1 | !> @file lagrangian_particle_model_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: lagrangian_particle_model_mod.f90 4182 2019-08-22 15:20:23Z scharf $ |
---|
27 | ! Corrected "Former revisions" section |
---|
28 | ! |
---|
29 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
30 | ! Replace function get_topography_top_index by topo_top_ind |
---|
31 | ! |
---|
32 | ! 4145 2019-08-06 09:55:22Z schwenkel |
---|
33 | ! Some reformatting |
---|
34 | ! |
---|
35 | ! 4144 2019-08-06 09:11:47Z raasch |
---|
36 | ! relational operators .EQ., .NE., etc. replaced by ==, /=, etc. |
---|
37 | ! |
---|
38 | ! 4143 2019-08-05 15:14:53Z schwenkel |
---|
39 | ! Rename variable and change select case to if statement |
---|
40 | ! |
---|
41 | ! 4122 2019-07-26 13:11:56Z schwenkel |
---|
42 | ! Implement reset method as bottom boundary condition |
---|
43 | ! |
---|
44 | ! 4121 2019-07-26 10:01:22Z schwenkel |
---|
45 | ! Implementation of an simple method for interpolating the velocities to |
---|
46 | ! particle position |
---|
47 | ! |
---|
48 | ! 4114 2019-07-23 14:09:27Z schwenkel |
---|
49 | ! Bugfix: Added working precision for if statement |
---|
50 | ! |
---|
51 | ! 4054 2019-06-27 07:42:18Z raasch |
---|
52 | ! bugfix for calculating the minimum particle time step |
---|
53 | ! |
---|
54 | ! 4044 2019-06-19 12:28:27Z schwenkel |
---|
55 | ! Bugfix in case of grid strecting: corrected calculation of k-Index |
---|
56 | ! |
---|
57 | ! 4043 2019-06-18 16:59:00Z schwenkel |
---|
58 | ! Remove min_nr_particle, Add lpm_droplet_interactions_ptq into module |
---|
59 | ! |
---|
60 | ! 4028 2019-06-13 12:21:37Z schwenkel |
---|
61 | ! Further modularization of particle code components |
---|
62 | ! |
---|
63 | ! 4020 2019-06-06 14:57:48Z schwenkel |
---|
64 | ! Removing submodules |
---|
65 | ! |
---|
66 | ! 4018 2019-06-06 13:41:50Z eckhard |
---|
67 | ! Bugfix for former revision |
---|
68 | ! |
---|
69 | ! 4017 2019-06-06 12:16:46Z schwenkel |
---|
70 | ! Modularization of all lagrangian particle model code components |
---|
71 | ! |
---|
72 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
73 | ! bugfix to guarantee correct particle releases in case that the release |
---|
74 | ! interval is smaller than the model timestep |
---|
75 | ! |
---|
76 | ! Revision 1.1 1999/11/25 16:16:06 raasch |
---|
77 | ! Initial revision |
---|
78 | ! |
---|
79 | ! |
---|
80 | ! Description: |
---|
81 | ! ------------ |
---|
82 | !> The embedded LPM allows for studying transport and dispersion processes within |
---|
83 | !> turbulent flows. This model including passive particles that do not show any |
---|
84 | !> feedback on the turbulent flow. Further also particles with inertia and |
---|
85 | !> cloud droplets ca be simulated explicitly. |
---|
86 | !> |
---|
87 | !> @todo test lcm |
---|
88 | !> implement simple interpolation method for subgrid scale velocites |
---|
89 | !> @note <Enter notes on the module> |
---|
90 | !> @bug <Enter bug on the module> |
---|
91 | !------------------------------------------------------------------------------! |
---|
92 | MODULE lagrangian_particle_model_mod |
---|
93 | |
---|
94 | USE, INTRINSIC :: ISO_C_BINDING |
---|
95 | |
---|
96 | USE arrays_3d, & |
---|
97 | ONLY: de_dx, de_dy, de_dz, dzw, zu, zw, ql_c, ql_v, ql_vp, hyp, & |
---|
98 | pt, q, exner, ql, diss, e, u, v, w, km, ql_1, ql_2, pt_p, q_p, & |
---|
99 | d_exner, u_p, v_p, w_p |
---|
100 | |
---|
101 | USE averaging, & |
---|
102 | ONLY: ql_c_av, pr_av, pc_av, ql_vp_av, ql_v_av |
---|
103 | |
---|
104 | USE basic_constants_and_equations_mod, & |
---|
105 | ONLY: molecular_weight_of_solute, molecular_weight_of_water, magnus, & |
---|
106 | pi, rd_d_rv, rho_l, r_v, rho_s, vanthoff, l_v, kappa, g, lv_d_cp |
---|
107 | |
---|
108 | USE control_parameters, & |
---|
109 | ONLY: bc_dirichlet_l, bc_dirichlet_n, bc_dirichlet_r, bc_dirichlet_s, & |
---|
110 | cloud_droplets, constant_flux_layer, current_timestep_number, & |
---|
111 | dt_3d, dt_3d_reached, humidity, & |
---|
112 | dt_3d_reached_l, dt_dopts, dz, initializing_actions, & |
---|
113 | message_string, molecular_viscosity, ocean_mode, & |
---|
114 | particle_maximum_age, iran, & |
---|
115 | simulated_time, topography, dopts_time_count, & |
---|
116 | time_since_reference_point, rho_surface, u_gtrans, v_gtrans, & |
---|
117 | dz_stretch_level, dz_stretch_level_start |
---|
118 | |
---|
119 | USE cpulog, & |
---|
120 | ONLY: cpu_log, log_point, log_point_s |
---|
121 | |
---|
122 | USE indices, & |
---|
123 | ONLY: nx, nxl, nxlg, nxrg, nxr, ny, nyn, nys, nyng, nysg, nz, nzb, & |
---|
124 | nzb_max, nzt,nbgp, ngp_2dh_outer, & |
---|
125 | topo_top_ind, & |
---|
126 | wall_flags_0 |
---|
127 | |
---|
128 | USE kinds |
---|
129 | |
---|
130 | USE pegrid |
---|
131 | |
---|
132 | USE particle_attributes |
---|
133 | |
---|
134 | USE pmc_particle_interface, & |
---|
135 | ONLY: pmcp_c_get_particle_from_parent, pmcp_p_fill_particle_win, & |
---|
136 | pmcp_c_send_particle_to_parent, pmcp_p_empty_particle_win, & |
---|
137 | pmcp_p_delete_particles_in_fine_grid_area, pmcp_g_init, & |
---|
138 | pmcp_g_print_number_of_particles |
---|
139 | |
---|
140 | USE pmc_interface, & |
---|
141 | ONLY: nested_run |
---|
142 | |
---|
143 | USE grid_variables, & |
---|
144 | ONLY: ddx, dx, ddy, dy |
---|
145 | |
---|
146 | USE netcdf_interface, & |
---|
147 | ONLY: netcdf_data_format, netcdf_deflate, dopts_num, id_set_pts, & |
---|
148 | id_var_dopts, id_var_time_pts, nc_stat, & |
---|
149 | netcdf_handle_error |
---|
150 | |
---|
151 | USE random_function_mod, & |
---|
152 | ONLY: random_function |
---|
153 | |
---|
154 | USE statistics, & |
---|
155 | ONLY: hom |
---|
156 | |
---|
157 | USE surface_mod, & |
---|
158 | ONLY: bc_h, & |
---|
159 | surf_def_h, & |
---|
160 | surf_lsm_h, & |
---|
161 | surf_usm_h |
---|
162 | |
---|
163 | #if defined( __parallel ) && !defined( __mpifh ) |
---|
164 | USE MPI |
---|
165 | #endif |
---|
166 | |
---|
167 | #if defined( __parallel ) && defined( __mpifh ) |
---|
168 | INCLUDE "mpif.h" |
---|
169 | #endif |
---|
170 | |
---|
171 | #if defined( __netcdf ) |
---|
172 | USE NETCDF |
---|
173 | #endif |
---|
174 | |
---|
175 | IMPLICIT NONE |
---|
176 | |
---|
177 | CHARACTER(LEN=15) :: aero_species = 'nacl' !< aerosol species |
---|
178 | CHARACTER(LEN=15) :: aero_type = 'maritime' !< aerosol type |
---|
179 | CHARACTER(LEN=15) :: bc_par_lr = 'cyclic' !< left/right boundary condition |
---|
180 | CHARACTER(LEN=15) :: bc_par_ns = 'cyclic' !< north/south boundary condition |
---|
181 | CHARACTER(LEN=15) :: bc_par_b = 'reflect' !< bottom boundary condition |
---|
182 | CHARACTER(LEN=15) :: bc_par_t = 'absorb' !< top boundary condition |
---|
183 | CHARACTER(LEN=15) :: collision_kernel = 'none' !< collision kernel |
---|
184 | |
---|
185 | CHARACTER(LEN=5) :: splitting_function = 'gamma' !< function for calculation critical weighting factor |
---|
186 | CHARACTER(LEN=5) :: splitting_mode = 'const' !< splitting mode |
---|
187 | |
---|
188 | CHARACTER(LEN=25) :: particle_advection_interpolation = 'trilinear' !< interpolation method for calculatin the particle |
---|
189 | |
---|
190 | INTEGER(iwp) :: deleted_particles = 0 !< number of deleted particles per time step |
---|
191 | INTEGER(iwp) :: i_splitting_mode !< dummy for splitting mode |
---|
192 | INTEGER(iwp) :: iran_part = -1234567 !< number for random generator |
---|
193 | INTEGER(iwp) :: max_number_particles_per_gridbox = 100 !< namelist parameter (see documentation) |
---|
194 | INTEGER(iwp) :: isf !< dummy for splitting function |
---|
195 | INTEGER(iwp) :: number_particles_per_gridbox = -1 !< namelist parameter (see documentation) |
---|
196 | INTEGER(iwp) :: number_of_sublayers = 20 !< number of sublayers for particle velocities betwenn surface and first grid level |
---|
197 | INTEGER(iwp) :: offset_ocean_nzt = 0 !< in case of oceans runs, the vertical index calculations need an offset |
---|
198 | INTEGER(iwp) :: offset_ocean_nzt_m1 = 0 !< in case of oceans runs, the vertical index calculations need an offset |
---|
199 | INTEGER(iwp) :: particles_per_point = 1 !< namelist parameter (see documentation) |
---|
200 | INTEGER(iwp) :: radius_classes = 20 !< namelist parameter (see documentation) |
---|
201 | INTEGER(iwp) :: splitting_factor = 2 !< namelist parameter (see documentation) |
---|
202 | INTEGER(iwp) :: splitting_factor_max = 5 !< namelist parameter (see documentation) |
---|
203 | INTEGER(iwp) :: step_dealloc = 100 !< namelist parameter (see documentation) |
---|
204 | INTEGER(iwp) :: total_number_of_particles !< total number of particles in the whole model domain |
---|
205 | INTEGER(iwp) :: trlp_count_sum !< parameter for particle exchange of PEs |
---|
206 | INTEGER(iwp) :: trlp_count_recv_sum !< parameter for particle exchange of PEs |
---|
207 | INTEGER(iwp) :: trrp_count_sum !< parameter for particle exchange of PEs |
---|
208 | INTEGER(iwp) :: trrp_count_recv_sum !< parameter for particle exchange of PEs |
---|
209 | INTEGER(iwp) :: trsp_count_sum !< parameter for particle exchange of PEs |
---|
210 | INTEGER(iwp) :: trsp_count_recv_sum !< parameter for particle exchange of PEs |
---|
211 | INTEGER(iwp) :: trnp_count_sum !< parameter for particle exchange of PEs |
---|
212 | INTEGER(iwp) :: trnp_count_recv_sum !< parameter for particle exchange of PEs |
---|
213 | |
---|
214 | LOGICAL :: lagrangian_particle_model = .FALSE. !< namelist parameter (see documentation) |
---|
215 | LOGICAL :: curvature_solution_effects = .FALSE. !< namelist parameter (see documentation) |
---|
216 | LOGICAL :: deallocate_memory = .TRUE. !< namelist parameter (see documentation) |
---|
217 | LOGICAL :: hall_kernel = .FALSE. !< flag for collision kernel |
---|
218 | LOGICAL :: merging = .FALSE. !< namelist parameter (see documentation) |
---|
219 | LOGICAL :: random_start_position = .FALSE. !< namelist parameter (see documentation) |
---|
220 | LOGICAL :: read_particles_from_restartfile = .TRUE. !< namelist parameter (see documentation) |
---|
221 | LOGICAL :: seed_follows_topography = .FALSE. !< namelist parameter (see documentation) |
---|
222 | LOGICAL :: splitting = .FALSE. !< namelist parameter (see documentation) |
---|
223 | LOGICAL :: use_kernel_tables = .FALSE. !< parameter, which turns on the use of precalculated collision kernels |
---|
224 | LOGICAL :: write_particle_statistics = .FALSE. !< namelist parameter (see documentation) |
---|
225 | LOGICAL :: interpolation_simple_predictor = .FALSE. !< flag for simple particle advection interpolation with predictor step |
---|
226 | LOGICAL :: interpolation_simple_corrector = .FALSE. !< flag for simple particle advection interpolation with corrector step |
---|
227 | LOGICAL :: interpolation_trilinear = .FALSE. !< flag for trilinear particle advection interpolation |
---|
228 | |
---|
229 | LOGICAL, DIMENSION(max_number_of_particle_groups) :: vertical_particle_advection = .TRUE. !< Switch for vertical particle transport |
---|
230 | |
---|
231 | REAL(wp) :: aero_weight = 1.0_wp !< namelist parameter (see documentation) |
---|
232 | REAL(wp) :: dt_min_part = 0.0002_wp !< minimum particle time step when SGS velocities are used (s) |
---|
233 | REAL(wp) :: dt_prel = 9999999.9_wp !< namelist parameter (see documentation) |
---|
234 | REAL(wp) :: dt_write_particle_data = 9999999.9_wp !< namelist parameter (see documentation) |
---|
235 | REAL(wp) :: end_time_prel = 9999999.9_wp !< namelist parameter (see documentation) |
---|
236 | REAL(wp) :: initial_weighting_factor = 1.0_wp !< namelist parameter (see documentation) |
---|
237 | REAL(wp) :: last_particle_release_time = 0.0_wp !< last time of particle release |
---|
238 | REAL(wp) :: log_sigma(3) = 1.0_wp !< namelist parameter (see documentation) |
---|
239 | REAL(wp) :: na(3) = 0.0_wp !< namelist parameter (see documentation) |
---|
240 | REAL(wp) :: number_concentration = -1.0_wp !< namelist parameter (see documentation) |
---|
241 | REAL(wp) :: radius_merge = 1.0E-7_wp !< namelist parameter (see documentation) |
---|
242 | REAL(wp) :: radius_split = 40.0E-6_wp !< namelist parameter (see documentation) |
---|
243 | REAL(wp) :: rm(3) = 1.0E-6_wp !< namelist parameter (see documentation) |
---|
244 | REAL(wp) :: sgs_wf_part !< parameter for sgs |
---|
245 | REAL(wp) :: time_write_particle_data = 0.0_wp !< write particle data at current time on file |
---|
246 | REAL(wp) :: weight_factor_merge = -1.0_wp !< namelist parameter (see documentation) |
---|
247 | REAL(wp) :: weight_factor_split = -1.0_wp !< namelist parameter (see documentation) |
---|
248 | REAL(wp) :: z0_av_global !< horizontal mean value of z0 |
---|
249 | |
---|
250 | REAL(wp) :: rclass_lbound !< |
---|
251 | REAL(wp) :: rclass_ubound !< |
---|
252 | |
---|
253 | REAL(wp), PARAMETER :: c_0 = 3.0_wp !< parameter for lagrangian timescale |
---|
254 | |
---|
255 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: density_ratio = 9999999.9_wp !< namelist parameter (see documentation) |
---|
256 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: pdx = 9999999.9_wp !< namelist parameter (see documentation) |
---|
257 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: pdy = 9999999.9_wp !< namelist parameter (see documentation) |
---|
258 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: pdz = 9999999.9_wp !< namelist parameter (see documentation) |
---|
259 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: psb = 9999999.9_wp !< namelist parameter (see documentation) |
---|
260 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: psl = 9999999.9_wp !< namelist parameter (see documentation) |
---|
261 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: psn = 9999999.9_wp !< namelist parameter (see documentation) |
---|
262 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: psr = 9999999.9_wp !< namelist parameter (see documentation) |
---|
263 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: pss = 9999999.9_wp !< namelist parameter (see documentation) |
---|
264 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: pst = 9999999.9_wp !< namelist parameter (see documentation). |
---|
265 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: radius = 9999999.9_wp !< namelist parameter (see documentation) |
---|
266 | |
---|
267 | REAL(wp), DIMENSION(:), ALLOCATABLE :: log_z_z0 !< Precalculate LOG(z/z0) |
---|
268 | |
---|
269 | INTEGER(iwp), PARAMETER :: NR_2_direction_move = 10000 !< |
---|
270 | INTEGER(iwp) :: nr_move_north !< |
---|
271 | INTEGER(iwp) :: nr_move_south !< |
---|
272 | |
---|
273 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: move_also_north |
---|
274 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: move_also_south |
---|
275 | |
---|
276 | REAL(wp) :: epsilon_collision !< |
---|
277 | REAL(wp) :: urms !< |
---|
278 | |
---|
279 | REAL(wp), DIMENSION(:), ALLOCATABLE :: epsclass !< dissipation rate class |
---|
280 | REAL(wp), DIMENSION(:), ALLOCATABLE :: radclass !< radius class |
---|
281 | REAL(wp), DIMENSION(:), ALLOCATABLE :: winf !< |
---|
282 | |
---|
283 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ec !< |
---|
284 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ecf !< |
---|
285 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: gck !< |
---|
286 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: hkernel !< |
---|
287 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: hwratio !< |
---|
288 | |
---|
289 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ckernel !< |
---|
290 | |
---|
291 | INTEGER(iwp), PARAMETER :: PHASE_INIT = 1 !< |
---|
292 | INTEGER(iwp), PARAMETER, PUBLIC :: PHASE_RELEASE = 2 !< |
---|
293 | |
---|
294 | SAVE |
---|
295 | |
---|
296 | PRIVATE |
---|
297 | |
---|
298 | PUBLIC lpm_parin, & |
---|
299 | lpm_header, & |
---|
300 | lpm_init_arrays,& |
---|
301 | lpm_init, & |
---|
302 | lpm_actions, & |
---|
303 | lpm_data_output_ptseries, & |
---|
304 | lpm_interaction_droplets_ptq, & |
---|
305 | lpm_rrd_local_particles, & |
---|
306 | lpm_wrd_local, & |
---|
307 | lpm_rrd_global, & |
---|
308 | lpm_wrd_global, & |
---|
309 | lpm_rrd_local, & |
---|
310 | lpm_check_parameters |
---|
311 | |
---|
312 | PUBLIC lagrangian_particle_model |
---|
313 | |
---|
314 | INTERFACE lpm_check_parameters |
---|
315 | MODULE PROCEDURE lpm_check_parameters |
---|
316 | END INTERFACE lpm_check_parameters |
---|
317 | |
---|
318 | INTERFACE lpm_parin |
---|
319 | MODULE PROCEDURE lpm_parin |
---|
320 | END INTERFACE lpm_parin |
---|
321 | |
---|
322 | INTERFACE lpm_header |
---|
323 | MODULE PROCEDURE lpm_header |
---|
324 | END INTERFACE lpm_header |
---|
325 | |
---|
326 | INTERFACE lpm_init_arrays |
---|
327 | MODULE PROCEDURE lpm_init_arrays |
---|
328 | END INTERFACE lpm_init_arrays |
---|
329 | |
---|
330 | INTERFACE lpm_init |
---|
331 | MODULE PROCEDURE lpm_init |
---|
332 | END INTERFACE lpm_init |
---|
333 | |
---|
334 | INTERFACE lpm_actions |
---|
335 | MODULE PROCEDURE lpm_actions |
---|
336 | END INTERFACE lpm_actions |
---|
337 | |
---|
338 | INTERFACE lpm_data_output_ptseries |
---|
339 | MODULE PROCEDURE lpm_data_output_ptseries |
---|
340 | END INTERFACE |
---|
341 | |
---|
342 | INTERFACE lpm_rrd_local_particles |
---|
343 | MODULE PROCEDURE lpm_rrd_local_particles |
---|
344 | END INTERFACE lpm_rrd_local_particles |
---|
345 | |
---|
346 | INTERFACE lpm_rrd_global |
---|
347 | MODULE PROCEDURE lpm_rrd_global |
---|
348 | END INTERFACE lpm_rrd_global |
---|
349 | |
---|
350 | INTERFACE lpm_rrd_local |
---|
351 | MODULE PROCEDURE lpm_rrd_local |
---|
352 | END INTERFACE lpm_rrd_local |
---|
353 | |
---|
354 | INTERFACE lpm_wrd_local |
---|
355 | MODULE PROCEDURE lpm_wrd_local |
---|
356 | END INTERFACE lpm_wrd_local |
---|
357 | |
---|
358 | INTERFACE lpm_wrd_global |
---|
359 | MODULE PROCEDURE lpm_wrd_global |
---|
360 | END INTERFACE lpm_wrd_global |
---|
361 | |
---|
362 | INTERFACE lpm_advec |
---|
363 | MODULE PROCEDURE lpm_advec |
---|
364 | END INTERFACE lpm_advec |
---|
365 | |
---|
366 | INTERFACE lpm_calc_liquid_water_content |
---|
367 | MODULE PROCEDURE lpm_calc_liquid_water_content |
---|
368 | END INTERFACE |
---|
369 | |
---|
370 | INTERFACE lpm_interaction_droplets_ptq |
---|
371 | MODULE PROCEDURE lpm_interaction_droplets_ptq |
---|
372 | MODULE PROCEDURE lpm_interaction_droplets_ptq_ij |
---|
373 | END INTERFACE lpm_interaction_droplets_ptq |
---|
374 | |
---|
375 | INTERFACE lpm_boundary_conds |
---|
376 | MODULE PROCEDURE lpm_boundary_conds |
---|
377 | END INTERFACE lpm_boundary_conds |
---|
378 | |
---|
379 | INTERFACE lpm_droplet_condensation |
---|
380 | MODULE PROCEDURE lpm_droplet_condensation |
---|
381 | END INTERFACE |
---|
382 | |
---|
383 | INTERFACE lpm_droplet_collision |
---|
384 | MODULE PROCEDURE lpm_droplet_collision |
---|
385 | END INTERFACE lpm_droplet_collision |
---|
386 | |
---|
387 | INTERFACE lpm_init_kernels |
---|
388 | MODULE PROCEDURE lpm_init_kernels |
---|
389 | END INTERFACE lpm_init_kernels |
---|
390 | |
---|
391 | INTERFACE lpm_splitting |
---|
392 | MODULE PROCEDURE lpm_splitting |
---|
393 | END INTERFACE lpm_splitting |
---|
394 | |
---|
395 | INTERFACE lpm_merging |
---|
396 | MODULE PROCEDURE lpm_merging |
---|
397 | END INTERFACE lpm_merging |
---|
398 | |
---|
399 | INTERFACE lpm_exchange_horiz |
---|
400 | MODULE PROCEDURE lpm_exchange_horiz |
---|
401 | END INTERFACE lpm_exchange_horiz |
---|
402 | |
---|
403 | INTERFACE lpm_move_particle |
---|
404 | MODULE PROCEDURE lpm_move_particle |
---|
405 | END INTERFACE lpm_move_particle |
---|
406 | |
---|
407 | INTERFACE realloc_particles_array |
---|
408 | MODULE PROCEDURE realloc_particles_array |
---|
409 | END INTERFACE realloc_particles_array |
---|
410 | |
---|
411 | INTERFACE dealloc_particles_array |
---|
412 | MODULE PROCEDURE dealloc_particles_array |
---|
413 | END INTERFACE dealloc_particles_array |
---|
414 | |
---|
415 | INTERFACE lpm_sort_and_delete |
---|
416 | MODULE PROCEDURE lpm_sort_and_delete |
---|
417 | END INTERFACE lpm_sort_and_delete |
---|
418 | |
---|
419 | INTERFACE lpm_sort_timeloop_done |
---|
420 | MODULE PROCEDURE lpm_sort_timeloop_done |
---|
421 | END INTERFACE lpm_sort_timeloop_done |
---|
422 | |
---|
423 | INTERFACE lpm_pack |
---|
424 | MODULE PROCEDURE lpm_pack |
---|
425 | END INTERFACE lpm_pack |
---|
426 | |
---|
427 | CONTAINS |
---|
428 | |
---|
429 | |
---|
430 | !------------------------------------------------------------------------------! |
---|
431 | ! Description: |
---|
432 | ! ------------ |
---|
433 | !> Parin for &particle_parameters for the Lagrangian particle model |
---|
434 | !------------------------------------------------------------------------------! |
---|
435 | SUBROUTINE lpm_parin |
---|
436 | |
---|
437 | CHARACTER (LEN=80) :: line !< |
---|
438 | |
---|
439 | NAMELIST /particles_par/ & |
---|
440 | aero_species, & |
---|
441 | aero_type, & |
---|
442 | aero_weight, & |
---|
443 | alloc_factor, & |
---|
444 | bc_par_b, & |
---|
445 | bc_par_lr, & |
---|
446 | bc_par_ns, & |
---|
447 | bc_par_t, & |
---|
448 | collision_kernel, & |
---|
449 | curvature_solution_effects, & |
---|
450 | deallocate_memory, & |
---|
451 | density_ratio, & |
---|
452 | dissipation_classes, & |
---|
453 | dt_dopts, & |
---|
454 | dt_min_part, & |
---|
455 | dt_prel, & |
---|
456 | dt_write_particle_data, & |
---|
457 | end_time_prel, & |
---|
458 | initial_weighting_factor, & |
---|
459 | log_sigma, & |
---|
460 | max_number_particles_per_gridbox, & |
---|
461 | merging, & |
---|
462 | na, & |
---|
463 | number_concentration, & |
---|
464 | number_of_particle_groups, & |
---|
465 | number_particles_per_gridbox, & |
---|
466 | particles_per_point, & |
---|
467 | particle_advection_start, & |
---|
468 | particle_advection_interpolation, & |
---|
469 | particle_maximum_age, & |
---|
470 | pdx, & |
---|
471 | pdy, & |
---|
472 | pdz, & |
---|
473 | psb, & |
---|
474 | psl, & |
---|
475 | psn, & |
---|
476 | psr, & |
---|
477 | pss, & |
---|
478 | pst, & |
---|
479 | radius, & |
---|
480 | radius_classes, & |
---|
481 | radius_merge, & |
---|
482 | radius_split, & |
---|
483 | random_start_position, & |
---|
484 | read_particles_from_restartfile, & |
---|
485 | rm, & |
---|
486 | seed_follows_topography, & |
---|
487 | splitting, & |
---|
488 | splitting_factor, & |
---|
489 | splitting_factor_max, & |
---|
490 | splitting_function, & |
---|
491 | splitting_mode, & |
---|
492 | step_dealloc, & |
---|
493 | use_sgs_for_particles, & |
---|
494 | vertical_particle_advection, & |
---|
495 | weight_factor_merge, & |
---|
496 | weight_factor_split, & |
---|
497 | write_particle_statistics |
---|
498 | |
---|
499 | NAMELIST /particle_parameters/ & |
---|
500 | aero_species, & |
---|
501 | aero_type, & |
---|
502 | aero_weight, & |
---|
503 | alloc_factor, & |
---|
504 | bc_par_b, & |
---|
505 | bc_par_lr, & |
---|
506 | bc_par_ns, & |
---|
507 | bc_par_t, & |
---|
508 | collision_kernel, & |
---|
509 | curvature_solution_effects, & |
---|
510 | deallocate_memory, & |
---|
511 | density_ratio, & |
---|
512 | dissipation_classes, & |
---|
513 | dt_dopts, & |
---|
514 | dt_min_part, & |
---|
515 | dt_prel, & |
---|
516 | dt_write_particle_data, & |
---|
517 | end_time_prel, & |
---|
518 | initial_weighting_factor, & |
---|
519 | log_sigma, & |
---|
520 | max_number_particles_per_gridbox, & |
---|
521 | merging, & |
---|
522 | na, & |
---|
523 | number_concentration, & |
---|
524 | number_of_particle_groups, & |
---|
525 | number_particles_per_gridbox, & |
---|
526 | particles_per_point, & |
---|
527 | particle_advection_start, & |
---|
528 | particle_advection_interpolation, & |
---|
529 | particle_maximum_age, & |
---|
530 | pdx, & |
---|
531 | pdy, & |
---|
532 | pdz, & |
---|
533 | psb, & |
---|
534 | psl, & |
---|
535 | psn, & |
---|
536 | psr, & |
---|
537 | pss, & |
---|
538 | pst, & |
---|
539 | radius, & |
---|
540 | radius_classes, & |
---|
541 | radius_merge, & |
---|
542 | radius_split, & |
---|
543 | random_start_position, & |
---|
544 | read_particles_from_restartfile, & |
---|
545 | rm, & |
---|
546 | seed_follows_topography, & |
---|
547 | splitting, & |
---|
548 | splitting_factor, & |
---|
549 | splitting_factor_max, & |
---|
550 | splitting_function, & |
---|
551 | splitting_mode, & |
---|
552 | step_dealloc, & |
---|
553 | use_sgs_for_particles, & |
---|
554 | vertical_particle_advection, & |
---|
555 | weight_factor_merge, & |
---|
556 | weight_factor_split, & |
---|
557 | write_particle_statistics |
---|
558 | |
---|
559 | ! |
---|
560 | !-- Position the namelist-file at the beginning (it was already opened in |
---|
561 | !-- parin), search for the namelist-group of the package and position the |
---|
562 | !-- file at this line. Do the same for each optionally used package. |
---|
563 | line = ' ' |
---|
564 | |
---|
565 | ! |
---|
566 | !-- Try to find particles package |
---|
567 | REWIND ( 11 ) |
---|
568 | line = ' ' |
---|
569 | DO WHILE ( INDEX( line, '&particle_parameters' ) == 0 ) |
---|
570 | READ ( 11, '(A)', END=12 ) line |
---|
571 | ENDDO |
---|
572 | BACKSPACE ( 11 ) |
---|
573 | ! |
---|
574 | !-- Read user-defined namelist |
---|
575 | READ ( 11, particle_parameters, ERR = 10 ) |
---|
576 | ! |
---|
577 | !-- Set flag that indicates that particles are switched on |
---|
578 | particle_advection = .TRUE. |
---|
579 | |
---|
580 | GOTO 14 |
---|
581 | |
---|
582 | 10 BACKSPACE( 11 ) |
---|
583 | READ( 11 , '(A)') line |
---|
584 | CALL parin_fail_message( 'particle_parameters', line ) |
---|
585 | ! |
---|
586 | !-- Try to find particles package (old namelist) |
---|
587 | 12 REWIND ( 11 ) |
---|
588 | line = ' ' |
---|
589 | DO WHILE ( INDEX( line, '&particles_par' ) == 0 ) |
---|
590 | READ ( 11, '(A)', END=14 ) line |
---|
591 | ENDDO |
---|
592 | BACKSPACE ( 11 ) |
---|
593 | ! |
---|
594 | !-- Read user-defined namelist |
---|
595 | READ ( 11, particles_par, ERR = 13, END = 14 ) |
---|
596 | |
---|
597 | message_string = 'namelist particles_par is deprecated and will be ' // & |
---|
598 | 'removed in near future. Please use namelist ' // & |
---|
599 | 'particle_parameters instead' |
---|
600 | CALL message( 'package_parin', 'PA0487', 0, 1, 0, 6, 0 ) |
---|
601 | |
---|
602 | ! |
---|
603 | !-- Set flag that indicates that particles are switched on |
---|
604 | particle_advection = .TRUE. |
---|
605 | |
---|
606 | GOTO 14 |
---|
607 | |
---|
608 | 13 BACKSPACE( 11 ) |
---|
609 | READ( 11 , '(A)') line |
---|
610 | CALL parin_fail_message( 'particles_par', line ) |
---|
611 | |
---|
612 | 14 CONTINUE |
---|
613 | |
---|
614 | END SUBROUTINE lpm_parin |
---|
615 | |
---|
616 | !------------------------------------------------------------------------------! |
---|
617 | ! Description: |
---|
618 | ! ------------ |
---|
619 | !> Writes used particle attributes in header file. |
---|
620 | !------------------------------------------------------------------------------! |
---|
621 | SUBROUTINE lpm_header ( io ) |
---|
622 | |
---|
623 | CHARACTER (LEN=40) :: output_format !< netcdf format |
---|
624 | |
---|
625 | INTEGER(iwp) :: i !< |
---|
626 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
627 | |
---|
628 | |
---|
629 | IF ( humidity .AND. cloud_droplets ) THEN |
---|
630 | WRITE ( io, 433 ) |
---|
631 | IF ( curvature_solution_effects ) WRITE ( io, 434 ) |
---|
632 | IF ( collision_kernel /= 'none' ) THEN |
---|
633 | WRITE ( io, 435 ) TRIM( collision_kernel ) |
---|
634 | IF ( collision_kernel(6:9) == 'fast' ) THEN |
---|
635 | WRITE ( io, 436 ) radius_classes, dissipation_classes |
---|
636 | ENDIF |
---|
637 | ELSE |
---|
638 | WRITE ( io, 437 ) |
---|
639 | ENDIF |
---|
640 | ENDIF |
---|
641 | |
---|
642 | IF ( particle_advection ) THEN |
---|
643 | ! |
---|
644 | !-- Particle attributes |
---|
645 | WRITE ( io, 480 ) particle_advection_start, dt_prel, bc_par_lr, & |
---|
646 | bc_par_ns, bc_par_b, bc_par_t, particle_maximum_age, & |
---|
647 | end_time_prel |
---|
648 | IF ( use_sgs_for_particles ) WRITE ( io, 488 ) dt_min_part |
---|
649 | IF ( random_start_position ) WRITE ( io, 481 ) |
---|
650 | IF ( seed_follows_topography ) WRITE ( io, 496 ) |
---|
651 | IF ( particles_per_point > 1 ) WRITE ( io, 489 ) particles_per_point |
---|
652 | WRITE ( io, 495 ) total_number_of_particles |
---|
653 | IF ( dt_write_particle_data /= 9999999.9_wp ) THEN |
---|
654 | WRITE ( io, 485 ) dt_write_particle_data |
---|
655 | IF ( netcdf_data_format > 1 ) THEN |
---|
656 | output_format = 'netcdf (64 bit offset) and binary' |
---|
657 | ELSE |
---|
658 | output_format = 'netcdf and binary' |
---|
659 | ENDIF |
---|
660 | IF ( netcdf_deflate == 0 ) THEN |
---|
661 | WRITE ( io, 344 ) output_format |
---|
662 | ELSE |
---|
663 | WRITE ( io, 354 ) TRIM( output_format ), netcdf_deflate |
---|
664 | ENDIF |
---|
665 | ENDIF |
---|
666 | IF ( dt_dopts /= 9999999.9_wp ) WRITE ( io, 494 ) dt_dopts |
---|
667 | IF ( write_particle_statistics ) WRITE ( io, 486 ) |
---|
668 | |
---|
669 | WRITE ( io, 487 ) number_of_particle_groups |
---|
670 | |
---|
671 | DO i = 1, number_of_particle_groups |
---|
672 | IF ( i == 1 .AND. density_ratio(i) == 9999999.9_wp ) THEN |
---|
673 | WRITE ( io, 490 ) i, 0.0_wp |
---|
674 | WRITE ( io, 492 ) |
---|
675 | ELSE |
---|
676 | WRITE ( io, 490 ) i, radius(i) |
---|
677 | IF ( density_ratio(i) /= 0.0_wp ) THEN |
---|
678 | WRITE ( io, 491 ) density_ratio(i) |
---|
679 | ELSE |
---|
680 | WRITE ( io, 492 ) |
---|
681 | ENDIF |
---|
682 | ENDIF |
---|
683 | WRITE ( io, 493 ) psl(i), psr(i), pss(i), psn(i), psb(i), pst(i), & |
---|
684 | pdx(i), pdy(i), pdz(i) |
---|
685 | IF ( .NOT. vertical_particle_advection(i) ) WRITE ( io, 482 ) |
---|
686 | ENDDO |
---|
687 | |
---|
688 | ENDIF |
---|
689 | |
---|
690 | 344 FORMAT (' Output format: ',A/) |
---|
691 | 354 FORMAT (' Output format: ',A, ' compressed with level: ',I1/) |
---|
692 | |
---|
693 | 433 FORMAT (' Cloud droplets treated explicitly using the Lagrangian part', & |
---|
694 | 'icle model') |
---|
695 | 434 FORMAT (' Curvature and solution effecs are considered for growth of', & |
---|
696 | ' droplets < 1.0E-6 m') |
---|
697 | 435 FORMAT (' Droplet collision is handled by ',A,'-kernel') |
---|
698 | 436 FORMAT (' Fast kernel with fixed radius- and dissipation classes ', & |
---|
699 | 'are used'/ & |
---|
700 | ' number of radius classes: ',I3,' interval ', & |
---|
701 | '[1.0E-6,2.0E-4] m'/ & |
---|
702 | ' number of dissipation classes: ',I2,' interval ', & |
---|
703 | '[0,1000] cm**2/s**3') |
---|
704 | 437 FORMAT (' Droplet collision is switched off') |
---|
705 | |
---|
706 | 480 FORMAT (' Particles:'/ & |
---|
707 | ' ---------'// & |
---|
708 | ' Particle advection is active (switched on at t = ', F7.1, & |
---|
709 | ' s)'/ & |
---|
710 | ' Start of new particle generations every ',F6.1,' s'/ & |
---|
711 | ' Boundary conditions: left/right: ', A, ' north/south: ', A/& |
---|
712 | ' bottom: ', A, ' top: ', A/& |
---|
713 | ' Maximum particle age: ',F9.1,' s'/ & |
---|
714 | ' Advection stopped at t = ',F9.1,' s'/) |
---|
715 | 481 FORMAT (' Particles have random start positions'/) |
---|
716 | 482 FORMAT (' Particles are advected only horizontally'/) |
---|
717 | 485 FORMAT (' Particle data are written on file every ', F9.1, ' s') |
---|
718 | 486 FORMAT (' Particle statistics are written on file'/) |
---|
719 | 487 FORMAT (' Number of particle groups: ',I2/) |
---|
720 | 488 FORMAT (' SGS velocity components are used for particle advection'/ & |
---|
721 | ' minimum timestep for advection:', F8.5/) |
---|
722 | 489 FORMAT (' Number of particles simultaneously released at each ', & |
---|
723 | 'point: ', I5/) |
---|
724 | 490 FORMAT (' Particle group ',I2,':'/ & |
---|
725 | ' Particle radius: ',E10.3, 'm') |
---|
726 | 491 FORMAT (' Particle inertia is activated'/ & |
---|
727 | ' density_ratio (rho_fluid/rho_particle) =',F6.3/) |
---|
728 | 492 FORMAT (' Particles are advected only passively (no inertia)'/) |
---|
729 | 493 FORMAT (' Boundaries of particle source: x:',F8.1,' - ',F8.1,' m'/& |
---|
730 | ' y:',F8.1,' - ',F8.1,' m'/& |
---|
731 | ' z:',F8.1,' - ',F8.1,' m'/& |
---|
732 | ' Particle distances: dx = ',F8.1,' m dy = ',F8.1, & |
---|
733 | ' m dz = ',F8.1,' m'/) |
---|
734 | 494 FORMAT (' Output of particle time series in NetCDF format every ', & |
---|
735 | F8.2,' s'/) |
---|
736 | 495 FORMAT (' Number of particles in total domain: ',I10/) |
---|
737 | 496 FORMAT (' Initial vertical particle positions are interpreted ', & |
---|
738 | 'as relative to the given topography') |
---|
739 | |
---|
740 | END SUBROUTINE lpm_header |
---|
741 | |
---|
742 | !------------------------------------------------------------------------------! |
---|
743 | ! Description: |
---|
744 | ! ------------ |
---|
745 | !> Writes used particle attributes in header file. |
---|
746 | !------------------------------------------------------------------------------! |
---|
747 | SUBROUTINE lpm_check_parameters |
---|
748 | |
---|
749 | ! |
---|
750 | !-- Collision kernels: |
---|
751 | SELECT CASE ( TRIM( collision_kernel ) ) |
---|
752 | |
---|
753 | CASE ( 'hall', 'hall_fast' ) |
---|
754 | hall_kernel = .TRUE. |
---|
755 | |
---|
756 | CASE ( 'wang', 'wang_fast' ) |
---|
757 | wang_kernel = .TRUE. |
---|
758 | |
---|
759 | CASE ( 'none' ) |
---|
760 | |
---|
761 | |
---|
762 | CASE DEFAULT |
---|
763 | message_string = 'unknown collision kernel: collision_kernel = "' // & |
---|
764 | TRIM( collision_kernel ) // '"' |
---|
765 | CALL message( 'check_parameters', 'PA0350', 1, 2, 0, 6, 0 ) |
---|
766 | |
---|
767 | END SELECT |
---|
768 | IF ( collision_kernel(6:9) == 'fast' ) use_kernel_tables = .TRUE. |
---|
769 | |
---|
770 | ! |
---|
771 | !-- Subgrid scale velocites with the simple interpolation method for resolved |
---|
772 | !-- velocites is not implemented for passive particles. However, for cloud |
---|
773 | !-- it can be combined as the sgs-velocites for active particles are |
---|
774 | !-- calculated differently, i.e. no subboxes are needed. |
---|
775 | IF ( .NOT. TRIM( particle_advection_interpolation ) == 'trilinear' .AND. & |
---|
776 | use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
777 | message_string = 'subrgrid scale velocities in combination with ' // & |
---|
778 | 'simple interpolation method is not ' // & |
---|
779 | 'implemented' |
---|
780 | CALL message( 'check_parameters', 'PA0659', 1, 2, 0, 6, 0 ) |
---|
781 | ENDIF |
---|
782 | |
---|
783 | END SUBROUTINE |
---|
784 | |
---|
785 | !------------------------------------------------------------------------------! |
---|
786 | ! Description: |
---|
787 | ! ------------ |
---|
788 | !> Initialize arrays for lpm |
---|
789 | !------------------------------------------------------------------------------! |
---|
790 | SUBROUTINE lpm_init_arrays |
---|
791 | |
---|
792 | IF ( cloud_droplets ) THEN |
---|
793 | ! |
---|
794 | !-- Liquid water content, change in liquid water content |
---|
795 | ALLOCATE ( ql_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
796 | ql_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
797 | ! |
---|
798 | !-- Real volume of particles (with weighting), volume of particles |
---|
799 | ALLOCATE ( ql_v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
800 | ql_vp(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
801 | ENDIF |
---|
802 | |
---|
803 | ! |
---|
804 | !-- Initial assignment of the pointers |
---|
805 | IF ( cloud_droplets ) THEN |
---|
806 | ql => ql_1 |
---|
807 | ql_c => ql_2 |
---|
808 | ENDIF |
---|
809 | |
---|
810 | END SUBROUTINE lpm_init_arrays |
---|
811 | |
---|
812 | !------------------------------------------------------------------------------! |
---|
813 | ! Description: |
---|
814 | ! ------------ |
---|
815 | !> Initialize Lagrangian particle model |
---|
816 | !------------------------------------------------------------------------------! |
---|
817 | SUBROUTINE lpm_init |
---|
818 | |
---|
819 | INTEGER(iwp) :: i !< |
---|
820 | INTEGER(iwp) :: j !< |
---|
821 | INTEGER(iwp) :: k !< |
---|
822 | |
---|
823 | REAL(wp) :: div !< |
---|
824 | REAL(wp) :: height_int !< |
---|
825 | REAL(wp) :: height_p !< |
---|
826 | REAL(wp) :: z_p !< |
---|
827 | REAL(wp) :: z0_av_local !< |
---|
828 | |
---|
829 | ! |
---|
830 | !-- In case of oceans runs, the vertical index calculations need an offset, |
---|
831 | !-- because otherwise the k indices will become negative |
---|
832 | IF ( ocean_mode ) THEN |
---|
833 | offset_ocean_nzt = nzt |
---|
834 | offset_ocean_nzt_m1 = nzt - 1 |
---|
835 | ENDIF |
---|
836 | |
---|
837 | ! |
---|
838 | !-- Define block offsets for dividing a gridcell in 8 sub cells |
---|
839 | !-- See documentation for List of subgrid boxes |
---|
840 | !-- See pack_and_sort in lpm_pack_arrays.f90 for assignment of the subgrid boxes |
---|
841 | block_offset(0) = block_offset_def ( 0, 0, 0) |
---|
842 | block_offset(1) = block_offset_def ( 0, 0,-1) |
---|
843 | block_offset(2) = block_offset_def ( 0,-1, 0) |
---|
844 | block_offset(3) = block_offset_def ( 0,-1,-1) |
---|
845 | block_offset(4) = block_offset_def (-1, 0, 0) |
---|
846 | block_offset(5) = block_offset_def (-1, 0,-1) |
---|
847 | block_offset(6) = block_offset_def (-1,-1, 0) |
---|
848 | block_offset(7) = block_offset_def (-1,-1,-1) |
---|
849 | ! |
---|
850 | !-- Check the number of particle groups. |
---|
851 | IF ( number_of_particle_groups > max_number_of_particle_groups ) THEN |
---|
852 | WRITE( message_string, * ) 'max_number_of_particle_groups =', & |
---|
853 | max_number_of_particle_groups , & |
---|
854 | '&number_of_particle_groups reset to ', & |
---|
855 | max_number_of_particle_groups |
---|
856 | CALL message( 'lpm_init', 'PA0213', 0, 1, 0, 6, 0 ) |
---|
857 | number_of_particle_groups = max_number_of_particle_groups |
---|
858 | ENDIF |
---|
859 | ! |
---|
860 | !-- Check if downward-facing walls exist. This case, reflection boundary |
---|
861 | !-- conditions (as well as subgrid-scale velocities) may do not work |
---|
862 | !-- propably (not realized so far). |
---|
863 | IF ( surf_def_h(1)%ns >= 1 ) THEN |
---|
864 | WRITE( message_string, * ) 'Overhanging topography do not work '// & |
---|
865 | 'with particles' |
---|
866 | CALL message( 'lpm_init', 'PA0212', 0, 1, 0, 6, 0 ) |
---|
867 | |
---|
868 | ENDIF |
---|
869 | |
---|
870 | ! |
---|
871 | !-- Set default start positions, if necessary |
---|
872 | IF ( psl(1) == 9999999.9_wp ) psl(1) = 0.0_wp |
---|
873 | IF ( psr(1) == 9999999.9_wp ) psr(1) = ( nx +1 ) * dx |
---|
874 | IF ( pss(1) == 9999999.9_wp ) pss(1) = 0.0_wp |
---|
875 | IF ( psn(1) == 9999999.9_wp ) psn(1) = ( ny +1 ) * dy |
---|
876 | IF ( psb(1) == 9999999.9_wp ) psb(1) = zu(nz/2) |
---|
877 | IF ( pst(1) == 9999999.9_wp ) pst(1) = psb(1) |
---|
878 | |
---|
879 | IF ( pdx(1) == 9999999.9_wp .OR. pdx(1) == 0.0_wp ) pdx(1) = dx |
---|
880 | IF ( pdy(1) == 9999999.9_wp .OR. pdy(1) == 0.0_wp ) pdy(1) = dy |
---|
