< molecular Prandtl number in the Charnock parameterization (differs from prandtl_number) |
---|
| 1815 | ! REAL(wp), PARAMETER :: sc_number = 0.66_wp !< molecular Schmidt number in the Charnock parameterization |
---|
| 1816 | ! REAL(wp) :: re_0 !< near-surface roughness Reynolds number |
---|
| 1817 | |
---|
| 1818 | |
---|
| 1819 | DO i = nxlg, nxrg |
---|
| 1820 | DO j = nysg, nyng |
---|
| 1821 | IF ( water_surface(j,i) ) THEN |
---|
| 1822 | |
---|
[1496] | 1823 | ! |
---|
[1788] | 1824 | !-- Disabled: FLake parameterization. Ideally, the Charnock |
---|
| 1825 | !-- coefficient should depend on the water depth and the fetch |
---|
| 1826 | !-- length |
---|
| 1827 | ! re_0 = z0(j,i) * us(j,i) / molecular_viscosity |
---|
| 1828 | ! |
---|
| 1829 | ! z0(j,i) = MAX( 0.1_wp * molecular_viscosity / us(j,i), & |
---|
| 1830 | ! alpha_ch * us(j,i) / g ) |
---|
| 1831 | ! |
---|
| 1832 | ! z0h(j,i) = z0(j,i) * EXP( - kappa / pr_number * ( 4.0_wp * SQRT( re_0 ) - 3.2_wp ) ) |
---|
| 1833 | ! z0q(j,i) = z0(j,i) * EXP( - kappa / pr_number * ( 4.0_wp * SQRT( re_0 ) - 4.2_wp ) ) |
---|
[1496] | 1834 | |
---|
[1788] | 1835 | ! |
---|
| 1836 | !-- Set minimum roughness length for u* > 0.2 |
---|
| 1837 | ! IF ( us(j,i) > 0.2_wp ) THEN |
---|
| 1838 | ! z0h(j,i) = MAX( 1.0E-5_wp, z0h(j,i) ) |
---|
| 1839 | ! z0q(j,i) = MAX( 1.0E-5_wp, z0q(j,i) ) |
---|
| 1840 | ! ENDIF |
---|
[1496] | 1841 | |
---|
[1788] | 1842 | ! |
---|
| 1843 | !-- ECMWF IFS model parameterization after Beljaars (1994). At low |
---|
| 1844 | !-- wind speed, the sea surface becomes aerodynamically smooth and |
---|
| 1845 | !-- the roughness scales with the viscosity. At high wind speed, the |
---|
| 1846 | !-- Charnock relation is used. |
---|
| 1847 | z0(j,i) = ( 0.11_wp * molecular_viscosity / us(j,i) ) & |
---|
| 1848 | + ( alpha_ch * us(j,i)**2 / g ) |
---|
[1496] | 1849 | |
---|
[1788] | 1850 | z0h(j,i) = 0.40_wp * molecular_viscosity / us(j,i) |
---|
| 1851 | z0q(j,i) = 0.62_wp * molecular_viscosity / us(j,i) |
---|
[1496] | 1852 | |
---|
[1788] | 1853 | ENDIF |
---|
| 1854 | ENDDO |
---|
| 1855 | ENDDO |
---|
| 1856 | |
---|
| 1857 | END SUBROUTINE calc_z0_water_surface |
---|
| 1858 | |
---|
| 1859 | |
---|
[1496] | 1860 | !------------------------------------------------------------------------------! |
---|
| 1861 | ! Description: |
---|
| 1862 | ! ------------ |
---|
[1788] | 1863 | !> Calculation of specific humidity of the skin layer (surface). It is assumend |
---|
| 1864 | !> that the skin is always saturated. |
---|
[1496] | 1865 | !------------------------------------------------------------------------------! |
---|
[1551] | 1866 | SUBROUTINE calc_q_surface |
---|
[1496] | 1867 | |
---|
| 1868 | IMPLICIT NONE |
---|
| 1869 | |
---|
[1682] | 1870 | INTEGER :: i !< running index |
---|
| 1871 | INTEGER :: j !< running index |
---|
| 1872 | INTEGER :: k !< running index |
---|
[1788] | 1873 | |
---|
[1682] | 1874 | REAL(wp) :: resistance !< aerodynamic and soil resistance term |
---|
[1496] | 1875 | |
---|
[1691] | 1876 | DO i = nxlg, nxrg |
---|
| 1877 | DO j = nysg, nyng |
---|
[1496] | 1878 | k = nzb_s_inner(j,i) |
---|