881 | IF ( pdz(1) == 9999999.9_wp .OR. pdz(1) == 0.0_wp ) pdz(1) = zu(2) - zu(1) |
---|
882 | |
---|
883 | ! |
---|
884 | !-- If number_particles_per_gridbox is set, the parametres pdx, pdy and pdz are |
---|
885 | !-- calculated diagnostically. Therfore an isotropic distribution is prescribed. |
---|
886 | IF ( number_particles_per_gridbox /= -1 .AND. & |
---|
887 | number_particles_per_gridbox >= 1 ) THEN |
---|
888 | pdx(1) = (( dx * dy * ( zu(2) - zu(1) ) ) / & |
---|
889 | REAL(number_particles_per_gridbox))**0.3333333_wp |
---|
890 | ! |
---|
891 | !-- Ensure a smooth value (two significant digits) of distance between |
---|
892 | !-- particles (pdx, pdy, pdz). |
---|
893 | div = 1000.0_wp |
---|
894 | DO WHILE ( pdx(1) < div ) |
---|
895 | div = div / 10.0_wp |
---|
896 | ENDDO |
---|
897 | pdx(1) = NINT( pdx(1) * 100.0_wp / div ) * div / 100.0_wp |
---|
898 | pdy(1) = pdx(1) |
---|
899 | pdz(1) = pdx(1) |
---|
900 | |
---|
901 | ENDIF |
---|
902 | |
---|
903 | DO j = 2, number_of_particle_groups |
---|
904 | IF ( psl(j) == 9999999.9_wp ) psl(j) = psl(j-1) |
---|
905 | IF ( psr(j) == 9999999.9_wp ) psr(j) = psr(j-1) |
---|
906 | IF ( pss(j) == 9999999.9_wp ) pss(j) = pss(j-1) |
---|
907 | IF ( psn(j) == 9999999.9_wp ) psn(j) = psn(j-1) |
---|
908 | IF ( psb(j) == 9999999.9_wp ) psb(j) = psb(j-1) |
---|
909 | IF ( pst(j) == 9999999.9_wp ) pst(j) = pst(j-1) |
---|
910 | IF ( pdx(j) == 9999999.9_wp .OR. pdx(j) == 0.0_wp ) pdx(j) = pdx(j-1) |
---|
911 | IF ( pdy(j) == 9999999.9_wp .OR. pdy(j) == 0.0_wp ) pdy(j) = pdy(j-1) |
---|
912 | IF ( pdz(j) == 9999999.9_wp .OR. pdz(j) == 0.0_wp ) pdz(j) = pdz(j-1) |
---|
913 | ENDDO |
---|
914 | |
---|
915 | ! |
---|
916 | !-- Allocate arrays required for calculating particle SGS velocities. |
---|
917 | !-- Initialize prefactor required for stoachastic Weil equation. |
---|
918 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
919 | ALLOCATE( de_dx(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
920 | de_dy(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
921 | de_dz(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
922 | |
---|
923 | de_dx = 0.0_wp |
---|
924 | de_dy = 0.0_wp |
---|
925 | de_dz = 0.0_wp |
---|
926 | |
---|
927 | sgs_wf_part = 1.0_wp / 3.0_wp |
---|
928 | ENDIF |
---|
929 | |
---|
930 | ! |
---|
931 | !-- Allocate array required for logarithmic vertical interpolation of |
---|
932 | !-- horizontal particle velocities between the surface and the first vertical |
---|
933 | !-- grid level. In order to avoid repeated CPU cost-intensive CALLS of |
---|
934 | !-- intrinsic FORTRAN procedure LOG(z/z0), LOG(z/z0) is precalculated for |
---|
935 | !-- several heights. Splitting into 20 sublayers turned out to be sufficient. |
---|
936 | !-- To obtain exact height levels of particles, linear interpolation is applied |
---|
937 | !-- (see lpm_advec.f90). |
---|
938 | IF ( constant_flux_layer ) THEN |
---|
939 | |
---|
940 | ALLOCATE ( log_z_z0(0:number_of_sublayers) ) |
---|
941 | z_p = zu(nzb+1) - zw(nzb) |
---|
942 | |
---|
943 | ! |
---|
944 | !-- Calculate horizontal mean value of z0 used for logartihmic |
---|
945 | !-- interpolation. Note: this is not exact for heterogeneous z0. |
---|
946 | !-- However, sensitivity studies showed that the effect is |
---|
947 | !-- negligible. |
---|
948 | z0_av_local = SUM( surf_def_h(0)%z0 ) + SUM( surf_lsm_h%z0 ) + & |
---|
949 | SUM( surf_usm_h%z0 ) |
---|
950 | z0_av_global = 0.0_wp |
---|
951 | |
---|
952 | #if defined( __parallel ) |
---|
953 | CALL MPI_ALLREDUCE(z0_av_local, z0_av_global, 1, MPI_REAL, MPI_SUM, & |
---|
954 | comm2d, ierr ) |
---|
955 | #else |
---|
956 | z0_av_global = z0_av_local |
---|
957 | #endif |
---|
958 | |
---|
959 | z0_av_global = z0_av_global / ( ( ny + 1 ) * ( nx + 1 ) ) |
---|
960 | ! |
---|
961 | !-- Horizontal wind speed is zero below and at z0 |
---|
962 | log_z_z0(0) = 0.0_wp |
---|
963 | ! |
---|
964 | !-- Calculate vertical depth of the sublayers |
---|
965 | height_int = ( z_p - z0_av_global ) / REAL( number_of_sublayers, KIND=wp ) |
---|
966 | ! |
---|
967 | !-- Precalculate LOG(z/z0) |
---|
968 | height_p = z0_av_global |
---|
969 | DO k = 1, number_of_sublayers |
---|
970 | |
---|
971 | height_p = height_p + height_int |
---|
972 | log_z_z0(k) = LOG( height_p / z0_av_global ) |
---|
973 | |
---|
974 | ENDDO |
---|
975 | |
---|
976 | ENDIF |
---|
977 | |
---|
978 | ! |
---|
979 | !-- Check which particle interpolation method should be used |
---|
980 | IF ( TRIM( particle_advection_interpolation ) == 'trilinear' ) THEN |
---|
981 | interpolation_simple_corrector = .FALSE. |
---|
982 | interpolation_simple_predictor = .FALSE. |
---|
983 | interpolation_trilinear = .TRUE. |
---|
984 | ELSEIF ( TRIM( particle_advection_interpolation ) == 'simple_corrector' ) THEN |
---|
985 | interpolation_simple_corrector = .TRUE. |
---|
986 | interpolation_simple_predictor = .FALSE. |
---|
987 | interpolation_trilinear = .FALSE. |
---|
988 | ELSEIF ( TRIM( particle_advection_interpolation ) == 'simple_predictor' ) THEN |
---|
989 | interpolation_simple_corrector = .FALSE. |
---|
990 | interpolation_simple_predictor = .TRUE. |
---|
991 | interpolation_trilinear = .FALSE. |
---|
992 | ENDIF |
---|
993 | |
---|
994 | ! |
---|
995 | !-- Check boundary condition and set internal variables |
---|
996 | SELECT CASE ( bc_par_b ) |
---|
997 | |
---|
998 | CASE ( 'absorb' ) |
---|
999 | ibc_par_b = 1 |
---|
1000 | |
---|
1001 | CASE ( 'reflect' ) |
---|
1002 | ibc_par_b = 2 |
---|
1003 | |
---|
1004 | CASE ( 'reset' ) |
---|
1005 | ibc_par_b = 3 |
---|
1006 | |
---|
1007 | CASE DEFAULT |
---|
1008 | WRITE( message_string, * ) 'unknown boundary condition ', & |
---|
1009 | 'bc_par_b = "', TRIM( bc_par_b ), '"' |
---|
1010 | CALL message( 'lpm_init', 'PA0217', 1, 2, 0, 6, 0 ) |
---|
1011 | |
---|
1012 | END SELECT |
---|
1013 | SELECT CASE ( bc_par_t ) |
---|
1014 | |
---|
1015 | CASE ( 'absorb' ) |
---|
1016 | ibc_par_t = 1 |
---|
1017 | |
---|
1018 | CASE ( 'reflect' ) |
---|
1019 | ibc_par_t = 2 |
---|
1020 | |
---|
1021 | CASE ( 'nested' ) |
---|
1022 | ibc_par_t = 3 |
---|
1023 | |
---|
1024 | CASE DEFAULT |
---|
1025 | WRITE( message_string, * ) 'unknown boundary condition ', & |
---|
1026 | 'bc_par_t = "', TRIM( bc_par_t ), '"' |
---|
1027 | CALL message( 'lpm_init', 'PA0218', 1, 2, 0, 6, 0 ) |
---|
1028 | |
---|
1029 | END SELECT |
---|
1030 | SELECT CASE ( bc_par_lr ) |
---|
1031 | |
---|
1032 | CASE ( 'cyclic' ) |
---|
1033 | ibc_par_lr = 0 |
---|
1034 | |
---|
1035 | CASE ( 'absorb' ) |
---|
1036 | ibc_par_lr = 1 |
---|
1037 | |
---|
1038 | CASE ( 'reflect' ) |
---|
1039 | ibc_par_lr = 2 |
---|
1040 | |
---|
1041 | CASE ( 'nested' ) |
---|
1042 | ibc_par_lr = 3 |
---|
1043 | |
---|
1044 | CASE DEFAULT |
---|
1045 | WRITE( message_string, * ) 'unknown boundary condition ', & |
---|
1046 | 'bc_par_lr = "', TRIM( bc_par_lr ), '"' |
---|
1047 | CALL message( 'lpm_init', 'PA0219', 1, 2, 0, 6, 0 ) |
---|
1048 | |
---|
1049 | END SELECT |
---|
1050 | SELECT CASE ( bc_par_ns ) |
---|
1051 | |
---|
1052 | CASE ( 'cyclic' ) |
---|
1053 | ibc_par_ns = 0 |
---|
1054 | |
---|
1055 | CASE ( 'absorb' ) |
---|
1056 | ibc_par_ns = 1 |
---|
1057 | |
---|
1058 | CASE ( 'reflect' ) |
---|
1059 | ibc_par_ns = 2 |
---|
1060 | |
---|
1061 | CASE ( 'nested' ) |
---|
1062 | ibc_par_ns = 3 |
---|
1063 | |
---|
1064 | CASE DEFAULT |
---|
1065 | WRITE( message_string, * ) 'unknown boundary condition ', & |
---|
1066 | 'bc_par_ns = "', TRIM( bc_par_ns ), '"' |
---|
1067 | CALL message( 'lpm_init', 'PA0220', 1, 2, 0, 6, 0 ) |
---|
1068 | |
---|
1069 | END SELECT |
---|
1070 | SELECT CASE ( splitting_mode ) |
---|
1071 | |
---|
1072 | CASE ( 'const' ) |
---|
1073 | i_splitting_mode = 1 |
---|
1074 | |
---|
1075 | CASE ( 'cl_av' ) |
---|
1076 | i_splitting_mode = 2 |
---|
1077 | |
---|
1078 | CASE ( 'gb_av' ) |
---|
1079 | i_splitting_mode = 3 |
---|
1080 | |
---|
1081 | CASE DEFAULT |
---|
1082 | WRITE( message_string, * ) 'unknown splitting_mode = "', & |
---|
1083 | TRIM( splitting_mode ), '"' |
---|
1084 | CALL message( 'lpm_init', 'PA0146', 1, 2, 0, 6, 0 ) |
---|
1085 | |
---|
1086 | END SELECT |
---|
1087 | SELECT CASE ( splitting_function ) |
---|
1088 | |
---|
1089 | CASE ( 'gamma' ) |
---|
1090 | isf = 1 |
---|
1091 | |
---|
1092 | CASE ( 'log' ) |
---|
1093 | isf = 2 |
---|
1094 | |
---|
1095 | CASE ( 'exp' ) |
---|
1096 | isf = 3 |
---|
1097 | |
---|
1098 | CASE DEFAULT |
---|
1099 | WRITE( message_string, * ) 'unknown splitting function = "', & |
---|
1100 | TRIM( splitting_function ), '"' |
---|
1101 | CALL message( 'lpm_init', 'PA0147', 1, 2, 0, 6, 0 ) |
---|
1102 | |
---|
1103 | END SELECT |
---|
1104 | ! |
---|
1105 | !-- Initialize collision kernels |
---|
1106 | IF ( collision_kernel /= 'none' ) CALL lpm_init_kernels |
---|
1107 | ! |
---|
1108 | !-- For the first model run of a possible job chain initialize the |
---|
1109 | !-- particles, otherwise read the particle data from restart file. |
---|
1110 | IF ( TRIM( initializing_actions ) == 'read_restart_data' & |
---|
1111 | .AND. read_particles_from_restartfile ) THEN |
---|
1112 | CALL lpm_rrd_local_particles |
---|
1113 | ELSE |
---|
1114 | ! |
---|
1115 | !-- Allocate particle arrays and set attributes of the initial set of |
---|
1116 | !-- particles, which can be also periodically released at later times. |
---|
1117 | ALLOCATE( prt_count(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
1118 | grid_particles(nzb+1:nzt,nys:nyn,nxl:nxr) ) |
---|
1119 | |
---|
1120 | number_of_particles = 0 |
---|
1121 | prt_count = 0 |
---|
1122 | ! |
---|
1123 | !-- initialize counter for particle IDs |
---|
1124 | grid_particles%id_counter = 1 |
---|
1125 | ! |
---|
1126 | !-- Initialize all particles with dummy values (otherwise errors may |
---|
1127 | !-- occur within restart runs). The reason for this is still not clear |
---|
1128 | !-- and may be presumably caused by errors in the respective user-interface. |
---|
1129 | zero_particle = particle_type( 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
1130 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
1131 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
1132 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
1133 | 0, 0, 0_idp, .FALSE., -1 ) |
---|
1134 | |
---|
1135 | particle_groups = particle_groups_type( 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp ) |
---|
1136 | ! |
---|
1137 | !-- Set values for the density ratio and radius for all particle |
---|
1138 | !-- groups, if necessary |
---|
1139 | IF ( density_ratio(1) == 9999999.9_wp ) density_ratio(1) = 0.0_wp |
---|
1140 | IF ( radius(1) == 9999999.9_wp ) radius(1) = 0.0_wp |
---|
1141 | DO i = 2, number_of_particle_groups |
---|
1142 | IF ( density_ratio(i) == 9999999.9_wp ) THEN |
---|
1143 | density_ratio(i) = density_ratio(i-1) |
---|
1144 | ENDIF |
---|
1145 | IF ( radius(i) == 9999999.9_wp ) radius(i) = radius(i-1) |
---|
1146 | ENDDO |
---|
1147 | |
---|
1148 | DO i = 1, number_of_particle_groups |
---|
1149 | IF ( density_ratio(i) /= 0.0_wp .AND. radius(i) == 0 ) THEN |
---|
1150 | WRITE( message_string, * ) 'particle group #', i, ' has a', & |
---|
1151 | 'density ratio /= 0 but radius = 0' |
---|
1152 | CALL message( 'lpm_init', 'PA0215', 1, 2, 0, 6, 0 ) |
---|
1153 | ENDIF |
---|
1154 | particle_groups(i)%density_ratio = density_ratio(i) |
---|
1155 | particle_groups(i)%radius = radius(i) |
---|
1156 | ENDDO |
---|
1157 | ! |
---|
1158 | !-- Set a seed value for the random number generator to be exclusively |
---|
1159 | !-- used for the particle code. The generated random numbers should be |
---|
1160 | !-- different on the different PEs. |
---|
1161 | iran_part = iran_part + myid |
---|
1162 | ! |
---|
1163 | !-- Create the particle set, and set the initial particles |
---|
1164 | CALL lpm_create_particle( phase_init ) |
---|
1165 | last_particle_release_time = particle_advection_start |
---|
1166 | ! |
---|
1167 | !-- User modification of initial particles |
---|
1168 | CALL user_lpm_init |
---|
1169 | ! |
---|
1170 | !-- Open file for statistical informations about particle conditions |
---|
1171 | IF ( write_particle_statistics ) THEN |
---|
1172 | CALL check_open( 80 ) |
---|
1173 | WRITE ( 80, 8000 ) current_timestep_number, simulated_time, & |
---|
1174 | number_of_particles |
---|
1175 | CALL close_file( 80 ) |
---|
1176 | ENDIF |
---|
1177 | |
---|
1178 | ENDIF |
---|
1179 | |
---|
1180 | IF ( nested_run ) CALL pmcp_g_init |
---|
1181 | ! |
---|
1182 | !-- To avoid programm abort, assign particles array to the local version of |
---|
1183 | !-- first grid cell |
---|
1184 | number_of_particles = prt_count(nzb+1,nys,nxl) |
---|
1185 | particles => grid_particles(nzb+1,nys,nxl)%particles(1:number_of_particles) |
---|
1186 | ! |
---|
1187 | !-- Formats |
---|
1188 | 8000 FORMAT (I6,1X,F7.2,4X,I10,71X,I10) |
---|
1189 | |
---|
1190 | END SUBROUTINE lpm_init |
---|
1191 | |
---|
1192 | !------------------------------------------------------------------------------! |
---|
1193 | ! Description: |
---|
1194 | ! ------------ |
---|
1195 | !> Create Lagrangian particles |
---|
1196 | !------------------------------------------------------------------------------! |
---|
1197 | SUBROUTINE lpm_create_particle (phase) |
---|
1198 | |
---|
1199 | INTEGER(iwp) :: alloc_size !< relative increase of allocated memory for particles |
---|
1200 | INTEGER(iwp) :: i !< loop variable ( particle groups ) |
---|
1201 | INTEGER(iwp) :: ip !< index variable along x |
---|
1202 | INTEGER(iwp) :: j !< loop variable ( particles per point ) |
---|
1203 | INTEGER(iwp) :: jp !< index variable along y |
---|
1204 | INTEGER(iwp) :: k !< index variable along z |
---|
1205 | INTEGER(iwp) :: k_surf !< index of surface grid point |
---|
1206 | INTEGER(iwp) :: kp !< index variable along z |
---|
1207 | INTEGER(iwp) :: loop_stride !< loop variable for initialization |
---|
1208 | INTEGER(iwp) :: n !< loop variable ( number of particles ) |
---|
1209 | INTEGER(iwp) :: new_size !< new size of allocated memory for particles |
---|
1210 | |
---|
1211 | INTEGER(iwp), INTENT(IN) :: phase !< mode of inititialization |
---|
1212 | |
---|
1213 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: local_count !< start address of new particle |
---|
1214 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: local_start !< start address of new particle |
---|
1215 | |
---|
1216 | LOGICAL :: first_stride !< flag for initialization |
---|
1217 | |
---|
1218 | REAL(wp) :: pos_x !< increment for particle position in x |
---|
1219 | REAL(wp) :: pos_y !< increment for particle position in y |
---|
1220 | REAL(wp) :: pos_z !< increment for particle position in z |
---|
1221 | REAL(wp) :: rand_contr !< dummy argument for random position |
---|
1222 | |
---|
1223 | TYPE(particle_type),TARGET :: tmp_particle !< temporary particle used for initialization |
---|
1224 | |
---|
1225 | ! |
---|
1226 | !-- Calculate particle positions and store particle attributes, if |
---|
1227 | !-- particle is situated on this PE |
---|
1228 | DO loop_stride = 1, 2 |
---|
1229 | first_stride = (loop_stride == 1) |
---|
1230 | IF ( first_stride ) THEN |
---|
1231 | local_count = 0 ! count number of particles |
---|
1232 | ELSE |
---|
1233 | local_count = prt_count ! Start address of new particles |
---|
1234 | ENDIF |
---|
1235 | |
---|
1236 | ! |
---|
1237 | !-- Calculate initial_weighting_factor diagnostically |
---|
1238 | IF ( number_concentration /= -1.0_wp .AND. number_concentration > 0.0_wp ) THEN |
---|
1239 | initial_weighting_factor = number_concentration * & |
---|
1240 | pdx(1) * pdy(1) * pdz(1) |
---|
1241 | END IF |
---|
1242 | |
---|
1243 | n = 0 |
---|
1244 | DO i = 1, number_of_particle_groups |
---|
1245 | pos_z = psb(i) |
---|
1246 | DO WHILE ( pos_z <= pst(i) ) |
---|
1247 | IF ( pos_z >= zw(0) .AND. pos_z < zw(nzt) ) THEN |
---|
1248 | pos_y = pss(i) |
---|
1249 | DO WHILE ( pos_y <= psn(i) ) |
---|
1250 | IF ( pos_y >= nys * dy .AND. & |
---|
1251 | pos_y < ( nyn + 1 ) * dy ) THEN |
---|
1252 | pos_x = psl(i) |
---|
1253 | xloop: DO WHILE ( pos_x <= psr(i) ) |
---|
1254 | IF ( pos_x >= nxl * dx .AND. & |
---|
1255 | pos_x < ( nxr + 1) * dx ) THEN |
---|
1256 | DO j = 1, particles_per_point |
---|
1257 | n = n + 1 |
---|
1258 | tmp_particle%x = pos_x |
---|
1259 | tmp_particle%y = pos_y |
---|
1260 | tmp_particle%z = pos_z |
---|
1261 | tmp_particle%age = 0.0_wp |
---|
1262 | tmp_particle%age_m = 0.0_wp |
---|
1263 | tmp_particle%dt_sum = 0.0_wp |
---|
1264 | tmp_particle%e_m = 0.0_wp |
---|
1265 | tmp_particle%rvar1 = 0.0_wp |
---|
1266 | tmp_particle%rvar2 = 0.0_wp |
---|
1267 | tmp_particle%rvar3 = 0.0_wp |
---|
1268 | tmp_particle%speed_x = 0.0_wp |
---|
1269 | tmp_particle%speed_y = 0.0_wp |
---|
1270 | tmp_particle%speed_z = 0.0_wp |
---|
1271 | tmp_particle%origin_x = pos_x |
---|
1272 | tmp_particle%origin_y = pos_y |
---|
1273 | tmp_particle%origin_z = pos_z |
---|
1274 | IF ( curvature_solution_effects ) THEN |
---|
1275 | tmp_particle%aux1 = 0.0_wp ! dry aerosol radius |
---|
1276 | tmp_particle%aux2 = dt_3d ! last Rosenbrock timestep |
---|
1277 | ELSE |
---|
1278 | tmp_particle%aux1 = 0.0_wp ! free to use |
---|
1279 | tmp_particle%aux2 = 0.0_wp ! free to use |
---|
1280 | ENDIF |
---|
1281 | tmp_particle%radius = particle_groups(i)%radius |
---|
1282 | tmp_particle%weight_factor = initial_weighting_factor |
---|
1283 | tmp_particle%class = 1 |
---|
1284 | tmp_particle%group = i |
---|
1285 | tmp_particle%id = 0_idp |
---|
1286 | tmp_particle%particle_mask = .TRUE. |
---|
1287 | tmp_particle%block_nr = -1 |
---|
1288 | ! |
---|
1289 | !-- Determine the grid indices of the particle position |
---|
1290 | ip = INT( tmp_particle%x * ddx ) |
---|
1291 | jp = INT( tmp_particle%y * ddy ) |
---|
1292 | ! |
---|
1293 | !-- In case of stretching the actual k index is found iteratively |
---|
1294 | IF ( dz_stretch_level /= -9999999.9_wp .OR. & |
---|
1295 | dz_stretch_level_start(1) /= -9999999.9_wp ) THEN |
---|
1296 | kp = MINLOC( ABS( tmp_particle%z - zu ), DIM = 1 ) - 1 |
---|
1297 | ELSE |
---|
1298 | kp = INT( tmp_particle%z / dz(1) + 1 + offset_ocean_nzt ) |
---|
1299 | ENDIF |
---|
1300 | ! |
---|
1301 | !-- Determine surface level. Therefore, check for |
---|
1302 | !-- upward-facing wall on w-grid. |
---|
1303 | k_surf = topo_top_ind(jp,ip,3) |
---|
1304 | IF ( seed_follows_topography ) THEN |
---|
1305 | ! |
---|
1306 | !-- Particle height is given relative to topography |
---|
1307 | kp = kp + k_surf |
---|
1308 | tmp_particle%z = tmp_particle%z + zw(k_surf) |
---|
1309 | !-- Skip particle release if particle position is |
---|
1310 | !-- above model top, or within topography in case |
---|
1311 | !-- of overhanging structures. |
---|
1312 | IF ( kp > nzt .OR. & |
---|
1313 | .NOT. BTEST( wall_flags_0(kp,jp,ip), 0 ) ) THEN |
---|
1314 | pos_x = pos_x + pdx(i) |
---|
1315 | CYCLE xloop |
---|
1316 | ENDIF |
---|
1317 | ! |
---|
1318 | !-- Skip particle release if particle position is |
---|
1319 | !-- below surface, or within topography in case |
---|
1320 | !-- of overhanging structures. |
---|
1321 | ELSEIF ( .NOT. seed_follows_topography .AND. & |
---|
1322 | tmp_particle%z <= zw(k_surf) .OR. & |
---|
1323 | .NOT. BTEST( wall_flags_0(kp,jp,ip), 0 ) )& |
---|
1324 | THEN |
---|
1325 | pos_x = pos_x + pdx(i) |
---|
1326 | CYCLE xloop |
---|
1327 | ENDIF |
---|
1328 | |
---|
1329 | local_count(kp,jp,ip) = local_count(kp,jp,ip) + 1 |
---|
1330 | |
---|
1331 | IF ( .NOT. first_stride ) THEN |
---|
1332 | IF ( ip < nxl .OR. jp < nys .OR. kp < nzb+1 ) THEN |
---|
1333 | write(6,*) 'xl ',ip,jp,kp,nxl,nys,nzb+1 |
---|
1334 | ENDIF |
---|
1335 | IF ( ip > nxr .OR. jp > nyn .OR. kp > nzt ) THEN |
---|
1336 | write(6,*) 'xu ',ip,jp,kp,nxr,nyn,nzt |
---|
1337 | ENDIF |
---|
1338 | grid_particles(kp,jp,ip)%particles(local_count(kp,jp,ip)) = tmp_particle |
---|
1339 | ENDIF |
---|
1340 | ENDDO |
---|
1341 | ENDIF |
---|
1342 | pos_x = pos_x + pdx(i) |
---|
1343 | ENDDO xloop |
---|
1344 | ENDIF |
---|
1345 | pos_y = pos_y + pdy(i) |
---|
1346 | ENDDO |
---|
1347 | ENDIF |
---|
1348 | |
---|
1349 | pos_z = pos_z + pdz(i) |
---|
1350 | ENDDO |
---|
1351 | ENDDO |
---|
1352 | |
---|
1353 | IF ( first_stride ) THEN |
---|
1354 | DO ip = nxl, nxr |
---|
1355 | DO jp = nys, nyn |
---|
1356 | DO kp = nzb+1, nzt |
---|
1357 | IF ( phase == PHASE_INIT ) THEN |
---|
1358 | IF ( local_count(kp,jp,ip) > 0 ) THEN |
---|
1359 | alloc_size = MAX( INT( local_count(kp,jp,ip) * & |
---|
1360 | ( 1.0_wp + alloc_factor / 100.0_wp ) ), & |
---|
1361 | 1 ) |
---|
1362 | ELSE |
---|
1363 | alloc_size = 1 |
---|
1364 | ENDIF |
---|
1365 | ALLOCATE(grid_particles(kp,jp,ip)%particles(1:alloc_size)) |
---|
1366 | DO n = 1, alloc_size |
---|
1367 | grid_particles(kp,jp,ip)%particles(n) = zero_particle |
---|
1368 | ENDDO |
---|
1369 | ELSEIF ( phase == PHASE_RELEASE ) THEN |
---|
1370 | IF ( local_count(kp,jp,ip) > 0 ) THEN |
---|
1371 | new_size = local_count(kp,jp,ip) + prt_count(kp,jp,ip) |
---|
1372 | alloc_size = MAX( INT( new_size * ( 1.0_wp + & |
---|
1373 | alloc_factor / 100.0_wp ) ), 1 ) |
---|
1374 | IF( alloc_size > SIZE( grid_particles(kp,jp,ip)%particles) ) THEN |
---|
1375 | CALL realloc_particles_array( ip, jp, kp, alloc_size ) |
---|
1376 | ENDIF |
---|
1377 | ENDIF |
---|
1378 | ENDIF |
---|
1379 | ENDDO |
---|
1380 | ENDDO |
---|
1381 | ENDDO |
---|
1382 | ENDIF |
---|
1383 | |
---|
1384 | ENDDO |
---|
1385 | |
---|
1386 | local_start = prt_count+1 |
---|
1387 | prt_count = local_count |
---|
1388 | ! |
---|
1389 | !-- Calculate particle IDs |
---|
1390 | DO ip = nxl, nxr |
---|
1391 | DO jp = nys, nyn |
---|
1392 | DO kp = nzb+1, nzt |
---|
1393 | number_of_particles = prt_count(kp,jp,ip) |
---|
1394 | IF ( number_of_particles <= 0 ) CYCLE |
---|
1395 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
1396 | |
---|
1397 | DO n = local_start(kp,jp,ip), number_of_particles !only new particles |
---|
1398 | |
---|
1399 | particles(n)%id = 10000_idp**3 * grid_particles(kp,jp,ip)%id_counter + & |
---|
1400 | 10000_idp**2 * kp + 10000_idp * jp + ip |
---|
1401 | ! |
---|
1402 | !-- Count the number of particles that have been released before |
---|
1403 | grid_particles(kp,jp,ip)%id_counter = & |
---|
1404 | grid_particles(kp,jp,ip)%id_counter + 1 |
---|
1405 | |
---|
1406 | ENDDO |
---|
1407 | |
---|
1408 | ENDDO |
---|
1409 | ENDDO |
---|
1410 | ENDDO |
---|
1411 | ! |
---|
1412 | !-- Initialize aerosol background spectrum |
---|
1413 | IF ( curvature_solution_effects ) THEN |
---|
1414 | CALL lpm_init_aerosols( local_start ) |
---|
1415 | ENDIF |
---|
1416 | ! |
---|
1417 | !-- Add random fluctuation to particle positions. |
---|
1418 | IF ( random_start_position ) THEN |
---|
1419 | DO ip = nxl, nxr |
---|
1420 | DO jp = nys, nyn |
---|
1421 | DO kp = nzb+1, nzt |
---|
1422 | number_of_particles = prt_count(kp,jp,ip) |
---|
1423 | IF ( number_of_particles <= 0 ) CYCLE |
---|
1424 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
1425 | ! |
---|
1426 | !-- Move only new particles. Moreover, limit random fluctuation |
---|
1427 | !-- in order to prevent that particles move more than one grid box, |
---|
1428 | !-- which would lead to problems concerning particle exchange |
---|
1429 | !-- between processors in case pdx/pdy are larger than dx/dy, |
---|
1430 | !-- respectively. |
---|
1431 | DO n = local_start(kp,jp,ip), number_of_particles |
---|
1432 | IF ( psl(particles(n)%group) /= psr(particles(n)%group) ) THEN |
---|
1433 | rand_contr = ( random_function( iran_part ) - 0.5_wp ) * & |
---|
1434 | pdx(particles(n)%group) |
---|
1435 | particles(n)%x = particles(n)%x + & |
---|
1436 | MERGE( rand_contr, SIGN( dx, rand_contr ), & |
---|
1437 | ABS( rand_contr ) < dx & |
---|
1438 | ) |
---|
1439 | ENDIF |
---|
1440 | IF ( pss(particles(n)%group) /= psn(particles(n)%group) ) THEN |
---|
1441 | rand_contr = ( random_function( iran_part ) - 0.5_wp ) * & |
---|
1442 | pdy(particles(n)%group) |
---|
1443 | particles(n)%y = particles(n)%y + & |
---|
1444 | MERGE( rand_contr, SIGN( dy, rand_contr ), & |
---|
1445 | ABS( rand_contr ) < dy & |
---|
1446 | ) |
---|
1447 | ENDIF |
---|
1448 | IF ( psb(particles(n)%group) /= pst(particles(n)%group) ) THEN |
---|
1449 | rand_contr = ( random_function( iran_part ) - 0.5_wp ) * & |
---|
1450 | pdz(particles(n)%group) |
---|
1451 | particles(n)%z = particles(n)%z + & |
---|
1452 | MERGE( rand_contr, SIGN( dzw(kp), rand_contr ), & |
---|
1453 | ABS( rand_contr ) < dzw(kp) & |
---|
1454 | ) |
---|
1455 | ENDIF |
---|
1456 | ENDDO |
---|
1457 | ! |
---|
1458 | !-- Identify particles located outside the model domain and reflect |
---|
1459 | !-- or absorb them if necessary. |
---|
1460 | CALL lpm_boundary_conds( 'bottom/top', i, j, k ) |
---|
1461 | ! |
---|
1462 | !-- Furthermore, remove particles located in topography. Note, as |
---|
1463 | !-- the particle speed is still zero at this point, wall |
---|
1464 | !-- reflection boundary conditions will not work in this case. |
---|
1465 | particles => & |
---|
1466 | grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
1467 | DO n = local_start(kp,jp,ip), number_of_particles |
---|
1468 | i = particles(n)%x * ddx |
---|
1469 | j = particles(n)%y * ddy |
---|
1470 | k = particles(n)%z / dz(1) + 1 + offset_ocean_nzt |
---|
1471 | DO WHILE( zw(k) < particles(n)%z ) |
---|
1472 | k = k + 1 |
---|
1473 | ENDDO |
---|
1474 | DO WHILE( zw(k-1) > particles(n)%z ) |
---|
1475 | k = k - 1 |
---|
1476 | ENDDO |
---|
1477 | ! |
---|
1478 | !-- Check if particle is within topography |
---|
1479 | IF ( .NOT. BTEST( wall_flags_0(k,j,i), 0 ) ) THEN |
---|
1480 | particles(n)%particle_mask = .FALSE. |
---|
1481 | deleted_particles = deleted_particles + 1 |
---|
1482 | ENDIF |
---|
1483 | |
---|
1484 | ENDDO |
---|
1485 | ENDDO |
---|
1486 | ENDDO |
---|
1487 | ENDDO |
---|
1488 | ! |
---|
1489 | !-- Exchange particles between grid cells and processors |
---|
1490 | CALL lpm_move_particle |
---|
1491 | CALL lpm_exchange_horiz |
---|
1492 | |
---|
1493 | ENDIF |
---|
1494 | ! |
---|
1495 | !-- In case of random_start_position, delete particles identified by |
---|
1496 | !-- lpm_exchange_horiz and lpm_boundary_conds. Then sort particles into blocks, |
---|
1497 | !-- which is needed for a fast interpolation of the LES fields on the particle |
---|
1498 | !-- position. |
---|
1499 | CALL lpm_sort_and_delete |
---|
1500 | ! |
---|
1501 | !-- Determine the current number of particles |
---|
1502 | DO ip = nxl, nxr |
---|
1503 | DO jp = nys, nyn |
---|
1504 | DO kp = nzb+1, nzt |
---|
1505 | number_of_particles = number_of_particles & |
---|
1506 | + prt_count(kp,jp,ip) |
---|
1507 | ENDDO |
---|
1508 | ENDDO |
---|
1509 | ENDDO |
---|
1510 | ! |
---|
1511 | !-- Calculate the number of particles of the total domain |
---|
1512 | #if defined( __parallel ) |
---|
1513 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1514 | CALL MPI_ALLREDUCE( number_of_particles, total_number_of_particles, 1, & |
---|
1515 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
1516 | #else |
---|
1517 | total_number_of_particles = number_of_particles |
---|
1518 | #endif |
---|
1519 | |
---|
1520 | RETURN |
---|
1521 | |
---|
1522 | END SUBROUTINE lpm_create_particle |
---|
1523 | |
---|
1524 | |
---|
1525 | !------------------------------------------------------------------------------! |
---|
1526 | ! Description: |
---|
1527 | ! ------------ |
---|
1528 | !> This routine initialize the particles as aerosols with physio-chemical |
---|
1529 | !> properties. |
---|
1530 | !------------------------------------------------------------------------------! |
---|
1531 | SUBROUTINE lpm_init_aerosols(local_start) |
---|
1532 | |
---|
1533 | REAL(wp) :: afactor !< curvature effects |
---|
1534 | REAL(wp) :: bfactor !< solute effects |
---|
1535 | REAL(wp) :: dlogr !< logarithmic width of radius bin |
---|
1536 | REAL(wp) :: e_a !< vapor pressure |
---|
1537 | REAL(wp) :: e_s !< saturation vapor pressure |
---|
1538 | REAL(wp) :: rmin = 0.005e-6_wp !< minimum aerosol radius |
---|
1539 | REAL(wp) :: rmax = 10.0e-6_wp !< maximum aerosol radius |
---|
1540 | REAL(wp) :: r_mid !< mean radius of bin |
---|
1541 | REAL(wp) :: r_l !< left radius of bin |
---|
1542 | REAL(wp) :: r_r !< right radius of bin |
---|
1543 | REAL(wp) :: sigma !< surface tension |
---|
1544 | REAL(wp) :: t_int !< temperature |
---|
1545 | |
---|
1546 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(IN) :: local_start !< |
---|
1547 | |
---|
1548 | INTEGER(iwp) :: n !< |
---|
1549 | INTEGER(iwp) :: ip !< |
---|
1550 | INTEGER(iwp) :: jp !< |
---|
1551 | INTEGER(iwp) :: kp !< |
---|
1552 | |
---|
1553 | ! |
---|
1554 | !-- Set constants for different aerosol species |
---|
1555 | IF ( TRIM( aero_species ) == 'nacl' ) THEN |
---|
1556 | molecular_weight_of_solute = 0.05844_wp |
---|
1557 | rho_s = 2165.0_wp |
---|
1558 | vanthoff = 2.0_wp |
---|
1559 | ELSEIF ( TRIM( aero_species ) == 'c3h4o4' ) THEN |
---|
1560 | molecular_weight_of_solute = 0.10406_wp |
---|
1561 | rho_s = 1600.0_wp |
---|
1562 | vanthoff = 1.37_wp |
---|
1563 | ELSEIF ( TRIM( aero_species ) == 'nh4o3' ) THEN |
---|
1564 | molecular_weight_of_solute = 0.08004_wp |
---|
1565 | rho_s = 1720.0_wp |
---|
1566 | vanthoff = 2.31_wp |
---|
1567 | ELSE |
---|
1568 | WRITE( message_string, * ) 'unknown aerosol species ', & |
---|
1569 | 'aero_species = "', TRIM( aero_species ), '"' |
---|
1570 | CALL message( 'lpm_init', 'PA0470', 1, 2, 0, 6, 0 ) |
---|
1571 | ENDIF |
---|
1572 | ! |
---|
1573 | !-- The following typical aerosol spectra are taken from Jaenicke (1993): |
---|
1574 | !-- Tropospheric aerosols. Published in Aerosol-Cloud-Climate Interactions. |
---|
1575 | IF ( TRIM( aero_type ) == 'polar' ) THEN |
---|
1576 | na = (/ 2.17e1, 1.86e-1, 3.04e-4 /) * 1.0E6_wp |
---|
1577 | rm = (/ 0.0689, 0.375, 4.29 /) * 1.0E-6_wp |
---|
1578 | log_sigma = (/ 0.245, 0.300, 0.291 /) |
---|
1579 | ELSEIF ( TRIM( aero_type ) == 'background' ) THEN |
---|
1580 | na = (/ 1.29e2, 5.97e1, 6.35e1 /) * 1.0E6_wp |
---|
1581 | rm = (/ 0.0036, 0.127, 0.259 /) * 1.0E-6_wp |
---|
1582 | log_sigma = (/ 0.645, 0.253, 0.425 /) |
---|
1583 | ELSEIF ( TRIM( aero_type ) == 'maritime' ) THEN |
---|
1584 | na = (/ 1.33e2, 6.66e1, 3.06e0 /) * 1.0E6_wp |
---|
1585 | rm = (/ 0.0039, 0.133, 0.29 /) * 1.0E-6_wp |
---|
1586 | log_sigma = (/ 0.657, 0.210, 0.396 /) |
---|
1587 | ELSEIF ( TRIM( aero_type ) == 'continental' ) THEN |
---|
1588 | na = (/ 3.20e3, 2.90e3, 3.00e-1 /) * 1.0E6_wp |
---|
1589 | rm = (/ 0.01, 0.058, 0.9 /) * 1.0E-6_wp |
---|
1590 | log_sigma = (/ 0.161, 0.217, 0.380 /) |
---|
1591 | ELSEIF ( TRIM( aero_type ) == 'desert' ) THEN |
---|
1592 | na = (/ 7.26e2, 1.14e3, 1.78e-1 /) * 1.0E6_wp |
---|
1593 | rm = (/ 0.001, 0.0188, 10.8 /) * 1.0E-6_wp |
---|
1594 | log_sigma = (/ 0.247, 0.770, 0.438 /) |
---|
1595 | ELSEIF ( TRIM( aero_type ) == 'rural' ) THEN |
---|
1596 | na = (/ 6.65e3, 1.47e2, 1.99e3 /) * 1.0E6_wp |
---|
1597 | rm = (/ 0.00739, 0.0269, 0.0419 /) * 1.0E-6_wp |
---|
1598 | log_sigma = (/ 0.225, 0.557, 0.266 /) |
---|
1599 | ELSEIF ( TRIM( aero_type ) == 'urban' ) THEN |
---|
1600 | na = (/ 9.93e4, 1.11e3, 3.64e4 /) * 1.0E6_wp |
---|
1601 | rm = (/ 0.00651, 0.00714, 0.0248 /) * 1.0E-6_wp |
---|
1602 | log_sigma = (/ 0.245, 0.666, 0.337 /) |
---|
1603 | ELSEIF ( TRIM( aero_type ) == 'user' ) THEN |
---|
1604 | CONTINUE |
---|
1605 | ELSE |
---|
1606 | WRITE( message_string, * ) 'unknown aerosol type ', & |
---|
1607 | 'aero_type = "', TRIM( aero_type ), '"' |
---|
1608 | CALL message( 'lpm_init', 'PA0459', 1, 2, 0, 6, 0 ) |
---|
1609 | ENDIF |
---|
1610 | |
---|
1611 | DO ip = nxl, nxr |
---|
1612 | DO jp = nys, nyn |
---|
1613 | DO kp = nzb+1, nzt |
---|
1614 | |
---|
1615 | number_of_particles = prt_count(kp,jp,ip) |
---|
1616 | IF ( number_of_particles <= 0 ) CYCLE |
---|
1617 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
1618 | |
---|
1619 | dlogr = ( LOG10(rmax) - LOG10(rmin) ) / ( number_of_particles - local_start(kp,jp,ip) + 1 ) |
---|
1620 | ! |
---|
1621 | !-- Initialize the aerosols with a predefined spectral distribution |
---|
1622 | !-- of the dry radius (logarithmically increasing bins) and a varying |
---|
1623 | !-- weighting factor |
---|
1624 | DO n = local_start(kp,jp,ip), number_of_particles !only new particles |
---|
1625 | |
---|
1626 | r_l = 10.0**( LOG10( rmin ) + (n-1) * dlogr ) |
---|
1627 | r_r = 10.0**( LOG10( rmin ) + n * dlogr ) |
---|
1628 | r_mid = SQRT( r_l * r_r ) |
---|
1629 | |
---|
1630 | particles(n)%aux1 = r_mid |
---|
1631 | particles(n)%weight_factor = & |
---|
1632 | ( na(1) / ( SQRT( 2.0_wp * pi ) * log_sigma(1) ) * & |
---|
1633 | EXP( - LOG10( r_mid / rm(1) )**2 / ( 2.0_wp * log_sigma(1)**2 ) ) + & |
---|
1634 | na(2) / ( SQRT( 2.0_wp * pi ) * log_sigma(2) ) * & |
---|
1635 | EXP( - LOG10( r_mid / rm(2) )**2 / ( 2.0_wp * log_sigma(2)**2 ) ) + & |
---|
1636 | na(3) / ( SQRT( 2.0_wp * pi ) * log_sigma(3) ) * & |
---|
1637 | EXP( - LOG10( r_mid / rm(3) )**2 / ( 2.0_wp * log_sigma(3)**2 ) ) & |
---|
1638 | ) * ( LOG10(r_r) - LOG10(r_l) ) * ( dx * dy * dzw(kp) ) |
---|
1639 | |
---|
1640 | ! |
---|
1641 | !-- Multiply weight_factor with the namelist parameter aero_weight |
---|
1642 | !-- to increase or decrease the number of simulated aerosols |
---|
1643 | particles(n)%weight_factor = particles(n)%weight_factor * aero_weight |
---|
1644 | |
---|
1645 | IF ( particles(n)%weight_factor - FLOOR(particles(n)%weight_factor,KIND=wp) & |
---|
1646 | > random_function( iran_part ) ) THEN |
---|
1647 | particles(n)%weight_factor = FLOOR(particles(n)%weight_factor,KIND=wp) + 1.0_wp |
---|
1648 | ELSE |
---|
1649 | particles(n)%weight_factor = FLOOR(particles(n)%weight_factor,KIND=wp) |
---|
1650 | ENDIF |
---|
1651 | ! |
---|
1652 | !-- Unnecessary particles will be deleted |
---|
1653 | IF ( particles(n)%weight_factor <= 0.0_wp ) particles(n)%particle_mask = .FALSE. |
---|
1654 | |
---|
1655 | ENDDO |
---|
1656 | ! |
---|
1657 | !-- Set particle radius to equilibrium radius based on the environmental |
---|
1658 | !-- supersaturation (Khvorostyanov and Curry, 2007, JGR). This avoids |
---|
1659 | !-- the sometimes lengthy growth toward their equilibrium radius within |
---|
1660 | !-- the simulation. |
---|
1661 | t_int = pt(kp,jp,ip) * exner(kp) |
---|
1662 | |
---|
1663 | e_s = magnus( t_int ) |
---|
1664 | e_a = q(kp,jp,ip) * hyp(kp) / ( q(kp,jp,ip) + rd_d_rv ) |
---|
1665 | |
---|
1666 | sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp ) |
---|
1667 | afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int ) |
---|
1668 | |
---|
1669 | bfactor = vanthoff * molecular_weight_of_water * & |
---|
1670 | rho_s / ( molecular_weight_of_solute * rho_l ) |
---|
1671 | ! |
---|
1672 | !-- The formula is only valid for subsaturated environments. For |
---|
1673 | !-- supersaturations higher than -5 %, the supersaturation is set to -5%. |
---|
1674 | IF ( e_a / e_s >= 0.95_wp ) e_a = 0.95_wp * e_s |
---|
1675 | |
---|
1676 | DO n = local_start(kp,jp,ip), number_of_particles !only new particles |
---|
1677 | ! |
---|
1678 | !-- For details on this equation, see Eq. (14) of Khvorostyanov and |
---|
1679 | !-- Curry (2007, JGR) |
---|
1680 | particles(n)%radius = bfactor**0.3333333_wp * & |
---|
1681 | particles(n)%aux1 / ( 1.0_wp - e_a / e_s )**0.3333333_wp / & |
---|
1682 | ( 1.0_wp + ( afactor / ( 3.0_wp * bfactor**0.3333333_wp * & |
---|
1683 | particles(n)%aux1 ) ) / & |
---|
1684 | ( 1.0_wp - e_a / e_s )**0.6666666_wp & |
---|
1685 | ) |
---|
1686 | |
---|
1687 | ENDDO |
---|
1688 | |
---|
1689 | ENDDO |
---|
1690 | ENDDO |
---|
1691 | ENDDO |
---|
1692 | |
---|
1693 | END SUBROUTINE lpm_init_aerosols |
---|
1694 | |
---|
1695 | |
---|
1696 | !------------------------------------------------------------------------------! |
---|
1697 | ! Description: |
---|
1698 | ! ------------ |
---|
1699 | !> Calculates quantities required for considering the SGS velocity fluctuations |
---|
1700 | !> in the particle transport by a stochastic approach. The respective |
---|
1701 | !> quantities are: SGS-TKE gradients and horizontally averaged profiles of the |
---|
1702 | !> SGS TKE and the resolved-scale velocity variances. |
---|
1703 | !------------------------------------------------------------------------------! |
---|
1704 | SUBROUTINE lpm_init_sgs_tke |
---|
1705 | |
---|
1706 | USE statistics, & |
---|
1707 | ONLY: flow_statistics_called, hom, sums, sums_l |
---|
1708 | |
---|
1709 | INTEGER(iwp) :: i !< index variable along x |
---|
1710 | INTEGER(iwp) :: j !< index variable along y |
---|
1711 | INTEGER(iwp) :: k !< index variable along z |
---|
1712 | INTEGER(iwp) :: m !< running index for the surface elements |
---|
1713 | |
---|
1714 | REAL(wp) :: flag1 !< flag to mask topography |
---|
1715 | |
---|
1716 | ! |
---|
1717 | !-- TKE gradient along x and y |
---|
1718 | DO i = nxl, nxr |
---|
1719 | DO j = nys, nyn |
---|
1720 | DO k = nzb, nzt+1 |
---|
1721 | |
---|
1722 | IF ( .NOT. BTEST( wall_flags_0(k,j,i-1), 0 ) .AND. & |
---|
1723 | BTEST( wall_flags_0(k,j,i), 0 ) .AND. & |
---|
1724 | BTEST( wall_flags_0(k,j,i+1), 0 ) ) & |
---|
1725 | THEN |
---|
1726 | de_dx(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1727 | ( e(k,j,i+1) - e(k,j,i) ) * ddx |
---|
1728 | ELSEIF ( BTEST( wall_flags_0(k,j,i-1), 0 ) .AND. & |
---|
1729 | BTEST( wall_flags_0(k,j,i), 0 ) .AND. & |
---|
1730 | .NOT. BTEST( wall_flags_0(k,j,i+1), 0 ) ) & |
---|
1731 | THEN |
---|
1732 | de_dx(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1733 | ( e(k,j,i) - e(k,j,i-1) ) * ddx |
---|
1734 | ELSEIF ( .NOT. BTEST( wall_flags_0(k,j,i), 22 ) .AND. & |
---|
1735 | .NOT. BTEST( wall_flags_0(k,j,i+1), 22 ) ) & |
---|
1736 | THEN |
---|
1737 | de_dx(k,j,i) = 0.0_wp |
---|
1738 | ELSEIF ( .NOT. BTEST( wall_flags_0(k,j,i-1), 22 ) .AND. & |
---|
1739 | .NOT. BTEST( wall_flags_0(k,j,i), 22 ) ) & |
---|
1740 | THEN |
---|
1741 | de_dx(k,j,i) = 0.0_wp |
---|
1742 | ELSE |
---|
1743 | de_dx(k,j,i) = sgs_wf_part * ( e(k,j,i+1) - e(k,j,i-1) ) * ddx |
---|
1744 | ENDIF |
---|
1745 | |
---|
1746 | IF ( .NOT. BTEST( wall_flags_0(k,j-1,i), 0 ) .AND. & |
---|
1747 | BTEST( wall_flags_0(k,j,i), 0 ) .AND. & |
---|
1748 | BTEST( wall_flags_0(k,j+1,i), 0 ) ) & |
---|
1749 | THEN |
---|
1750 | de_dy(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1751 | ( e(k,j+1,i) - e(k,j,i) ) * ddy |
---|
1752 | ELSEIF ( BTEST( wall_flags_0(k,j-1,i), 0 ) .AND. & |
---|
1753 | BTEST( wall_flags_0(k,j,i), 0 ) .AND. & |
---|
1754 | .NOT. BTEST( wall_flags_0(k,j+1,i), 0 ) ) & |
---|
1755 | THEN |
---|
1756 | de_dy(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1757 | ( e(k,j,i) - e(k,j-1,i) ) * ddy |
---|
1758 | ELSEIF ( .NOT. BTEST( wall_flags_0(k,j,i), 22 ) .AND. & |
---|
1759 | .NOT. BTEST( wall_flags_0(k,j+1,i), 22 ) ) & |
---|
1760 | THEN |
---|
1761 | de_dy(k,j,i) = 0.0_wp |
---|
1762 | ELSEIF ( .NOT. BTEST( wall_flags_0(k,j-1,i), 22 ) .AND. & |
---|
1763 | .NOT. BTEST( wall_flags_0(k,j,i), 22 ) ) & |
---|
1764 | THEN |
---|
1765 | de_dy(k,j,i) = 0.0_wp |
---|
1766 | ELSE |
---|
1767 | de_dy(k,j,i) = sgs_wf_part * ( e(k,j+1,i) - e(k,j-1,i) ) * ddy |
---|
1768 | ENDIF |
---|
1769 | |
---|
1770 | ENDDO |
---|
1771 | ENDDO |
---|
1772 | ENDDO |
---|
1773 | |
---|
1774 | ! |
---|
1775 | !-- TKE gradient along z at topograhy and including bottom and top boundary conditions |
---|
1776 | DO i = nxl, nxr |
---|
1777 | DO j = nys, nyn |
---|
1778 | DO k = nzb+1, nzt-1 |
---|
1779 | ! |
---|
1780 | !-- Flag to mask topography |
---|
1781 | flag1 = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1782 | |
---|
1783 | de_dz(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1784 | ( e(k+1,j,i) - e(k-1,j,i) ) / ( zu(k+1) - zu(k-1) ) & |
---|
1785 | * flag1 |
---|
1786 | ENDDO |
---|
1787 | ! |
---|
1788 | !-- upward-facing surfaces |
---|
1789 | DO m = bc_h(0)%start_index(j,i), bc_h(0)%end_index(j,i) |
---|
1790 | k = bc_h(0)%k(m) |
---|
1791 | de_dz(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1792 | ( e(k+1,j,i) - e(k,j,i) ) / ( zu(k+1) - zu(k) ) |
---|
1793 | ENDDO |
---|
1794 | ! |
---|
1795 | !-- downward-facing surfaces |
---|
1796 | DO m = bc_h(1)%start_index(j,i), bc_h(1)%end_index(j,i) |
---|
1797 | k = bc_h(1)%k(m) |
---|
1798 | de_dz(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1799 | ( e(k,j,i) - e(k-1,j,i) ) / ( zu(k) - zu(k-1) ) |
---|
1800 | ENDDO |
---|
1801 | |
---|
1802 | de_dz(nzb,j,i) = 0.0_wp |
---|
1803 | de_dz(nzt,j,i) = 0.0_wp |
---|
1804 | de_dz(nzt+1,j,i) = 0.0_wp |
---|
1805 | ENDDO |
---|
1806 | ENDDO |
---|
1807 | ! |
---|
1808 | !-- Ghost point exchange |
---|
1809 | CALL exchange_horiz( de_dx, nbgp ) |
---|
1810 | CALL exchange_horiz( de_dy, nbgp ) |
---|
1811 | CALL exchange_horiz( de_dz, nbgp ) |
---|
1812 | CALL exchange_horiz( diss, nbgp ) |
---|
1813 | ! |
---|
1814 | !-- Set boundary conditions at non-periodic boundaries. Note, at non-period |
---|
1815 | !-- boundaries zero-gradient boundary conditions are set for the subgrid TKE. |
---|
1816 | !-- Thus, TKE gradients normal to the respective lateral boundaries are zero, |
---|
1817 | !-- while tangetial TKE gradients then must be the same as within the prognostic |
---|
1818 | !-- domain. |
---|
1819 | IF ( bc_dirichlet_l ) THEN |
---|
1820 | de_dx(:,:,-1) = 0.0_wp |
---|
1821 | de_dy(:,:,-1) = de_dy(:,:,0) |
---|
1822 | de_dz(:,:,-1) = de_dz(:,:,0) |
---|
1823 | ENDIF |
---|
1824 | IF ( bc_dirichlet_r ) THEN |
---|
1825 | de_dx(:,:,nxr+1) = 0.0_wp |
---|
1826 | de_dy(:,:,nxr+1) = de_dy(:,:,nxr) |
---|
1827 | de_dz(:,:,nxr+1) = de_dz(:,:,nxr) |
---|
1828 | ENDIF |
---|
1829 | IF ( bc_dirichlet_n ) THEN |
---|
1830 | de_dx(:,nyn+1,:) = de_dx(:,nyn,:) |
---|
1831 | de_dy(:,nyn+1,:) = 0.0_wp |
---|
1832 | de_dz(:,nyn+1,:) = de_dz(:,nyn,:) |
---|
1833 | ENDIF |
---|
1834 | IF ( bc_dirichlet_s ) THEN |
---|
1835 | de_dx(:,nys-1,:) = de_dx(:,nys,:) |
---|
1836 | de_dy(:,nys-1,:) = 0.0_wp |
---|
1837 | de_dz(:,nys-1,:) = de_dz(:,nys,:) |
---|
1838 | ENDIF |
---|
1839 | ! |
---|
1840 | !-- Calculate the horizontally averaged profiles of SGS TKE and resolved |
---|
1841 | !-- velocity variances (they may have been already calculated in routine |
---|
1842 | !-- flow_statistics). |
---|
1843 | IF ( .NOT. flow_statistics_called ) THEN |
---|
1844 | |
---|
1845 | ! |
---|
1846 | !-- First calculate horizontally averaged profiles of the horizontal |
---|
1847 | !-- velocities. |
---|
1848 | sums_l(:,1,0) = 0.0_wp |
---|
1849 | sums_l(:,2,0) = 0.0_wp |
---|
1850 | |
---|
1851 | DO i = nxl, nxr |
---|
1852 | DO j = nys, nyn |
---|
1853 | DO k = nzb, nzt+1 |
---|
1854 | ! |
---|
1855 | !-- Flag indicating vicinity of wall |
---|
1856 | flag1 = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 24 ) ) |
---|
1857 | |
---|
1858 | sums_l(k,1,0) = sums_l(k,1,0) + u(k,j,i) * flag1 |
---|
1859 | sums_l(k,2,0) = sums_l(k,2,0) + v(k,j,i) * flag1 |
---|
1860 | ENDDO |
---|
1861 | ENDDO |
---|
1862 | ENDDO |
---|
1863 | |
---|
1864 | #if defined( __parallel ) |
---|
1865 | ! |
---|
1866 | !-- Compute total sum from local sums |
---|
1867 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1868 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, & |
---|
1869 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1870 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1871 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, & |
---|
1872 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1873 | #else |
---|
1874 | sums(:,1) = sums_l(:,1,0) |
---|
1875 | sums(:,2) = sums_l(:,2,0) |
---|
1876 | #endif |
---|
1877 | |
---|
1878 | ! |
---|
1879 | !-- Final values are obtained by division by the total number of grid |
---|
1880 | !-- points used for the summation. |
---|
1881 | hom(:,1,1,0) = sums(:,1) / ngp_2dh_outer(:,0) ! u |
---|
1882 | hom(:,1,2,0) = sums(:,2) / ngp_2dh_outer(:,0) ! v |
---|
1883 | |
---|
1884 | ! |
---|
1885 | !-- Now calculate the profiles of SGS TKE and the resolved-scale |
---|
1886 | !-- velocity variances |
---|
1887 | sums_l(:,8,0) = 0.0_wp |
---|
1888 | sums_l(:,30,0) = 0.0_wp |
---|
1889 | sums_l(:,31,0) = 0.0_wp |
---|
1890 | sums_l(:,32,0) = 0.0_wp |
---|
1891 | DO i = nxl, nxr |
---|
1892 | DO j = nys, nyn |
---|
1893 | DO k = nzb, nzt+1 |
---|
1894 | ! |
---|
1895 | !-- Flag indicating vicinity of wall |
---|
1896 | flag1 = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 24 ) ) |
---|
1897 | |
---|
1898 | sums_l(k,8,0) = sums_l(k,8,0) + e(k,j,i) * flag1 |
---|
1899 | sums_l(k,30,0) = sums_l(k,30,0) + ( u(k,j,i) - hom(k,1,1,0) )**2 * flag1 |
---|
1900 | sums_l(k,31,0) = sums_l(k,31,0) + ( v(k,j,i) - hom(k,1,2,0) )**2 * flag1 |
---|
1901 | sums_l(k,32,0) = sums_l(k,32,0) + w(k,j,i)**2 * flag1 |
---|
1902 | ENDDO |
---|
1903 | ENDDO |
---|
1904 | ENDDO |
---|
1905 | |
---|
1906 | #if defined( __parallel ) |
---|
1907 | ! |
---|
1908 | !-- Compute total sum from local sums |
---|
1909 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1910 | CALL MPI_ALLREDUCE( sums_l(nzb,8,0), sums(nzb,8), nzt+2-nzb, & |
---|
1911 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1912 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1913 | CALL MPI_ALLREDUCE( sums_l(nzb,30,0), sums(nzb,30), nzt+2-nzb, & |
---|
1914 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1915 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1916 | CALL MPI_ALLREDUCE( sums_l(nzb,31,0), sums(nzb,31), nzt+2-nzb, & |
---|
1917 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1918 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1919 | CALL MPI_ALLREDUCE( sums_l(nzb,32,0), sums(nzb,32), nzt+2-nzb, & |
---|
1920 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1921 | |
---|
1922 | #else |
---|
1923 | sums(:,8) = sums_l(:,8,0) |
---|
1924 | sums(:,30) = sums_l(:,30,0) |
---|
1925 | sums(:,31) = sums_l(:,31,0) |
---|
1926 | sums(:,32) = sums_l(:,32,0) |
---|
1927 | #endif |
---|
1928 | |
---|
1929 | ! |
---|
1930 | !-- Final values are obtained by division by the total number of grid |
---|
1931 | !-- points used for the summation. |
---|
1932 | hom(:,1,8,0) = sums(:,8) / ngp_2dh_outer(:,0) ! e |
---|
1933 | hom(:,1,30,0) = sums(:,30) / ngp_2dh_outer(:,0) ! u*2 |
---|
1934 | hom(:,1,31,0) = sums(:,31) / ngp_2dh_outer(:,0) ! v*2 |
---|
1935 | hom(:,1,32,0) = sums(:,32) / ngp_2dh_outer(:,0) ! w*2 |
---|
1936 | |
---|
1937 | ENDIF |
---|
1938 | |
---|
1939 | END SUBROUTINE lpm_init_sgs_tke |
---|
1940 | |
---|
1941 | |
---|
1942 | !------------------------------------------------------------------------------! |
---|
1943 | ! Description: |
---|
1944 | ! ------------ |
---|
1945 | !> Sobroutine control lpm actions, i.e. all actions during one time step. |
---|
1946 | !------------------------------------------------------------------------------! |
---|
1947 | SUBROUTINE lpm_actions( location ) |
---|
1948 | |
---|
1949 | CHARACTER (LEN=*), INTENT(IN) :: location !< call location string |
---|
1950 | |
---|
1951 | INTEGER(iwp) :: i !< |
---|
1952 | INTEGER(iwp) :: ie !< |
---|
1953 | INTEGER(iwp) :: is !< |
---|
1954 | INTEGER(iwp) :: j !< |
---|
1955 | INTEGER(iwp) :: je !< |
---|
1956 | INTEGER(iwp) :: js !< |
---|
1957 | INTEGER(iwp), SAVE :: lpm_count = 0 !< |
---|
1958 | INTEGER(iwp) :: k !< |
---|
1959 | INTEGER(iwp) :: ke !< |
---|
1960 | INTEGER(iwp) :: ks !< |
---|
1961 | INTEGER(iwp) :: m !< |
---|
1962 | INTEGER(iwp), SAVE :: steps = 0 !< |
---|
1963 | |
---|
1964 | LOGICAL :: first_loop_stride !< |
---|
1965 | |
---|
1966 | |
---|
1967 | SELECT CASE ( location ) |
---|
1968 | |
---|
1969 | CASE ( 'after_prognostic_equations' ) |
---|
1970 | |
---|
1971 | CALL cpu_log( log_point(25), 'lpm', 'start' ) |
---|
1972 | ! |
---|
1973 | !-- Write particle data at current time on file. |
---|
1974 | !-- This has to be done here, before particles are further processed, |
---|
1975 | !-- because they may be deleted within this timestep (in case that |
---|
1976 | !-- dt_write_particle_data = dt_prel = particle_maximum_age). |
---|
1977 | time_write_particle_data = time_write_particle_data + dt_3d |
---|
1978 | IF ( time_write_particle_data >= dt_write_particle_data ) THEN |
---|
1979 | |
---|
1980 | CALL lpm_data_output_particles |
---|
1981 | ! |
---|
1982 | !-- The MOD function allows for changes in the output interval with restart |
---|
1983 | !-- runs. |
---|
1984 | time_write_particle_data = MOD( time_write_particle_data, & |
---|
1985 | MAX( dt_write_particle_data, dt_3d ) ) |
---|
1986 | ENDIF |
---|
1987 | |
---|
1988 | ! |
---|
1989 | !-- Initialize arrays for marking those particles to be deleted after the |
---|
1990 | !-- (sub-) timestep |
---|
1991 | deleted_particles = 0 |
---|
1992 | |
---|
1993 | ! |
---|
1994 | !-- Initialize variables used for accumulating the number of particles |
---|
1995 | !-- xchanged between the subdomains during all sub-timesteps (if sgs |
---|
1996 | !-- velocities are included). These data are output further below on the |
---|
1997 | !-- particle statistics file. |
---|
1998 | trlp_count_sum = 0 |
---|
1999 | trlp_count_recv_sum = 0 |
---|
2000 | trrp_count_sum = 0 |
---|
2001 | trrp_count_recv_sum = 0 |
---|
2002 | trsp_count_sum = 0 |
---|
2003 | trsp_count_recv_sum = 0 |
---|
2004 | trnp_count_sum = 0 |
---|
2005 | trnp_count_recv_sum = 0 |
---|
2006 | ! |
---|
2007 | !-- Calculate exponential term used in case of particle inertia for each |
---|
2008 | !-- of the particle groups |
---|
2009 | DO m = 1, number_of_particle_groups |
---|
2010 | IF ( particle_groups(m)%density_ratio /= 0.0_wp ) THEN |
---|
2011 | particle_groups(m)%exp_arg = & |
---|
2012 | 4.5_wp * particle_groups(m)%density_ratio * & |
---|
2013 | molecular_viscosity / ( particle_groups(m)%radius )**2 |
---|
2014 | |
---|
2015 | particle_groups(m)%exp_term = EXP( -particle_groups(m)%exp_arg * & |
---|
2016 | dt_3d ) |
---|
2017 | ENDIF |
---|
2018 | ENDDO |
---|
2019 | ! |
---|
2020 | !-- If necessary, release new set of particles |
---|
2021 | IF ( ( simulated_time - last_particle_release_time ) >= dt_prel .AND. & |
---|
2022 | end_time_prel > simulated_time ) THEN |
---|
2023 | DO WHILE ( ( simulated_time - last_particle_release_time ) >= dt_prel ) |
---|
2024 | CALL lpm_create_particle( PHASE_RELEASE ) |
---|
2025 | last_particle_release_time = last_particle_release_time + dt_prel |
---|
2026 | ENDDO |
---|
2027 | ENDIF |
---|
2028 | ! |
---|
2029 | !-- Reset summation arrays |
---|
2030 | IF ( cloud_droplets ) THEN |
---|
2031 | ql_c = 0.0_wp |
---|
2032 | ql_v = 0.0_wp |
---|
2033 | ql_vp = 0.0_wp |
---|
2034 | ENDIF |
---|
2035 | |
---|
2036 | first_loop_stride = .TRUE. |
---|
2037 | grid_particles(:,:,:)%time_loop_done = .TRUE. |
---|
2038 | ! |
---|
2039 | !-- Timestep loop for particle advection. |
---|
2040 | !-- This loop has to be repeated until the advection time of every particle |
---|
2041 | !-- (within the total domain!) has reached the LES timestep (dt_3d). |
---|
2042 | !-- In case of including the SGS velocities, the particle timestep may be |
---|
2043 | !-- smaller than the LES timestep (because of the Lagrangian timescale |
---|
2044 | !-- restriction) and particles may require to undergo several particle |
---|
2045 | !-- timesteps, before the LES timestep is reached. Because the number of these |
---|
2046 | !-- particle timesteps to be carried out is unknown at first, these steps are |
---|
2047 | !-- carried out in the following infinite loop with exit condition. |
---|
2048 | DO |
---|
2049 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'start' ) |
---|
2050 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
2051 | |
---|
2052 | ! |
---|
2053 | !-- If particle advection includes SGS velocity components, calculate the |
---|
2054 | !-- required SGS quantities (i.e. gradients of the TKE, as well as |
---|
2055 | !-- horizontally averaged profiles of the SGS TKE and the resolved-scale |
---|
2056 | !-- velocity variances) |
---|
2057 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
2058 | CALL lpm_init_sgs_tke |
---|
2059 | ENDIF |
---|
2060 | ! |
---|
2061 | !-- In case SGS-particle speed is considered, particles may carry out |
---|
2062 | !-- several particle timesteps. In order to prevent unnecessary |
---|
2063 | !-- treatment of particles that already reached the final time level, |
---|
2064 | !-- particles are sorted into contiguous blocks of finished and |
---|
2065 | !-- not-finished particles, in addition to their already sorting |
---|
2066 | !-- according to their sub-boxes. |
---|
2067 | IF ( .NOT. first_loop_stride .AND. use_sgs_for_particles ) & |
---|
2068 | CALL lpm_sort_timeloop_done |
---|
2069 | DO i = nxl, nxr |
---|
2070 | DO j = nys, nyn |
---|
2071 | DO k = nzb+1, nzt |
---|
2072 | |
---|
2073 | number_of_particles = prt_count(k,j,i) |
---|
2074 | ! |
---|
2075 | !-- If grid cell gets empty, flag must be true |
---|
2076 | IF ( number_of_particles <= 0 ) THEN |
---|
2077 | grid_particles(k,j,i)%time_loop_done = .TRUE. |
---|
2078 | CYCLE |
---|
2079 | ENDIF |
---|
2080 | |
---|
2081 | IF ( .NOT. first_loop_stride .AND. & |
---|
2082 | grid_particles(k,j,i)%time_loop_done ) CYCLE |
---|
2083 | |
---|
2084 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
2085 | |
---|
2086 | particles(1:number_of_particles)%particle_mask = .TRUE. |
---|
2087 | ! |
---|
2088 | !-- Initialize the variable storing the total time that a particle |
---|
2089 | !-- has advanced within the timestep procedure |
---|
2090 | IF ( first_loop_stride ) THEN |
---|
2091 | particles(1:number_of_particles)%dt_sum = 0.0_wp |
---|
2092 | ENDIF |
---|
2093 | ! |
---|
2094 | !-- Particle (droplet) growth by condensation/evaporation and |
---|
2095 | !-- collision |
---|
2096 | IF ( cloud_droplets .AND. first_loop_stride) THEN |
---|
2097 | ! |
---|
2098 | !-- Droplet growth by condensation / evaporation |
---|
2099 | CALL lpm_droplet_condensation(i,j,k) |
---|
2100 | ! |
---|
2101 | !-- Particle growth by collision |
---|
2102 | IF ( collision_kernel /= 'none' ) THEN |
---|
2103 | CALL lpm_droplet_collision(i,j,k) |
---|
2104 | ENDIF |
---|
2105 | |
---|
2106 | ENDIF |
---|
2107 | ! |
---|
2108 | !-- Initialize the switch used for the loop exit condition checked |
---|
2109 | !-- at the end of this loop. If at least one particle has failed to |
---|
2110 | !-- reach the LES timestep, this switch will be set false in |
---|
2111 | !-- lpm_advec. |
---|
2112 | dt_3d_reached_l = .TRUE. |
---|
2113 | |
---|
2114 | ! |
---|
2115 | !-- Particle advection |
---|
2116 | CALL lpm_advec( i, j, k ) |
---|
2117 | ! |
---|
2118 | !-- Particle reflection from walls. Only applied if the particles |
---|
2119 | !-- are in the vertical range of the topography. (Here, some |
---|
2120 | !-- optimization is still possible.) |
---|
2121 | IF ( topography /= 'flat' .AND. k < nzb_max + 2 ) THEN |
---|
2122 | CALL lpm_boundary_conds( 'walls', i, j, k ) |
---|
2123 | ENDIF |
---|
2124 | ! |
---|
2125 | !-- User-defined actions after the calculation of the new particle |
---|
2126 | !-- position |
---|
2127 | CALL user_lpm_advec( i, j, k ) |
---|
2128 | ! |
---|
2129 | !-- Apply boundary conditions to those particles that have crossed |
---|
2130 | !-- the top or bottom boundary and delete those particles, which are |
---|
2131 | !-- older than allowed |
---|
2132 | CALL lpm_boundary_conds( 'bottom/top', i, j, k ) |
---|
2133 | ! |
---|
2134 | !--- If not all particles of the actual grid cell have reached the |
---|
2135 | !-- LES timestep, this cell has to do another loop iteration. Due to |
---|
2136 | !-- the fact that particles can move into neighboring grid cells, |
---|
2137 | !-- these neighbor cells also have to perform another loop iteration. |
---|
2138 | !-- Please note, this realization does not work properly if |
---|
2139 | !-- particles move into another subdomain. |
---|
2140 | IF ( .NOT. dt_3d_reached_l ) THEN |
---|
2141 | ks = MAX(nzb+1,k-1) |
---|
2142 | ke = MIN(nzt,k+1) |
---|
2143 | js = MAX(nys,j-1) |
---|
2144 | je = MIN(nyn,j+1) |
---|
2145 | is = MAX(nxl,i-1) |
---|
2146 | ie = MIN(nxr,i+1) |
---|
2147 | grid_particles(ks:ke,js:je,is:ie)%time_loop_done = .FALSE. |
---|
2148 | ELSE |
---|
2149 | grid_particles(k,j,i)%time_loop_done = .TRUE. |
---|
2150 | ENDIF |
---|
2151 | |
---|
2152 | ENDDO |
---|
2153 | ENDDO |
---|
2154 | ENDDO |
---|
2155 | steps = steps + 1 |
---|
2156 | dt_3d_reached_l = ALL(grid_particles(:,:,:)%time_loop_done) |
---|
2157 | ! |
---|
2158 | !-- Find out, if all particles on every PE have completed the LES timestep |
---|
2159 | !-- and set the switch corespondingly |
---|
2160 | #if defined( __parallel ) |
---|
2161 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2162 | CALL MPI_ALLREDUCE( dt_3d_reached_l, dt_3d_reached, 1, MPI_LOGICAL, & |
---|
2163 | MPI_LAND, comm2d, ierr ) |
---|
2164 | #else |
---|
2165 | dt_3d_reached = dt_3d_reached_l |
---|
2166 | #endif |
---|
2167 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'stop' ) |
---|
2168 | |
---|
2169 | ! |
---|
2170 | !-- Apply splitting and merging algorithm |
---|
2171 | IF ( cloud_droplets ) THEN |
---|
2172 | IF ( splitting ) THEN |
---|
2173 | CALL lpm_splitting |
---|
2174 | ENDIF |
---|
2175 | IF ( merging ) THEN |
---|
2176 | CALL lpm_merging |
---|
2177 | ENDIF |
---|
2178 | ENDIF |
---|
2179 | ! |
---|
2180 | !-- Move Particles local to PE to a different grid cell |
---|
2181 | CALL lpm_move_particle |
---|
2182 | ! |
---|
2183 | !-- Horizontal boundary conditions including exchange between subdmains |
---|
2184 | CALL lpm_exchange_horiz |
---|
2185 | |
---|
2186 | ! |
---|
2187 | !-- IF .FALSE., lpm_sort_and_delete is done inside pcmp |
---|
2188 | IF ( .NOT. dt_3d_reached .OR. .NOT. nested_run ) THEN |
---|
2189 | ! |
---|
2190 | !-- Pack particles (eliminate those marked for deletion), |
---|
2191 | !-- determine new number of particles |
---|
2192 | CALL lpm_sort_and_delete |
---|
2193 | |
---|
2194 | !-- Initialize variables for the next (sub-) timestep, i.e., for marking |
---|
2195 | !-- those particles to be deleted after the timestep |
---|
2196 | deleted_particles = 0 |
---|
2197 | ENDIF |
---|
2198 | |
---|
2199 | IF ( dt_3d_reached ) EXIT |
---|
2200 | |
---|
2201 | first_loop_stride = .FALSE. |
---|
2202 | ENDDO ! timestep loop |
---|
2203 | ! |
---|
2204 | !-- in case of nested runs do the transfer of particles after every full model time step |
---|
2205 | IF ( nested_run ) THEN |
---|
2206 | CALL particles_from_parent_to_child |
---|
2207 | CALL particles_from_child_to_parent |
---|
2208 | CALL pmcp_p_delete_particles_in_fine_grid_area |
---|
2209 | |
---|
2210 | CALL lpm_sort_and_delete |
---|
2211 | |
---|
2212 | deleted_particles = 0 |
---|
2213 | ENDIF |
---|
2214 | |
---|
2215 | ! |
---|
2216 | !-- Calculate the new liquid water content for each grid box |
---|
2217 | IF ( cloud_droplets ) CALL lpm_calc_liquid_water_content |
---|
2218 | |
---|
2219 | ! |
---|
2220 | !-- Deallocate unused memory |
---|
2221 | IF ( deallocate_memory .AND. lpm_count == step_dealloc ) THEN |
---|
2222 | CALL dealloc_particles_array |
---|
2223 | lpm_count = 0 |
---|
2224 | ELSEIF ( deallocate_memory ) THEN |
---|
2225 | lpm_count = lpm_count + 1 |
---|
2226 | ENDIF |
---|
2227 | |
---|
2228 | ! |
---|
2229 | !-- Write particle statistics (in particular the number of particles |
---|
2230 | !-- exchanged between the subdomains) on file |
---|
2231 | IF ( write_particle_statistics ) CALL lpm_write_exchange_statistics |
---|
2232 | |
---|
2233 | CALL cpu_log( log_point(25), 'lpm', 'stop' ) |
---|
2234 | |
---|
2235 | ! ! |
---|
2236 | ! !-- Output of particle time series |
---|
2237 | ! IF ( particle_advection ) THEN |
---|
2238 | ! IF ( time_dopts >= dt_dopts .OR. & |
---|
2239 | ! ( time_since_reference_point >= particle_advection_start .AND. & |
---|
2240 | ! first_call_lpm ) ) THEN |
---|
2241 | ! CALL lpm_data_output_ptseries |
---|
2242 | ! time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) ) |
---|
2243 | ! ENDIF |
---|
2244 | ! ENDIF |
---|
2245 | |
---|
2246 | CASE DEFAULT |
---|
2247 | CONTINUE |
---|
2248 | |
---|
2249 | END SELECT |
---|
2250 | |
---|
2251 | END SUBROUTINE lpm_actions |
---|
2252 | |
---|
2253 | |
---|
2254 | !------------------------------------------------------------------------------! |
---|
2255 | ! Description: |
---|
2256 | ! ------------ |
---|
2257 | ! |
---|
2258 | !------------------------------------------------------------------------------! |
---|
2259 | SUBROUTINE particles_from_parent_to_child |
---|
2260 | IMPLICIT NONE |
---|
2261 | |
---|
2262 | CALL pmcp_c_get_particle_from_parent ! Child actions |
---|
2263 | CALL pmcp_p_fill_particle_win ! Parent actions |
---|
2264 | |
---|
2265 | RETURN |
---|
2266 | END SUBROUTINE particles_from_parent_to_child |
---|
2267 | |
---|
2268 | |
---|
2269 | !------------------------------------------------------------------------------! |
---|
2270 | ! Description: |
---|
2271 | ! ------------ |
---|
2272 | ! |
---|
2273 | !------------------------------------------------------------------------------! |
---|
2274 | SUBROUTINE particles_from_child_to_parent |
---|
2275 | IMPLICIT NONE |
---|
2276 | |
---|
2277 | CALL pmcp_c_send_particle_to_parent ! Child actions |
---|
2278 | CALL pmcp_p_empty_particle_win ! Parent actions |
---|
2279 | |
---|
2280 | RETURN |
---|
2281 | END SUBROUTINE particles_from_child_to_parent |
---|
2282 | |
---|
2283 | !------------------------------------------------------------------------------! |
---|
2284 | ! Description: |
---|
2285 | ! ------------ |
---|
2286 | !> This routine write exchange statistics of the lpm in a ascii file. |
---|
2287 | !------------------------------------------------------------------------------! |
---|
2288 | SUBROUTINE lpm_write_exchange_statistics |
---|
2289 | |
---|
2290 | INTEGER(iwp) :: ip !< |
---|
2291 | INTEGER(iwp) :: jp !< |
---|
2292 | INTEGER(iwp) :: kp !< |
---|
2293 | INTEGER(iwp) :: tot_number_of_particles !< |
---|
2294 | |
---|
2295 | ! |
---|
2296 | !-- Determine the current number of particles |
---|
2297 | number_of_particles = 0 |
---|
2298 | DO ip = nxl, nxr |
---|
2299 | DO jp = nys, nyn |
---|
2300 | DO kp = nzb+1, nzt |
---|
2301 | number_of_particles = number_of_particles & |
---|
2302 | + prt_count(kp,jp,ip) |
---|
2303 | ENDDO |
---|
2304 | ENDDO |
---|
2305 | ENDDO |
---|
2306 | |
---|
2307 | CALL check_open( 80 ) |
---|
2308 | #if defined( __parallel ) |
---|
2309 | WRITE ( 80, 8000 ) current_timestep_number+1, simulated_time+dt_3d, & |
---|
2310 | number_of_particles, pleft, trlp_count_sum, & |
---|
2311 | trlp_count_recv_sum, pright, trrp_count_sum, & |
---|
2312 | trrp_count_recv_sum, psouth, trsp_count_sum, & |
---|
2313 | trsp_count_recv_sum, pnorth, trnp_count_sum, & |
---|
2314 | trnp_count_recv_sum |
---|
2315 | #else |
---|
2316 | WRITE ( 80, 8000 ) current_timestep_number+1, simulated_time+dt_3d, & |
---|
2317 | number_of_particles |
---|
2318 | #endif |
---|
2319 | CALL close_file( 80 ) |
---|
2320 | |
---|
2321 | IF ( number_of_particles > 0 ) THEN |
---|
2322 | WRITE(9,*) 'number_of_particles ', number_of_particles, & |
---|
2323 | current_timestep_number + 1, simulated_time + dt_3d |
---|
2324 | ENDIF |
---|
2325 | |
---|
2326 | #if defined( __parallel ) |
---|
2327 | CALL MPI_ALLREDUCE( number_of_particles, tot_number_of_particles, 1, & |
---|
2328 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
2329 | #else |
---|
2330 | tot_number_of_particles = number_of_particles |
---|
2331 | #endif |
---|
2332 | |
---|
2333 | IF ( nested_run ) THEN |
---|
2334 | CALL pmcp_g_print_number_of_particles( simulated_time+dt_3d, & |
---|
2335 | tot_number_of_particles) |
---|
2336 | ENDIF |
---|
2337 | |
---|
2338 | ! |
---|
2339 | !-- Formats |
---|
2340 | 8000 FORMAT (I6,1X,F7.2,4X,I10,5X,4(I3,1X,I4,'/',I4,2X),6X,I10) |
---|
2341 | |
---|
2342 | |
---|
2343 | END SUBROUTINE lpm_write_exchange_statistics |
---|
2344 | |
---|
2345 | |
---|
2346 | !------------------------------------------------------------------------------! |
---|
2347 | ! Description: |
---|
2348 | ! ------------ |
---|
2349 | !> Write particle data in FORTRAN binary and/or netCDF format |
---|
2350 | !------------------------------------------------------------------------------! |
---|
2351 | SUBROUTINE lpm_data_output_particles |
---|
2352 | |
---|
2353 | INTEGER(iwp) :: ip !< |
---|
2354 | INTEGER(iwp) :: jp !< |
---|
2355 | INTEGER(iwp) :: kp !< |
---|
2356 | |
---|
2357 | CALL cpu_log( log_point_s(40), 'lpm_data_output', 'start' ) |
---|
2358 | |
---|
2359 | ! |
---|
2360 | !-- Attention: change version number for unit 85 (in routine check_open) |
---|
2361 | !-- whenever the output format for this unit is changed! |
---|
2362 | CALL check_open( 85 ) |
---|
2363 | |
---|
2364 | WRITE ( 85 ) simulated_time |
---|
2365 | WRITE ( 85 ) prt_count |
---|
2366 | |
---|
2367 | DO ip = nxl, nxr |
---|
2368 | DO jp = nys, nyn |
---|
2369 | DO kp = nzb+1, nzt |
---|
2370 | number_of_particles = prt_count(kp,jp,ip) |
---|
2371 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
2372 | IF ( number_of_particles <= 0 ) CYCLE |
---|
2373 | WRITE ( 85 ) particles |
---|
2374 | ENDDO |
---|
2375 | ENDDO |
---|
2376 | ENDDO |
---|
2377 | |
---|
2378 | CALL close_file( 85 ) |
---|
2379 | |
---|
2380 | |
---|
2381 | #if defined( __netcdf ) |
---|
2382 | ! ! |
---|
2383 | ! !-- Output in netCDF format |
---|
2384 | ! CALL check_open( 108 ) |
---|
2385 | ! |
---|
2386 | ! ! |
---|
2387 | ! !-- Update the NetCDF time axis |
---|
2388 | ! prt_time_count = prt_time_count + 1 |
---|
2389 | ! |
---|
2390 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_time_prt, & |
---|
2391 | ! (/ simulated_time /), & |
---|
2392 | ! start = (/ prt_time_count /), count = (/ 1 /) ) |
---|
2393 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 1 ) |
---|
2394 | ! |
---|
2395 | ! ! |
---|
2396 | ! !-- Output the real number of particles used |
---|
2397 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_rnop_prt, & |
---|
2398 | ! (/ number_of_particles /), & |
---|
2399 | ! start = (/ prt_time_count /), count = (/ 1 /) ) |
---|
2400 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 2 ) |
---|
2401 | ! |
---|
2402 | ! ! |
---|
2403 | ! !-- Output all particle attributes |
---|
2404 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(1), particles%age, & |
---|
2405 | ! start = (/ 1, prt_time_count /), & |
---|
2406 | ! count = (/ maximum_number_of_particles /) ) |
---|
2407 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 3 ) |
---|
2408 | ! |
---|
2409 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(2), particles%user, & |
---|
2410 | ! start = (/ 1, prt_time_count /), & |
---|
2411 | ! count = (/ maximum_number_of_particles /) ) |
---|
2412 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 4 ) |
---|
2413 | ! |
---|
2414 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(3), particles%origin_x, & |
---|
2415 | ! start = (/ 1, prt_time_count /), & |
---|
2416 | ! count = (/ maximum_number_of_particles /) ) |
---|
2417 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 5 ) |
---|
2418 | ! |
---|
2419 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(4), particles%origin_y, & |
---|
2420 | ! start = (/ 1, prt_time_count /), & |
---|
2421 | ! count = (/ maximum_number_of_particles /) ) |
---|
2422 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 6 ) |
---|
2423 | ! |
---|
2424 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(5), particles%origin_z, & |
---|
2425 | ! start = (/ 1, prt_time_count /), & |
---|
2426 | ! count = (/ maximum_number_of_particles /) ) |
---|
2427 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 7 ) |
---|
2428 | ! |
---|
2429 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(6), particles%radius, & |
---|
2430 | ! start = (/ 1, prt_time_count /), & |
---|
2431 | ! count = (/ maximum_number_of_particles /) ) |
---|
2432 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 8 ) |
---|
2433 | ! |
---|
2434 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(7), particles%speed_x, & |
---|
2435 | ! start = (/ 1, prt_time_count /), & |
---|
2436 | ! count = (/ maximum_number_of_particles /) ) |
---|
2437 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 9 ) |
---|
2438 | ! |
---|
2439 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(8), particles%speed_y, & |
---|
2440 | ! start = (/ 1, prt_time_count /), & |
---|
2441 | ! count = (/ maximum_number_of_particles /) ) |
---|
2442 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 10 ) |
---|
2443 | ! |
---|
2444 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(9), particles%speed_z, & |
---|
2445 | ! start = (/ 1, prt_time_count /), & |
---|
2446 | ! count = (/ maximum_number_of_particles /) ) |
---|
2447 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 11 ) |
---|
2448 | ! |
---|
2449 | ! nc_stat = NF90_PUT_VAR( id_set_prt,id_var_prt(10), & |
---|
2450 | ! particles%weight_factor, & |
---|
2451 | ! start = (/ 1, prt_time_count /), & |
---|
2452 | ! count = (/ maximum_number_of_particles /) ) |
---|
2453 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 12 ) |
---|
2454 | ! |
---|
2455 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(11), particles%x, & |
---|
2456 | ! start = (/ 1, prt_time_count /), & |
---|
2457 | ! count = (/ maximum_number_of_particles /) ) |
---|
2458 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 13 ) |
---|
2459 | ! |
---|
2460 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(12), particles%y, & |
---|
2461 | ! start = (/ 1, prt_time_count /), & |
---|
2462 | ! count = (/ maximum_number_of_particles /) ) |
---|
2463 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 14 ) |
---|
2464 | ! |
---|
2465 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(13), particles%z, & |
---|
2466 | ! start = (/ 1, prt_time_count /), & |
---|
2467 | ! count = (/ maximum_number_of_particles /) ) |
---|
2468 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 15 ) |
---|
2469 | ! |
---|
2470 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(14), particles%class, & |
---|
2471 | ! start = (/ 1, prt_time_count /), & |
---|
2472 | ! count = (/ maximum_number_of_particles /) ) |
---|
2473 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 16 ) |
---|
2474 | ! |
---|
2475 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(15), particles%group, & |
---|
2476 | ! start = (/ 1, prt_time_count /), & |
---|
2477 | ! count = (/ maximum_number_of_particles /) ) |
---|
2478 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 17 ) |
---|
2479 | ! |
---|
2480 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(16), & |
---|
2481 | ! particles%id2, & |
---|
2482 | ! start = (/ 1, prt_time_count /), & |
---|
2483 | ! count = (/ maximum_number_of_particles /) ) |
---|
2484 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 18 ) |
---|
2485 | ! |
---|
2486 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(17), particles%id1, & |
---|
2487 | ! start = (/ 1, prt_time_count /), & |
---|
2488 | ! count = (/ maximum_number_of_particles /) ) |
---|
2489 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 19 ) |
---|
2490 | ! |
---|
2491 | #endif |
---|
2492 | |
---|
2493 | CALL cpu_log( log_point_s(40), 'lpm_data_output', 'stop' ) |
---|
2494 | |
---|
2495 | END SUBROUTINE lpm_data_output_particles |
---|
2496 | |
---|
2497 | !------------------------------------------------------------------------------! |
---|
2498 | ! Description: |
---|
2499 | ! ------------ |
---|
2500 | !> This routine calculates and provide particle timeseries output. |
---|
2501 | !------------------------------------------------------------------------------! |
---|
2502 | SUBROUTINE lpm_data_output_ptseries |
---|
2503 | |
---|
2504 | INTEGER(iwp) :: i !< |
---|
2505 | INTEGER(iwp) :: inum !< |
---|
2506 | INTEGER(iwp) :: j !< |
---|
2507 | INTEGER(iwp) :: jg !< |
---|
2508 | INTEGER(iwp) :: k !< |
---|
2509 | INTEGER(iwp) :: n !< |
---|
2510 | |
---|
2511 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pts_value !< |
---|
2512 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pts_value_l !< |
---|
2513 | |
---|
2514 | |
---|
2515 | CALL cpu_log( log_point(36), 'data_output_ptseries', 'start' ) |
---|
2516 | |
---|
2517 | IF ( myid == 0 ) THEN |
---|
2518 | ! |
---|
2519 | !-- Open file for time series output in NetCDF format |
---|
2520 | dopts_time_count = dopts_time_count + 1 |
---|
2521 | CALL check_open( 109 ) |
---|
2522 | #if defined( __netcdf ) |
---|
2523 | ! |
---|
2524 | !-- Update the particle time series time axis |
---|
2525 | nc_stat = NF90_PUT_VAR( id_set_pts, id_var_time_pts, & |
---|
2526 | (/ time_since_reference_point /), & |
---|
2527 | start = (/ dopts_time_count /), count = (/ 1 /) ) |
---|
2528 | CALL netcdf_handle_error( 'data_output_ptseries', 391 ) |
---|
2529 | #endif |
---|
2530 | |
---|
2531 | ENDIF |
---|
2532 | |
---|
2533 | ALLOCATE( pts_value(0:number_of_particle_groups,dopts_num), & |
---|
2534 | pts_value_l(0:number_of_particle_groups,dopts_num) ) |
---|
2535 | |
---|
2536 | pts_value_l = 0.0_wp |
---|
2537 | pts_value_l(:,16) = 9999999.9_wp ! for calculation of minimum radius |
---|
2538 | |
---|
2539 | ! |
---|
2540 | !-- Calculate or collect the particle time series quantities for all particles |
---|
2541 | !-- and seperately for each particle group (if there is more than one group) |
---|
2542 | DO i = nxl, nxr |
---|
2543 | DO j = nys, nyn |
---|
2544 | DO k = nzb, nzt |
---|
2545 | number_of_particles = prt_count(k,j,i) |
---|
2546 | IF (number_of_particles <= 0) CYCLE |
---|
2547 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
2548 | DO n = 1, number_of_particles |
---|
2549 | |
---|
2550 | IF ( particles(n)%particle_mask ) THEN ! Restrict analysis to active particles |
---|
2551 | |
---|
2552 | pts_value_l(0,1) = pts_value_l(0,1) + 1.0_wp ! total # of particles |
---|
2553 | pts_value_l(0,2) = pts_value_l(0,2) + & |
---|
2554 | ( particles(n)%x - particles(n)%origin_x ) ! mean x |
---|
2555 | pts_value_l(0,3) = pts_value_l(0,3) + & |
---|
2556 | ( particles(n)%y - particles(n)%origin_y ) ! mean y |
---|
2557 | pts_value_l(0,4) = pts_value_l(0,4) + & |
---|
2558 | ( particles(n)%z - particles(n)%origin_z ) ! mean z |
---|
2559 | pts_value_l(0,5) = pts_value_l(0,5) + particles(n)%z ! mean z (absolute) |
---|
2560 | pts_value_l(0,6) = pts_value_l(0,6) + particles(n)%speed_x ! mean u |
---|
2561 | pts_value_l(0,7) = pts_value_l(0,7) + particles(n)%speed_y ! mean v |
---|
2562 | pts_value_l(0,8) = pts_value_l(0,8) + particles(n)%speed_z ! mean w |
---|
2563 | pts_value_l(0,9) = pts_value_l(0,9) + particles(n)%rvar1 ! mean sgsu |
---|
2564 | pts_value_l(0,10) = pts_value_l(0,10) + particles(n)%rvar2 ! mean sgsv |
---|
2565 | pts_value_l(0,11) = pts_value_l(0,11) + particles(n)%rvar3 ! mean sgsw |
---|
2566 | IF ( particles(n)%speed_z > 0.0_wp ) THEN |
---|
2567 | pts_value_l(0,12) = pts_value_l(0,12) + 1.0_wp ! # of upward moving prts |
---|
2568 | pts_value_l(0,13) = pts_value_l(0,13) + & |
---|
2569 | particles(n)%speed_z ! mean w upw. |
---|
2570 | ELSE |
---|
2571 | pts_value_l(0,14) = pts_value_l(0,14) + & |
---|
2572 | particles(n)%speed_z ! mean w down |
---|
2573 | ENDIF |
---|
2574 | pts_value_l(0,15) = pts_value_l(0,15) + particles(n)%radius ! mean rad |
---|
2575 | pts_value_l(0,16) = MIN( pts_value_l(0,16), particles(n)%radius ) ! minrad |
---|
2576 | pts_value_l(0,17) = MAX( pts_value_l(0,17), particles(n)%radius ) ! maxrad |
---|
2577 | pts_value_l(0,18) = pts_value_l(0,18) + 1.0_wp |
---|
2578 | pts_value_l(0,19) = pts_value_l(0,18) + 1.0_wp |
---|
2579 | ! |
---|
2580 | !-- Repeat the same for the respective particle group |
---|
2581 | IF ( number_of_particle_groups > 1 ) THEN |
---|
2582 | jg = particles(n)%group |
---|
2583 | |
---|
2584 | pts_value_l(jg,1) = pts_value_l(jg,1) + 1.0_wp |
---|
2585 | pts_value_l(jg,2) = pts_value_l(jg,2) + & |
---|
2586 | ( particles(n)%x - particles(n)%origin_x ) |
---|
2587 | pts_value_l(jg,3) = pts_value_l(jg,3) + & |
---|
2588 | ( particles(n)%y - particles(n)%origin_y ) |
---|
2589 | pts_value_l(jg,4) = pts_value_l(jg,4) + & |
---|
2590 | ( particles(n)%z - particles(n)%origin_z ) |
---|
2591 | pts_value_l(jg,5) = pts_value_l(jg,5) + particles(n)%z |
---|
2592 | pts_value_l(jg,6) = pts_value_l(jg,6) + particles(n)%speed_x |
---|
2593 | pts_value_l(jg,7) = pts_value_l(jg,7) + particles(n)%speed_y |
---|
2594 | pts_value_l(jg,8) = pts_value_l(jg,8) + particles(n)%speed_z |
---|
2595 | pts_value_l(jg,9) = pts_value_l(jg,9) + particles(n)%rvar1 |
---|
2596 | pts_value_l(jg,10) = pts_value_l(jg,10) + particles(n)%rvar2 |
---|
2597 | pts_value_l(jg,11) = pts_value_l(jg,11) + particles(n)%rvar3 |
---|
2598 | IF ( particles(n)%speed_z > 0.0_wp ) THEN |
---|
2599 | pts_value_l(jg,12) = pts_value_l(jg,12) + 1.0_wp |
---|
2600 | pts_value_l(jg,13) = pts_value_l(jg,13) + particles(n)%speed_z |
---|
2601 | ELSE |
---|
2602 | pts_value_l(jg,14) = pts_value_l(jg,14) + particles(n)%speed_z |
---|
2603 | ENDIF |
---|
2604 | pts_value_l(jg,15) = pts_value_l(jg,15) + particles(n)%radius |
---|
2605 | pts_value_l(jg,16) = MIN( pts_value(jg,16), particles(n)%radius ) |
---|
2606 | pts_value_l(jg,17) = MAX( pts_value(jg,17), particles(n)%radius ) |
---|
2607 | pts_value_l(jg,18) = pts_value_l(jg,18) + 1.0_wp |
---|
2608 | pts_value_l(jg,19) = pts_value_l(jg,19) + 1.0_wp |
---|
2609 | ENDIF |
---|
2610 | |
---|
2611 | ENDIF |
---|
2612 | |
---|
2613 | ENDDO |
---|
2614 | |
---|
2615 | ENDDO |
---|
2616 | ENDDO |
---|
2617 | ENDDO |
---|
2618 | |
---|
2619 | |
---|
2620 | #if defined( __parallel ) |
---|
2621 | ! |
---|
2622 | !-- Sum values of the subdomains |
---|
2623 | inum = number_of_particle_groups + 1 |
---|
2624 | |
---|
2625 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2626 | CALL MPI_ALLREDUCE( pts_value_l(0,1), pts_value(0,1), 15*inum, MPI_REAL, & |
---|
2627 | MPI_SUM, comm2d, ierr ) |
---|