| 1879 | |
---|
| 1880 | ! |
---|
| 1881 | !-- Calculate water vapour pressure at saturation |
---|
[1691] | 1882 | e_s = 0.01_wp * 610.78_wp * EXP( 17.269_wp * ( t_surface_p(j,i) & |
---|
| 1883 | - 273.16_wp ) / ( t_surface_p(j,i) - 35.86_wp ) ) |
---|
[1496] | 1884 | |
---|
| 1885 | ! |
---|
| 1886 | !-- Calculate specific humidity at saturation |
---|
| 1887 | q_s = 0.622_wp * e_s / surface_pressure |
---|
| 1888 | |
---|
| 1889 | resistance = r_a(j,i) / (r_a(j,i) + r_s(j,i)) |
---|
| 1890 | |
---|
| 1891 | ! |
---|
| 1892 | !-- Calculate specific humidity at surface |
---|
[1691] | 1893 | IF ( cloud_physics ) THEN |
---|
| 1894 | q(k,j,i) = resistance * q_s + (1.0_wp - resistance) & |
---|
| 1895 | * ( q(k+1,j,i) - ql(k+1,j,i) ) |
---|
| 1896 | ELSE |
---|
| 1897 | q(k,j,i) = resistance * q_s + (1.0_wp - resistance) & |
---|
| 1898 | * q(k+1,j,i) |
---|
| 1899 | ENDIF |
---|
[1496] | 1900 | |
---|
[1691] | 1901 | ! |
---|
| 1902 | !-- Update virtual potential temperature |
---|
| 1903 | vpt(k,j,i) = pt(k,j,i) * ( 1.0_wp + 0.61_wp * q(k,j,i) ) |
---|
| 1904 | |
---|
[1496] | 1905 | ENDDO |
---|
| 1906 | ENDDO |
---|
| 1907 | |
---|
[1551] | 1908 | END SUBROUTINE calc_q_surface |
---|
[1496] | 1909 | |
---|
[1788] | 1910 | |
---|
[1551] | 1911 | !------------------------------------------------------------------------------! |
---|
| 1912 | ! Description: |
---|
| 1913 | ! ------------ |
---|
[1682] | 1914 | !> Swapping of timelevels |
---|
[1551] | 1915 | !------------------------------------------------------------------------------! |
---|
| 1916 | SUBROUTINE lsm_swap_timelevel ( mod_count ) |
---|
[1496] | 1917 | |
---|
[1551] | 1918 | IMPLICIT NONE |
---|
| 1919 | |
---|
| 1920 | INTEGER, INTENT(IN) :: mod_count |
---|
| 1921 | |
---|
| 1922 | #if defined( __nopointer ) |
---|
| 1923 | |
---|
| 1924 | t_surface = t_surface_p |
---|
| 1925 | t_soil = t_soil_p |
---|
| 1926 | IF ( humidity ) THEN |
---|
| 1927 | m_soil = m_soil_p |
---|
| 1928 | m_liq_eb = m_liq_eb_p |
---|
| 1929 | ENDIF |
---|
| 1930 | |
---|
| 1931 | #else |
---|
| 1932 | |
---|
| 1933 | SELECT CASE ( mod_count ) |
---|
| 1934 | |
---|
| 1935 | CASE ( 0 ) |
---|
| 1936 | |
---|
[1585] | 1937 | t_surface => t_surface_1; t_surface_p => t_surface_2 |
---|
| 1938 | t_soil => t_soil_1; t_soil_p => t_soil_2 |
---|
[1551] | 1939 | IF ( humidity ) THEN |
---|
[1585] | 1940 | m_soil => m_soil_1; m_soil_p => m_soil_2 |
---|
| 1941 | m_liq_eb => m_liq_eb_1; m_liq_eb_p => m_liq_eb_2 |
---|
[1551] | 1942 | ENDIF |
---|
| 1943 | |
---|
| 1944 | |
---|
| 1945 | CASE ( 1 ) |
---|
| 1946 | |
---|
[1585] | 1947 | t_surface => t_surface_2; t_surface_p => t_surface_1 |
---|
| 1948 | t_soil => t_soil_2; t_soil_p => t_soil_1 |
---|
[1551] | 1949 | IF ( humidity ) THEN |
---|
[1585] | 1950 | m_soil => m_soil_2; m_soil_p => m_soil_1 |
---|
| 1951 | m_liq_eb => m_liq_eb_2; m_liq_eb_p => m_liq_eb_1 |
---|
[1551] | 1952 | ENDIF |
---|
| 1953 | |
---|
| 1954 | END SELECT |
---|
| 1955 | #endif |
---|
| 1956 | |
---|
| 1957 | END SUBROUTINE lsm_swap_timelevel |
---|
| 1958 | |
---|
| 1959 | |
---|
[1496] | 1960 | END MODULE land_surface_model_mod |
---|