2628 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2629 | CALL MPI_ALLREDUCE( pts_value_l(0,16), pts_value(0,16), inum, MPI_REAL, & |
---|
2630 | MPI_MIN, comm2d, ierr ) |
---|
2631 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2632 | CALL MPI_ALLREDUCE( pts_value_l(0,17), pts_value(0,17), inum, MPI_REAL, & |
---|
2633 | MPI_MAX, comm2d, ierr ) |
---|
2634 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2635 | CALL MPI_ALLREDUCE( pts_value_l(0,18), pts_value(0,18), inum, MPI_REAL, & |
---|
2636 | MPI_MAX, comm2d, ierr ) |
---|
2637 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2638 | CALL MPI_ALLREDUCE( pts_value_l(0,19), pts_value(0,19), inum, MPI_REAL, & |
---|
2639 | MPI_MIN, comm2d, ierr ) |
---|
2640 | #else |
---|
2641 | pts_value(:,1:19) = pts_value_l(:,1:19) |
---|
2642 | #endif |
---|
2643 | |
---|
2644 | ! |
---|
2645 | !-- Normalize the above calculated quantities (except min/max values) with the |
---|
2646 | !-- total number of particles |
---|
2647 | IF ( number_of_particle_groups > 1 ) THEN |
---|
2648 | inum = number_of_particle_groups |
---|
2649 | ELSE |
---|
2650 | inum = 0 |
---|
2651 | ENDIF |
---|
2652 | |
---|
2653 | DO j = 0, inum |
---|
2654 | |
---|
2655 | IF ( pts_value(j,1) > 0.0_wp ) THEN |
---|
2656 | |
---|
2657 | pts_value(j,2:15) = pts_value(j,2:15) / pts_value(j,1) |
---|
2658 | IF ( pts_value(j,12) > 0.0_wp .AND. pts_value(j,12) < 1.0_wp ) THEN |
---|
2659 | pts_value(j,13) = pts_value(j,13) / pts_value(j,12) |
---|
2660 | pts_value(j,14) = pts_value(j,14) / ( 1.0_wp - pts_value(j,12) ) |
---|
2661 | ELSEIF ( pts_value(j,12) == 0.0_wp ) THEN |
---|
2662 | pts_value(j,13) = -1.0_wp |
---|
2663 | ELSE |
---|
2664 | pts_value(j,14) = -1.0_wp |
---|
2665 | ENDIF |
---|
2666 | |
---|
2667 | ENDIF |
---|
2668 | |
---|
2669 | ENDDO |
---|
2670 | |
---|
2671 | ! |
---|
2672 | !-- Calculate higher order moments of particle time series quantities, |
---|
2673 | !-- seperately for each particle group (if there is more than one group) |
---|
2674 | DO i = nxl, nxr |
---|
2675 | DO j = nys, nyn |
---|
2676 | DO k = nzb, nzt |
---|
2677 | number_of_particles = prt_count(k,j,i) |
---|
2678 | IF (number_of_particles <= 0) CYCLE |
---|
2679 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
2680 | DO n = 1, number_of_particles |
---|
2681 | |
---|
2682 | pts_value_l(0,20) = pts_value_l(0,20) + ( particles(n)%x - & |
---|
2683 | particles(n)%origin_x - pts_value(0,2) )**2 ! x*2 |
---|
2684 | pts_value_l(0,21) = pts_value_l(0,21) + ( particles(n)%y - & |
---|
2685 | particles(n)%origin_y - pts_value(0,3) )**2 ! y*2 |
---|
2686 | pts_value_l(0,22) = pts_value_l(0,22) + ( particles(n)%z - & |
---|
2687 | particles(n)%origin_z - pts_value(0,4) )**2 ! z*2 |
---|
2688 | pts_value_l(0,23) = pts_value_l(0,23) + ( particles(n)%speed_x - & |
---|
2689 | pts_value(0,6) )**2 ! u*2 |
---|
2690 | pts_value_l(0,24) = pts_value_l(0,24) + ( particles(n)%speed_y - & |
---|
2691 | pts_value(0,7) )**2 ! v*2 |
---|
2692 | pts_value_l(0,25) = pts_value_l(0,25) + ( particles(n)%speed_z - & |
---|
2693 | pts_value(0,8) )**2 ! w*2 |
---|
2694 | pts_value_l(0,26) = pts_value_l(0,26) + ( particles(n)%rvar1 - & |
---|
2695 | pts_value(0,9) )**2 ! u"2 |
---|
2696 | pts_value_l(0,27) = pts_value_l(0,27) + ( particles(n)%rvar2 - & |
---|
2697 | pts_value(0,10) )**2 ! v"2 |
---|
2698 | pts_value_l(0,28) = pts_value_l(0,28) + ( particles(n)%rvar3 - & |
---|
2699 | pts_value(0,11) )**2 ! w"2 |
---|
2700 | ! |
---|
2701 | !-- Repeat the same for the respective particle group |
---|
2702 | IF ( number_of_particle_groups > 1 ) THEN |
---|
2703 | jg = particles(n)%group |
---|
2704 | |
---|
2705 | pts_value_l(jg,20) = pts_value_l(jg,20) + ( particles(n)%x - & |
---|
2706 | particles(n)%origin_x - pts_value(jg,2) )**2 |
---|
2707 | pts_value_l(jg,21) = pts_value_l(jg,21) + ( particles(n)%y - & |
---|
2708 | particles(n)%origin_y - pts_value(jg,3) )**2 |
---|
2709 | pts_value_l(jg,22) = pts_value_l(jg,22) + ( particles(n)%z - & |
---|
2710 | particles(n)%origin_z - pts_value(jg,4) )**2 |
---|
2711 | pts_value_l(jg,23) = pts_value_l(jg,23) + ( particles(n)%speed_x - & |
---|
2712 | pts_value(jg,6) )**2 |
---|
2713 | pts_value_l(jg,24) = pts_value_l(jg,24) + ( particles(n)%speed_y - & |
---|
2714 | pts_value(jg,7) )**2 |
---|
2715 | pts_value_l(jg,25) = pts_value_l(jg,25) + ( particles(n)%speed_z - & |
---|
2716 | pts_value(jg,8) )**2 |
---|
2717 | pts_value_l(jg,26) = pts_value_l(jg,26) + ( particles(n)%rvar1 - & |
---|
2718 | pts_value(jg,9) )**2 |
---|
2719 | pts_value_l(jg,27) = pts_value_l(jg,27) + ( particles(n)%rvar2 - & |
---|
2720 | pts_value(jg,10) )**2 |
---|
2721 | pts_value_l(jg,28) = pts_value_l(jg,28) + ( particles(n)%rvar3 - & |
---|
2722 | pts_value(jg,11) )**2 |
---|
2723 | ENDIF |
---|
2724 | |
---|
2725 | ENDDO |
---|
2726 | ENDDO |
---|
2727 | ENDDO |
---|
2728 | ENDDO |
---|
2729 | |
---|
2730 | pts_value_l(0,29) = ( number_of_particles - pts_value(0,1) / numprocs )**2 |
---|
2731 | ! variance of particle numbers |
---|
2732 | IF ( number_of_particle_groups > 1 ) THEN |
---|
2733 | DO j = 1, number_of_particle_groups |
---|
2734 | pts_value_l(j,29) = ( pts_value_l(j,1) - & |
---|
2735 | pts_value(j,1) / numprocs )**2 |
---|
2736 | ENDDO |
---|
2737 | ENDIF |
---|
2738 | |
---|
2739 | #if defined( __parallel ) |
---|
2740 | ! |
---|
2741 | !-- Sum values of the subdomains |
---|
2742 | inum = number_of_particle_groups + 1 |
---|
2743 | |
---|
2744 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2745 | CALL MPI_ALLREDUCE( pts_value_l(0,20), pts_value(0,20), inum*10, MPI_REAL, & |
---|
2746 | MPI_SUM, comm2d, ierr ) |
---|
2747 | #else |
---|
2748 | pts_value(:,20:29) = pts_value_l(:,20:29) |
---|
2749 | #endif |
---|
2750 | |
---|
2751 | ! |
---|
2752 | !-- Normalize the above calculated quantities with the total number of |
---|
2753 | !-- particles |
---|
2754 | IF ( number_of_particle_groups > 1 ) THEN |
---|
2755 | inum = number_of_particle_groups |
---|
2756 | ELSE |
---|
2757 | inum = 0 |
---|
2758 | ENDIF |
---|
2759 | |
---|
2760 | DO j = 0, inum |
---|
2761 | |
---|
2762 | IF ( pts_value(j,1) > 0.0_wp ) THEN |
---|
2763 | pts_value(j,20:28) = pts_value(j,20:28) / pts_value(j,1) |
---|
2764 | ENDIF |
---|
2765 | pts_value(j,29) = pts_value(j,29) / numprocs |
---|
2766 | |
---|
2767 | ENDDO |
---|
2768 | |
---|
2769 | #if defined( __netcdf ) |
---|
2770 | ! |
---|
2771 | !-- Output particle time series quantities in NetCDF format |
---|
2772 | IF ( myid == 0 ) THEN |
---|
2773 | DO j = 0, inum |
---|
2774 | DO i = 1, dopts_num |
---|
2775 | nc_stat = NF90_PUT_VAR( id_set_pts, id_var_dopts(i,j), & |
---|
2776 | (/ pts_value(j,i) /), & |
---|
2777 | start = (/ dopts_time_count /), & |
---|
2778 | count = (/ 1 /) ) |
---|
2779 | CALL netcdf_handle_error( 'data_output_ptseries', 392 ) |
---|
2780 | ENDDO |
---|
2781 | ENDDO |
---|
2782 | ENDIF |
---|
2783 | #endif |
---|
2784 | |
---|
2785 | DEALLOCATE( pts_value, pts_value_l ) |
---|
2786 | |
---|
2787 | CALL cpu_log( log_point(36), 'data_output_ptseries', 'stop' ) |
---|
2788 | |
---|
2789 | END SUBROUTINE lpm_data_output_ptseries |
---|
2790 | |
---|
2791 | |
---|
2792 | !------------------------------------------------------------------------------! |
---|
2793 | ! Description: |
---|
2794 | ! ------------ |
---|
2795 | !> This routine reads the respective restart data for the lpm. |
---|
2796 | !------------------------------------------------------------------------------! |
---|
2797 | SUBROUTINE lpm_rrd_local_particles |
---|
2798 | |
---|
2799 | CHARACTER (LEN=10) :: particle_binary_version !< |
---|
2800 | CHARACTER (LEN=10) :: version_on_file !< |
---|
2801 | |
---|
2802 | INTEGER(iwp) :: alloc_size !< |
---|
2803 | INTEGER(iwp) :: ip !< |
---|
2804 | INTEGER(iwp) :: jp !< |
---|
2805 | INTEGER(iwp) :: kp !< |
---|
2806 | |
---|
2807 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: tmp_particles !< |
---|
2808 | |
---|
2809 | ! |
---|
2810 | !-- Read particle data from previous model run. |
---|
2811 | !-- First open the input unit. |
---|
2812 | IF ( myid_char == '' ) THEN |
---|
2813 | OPEN ( 90, FILE='PARTICLE_RESTART_DATA_IN'//myid_char, & |
---|
2814 | FORM='UNFORMATTED' ) |
---|
2815 | ELSE |
---|
2816 | OPEN ( 90, FILE='PARTICLE_RESTART_DATA_IN/'//myid_char, & |
---|
2817 | FORM='UNFORMATTED' ) |
---|
2818 | ENDIF |
---|
2819 | |
---|
2820 | ! |
---|
2821 | !-- First compare the version numbers |
---|
2822 | READ ( 90 ) version_on_file |
---|
2823 | particle_binary_version = '4.0' |
---|
2824 | IF ( TRIM( version_on_file ) /= TRIM( particle_binary_version ) ) THEN |
---|
2825 | message_string = 'version mismatch concerning data from prior ' // & |
---|
2826 | 'run &version on file = "' // & |
---|
2827 | TRIM( version_on_file ) // & |
---|
2828 | '&version in program = "' // & |
---|
2829 | TRIM( particle_binary_version ) // '"' |
---|
2830 | CALL message( 'lpm_read_restart_file', 'PA0214', 1, 2, 0, 6, 0 ) |
---|
2831 | ENDIF |
---|
2832 | |
---|
2833 | ! |
---|
2834 | !-- If less particles are stored on the restart file than prescribed by |
---|
2835 | !-- 1, the remainder is initialized by zero_particle to avoid |
---|
2836 | !-- errors. |
---|
2837 | zero_particle = particle_type( 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
2838 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
2839 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
2840 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
2841 | 0, 0, 0_idp, .FALSE., -1 ) |
---|
2842 | ! |
---|
2843 | !-- Read some particle parameters and the size of the particle arrays, |
---|
2844 | !-- allocate them and read their contents. |
---|
2845 | READ ( 90 ) bc_par_b, bc_par_lr, bc_par_ns, bc_par_t, & |
---|
2846 | last_particle_release_time, number_of_particle_groups, & |
---|
2847 | particle_groups, time_write_particle_data |
---|
2848 | |
---|
2849 | ALLOCATE( prt_count(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
2850 | grid_particles(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2851 | |
---|
2852 | READ ( 90 ) prt_count |
---|
2853 | |
---|
2854 | DO ip = nxl, nxr |
---|
2855 | DO jp = nys, nyn |
---|
2856 | DO kp = nzb+1, nzt |
---|
2857 | |
---|
2858 | number_of_particles = prt_count(kp,jp,ip) |
---|
2859 | IF ( number_of_particles > 0 ) THEN |
---|
2860 | alloc_size = MAX( INT( number_of_particles * & |
---|
2861 | ( 1.0_wp + alloc_factor / 100.0_wp ) ), & |
---|
2862 | 1 ) |
---|
2863 | ELSE |
---|
2864 | alloc_size = 1 |
---|
2865 | ENDIF |
---|
2866 | |
---|
2867 | ALLOCATE( grid_particles(kp,jp,ip)%particles(1:alloc_size) ) |
---|
2868 | |
---|
2869 | IF ( number_of_particles > 0 ) THEN |
---|
2870 | ALLOCATE( tmp_particles(1:number_of_particles) ) |
---|
2871 | READ ( 90 ) tmp_particles |
---|
2872 | grid_particles(kp,jp,ip)%particles(1:number_of_particles) = tmp_particles |
---|
2873 | DEALLOCATE( tmp_particles ) |
---|
2874 | IF ( number_of_particles < alloc_size ) THEN |
---|
2875 | grid_particles(kp,jp,ip)%particles(number_of_particles+1:alloc_size) & |
---|
2876 | = zero_particle |
---|
2877 | ENDIF |
---|
2878 | ELSE |
---|
2879 | grid_particles(kp,jp,ip)%particles(1:alloc_size) = zero_particle |
---|
2880 | ENDIF |
---|
2881 | |
---|
2882 | ENDDO |
---|
2883 | ENDDO |
---|
2884 | ENDDO |
---|
2885 | |
---|
2886 | CLOSE ( 90 ) |
---|
2887 | ! |
---|
2888 | !-- Must be called to sort particles into blocks, which is needed for a fast |
---|
2889 | !-- interpolation of the LES fields on the particle position. |
---|
2890 | CALL lpm_sort_and_delete |
---|
2891 | |
---|
2892 | |
---|
2893 | END SUBROUTINE lpm_rrd_local_particles |
---|
2894 | |
---|
2895 | |
---|
2896 | SUBROUTINE lpm_rrd_local( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, & |
---|
2897 | nxr_on_file, nynf, nync, nyn_on_file, nysf, & |
---|
2898 | nysc, nys_on_file, tmp_3d, found ) |
---|
2899 | |
---|
2900 | |
---|
2901 | USE control_parameters, & |
---|
2902 | ONLY: length, restart_string |
---|
2903 | |
---|
2904 | INTEGER(iwp) :: k !< |
---|
2905 | INTEGER(iwp) :: nxlc !< |
---|
2906 | INTEGER(iwp) :: nxlf !< |
---|
2907 | INTEGER(iwp) :: nxl_on_file !< |
---|
2908 | INTEGER(iwp) :: nxrc !< |
---|
2909 | INTEGER(iwp) :: nxrf !< |
---|
2910 | INTEGER(iwp) :: nxr_on_file !< |
---|
2911 | INTEGER(iwp) :: nync !< |
---|
2912 | INTEGER(iwp) :: nynf !< |
---|
2913 | INTEGER(iwp) :: nyn_on_file !< |
---|
2914 | INTEGER(iwp) :: nysc !< |
---|
2915 | INTEGER(iwp) :: nysf !< |
---|
2916 | INTEGER(iwp) :: nys_on_file !< |
---|
2917 | |
---|
2918 | LOGICAL, INTENT(OUT) :: found |
---|
2919 | |
---|
2920 | REAL(wp), DIMENSION(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d !< |
---|
2921 | |
---|
2922 | |
---|
2923 | found = .TRUE. |
---|
2924 | |
---|
2925 | SELECT CASE ( restart_string(1:length) ) |
---|
2926 | |
---|
2927 | CASE ( 'iran' ) ! matching random numbers is still unresolved issue |
---|
2928 | IF ( k == 1 ) READ ( 13 ) iran, iran_part |
---|
2929 | |
---|
2930 | CASE ( 'pc_av' ) |
---|
2931 | IF ( .NOT. ALLOCATED( pc_av ) ) THEN |
---|
2932 | ALLOCATE( pc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2933 | ENDIF |
---|
2934 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
2935 | pc_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
2936 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
2937 | |
---|
2938 | CASE ( 'pr_av' ) |
---|
2939 | IF ( .NOT. ALLOCATED( pr_av ) ) THEN |
---|
2940 | ALLOCATE( pr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2941 | ENDIF |
---|
2942 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
2943 | pr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
2944 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
2945 | |
---|
2946 | CASE ( 'ql_c_av' ) |
---|
2947 | IF ( .NOT. ALLOCATED( ql_c_av ) ) THEN |
---|
2948 | ALLOCATE( ql_c_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2949 | ENDIF |
---|
2950 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
2951 | ql_c_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
2952 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
2953 | |
---|
2954 | CASE ( 'ql_v_av' ) |
---|
2955 | IF ( .NOT. ALLOCATED( ql_v_av ) ) THEN |
---|
2956 | ALLOCATE( ql_v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2957 | ENDIF |
---|
2958 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
2959 | ql_v_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
2960 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
2961 | |
---|
2962 | CASE ( 'ql_vp_av' ) |
---|
2963 | IF ( .NOT. ALLOCATED( ql_vp_av ) ) THEN |
---|
2964 | ALLOCATE( ql_vp_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2965 | ENDIF |
---|
2966 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
2967 | ql_vp_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
2968 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
2969 | |
---|
2970 | CASE DEFAULT |
---|
2971 | |
---|
2972 | found = .FALSE. |
---|
2973 | |
---|
2974 | END SELECT |
---|
2975 | |
---|
2976 | |
---|
2977 | END SUBROUTINE lpm_rrd_local |
---|
2978 | |
---|
2979 | !------------------------------------------------------------------------------! |
---|
2980 | ! Description: |
---|
2981 | ! ------------ |
---|
2982 | !> This routine writes the respective restart data for the lpm. |
---|
2983 | !------------------------------------------------------------------------------! |
---|
2984 | SUBROUTINE lpm_wrd_local |
---|
2985 | |
---|
2986 | CHARACTER (LEN=10) :: particle_binary_version !< |
---|
2987 | |
---|
2988 | INTEGER(iwp) :: ip !< |
---|
2989 | INTEGER(iwp) :: jp !< |
---|
2990 | INTEGER(iwp) :: kp !< |
---|
2991 | ! |
---|
2992 | !-- First open the output unit. |
---|
2993 | IF ( myid_char == '' ) THEN |
---|
2994 | OPEN ( 90, FILE='PARTICLE_RESTART_DATA_OUT'//myid_char, & |
---|
2995 | FORM='UNFORMATTED') |
---|
2996 | ELSE |
---|
2997 | IF ( myid == 0 ) CALL local_system( 'mkdir PARTICLE_RESTART_DATA_OUT' ) |
---|
2998 | #if defined( __parallel ) |
---|
2999 | ! |
---|
3000 | !-- Set a barrier in order to allow that thereafter all other processors |
---|
3001 | !-- in the directory created by PE0 can open their file |
---|
3002 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
3003 | #endif |
---|
3004 | OPEN ( 90, FILE='PARTICLE_RESTART_DATA_OUT/'//myid_char, & |
---|
3005 | FORM='UNFORMATTED' ) |
---|
3006 | ENDIF |
---|
3007 | |
---|
3008 | ! |
---|
3009 | !-- Write the version number of the binary format. |
---|
3010 | !-- Attention: After changes to the following output commands the version |
---|
3011 | !-- --------- number of the variable particle_binary_version must be |
---|
3012 | !-- changed! Also, the version number and the list of arrays |
---|
3013 | !-- to be read in lpm_read_restart_file must be adjusted |
---|
3014 | !-- accordingly. |
---|
3015 | particle_binary_version = '4.0' |
---|
3016 | WRITE ( 90 ) particle_binary_version |
---|
3017 | |
---|
3018 | ! |
---|
3019 | !-- Write some particle parameters, the size of the particle arrays |
---|
3020 | WRITE ( 90 ) bc_par_b, bc_par_lr, bc_par_ns, bc_par_t, & |
---|
3021 | last_particle_release_time, number_of_particle_groups, & |
---|
3022 | particle_groups, time_write_particle_data |
---|
3023 | |
---|
3024 | WRITE ( 90 ) prt_count |
---|
3025 | |
---|
3026 | DO ip = nxl, nxr |
---|
3027 | DO jp = nys, nyn |
---|
3028 | DO kp = nzb+1, nzt |
---|
3029 | number_of_particles = prt_count(kp,jp,ip) |
---|
3030 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
3031 | IF ( number_of_particles <= 0 ) CYCLE |
---|
3032 | WRITE ( 90 ) particles |
---|
3033 | ENDDO |
---|
3034 | ENDDO |
---|
3035 | ENDDO |
---|
3036 | |
---|
3037 | CLOSE ( 90 ) |
---|
3038 | |
---|
3039 | #if defined( __parallel ) |
---|
3040 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
3041 | #endif |
---|
3042 | |
---|
3043 | CALL wrd_write_string( 'iran' ) |
---|
3044 | WRITE ( 14 ) iran, iran_part |
---|
3045 | |
---|
3046 | |
---|
3047 | END SUBROUTINE lpm_wrd_local |
---|
3048 | |
---|
3049 | |
---|
3050 | !------------------------------------------------------------------------------! |
---|
3051 | ! Description: |
---|
3052 | ! ------------ |
---|
3053 | !> This routine writes the respective restart data for the lpm. |
---|
3054 | !------------------------------------------------------------------------------! |
---|
3055 | SUBROUTINE lpm_wrd_global |
---|
3056 | |
---|
3057 | CALL wrd_write_string( 'curvature_solution_effects' ) |
---|
3058 | WRITE ( 14 ) curvature_solution_effects |
---|
3059 | |
---|
3060 | CALL wrd_write_string( 'interpolation_simple_corrector' ) |
---|
3061 | WRITE ( 14 ) interpolation_simple_corrector |
---|
3062 | |
---|
3063 | CALL wrd_write_string( 'interpolation_simple_predictor' ) |
---|
3064 | WRITE ( 14 ) interpolation_simple_predictor |
---|
3065 | |
---|
3066 | CALL wrd_write_string( 'interpolation_trilinear' ) |
---|
3067 | WRITE ( 14 ) interpolation_trilinear |
---|
3068 | |
---|
3069 | END SUBROUTINE lpm_wrd_global |
---|
3070 | |
---|
3071 | |
---|
3072 | !------------------------------------------------------------------------------! |
---|
3073 | ! Description: |
---|
3074 | ! ------------ |
---|
3075 | !> This routine writes the respective restart data for the lpm. |
---|
3076 | !------------------------------------------------------------------------------! |
---|
3077 | SUBROUTINE lpm_rrd_global( found ) |
---|
3078 | |
---|
3079 | USE control_parameters, & |
---|
3080 | ONLY: length, restart_string |
---|
3081 | |
---|
3082 | LOGICAL, INTENT(OUT) :: found |
---|
3083 | |
---|
3084 | found = .TRUE. |
---|
3085 | |
---|
3086 | SELECT CASE ( restart_string(1:length) ) |
---|
3087 | |
---|
3088 | CASE ( 'curvature_solution_effects' ) |
---|
3089 | READ ( 13 ) curvature_solution_effects |
---|
3090 | |
---|
3091 | CASE ( 'interpolation_simple_corrector' ) |
---|
3092 | READ ( 13 ) interpolation_simple_corrector |
---|
3093 | |
---|
3094 | CASE ( 'interpolation_simple_predictor' ) |
---|
3095 | READ ( 13 ) interpolation_simple_predictor |
---|
3096 | |
---|
3097 | CASE ( 'interpolation_trilinear' ) |
---|
3098 | READ ( 13 ) interpolation_trilinear |
---|
3099 | |
---|
3100 | ! CASE ( 'global_paramter' ) |
---|
3101 | ! READ ( 13 ) global_parameter |
---|
3102 | ! CASE ( 'global_array' ) |
---|
3103 | ! IF ( .NOT. ALLOCATED( global_array ) ) ALLOCATE( global_array(1:10) ) |
---|
3104 | ! READ ( 13 ) global_array |
---|
3105 | |
---|
3106 | CASE DEFAULT |
---|
3107 | |
---|
3108 | found = .FALSE. |
---|
3109 | |
---|
3110 | END SELECT |
---|
3111 | |
---|
3112 | END SUBROUTINE lpm_rrd_global |
---|
3113 | |
---|
3114 | |
---|
3115 | !------------------------------------------------------------------------------! |
---|
3116 | ! Description: |
---|
3117 | ! ------------ |
---|
3118 | !> This is a submodule of the lagrangian particle model. It contains all |
---|
3119 | !> dynamic processes of the lpm. This includes the advection (resolved and sub- |
---|
3120 | !> grid scale) as well as the boundary conditions of particles. As a next step |
---|
3121 | !> this submodule should be excluded as an own file. |
---|
3122 | !------------------------------------------------------------------------------! |
---|
3123 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
3124 | |
---|
3125 | LOGICAL :: subbox_at_wall !< flag to see if the current subgridbox is adjacent to a wall |
---|
3126 | |
---|
3127 | INTEGER(iwp) :: i !< index variable along x |
---|
3128 | INTEGER(iwp) :: i_next !< index variable along x |
---|
3129 | INTEGER(iwp) :: ip !< index variable along x |
---|
3130 | INTEGER(iwp) :: iteration_steps = 1 !< amount of iterations steps for corrector step |
---|
3131 | INTEGER(iwp) :: j !< index variable along y |
---|
3132 | INTEGER(iwp) :: j_next !< index variable along y |
---|
3133 | INTEGER(iwp) :: jp !< index variable along y |
---|
3134 | INTEGER(iwp) :: k !< index variable along z |
---|
3135 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
3136 | INTEGER(iwp) :: kp !< index variable along z |
---|
3137 | INTEGER(iwp) :: k_next !< index variable along z |
---|
3138 | INTEGER(iwp) :: kw !< index variable along z |
---|
3139 | INTEGER(iwp) :: kkw !< index variable along z |
---|
3140 | INTEGER(iwp) :: n !< loop variable over all particles in a grid box |
---|
3141 | INTEGER(iwp) :: nb !< block number particles are sorted in |
---|
3142 | INTEGER(iwp) :: particle_end !< end index for partilce loop |
---|
3143 | INTEGER(iwp) :: particle_start !< start index for particle loop |
---|
3144 | INTEGER(iwp) :: surf_start !< Index on surface data-type for current grid box |
---|
3145 | INTEGER(iwp) :: subbox_end !< end index for loop over subboxes in particle advection |
---|
3146 | INTEGER(iwp) :: subbox_start !< start index for loop over subboxes in particle advection |
---|
3147 | INTEGER(iwp) :: nn !< loop variable over iterations steps |
---|
3148 | |
---|
3149 | INTEGER(iwp), DIMENSION(0:7) :: start_index !< start particle index for current block |
---|
3150 | INTEGER(iwp), DIMENSION(0:7) :: end_index !< start particle index for current block |
---|
3151 | |
---|
3152 | REAL(wp) :: aa !< dummy argument for horizontal particle interpolation |
---|
3153 | REAL(wp) :: alpha !< interpolation facor for x-direction |
---|
3154 | |
---|
3155 | REAL(wp) :: bb !< dummy argument for horizontal particle interpolation |
---|
3156 | REAL(wp) :: beta !< interpolation facor for y-direction |
---|
3157 | REAL(wp) :: cc !< dummy argument for horizontal particle interpolation |
---|
3158 | REAL(wp) :: d_z_p_z0 !< inverse of interpolation length for logarithmic interpolation |
---|
3159 | REAL(wp) :: dd !< dummy argument for horizontal particle interpolation |
---|
3160 | REAL(wp) :: de_dx_int_l !< x/y-interpolated TKE gradient (x) at particle position at lower vertical level |
---|
3161 | REAL(wp) :: de_dx_int_u !< x/y-interpolated TKE gradient (x) at particle position at upper vertical level |
---|
3162 | REAL(wp) :: de_dy_int_l !< x/y-interpolated TKE gradient (y) at particle position at lower vertical level |
---|
3163 | REAL(wp) :: de_dy_int_u !< x/y-interpolated TKE gradient (y) at particle position at upper vertical level |
---|
3164 | REAL(wp) :: de_dt !< temporal derivative of TKE experienced by the particle |
---|
3165 | REAL(wp) :: de_dt_min !< lower level for temporal TKE derivative |
---|
3166 | REAL(wp) :: de_dz_int_l !< x/y-interpolated TKE gradient (z) at particle position at lower vertical level |
---|
3167 | REAL(wp) :: de_dz_int_u !< x/y-interpolated TKE gradient (z) at particle position at upper vertical level |
---|
3168 | REAL(wp) :: diameter !< diamter of droplet |
---|
3169 | REAL(wp) :: diss_int_l !< x/y-interpolated dissipation at particle position at lower vertical level |
---|
3170 | REAL(wp) :: diss_int_u !< x/y-interpolated dissipation at particle position at upper vertical level |
---|
3171 | REAL(wp) :: dt_particle_m !< previous particle time step |
---|
3172 | REAL(wp) :: dz_temp !< dummy for the vertical grid spacing |
---|
3173 | REAL(wp) :: e_int_l !< x/y-interpolated TKE at particle position at lower vertical level |
---|
3174 | REAL(wp) :: e_int_u !< x/y-interpolated TKE at particle position at upper vertical level |
---|
3175 | REAL(wp) :: e_mean_int !< horizontal mean TKE at particle height |
---|
3176 | REAL(wp) :: exp_arg !< argument in the exponent - particle radius |
---|
3177 | REAL(wp) :: exp_term !< exponent term |
---|
3178 | REAL(wp) :: gamma !< interpolation facor for z-direction |
---|
3179 | REAL(wp) :: gg !< dummy argument for horizontal particle interpolation |
---|
3180 | REAL(wp) :: height_p !< dummy argument for logarithmic interpolation |
---|
3181 | REAL(wp) :: log_z_z0_int !< logarithmus used for surface_layer interpolation |
---|
3182 | REAL(wp) :: random_gauss !< Gaussian-distributed random number used for SGS particle advection |
---|
3183 | REAL(wp) :: RL !< Lagrangian autocorrelation coefficient |
---|
3184 | REAL(wp) :: rg1 !< Gaussian distributed random number |
---|
3185 | REAL(wp) :: rg2 !< Gaussian distributed random number |
---|
3186 | REAL(wp) :: rg3 !< Gaussian distributed random number |
---|
3187 | REAL(wp) :: sigma !< velocity standard deviation |
---|
3188 | REAL(wp) :: u_int_l !< x/y-interpolated u-component at particle position at lower vertical level |
---|
3189 | REAL(wp) :: u_int_u !< x/y-interpolated u-component at particle position at upper vertical level |
---|
3190 | REAL(wp) :: unext !< calculated particle u-velocity of corrector step |
---|
3191 | REAL(wp) :: us_int !< friction velocity at particle grid box |
---|
3192 | REAL(wp) :: usws_int !< surface momentum flux (u component) at particle grid box |
---|
3193 | REAL(wp) :: v_int_l !< x/y-interpolated v-component at particle position at lower vertical level |
---|
3194 | REAL(wp) :: v_int_u !< x/y-interpolated v-component at particle position at upper vertical level |
---|
3195 | REAL(wp) :: vsws_int !< surface momentum flux (u component) at particle grid box |
---|
3196 | REAL(wp) :: vnext !< calculated particle v-velocity of corrector step |
---|
3197 | REAL(wp) :: vv_int !< dummy to compute interpolated mean SGS TKE, used to scale SGS advection |
---|
3198 | REAL(wp) :: w_int_l !< x/y-interpolated w-component at particle position at lower vertical level |
---|
3199 | REAL(wp) :: w_int_u !< x/y-interpolated w-component at particle position at upper vertical level |
---|
3200 | REAL(wp) :: wnext !< calculated particle w-velocity of corrector step |
---|
3201 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
3202 | REAL(wp) :: x !< dummy argument for horizontal particle interpolation |
---|
3203 | REAL(wp) :: xp !< calculated particle position in x of predictor step |
---|
3204 | REAL(wp) :: y !< dummy argument for horizontal particle interpolation |
---|
3205 | REAL(wp) :: yp !< calculated particle position in y of predictor step |
---|
3206 | REAL(wp) :: z_p !< surface layer height (0.5 dz) |
---|
3207 | REAL(wp) :: zp !< calculated particle position in z of predictor step |
---|
3208 | |
---|
3209 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
3210 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
3211 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
3212 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
3213 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
3214 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
3215 | |
---|
3216 | REAL(wp), DIMENSION(number_of_particles) :: term_1_2 !< flag to communicate whether a particle is near topography or not |
---|
3217 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< ratio between the density of the fluid and the density of the particles |
---|
3218 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< horizontal TKE gradient along x at particle position |
---|
3219 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< horizontal TKE gradient along y at particle position |
---|
3220 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< horizontal TKE gradient along z at particle position |
---|
3221 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !< dissipation at particle position |
---|
3222 | REAL(wp), DIMENSION(number_of_particles) :: dt_gap !< remaining time until particle time integration reaches LES time |
---|
3223 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< particle time step |
---|
3224 | REAL(wp), DIMENSION(number_of_particles) :: e_int !< TKE at particle position |
---|
3225 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !< weighting factor for subgrid-scale particle speed |
---|
3226 | REAL(wp), DIMENSION(number_of_particles) :: lagr_timescale !< Lagrangian timescale |
---|
3227 | REAL(wp), DIMENSION(number_of_particles) :: rvar1_temp !< SGS particle velocity - u-component |
---|
3228 | REAL(wp), DIMENSION(number_of_particles) :: rvar2_temp !< SGS particle velocity - v-component |
---|
3229 | REAL(wp), DIMENSION(number_of_particles) :: rvar3_temp !< SGS particle velocity - w-component |
---|
3230 | REAL(wp), DIMENSION(number_of_particles) :: u_int !< u-component of particle speed |
---|
3231 | REAL(wp), DIMENSION(number_of_particles) :: v_int !< v-component of particle speed |
---|
3232 | REAL(wp), DIMENSION(number_of_particles) :: w_int !< w-component of particle speed |
---|
3233 | REAL(wp), DIMENSION(number_of_particles) :: xv !< x-position |
---|
3234 | REAL(wp), DIMENSION(number_of_particles) :: yv !< y-position |
---|
3235 | REAL(wp), DIMENSION(number_of_particles) :: zv !< z-position |
---|
3236 | |
---|
3237 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< vector of Gaussian distributed random numbers |
---|
3238 | |
---|
3239 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
3240 | ! |
---|
3241 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
3242 | !-- height and horizontal mean roughness height, which are required for |
---|
3243 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
3244 | !-- (for particles below first vertical grid level). |
---|
3245 | z_p = zu(nzb+1) - zw(nzb) |
---|
3246 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
3247 | |
---|
3248 | xv = particles(1:number_of_particles)%x |
---|
3249 | yv = particles(1:number_of_particles)%y |
---|
3250 | zv = particles(1:number_of_particles)%z |
---|
3251 | dt_particle = dt_3d |
---|
3252 | |
---|
3253 | ! |
---|
3254 | !-- This case uses a simple interpolation method for the particle velocites, |
---|
3255 | !-- and applying a predictor-corrector method. @attention: for the corrector |
---|
3256 | !-- step the velocities of t(n+1) are required. However, at this moment of |
---|
3257 | !-- the time integration they are not free of divergence. This interpolation |
---|
3258 | !-- method is described in more detail in Grabowski et al., 2018 (GMD). |
---|
3259 | IF ( interpolation_simple_corrector ) THEN |
---|
3260 | ! |
---|
3261 | !-- Predictor step |
---|
3262 | kkw = kp - 1 |
---|
3263 | DO n = 1, number_of_particles |
---|
3264 | |
---|
3265 | alpha = MAX( MIN( ( particles(n)%x - ip * dx ) * ddx, 1.0_wp ), 0.0_wp ) |
---|
3266 | u_int(n) = u(kp,jp,ip) * ( 1.0_wp - alpha ) + u(kp,jp,ip+1) * alpha |
---|
3267 | |
---|
3268 | beta = MAX( MIN( ( particles(n)%y - jp * dy ) * ddy, 1.0_wp ), 0.0_wp ) |
---|
3269 | v_int(n) = v(kp,jp,ip) * ( 1.0_wp - beta ) + v(kp,jp+1,ip) * beta |
---|
3270 | |
---|
3271 | gamma = MAX( MIN( ( particles(n)%z - zw(kkw) ) / & |
---|
3272 | ( zw(kkw+1) - zw(kkw) ), 1.0_wp ), 0.0_wp ) |
---|
3273 | w_int(n) = w(kkw,jp,ip) * ( 1.0_wp - gamma ) + w(kkw+1,jp,ip) * gamma |
---|
3274 | |
---|
3275 | ENDDO |
---|
3276 | ! |
---|
3277 | !-- Corrector step |
---|
3278 | DO n = 1, number_of_particles |
---|
3279 | |
---|
3280 | IF ( .NOT. particles(n)%particle_mask ) CYCLE |
---|
3281 | |
---|
3282 | DO nn = 1, iteration_steps |
---|
3283 | |
---|
3284 | ! |
---|
3285 | !-- Guess new position |
---|
3286 | xp = particles(n)%x + u_int(n) * dt_particle(n) |
---|
3287 | yp = particles(n)%y + v_int(n) * dt_particle(n) |
---|
3288 | zp = particles(n)%z + w_int(n) * dt_particle(n) |
---|
3289 | ! |
---|
3290 | !-- x direction |
---|
3291 | i_next = FLOOR( xp * ddx , KIND=iwp) |
---|
3292 | alpha = MAX( MIN( ( xp - i_next * dx ) * ddx, 1.0_wp ), 0.0_wp ) |
---|
3293 | ! |
---|
3294 | !-- y direction |
---|
3295 | j_next = FLOOR( yp * ddy ) |
---|
3296 | beta = MAX( MIN( ( yp - j_next * dy ) * ddy, 1.0_wp ), 0.0_wp ) |
---|
3297 | ! |
---|
3298 | !-- z_direction |
---|
3299 | k_next = MAX( MIN( FLOOR( zp / (zw(kkw+1)-zw(kkw)) ), nzt ), 0) |
---|
3300 | gamma = MAX( MIN( ( zp - zw(k_next) ) / & |
---|
3301 | ( zw(k_next+1) - zw(k_next) ), 1.0_wp ), 0.0_wp ) |
---|
3302 | ! |
---|
3303 | !-- Calculate part of the corrector step |
---|
3304 | unext = u_p(k_next+1, j_next, i_next) * ( 1.0_wp - alpha ) + & |
---|
3305 | u_p(k_next+1, j_next, i_next+1) * alpha |
---|
3306 | |
---|
3307 | vnext = v_p(k_next+1, j_next, i_next) * ( 1.0_wp - beta ) + & |
---|
3308 | v_p(k_next+1, j_next+1, i_next ) * beta |
---|
3309 | |
---|
3310 | wnext = w_p(k_next, j_next, i_next) * ( 1.0_wp - gamma ) + & |
---|
3311 | w_p(k_next+1, j_next, i_next ) * gamma |
---|
3312 | |
---|
3313 | ! |
---|
3314 | !-- Calculate interpolated particle velocity with predictor |
---|
3315 | !-- corrector step. u_int, v_int and w_int describes the part of |
---|
3316 | !-- the predictor step. unext, vnext and wnext is the part of the |
---|
3317 | !-- corrector step. The resulting new position is set below. The |
---|
3318 | !-- implementation is based on Grabowski et al., 2018 (GMD). |
---|
3319 | u_int(n) = 0.5_wp * ( u_int(n) + unext ) |
---|
3320 | v_int(n) = 0.5_wp * ( v_int(n) + vnext ) |
---|
3321 | w_int(n) = 0.5_wp * ( w_int(n) + wnext ) |
---|
3322 | |
---|
3323 | ENDDO |
---|
3324 | ENDDO |
---|
3325 | ! |
---|
3326 | !-- This case uses a simple interpolation method for the particle velocites, |
---|
3327 | !-- and applying a predictor. |
---|
3328 | ELSEIF ( interpolation_simple_predictor ) THEN |
---|
3329 | ! |
---|
3330 | !-- The particle position for the w velociy is based on the value of kp and kp-1 |
---|
3331 | kkw = kp - 1 |
---|
3332 | DO n = 1, number_of_particles |
---|
3333 | IF ( .NOT. particles(n)%particle_mask ) CYCLE |
---|
3334 | |
---|
3335 | alpha = MAX( MIN( ( particles(n)%x - ip * dx ) * ddx, 1.0_wp ), 0.0_wp ) |
---|
3336 | u_int(n) = u(kp,jp,ip) * ( 1.0_wp - alpha ) + u(kp,jp,ip+1) * alpha |
---|
3337 | |
---|
3338 | beta = MAX( MIN( ( particles(n)%y - jp * dy ) * ddy, 1.0_wp ), 0.0_wp ) |
---|
3339 | v_int(n) = v(kp,jp,ip) * ( 1.0_wp - beta ) + v(kp,jp+1,ip) * beta |
---|
3340 | |
---|
3341 | gamma = MAX( MIN( ( particles(n)%z - zw(kkw) ) / & |
---|
3342 | ( zw(kkw+1) - zw(kkw) ), 1.0_wp ), 0.0_wp ) |
---|
3343 | w_int(n) = w(kkw,jp,ip) * ( 1.0_wp - gamma ) + w(kkw+1,jp,ip) * gamma |
---|
3344 | ENDDO |
---|
3345 | ! |
---|
3346 | !-- The trilinear interpolation. |
---|
3347 | ELSEIF ( interpolation_trilinear ) THEN |
---|
3348 | |
---|
3349 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
3350 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
3351 | |
---|
3352 | DO nb = 0, 7 |
---|
3353 | ! |
---|
3354 | !-- Interpolate u velocity-component |
---|
3355 | i = ip |
---|
3356 | j = jp + block_offset(nb)%j_off |
---|
3357 | k = kp + block_offset(nb)%k_off |
---|
3358 | |
---|
3359 | DO n = start_index(nb), end_index(nb) |
---|
3360 | ! |
---|
3361 | !-- Interpolation of the u velocity component onto particle position. |
---|
3362 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
3363 | !-- linearly in the vertical. An exception is made for particles below |
---|
3364 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
3365 | !-- case the horizontal particle velocity components are determined using |
---|
3366 | !-- Monin-Obukhov relations (if branch). |
---|
3367 | !-- First, check if particle is located below first vertical grid level |
---|
3368 | !-- above topography (Prandtl-layer height) |
---|
3369 | !-- Determine vertical index of topography top |
---|
3370 | k_wall = topo_top_ind(jp,ip,0) |
---|
3371 | |
---|
3372 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
3373 | ! |
---|
3374 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
3375 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
3376 | u_int(n) = 0.0_wp |
---|
3377 | ELSE |
---|
3378 | ! |
---|
3379 | !-- Determine the sublayer. Further used as index. |
---|
3380 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
3381 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
3382 | * d_z_p_z0 |
---|
3383 | ! |
---|
3384 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
3385 | !-- interpolate linearly between precalculated logarithm. |
---|
3386 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
3387 | + ( height_p - INT(height_p) ) & |
---|
3388 | * ( log_z_z0(INT(height_p)+1) & |
---|
3389 | - log_z_z0(INT(height_p)) & |
---|
3390 | ) |
---|
3391 | ! |
---|
3392 | !-- Get friction velocity and momentum flux from new surface data |
---|
3393 | !-- types. |
---|
3394 | IF ( surf_def_h(0)%start_index(jp,ip) <= & |
---|
3395 | surf_def_h(0)%end_index(jp,ip) ) THEN |
---|
3396 | surf_start = surf_def_h(0)%start_index(jp,ip) |
---|
3397 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
3398 | !-- friction velocity can become very small, resulting in a too |
---|
3399 | !-- large particle speed. |
---|
3400 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
3401 | usws_int = surf_def_h(0)%usws(surf_start) |
---|
3402 | ELSEIF ( surf_lsm_h%start_index(jp,ip) <= & |
---|
3403 | surf_lsm_h%end_index(jp,ip) ) THEN |
---|
3404 | surf_start = surf_lsm_h%start_index(jp,ip) |
---|
3405 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
3406 | usws_int = surf_lsm_h%usws(surf_start) |
---|
3407 | ELSEIF ( surf_usm_h%start_index(jp,ip) <= & |
---|
3408 | surf_usm_h%end_index(jp,ip) ) THEN |
---|
3409 | surf_start = surf_usm_h%start_index(jp,ip) |
---|
3410 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
3411 | usws_int = surf_usm_h%usws(surf_start) |
---|
3412 | ENDIF |
---|
3413 | ! |
---|
3414 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
3415 | !-- unstable and stable situations. Even though this is not exact |
---|
3416 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
3417 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
3418 | !-- as sensitivity studies revealed no significant effect of |
---|
3419 | !-- using the neutral solution also for un/stable situations. |
---|
3420 | u_int(n) = -usws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
3421 | * log_z_z0_int - u_gtrans |
---|
3422 | ENDIF |
---|
3423 | ! |
---|
3424 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
3425 | !-- horizontal and linear interpolation in the vertical direction. |
---|
3426 | ELSE |
---|
3427 | x = xv(n) - i * dx |
---|
3428 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
3429 | aa = x**2 + y**2 |
---|
3430 | bb = ( dx - x )**2 + y**2 |
---|
3431 | cc = x**2 + ( dy - y )**2 |
---|
3432 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
3433 | gg = aa + bb + cc + dd |
---|
3434 | |
---|
3435 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
3436 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
3437 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
3438 | |
---|
3439 | IF ( k == nzt ) THEN |
---|
3440 | u_int(n) = u_int_l |
---|
3441 | ELSE |
---|
3442 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
3443 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
3444 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
3445 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3446 | ( u_int_u - u_int_l ) |
---|
3447 | ENDIF |
---|
3448 | ENDIF |
---|
3449 | ENDDO |
---|
3450 | ! |
---|
3451 | !-- Same procedure for interpolation of the v velocity-component |
---|
3452 | i = ip + block_offset(nb)%i_off |
---|
3453 | j = jp |
---|
3454 | k = kp + block_offset(nb)%k_off |
---|
3455 | |
---|
3456 | DO n = start_index(nb), end_index(nb) |
---|
3457 | ! |
---|
3458 | !-- Determine vertical index of topography top |
---|
3459 | k_wall = topo_top_ind(jp,ip,0) |
---|
3460 | |
---|
3461 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
3462 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
3463 | ! |
---|
3464 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
3465 | v_int(n) = 0.0_wp |
---|
3466 | ELSE |
---|
3467 | ! |
---|
3468 | !-- Determine the sublayer. Further used as index. Please note, |
---|
3469 | !-- logarithmus can not be reused from above, as in in case of |
---|
3470 | !-- topography particle on u-grid can be above surface-layer height, |
---|
3471 | !-- whereas it can be below on v-grid. |
---|
3472 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
3473 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
3474 | * d_z_p_z0 |
---|
3475 | ! |
---|
3476 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
3477 | !-- interpolate linearly between precalculated logarithm. |
---|
3478 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
3479 | + ( height_p - INT(height_p) ) & |
---|
3480 | * ( log_z_z0(INT(height_p)+1) & |
---|
3481 | - log_z_z0(INT(height_p)) & |
---|
3482 | ) |
---|
3483 | ! |
---|
3484 | !-- Get friction velocity and momentum flux from new surface data |
---|
3485 | !-- types. |
---|
3486 | IF ( surf_def_h(0)%start_index(jp,ip) <= & |
---|
3487 | surf_def_h(0)%end_index(jp,ip) ) THEN |
---|
3488 | surf_start = surf_def_h(0)%start_index(jp,ip) |
---|
3489 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
3490 | !-- friction velocity can become very small, resulting in a too |
---|
3491 | !-- large particle speed. |
---|
3492 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
3493 | vsws_int = surf_def_h(0)%vsws(surf_start) |
---|
3494 | ELSEIF ( surf_lsm_h%start_index(jp,ip) <= & |
---|
3495 | surf_lsm_h%end_index(jp,ip) ) THEN |
---|
3496 | surf_start = surf_lsm_h%start_index(jp,ip) |
---|
3497 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
3498 | vsws_int = surf_lsm_h%vsws(surf_start) |
---|
3499 | ELSEIF ( surf_usm_h%start_index(jp,ip) <= & |
---|
3500 | surf_usm_h%end_index(jp,ip) ) THEN |
---|
3501 | surf_start = surf_usm_h%start_index(jp,ip) |
---|
3502 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
3503 | vsws_int = surf_usm_h%vsws(surf_start) |
---|
3504 | ENDIF |
---|
3505 | ! |
---|
3506 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
3507 | !-- unstable and stable situations. Even though this is not exact |
---|
3508 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
3509 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
3510 | !-- as sensitivity studies revealed no significant effect of |
---|
3511 | !-- using the neutral solution also for un/stable situations. |
---|
3512 | v_int(n) = -vsws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
3513 | * log_z_z0_int - v_gtrans |
---|
3514 | |
---|
3515 | ENDIF |
---|
3516 | ELSE |
---|
3517 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
3518 | y = yv(n) - j * dy |
---|
3519 | aa = x**2 + y**2 |
---|
3520 | bb = ( dx - x )**2 + y**2 |
---|
3521 | cc = x**2 + ( dy - y )**2 |
---|
3522 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
3523 | gg = aa + bb + cc + dd |
---|
3524 | |
---|
3525 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
3526 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
3527 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
3528 | |
---|
3529 | IF ( k == nzt ) THEN |
---|
3530 | v_int(n) = v_int_l |
---|
3531 | ELSE |
---|
3532 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
3533 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
3534 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
3535 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3536 | ( v_int_u - v_int_l ) |
---|
3537 | ENDIF |
---|
3538 | ENDIF |
---|
3539 | ENDDO |
---|
3540 | ! |
---|
3541 | !-- Same procedure for interpolation of the w velocity-component |
---|
3542 | i = ip + block_offset(nb)%i_off |
---|
3543 | j = jp + block_offset(nb)%j_off |
---|
3544 | k = kp - 1 |
---|
3545 | |
---|
3546 | DO n = start_index(nb), end_index(nb) |
---|
3547 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
3548 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
3549 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
3550 | aa = x**2 + y**2 |
---|
3551 | bb = ( dx - x )**2 + y**2 |
---|
3552 | cc = x**2 + ( dy - y )**2 |
---|
3553 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
3554 | gg = aa + bb + cc + dd |
---|
3555 | |
---|
3556 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
3557 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
3558 | ) / ( 3.0_wp * gg ) |
---|
3559 | |
---|
3560 | IF ( k == nzt ) THEN |
---|
3561 | w_int(n) = w_int_l |
---|
3562 | ELSE |
---|
3563 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
3564 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
3565 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
3566 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
3567 | ) / ( 3.0_wp * gg ) |
---|
3568 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dzw(k+1) * & |
---|
3569 | ( w_int_u - w_int_l ) |
---|
3570 | ENDIF |
---|
3571 | ELSE |
---|
3572 | w_int(n) = 0.0_wp |
---|
3573 | ENDIF |
---|
3574 | ENDDO |
---|
3575 | ENDDO |
---|
3576 | ENDIF |
---|
3577 | |
---|
3578 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
3579 | !-- velocities |
---|
3580 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
3581 | |
---|
3582 | DO nb = 0,7 |
---|
3583 | |
---|
3584 | subbox_at_wall = .FALSE. |
---|
3585 | ! |
---|
3586 | !-- In case of topography check if subbox is adjacent to a wall |
---|
3587 | IF ( .NOT. topography == 'flat' ) THEN |
---|
3588 | i = ip + MERGE( -1_iwp , 1_iwp, BTEST( nb, 2 ) ) |
---|
3589 | j = jp + MERGE( -1_iwp , 1_iwp, BTEST( nb, 1 ) ) |
---|
3590 | k = kp + MERGE( -1_iwp , 1_iwp, BTEST( nb, 0 ) ) |
---|
3591 | IF ( .NOT. BTEST(wall_flags_0(k, jp, ip), 0) .OR. & |
---|
3592 | .NOT. BTEST(wall_flags_0(kp, j, ip), 0) .OR. & |
---|
3593 | .NOT. BTEST(wall_flags_0(kp, jp, i ), 0) ) & |
---|
3594 | THEN |
---|
3595 | subbox_at_wall = .TRUE. |
---|
3596 | ENDIF |
---|
3597 | ENDIF |
---|
3598 | IF ( subbox_at_wall ) THEN |
---|
3599 | e_int(start_index(nb):end_index(nb)) = e(kp,jp,ip) |
---|
3600 | diss_int(start_index(nb):end_index(nb)) = diss(kp,jp,ip) |
---|
3601 | de_dx_int(start_index(nb):end_index(nb)) = de_dx(kp,jp,ip) |
---|
3602 | de_dy_int(start_index(nb):end_index(nb)) = de_dy(kp,jp,ip) |
---|
3603 | de_dz_int(start_index(nb):end_index(nb)) = de_dz(kp,jp,ip) |
---|
3604 | ! |
---|
3605 | !-- Set flag for stochastic equation. |
---|
3606 | term_1_2(start_index(nb):end_index(nb)) = 0.0_wp |
---|
3607 | ELSE |
---|
3608 | i = ip + block_offset(nb)%i_off |
---|
3609 | j = jp + block_offset(nb)%j_off |
---|
3610 | k = kp + block_offset(nb)%k_off |
---|
3611 | |
---|
3612 | DO n = start_index(nb), end_index(nb) |
---|
3613 | ! |
---|
3614 | !-- Interpolate TKE |
---|
3615 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
3616 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
3617 | aa = x**2 + y**2 |
---|
3618 | bb = ( dx - x )**2 + y**2 |
---|
3619 | cc = x**2 + ( dy - y )**2 |
---|
3620 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
3621 | gg = aa + bb + cc + dd |
---|
3622 | |
---|
3623 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
3624 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
3625 | ) / ( 3.0_wp * gg ) |
---|
3626 | |
---|
3627 | IF ( k+1 == nzt+1 ) THEN |
---|
3628 | e_int(n) = e_int_l |
---|
3629 | ELSE |
---|
3630 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
3631 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
3632 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
3633 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
3634 | ) / ( 3.0_wp * gg ) |
---|
3635 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3636 | ( e_int_u - e_int_l ) |
---|
3637 | ENDIF |
---|
3638 | ! |
---|
3639 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
3640 | !-- required any more) |
---|
3641 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
3642 | e_int(n) = 1.0E-20_wp |
---|
3643 | ENDIF |
---|
3644 | ! |
---|
3645 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
3646 | !-- all position variables from above (TKE)) |
---|
3647 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
3648 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
3649 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
3650 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
3651 | ) / ( 3.0_wp * gg ) |
---|
3652 | |
---|
3653 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
3654 | de_dx_int(n) = de_dx_int_l |
---|
3655 | ELSE |
---|
3656 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
3657 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
3658 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
3659 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
3660 | ) / ( 3.0_wp * gg ) |
---|
3661 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3662 | ( de_dx_int_u - de_dx_int_l ) |
---|
3663 | ENDIF |
---|
3664 | ! |
---|
3665 | !-- Interpolate the TKE gradient along y |
---|
3666 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
3667 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
3668 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
3669 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
3670 | ) / ( 3.0_wp * gg ) |
---|
3671 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
3672 | de_dy_int(n) = de_dy_int_l |
---|
3673 | ELSE |
---|
3674 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
3675 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
3676 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
3677 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
3678 | ) / ( 3.0_wp * gg ) |
---|
3679 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3680 | ( de_dy_int_u - de_dy_int_l ) |
---|
3681 | ENDIF |
---|
3682 | |
---|
3683 | ! |
---|
3684 | !-- Interpolate the TKE gradient along z |
---|
3685 | IF ( zv(n) < 0.5_wp * dz(1) ) THEN |
---|
3686 | de_dz_int(n) = 0.0_wp |
---|
3687 | ELSE |
---|
3688 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
3689 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
3690 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
3691 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
3692 | ) / ( 3.0_wp * gg ) |
---|
3693 | |
---|
3694 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
3695 | de_dz_int(n) = de_dz_int_l |
---|
3696 | ELSE |
---|
3697 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
3698 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
3699 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
3700 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
3701 | ) / ( 3.0_wp * gg ) |
---|
3702 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3703 | ( de_dz_int_u - de_dz_int_l ) |
---|
3704 | ENDIF |
---|
3705 | ENDIF |
---|
3706 | |
---|
3707 | ! |
---|
3708 | !-- Interpolate the dissipation of TKE |
---|
3709 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
3710 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
3711 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
3712 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
3713 | ) / ( 3.0_wp * gg ) |
---|
3714 | |
---|
3715 | IF ( k == nzt ) THEN |
---|
3716 | diss_int(n) = diss_int_l |
---|
3717 | ELSE |
---|
3718 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
3719 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
3720 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
3721 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
3722 | ) / ( 3.0_wp * gg ) |
---|
3723 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3724 | ( diss_int_u - diss_int_l ) |
---|
3725 | ENDIF |
---|
3726 | |
---|
3727 | ! |
---|
3728 | !-- Set flag for stochastic equation. |
---|
3729 | term_1_2(n) = 1.0_wp |
---|
3730 | ENDDO |
---|
3731 | ENDIF |
---|
3732 | ENDDO |
---|
3733 | |
---|
3734 | DO nb = 0,7 |
---|
3735 | i = ip + block_offset(nb)%i_off |
---|
3736 | j = jp + block_offset(nb)%j_off |
---|
3737 | k = kp + block_offset(nb)%k_off |
---|
3738 | |
---|
3739 | DO n = start_index(nb), end_index(nb) |
---|
3740 | ! |
---|
3741 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
3742 | !-- resolved-scale velocity variances and use the interpolated values |
---|
3743 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
3744 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
3745 | !-- of turbulent kinetic energy. |
---|
3746 | IF ( k == 0 ) THEN |
---|
3747 | e_mean_int = hom(0,1,8,0) |
---|
3748 | ELSE |
---|
3749 | e_mean_int = hom(k,1,8,0) + & |
---|
3750 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
3751 | ( zu(k+1) - zu(k) ) * & |
---|
3752 | ( zv(n) - zu(k) ) |
---|
3753 | ENDIF |
---|
3754 | |
---|
3755 | kw = kp - 1 |
---|
3756 | |
---|
3757 | IF ( k == 0 ) THEN |
---|
3758 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
3759 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
3760 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
3761 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
3762 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
3763 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
3764 | ELSE |
---|
3765 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
3766 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
3767 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
3768 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
3769 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
3770 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
3771 | ENDIF |
---|
3772 | |
---|
3773 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
3774 | ! |
---|
3775 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
3776 | !-- an educated guess for the given case. |
---|
3777 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
3778 | fs_int(n) = 1.0_wp |
---|
3779 | ELSE |
---|
3780 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
3781 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
3782 | ENDIF |
---|
3783 | |
---|
3784 | ENDDO |
---|
3785 | ENDDO |
---|
3786 | |
---|
3787 | DO nb = 0, 7 |
---|
3788 | DO n = start_index(nb), end_index(nb) |
---|
3789 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
3790 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
3791 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
3792 | ENDDO |
---|
3793 | ENDDO |
---|
3794 | |
---|
3795 | DO nb = 0, 7 |
---|
3796 | DO n = start_index(nb), end_index(nb) |
---|
3797 | |
---|
3798 | ! |
---|
3799 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
3800 | lagr_timescale(n) = ( 4.0_wp * e_int(n) + 1E-20_wp ) / & |
---|
3801 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) + 1E-20_wp ) |
---|
3802 | |
---|
3803 | ! |
---|
3804 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
3805 | !-- complete the current LES timestep. |
---|
3806 | dt_gap(n) = dt_3d - particles(n)%dt_sum |
---|
3807 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale(n), dt_gap(n) ) |
---|
3808 | particles(n)%aux1 = lagr_timescale(n) |
---|
3809 | particles(n)%aux2 = dt_gap(n) |
---|
3810 | ! |
---|
3811 | !-- The particle timestep should not be too small in order to prevent |
---|
3812 | !-- the number of particle timesteps of getting too large |
---|
3813 | IF ( dt_particle(n) < dt_min_part ) THEN |
---|
3814 | IF ( dt_min_part < dt_gap(n) ) THEN |
---|
3815 | dt_particle(n) = dt_min_part |
---|
3816 | ELSE |
---|
3817 | dt_particle(n) = dt_gap(n) |
---|
3818 | ENDIF |
---|
3819 | ENDIF |
---|
3820 | rvar1_temp(n) = particles(n)%rvar1 |
---|
3821 | rvar2_temp(n) = particles(n)%rvar2 |
---|
3822 | rvar3_temp(n) = particles(n)%rvar3 |
---|
3823 | ! |
---|
3824 | !-- Calculate the SGS velocity components |
---|
3825 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
3826 | ! |
---|
3827 | !-- For new particles the SGS components are derived from the SGS |
---|
3828 | !-- TKE. Limit the Gaussian random number to the interval |
---|
3829 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
3830 | !-- from becoming unrealistically large. |
---|
3831 | rvar1_temp(n) = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
3832 | + 1E-20_wp ) * ( rg(n,1) - 1.0_wp ) |
---|
3833 | rvar2_temp(n) = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
3834 | + 1E-20_wp ) * ( rg(n,2) - 1.0_wp ) |
---|
3835 | rvar3_temp(n) = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
3836 | + 1E-20_wp ) * ( rg(n,3) - 1.0_wp ) |
---|
3837 | |
---|
3838 | ELSE |
---|
3839 | ! |
---|
3840 | !-- Restriction of the size of the new timestep: compared to the |
---|
3841 | !-- previous timestep the increase must not exceed 200%. First, |
---|
3842 | !-- check if age > age_m, in order to prevent that particles get zero |
---|
3843 | !-- timestep. |
---|
3844 | dt_particle_m = MERGE( dt_particle(n), & |
---|
3845 | particles(n)%age - particles(n)%age_m, & |
---|
3846 | particles(n)%age - particles(n)%age_m < & |
---|
3847 | 1E-8_wp ) |
---|
3848 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
3849 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
3850 | ENDIF |
---|
3851 | |
---|
3852 | !-- For old particles the SGS components are correlated with the |
---|
3853 | !-- values from the previous timestep. Random numbers have also to |
---|
3854 | !-- be limited (see above). |
---|
3855 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
3856 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
3857 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
3858 | !-- value for the change of TKE |
---|
3859 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
3860 | |
---|
3861 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
3862 | |
---|
3863 | IF ( de_dt < de_dt_min ) THEN |
---|
3864 | de_dt = de_dt_min |
---|
3865 | ENDIF |
---|
3866 | |
---|
3867 | CALL weil_stochastic_eq( rvar1_temp(n), fs_int(n), e_int(n), & |
---|
3868 | de_dx_int(n), de_dt, diss_int(n), & |
---|
3869 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
3870 | |
---|
3871 | CALL weil_stochastic_eq( rvar2_temp(n), fs_int(n), e_int(n), & |
---|
3872 | de_dy_int(n), de_dt, diss_int(n), & |
---|
3873 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
3874 | |
---|
3875 | CALL weil_stochastic_eq( rvar3_temp(n), fs_int(n), e_int(n), & |
---|
3876 | de_dz_int(n), de_dt, diss_int(n), & |
---|
3877 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
3878 | |
---|
3879 | ENDIF |
---|
3880 | |
---|
3881 | ENDDO |
---|
3882 | ENDDO |
---|
3883 | ! |
---|
3884 | !-- Check if the added SGS velocities result in a violation of the CFL- |
---|
3885 | !-- criterion. If yes choose a smaller timestep based on the new velocities |
---|
3886 | !-- and calculate SGS velocities again |
---|
3887 | dz_temp = zw(kp)-zw(kp-1) |
---|
3888 | |
---|
3889 | DO nb = 0, 7 |
---|
3890 | DO n = start_index(nb), end_index(nb) |
---|
3891 | IF ( .NOT. particles(n)%age == 0.0_wp .AND. & |
---|
3892 | (ABS( u_int(n) + rvar1_temp(n) ) > (dx/dt_particle(n)) .OR. & |
---|
3893 | ABS( v_int(n) + rvar2_temp(n) ) > (dy/dt_particle(n)) .OR. & |
---|
3894 | ABS( w_int(n) + rvar3_temp(n) ) > (dz_temp/dt_particle(n)))) THEN |
---|
3895 | |
---|
3896 | dt_particle(n) = 0.9_wp * MIN( & |
---|
3897 | ( dx / ABS( u_int(n) + rvar1_temp(n) ) ), & |
---|
3898 | ( dy / ABS( v_int(n) + rvar2_temp(n) ) ), & |
---|
3899 | ( dz_temp / ABS( w_int(n) + rvar3_temp(n) ) ) ) |
---|
3900 | |
---|
3901 | ! |
---|
3902 | !-- Reset temporary SGS velocites to "current" ones |
---|
3903 | rvar1_temp(n) = particles(n)%rvar1 |
---|
3904 | rvar2_temp(n) = particles(n)%rvar2 |
---|
3905 | rvar3_temp(n) = particles(n)%rvar3 |
---|
3906 | |
---|
3907 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
3908 | |
---|
3909 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
3910 | |
---|
3911 | IF ( de_dt < de_dt_min ) THEN |
---|
3912 | de_dt = de_dt_min |
---|
3913 | ENDIF |
---|
3914 | |
---|
3915 | CALL weil_stochastic_eq( rvar1_temp(n), fs_int(n), e_int(n), & |
---|
3916 | de_dx_int(n), de_dt, diss_int(n), & |
---|
3917 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
3918 | |
---|
3919 | CALL weil_stochastic_eq( rvar2_temp(n), fs_int(n), e_int(n), & |
---|
3920 | de_dy_int(n), de_dt, diss_int(n), & |
---|
3921 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
3922 | |
---|
3923 | CALL weil_stochastic_eq( rvar3_temp(n), fs_int(n), e_int(n), & |
---|
3924 | de_dz_int(n), de_dt, diss_int(n), & |
---|
3925 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
3926 | ENDIF |
---|
3927 | |
---|
3928 | ! |
---|
3929 | !-- Update particle velocites |
---|
3930 | particles(n)%rvar1 = rvar1_temp(n) |
---|
3931 | particles(n)%rvar2 = rvar2_temp(n) |
---|
3932 | particles(n)%rvar3 = rvar3_temp(n) |
---|
3933 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
3934 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
3935 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
3936 | ! |
---|
3937 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
3938 | !-- for calculating the SGS particle velocities at the next timestep |
---|
3939 | particles(n)%e_m = e_int(n) |
---|
3940 | ENDDO |
---|
3941 | ENDDO |
---|
3942 | |
---|
3943 | ELSE |
---|
3944 | ! |
---|
3945 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
3946 | !-- be set |
---|
3947 | dt_particle = dt_3d |
---|
3948 | |
---|
3949 | ENDIF |
---|
3950 | |
---|
3951 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
3952 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
3953 | ! |
---|
3954 | !-- Decide whether the particle loop runs over the subboxes or only over 1, |
---|
3955 | !-- number_of_particles. This depends on the selected interpolation method. |
---|
3956 | !-- If particle interpolation method is not trilinear, then the sorting within |
---|
3957 | !-- subboxes is not required. However, therefore the index start_index(nb) and |
---|
3958 | !-- end_index(nb) are not defined and the loops are still over |
---|
3959 | !-- number_of_particles. @todo find a more generic way to write this loop or |
---|
3960 | !-- delete trilinear interpolation |
---|
3961 | IF ( interpolation_trilinear ) THEN |
---|
3962 | subbox_start = 0 |
---|
3963 | subbox_end = 7 |
---|
3964 | ELSE |
---|
3965 | subbox_start = 1 |
---|
3966 | subbox_end = 1 |
---|
3967 | ENDIF |
---|
3968 | ! |
---|
3969 | !-- loop over subboxes. In case of simple interpolation scheme no subboxes |
---|
3970 | !-- are introduced, as they are not required. Accordingly, this loops goes |
---|
3971 | !-- from 1 to 1. |
---|
3972 | DO nb = subbox_start, subbox_end |
---|
3973 | IF ( interpolation_trilinear ) THEN |
---|
3974 | particle_start = start_index(nb) |
---|
3975 | particle_end = end_index(nb) |
---|
3976 | ELSE |
---|
3977 | particle_start = 1 |
---|
3978 | particle_end = number_of_particles |
---|
3979 | ENDIF |
---|
3980 | ! |
---|
3981 | !-- Loop from particle start to particle end |
---|
3982 | DO n = particle_start, particle_end |
---|
3983 | |
---|
3984 | ! |
---|
3985 | !-- Particle advection |
---|
3986 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
3987 | ! |
---|
3988 | !-- Pure passive transport (without particle inertia) |
---|
3989 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
3990 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
3991 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
3992 | |
---|
3993 | particles(n)%speed_x = u_int(n) |
---|
3994 | particles(n)%speed_y = v_int(n) |
---|
3995 | particles(n)%speed_z = w_int(n) |
---|
3996 | |
---|
3997 | ELSE |
---|
3998 | ! |
---|
3999 | !-- Transport of particles with inertia |
---|
4000 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
4001 | dt_particle(n) |
---|
4002 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
4003 | dt_particle(n) |
---|
4004 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
4005 | dt_particle(n) |
---|
4006 | |
---|
4007 | ! |
---|
4008 | !-- Update of the particle velocity |
---|
4009 | IF ( cloud_droplets ) THEN |
---|
4010 | ! |
---|
4011 | !-- Terminal velocity is computed for vertical direction (Rogers et |
---|
4012 | !-- al., 1993, J. Appl. Meteorol.) |
---|
4013 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
4014 | IF ( diameter <= d0_rog ) THEN |
---|
4015 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
4016 | ELSE |
---|
4017 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
4018 | ENDIF |
---|
4019 | |
---|
4020 | ! |
---|
4021 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
4022 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
4023 | IF ( use_sgs_for_particles ) THEN |
---|
4024 | lagr_timescale(n) = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
4025 | RL = EXP( -1.0_wp * dt_3d / MAX( lagr_timescale(n), & |
---|
4026 | 1.0E-20_wp ) ) |
---|
4027 | sigma = SQRT( e(kp,jp,ip) ) |
---|
4028 | |
---|
4029 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
4030 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
4031 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
4032 | |
---|
4033 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
4034 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
4035 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
4036 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
4037 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
4038 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
4039 | |
---|
4040 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
4041 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
4042 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
4043 | ELSE |
---|
4044 | particles(n)%speed_x = u_int(n) |
---|
4045 | particles(n)%speed_y = v_int(n) |
---|
4046 | particles(n)%speed_z = w_int(n) - w_s |
---|
4047 | ENDIF |
---|
4048 | |
---|
4049 | ELSE |
---|
4050 | |
---|
4051 | IF ( use_sgs_for_particles ) THEN |
---|
4052 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
4053 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
4054 | ELSE |
---|
4055 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
4056 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
4057 | ENDIF |
---|
4058 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
4059 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
4060 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
4061 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
4062 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
4063 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
4064 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
4065 | ENDIF |
---|
4066 | |
---|
4067 | ENDIF |
---|
4068 | ENDDO |
---|
4069 | ENDDO |
---|
4070 | |
---|
4071 | ELSE |
---|
4072 | ! |
---|
4073 | !-- Decide whether the particle loop runs over the subboxes or only over 1, |
---|
4074 | !-- number_of_particles. This depends on the selected interpolation method. |
---|
4075 | IF ( interpolation_trilinear ) THEN |
---|
4076 | subbox_start = 0 |
---|
4077 | subbox_end = 7 |
---|
4078 | ELSE |
---|
4079 | subbox_start = 1 |
---|
4080 | subbox_end = 1 |
---|
4081 | ENDIF |
---|
4082 | !-- loop over subboxes. In case of simple interpolation scheme no subboxes |
---|
4083 | !-- are introduced, as they are not required. Accordingly, this loops goes |
---|
4084 | !-- from 1 to 1. |
---|
4085 | DO nb = subbox_start, subbox_end |
---|
4086 | IF ( interpolation_trilinear ) THEN |
---|
4087 | particle_start = start_index(nb) |
---|
4088 | particle_end = end_index(nb) |
---|
4089 | ELSE |
---|
4090 | particle_start = 1 |
---|
4091 | particle_end = number_of_particles |
---|
4092 | ENDIF |
---|
4093 | ! |
---|
4094 | !-- Loop from particle start to particle end |
---|
4095 | DO n = particle_start, particle_end |
---|
4096 | |
---|
4097 | ! |
---|
4098 | !-- Transport of particles with inertia |
---|
4099 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
4100 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
4101 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
4102 | ! |
---|
4103 | !-- Update of the particle velocity |
---|
4104 | IF ( cloud_droplets ) THEN |
---|
4105 | ! |
---|
4106 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
4107 | !-- 1993, J. Appl. Meteorol.) |
---|
4108 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
4109 | IF ( diameter <= d0_rog ) THEN |
---|
4110 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
4111 | ELSE |
---|
4112 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
4113 | ENDIF |
---|
4114 | |
---|
4115 | ! |
---|
4116 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
4117 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
4118 | IF ( use_sgs_for_particles ) THEN |
---|
4119 | lagr_timescale(n) = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
4120 | RL = EXP( -1.0_wp * dt_3d / MAX( lagr_timescale(n), & |
---|
4121 | 1.0E-20_wp ) ) |
---|
4122 | sigma = SQRT( e(kp,jp,ip) ) |
---|
4123 | |
---|
4124 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
4125 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
4126 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
4127 | |
---|
4128 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
4129 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
4130 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
4131 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
4132 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
4133 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
4134 | |
---|
4135 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
4136 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
4137 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
4138 | ELSE |
---|
4139 | particles(n)%speed_x = u_int(n) |
---|
4140 | particles(n)%speed_y = v_int(n) |
---|
4141 | particles(n)%speed_z = w_int(n) - w_s |
---|
4142 | ENDIF |
---|
4143 | |
---|
4144 | ELSE |
---|
4145 | |
---|
4146 | IF ( use_sgs_for_particles ) THEN |
---|
4147 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
4148 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
4149 | ELSE |
---|
4150 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
4151 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
4152 | ENDIF |
---|
4153 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
4154 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
4155 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
4156 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
4157 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
4158 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
4159 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
4160 | ENDIF |
---|
4161 | ENDDO |
---|
4162 | ENDDO |
---|
4163 | |
---|
4164 | ENDIF |
---|
4165 | |
---|
4166 | ! |
---|
4167 | !-- Store the old age of the particle ( needed to prevent that a |
---|
4168 | !-- particle crosses several PEs during one timestep, and for the |
---|
4169 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
4170 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
4171 | |
---|
4172 | ! |
---|
4173 | !-- loop over subboxes. In case of simple interpolation scheme no subboxes |
---|
4174 | !-- are introduced, as they are not required. Accordingly, this loops goes |
---|
4175 | !-- from 1 to 1. |
---|
4176 | ! |
---|
4177 | !-- Decide whether the particle loop runs over the subboxes or only over 1, |
---|
4178 | !-- number_of_particles. This depends on the selected interpolation method. |
---|
4179 | IF ( interpolation_trilinear ) THEN |
---|
4180 | subbox_start = 0 |
---|
4181 | subbox_end = 7 |
---|
4182 | ELSE |
---|
4183 | subbox_start = 1 |
---|
4184 | subbox_end = 1 |
---|
4185 | ENDIF |
---|
4186 | DO nb = subbox_start, subbox_end |
---|
4187 | IF ( interpolation_trilinear ) THEN |
---|
4188 | particle_start = start_index(nb) |
---|
4189 | particle_end = end_index(nb) |
---|
4190 | ELSE |
---|
4191 | particle_start = 1 |
---|
4192 | particle_end = number_of_particles |
---|
4193 | ENDIF |
---|
4194 | ! |
---|
4195 | !-- Loop from particle start to particle end |
---|
4196 | DO n = particle_start, particle_end |
---|
4197 | ! |
---|
4198 | !-- Increment the particle age and the total time that the particle |
---|
4199 | !-- has advanced within the particle timestep procedure |
---|
4200 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
4201 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
4202 | |
---|
4203 | ! |
---|
4204 | !-- Check whether there is still a particle that has not yet completed |
---|
4205 | !-- the total LES timestep |
---|
4206 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
4207 | dt_3d_reached_l = .FALSE. |
---|
4208 | ENDIF |
---|
4209 | |
---|
4210 | ENDDO |
---|
4211 | ENDDO |
---|
4212 | |
---|
4213 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
4214 | |
---|
4215 | |
---|
4216 | END SUBROUTINE lpm_advec |
---|
4217 | |
---|
4218 | |
---|
4219 | !------------------------------------------------------------------------------! |
---|
4220 | ! Description: |
---|
4221 | ! ------------ |
---|
4222 | !> Calculation of subgrid-scale particle speed using the stochastic model |
---|
4223 | !> of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
4224 | !------------------------------------------------------------------------------! |
---|
4225 | SUBROUTINE weil_stochastic_eq( v_sgs, fs_n, e_n, dedxi_n, dedt_n, diss_n, & |
---|
4226 | dt_n, rg_n, fac ) |
---|
4227 | |
---|
4228 | REAL(wp) :: a1 !< dummy argument |
---|
4229 | REAL(wp) :: dedt_n !< time derivative of TKE at particle position |
---|
4230 | REAL(wp) :: dedxi_n !< horizontal derivative of TKE at particle position |
---|
4231 | REAL(wp) :: diss_n !< dissipation at particle position |
---|
4232 | REAL(wp) :: dt_n !< particle timestep |
---|
4233 | REAL(wp) :: e_n !< TKE at particle position |
---|
4234 | REAL(wp) :: fac !< flag to identify adjacent topography |
---|
4235 | REAL(wp) :: fs_n !< weighting factor to prevent that subgrid-scale particle speed becomes too large |
---|
4236 | REAL(wp) :: rg_n !< random number |
---|
4237 | REAL(wp) :: term1 !< memory term |
---|
4238 | REAL(wp) :: term2 !< drift correction term |
---|
4239 | REAL(wp) :: term3 !< random term |
---|
4240 | REAL(wp) :: v_sgs !< subgrid-scale velocity component |
---|
4241 | |
---|
4242 | !-- At first, limit TKE to a small non-zero number, in order to prevent |
---|
4243 | !-- the occurrence of extremely large SGS-velocities in case TKE is zero, |
---|
4244 | !-- (could occur at the simulation begin). |
---|
4245 | e_n = MAX( e_n, 1E-20_wp ) |
---|
4246 | ! |
---|
4247 | !-- Please note, terms 1 and 2 (drift and memory term, respectively) are |
---|
4248 | !-- multiplied by a flag to switch of both terms near topography. |
---|
4249 | !-- This is necessary, as both terms may cause a subgrid-scale velocity build up |
---|
4250 | !-- if particles are trapped in regions with very small TKE, e.g. in narrow street |
---|
4251 | !-- canyons resolved by only a few grid points. Hence, term 1 and term 2 are |
---|
4252 | !-- disabled if one of the adjacent grid points belongs to topography. |
---|
4253 | !-- Moreover, in this case, the previous subgrid-scale component is also set |
---|
4254 | !-- to zero. |
---|
4255 | |
---|
4256 | a1 = fs_n * c_0 * diss_n |
---|
4257 | ! |
---|
4258 | !-- Memory term |
---|
4259 | term1 = - a1 * v_sgs * dt_n / ( 4.0_wp * sgs_wf_part * e_n + 1E-20_wp ) & |
---|
4260 | * fac |
---|
4261 | ! |
---|
4262 | !-- Drift correction term |
---|
4263 | term2 = ( ( dedt_n * v_sgs / e_n ) + dedxi_n ) * 0.5_wp * dt_n & |
---|
4264 | * fac |
---|
4265 | ! |
---|
4266 | !-- Random term |
---|
4267 | term3 = SQRT( MAX( a1, 1E-20_wp ) ) * ( rg_n - 1.0_wp ) * SQRT( dt_n ) |
---|
4268 | ! |
---|
4269 | !-- In cese one of the adjacent grid-boxes belongs to topograhy, the previous |
---|
4270 | !-- subgrid-scale velocity component is set to zero, in order to prevent a |
---|
4271 | !-- velocity build-up. |
---|
4272 | !-- This case, set also previous subgrid-scale component to zero. |
---|
4273 | v_sgs = v_sgs * fac + term1 + term2 + term3 |
---|
4274 | |
---|
4275 | END SUBROUTINE weil_stochastic_eq |
---|
4276 | |
---|
4277 | |
---|
4278 | !------------------------------------------------------------------------------! |
---|
4279 | ! Description: |
---|
4280 | ! ------------ |
---|
4281 | !> Boundary conditions for the Lagrangian particles. |
---|
4282 | !> The routine consists of two different parts. One handles the bottom (flat) |
---|
4283 | !> and top boundary. In this part, also particles which exceeded their lifetime |
---|
4284 | !> are deleted. |
---|
4285 | !> The other part handles the reflection of particles from vertical walls. |
---|
4286 | !> This part was developed by Jin Zhang during 2006-2007. |
---|
4287 | !> |
---|
4288 | !> To do: Code structure for finding the t_index values and for checking the |
---|
4289 | !> ----- reflection conditions is basically the same for all four cases, so it |
---|
4290 | !> should be possible to further simplify/shorten it. |
---|
4291 | !> |
---|
4292 | !> THE WALLS PART OF THIS ROUTINE HAS NOT BEEN TESTED FOR OCEAN RUNS SO FAR!!!! |
---|
4293 | !> (see offset_ocean_*) |
---|
4294 | !------------------------------------------------------------------------------! |
---|
4295 | SUBROUTINE lpm_boundary_conds( location_bc , i, j, k ) |
---|
4296 | |
---|
4297 | CHARACTER (LEN=*), INTENT(IN) :: location_bc !< general mode: boundary conditions at bottom/top of the model domain |
---|
4298 | !< or at vertical surfaces (buildings, terrain steps) |
---|
4299 | INTEGER(iwp), INTENT(IN) :: i !< grid index of particle box along x |
---|
4300 | INTEGER(iwp), INTENT(IN) :: j !< grid index of particle box along y |
---|
4301 | INTEGER(iwp), INTENT(IN) :: k !< grid index of particle box along z |
---|
4302 | |
---|
4303 | INTEGER(iwp) :: inc !< dummy for sorting algorithmus |
---|
4304 | INTEGER(iwp) :: ir !< dummy for sorting algorithmus |
---|
4305 | INTEGER(iwp) :: i1 !< grid index (x) of old particle position |
---|
4306 | INTEGER(iwp) :: i2 !< grid index (x) of current particle position |
---|
4307 | INTEGER(iwp) :: i3 !< grid index (x) of intermediate particle position |
---|
4308 | INTEGER(iwp) :: index_reset !< index reset height |
---|
4309 | INTEGER(iwp) :: jr !< dummy for sorting algorithmus |
---|
4310 | INTEGER(iwp) :: j1 !< grid index (y) of old particle position |
---|
4311 | INTEGER(iwp) :: j2 !< grid index (y) of current particle position |
---|
4312 | INTEGER(iwp) :: j3 !< grid index (y) of intermediate particle position |
---|
4313 | INTEGER(iwp) :: k1 !< grid index (z) of old particle position |
---|
4314 | INTEGER(iwp) :: k2 !< grid index (z) of current particle position |
---|
4315 | INTEGER(iwp) :: k3 !< grid index (z) of intermediate particle position |
---|
4316 | INTEGER(iwp) :: n !< particle number |
---|
4317 | INTEGER(iwp) :: particles_top !< maximum reset height |
---|
4318 | INTEGER(iwp) :: t_index !< running index for intermediate particle timesteps in reflection algorithmus |
---|
4319 | INTEGER(iwp) :: t_index_number !< number of intermediate particle timesteps in reflection algorithmus |
---|
4320 | INTEGER(iwp) :: tmp_x !< dummy for sorting algorithm |
---|
4321 | INTEGER(iwp) :: tmp_y !< dummy for sorting algorithm |
---|
4322 | INTEGER(iwp) :: tmp_z !< dummy for sorting algorithm |
---|
4323 | |
---|
4324 | INTEGER(iwp), DIMENSION(0:10) :: x_ind(0:10) = 0 !< index array (x) of intermediate particle positions |
---|
4325 | INTEGER(iwp), DIMENSION(0:10) :: y_ind(0:10) = 0 !< index array (y) of intermediate particle positions |
---|
4326 | INTEGER(iwp), DIMENSION(0:10) :: z_ind(0:10) = 0 !< index array (z) of intermediate particle positions |
---|
4327 | |
---|
4328 | LOGICAL :: cross_wall_x !< flag to check if particle reflection along x is necessary |
---|
4329 | LOGICAL :: cross_wall_y !< flag to check if particle reflection along y is necessary |
---|
4330 | LOGICAL :: cross_wall_z !< flag to check if particle reflection along z is necessary |
---|
4331 | LOGICAL :: reflect_x !< flag to check if particle is already reflected along x |
---|
4332 | LOGICAL :: reflect_y !< flag to check if particle is already reflected along y |
---|
4333 | LOGICAL :: reflect_z !< flag to check if particle is already reflected along z |
---|
4334 | LOGICAL :: tmp_reach_x !< dummy for sorting algorithmus |
---|
4335 | LOGICAL :: tmp_reach_y !< dummy for sorting algorithmus |
---|
4336 | LOGICAL :: tmp_reach_z !< dummy for sorting algorithmus |
---|
4337 | LOGICAL :: x_wall_reached !< flag to check if particle has already reached wall |
---|
4338 | LOGICAL :: y_wall_reached !< flag to check if particle has already reached wall |
---|
4339 | LOGICAL :: z_wall_reached !< flag to check if particle has already reached wall |
---|
4340 | |
---|
4341 | LOGICAL, DIMENSION(0:10) :: reach_x !< flag to check if particle is at a yz-wall |
---|
4342 | LOGICAL, DIMENSION(0:10) :: reach_y !< flag to check if particle is at a xz-wall |
---|
4343 | LOGICAL, DIMENSION(0:10) :: reach_z !< flag to check if particle is at a xy-wall |
---|
4344 | |
---|
4345 | REAL(wp) :: dt_particle !< particle timestep |
---|
4346 | REAL(wp) :: eps = 1E-10_wp !< security number to check if particle has reached a wall |
---|
4347 | REAL(wp) :: pos_x !< intermediate particle position (x) |
---|
4348 | REAL(wp) :: pos_x_old !< particle position (x) at previous particle timestep |
---|
4349 | REAL(wp) :: pos_y !< intermediate particle position (y) |
---|
4350 | REAL(wp) :: pos_y_old !< particle position (y) at previous particle timestep |
---|
4351 | REAL(wp) :: pos_z !< intermediate particle position (z) |
---|
4352 | REAL(wp) :: pos_z_old !< particle position (z) at previous particle timestep |
---|
4353 | REAL(wp) :: prt_x !< current particle position (x) |
---|
4354 | REAL(wp) :: prt_y !< current particle position (y) |
---|
4355 | REAL(wp) :: prt_z !< current particle position (z) |
---|
4356 | REAL(wp) :: ran_val !< location of wall in z |
---|
4357 | REAL(wp) :: reset_top !< location of wall in z |
---|
4358 | REAL(wp) :: t_old !< previous reflection time |
---|
4359 | REAL(wp) :: tmp_t !< dummy for sorting algorithmus |
---|
4360 | REAL(wp) :: xwall !< location of wall in x |
---|
4361 | REAL(wp) :: ywall !< location of wall in y |
---|
4362 | REAL(wp) :: zwall !< location of wall in z |
---|
4363 | |
---|
4364 | REAL(wp), DIMENSION(0:10) :: t !< reflection time |
---|
4365 | |
---|
4366 | SELECT CASE ( location_bc ) |
---|
4367 | |
---|
4368 | CASE ( 'bottom/top' ) |
---|
4369 | |
---|
4370 | ! |
---|
4371 | !-- Apply boundary conditions to those particles that have crossed the top or |
---|
4372 | !-- bottom boundary and delete those particles, which are older than allowed |
---|
4373 | DO n = 1, number_of_particles |
---|
4374 | |
---|
4375 | ! |
---|
4376 | !-- Stop if particles have moved further than the length of one |
---|
4377 | !-- PE subdomain (newly released particles have age = age_m!) |
---|
4378 | IF ( particles(n)%age /= particles(n)%age_m ) THEN |
---|
4379 | IF ( ABS(particles(n)%speed_x) > & |
---|
4380 | ((nxr-nxl+2)*dx)/(particles(n)%age-particles(n)%age_m) .OR. & |
---|
4381 | ABS(particles(n)%speed_y) > & |
---|
4382 | ((nyn-nys+2)*dy)/(particles(n)%age-particles(n)%age_m) ) THEN |
---|
4383 | |
---|
4384 | WRITE( message_string, * ) 'particle too fast. n = ', n |
---|
4385 | CALL message( 'lpm_boundary_conds', 'PA0148', 2, 2, -1, 6, 1 ) |
---|
4386 | ENDIF |
---|
4387 | ENDIF |
---|
4388 | |
---|
4389 | IF ( particles(n)%age > particle_maximum_age .AND. & |
---|
4390 | particles(n)%particle_mask ) & |
---|
4391 | THEN |
---|
4392 | particles(n)%particle_mask = .FALSE. |
---|
4393 | deleted_particles = deleted_particles + 1 |
---|
4394 | ENDIF |
---|
4395 | |
---|
4396 | IF ( particles(n)%z >= zw(nz) .AND. particles(n)%particle_mask ) THEN |
---|
4397 | IF ( ibc_par_t == 1 ) THEN |
---|
4398 | ! |
---|
4399 | !-- Particle absorption |
---|
4400 | particles(n)%particle_mask = .FALSE. |
---|
4401 | deleted_particles = deleted_particles + 1 |
---|
4402 | ELSEIF ( ibc_par_t == 2 ) THEN |
---|
4403 | ! |
---|
4404 | !-- Particle reflection |
---|
4405 | particles(n)%z = 2.0_wp * zw(nz) - particles(n)%z |
---|
4406 | particles(n)%speed_z = -particles(n)%speed_z |
---|
4407 | IF ( use_sgs_for_particles .AND. & |
---|
4408 | particles(n)%rvar3 > 0.0_wp ) THEN |
---|
4409 | particles(n)%rvar3 = -particles(n)%rvar3 |
---|
4410 | ENDIF |
---|
4411 | ENDIF |
---|
4412 | ENDIF |
---|
4413 | |
---|
4414 | IF ( particles(n)%z < zw(0) .AND. particles(n)%particle_mask ) THEN |
---|
4415 | IF ( ibc_par_b == 1 ) THEN |
---|
4416 | ! |
---|
4417 | !-- Particle absorption |
---|
4418 | particles(n)%particle_mask = .FALSE. |
---|
4419 | deleted_particles = deleted_particles + 1 |
---|
4420 | ELSEIF ( ibc_par_b == 2 ) THEN |
---|
4421 | ! |
---|
4422 | !-- Particle reflection |
---|
4423 | particles(n)%z = 2.0_wp * zw(0) - particles(n)%z |
---|
4424 | particles(n)%speed_z = -particles(n)%speed_z |
---|
4425 | IF ( use_sgs_for_particles .AND. & |
---|
4426 | particles(n)%rvar3 < 0.0_wp ) THEN |
---|
4427 | particles(n)%rvar3 = -particles(n)%rvar3 |
---|
4428 | ENDIF |
---|
4429 | ELSEIF ( ibc_par_b == 3 ) THEN |
---|
4430 | ! |
---|
4431 | !-- Find reset height. @note this works only in non-strechted cases |
---|
4432 | particles_top = INT( pst(1) / dz(1) ) |
---|
4433 | index_reset = MINLOC( prt_count(nzb+1:particles_top,j,i), DIM = 1 ) |
---|
4434 | reset_top = zu(index_reset) |
---|
4435 | iran_part = iran_part + myid |
---|
4436 | ran_val = random_function( iran_part ) |
---|
4437 | particles(n)%z = reset_top * ( 1.0 + ( ran_val / 10.0_wp) ) |
---|
4438 | particles(n)%speed_z = 0.0_wp |
---|
4439 | IF ( curvature_solution_effects ) THEN |
---|
4440 | particles(n)%radius = particles(n)%aux1 |
---|
4441 | ELSE |
---|
4442 | particles(n)%radius = 1.0E-8 |
---|
4443 | ENDIF |
---|
4444 | ENDIF |
---|
4445 | ENDIF |
---|
4446 | ENDDO |
---|
4447 | |
---|
4448 | CASE ( 'walls' ) |
---|
4449 | |
---|
4450 | CALL cpu_log( log_point_s(48), 'lpm_wall_reflect', 'start' ) |
---|
4451 | |
---|
4452 | DO n = 1, number_of_particles |
---|
4453 | ! |
---|
4454 | !-- Recalculate particle timestep |
---|
4455 | dt_particle = particles(n)%age - particles(n)%age_m |
---|
4456 | ! |
---|
4457 | !-- Obtain x/y indices for current particle position |
---|
4458 | i2 = particles(n)%x * ddx |
---|
4459 | j2 = particles(n)%y * ddy |
---|
4460 | IF ( zw(k) < particles(n)%z ) k2 = k + 1 |
---|
4461 | IF ( zw(k) > particles(n)%z .AND. zw(k-1) < particles(n)%z ) k2 = k |
---|
4462 | IF ( zw(k-1) > particles(n)%z ) k2 = k - 1 |
---|
4463 | ! |
---|
4464 | !-- Save current particle positions |
---|
4465 | prt_x = particles(n)%x |
---|
4466 | prt_y = particles(n)%y |
---|
4467 | prt_z = particles(n)%z |
---|
4468 | ! |
---|
4469 | !-- Recalculate old particle positions |
---|
4470 | pos_x_old = particles(n)%x - particles(n)%speed_x * dt_particle |
---|
4471 | pos_y_old = particles(n)%y - particles(n)%speed_y * dt_particle |
---|
4472 | pos_z_old = particles(n)%z - particles(n)%speed_z * dt_particle |
---|
4473 | ! |
---|
4474 | !-- Obtain x/y indices for old particle positions |
---|
4475 | i1 = i |
---|
4476 | j1 = j |
---|
4477 | k1 = k |
---|
4478 | ! |
---|
4479 | !-- Determine horizontal as well as vertical walls at which particle can |
---|
4480 | !-- be potentially reflected. |
---|
4481 | !-- Start with walls aligned in yz layer. |
---|
4482 | !-- Wall to the right |
---|
4483 | IF ( prt_x > pos_x_old ) THEN |
---|
4484 | xwall = ( i1 + 1 ) * dx |
---|
4485 | ! |
---|
4486 | !-- Wall to the left |
---|
4487 | ELSE |
---|
4488 | xwall = i1 * dx |
---|
4489 | ENDIF |
---|
4490 | ! |
---|
4491 | !-- Walls aligned in xz layer |
---|
4492 | !-- Wall to the north |
---|
4493 | IF ( prt_y > pos_y_old ) THEN |
---|
4494 | ywall = ( j1 + 1 ) * dy |
---|
4495 | !-- Wall to the south |
---|
4496 | ELSE |
---|
4497 | ywall = j1 * dy |
---|
4498 | ENDIF |
---|
4499 | |
---|
4500 | IF ( prt_z > pos_z_old ) THEN |
---|
4501 | zwall = zw(k) |
---|
4502 | ELSE |
---|
4503 | zwall = zw(k-1) |
---|
4504 | ENDIF |
---|
4505 | ! |
---|
4506 | !-- Initialize flags to check if particle reflection is necessary |
---|
4507 | cross_wall_x = .FALSE. |
---|
4508 | cross_wall_y = .FALSE. |
---|
4509 | cross_wall_z = .FALSE. |
---|
4510 | ! |
---|
4511 | !-- Initialize flags to check if a wall is reached |
---|
4512 | reach_x = .FALSE. |
---|
4513 | reach_y = .FALSE. |
---|
4514 | reach_z = .FALSE. |
---|
4515 | ! |
---|
4516 | !-- Initialize flags to check if a particle was already reflected |
---|
4517 | reflect_x = .FALSE. |
---|
4518 | reflect_y = .FALSE. |
---|
4519 | reflect_z = .FALSE. |
---|
4520 | ! |
---|
4521 | !-- Initialize flags to check if a wall is already crossed. |
---|
4522 | !-- ( Required to obtain correct indices. ) |
---|
4523 | x_wall_reached = .FALSE. |
---|
4524 | y_wall_reached = .FALSE. |
---|
4525 | z_wall_reached = .FALSE. |
---|
4526 | ! |
---|
4527 | !-- Initialize time array |
---|
4528 | t = 0.0_wp |
---|
4529 | ! |
---|
4530 | !-- Check if particle can reach any wall. This case, calculate the |
---|
4531 | !-- fractional time needed to reach this wall. Store this fractional |
---|
4532 | !-- timestep in array t. Moreover, store indices for these grid |
---|
4533 | !-- boxes where the respective wall belongs to. |
---|
4534 | !-- Start with x-direction. |
---|
4535 | t_index = 1 |
---|
4536 | t(t_index) = ( xwall - pos_x_old ) & |
---|
4537 | / MERGE( MAX( prt_x - pos_x_old, 1E-30_wp ), & |
---|
4538 | MIN( prt_x - pos_x_old, -1E-30_wp ), & |
---|
4539 | prt_x > pos_x_old ) |
---|
4540 | x_ind(t_index) = i2 |
---|
4541 | y_ind(t_index) = j1 |
---|
4542 | z_ind(t_index) = k1 |
---|
4543 | reach_x(t_index) = .TRUE. |
---|
4544 | reach_y(t_index) = .FALSE. |
---|
4545 | reach_z(t_index) = .FALSE. |
---|
4546 | ! |
---|
4547 | !-- Store these values only if particle really reaches any wall. t must |
---|
4548 | !-- be in a interval between [0:1]. |
---|
4549 | IF ( t(t_index) <= 1.0_wp .AND. t(t_index) >= 0.0_wp ) THEN |
---|
4550 | t_index = t_index + 1 |
---|
4551 | cross_wall_x = .TRUE. |
---|
4552 | ENDIF |
---|
4553 | ! |
---|
4554 | !-- y-direction |
---|
4555 | t(t_index) = ( ywall - pos_y_old ) & |
---|
4556 | / MERGE( MAX( prt_y - pos_y_old, 1E-30_wp ), & |
---|
4557 | MIN( prt_y - pos_y_old, -1E-30_wp ), & |
---|
4558 | prt_y > pos_y_old ) |
---|
4559 | x_ind(t_index) = i1 |
---|
4560 | y_ind(t_index) = j2 |
---|
4561 | z_ind(t_index) = k1 |
---|
4562 | reach_x(t_index) = .FALSE. |
---|
4563 | reach_y(t_index) = .TRUE. |
---|
4564 | reach_z(t_index) = .FALSE. |
---|
4565 | IF ( t(t_index) <= 1.0_wp .AND. t(t_index) >= 0.0_wp ) THEN |
---|
4566 | t_index = t_index + 1 |
---|
4567 | cross_wall_y = .TRUE. |
---|
4568 | ENDIF |
---|
4569 | ! |
---|
4570 | !-- z-direction |
---|
4571 | t(t_index) = (zwall - pos_z_old ) & |
---|
4572 | / MERGE( MAX( prt_z - pos_z_old, 1E-30_wp ), & |
---|
4573 | MIN( prt_z - pos_z_old, -1E-30_wp ), & |
---|
4574 | prt_z > pos_z_old ) |
---|
4575 | |
---|
4576 | x_ind(t_index) = i1 |
---|
4577 | y_ind(t_index) = j1 |
---|
4578 | z_ind(t_index) = k2 |
---|
4579 | reach_x(t_index) = .FALSE. |
---|
4580 | reach_y(t_index) = .FALSE. |
---|
4581 | reach_z(t_index) = .TRUE. |
---|
4582 | IF( t(t_index) <= 1.0_wp .AND. t(t_index) >= 0.0_wp) THEN |
---|
4583 | t_index = t_index + 1 |
---|
4584 | cross_wall_z = .TRUE. |
---|
4585 | ENDIF |
---|
4586 | |
---|
4587 | t_index_number = t_index - 1 |
---|
4588 | ! |
---|
4589 | !-- Carry out reflection only if particle reaches any wall |
---|
4590 | IF ( cross_wall_x .OR. cross_wall_y .OR. cross_wall_z ) THEN |
---|
4591 | ! |
---|
4592 | !-- Sort fractional timesteps in ascending order. Also sort the |
---|
4593 | !-- corresponding indices and flag according to the time interval a |
---|
4594 | !-- particle reaches the respective wall. |
---|
4595 | inc = 1 |
---|
4596 | jr = 1 |
---|
4597 | DO WHILE ( inc <= t_index_number ) |
---|
4598 | inc = 3 * inc + 1 |
---|
4599 | ENDDO |
---|
4600 | |
---|
4601 | DO WHILE ( inc > 1 ) |
---|
4602 | inc = inc / 3 |
---|
4603 | DO ir = inc+1, t_index_number |
---|
4604 | tmp_t = t(ir) |
---|
4605 | tmp_x = x_ind(ir) |
---|
4606 | tmp_y = y_ind(ir) |
---|
4607 | tmp_z = z_ind(ir) |
---|
4608 | tmp_reach_x = reach_x(ir) |
---|
4609 | tmp_reach_y = reach_y(ir) |
---|
4610 | tmp_reach_z = reach_z(ir) |
---|
4611 | jr = ir |
---|
4612 | DO WHILE ( t(jr-inc) > tmp_t ) |
---|
4613 | t(jr) = t(jr-inc) |
---|
4614 | x_ind(jr) = x_ind(jr-inc) |
---|
4615 | y_ind(jr) = y_ind(jr-inc) |
---|
4616 | z_ind(jr) = z_ind(jr-inc) |
---|
4617 | reach_x(jr) = reach_x(jr-inc) |
---|
4618 | reach_y(jr) = reach_y(jr-inc) |
---|
4619 | reach_z(jr) = reach_z(jr-inc) |
---|
4620 | jr = jr - inc |
---|
4621 | IF ( jr <= inc ) EXIT |
---|
4622 | ENDDO |
---|
4623 | t(jr) = tmp_t |
---|
4624 | x_ind(jr) = tmp_x |
---|
4625 | y_ind(jr) = tmp_y |
---|
4626 | z_ind(jr) = tmp_z |
---|
4627 | reach_x(jr) = tmp_reach_x |
---|
4628 | reach_y(jr) = tmp_reach_y |
---|
4629 | reach_z(jr) = tmp_reach_z |
---|
4630 | ENDDO |
---|
4631 | ENDDO |
---|
4632 | ! |
---|
4633 | !-- Initialize temporary particle positions |
---|
4634 | pos_x = pos_x_old |
---|
4635 | pos_y = pos_y_old |
---|
4636 | pos_z = pos_z_old |
---|
4637 | ! |
---|
4638 | !-- Loop over all times a particle possibly moves into a new grid box |
---|
4639 | t_old = 0.0_wp |
---|
4640 | DO t_index = 1, t_index_number |
---|
4641 | ! |
---|
4642 | !-- Calculate intermediate particle position according to the |
---|
4643 | !-- timesteps a particle reaches any wall. |
---|
4644 | pos_x = pos_x + ( t(t_index) - t_old ) * dt_particle & |
---|
4645 | * particles(n)%speed_x |
---|
4646 | pos_y = pos_y + ( t(t_index) - t_old ) * dt_particle & |
---|
4647 | * particles(n)%speed_y |
---|
4648 | pos_z = pos_z + ( t(t_index) - t_old ) * dt_particle & |
---|
4649 | * particles(n)%speed_z |
---|
4650 | ! |
---|
4651 | !-- Obtain x/y grid indices for intermediate particle position from |
---|
4652 | !-- sorted index array |
---|
4653 | i3 = x_ind(t_index) |
---|
4654 | j3 = y_ind(t_index) |
---|
4655 | k3 = z_ind(t_index) |
---|
4656 | ! |
---|
4657 | !-- Check which wall is already reached |
---|
4658 | IF ( .NOT. x_wall_reached ) x_wall_reached = reach_x(t_index) |
---|
4659 | IF ( .NOT. y_wall_reached ) y_wall_reached = reach_y(t_index) |
---|
4660 | IF ( .NOT. z_wall_reached ) z_wall_reached = reach_z(t_index) |
---|
4661 | ! |
---|
4662 | !-- Check if a particle needs to be reflected at any yz-wall. If |
---|
4663 | !-- necessary, carry out reflection. Please note, a security |
---|
4664 | !-- constant is required, as the particle position does not |
---|
4665 | !-- necessarily exactly match the wall location due to rounding |
---|
4666 | !-- errors. |
---|
4667 | IF ( reach_x(t_index) .AND. & |
---|
4668 | ABS( pos_x - xwall ) < eps .AND. & |
---|
4669 | .NOT. BTEST(wall_flags_0(k3,j3,i3),0) .AND. & |
---|
4670 | .NOT. reflect_x ) THEN |
---|
4671 | ! |
---|
4672 | ! |
---|
4673 | !-- Reflection in x-direction. |
---|
4674 | !-- Ensure correct reflection by MIN/MAX functions, depending on |
---|
4675 | !-- direction of particle transport. |
---|
4676 | !-- Due to rounding errors pos_x does not exactly match the wall |
---|
4677 | !-- location, leading to erroneous reflection. |
---|
4678 | pos_x = MERGE( MIN( 2.0_wp * xwall - pos_x, xwall ), & |
---|
4679 | MAX( 2.0_wp * xwall - pos_x, xwall ), & |
---|
4680 | particles(n)%x > xwall ) |
---|
4681 | ! |
---|
4682 | !-- Change sign of particle speed |
---|
4683 | particles(n)%speed_x = - particles(n)%speed_x |
---|
4684 | ! |
---|
4685 | !-- Also change sign of subgrid-scale particle speed |
---|
4686 | particles(n)%rvar1 = - particles(n)%rvar1 |
---|
4687 | ! |
---|
4688 | !-- Set flag that reflection along x is already done |
---|
4689 | reflect_x = .TRUE. |
---|
4690 | ! |
---|
4691 | !-- As the particle does not cross any further yz-wall during |
---|
4692 | !-- this timestep, set further x-indices to the current one. |
---|
4693 | x_ind(t_index:t_index_number) = i1 |
---|
4694 | ! |
---|
4695 | !-- If particle already reached the wall but was not reflected, |
---|
4696 | !-- set further x-indices to the new one. |
---|
4697 | ELSEIF ( x_wall_reached .AND. .NOT. reflect_x ) THEN |
---|
4698 | x_ind(t_index:t_index_number) = i2 |
---|
4699 | ENDIF !particle reflection in x direction done |
---|
4700 | |
---|
4701 | ! |
---|
4702 | !-- Check if a particle needs to be reflected at any xz-wall. If |
---|
4703 | !-- necessary, carry out reflection. Please note, a security |
---|
4704 | !-- constant is required, as the particle position does not |
---|
4705 | !-- necessarily exactly match the wall location due to rounding |
---|
4706 | !-- errors. |
---|
4707 | IF ( reach_y(t_index) .AND. & |
---|
4708 | ABS( pos_y - ywall ) < eps .AND. & |
---|
4709 | .NOT. BTEST(wall_flags_0(k3,j3,i3),0) .AND. & |
---|
4710 | .NOT. reflect_y ) THEN |
---|
4711 | ! |
---|
4712 | ! |
---|
4713 | !-- Reflection in y-direction. |
---|
4714 | !-- Ensure correct reflection by MIN/MAX functions, depending on |
---|
4715 | !-- direction of particle transport. |
---|
4716 | !-- Due to rounding errors pos_y does not exactly match the wall |
---|
4717 | !-- location, leading to erroneous reflection. |
---|
4718 | pos_y = MERGE( MIN( 2.0_wp * ywall - pos_y, ywall ), & |
---|
4719 | MAX( 2.0_wp * ywall - pos_y, ywall ), & |
---|
4720 | particles(n)%y > ywall ) |
---|
4721 | ! |
---|
4722 | !-- Change sign of particle speed |
---|
4723 | particles(n)%speed_y = - particles(n)%speed_y |
---|
4724 | ! |
---|
4725 | !-- Also change sign of subgrid-scale particle speed |
---|
4726 | particles(n)%rvar2 = - particles(n)%rvar2 |
---|
4727 | ! |
---|
4728 | !-- Set flag that reflection along y is already done |
---|
4729 | reflect_y = .TRUE. |
---|
4730 | ! |
---|
4731 | !-- As the particle does not cross any further xz-wall during |
---|
4732 | !-- this timestep, set further y-indices to the current one. |
---|
4733 | y_ind(t_index:t_index_number) = j1 |
---|
4734 | ! |
---|
4735 | !-- If particle already reached the wall but was not reflected, |
---|
4736 | !-- set further y-indices to the new one. |
---|
4737 | ELSEIF ( y_wall_reached .AND. .NOT. reflect_y ) THEN |
---|
4738 | y_ind(t_index:t_index_number) = j2 |
---|
4739 | ENDIF !particle reflection in y direction done |
---|
4740 | |
---|
4741 | ! |
---|
4742 | !-- Check if a particle needs to be reflected at any xy-wall. If |
---|
4743 | !-- necessary, carry out reflection. Please note, a security |
---|
4744 | !-- constant is required, as the particle position does not |
---|
4745 | !-- necessarily exactly match the wall location due to rounding |
---|
4746 | !-- errors. |
---|
4747 | IF ( reach_z(t_index) .AND. & |
---|
4748 | ABS( pos_z - zwall ) < eps .AND. & |
---|
4749 | .NOT. BTEST(wall_flags_0(k3,j3,i3),0) .AND. & |
---|
4750 | .NOT. reflect_z ) THEN |
---|
4751 | ! |
---|
4752 | ! |
---|
4753 | !-- Reflection in z-direction. |
---|
4754 | !-- Ensure correct reflection by MIN/MAX functions, depending on |
---|
4755 | !-- direction of particle transport. |
---|
4756 | !-- Due to rounding errors pos_z does not exactly match the wall |
---|
4757 | !-- location, leading to erroneous reflection. |
---|
4758 | pos_z = MERGE( MIN( 2.0_wp * zwall - pos_z, zwall ), & |
---|
4759 | MAX( 2.0_wp * zwall - pos_z, zwall ), & |
---|
4760 | particles(n)%z > zwall ) |
---|
4761 | ! |
---|
4762 | !-- Change sign of particle speed |
---|
4763 | particles(n)%speed_z = - particles(n)%speed_z |
---|
4764 | ! |
---|
4765 | !-- Also change sign of subgrid-scale particle speed |
---|
4766 | particles(n)%rvar3 = - particles(n)%rvar3 |
---|
4767 | ! |
---|
4768 | !-- Set flag that reflection along z is already done |
---|
4769 | reflect_z = .TRUE. |
---|
4770 | ! |
---|
4771 | !-- As the particle does not cross any further xy-wall during |
---|
4772 | !-- this timestep, set further z-indices to the current one. |
---|
4773 | z_ind(t_index:t_index_number) = k1 |
---|
4774 | ! |
---|
4775 | !-- If particle already reached the wall but was not reflected, |
---|
4776 | !-- set further z-indices to the new one. |
---|
4777 | ELSEIF ( z_wall_reached .AND. .NOT. reflect_z ) THEN |
---|
4778 | z_ind(t_index:t_index_number) = k2 |
---|
4779 | ENDIF !particle reflection in z direction done |
---|
4780 | |
---|
4781 | ! |
---|
4782 | !-- Swap time |
---|
4783 | t_old = t(t_index) |
---|
4784 | |
---|
4785 | ENDDO |
---|
4786 | ! |
---|
4787 | !-- If a particle was reflected, calculate final position from last |
---|
4788 | !-- intermediate position. |
---|
4789 | IF ( reflect_x .OR. reflect_y .OR. reflect_z ) THEN |
---|
4790 | |
---|
4791 | particles(n)%x = pos_x + ( 1.0_wp - t_old ) * dt_particle & |
---|
4792 | * particles(n)%speed_x |
---|
4793 | particles(n)%y = pos_y + ( 1.0_wp - t_old ) * dt_particle & |
---|
4794 | * particles(n)%speed_y |
---|
4795 | particles(n)%z = pos_z + ( 1.0_wp - t_old ) * dt_particle & |
---|
4796 | * particles(n)%speed_z |
---|
4797 | |
---|
4798 | ENDIF |
---|
4799 | |
---|
4800 | ENDIF |
---|
4801 | |
---|
4802 | ENDDO |
---|
4803 | |
---|
4804 | CALL cpu_log( log_point_s(48), 'lpm_wall_reflect', 'stop' ) |
---|
4805 | |
---|
4806 | CASE DEFAULT |
---|
4807 | CONTINUE |
---|
4808 | |
---|
4809 | END SELECT |
---|
4810 | |
---|
4811 | END SUBROUTINE lpm_boundary_conds |
---|
4812 | |
---|
4813 | |
---|
4814 | !------------------------------------------------------------------------------! |
---|
4815 | ! Description: |
---|
4816 | ! ------------ |
---|
4817 | !> Calculates change in droplet radius by condensation/evaporation, using |
---|
4818 | !> either an analytic formula or by numerically integrating the radius growth |
---|
4819 | !> equation including curvature and solution effects using Rosenbrocks method |
---|
4820 | !> (see Numerical recipes in FORTRAN, 2nd edition, p. 731). |
---|
4821 | !> The analytical formula and growth equation follow those given in |
---|
4822 | !> Rogers and Yau (A short course in cloud physics, 3rd edition, p. 102/103). |
---|
4823 | !------------------------------------------------------------------------------! |
---|
4824 | SUBROUTINE lpm_droplet_condensation (i,j,k) |
---|
4825 | |
---|
4826 | INTEGER(iwp), INTENT(IN) :: i !< |
---|
4827 | INTEGER(iwp), INTENT(IN) :: j !< |
---|
4828 | INTEGER(iwp), INTENT(IN) :: k !< |
---|
4829 | INTEGER(iwp) :: n !< |
---|
4830 | |
---|
4831 | REAL(wp) :: afactor !< curvature effects |
---|
4832 | REAL(wp) :: arg !< |
---|
4833 | REAL(wp) :: bfactor !< solute effects |
---|
4834 | REAL(wp) :: ddenom !< |
---|
4835 | REAL(wp) :: delta_r !< |
---|
4836 | REAL(wp) :: diameter !< diameter of cloud droplets |
---|
4837 | REAL(wp) :: diff_coeff !< diffusivity for water vapor |
---|
4838 | REAL(wp) :: drdt !< |
---|
4839 | REAL(wp) :: dt_ros !< |
---|
4840 | REAL(wp) :: dt_ros_sum !< |
---|
4841 | REAL(wp) :: d2rdtdr !< |
---|
4842 | REAL(wp) :: e_a !< current vapor pressure |
---|
4843 | REAL(wp) :: e_s !< current saturation vapor pressure |
---|
4844 | REAL(wp) :: error !< local truncation error in Rosenbrock |
---|
4845 | REAL(wp) :: k1 !< |
---|
4846 | REAL(wp) :: k2 !< |
---|
4847 | REAL(wp) :: r_err !< First order estimate of Rosenbrock radius |
---|
4848 | REAL(wp) :: r_ros !< Rosenbrock radius |
---|
4849 | REAL(wp) :: r_ros_ini !< initial Rosenbrock radius |
---|
4850 | REAL(wp) :: r0 !< gas-kinetic lengthscale |
---|
4851 | REAL(wp) :: sigma !< surface tension of water |
---|
4852 | REAL(wp) :: thermal_conductivity !< thermal conductivity for water |
---|
4853 | REAL(wp) :: t_int !< temperature |
---|
4854 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
4855 | REAL(wp) :: re_p !< particle Reynolds number |
---|
4856 | ! |
---|
4857 | !-- Parameters for Rosenbrock method (see Verwer et al., 1999) |
---|
4858 | REAL(wp), PARAMETER :: prec = 1.0E-3_wp !< precision of Rosenbrock solution |
---|
4859 | REAL(wp), PARAMETER :: q_increase = 1.5_wp !< increase factor in timestep |
---|
4860 | REAL(wp), PARAMETER :: q_decrease = 0.9_wp !< decrease factor in timestep |
---|
4861 | REAL(wp), PARAMETER :: gamma = 0.292893218814_wp !< = 1.0 - 1.0 / SQRT(2.0) |
---|
4862 | ! |
---|
4863 | !-- Parameters for terminal velocity |
---|
4864 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
4865 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
4866 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
4867 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
4868 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
4869 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
4870 | |
---|
4871 | REAL(wp), DIMENSION(number_of_particles) :: ventilation_effect !< |
---|
4872 | REAL(wp), DIMENSION(number_of_particles) :: new_r !< |
---|
4873 | |
---|
4874 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'start' ) |
---|
4875 | |
---|
4876 | ! |
---|
4877 | !-- Absolute temperature |
---|
4878 | t_int = pt(k,j,i) * exner(k) |
---|
4879 | ! |
---|
4880 | !-- Saturation vapor pressure (Eq. 10 in Bolton, 1980) |
---|
4881 | e_s = magnus( t_int ) |
---|
4882 | ! |
---|
4883 | !-- Current vapor pressure |
---|
4884 | e_a = q(k,j,i) * hyp(k) / ( q(k,j,i) + rd_d_rv ) |
---|
4885 | ! |
---|
4886 | !-- Thermal conductivity for water (from Rogers and Yau, Table 7.1) |
---|
4887 | thermal_conductivity = 7.94048E-05_wp * t_int + 0.00227011_wp |
---|
4888 | ! |
---|
4889 | !-- Moldecular diffusivity of water vapor in air (Hall und Pruppacher, 1976) |
---|
4890 | diff_coeff = 0.211E-4_wp * ( t_int / 273.15_wp )**1.94_wp * & |
---|
4891 | ( 101325.0_wp / hyp(k) ) |
---|
4892 | ! |
---|
4893 | !-- Lengthscale for gas-kinetic effects (from Mordy, 1959, p. 23): |
---|
4894 | r0 = diff_coeff / 0.036_wp * SQRT( 2.0_wp * pi / ( r_v * t_int ) ) |
---|
4895 | ! |
---|
4896 | !-- Calculate effects of heat conductivity and diffusion of water vapor on the |
---|
4897 | !-- diffusional growth process (usually known as 1.0 / (F_k + F_d) ) |
---|
4898 | ddenom = 1.0_wp / ( rho_l * r_v * t_int / ( e_s * diff_coeff ) + & |
---|
4899 | ( l_v / ( r_v * t_int ) - 1.0_wp ) * rho_l * & |
---|
4900 | l_v / ( thermal_conductivity * t_int ) & |
---|
4901 | ) |
---|
4902 | new_r = 0.0_wp |
---|
4903 | ! |
---|
4904 | !-- Determine ventilation effect on evaporation of large drops |
---|
4905 | DO n = 1, number_of_particles |
---|
4906 | |
---|
4907 | IF ( particles(n)%radius >= 4.0E-5_wp .AND. e_a / e_s < 1.0_wp ) THEN |
---|
4908 | ! |
---|
4909 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
4910 | !-- 1993, J. Appl. Meteorol.) |
---|
4911 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
4912 | IF ( diameter <= d0_rog ) THEN |
---|
4913 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
4914 | ELSE |
---|
4915 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
4916 | ENDIF |
---|
4917 | ! |
---|
4918 | !-- Calculate droplet's Reynolds number |
---|
4919 | re_p = 2.0_wp * particles(n)%radius * w_s / molecular_viscosity |
---|
4920 | ! |
---|
4921 | !-- Ventilation coefficient (Rogers and Yau, 1989): |
---|
4922 | IF ( re_p > 2.5_wp ) THEN |
---|
4923 | ventilation_effect(n) = 0.78_wp + 0.28_wp * SQRT( re_p ) |
---|
4924 | ELSE |
---|
4925 | ventilation_effect(n) = 1.0_wp + 0.09_wp * re_p |
---|
4926 | ENDIF |
---|
4927 | ELSE |
---|
4928 | ! |
---|
4929 | !-- For small droplets or in supersaturated environments, the ventilation |
---|
4930 | !-- effect does not play a role |
---|
4931 | ventilation_effect(n) = 1.0_wp |
---|
4932 | ENDIF |
---|
4933 | ENDDO |
---|
4934 | |
---|
4935 | IF( .NOT. curvature_solution_effects ) THEN |
---|
4936 | ! |
---|
4937 | !-- Use analytic model for diffusional growth including gas-kinetic |
---|
4938 | !-- effects (Mordy, 1959) but without the impact of aerosols. |
---|
4939 | DO n = 1, number_of_particles |
---|
4940 | arg = ( particles(n)%radius + r0 )**2 + 2.0_wp * dt_3d * ddenom * & |
---|
4941 | ventilation_effect(n) * & |
---|
4942 | ( e_a / e_s - 1.0_wp ) |
---|
4943 | arg = MAX( arg, ( 0.01E-6 + r0 )**2 ) |
---|
4944 | new_r(n) = SQRT( arg ) - r0 |
---|
4945 | ENDDO |
---|
4946 | |
---|
4947 | ELSE |
---|
4948 | ! |
---|
4949 | !-- Integrate the diffusional growth including gas-kinetic (Mordy, 1959), |
---|
4950 | !-- as well as curvature and solute effects (e.g., Köhler, 1936). |
---|
4951 | ! |
---|
4952 | !-- Curvature effect (afactor) with surface tension (sigma) by Straka (2009) |
---|
4953 | sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp ) |
---|
4954 | ! |
---|
4955 | !-- Solute effect (afactor) |
---|
4956 | afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int ) |
---|
4957 | |
---|
4958 | DO n = 1, number_of_particles |
---|
4959 | ! |
---|
4960 | !-- Solute effect (bfactor) |
---|
4961 | bfactor = vanthoff * rho_s * particles(n)%aux1**3 * & |
---|
4962 | molecular_weight_of_water / ( rho_l * molecular_weight_of_solute ) |
---|
4963 | |
---|
4964 | dt_ros = particles(n)%aux2 ! use previously stored Rosenbrock timestep |
---|
4965 | dt_ros_sum = 0.0_wp |
---|
4966 | |
---|
4967 | r_ros = particles(n)%radius ! initialize Rosenbrock particle radius |
---|
4968 | r_ros_ini = r_ros |
---|
4969 | ! |
---|
4970 | !-- Integrate growth equation using a 2nd-order Rosenbrock method |
---|
4971 | !-- (see Verwer et al., 1999, Eq. (3.2)). The Rosenbrock method adjusts |
---|
4972 | !-- its with internal timestep to minimize the local truncation error. |
---|
4973 | DO WHILE ( dt_ros_sum < dt_3d ) |
---|
4974 | |
---|
4975 | dt_ros = MIN( dt_ros, dt_3d - dt_ros_sum ) |
---|
4976 | |
---|
4977 | DO |
---|
4978 | |
---|
4979 | drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0_wp - & |
---|
4980 | afactor / r_ros + & |
---|
4981 | bfactor / r_ros**3 & |
---|
4982 | ) / ( r_ros + r0 ) |
---|
4983 | |
---|
4984 | d2rdtdr = -ddenom * ventilation_effect(n) * ( & |
---|
4985 | (e_a / e_s - 1.0_wp ) * r_ros**4 - & |
---|
4986 | afactor * r0 * r_ros**2 - & |
---|
4987 | 2.0_wp * afactor * r_ros**3 + & |
---|
4988 | 3.0_wp * bfactor * r0 + & |
---|
4989 | 4.0_wp * bfactor * r_ros & |
---|
4990 | ) & |
---|
4991 | / ( r_ros**4 * ( r_ros + r0 )**2 ) |
---|
4992 | |
---|
4993 | k1 = drdt / ( 1.0_wp - gamma * dt_ros * d2rdtdr ) |
---|
4994 | |
---|
4995 | r_ros = MAX(r_ros_ini + k1 * dt_ros, particles(n)%aux1) |
---|
4996 | r_err = r_ros |
---|
4997 | |
---|
4998 | drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0_wp - & |
---|
4999 | afactor / r_ros + & |
---|
5000 | bfactor / r_ros**3 & |
---|
5001 | ) / ( r_ros + r0 ) |
---|
5002 | |
---|
5003 | k2 = ( drdt - dt_ros * 2.0 * gamma * d2rdtdr * k1 ) / & |
---|
5004 | ( 1.0_wp - dt_ros * gamma * d2rdtdr ) |
---|
5005 | |
---|
5006 | r_ros = MAX(r_ros_ini + dt_ros * ( 1.5_wp * k1 + 0.5_wp * k2), particles(n)%aux1) |
---|
5007 | ! |
---|
5008 | !-- Check error of the solution, and reduce dt_ros if necessary. |
---|
5009 | error = ABS(r_err - r_ros) / r_ros |
---|
5010 | IF ( error > prec ) THEN |
---|
5011 | dt_ros = SQRT( q_decrease * prec / error ) * dt_ros |
---|
5012 | r_ros = r_ros_ini |
---|
5013 | ELSE |
---|
5014 | dt_ros_sum = dt_ros_sum + dt_ros |
---|
5015 | dt_ros = q_increase * dt_ros |
---|
5016 | r_ros_ini = r_ros |
---|
5017 | EXIT |
---|
5018 | ENDIF |
---|
5019 | |
---|
5020 | END DO |
---|
5021 | |
---|
5022 | END DO !Rosenbrock loop |
---|
5023 | ! |
---|
5024 | !-- Store new particle radius |
---|
5025 | new_r(n) = r_ros |
---|
5026 | ! |
---|
5027 | !-- Store internal time step value for next PALM step |
---|
5028 | particles(n)%aux2 = dt_ros |
---|
5029 | |
---|
5030 | ENDDO !Particle loop |
---|
5031 | |
---|
5032 | ENDIF |
---|
5033 | |
---|
5034 | DO n = 1, number_of_particles |
---|
5035 | ! |
---|
5036 | !-- Sum up the change in liquid water for the respective grid |
---|
5037 | !-- box for the computation of the release/depletion of water vapor |
---|
5038 | !-- and heat. |
---|
5039 | ql_c(k,j,i) = ql_c(k,j,i) + particles(n)%weight_factor * & |
---|
5040 | rho_l * 1.33333333_wp * pi * & |
---|
5041 | ( new_r(n)**3 - particles(n)%radius**3 ) / & |
---|
5042 | ( rho_surface * dx * dy * dzw(k) ) |
---|
5043 | ! |
---|
5044 | !-- Check if the increase in liqid water is not too big. If this is the case, |
---|
5045 | !-- the model timestep might be too long. |
---|
5046 | IF ( ql_c(k,j,i) > 100.0_wp ) THEN |
---|
5047 | WRITE( message_string, * ) 'k=',k,' j=',j,' i=',i, & |
---|
5048 | ' ql_c=',ql_c(k,j,i), '&part(',n,')%wf=', & |
---|
5049 | particles(n)%weight_factor,' delta_r=',delta_r |
---|
5050 | CALL message( 'lpm_droplet_condensation', 'PA0143', 2, 2, -1, 6, 1 ) |
---|
5051 | ENDIF |
---|
5052 | ! |
---|
5053 | !-- Check if the change in the droplet radius is not too big. If this is the |
---|
5054 | !-- case, the model timestep might be too long. |
---|
5055 | delta_r = new_r(n) - particles(n)%radius |
---|
5056 | IF ( delta_r < 0.0_wp .AND. new_r(n) < 0.0_wp ) THEN |
---|
5057 | WRITE( message_string, * ) '#1 k=',k,' j=',j,' i=',i, & |
---|
5058 | ' e_s=',e_s, ' e_a=',e_a,' t_int=',t_int, & |
---|
5059 | '&delta_r=',delta_r, & |
---|
5060 | ' particle_radius=',particles(n)%radius |
---|
5061 | CALL message( 'lpm_droplet_condensation', 'PA0144', 2, 2, -1, 6, 1 ) |
---|
5062 | ENDIF |
---|
5063 | ! |
---|
5064 | !-- Sum up the total volume of liquid water (needed below for |
---|
5065 | !-- re-calculating the weighting factors) |
---|
5066 | ql_v(k,j,i) = ql_v(k,j,i) + particles(n)%weight_factor * new_r(n)**3 |
---|
5067 | ! |
---|
5068 | !-- Determine radius class of the particle needed for collision |
---|
5069 | IF ( use_kernel_tables ) THEN |
---|
5070 | particles(n)%class = ( LOG( new_r(n) ) - rclass_lbound ) / & |
---|
5071 | ( rclass_ubound - rclass_lbound ) * & |
---|
5072 | radius_classes |
---|
5073 | particles(n)%class = MIN( particles(n)%class, radius_classes ) |
---|
5074 | particles(n)%class = MAX( particles(n)%class, 1 ) |
---|
5075 | ENDIF |
---|
5076 | ! |
---|
5077 | !-- Store new radius to particle features |
---|
5078 | particles(n)%radius = new_r(n) |
---|
5079 | |
---|
5080 | ENDDO |
---|
5081 | |
---|
5082 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'stop' ) |
---|
5083 | |
---|
5084 | |
---|
5085 | END SUBROUTINE lpm_droplet_condensation |
---|
5086 | |
---|
5087 | |
---|
5088 | !------------------------------------------------------------------------------! |
---|
5089 | ! Description: |
---|
5090 | ! ------------ |
---|
5091 | !> Release of latent heat and change of mixing ratio due to condensation / |
---|
5092 | !> evaporation of droplets. |
---|
5093 | !------------------------------------------------------------------------------! |
---|
5094 | SUBROUTINE lpm_interaction_droplets_ptq |
---|
5095 | |
---|
5096 | INTEGER(iwp) :: i !< running index x direction |
---|
5097 | INTEGER(iwp) :: j !< running index y direction |
---|
5098 | INTEGER(iwp) :: k !< running index z direction |
---|
5099 | |
---|
5100 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
5101 | |
---|
5102 | DO i = nxl, nxr |
---|
5103 | DO j = nys, nyn |
---|
5104 | DO k = nzb+1, nzt |
---|
5105 | ! |
---|
5106 | !-- Predetermine flag to mask topography |
---|
5107 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
5108 | |
---|
5109 | q_p(k,j,i) = q_p(k,j,i) - ql_c(k,j,i) * flag |
---|
5110 | pt_p(k,j,i) = pt_p(k,j,i) + lv_d_cp * ql_c(k,j,i) * d_exner(k) & |
---|
5111 | * flag |
---|
5112 | ENDDO |
---|
5113 | ENDDO |
---|
5114 | ENDDO |
---|
5115 | |
---|
5116 | END SUBROUTINE lpm_interaction_droplets_ptq |
---|
5117 | |
---|
5118 | |
---|
5119 | !------------------------------------------------------------------------------! |
---|
5120 | ! Description: |
---|
5121 | ! ------------ |
---|
5122 | !> Release of latent heat and change of mixing ratio due to condensation / |
---|
5123 | !> evaporation of droplets. Call for grid point i,j |
---|
5124 | !------------------------------------------------------------------------------! |
---|
5125 | SUBROUTINE lpm_interaction_droplets_ptq_ij( i, j ) |
---|
5126 | |
---|
5127 | INTEGER(iwp) :: i !< running index x direction |
---|
5128 | INTEGER(iwp) :: j !< running index y direction |
---|
5129 | INTEGER(iwp) :: k !< running index z direction |
---|
5130 | |
---|
5131 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
5132 | |
---|
5133 | |
---|
5134 | DO k = nzb+1, nzt |
---|
5135 | ! |
---|
5136 | !-- Predetermine flag to mask topography |
---|
5137 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
5138 | |
---|
5139 | q_p(k,j,i) = q_p(k,j,i) - ql_c(k,j,i) * flag |
---|
5140 | pt_p(k,j,i) = pt_p(k,j,i) + lv_d_cp * ql_c(k,j,i) * d_exner(k) * flag |
---|
5141 | ENDDO |
---|
5142 | |
---|
5143 | END SUBROUTINE lpm_interaction_droplets_ptq_ij |
---|
5144 | |
---|
5145 | |
---|
5146 | !------------------------------------------------------------------------------! |
---|
5147 | ! Description: |
---|
5148 | ! ------------ |
---|
5149 | !> Calculate the liquid water content for each grid box. |
---|
5150 | !------------------------------------------------------------------------------! |
---|
5151 | SUBROUTINE lpm_calc_liquid_water_content |
---|
5152 | |
---|
5153 | |
---|
5154 | INTEGER(iwp) :: i !< |
---|
5155 | INTEGER(iwp) :: j !< |
---|
5156 | INTEGER(iwp) :: k !< |
---|
5157 | INTEGER(iwp) :: n !< |
---|
5158 | |
---|
5159 | CALL cpu_log( log_point_s(45), 'lpm_calc_ql', 'start' ) |
---|
5160 | |
---|
5161 | ! |
---|
5162 | !-- Set water content initially to zero |
---|
5163 | ql = 0.0_wp; ql_v = 0.0_wp; ql_vp = 0.0_wp |
---|
5164 | |
---|
5165 | ! |
---|
5166 | !-- Calculate for each grid box |
---|
5167 | DO i = nxl, nxr |
---|
5168 | DO j = nys, nyn |
---|
5169 | DO k = nzb+1, nzt |
---|
5170 | number_of_particles = prt_count(k,j,i) |
---|
5171 | IF ( number_of_particles <= 0 ) CYCLE |
---|
5172 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
5173 | ! |
---|
5174 | !-- Calculate the total volume in the boxes (ql_v, weighting factor |
---|
5175 | !-- has to beincluded) |
---|
5176 | DO n = 1, prt_count(k,j,i) |
---|
5177 | ql_v(k,j,i) = ql_v(k,j,i) + particles(n)%weight_factor * & |
---|
5178 | particles(n)%radius**3 |
---|
5179 | ENDDO |
---|
5180 | ! |
---|
5181 | !-- Calculate the liquid water content |
---|
5182 | IF ( ql_v(k,j,i) /= 0.0_wp ) THEN |
---|
5183 | ql(k,j,i) = ql(k,j,i) + rho_l * 1.33333333_wp * pi * & |
---|
5184 | ql_v(k,j,i) / & |
---|
5185 | ( rho_surface * dx * dy * dzw(k) ) |
---|
5186 | IF ( ql(k,j,i) < 0.0_wp ) THEN |
---|
5187 | WRITE( message_string, * ) 'LWC out of range: ' , & |
---|
5188 | ql(k,j,i),i,j,k |
---|
5189 | CALL message( 'lpm_calc_liquid_water_content', '', 2, 2, & |
---|
5190 | -1, 6, 1 ) |
---|
5191 | ENDIF |
---|
5192 | ELSE |
---|
5193 | ql(k,j,i) = 0.0_wp |
---|
5194 | ENDIF |
---|
5195 | ENDDO |
---|
5196 | ENDDO |
---|
5197 | ENDDO |
---|
5198 | |
---|
5199 | CALL cpu_log( log_point_s(45), 'lpm_calc_ql', 'stop' ) |
---|
5200 | |
---|
5201 | END SUBROUTINE lpm_calc_liquid_water_content |
---|
5202 | |
---|
5203 | |
---|
5204 | !------------------------------------------------------------------------------! |
---|
5205 | ! Description: |
---|
5206 | ! ------------ |
---|
5207 | !> Calculates change in droplet radius by collision. Droplet collision is |
---|
5208 | !> calculated for each grid box seperately. Collision is parameterized by |
---|
5209 | !> using collision kernels. Two different kernels are available: |
---|
5210 | !> Hall kernel: Kernel from Hall (1980, J. Atmos. Sci., 2486-2507), which |
---|
5211 | !> considers collision due to pure gravitational effects. |
---|
5212 | !> Wang kernel: Beside gravitational effects (treated with the Hall-kernel) also |
---|
5213 | !> the effects of turbulence on the collision are considered using |
---|
5214 | !> parameterizations of Ayala et al. (2008, New J. Phys., 10, |
---|
5215 | !> 075015) and Wang and Grabowski (2009, Atmos. Sci. Lett., 10, |
---|
5216 | !> 1-8). This kernel includes three possible effects of turbulence: |
---|
5217 | !> the modification of the relative velocity between the droplets, |
---|
5218 | !> the effect of preferential concentration, and the enhancement of |
---|
5219 | !> collision efficiencies. |
---|
5220 | !------------------------------------------------------------------------------! |
---|
5221 | SUBROUTINE lpm_droplet_collision (i,j,k) |
---|
5222 | |
---|
5223 | INTEGER(iwp), INTENT(IN) :: i !< |
---|
5224 | INTEGER(iwp), INTENT(IN) :: j !< |
---|
5225 | INTEGER(iwp), INTENT(IN) :: k !< |
---|
5226 | |
---|
5227 | INTEGER(iwp) :: eclass !< |
---|
5228 | INTEGER(iwp) :: n !< |
---|
5229 | INTEGER(iwp) :: m !< |
---|
5230 | INTEGER(iwp) :: rclass_l !< |
---|
5231 | INTEGER(iwp) :: rclass_s !< |
---|
5232 | |
---|
5233 | REAL(wp) :: collection_probability !< probability for collection |
---|
5234 | REAL(wp) :: ddV !< inverse grid box volume |
---|
5235 | REAL(wp) :: epsilon_collision !< dissipation rate |
---|
5236 | REAL(wp) :: factor_volume_to_mass !< 4.0 / 3.0 * pi * rho_l |
---|
5237 | REAL(wp) :: xm !< droplet mass of super-droplet m |
---|
5238 | REAL(wp) :: xn !< droplet mass of super-droplet n |
---|
5239 | REAL(wp) :: xsm !< aerosol mass of super-droplet m |
---|
5240 | REAL(wp) :: xsn !< aerosol mass of super-droplet n |
---|
5241 | |
---|
5242 | REAL(wp), DIMENSION(:), ALLOCATABLE :: weight !< weighting factor |
---|
5243 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mass !< total mass of super droplet |
---|
5244 | REAL(wp), DIMENSION(:), ALLOCATABLE :: aero_mass !< total aerosol mass of super droplet |
---|
5245 | |
---|
5246 | CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'start' ) |
---|
5247 | |
---|
5248 | number_of_particles = prt_count(k,j,i) |
---|
5249 | factor_volume_to_mass = 4.0_wp / 3.0_wp * pi * rho_l |
---|
5250 | ddV = 1.0_wp / ( dx * dy * dzw(k) ) |
---|
5251 | ! |
---|
5252 | !-- Collision requires at least one super droplet inside the box |
---|
5253 | IF ( number_of_particles > 0 ) THEN |
---|
5254 | |
---|
5255 | IF ( use_kernel_tables ) THEN |
---|
5256 | ! |
---|
5257 | !-- Fast method with pre-calculated collection kernels for |
---|
5258 | !-- discrete radius- and dissipation-classes. |
---|
5259 | IF ( wang_kernel ) THEN |
---|
5260 | eclass = INT( diss(k,j,i) * 1.0E4_wp / 600.0_wp * & |
---|
5261 | dissipation_classes ) + 1 |
---|
5262 | epsilon_collision = diss(k,j,i) |
---|
5263 | ELSE |
---|
5264 | epsilon_collision = 0.0_wp |
---|
5265 | ENDIF |
---|
5266 | |
---|
5267 | IF ( hall_kernel .OR. epsilon_collision * 1.0E4_wp < 0.001_wp ) THEN |
---|
5268 | eclass = 0 ! Hall kernel is used |
---|
5269 | ELSE |
---|
5270 | eclass = MIN( dissipation_classes, eclass ) |
---|
5271 | ENDIF |
---|
5272 | |
---|
5273 | ELSE |
---|
5274 | ! |
---|
5275 | !-- Collection kernels are re-calculated for every new |
---|
5276 | !-- grid box. First, allocate memory for kernel table. |
---|
5277 | !-- Third dimension is 1, because table is re-calculated for |
---|
5278 | !-- every new dissipation value. |
---|
5279 | ALLOCATE( ckernel(1:number_of_particles,1:number_of_particles,1:1) ) |
---|
5280 | ! |
---|
5281 | !-- Now calculate collection kernel for this box. Note that |
---|
5282 | !-- the kernel is based on the previous time step |
---|
5283 | CALL recalculate_kernel( i, j, k ) |
---|
5284 | |
---|
5285 | ENDIF |
---|
5286 | ! |
---|
5287 | !-- Temporary fields for total mass of super-droplet, aerosol mass, and |
---|
5288 | !-- weighting factor are allocated. |
---|
5289 | ALLOCATE(mass(1:number_of_particles), weight(1:number_of_particles)) |
---|
5290 | IF ( curvature_solution_effects ) ALLOCATE(aero_mass(1:number_of_particles)) |
---|
5291 | |
---|
5292 | mass(1:number_of_particles) = particles(1:number_of_particles)%weight_factor * & |
---|
5293 | particles(1:number_of_particles)%radius**3 * & |
---|
5294 | factor_volume_to_mass |
---|
5295 | |
---|
5296 | weight(1:number_of_particles) = particles(1:number_of_particles)%weight_factor |
---|
5297 | |
---|
5298 | IF ( curvature_solution_effects ) THEN |
---|
5299 | aero_mass(1:number_of_particles) = particles(1:number_of_particles)%weight_factor * & |
---|
5300 | particles(1:number_of_particles)%aux1**3 * & |
---|
5301 | 4.0_wp / 3.0_wp * pi * rho_s |
---|
5302 | ENDIF |
---|
5303 | ! |
---|
5304 | !-- Calculate collision/coalescence |
---|
5305 | DO n = 1, number_of_particles |
---|
5306 | |
---|
5307 | DO m = n, number_of_particles |
---|
5308 | ! |
---|
5309 | !-- For collisions, the weighting factor of at least one super-droplet |
---|
5310 | !-- needs to be larger or equal to one. |
---|
5311 | IF ( MIN( weight(n), weight(m) ) < 1.0_wp ) CYCLE |
---|
5312 | ! |
---|
5313 | !-- Get mass of individual droplets (aerosols) |
---|
5314 | xn = mass(n) / weight(n) |
---|
5315 | xm = mass(m) / weight(m) |
---|
5316 | IF ( curvature_solution_effects ) THEN |
---|
5317 | xsn = aero_mass(n) / weight(n) |
---|
5318 | xsm = aero_mass(m) / weight(m) |
---|
5319 | ENDIF |
---|
5320 | ! |
---|
5321 | !-- Probability that the necessary collisions take place |
---|
5322 | IF ( use_kernel_tables ) THEN |
---|
5323 | rclass_l = particles(n)%class |
---|
5324 | rclass_s = particles(m)%class |
---|
5325 | |
---|
5326 | collection_probability = MAX( weight(n), weight(m) ) * & |
---|
5327 | ckernel(rclass_l,rclass_s,eclass) * ddV * dt_3d |
---|
5328 | ELSE |
---|
5329 | collection_probability = MAX( weight(n), weight(m) ) * & |
---|
5330 | ckernel(n,m,1) * ddV * dt_3d |
---|
5331 | ENDIF |
---|
5332 | ! |
---|
5333 | !-- Calculate the number of collections and consider multiple collections. |
---|
5334 | !-- (Accordingly, p_crit will be 0.0, 1.0, 2.0, ...) |
---|
5335 | IF ( collection_probability - FLOOR(collection_probability) & |
---|
5336 | > random_function( iran_part ) ) THEN |
---|
5337 | collection_probability = FLOOR(collection_probability) + 1.0_wp |
---|
5338 | ELSE |
---|
5339 | collection_probability = FLOOR(collection_probability) |
---|
5340 | ENDIF |
---|
5341 | |
---|
5342 | IF ( collection_probability > 0.0_wp ) THEN |
---|
5343 | ! |
---|
5344 | !-- Super-droplet n collects droplets of super-droplet m |
---|
5345 | IF ( weight(n) < weight(m) ) THEN |
---|
5346 | |
---|
5347 | mass(n) = mass(n) + weight(n) * xm * collection_probability |
---|
5348 | weight(m) = weight(m) - weight(n) * collection_probability |
---|
5349 | mass(m) = mass(m) - weight(n) * xm * collection_probability |
---|
5350 | IF ( curvature_solution_effects ) THEN |
---|
5351 | aero_mass(n) = aero_mass(n) + weight(n) * xsm * collection_probability |
---|
5352 | aero_mass(m) = aero_mass(m) - weight(n) * xsm * collection_probability |
---|
5353 | ENDIF |
---|
5354 | |
---|
5355 | ELSEIF ( weight(m) < weight(n) ) THEN |
---|
5356 | |
---|
5357 | mass(m) = mass(m) + weight(m) * xn * collection_probability |
---|
5358 | weight(n) = weight(n) - weight(m) * collection_probability |
---|
5359 | mass(n) = mass(n) - weight(m) * xn * collection_probability |
---|
5360 | IF ( curvature_solution_effects ) THEN |
---|
5361 | aero_mass(m) = aero_mass(m) + weight(m) * xsn * collection_probability |
---|
5362 | aero_mass(n) = aero_mass(n) - weight(m) * xsn * collection_probability |
---|
5363 | ENDIF |
---|
5364 | |
---|
5365 | ELSE |
---|
5366 | ! |
---|
5367 | !-- Collisions of particles of the same weighting factor. |
---|
5368 | !-- Particle n collects 1/2 weight(n) droplets of particle m, |
---|
5369 | !-- particle m collects 1/2 weight(m) droplets of particle n. |
---|
5370 | !-- The total mass mass changes accordingly. |
---|
5371 | !-- If n = m, the first half of the droplets coalesces with the |
---|
5372 | !-- second half of the droplets; mass is unchanged because |
---|
5373 | !-- xm = xn for n = m. |
---|
5374 | !-- |
---|
5375 | !-- Note: For m = n this equation is an approximation only |
---|
5376 | !-- valid for weight >> 1 (which is usually the case). The |
---|
5377 | !-- approximation is weight(n)-1 = weight(n). |
---|
5378 | mass(n) = mass(n) + 0.5_wp * weight(n) * ( xm - xn ) |
---|
5379 | mass(m) = mass(m) + 0.5_wp * weight(m) * ( xn - xm ) |
---|
5380 | IF ( curvature_solution_effects ) THEN |
---|
5381 | aero_mass(n) = aero_mass(n) + 0.5_wp * weight(n) * ( xsm - xsn ) |
---|
5382 | aero_mass(m) = aero_mass(m) + 0.5_wp * weight(m) * ( xsn - xsm ) |
---|
5383 | ENDIF |
---|
5384 | weight(n) = weight(n) - 0.5_wp * weight(m) |
---|
5385 | weight(m) = weight(n) |
---|
5386 | |
---|
5387 | ENDIF |
---|
5388 | |
---|
5389 | ENDIF |
---|
5390 | |
---|
5391 | ENDDO |
---|
5392 | |
---|
5393 | ql_vp(k,j,i) = ql_vp(k,j,i) + mass(n) / factor_volume_to_mass |
---|
5394 | |
---|
5395 | ENDDO |
---|
5396 | |
---|
5397 | IF ( ANY(weight < 0.0_wp) ) THEN |
---|
5398 | WRITE( message_string, * ) 'negative weighting factor' |
---|
5399 | CALL message( 'lpm_droplet_collision', 'PA0028', & |
---|
5400 | 2, 2, -1, 6, 1 ) |
---|
5401 | ENDIF |
---|
5402 | |
---|
5403 | particles(1:number_of_particles)%radius = ( mass(1:number_of_particles) / & |
---|
5404 | ( weight(1:number_of_particles) & |
---|
5405 | * factor_volume_to_mass & |
---|
5406 | ) & |
---|
5407 | )**0.33333333333333_wp |
---|
5408 | |
---|
5409 | IF ( curvature_solution_effects ) THEN |
---|
5410 | particles(1:number_of_particles)%aux1 = ( aero_mass(1:number_of_particles) / & |
---|
5411 | ( weight(1:number_of_particles) & |
---|
5412 | * 4.0_wp / 3.0_wp * pi * rho_s & |
---|
5413 | ) & |
---|
5414 | )**0.33333333333333_wp |
---|
5415 | ENDIF |
---|
5416 | |
---|
5417 | particles(1:number_of_particles)%weight_factor = weight(1:number_of_particles) |
---|
5418 | |
---|
5419 | DEALLOCATE( weight, mass ) |
---|
5420 | IF ( curvature_solution_effects ) DEALLOCATE( aero_mass ) |
---|
5421 | IF ( .NOT. use_kernel_tables ) DEALLOCATE( ckernel ) |
---|
5422 | |
---|
5423 | ! |
---|
5424 | !-- Check if LWC is conserved during collision process |
---|
5425 | IF ( ql_v(k,j,i) /= 0.0_wp ) THEN |
---|
5426 | IF ( ql_vp(k,j,i) / ql_v(k,j,i) >= 1.0001_wp .OR. & |
---|
5427 | ql_vp(k,j,i) / ql_v(k,j,i) <= 0.9999_wp ) THEN |
---|
5428 | WRITE( message_string, * ) ' LWC is not conserved during', & |
---|
5429 | ' collision! ', & |
---|
5430 | ' LWC after condensation: ', ql_v(k,j,i), & |
---|
5431 | ' LWC after collision: ', ql_vp(k,j,i) |
---|
5432 | CALL message( 'lpm_droplet_collision', 'PA0040', 2, 2, -1, 6, 1 ) |
---|
5433 | ENDIF |
---|
5434 | ENDIF |
---|
5435 | |
---|
5436 | ENDIF |
---|
5437 | |
---|
5438 | CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'stop' ) |
---|
5439 | |
---|
5440 | END SUBROUTINE lpm_droplet_collision |
---|
5441 | |
---|
5442 | !------------------------------------------------------------------------------! |
---|
5443 | ! Description: |
---|
5444 | ! ------------ |
---|
5445 | !> Initialization of the collision efficiency matrix with fixed radius and |
---|
5446 | !> dissipation classes, calculated at simulation start only. |
---|
5447 | !------------------------------------------------------------------------------! |
---|
5448 | SUBROUTINE lpm_init_kernels |
---|
5449 | |
---|
5450 | INTEGER(iwp) :: i !< |
---|
5451 | INTEGER(iwp) :: j !< |
---|
5452 | INTEGER(iwp) :: k !< |
---|
5453 | |
---|
5454 | ! |
---|
5455 | !-- Calculate collision efficiencies for fixed radius- and dissipation |
---|
5456 | !-- classes |
---|
5457 | IF ( collision_kernel(6:9) == 'fast' ) THEN |
---|
5458 | |
---|
5459 | ALLOCATE( ckernel(1:radius_classes,1:radius_classes, & |
---|
5460 | 0:dissipation_classes), epsclass(1:dissipation_classes), & |
---|
5461 | radclass(1:radius_classes) ) |
---|
5462 | |
---|
5463 | ! |
---|
5464 | !-- Calculate the radius class bounds with logarithmic distances |
---|
5465 | !-- in the interval [1.0E-6, 1000.0E-6] m |
---|
5466 | rclass_lbound = LOG( 1.0E-6_wp ) |
---|
5467 | rclass_ubound = LOG( 1000.0E-6_wp ) |
---|
5468 | radclass(1) = EXP( rclass_lbound ) |
---|
5469 | DO i = 2, radius_classes |
---|
5470 | radclass(i) = EXP( rclass_lbound + & |
---|
5471 | ( rclass_ubound - rclass_lbound ) * & |
---|
5472 | ( i - 1.0_wp ) / ( radius_classes - 1.0_wp ) ) |
---|
5473 | ENDDO |
---|
5474 | |
---|
5475 | ! |
---|
5476 | !-- Set the class bounds for dissipation in interval [0.0, 600.0] cm**2/s**3 |
---|
5477 | DO i = 1, dissipation_classes |
---|
5478 | epsclass(i) = 0.06_wp * REAL( i, KIND=wp ) / dissipation_classes |
---|
5479 | ENDDO |
---|
5480 | ! |
---|
5481 | !-- Calculate collision efficiencies of the Wang/ayala kernel |
---|
5482 | ALLOCATE( ec(1:radius_classes,1:radius_classes), & |
---|
5483 | ecf(1:radius_classes,1:radius_classes), & |
---|
5484 | gck(1:radius_classes,1:radius_classes), & |
---|
5485 | winf(1:radius_classes) ) |
---|
5486 | |
---|
5487 | DO k = 1, dissipation_classes |
---|
5488 | |
---|
5489 | epsilon_collision = epsclass(k) |
---|
5490 | urms = 2.02_wp * ( epsilon_collision / 0.04_wp )**( 1.0_wp / 3.0_wp ) |
---|
5491 | |
---|
5492 | CALL turbsd |
---|
5493 | CALL turb_enhance_eff |
---|
5494 | CALL effic |
---|
5495 | |
---|
5496 | DO j = 1, radius_classes |
---|
5497 | DO i = 1, radius_classes |
---|
5498 | ckernel(i,j,k) = ec(i,j) * gck(i,j) * ecf(i,j) |
---|
5499 | ENDDO |
---|
5500 | ENDDO |
---|
5501 | |
---|
5502 | ENDDO |
---|
5503 | |
---|
5504 | ! |
---|
5505 | !-- Calculate collision efficiencies of the Hall kernel |
---|
5506 | ALLOCATE( hkernel(1:radius_classes,1:radius_classes), & |
---|
5507 | hwratio(1:radius_classes,1:radius_classes) ) |
---|
5508 | |
---|
5509 | CALL fallg |
---|
5510 | CALL effic |
---|
5511 | |
---|
5512 | DO j = 1, radius_classes |
---|
5513 | DO i = 1, radius_classes |
---|
5514 | hkernel(i,j) = pi * ( radclass(j) + radclass(i) )**2 & |
---|
5515 | * ec(i,j) * ABS( winf(j) - winf(i) ) |
---|
5516 | ckernel(i,j,0) = hkernel(i,j) ! hall kernel stored on index 0 |
---|
5517 | ENDDO |
---|
5518 | ENDDO |
---|
5519 | |
---|
5520 | ! |
---|
5521 | !-- Test output of efficiencies |
---|
5522 | IF ( j == -1 ) THEN |
---|
5523 | PRINT*, '*** Hall kernel' |
---|
5524 | WRITE ( *,'(5X,20(F4.0,1X))' ) ( radclass(i)*1.0E6_wp, & |
---|
5525 | i = 1,radius_classes ) |
---|
5526 | DO j = 1, radius_classes |
---|
5527 | WRITE ( *,'(F4.0,1X,20(F8.4,1X))' ) radclass(j), & |
---|
5528 | ( hkernel(i,j), i = 1,radius_classes ) |
---|
5529 | ENDDO |
---|
5530 | |
---|
5531 | DO k = 1, dissipation_classes |
---|
5532 | DO i = 1, radius_classes |
---|
5533 | DO j = 1, radius_classes |
---|
5534 | IF ( hkernel(i,j) == 0.0_wp ) THEN |
---|
5535 | hwratio(i,j) = 9999999.9_wp |
---|
5536 | ELSE |
---|
5537 | hwratio(i,j) = ckernel(i,j,k) / hkernel(i,j) |
---|
5538 | ENDIF |
---|
5539 | ENDDO |
---|
5540 | ENDDO |
---|
5541 | |
---|
5542 | PRINT*, '*** epsilon = ', epsclass(k) |
---|
5543 | WRITE ( *,'(5X,20(F4.0,1X))' ) ( radclass(i) * 1.0E6_wp, & |
---|
5544 | i = 1,radius_classes ) |
---|
5545 | DO j = 1, radius_classes |
---|
5546 | WRITE ( *,'(F4.0,1X,20(F8.4,1X))' ) radclass(j) * 1.0E6_wp, & |
---|
5547 | ( hwratio(i,j), i = 1,radius_classes ) |
---|
5548 | ENDDO |
---|
5549 | ENDDO |
---|
5550 | ENDIF |
---|
5551 | |
---|
5552 | DEALLOCATE( ec, ecf, epsclass, gck, hkernel, winf ) |
---|
5553 | |
---|
5554 | ENDIF |
---|
5555 | |
---|
5556 | END SUBROUTINE lpm_init_kernels |
---|
5557 | |
---|
5558 | !------------------------------------------------------------------------------! |
---|
5559 | ! Description: |
---|
5560 | ! ------------ |
---|
5561 | !> Calculation of collision kernels during each timestep and for each grid box |
---|
5562 | !------------------------------------------------------------------------------! |
---|
5563 | SUBROUTINE recalculate_kernel( i1, j1, k1 ) |
---|
5564 | |
---|
5565 | |
---|
5566 | INTEGER(iwp) :: i !< |
---|
5567 | INTEGER(iwp) :: i1 !< |
---|
5568 | INTEGER(iwp) :: j !< |
---|
5569 | INTEGER(iwp) :: j1 !< |
---|
5570 | INTEGER(iwp) :: k1 !< |
---|
5571 | |
---|
5572 | |
---|
5573 | number_of_particles = prt_count(k1,j1,i1) |
---|
5574 | radius_classes = number_of_particles ! necessary to use the same |
---|
5575 | ! subroutines as for |
---|
5576 | ! precalculated kernels |
---|
5577 | |
---|
5578 | ALLOCATE( ec(1:number_of_particles,1:number_of_particles), & |
---|
5579 | radclass(1:number_of_particles), winf(1:number_of_particles) ) |
---|
5580 | |
---|
5581 | ! |
---|
5582 | !-- Store particle radii on the radclass array |
---|
5583 | radclass(1:number_of_particles) = particles(1:number_of_particles)%radius |
---|
5584 | |
---|
5585 | IF ( wang_kernel ) THEN |
---|
5586 | epsilon_collision = diss(k1,j1,i1) ! dissipation rate in m**2/s**3 |
---|
5587 | ELSE |
---|
5588 | epsilon_collision = 0.0_wp |
---|
5589 | ENDIF |
---|
5590 | urms = 2.02_wp * ( epsilon_collision / 0.04_wp )**( 0.33333333333_wp ) |
---|
5591 | |
---|
5592 | IF ( wang_kernel .AND. epsilon_collision > 1.0E-7_wp ) THEN |
---|
5593 | ! |
---|
5594 | !-- Call routines to calculate efficiencies for the Wang kernel |
---|
5595 | ALLOCATE( gck(1:number_of_particles,1:number_of_particles), & |
---|
5596 | ecf(1:number_of_particles,1:number_of_particles) ) |
---|
5597 | |
---|
5598 | CALL turbsd |
---|
5599 | CALL turb_enhance_eff |
---|
5600 | CALL effic |
---|
5601 | |
---|
5602 | DO j = 1, number_of_particles |
---|
5603 | DO i = 1, number_of_particles |
---|
5604 | ckernel(1+i-1,1+j-1,1) = ec(i,j) * gck(i,j) * ecf(i,j) |
---|
5605 | ENDDO |
---|
5606 | ENDDO |
---|
5607 | |
---|
5608 | DEALLOCATE( gck, ecf ) |
---|
5609 | ELSE |
---|
5610 | ! |
---|
5611 | !-- Call routines to calculate efficiencies for the Hall kernel |
---|
5612 | CALL fallg |
---|
5613 | CALL effic |
---|
5614 | |
---|
5615 | DO j = 1, number_of_particles |
---|
5616 | DO i = 1, number_of_particles |
---|
5617 | ckernel(i,j,1) = pi * ( radclass(j) + radclass(i) )**2 & |
---|
5618 | * ec(i,j) * ABS( winf(j) - winf(i) ) |
---|
5619 | ENDDO |
---|
5620 | ENDDO |
---|
5621 | ENDIF |
---|
5622 | |
---|
5623 | DEALLOCATE( ec, radclass, winf ) |
---|
5624 | |
---|
5625 | END SUBROUTINE recalculate_kernel |
---|
5626 | |
---|
5627 | !------------------------------------------------------------------------------! |
---|
5628 | ! Description: |
---|
5629 | ! ------------ |
---|
5630 | !> Calculation of effects of turbulence on the geometric collision kernel |
---|
5631 | !> (by including the droplets' average radial relative velocities and their |
---|
5632 | !> radial distribution function) following the analytic model by Aayala et al. |
---|
5633 | !> (2008, New J. Phys.). For details check the second part 2 of the publication, |
---|
5634 | !> page 37ff. |
---|
5635 | !> |
---|
5636 | !> Input parameters, which need to be replaced by PALM parameters: |
---|
5637 | !> water density, air density |
---|
5638 | !------------------------------------------------------------------------------! |
---|
5639 | SUBROUTINE turbsd |
---|
5640 | |
---|
5641 | INTEGER(iwp) :: i !< |
---|
5642 | INTEGER(iwp) :: j !< |
---|
5643 | |
---|
5644 | REAL(wp) :: ao !< |
---|
5645 | REAL(wp) :: ao_gr !< |
---|
5646 | REAL(wp) :: bbb !< |
---|
5647 | REAL(wp) :: be !< |
---|
5648 | REAL(wp) :: b1 !< |
---|
5649 | REAL(wp) :: b2 !< |
---|
5650 | REAL(wp) :: ccc !< |
---|
5651 | REAL(wp) :: c1 !< |
---|
5652 | REAL(wp) :: c1_gr !< |
---|
5653 | REAL(wp) :: c2 !< |
---|
5654 | REAL(wp) :: d1 !< |
---|
5655 | REAL(wp) :: d2 !< |
---|
5656 | REAL(wp) :: eta !< |
---|
5657 | REAL(wp) :: e1 !< |
---|
5658 | REAL(wp) :: e2 !< |
---|
5659 | REAL(wp) :: fao_gr !< |
---|
5660 | REAL(wp) :: fr !< |
---|
5661 | REAL(wp) :: grfin !< |
---|
5662 | REAL(wp) :: lambda !< |
---|
5663 | REAL(wp) :: lambda_re !< |
---|
5664 | REAL(wp) :: lf !< |
---|
5665 | REAL(wp) :: rc !< |
---|
5666 | REAL(wp) :: rrp !< |
---|
5667 | REAL(wp) :: sst !< |
---|
5668 | REAL(wp) :: tauk !< |
---|
5669 | REAL(wp) :: tl !< |
---|
5670 | REAL(wp) :: t2 !< |
---|
5671 | REAL(wp) :: tt !< |
---|
5672 | REAL(wp) :: t1 !< |
---|
5673 | REAL(wp) :: vk !< |
---|
5674 | REAL(wp) :: vrms1xy !< |
---|
5675 | REAL(wp) :: vrms2xy !< |
---|
5676 | REAL(wp) :: v1 !< |
---|
5677 | REAL(wp) :: v1v2xy !< |
---|
5678 | REAL(wp) :: v1xysq !< |
---|
5679 | REAL(wp) :: v2 !< |
---|
5680 | REAL(wp) :: v2xysq !< |
---|
5681 | REAL(wp) :: wrfin !< |
---|
5682 | REAL(wp) :: wrgrav2 !< |
---|
5683 | REAL(wp) :: wrtur2xy !< |
---|
5684 | REAL(wp) :: xx !< |
---|
5685 | REAL(wp) :: yy !< |
---|
5686 | REAL(wp) :: z !< |
---|
5687 | |
---|
5688 | REAL(wp), DIMENSION(1:radius_classes) :: st !< Stokes number |
---|
5689 | REAL(wp), DIMENSION(1:radius_classes) :: tau !< inertial time scale |
---|
5690 | |
---|
5691 | lambda = urms * SQRT( 15.0_wp * molecular_viscosity / epsilon_collision ) |
---|
5692 | lambda_re = urms**2 * SQRT( 15.0_wp / epsilon_collision / molecular_viscosity ) |
---|
5693 | tl = urms**2 / epsilon_collision |
---|
5694 | lf = 0.5_wp * urms**3 / epsilon_collision |
---|
5695 | tauk = SQRT( molecular_viscosity / epsilon_collision ) |
---|
5696 | eta = ( molecular_viscosity**3 / epsilon_collision )**0.25_wp |
---|
5697 | vk = eta / tauk |
---|
5698 | |
---|
5699 | ao = ( 11.0_wp + 7.0_wp * lambda_re ) / ( 205.0_wp + lambda_re ) |
---|
5700 | tt = SQRT( 2.0_wp * lambda_re / ( SQRT( 15.0_wp ) * ao ) ) * tauk |
---|
5701 | |
---|
5702 | ! |
---|
5703 | !-- Get terminal velocity of droplets |
---|
5704 | CALL fallg |
---|
5705 | |
---|
5706 | DO i = 1, radius_classes |
---|
5707 | tau(i) = winf(i) / g ! inertial time scale |
---|
5708 | st(i) = tau(i) / tauk ! Stokes number |
---|
5709 | ENDDO |
---|
5710 | |
---|
5711 | ! |
---|
5712 | !-- Calculate average radial relative velocity at contact (wrfin) |
---|
5713 | z = tt / tl |
---|
5714 | be = SQRT( 2.0_wp ) * lambda / lf |
---|
5715 | bbb = SQRT( 1.0_wp - 2.0_wp * be**2 ) |
---|
5716 | d1 = ( 1.0_wp + bbb ) / ( 2.0_wp * bbb ) |
---|
5717 | e1 = lf * ( 1.0_wp + bbb ) * 0.5_wp |
---|
5718 | d2 = ( 1.0_wp - bbb ) * 0.5_wp / bbb |
---|
5719 | e2 = lf * ( 1.0_wp - bbb ) * 0.5_wp |
---|
5720 | ccc = SQRT( 1.0_wp - 2.0_wp * z**2 ) |
---|
5721 | b1 = ( 1.0_wp + ccc ) * 0.5_wp / ccc |
---|
5722 | c1 = tl * ( 1.0_wp + ccc ) * 0.5_wp |
---|
5723 | b2 = ( 1.0_wp - ccc ) * 0.5_wp / ccc |
---|
5724 | c2 = tl * ( 1.0_wp - ccc ) * 0.5_wp |
---|
5725 | |
---|
5726 | DO i = 1, radius_classes |
---|
5727 | |
---|
5728 | v1 = winf(i) |
---|
5729 | t1 = tau(i) |
---|
5730 | |
---|
5731 | DO j = 1, i |
---|
5732 | rrp = radclass(i) + radclass(j) |
---|
5733 | v2 = winf(j) |
---|
5734 | t2 = tau(j) |
---|
5735 | |
---|
5736 | v1xysq = b1 * d1 * phi_w(c1,e1,v1,t1) - b1 * d2 * phi_w(c1,e2,v1,t1) & |
---|
5737 | - b2 * d1 * phi_w(c2,e1,v1,t1) + b2 * d2 * phi_w(c2,e2,v1,t1) |
---|
5738 | v1xysq = v1xysq * urms**2 / t1 |
---|
5739 | vrms1xy = SQRT( v1xysq ) |
---|
5740 | |
---|
5741 | v2xysq = b1 * d1 * phi_w(c1,e1,v2,t2) - b1 * d2 * phi_w(c1,e2,v2,t2) & |
---|
5742 | - b2 * d1 * phi_w(c2,e1,v2,t2) + b2 * d2 * phi_w(c2,e2,v2,t2) |
---|
5743 | v2xysq = v2xysq * urms**2 / t2 |
---|
5744 | vrms2xy = SQRT( v2xysq ) |
---|
5745 | |
---|
5746 | IF ( winf(i) >= winf(j) ) THEN |
---|
5747 | v1 = winf(i) |
---|
5748 | t1 = tau(i) |
---|
5749 | v2 = winf(j) |
---|
5750 | t2 = tau(j) |
---|
5751 | ELSE |
---|
5752 | v1 = winf(j) |
---|
5753 | t1 = tau(j) |
---|
5754 | v2 = winf(i) |
---|
5755 | t2 = tau(i) |
---|
5756 | ENDIF |
---|
5757 | |
---|
5758 | v1v2xy = b1 * d1 * zhi(c1,e1,v1,t1,v2,t2) - & |
---|
5759 | b1 * d2 * zhi(c1,e2,v1,t1,v2,t2) - & |
---|
5760 | b2 * d1 * zhi(c2,e1,v1,t1,v2,t2) + & |
---|
5761 | b2 * d2* zhi(c2,e2,v1,t1,v2,t2) |
---|
5762 | fr = d1 * EXP( -rrp / e1 ) - d2 * EXP( -rrp / e2 ) |
---|
5763 | v1v2xy = v1v2xy * fr * urms**2 / tau(i) / tau(j) |
---|
5764 | wrtur2xy = vrms1xy**2 + vrms2xy**2 - 2.0_wp * v1v2xy |
---|
5765 | IF ( wrtur2xy < 0.0_wp ) wrtur2xy = 0.0_wp |
---|
5766 | wrgrav2 = pi / 8.0_wp * ( winf(j) - winf(i) )**2 |
---|
5767 | wrfin = SQRT( ( 2.0_wp / pi ) * ( wrtur2xy + wrgrav2) ) |
---|
5768 | |
---|
5769 | ! |
---|
5770 | !-- Calculate radial distribution function (grfin) |
---|
5771 | IF ( st(j) > st(i) ) THEN |
---|
5772 | sst = st(j) |
---|
5773 | ELSE |
---|
5774 | sst = st(i) |
---|
5775 | ENDIF |
---|
5776 | |
---|
5777 | xx = -0.1988_wp * sst**4 + 1.5275_wp * sst**3 - 4.2942_wp * & |
---|
5778 | sst**2 + 5.3406_wp * sst |
---|
5779 | IF ( xx < 0.0_wp ) xx = 0.0_wp |
---|
5780 | yy = 0.1886_wp * EXP( 20.306_wp / lambda_re ) |
---|
5781 | |
---|
5782 | c1_gr = xx / ( g / vk * tauk )**yy |
---|
5783 | |
---|
5784 | ao_gr = ao + ( pi / 8.0_wp) * ( g / vk * tauk )**2 |
---|
5785 | fao_gr = 20.115_wp * SQRT( ao_gr / lambda_re ) |
---|
5786 | rc = SQRT( fao_gr * ABS( st(j) - st(i) ) ) * eta |
---|
5787 | |
---|
5788 | grfin = ( ( eta**2 + rc**2 ) / ( rrp**2 + rc**2) )**( c1_gr*0.5_wp ) |
---|
5789 | IF ( grfin < 1.0_wp ) grfin = 1.0_wp |
---|
5790 | |
---|
5791 | ! |
---|
5792 | !-- Calculate general collection kernel (without the consideration of |
---|
5793 | !-- collection efficiencies) |
---|
5794 | gck(i,j) = 2.0_wp * pi * rrp**2 * wrfin * grfin |
---|
5795 | gck(j,i) = gck(i,j) |
---|
5796 | |
---|
5797 | ENDDO |
---|
5798 | ENDDO |
---|
5799 | |
---|
5800 | END SUBROUTINE turbsd |
---|
5801 | |
---|
5802 | REAL(wp) FUNCTION phi_w( a, b, vsett, tau0 ) |
---|
5803 | ! |
---|
5804 | !-- Function used in the Ayala et al. (2008) analytical model for turbulent |
---|
5805 | !-- effects on the collision kernel |
---|
5806 | |
---|
5807 | |
---|
5808 | REAL(wp) :: a !< |
---|
5809 | REAL(wp) :: aa1 !< |
---|
5810 | REAL(wp) :: b !< |
---|
5811 | REAL(wp) :: tau0 !< |
---|
5812 | REAL(wp) :: vsett !< |
---|
5813 | |
---|
5814 | aa1 = 1.0_wp / tau0 + 1.0_wp / a + vsett / b |
---|
5815 | phi_w = 1.0_wp / aa1 - 0.5_wp * vsett / b / aa1**2 |
---|
5816 | |
---|
5817 | END FUNCTION phi_w |
---|
5818 | |
---|
5819 | REAL(wp) FUNCTION zhi( a, b, vsett1, tau1, vsett2, tau2 ) |
---|
5820 | ! |
---|
5821 | !-- Function used in the Ayala et al. (2008) analytical model for turbulent |
---|
5822 | !-- effects on the collision kernel |
---|
5823 | |
---|
5824 | REAL(wp) :: a !< |
---|
5825 | REAL(wp) :: aa1 !< |
---|
5826 | REAL(wp) :: aa2 !< |
---|
5827 | REAL(wp) :: aa3 !< |
---|
5828 | REAL(wp) :: aa4 !< |
---|
5829 | REAL(wp) :: aa5 !< |
---|
5830 | REAL(wp) :: aa6 !< |
---|
5831 | REAL(wp) :: b !< |
---|
5832 | REAL(wp) :: tau1 !< |
---|
5833 | REAL(wp) :: tau2 !< |
---|
5834 | REAL(wp) :: vsett1 !< |
---|
5835 | REAL(wp) :: vsett2 !< |
---|
5836 | |
---|
5837 | aa1 = vsett2 / b - 1.0_wp / tau2 - 1.0_wp / a |
---|
5838 | aa2 = vsett1 / b + 1.0_wp / tau1 + 1.0_wp / a |
---|
5839 | aa3 = ( vsett1 - vsett2 ) / b + 1.0_wp / tau1 + 1.0_wp / tau2 |
---|
5840 | aa4 = ( vsett2 / b )**2 - ( 1.0_wp / tau2 + 1.0_wp / a )**2 |
---|
5841 | aa5 = vsett2 / b + 1.0_wp / tau2 + 1.0_wp / a |
---|
5842 | aa6 = 1.0_wp / tau1 - 1.0_wp / a + ( 1.0_wp / tau2 + 1.0_wp / a) * & |
---|
5843 | vsett1 / vsett2 |
---|
5844 | zhi = (1.0_wp / aa1 - 1.0_wp / aa2 ) * ( vsett1 - vsett2 ) * 0.5_wp / & |
---|
5845 | b / aa3**2 + ( 4.0_wp / aa4 - 1.0_wp / aa5**2 - 1.0_wp / aa1**2 ) & |
---|
5846 | * vsett2 * 0.5_wp / b /aa6 + ( 2.0_wp * ( b / aa2 - b / aa1 ) - & |
---|
5847 | vsett1 / aa2**2 + vsett2 / aa1**2 ) * 0.5_wp / b / aa3 |
---|
5848 | |
---|
5849 | END FUNCTION zhi |
---|
5850 | |
---|
5851 | |
---|
5852 | !------------------------------------------------------------------------------! |
---|
5853 | ! Description: |
---|
5854 | ! ------------ |
---|
5855 | !> Parameterization of terminal velocity following Rogers et al. (1993, J. Appl. |
---|
5856 | !> Meteorol.) |
---|
5857 | !------------------------------------------------------------------------------! |
---|
5858 | SUBROUTINE fallg |
---|
5859 | |
---|
5860 | INTEGER(iwp) :: j !< |
---|
5861 | |
---|
5862 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter |
---|
5863 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter |
---|
5864 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter |
---|
5865 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter |
---|
5866 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter |
---|
5867 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< seperation diameter |
---|
5868 | |
---|
5869 | REAL(wp) :: diameter !< droplet diameter in mm |
---|
5870 | |
---|
5871 | |
---|
5872 | DO j = 1, radius_classes |
---|
5873 | |
---|
5874 | diameter = radclass(j) * 2000.0_wp |
---|
5875 | |
---|
5876 | IF ( diameter <= d0_rog ) THEN |
---|
5877 | winf(j) = k_cap_rog * diameter * ( 1.0_wp - & |
---|
5878 | EXP( -k_low_rog * diameter ) ) |
---|
5879 | ELSE |
---|
5880 | winf(j) = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
5881 | ENDIF |
---|
5882 | |
---|
5883 | ENDDO |
---|
5884 | |
---|
5885 | END SUBROUTINE fallg |
---|
5886 | |
---|
5887 | |
---|
5888 | !------------------------------------------------------------------------------! |
---|
5889 | ! Description: |
---|
5890 | ! ------------ |
---|
5891 | !> Interpolation of collision efficiencies (Hall, 1980, J. Atmos. Sci.) |
---|
5892 | !------------------------------------------------------------------------------! |
---|
5893 | SUBROUTINE effic |
---|
5894 | |
---|
5895 | INTEGER(iwp) :: i !< |
---|
5896 | INTEGER(iwp) :: iq !< |
---|
5897 | INTEGER(iwp) :: ir !< |
---|
5898 | INTEGER(iwp) :: j !< |
---|
5899 | INTEGER(iwp) :: k !< |
---|
5900 | |
---|
5901 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ira !< |
---|
5902 | |
---|
5903 | LOGICAL, SAVE :: first = .TRUE. !< |
---|
5904 | |
---|
5905 | REAL(wp) :: ek !< |
---|
5906 | REAL(wp) :: particle_radius !< |
---|
5907 | REAL(wp) :: pp !< |
---|
5908 | REAL(wp) :: qq !< |
---|
5909 | REAL(wp) :: rq !< |
---|
5910 | |
---|
5911 | REAL(wp), DIMENSION(1:21), SAVE :: rat !< |
---|
5912 | |
---|
5913 | REAL(wp), DIMENSION(1:15), SAVE :: r0 !< |
---|
5914 | |
---|
5915 | REAL(wp), DIMENSION(1:15,1:21), SAVE :: ecoll !< |
---|
5916 | |
---|
5917 | ! |
---|
5918 | !-- Initial assignment of constants |
---|
5919 | IF ( first ) THEN |
---|
5920 | |
---|
5921 | first = .FALSE. |
---|
5922 | r0 = (/ 6.0_wp, 8.0_wp, 10.0_wp, 15.0_wp, 20.0_wp, 25.0_wp, & |
---|
5923 | 30.0_wp, 40.0_wp, 50.0_wp, 60.0_wp, 70.0_wp, 100.0_wp, & |
---|
5924 | 150.0_wp, 200.0_wp, 300.0_wp /) |
---|
5925 | |
---|
5926 | rat = (/ 0.00_wp, 0.05_wp, 0.10_wp, 0.15_wp, 0.20_wp, 0.25_wp, & |
---|
5927 | 0.30_wp, 0.35_wp, 0.40_wp, 0.45_wp, 0.50_wp, 0.55_wp, & |
---|
5928 | 0.60_wp, 0.65_wp, 0.70_wp, 0.75_wp, 0.80_wp, 0.85_wp, & |
---|
5929 | 0.90_wp, 0.95_wp, 1.00_wp /) |
---|
5930 | |
---|
5931 | ecoll(:,1) = (/ 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, & |
---|
5932 | 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, & |
---|
5933 | 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp /) |
---|
5934 | ecoll(:,2) = (/ 0.003_wp, 0.003_wp, 0.003_wp, 0.004_wp, 0.005_wp, & |
---|
5935 | 0.005_wp, 0.005_wp, 0.010_wp, 0.100_wp, 0.050_wp, & |
---|
5936 | 0.200_wp, 0.500_wp, 0.770_wp, 0.870_wp, 0.970_wp /) |
---|
5937 | ecoll(:,3) = (/ 0.007_wp, 0.007_wp, 0.007_wp, 0.008_wp, 0.009_wp, & |
---|
5938 | 0.010_wp, 0.010_wp, 0.070_wp, 0.400_wp, 0.430_wp, & |
---|
5939 | 0.580_wp, 0.790_wp, 0.930_wp, 0.960_wp, 1.000_wp /) |
---|
5940 | ecoll(:,4) = (/ 0.009_wp, 0.009_wp, 0.009_wp, 0.012_wp, 0.015_wp, & |
---|
5941 | 0.010_wp, 0.020_wp, 0.280_wp, 0.600_wp, 0.640_wp, & |
---|
5942 | 0.750_wp, 0.910_wp, 0.970_wp, 0.980_wp, 1.000_wp /) |
---|
5943 | ecoll(:,5) = (/ 0.014_wp, 0.014_wp, 0.014_wp, 0.015_wp, 0.016_wp, & |
---|
5944 | 0.030_wp, 0.060_wp, 0.500_wp, 0.700_wp, 0.770_wp, & |
---|
5945 | 0.840_wp, 0.950_wp, 0.970_wp, 1.000_wp, 1.000_wp /) |
---|
5946 | ecoll(:,6) = (/ 0.017_wp, 0.017_wp, 0.017_wp, 0.020_wp, 0.022_wp, & |
---|
5947 | 0.060_wp, 0.100_wp, 0.620_wp, 0.780_wp, 0.840_wp, & |
---|
5948 | 0.880_wp, 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5949 | ecoll(:,7) = (/ 0.030_wp, 0.030_wp, 0.024_wp, 0.022_wp, 0.032_wp, & |
---|
5950 | 0.062_wp, 0.200_wp, 0.680_wp, 0.830_wp, 0.870_wp, & |
---|
5951 | 0.900_wp, 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5952 | ecoll(:,8) = (/ 0.025_wp, 0.025_wp, 0.025_wp, 0.036_wp, 0.043_wp, & |
---|
5953 | 0.130_wp, 0.270_wp, 0.740_wp, 0.860_wp, 0.890_wp, & |
---|
5954 | 0.920_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5955 | ecoll(:,9) = (/ 0.027_wp, 0.027_wp, 0.027_wp, 0.040_wp, 0.052_wp, & |
---|
5956 | 0.200_wp, 0.400_wp, 0.780_wp, 0.880_wp, 0.900_wp, & |
---|
5957 | 0.940_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5958 | ecoll(:,10) = (/ 0.030_wp, 0.030_wp, 0.030_wp, 0.047_wp, 0.064_wp, & |
---|
5959 | 0.250_wp, 0.500_wp, 0.800_wp, 0.900_wp, 0.910_wp, & |
---|
5960 | 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5961 | ecoll(:,11) = (/ 0.040_wp, 0.040_wp, 0.033_wp, 0.037_wp, 0.068_wp, & |
---|
5962 | 0.240_wp, 0.550_wp, 0.800_wp, 0.900_wp, 0.910_wp, & |
---|
5963 | 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5964 | ecoll(:,12) = (/ 0.035_wp, 0.035_wp, 0.035_wp, 0.055_wp, 0.079_wp, & |
---|
5965 | 0.290_wp, 0.580_wp, 0.800_wp, 0.900_wp, 0.910_wp, & |
---|
5966 | 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5967 | ecoll(:,13) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.062_wp, 0.082_wp, & |
---|
5968 | 0.290_wp, 0.590_wp, 0.780_wp, 0.900_wp, 0.910_wp, & |
---|
5969 | 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5970 | ecoll(:,14) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.060_wp, 0.080_wp, & |
---|
5971 | 0.290_wp, 0.580_wp, 0.770_wp, 0.890_wp, 0.910_wp, & |
---|
5972 | 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5973 | ecoll(:,15) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.041_wp, 0.075_wp, & |
---|
5974 | 0.250_wp, 0.540_wp, 0.760_wp, 0.880_wp, 0.920_wp, & |
---|
5975 | 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5976 | ecoll(:,16) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.052_wp, 0.067_wp, & |
---|
5977 | 0.250_wp, 0.510_wp, 0.770_wp, 0.880_wp, 0.930_wp, & |
---|
5978 | 0.970_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5979 | ecoll(:,17) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.047_wp, 0.057_wp, & |
---|
5980 | 0.250_wp, 0.490_wp, 0.770_wp, 0.890_wp, 0.950_wp, & |
---|
5981 | 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5982 | ecoll(:,18) = (/ 0.036_wp, 0.036_wp, 0.036_wp, 0.042_wp, 0.048_wp, & |
---|
5983 | 0.230_wp, 0.470_wp, 0.780_wp, 0.920_wp, 1.000_wp, & |
---|
5984 | 1.020_wp, 1.020_wp, 1.020_wp, 1.020_wp, 1.020_wp /) |
---|
5985 | ecoll(:,19) = (/ 0.040_wp, 0.040_wp, 0.035_wp, 0.033_wp, 0.040_wp, & |
---|
5986 | 0.112_wp, 0.450_wp, 0.790_wp, 1.010_wp, 1.030_wp, & |
---|
5987 | 1.040_wp, 1.040_wp, 1.040_wp, 1.040_wp, 1.040_wp /) |
---|
5988 | ecoll(:,20) = (/ 0.033_wp, 0.033_wp, 0.033_wp, 0.033_wp, 0.033_wp, & |
---|
5989 | 0.119_wp, 0.470_wp, 0.950_wp, 1.300_wp, 1.700_wp, & |
---|
5990 | 2.300_wp, 2.300_wp, 2.300_wp, 2.300_wp, 2.300_wp /) |
---|
5991 | ecoll(:,21) = (/ 0.027_wp, 0.027_wp, 0.027_wp, 0.027_wp, 0.027_wp, & |
---|
5992 | 0.125_wp, 0.520_wp, 1.400_wp, 2.300_wp, 3.000_wp, & |
---|
5993 | 4.000_wp, 4.000_wp, 4.000_wp, 4.000_wp, 4.000_wp /) |
---|
5994 | ENDIF |
---|
5995 | |
---|
5996 | ! |
---|
5997 | !-- Calculate the radius class index of particles with respect to array r |
---|
5998 | !-- Radius has to be in microns |
---|
5999 | ALLOCATE( ira(1:radius_classes) ) |
---|
6000 | DO j = 1, radius_classes |
---|
6001 | particle_radius = radclass(j) * 1.0E6_wp |
---|
6002 | DO k = 1, 15 |
---|
6003 | IF ( particle_radius < r0(k) ) THEN |
---|
6004 | ira(j) = k |
---|
6005 | EXIT |
---|
6006 | ENDIF |
---|
6007 | ENDDO |
---|
6008 | IF ( particle_radius >= r0(15) ) ira(j) = 16 |
---|
6009 | ENDDO |
---|
6010 | |
---|
6011 | ! |
---|
6012 | !-- Two-dimensional linear interpolation of the collision efficiency. |
---|
6013 | !-- Radius has to be in microns |
---|
6014 | DO j = 1, radius_classes |
---|
6015 | DO i = 1, j |
---|
6016 | |
---|
6017 | ir = MAX( ira(i), ira(j) ) |
---|
6018 | rq = MIN( radclass(i) / radclass(j), radclass(j) / radclass(i) ) |
---|
6019 | iq = INT( rq * 20 ) + 1 |
---|
6020 | iq = MAX( iq , 2) |
---|
6021 | |
---|
6022 | IF ( ir < 16 ) THEN |
---|
6023 | IF ( ir >= 2 ) THEN |
---|
6024 | pp = ( ( MAX( radclass(j), radclass(i) ) * 1.0E6_wp ) - & |
---|
6025 | r0(ir-1) ) / ( r0(ir) - r0(ir-1) ) |
---|
6026 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
6027 | ec(j,i) = ( 1.0_wp - pp ) * ( 1.0_wp - qq ) & |
---|
6028 | * ecoll(ir-1,iq-1) & |
---|
6029 | + pp * ( 1.0_wp - qq ) * ecoll(ir,iq-1) & |
---|
6030 | + qq * ( 1.0_wp - pp ) * ecoll(ir-1,iq) & |
---|
6031 | + pp * qq * ecoll(ir,iq) |
---|
6032 | ELSE |
---|
6033 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
6034 | ec(j,i) = ( 1.0_wp - qq ) * ecoll(1,iq-1) + qq * ecoll(1,iq) |
---|
6035 | ENDIF |
---|
6036 | ELSE |
---|
6037 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
6038 | ek = ( 1.0_wp - qq ) * ecoll(15,iq-1) + qq * ecoll(15,iq) |
---|
6039 | ec(j,i) = MIN( ek, 1.0_wp ) |
---|
6040 | ENDIF |
---|
6041 | |
---|
6042 | IF ( ec(j,i) < 1.0E-20_wp ) ec(j,i) = 0.0_wp |
---|
6043 | |
---|
6044 | ec(i,j) = ec(j,i) |
---|
6045 | |
---|
6046 | ENDDO |
---|
6047 | ENDDO |
---|
6048 | |
---|
6049 | DEALLOCATE( ira ) |
---|
6050 | |
---|
6051 | END SUBROUTINE effic |
---|
6052 | |
---|
6053 | |
---|
6054 | !------------------------------------------------------------------------------! |
---|
6055 | ! Description: |
---|
6056 | ! ------------ |
---|
6057 | !> Interpolation of turbulent enhancement factor for collision efficencies |
---|
6058 | !> following Wang and Grabowski (2009, Atmos. Sci. Let.) |
---|
6059 | !------------------------------------------------------------------------------! |
---|
6060 | SUBROUTINE turb_enhance_eff |
---|
6061 | |
---|
6062 | INTEGER(iwp) :: i !< |
---|
6063 | INTEGER(iwp) :: iq !< |
---|
6064 | INTEGER(iwp) :: ir !< |
---|
6065 | INTEGER(iwp) :: j !< |
---|
6066 | INTEGER(iwp) :: k !< |
---|
6067 | INTEGER(iwp) :: kk !< |
---|
6068 | |
---|
6069 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ira !< |
---|
6070 | |
---|
6071 | LOGICAL, SAVE :: first = .TRUE. !< |
---|
6072 | |
---|
6073 | REAL(wp) :: particle_radius !< |
---|
6074 | REAL(wp) :: pp !< |
---|
6075 | REAL(wp) :: qq !< |
---|
6076 | REAL(wp) :: rq !< |
---|
6077 | REAL(wp) :: y1 !< |
---|
6078 | REAL(wp) :: y2 !< |
---|
6079 | REAL(wp) :: y3 !< |
---|
6080 | |
---|
6081 | REAL(wp), DIMENSION(1:11), SAVE :: rat !< |
---|
6082 | REAL(wp), DIMENSION(1:7), SAVE :: r0 !< |
---|
6083 | |
---|
6084 | REAL(wp), DIMENSION(1:7,1:11), SAVE :: ecoll_100 !< |
---|
6085 | REAL(wp), DIMENSION(1:7,1:11), SAVE :: ecoll_400 !< |
---|
6086 | |
---|
6087 | ! |
---|
6088 | !-- Initial assignment of constants |
---|
6089 | IF ( first ) THEN |
---|
6090 | |
---|
6091 | first = .FALSE. |
---|
6092 | |
---|
6093 | r0 = (/ 10.0_wp, 20.0_wp, 30.0_wp, 40.0_wp, 50.0_wp, 60.0_wp, & |
---|
6094 | 100.0_wp /) |
---|
6095 | |
---|
6096 | rat = (/ 0.0_wp, 0.1_wp, 0.2_wp, 0.3_wp, 0.4_wp, 0.5_wp, 0.6_wp, & |
---|
6097 | 0.7_wp, 0.8_wp, 0.9_wp, 1.0_wp /) |
---|
6098 | ! |
---|
6099 | !-- Tabulated turbulent enhancement factor at 100 cm**2/s**3 |
---|
6100 | ecoll_100(:,1) = (/ 1.74_wp, 1.74_wp, 1.773_wp, 1.49_wp, & |
---|
6101 | 1.207_wp, 1.207_wp, 1.0_wp /) |
---|
6102 | ecoll_100(:,2) = (/ 1.46_wp, 1.46_wp, 1.421_wp, 1.245_wp, & |
---|
6103 | 1.069_wp, 1.069_wp, 1.0_wp /) |
---|
6104 | ecoll_100(:,3) = (/ 1.32_wp, 1.32_wp, 1.245_wp, 1.123_wp, & |
---|
6105 | 1.000_wp, 1.000_wp, 1.0_wp /) |
---|
6106 | ecoll_100(:,4) = (/ 1.250_wp, 1.250_wp, 1.148_wp, 1.087_wp, & |
---|
6107 | 1.025_wp, 1.025_wp, 1.0_wp /) |
---|
6108 | ecoll_100(:,5) = (/ 1.186_wp, 1.186_wp, 1.066_wp, 1.060_wp, & |
---|
6109 | 1.056_wp, 1.056_wp, 1.0_wp /) |
---|
6110 | ecoll_100(:,6) = (/ 1.045_wp, 1.045_wp, 1.000_wp, 1.014_wp, & |
---|
6111 | 1.028_wp, 1.028_wp, 1.0_wp /) |
---|
6112 | ecoll_100(:,7) = (/ 1.070_wp, 1.070_wp, 1.030_wp, 1.038_wp, & |
---|
6113 | 1.046_wp, 1.046_wp, 1.0_wp /) |
---|
6114 | ecoll_100(:,8) = (/ 1.000_wp, 1.000_wp, 1.054_wp, 1.042_wp, & |
---|
6115 | 1.029_wp, 1.029_wp, 1.0_wp /) |
---|
6116 | ecoll_100(:,9) = (/ 1.223_wp, 1.223_wp, 1.117_wp, 1.069_wp, & |
---|
6117 | 1.021_wp, 1.021_wp, 1.0_wp /) |
---|
6118 | ecoll_100(:,10) = (/ 1.570_wp, 1.570_wp, 1.244_wp, 1.166_wp, & |
---|
6119 | 1.088_wp, 1.088_wp, 1.0_wp /) |
---|
6120 | ecoll_100(:,11) = (/ 20.3_wp, 20.3_wp, 14.6_wp, 8.61_wp, & |
---|
6121 | 2.60_wp, 2.60_wp, 1.0_wp /) |
---|
6122 | ! |
---|
6123 | !-- Tabulated turbulent enhancement factor at 400 cm**2/s**3 |
---|
6124 | ecoll_400(:,1) = (/ 4.976_wp, 4.976_wp, 3.593_wp, 2.519_wp, & |
---|
6125 | 1.445_wp, 1.445_wp, 1.0_wp /) |
---|
6126 | ecoll_400(:,2) = (/ 2.984_wp, 2.984_wp, 2.181_wp, 1.691_wp, & |
---|
6127 | 1.201_wp, 1.201_wp, 1.0_wp /) |
---|
6128 | ecoll_400(:,3) = (/ 1.988_wp, 1.988_wp, 1.475_wp, 1.313_wp, & |
---|
6129 | 1.150_wp, 1.150_wp, 1.0_wp /) |
---|
6130 | ecoll_400(:,4) = (/ 1.490_wp, 1.490_wp, 1.187_wp, 1.156_wp, & |
---|
6131 | 1.126_wp, 1.126_wp, 1.0_wp /) |
---|
6132 | ecoll_400(:,5) = (/ 1.249_wp, 1.249_wp, 1.088_wp, 1.090_wp, & |
---|
6133 | 1.092_wp, 1.092_wp, 1.0_wp /) |
---|
6134 | ecoll_400(:,6) = (/ 1.139_wp, 1.139_wp, 1.130_wp, 1.091_wp, & |
---|
6135 | 1.051_wp, 1.051_wp, 1.0_wp /) |
---|
6136 | ecoll_400(:,7) = (/ 1.220_wp, 1.220_wp, 1.190_wp, 1.138_wp, & |
---|
6137 | 1.086_wp, 1.086_wp, 1.0_wp /) |
---|
6138 | ecoll_400(:,8) = (/ 1.325_wp, 1.325_wp, 1.267_wp, 1.165_wp, & |
---|
6139 | 1.063_wp, 1.063_wp, 1.0_wp /) |
---|
6140 | ecoll_400(:,9) = (/ 1.716_wp, 1.716_wp, 1.345_wp, 1.223_wp, & |
---|
6141 | 1.100_wp, 1.100_wp, 1.0_wp /) |
---|
6142 | ecoll_400(:,10) = (/ 3.788_wp, 3.788_wp, 1.501_wp, 1.311_wp, & |
---|
6143 | 1.120_wp, 1.120_wp, 1.0_wp /) |
---|
6144 | ecoll_400(:,11) = (/ 36.52_wp, 36.52_wp, 19.16_wp, 22.80_wp, & |
---|
6145 | 26.0_wp, 26.0_wp, 1.0_wp /) |
---|
6146 | |
---|
6147 | ENDIF |
---|
6148 | |
---|
6149 | ! |
---|
6150 | !-- Calculate the radius class index of particles with respect to array r0 |
---|
6151 | !-- The droplet radius has to be given in microns. |
---|
6152 | ALLOCATE( ira(1:radius_classes) ) |
---|
6153 | |
---|
6154 | DO j = 1, radius_classes |
---|
6155 | particle_radius = radclass(j) * 1.0E6_wp |
---|
6156 | DO k = 1, 7 |
---|
6157 | IF ( particle_radius < r0(k) ) THEN |
---|
6158 | ira(j) = k |
---|
6159 | EXIT |
---|
6160 | ENDIF |
---|
6161 | ENDDO |
---|
6162 | IF ( particle_radius >= r0(7) ) ira(j) = 8 |
---|
6163 | ENDDO |
---|
6164 | |
---|
6165 | ! |
---|
6166 | !-- Two-dimensional linear interpolation of the turbulent enhancement factor. |
---|
6167 | !-- The droplet radius has to be given in microns. |
---|
6168 | DO j = 1, radius_classes |
---|
6169 | DO i = 1, j |
---|
6170 | |
---|
6171 | ir = MAX( ira(i), ira(j) ) |
---|
6172 | rq = MIN( radclass(i) / radclass(j), radclass(j) / radclass(i) ) |
---|
6173 | |
---|
6174 | DO kk = 2, 11 |
---|
6175 | IF ( rq <= rat(kk) ) THEN |
---|
6176 | iq = kk |
---|
6177 | EXIT |
---|
6178 | ENDIF |
---|
6179 | ENDDO |
---|
6180 | |
---|
6181 | y1 = 1.0_wp ! turbulent enhancement factor at 0 m**2/s**3 |
---|
6182 | |
---|
6183 | IF ( ir < 8 ) THEN |
---|
6184 | IF ( ir >= 2 ) THEN |
---|
6185 | pp = ( MAX( radclass(j), radclass(i) ) * 1.0E6_wp - & |
---|
6186 | r0(ir-1) ) / ( r0(ir) - r0(ir-1) ) |
---|
6187 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
6188 | y2 = ( 1.0_wp - pp ) * ( 1.0_wp - qq ) * ecoll_100(ir-1,iq-1) + & |
---|
6189 | pp * ( 1.0_wp - qq ) * ecoll_100(ir,iq-1) + & |
---|
6190 | qq * ( 1.0_wp - pp ) * ecoll_100(ir-1,iq) + & |
---|
6191 | pp * qq * ecoll_100(ir,iq) |
---|
6192 | y3 = ( 1.0-pp ) * ( 1.0_wp - qq ) * ecoll_400(ir-1,iq-1) + & |
---|
6193 | pp * ( 1.0_wp - qq ) * ecoll_400(ir,iq-1) + & |
---|
6194 | qq * ( 1.0_wp - pp ) * ecoll_400(ir-1,iq) + & |
---|
6195 | pp * qq * ecoll_400(ir,iq) |
---|
6196 | ELSE |
---|
6197 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
6198 | y2 = ( 1.0_wp - qq ) * ecoll_100(1,iq-1) + qq * ecoll_100(1,iq) |
---|
6199 | y3 = ( 1.0_wp - qq ) * ecoll_400(1,iq-1) + qq * ecoll_400(1,iq) |
---|
6200 | ENDIF |
---|
6201 | ELSE |
---|
6202 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
6203 | y2 = ( 1.0_wp - qq ) * ecoll_100(7,iq-1) + qq * ecoll_100(7,iq) |
---|
6204 | y3 = ( 1.0_wp - qq ) * ecoll_400(7,iq-1) + qq * ecoll_400(7,iq) |
---|
6205 | ENDIF |
---|
6206 | ! |
---|
6207 | !-- Linear interpolation of turbulent enhancement factor |
---|
6208 | IF ( epsilon_collision <= 0.01_wp ) THEN |
---|
6209 | ecf(j,i) = ( epsilon_collision - 0.01_wp ) / ( 0.0_wp - 0.01_wp ) * y1 & |
---|
6210 | + ( epsilon_collision - 0.0_wp ) / ( 0.01_wp - 0.0_wp ) * y2 |
---|
6211 | ELSEIF ( epsilon_collision <= 0.06_wp ) THEN |
---|
6212 | ecf(j,i) = ( epsilon_collision - 0.04_wp ) / ( 0.01_wp - 0.04_wp ) * y2 & |
---|
6213 | + ( epsilon_collision - 0.01_wp ) / ( 0.04_wp - 0.01_wp ) * y3 |
---|
6214 | ELSE |
---|
6215 | ecf(j,i) = ( 0.06_wp - 0.04_wp ) / ( 0.01_wp - 0.04_wp ) * y2 & |
---|
6216 | + ( 0.06_wp - 0.01_wp ) / ( 0.04_wp - 0.01_wp ) * y3 |
---|
6217 | ENDIF |
---|
6218 | |
---|
6219 | IF ( ecf(j,i) < 1.0_wp ) ecf(j,i) = 1.0_wp |
---|
6220 | |
---|
6221 | ecf(i,j) = ecf(j,i) |
---|
6222 | |
---|
6223 | ENDDO |
---|
6224 | ENDDO |
---|
6225 | |
---|
6226 | END SUBROUTINE turb_enhance_eff |
---|
6227 | |
---|
6228 | |
---|
6229 | !------------------------------------------------------------------------------! |
---|
6230 | ! Description: |
---|
6231 | ! ------------ |
---|
6232 | ! This routine is a part of the Lagrangian particle model. Super droplets which |
---|
6233 | ! fulfill certain criterion's (e.g. a big weighting factor and a large radius) |
---|
6234 | ! can be split into several super droplets with a reduced number of |
---|
6235 | ! represented particles of every super droplet. This mechanism ensures an |
---|
6236 | ! improved representation of the right tail of the drop size distribution with |
---|
6237 | ! a feasible amount of computational costs. The limits of particle creation |
---|
6238 | ! should be chosen carefully! The idea of this algorithm is based on |
---|
6239 | ! Unterstrasser and Soelch, 2014. |
---|
6240 | !------------------------------------------------------------------------------! |
---|
6241 | SUBROUTINE lpm_splitting |
---|
6242 | |
---|
6243 | INTEGER(iwp) :: i !< |
---|
6244 | INTEGER(iwp) :: j !< |
---|
6245 | INTEGER(iwp) :: jpp !< |
---|
6246 | INTEGER(iwp) :: k !< |
---|
6247 | INTEGER(iwp) :: n !< |
---|
6248 | INTEGER(iwp) :: new_particles_gb !< counter of created particles within one grid box |
---|
6249 | INTEGER(iwp) :: new_size !< new particle array size |
---|
6250 | INTEGER(iwp) :: np !< |
---|
6251 | INTEGER(iwp) :: old_size !< old particle array size |
---|
6252 | |
---|
6253 | INTEGER(iwp), PARAMETER :: n_max = 100 !< number of radii bin for splitting functions |
---|
6254 | |
---|
6255 | LOGICAL :: first_loop_stride_sp = .TRUE. !< flag to calculate constants only once |
---|
6256 | |
---|
6257 | REAL(wp) :: diameter !< diameter of droplet |
---|
6258 | REAL(wp) :: dlog !< factor for DSD calculation |
---|
6259 | REAL(wp) :: factor_volume_to_mass !< pre calculate factor volume to mass |
---|
6260 | REAL(wp) :: lambda !< slope parameter of gamma-distribution |
---|
6261 | REAL(wp) :: lwc !< liquid water content of grid box |
---|
6262 | REAL(wp) :: lwc_total !< average liquid water content of cloud |
---|
6263 | REAL(wp) :: m1 !< first moment of DSD |
---|
6264 | REAL(wp) :: m1_total !< average over all PEs of first moment of DSD |
---|
6265 | REAL(wp) :: m2 !< second moment of DSD |
---|
6266 | REAL(wp) :: m2_total !< average average over all PEs second moment of DSD |
---|
6267 | REAL(wp) :: m3 !< third moment of DSD |
---|
6268 | REAL(wp) :: m3_total !< average average over all PEs third moment of DSD |
---|
6269 | REAL(wp) :: mu !< spectral shape parameter of gamma distribution |
---|
6270 | REAL(wp) :: nrclgb !< number of cloudy grid boxes (ql >= 1.0E-5 kg/kg) |
---|
6271 | REAL(wp) :: nrclgb_total !< average over all PEs of number of cloudy grid boxes |
---|
6272 | REAL(wp) :: nr !< number concentration of cloud droplets |
---|
6273 | REAL(wp) :: nr_total !< average over all PEs of number of cloudy grid boxes |
---|
6274 | REAL(wp) :: nr0 !< intercept parameter of gamma distribution |
---|
6275 | REAL(wp) :: pirho_l !< pi * rho_l / 6.0 |
---|
6276 | REAL(wp) :: ql_crit = 1.0E-5_wp !< threshold lwc for cloudy grid cells |
---|
6277 | !< (Siebesma et al 2003, JAS, 60) |
---|
6278 | REAL(wp) :: rm !< volume averaged mean radius |
---|
6279 | REAL(wp) :: rm_total !< average over all PEs of volume averaged mean radius |
---|
6280 | REAL(wp) :: r_min = 1.0E-6_wp !< minimum radius of approximated spectra |
---|
6281 | REAL(wp) :: r_max = 1.0E-3_wp !< maximum radius of approximated spectra |
---|
6282 | REAL(wp) :: sigma_log = 1.5_wp !< standard deviation of the LOG-distribution |
---|
6283 | REAL(wp) :: zeta !< Parameter for DSD calculation of Seifert |
---|
6284 | |
---|
6285 | REAL(wp), DIMENSION(0:n_max-1) :: an_spl !< size dependent critical weight factor |
---|
6286 | REAL(wp), DIMENSION(0:n_max-1) :: r_bin_mid !< mass weighted mean radius of a bin |
---|
6287 | REAL(wp), DIMENSION(0:n_max) :: r_bin !< boundaries of a radius bin |
---|
6288 | |
---|
6289 | TYPE(particle_type) :: tmp_particle !< temporary particle TYPE |
---|
6290 | |
---|
6291 | CALL cpu_log( log_point_s(80), 'lpm_splitting', 'start' ) |
---|
6292 | |
---|
6293 | IF ( first_loop_stride_sp ) THEN |
---|
6294 | IF ( i_splitting_mode == 2 .OR. i_splitting_mode == 3 ) THEN |
---|
6295 | dlog = ( LOG10(r_max) - LOG10(r_min) ) / ( n_max - 1 ) |
---|
6296 | DO i = 0, n_max-1 |
---|
6297 | r_bin(i) = 10.0_wp**( LOG10(r_min) + i * dlog - 0.5_wp * dlog ) |
---|
6298 | r_bin_mid(i) = 10.0_wp**( LOG10(r_min) + i * dlog ) |
---|
6299 | ENDDO |
---|
6300 | r_bin(n_max) = 10.0_wp**( LOG10(r_min) + n_max * dlog - 0.5_wp * dlog ) |
---|
6301 | ENDIF |
---|
6302 | factor_volume_to_mass = 4.0_wp / 3.0_wp * pi * rho_l |
---|
6303 | pirho_l = pi * rho_l / 6.0_wp |
---|
6304 | IF ( weight_factor_split == -1.0_wp ) THEN |
---|
6305 | weight_factor_split = 0.1_wp * initial_weighting_factor |
---|
6306 | ENDIF |
---|
6307 | ENDIF |
---|
6308 | |
---|
6309 | |
---|
6310 | IF ( i_splitting_mode == 1 ) THEN |
---|
6311 | |
---|
6312 | DO i = nxl, nxr |
---|
6313 | DO j = nys, nyn |
---|
6314 | DO k = nzb+1, nzt |
---|
6315 | |
---|
6316 | new_particles_gb = 0 |
---|
6317 | number_of_particles = prt_count(k,j,i) |
---|
6318 | IF ( number_of_particles <= 0 .OR. & |
---|
6319 | ql(k,j,i) < ql_crit ) CYCLE |
---|
6320 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
6321 | ! |
---|
6322 | !-- Start splitting operations. Each particle is checked if it |
---|
6323 | !-- fulfilled the splitting criterion's. In splitting mode 'const' |
---|
6324 | !-- a critical radius (radius_split) a critical weighting factor |
---|
6325 | !-- (weight_factor_split) and a splitting factor (splitting_factor) |
---|
6326 | !-- must be prescribed (see particle_parameters). Super droplets |
---|
6327 | !-- which have a larger radius and larger weighting factor are split |
---|
6328 | !-- into 'splitting_factor' super droplets. Therefore, the weighting |
---|
6329 | !-- factor of the super droplet and all created clones is reduced |
---|
6330 | !-- by the factor of 'splitting_factor'. |
---|
6331 | DO n = 1, number_of_particles |
---|
6332 | IF ( particles(n)%particle_mask .AND. & |
---|
6333 | particles(n)%radius >= radius_split .AND. & |
---|
6334 | particles(n)%weight_factor >= weight_factor_split ) & |
---|
6335 | THEN |
---|
6336 | ! |
---|
6337 | !-- Calculate the new number of particles. |
---|
6338 | new_size = prt_count(k,j,i) + splitting_factor - 1 |
---|
6339 | ! |
---|
6340 | !-- Cycle if maximum number of particles per grid box |
---|
6341 | !-- is greater than the allowed maximum number. |
---|
6342 | IF ( new_size >= max_number_particles_per_gridbox ) CYCLE |
---|
6343 | ! |
---|
6344 | !-- Reallocate particle array if necessary. |
---|
6345 | IF ( new_size > SIZE(particles) ) THEN |
---|
6346 | CALL realloc_particles_array( i, j, k, new_size ) |
---|
6347 | ENDIF |
---|
6348 | old_size = prt_count(k,j,i) |
---|
6349 | ! |
---|
6350 | !-- Calculate new weighting factor. |
---|
6351 | particles(n)%weight_factor = & |
---|
6352 | particles(n)%weight_factor / splitting_factor |
---|
6353 | tmp_particle = particles(n) |
---|
6354 | ! |
---|
6355 | !-- Create splitting_factor-1 new particles. |
---|
6356 | DO jpp = 1, splitting_factor-1 |
---|
6357 | grid_particles(k,j,i)%particles(jpp+old_size) = & |
---|
6358 | tmp_particle |
---|
6359 | ENDDO |
---|
6360 | new_particles_gb = new_particles_gb + splitting_factor - 1 |
---|
6361 | ! |
---|
6362 | !-- Save the new number of super droplets for every grid box. |
---|
6363 | prt_count(k,j,i) = prt_count(k,j,i) + & |
---|
6364 | splitting_factor - 1 |
---|
6365 | ENDIF |
---|
6366 | ENDDO |
---|
6367 | |
---|
6368 | ENDDO |
---|
6369 | ENDDO |
---|
6370 | ENDDO |
---|
6371 | |
---|
6372 | ELSEIF ( i_splitting_mode == 2 ) THEN |
---|
6373 | ! |
---|
6374 | !-- Initialize summing variables. |
---|
6375 | lwc = 0.0_wp |
---|
6376 | lwc_total = 0.0_wp |
---|
6377 | m1 = 0.0_wp |
---|
6378 | m1_total = 0.0_wp |
---|
6379 | m2 = 0.0_wp |
---|
6380 | m2_total = 0.0_wp |
---|
6381 | m3 = 0.0_wp |
---|
6382 | m3_total = 0.0_wp |
---|
6383 | nr = 0.0_wp |
---|
6384 | nrclgb = 0.0_wp |
---|
6385 | nrclgb_total = 0.0_wp |
---|
6386 | nr_total = 0.0_wp |
---|
6387 | rm = 0.0_wp |
---|
6388 | rm_total = 0.0_wp |
---|
6389 | |
---|
6390 | DO i = nxl, nxr |
---|
6391 | DO j = nys, nyn |
---|
6392 | DO k = nzb+1, nzt |
---|
6393 | number_of_particles = prt_count(k,j,i) |
---|
6394 | IF ( number_of_particles <= 0 .OR. & |
---|
6395 | ql(k,j,i) < ql_crit ) CYCLE |
---|
6396 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
6397 | nrclgb = nrclgb + 1.0_wp |
---|
6398 | ! |
---|
6399 | !-- Calculate moments of DSD. |
---|
6400 | DO n = 1, number_of_particles |
---|
6401 | IF ( particles(n)%particle_mask .AND. & |
---|
6402 | particles(n)%radius >= r_min ) & |
---|
6403 | THEN |
---|
6404 | nr = nr + particles(n)%weight_factor |
---|
6405 | rm = rm + factor_volume_to_mass * & |
---|
6406 | particles(n)%radius**3 * & |
---|
6407 | particles(n)%weight_factor |
---|
6408 | IF ( isf == 1 ) THEN |
---|
6409 | diameter = particles(n)%radius * 2.0_wp |
---|
6410 | lwc = lwc + factor_volume_to_mass * & |
---|
6411 | particles(n)%radius**3 * & |
---|
6412 | particles(n)%weight_factor |
---|
6413 | m1 = m1 + particles(n)%weight_factor * diameter |
---|
6414 | m2 = m2 + particles(n)%weight_factor * diameter**2 |
---|
6415 | m3 = m3 + particles(n)%weight_factor * diameter**3 |
---|
6416 | ENDIF |
---|
6417 | ENDIF |
---|
6418 | ENDDO |
---|
6419 | ENDDO |
---|
6420 | ENDDO |
---|
6421 | ENDDO |
---|
6422 | |
---|
6423 | #if defined( __parallel ) |
---|
6424 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
6425 | CALL MPI_ALLREDUCE( nr, nr_total, 1 , & |
---|
6426 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6427 | CALL MPI_ALLREDUCE( rm, rm_total, 1 , & |
---|
6428 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6429 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
6430 | CALL MPI_ALLREDUCE( nrclgb, nrclgb_total, 1 , & |
---|
6431 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6432 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
6433 | CALL MPI_ALLREDUCE( lwc, lwc_total, 1 , & |
---|
6434 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6435 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
6436 | CALL MPI_ALLREDUCE( m1, m1_total, 1 , & |
---|
6437 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6438 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
6439 | CALL MPI_ALLREDUCE( m2, m2_total, 1 , & |
---|
6440 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6441 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
6442 | CALL MPI_ALLREDUCE( m3, m3_total, 1 , & |
---|
6443 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6444 | #endif |
---|
6445 | |
---|
6446 | ! |
---|
6447 | !-- Calculate number concentration and mean volume averaged radius. |
---|
6448 | nr_total = MERGE( nr_total / nrclgb_total, & |
---|
6449 | 0.0_wp, nrclgb_total > 0.0_wp & |
---|
6450 | ) |
---|
6451 | rm_total = MERGE( ( rm_total / & |
---|
6452 | ( nr_total * factor_volume_to_mass ) & |
---|
6453 | )**0.3333333_wp, 0.0_wp, nrclgb_total > 0.0_wp & |
---|
6454 | ) |
---|
6455 | ! |
---|
6456 | !-- Check which function should be used to approximate the DSD. |
---|
6457 | IF ( isf == 1 ) THEN |
---|
6458 | lwc_total = MERGE( lwc_total / nrclgb_total, & |
---|
6459 | 0.0_wp, nrclgb_total > 0.0_wp & |
---|
6460 | ) |
---|
6461 | m1_total = MERGE( m1_total / nrclgb_total, & |
---|
6462 | 0.0_wp, nrclgb_total > 0.0_wp & |
---|
6463 | ) |
---|
6464 | m2_total = MERGE( m2_total / nrclgb_total, & |
---|
6465 | 0.0_wp, nrclgb_total > 0.0_wp & |
---|
6466 | ) |
---|
6467 | m3_total = MERGE( m3_total / nrclgb_total, & |
---|
6468 | 0.0_wp, nrclgb_total > 0.0_wp & |
---|
6469 | ) |
---|
6470 | zeta = m1_total * m3_total / m2_total**2 |
---|
6471 | mu = MAX( ( ( 1.0_wp - zeta ) * 2.0_wp + 1.0_wp ) / & |
---|
6472 | ( zeta - 1.0_wp ), 0.0_wp & |
---|
6473 | ) |
---|
6474 | |
---|
6475 | lambda = ( pirho_l * nr_total / lwc_total * & |
---|
6476 | ( mu + 3.0_wp ) * ( mu + 2.0_wp ) * ( mu + 1.0_wp ) & |
---|
6477 | )**0.3333333_wp |
---|
6478 | nr0 = nr_total / gamma( mu + 1.0_wp ) * lambda**( mu + 1.0_wp ) |
---|
6479 | |
---|
6480 | DO n = 0, n_max-1 |
---|
6481 | diameter = r_bin_mid(n) * 2.0_wp |
---|
6482 | an_spl(n) = nr0 * diameter**mu * EXP( -lambda * diameter ) * & |
---|
6483 | ( r_bin(n+1) - r_bin(n) ) * 2.0_wp |
---|
6484 | ENDDO |
---|
6485 | ELSEIF ( isf == 2 ) THEN |
---|
6486 | DO n = 0, n_max-1 |
---|
6487 | an_spl(n) = nr_total / ( SQRT( 2.0_wp * pi ) * & |
---|
6488 | LOG(sigma_log) * r_bin_mid(n) & |
---|
6489 | ) * & |
---|
6490 | EXP( -( LOG( r_bin_mid(n) / rm_total )**2 ) / & |
---|
6491 | ( 2.0_wp * LOG(sigma_log)**2 ) & |
---|
6492 | ) * & |
---|
6493 | ( r_bin(n+1) - r_bin(n) ) |
---|
6494 | ENDDO |
---|
6495 | ELSEIF( isf == 3 ) THEN |
---|
6496 | DO n = 0, n_max-1 |
---|
6497 | an_spl(n) = 3.0_wp * nr_total * r_bin_mid(n)**2 / rm_total**3 * & |
---|
6498 | EXP( - ( r_bin_mid(n)**3 / rm_total**3 ) ) * & |
---|
6499 | ( r_bin(n+1) - r_bin(n) ) |
---|
6500 | ENDDO |
---|
6501 | ENDIF |
---|
6502 | ! |
---|
6503 | !-- Criterion to avoid super droplets with a weighting factor < 1.0. |
---|
6504 | an_spl = MAX(an_spl, 1.0_wp) |
---|
6505 | |
---|
6506 | DO i = nxl, nxr |
---|
6507 | DO j = nys, nyn |
---|
6508 | DO k = nzb+1, nzt |
---|
6509 | number_of_particles = prt_count(k,j,i) |
---|
6510 | IF ( number_of_particles <= 0 .OR. & |
---|
6511 | ql(k,j,i) < ql_crit ) CYCLE |
---|
6512 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
6513 | new_particles_gb = 0 |
---|
6514 | ! |
---|
6515 | !-- Start splitting operations. Each particle is checked if it |
---|
6516 | !-- fulfilled the splitting criterion's. In splitting mode 'cl_av' |
---|
6517 | !-- a critical radius (radius_split) and a splitting function must |
---|
6518 | !-- be prescribed (see particles_par). The critical weighting factor |
---|
6519 | !-- is calculated while approximating a 'gamma', 'log' or 'exp'- |
---|
6520 | !-- drop size distribution. In this mode the DSD is calculated as |
---|
6521 | !-- an average over all cloudy grid boxes. Super droplets which |
---|
6522 | !-- have a larger radius and larger weighting factor are split into |
---|
6523 | !-- 'splitting_factor' super droplets. In this case the splitting |
---|
6524 | !-- factor is calculated of weighting factor of the super droplet |
---|
6525 | !-- and the approximated number concentration for droplet of such |
---|
6526 | !-- a size. Due to the splitting, the weighting factor of the |
---|
6527 | !-- super droplet and all created clones is reduced by the factor |
---|
6528 | !-- of 'splitting_facor'. |
---|
6529 | DO n = 1, number_of_particles |
---|
6530 | DO np = 0, n_max-1 |
---|
6531 | IF ( r_bin(np) >= radius_split .AND. & |
---|
6532 | particles(n)%particle_mask .AND. & |
---|
6533 | particles(n)%radius >= r_bin(np) .AND. & |
---|
6534 | particles(n)%radius < r_bin(np+1) .AND. & |
---|
6535 | particles(n)%weight_factor >= an_spl(np) ) & |
---|
6536 | THEN |
---|
6537 | ! |
---|
6538 | !-- Calculate splitting factor |
---|
6539 | splitting_factor = & |
---|
6540 | MIN( INT( particles(n)%weight_factor / & |
---|
6541 | an_spl(np) & |
---|
6542 | ), splitting_factor_max & |
---|
6543 | ) |
---|
6544 | IF ( splitting_factor < 2 ) CYCLE |
---|
6545 | ! |
---|
6546 | !-- Calculate the new number of particles. |
---|
6547 | new_size = prt_count(k,j,i) + splitting_factor - 1 |
---|
6548 | ! |
---|
6549 | !-- Cycle if maximum number of particles per grid box |
---|
6550 | !-- is greater than the allowed maximum number. |
---|
6551 | IF ( new_size >= max_number_particles_per_gridbox ) & |
---|
6552 | CYCLE |
---|
6553 | ! |
---|
6554 | !-- Reallocate particle array if necessary. |
---|
6555 | IF ( new_size > SIZE(particles) ) THEN |
---|
6556 | CALL realloc_particles_array( i, j, k, new_size ) |
---|
6557 | ENDIF |
---|
6558 | old_size = prt_count(k,j,i) |
---|
6559 | new_particles_gb = new_particles_gb + & |
---|
6560 | splitting_factor - 1 |
---|
6561 | ! |
---|
6562 | !-- Calculate new weighting factor. |
---|
6563 | particles(n)%weight_factor = & |
---|
6564 | particles(n)%weight_factor / splitting_factor |
---|
6565 | tmp_particle = particles(n) |
---|
6566 | ! |
---|
6567 | !-- Create splitting_factor-1 new particles. |
---|
6568 | DO jpp = 1, splitting_factor-1 |
---|
6569 | grid_particles(k,j,i)%particles(jpp+old_size) = & |
---|
6570 | tmp_particle |
---|
6571 | ENDDO |
---|
6572 | ! |
---|
6573 | !-- Save the new number of super droplets. |
---|
6574 | prt_count(k,j,i) = prt_count(k,j,i) + & |
---|
6575 | splitting_factor - 1 |
---|
6576 | ENDIF |
---|
6577 | ENDDO |
---|
6578 | ENDDO |
---|
6579 | |
---|
6580 | ENDDO |
---|
6581 | ENDDO |
---|
6582 | ENDDO |
---|
6583 | |
---|
6584 | ELSEIF ( i_splitting_mode == 3 ) THEN |
---|
6585 | |
---|
6586 | DO i = nxl, nxr |
---|
6587 | DO j = nys, nyn |
---|
6588 | DO k = nzb+1, nzt |
---|
6589 | |
---|
6590 | ! |
---|
6591 | !-- Initialize summing variables. |
---|
6592 | lwc = 0.0_wp |
---|
6593 | m1 = 0.0_wp |
---|
6594 | m2 = 0.0_wp |
---|
6595 | m3 = 0.0_wp |
---|
6596 | nr = 0.0_wp |
---|
6597 | rm = 0.0_wp |
---|
6598 | |
---|
6599 | new_particles_gb = 0 |
---|
6600 | number_of_particles = prt_count(k,j,i) |
---|
6601 | IF ( number_of_particles <= 0 .OR. & |
---|
6602 | ql(k,j,i) < ql_crit ) CYCLE |
---|
6603 | particles => grid_particles(k,j,i)%particles |
---|
6604 | ! |
---|
6605 | !-- Calculate moments of DSD. |
---|
6606 | DO n = 1, number_of_particles |
---|
6607 | IF ( particles(n)%particle_mask .AND. & |
---|
6608 | particles(n)%radius >= r_min ) & |
---|
6609 | THEN |
---|
6610 | nr = nr + particles(n)%weight_factor |
---|
6611 | rm = rm + factor_volume_to_mass * & |
---|
6612 | particles(n)%radius**3 * & |
---|
6613 | particles(n)%weight_factor |
---|
6614 | IF ( isf == 1 ) THEN |
---|
6615 | diameter = particles(n)%radius * 2.0_wp |
---|
6616 | lwc = lwc + factor_volume_to_mass * & |
---|
6617 | particles(n)%radius**3 * & |
---|
6618 | particles(n)%weight_factor |
---|
6619 | m1 = m1 + particles(n)%weight_factor * diameter |
---|
6620 | m2 = m2 + particles(n)%weight_factor * diameter**2 |
---|
6621 | m3 = m3 + particles(n)%weight_factor * diameter**3 |
---|
6622 | ENDIF |
---|
6623 | ENDIF |
---|
6624 | ENDDO |
---|
6625 | |
---|
6626 | IF ( nr <= 0.0_wp .OR. rm <= 0.0_wp ) CYCLE |
---|
6627 | ! |
---|
6628 | !-- Calculate mean volume averaged radius. |
---|
6629 | rm = ( rm / ( nr * factor_volume_to_mass ) )**0.3333333_wp |
---|
6630 | ! |
---|
6631 | !-- Check which function should be used to approximate the DSD. |
---|
6632 | IF ( isf == 1 ) THEN |
---|
6633 | ! |
---|
6634 | !-- Gamma size distribution to calculate |
---|
6635 | !-- critical weight_factor (e.g. Marshall + Palmer, 1948). |
---|
6636 | zeta = m1 * m3 / m2**2 |
---|
6637 | mu = MAX( ( ( 1.0_wp - zeta ) * 2.0_wp + 1.0_wp ) / & |
---|
6638 | ( zeta - 1.0_wp ), 0.0_wp & |
---|
6639 | ) |
---|
6640 | lambda = ( pirho_l * nr / lwc * & |
---|
6641 | ( mu + 3.0_wp ) * ( mu + 2.0_wp ) * & |
---|
6642 | ( mu + 1.0_wp ) & |
---|
6643 | )**0.3333333_wp |
---|
6644 | nr0 = ( nr / (gamma( mu + 1.0_wp ) ) ) * & |
---|
6645 | lambda**( mu + 1.0_wp ) |
---|
6646 | |
---|
6647 | DO n = 0, n_max-1 |
---|
6648 | diameter = r_bin_mid(n) * 2.0_wp |
---|
6649 | an_spl(n) = nr0 * diameter**mu * & |
---|
6650 | EXP( -lambda * diameter ) * & |
---|
6651 | ( r_bin(n+1) - r_bin(n) ) * 2.0_wp |
---|
6652 | ENDDO |
---|
6653 | ELSEIF ( isf == 2 ) THEN |
---|
6654 | ! |
---|
6655 | !-- Lognormal size distribution to calculate critical |
---|
6656 | !-- weight_factor (e.g. Levin, 1971, Bradley + Stow, 1974). |
---|
6657 | DO n = 0, n_max-1 |
---|
6658 | an_spl(n) = nr / ( SQRT( 2.0_wp * pi ) * & |
---|
6659 | LOG(sigma_log) * r_bin_mid(n) & |
---|
6660 | ) * & |
---|
6661 | EXP( -( LOG( r_bin_mid(n) / rm )**2 ) / & |
---|
6662 | ( 2.0_wp * LOG(sigma_log)**2 ) & |
---|
6663 | ) * & |
---|
6664 | ( r_bin(n+1) - r_bin(n) ) |
---|
6665 | ENDDO |
---|
6666 | ELSEIF ( isf == 3 ) THEN |
---|
6667 | ! |
---|
6668 | !-- Exponential size distribution to calculate critical |
---|
6669 | !-- weight_factor (e.g. Berry + Reinhardt, 1974). |
---|
6670 | DO n = 0, n_max-1 |
---|
6671 | an_spl(n) = 3.0_wp * nr * r_bin_mid(n)**2 / rm**3 * & |
---|
6672 | EXP( - ( r_bin_mid(n)**3 / rm**3 ) ) * & |
---|
6673 | ( r_bin(n+1) - r_bin(n) ) |
---|
6674 | ENDDO |
---|
6675 | ENDIF |
---|
6676 | |
---|
6677 | ! |
---|
6678 | !-- Criterion to avoid super droplets with a weighting factor < 1.0. |
---|
6679 | an_spl = MAX(an_spl, 1.0_wp) |
---|
6680 | ! |
---|
6681 | !-- Start splitting operations. Each particle is checked if it |
---|
6682 | !-- fulfilled the splitting criterion's. In splitting mode 'gb_av' |
---|
6683 | !-- a critical radius (radius_split) and a splitting function must |
---|
6684 | !-- be prescribed (see particles_par). The critical weighting factor |
---|
6685 | !-- is calculated while appoximating a 'gamma', 'log' or 'exp'- |
---|
6686 | !-- drop size distribution. In this mode a DSD is calculated for |
---|
6687 | !-- every cloudy grid box. Super droplets which have a larger |
---|
6688 | !-- radius and larger weighting factor are split into |
---|
6689 | !-- 'splitting_factor' super droplets. In this case the splitting |
---|
6690 | !-- factor is calculated of weighting factor of the super droplet |
---|
6691 | !-- and theapproximated number concentration for droplet of such |
---|
6692 | !-- a size. Due to the splitting, the weighting factor of the |
---|
6693 | !-- super droplet and all created clones is reduced by the factor |
---|
6694 | !-- of 'splitting_facor'. |
---|
6695 | DO n = 1, number_of_particles |
---|
6696 | DO np = 0, n_max-1 |
---|
6697 | IF ( r_bin(np) >= radius_split .AND. & |
---|
6698 | particles(n)%particle_mask .AND. & |
---|
6699 | particles(n)%radius >= r_bin(np) .AND. & |
---|
6700 | particles(n)%radius < r_bin(np+1) .AND. & |
---|
6701 | particles(n)%weight_factor >= an_spl(np) ) & |
---|
6702 | THEN |
---|
6703 | ! |
---|
6704 | !-- Calculate splitting factor. |
---|
6705 | splitting_factor = & |
---|
6706 | MIN( INT( particles(n)%weight_factor / & |
---|
6707 | an_spl(np) & |
---|
6708 | ), splitting_factor_max & |
---|
6709 | ) |
---|
6710 | IF ( splitting_factor < 2 ) CYCLE |
---|
6711 | |
---|
6712 | ! |
---|
6713 | !-- Calculate the new number of particles. |
---|
6714 | new_size = prt_count(k,j,i) + splitting_factor - 1 |
---|
6715 | ! |
---|
6716 | !-- Cycle if maximum number of particles per grid box |
---|
6717 | !-- is greater than the allowed maximum number. |
---|
6718 | IF ( new_size >= max_number_particles_per_gridbox ) & |
---|
6719 | CYCLE |
---|
6720 | ! |
---|
6721 | !-- Reallocate particle array if necessary. |
---|
6722 | IF ( new_size > SIZE(particles) ) THEN |
---|
6723 | CALL realloc_particles_array( i, j, k, new_size ) |
---|
6724 | ENDIF |
---|
6725 | ! |
---|
6726 | !-- Calculate new weighting factor. |
---|
6727 | particles(n)%weight_factor = & |
---|
6728 | particles(n)%weight_factor / splitting_factor |
---|
6729 | tmp_particle = particles(n) |
---|
6730 | old_size = prt_count(k,j,i) |
---|
6731 | ! |
---|
6732 | !-- Create splitting_factor-1 new particles. |
---|
6733 | DO jpp = 1, splitting_factor-1 |
---|
6734 | grid_particles(k,j,i)%particles( jpp + old_size ) = & |
---|
6735 | tmp_particle |
---|
6736 | ENDDO |
---|
6737 | ! |
---|
6738 | !-- Save the new number of droplets for every grid box. |
---|
6739 | prt_count(k,j,i) = prt_count(k,j,i) + & |
---|
6740 | splitting_factor - 1 |
---|
6741 | new_particles_gb = new_particles_gb + & |
---|
6742 | splitting_factor - 1 |
---|
6743 | ENDIF |
---|
6744 | ENDDO |
---|
6745 | ENDDO |
---|
6746 | ENDDO |
---|
6747 | ENDDO |
---|
6748 | ENDDO |
---|
6749 | ENDIF |
---|
6750 | |
---|
6751 | CALL cpu_log( log_point_s(80), 'lpm_splitting', 'stop' ) |
---|
6752 | |
---|
6753 | END SUBROUTINE lpm_splitting |
---|
6754 | |
---|
6755 | |
---|
6756 | !------------------------------------------------------------------------------! |
---|
6757 | ! Description: |
---|
6758 | ! ------------ |
---|
6759 | ! This routine is a part of the Lagrangian particle model. Two Super droplets |
---|
6760 | ! which fulfill certain criterion's (e.g. a big weighting factor and a small |
---|
6761 | ! radius) can be merged into one super droplet with a increased number of |
---|
6762 | ! represented particles of the super droplet. This mechanism ensures an |
---|
6763 | ! improved a feasible amount of computational costs. The limits of particle |
---|
6764 | ! creation should be chosen carefully! The idea of this algorithm is based on |
---|
6765 | ! Unterstrasser and Soelch, 2014. |
---|
6766 | !------------------------------------------------------------------------------! |
---|
6767 | SUBROUTINE lpm_merging |
---|
6768 | |
---|
6769 | INTEGER(iwp) :: i !< |
---|
6770 | INTEGER(iwp) :: j !< |
---|
6771 | INTEGER(iwp) :: k !< |
---|
6772 | INTEGER(iwp) :: n !< |
---|
6773 | INTEGER(iwp) :: merge_drp = 0 !< number of merged droplets |
---|
6774 | |
---|
6775 | |
---|
6776 | REAL(wp) :: ql_crit = 1.0E-5_wp !< threshold lwc for cloudy grid cells |
---|
6777 | !< (e.g. Siebesma et al 2003, JAS, 60) |
---|
6778 | |
---|
6779 | CALL cpu_log( log_point_s(81), 'lpm_merging', 'start' ) |
---|
6780 | |
---|
6781 | merge_drp = 0 |
---|
6782 | |
---|
6783 | IF ( weight_factor_merge == -1.0_wp ) THEN |
---|
6784 | weight_factor_merge = 0.5_wp * initial_weighting_factor |
---|
6785 | ENDIF |
---|
6786 | |
---|
6787 | DO i = nxl, nxr |
---|
6788 | DO j = nys, nyn |
---|
6789 | DO k = nzb+1, nzt |
---|
6790 | |
---|
6791 | number_of_particles = prt_count(k,j,i) |
---|
6792 | IF ( number_of_particles <= 0 .OR. & |
---|
6793 | ql(k,j,i) >= ql_crit ) CYCLE |
---|
6794 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
6795 | ! |
---|
6796 | !-- Start merging operations: This routine delete super droplets with |
---|
6797 | !-- a small radius (radius <= radius_merge) and a low weighting |
---|
6798 | !-- factor (weight_factor <= weight_factor_merge). The number of |
---|
6799 | !-- represented particles will be added to the next particle of the |
---|
6800 | !-- particle array. Tests showed that this simplified method can be |
---|
6801 | !-- used because it will only take place outside of cloudy grid |
---|
6802 | !-- boxes where ql <= 1.0E-5 kg/kg. Therefore, especially former cloned |
---|
6803 | !-- and subsequent evaporated super droplets will be merged. |
---|
6804 | DO n = 1, number_of_particles-1 |
---|
6805 | IF ( particles(n)%particle_mask .AND. & |
---|
6806 | particles(n+1)%particle_mask .AND. & |
---|
6807 | particles(n)%radius <= radius_merge .AND. & |
---|
6808 | particles(n)%weight_factor <= weight_factor_merge ) & |
---|
6809 | THEN |
---|
6810 | particles(n+1)%weight_factor = & |
---|
6811 | particles(n+1)%weight_factor + & |
---|
6812 | ( particles(n)%radius**3 / & |
---|
6813 | particles(n+1)%radius**3 * & |
---|
6814 | particles(n)%weight_factor & |
---|
6815 | ) |
---|
6816 | particles(n)%particle_mask = .FALSE. |
---|
6817 | deleted_particles = deleted_particles + 1 |
---|
6818 | merge_drp = merge_drp + 1 |
---|
6819 | |
---|
6820 | ENDIF |
---|
6821 | ENDDO |
---|
6822 | ENDDO |
---|
6823 | ENDDO |
---|
6824 | ENDDO |
---|
6825 | |
---|
6826 | |
---|
6827 | CALL cpu_log( log_point_s(81), 'lpm_merging', 'stop' ) |
---|
6828 | |
---|
6829 | END SUBROUTINE lpm_merging |
---|
6830 | |
---|
6831 | |
---|
6832 | |
---|
6833 | |
---|
6834 | !------------------------------------------------------------------------------! |
---|
6835 | ! Description: |
---|
6836 | ! ------------ |
---|
6837 | !> Exchange between subdomains. |
---|
6838 | !> As soon as one particle has moved beyond the boundary of the domain, it |
---|
6839 | !> is included in the relevant transfer arrays and marked for subsequent |
---|
6840 | !> deletion on this PE. |
---|
6841 | !> First sweep for crossings in x direction. Find out first the number of |
---|
6842 | !> particles to be transferred and allocate temporary arrays needed to store |
---|
6843 | !> them. |
---|
6844 | !> For a one-dimensional decomposition along y, no transfer is necessary, |
---|
6845 | !> because the particle remains on the PE, but the particle coordinate has to |
---|
6846 | !> be adjusted. |
---|
6847 | !------------------------------------------------------------------------------! |
---|
6848 | SUBROUTINE lpm_exchange_horiz |
---|
6849 | |
---|
6850 | INTEGER(iwp) :: i !< grid index (x) of particle positition |
---|
6851 | INTEGER(iwp) :: ip !< index variable along x |
---|
6852 | INTEGER(iwp) :: j !< grid index (y) of particle positition |
---|
6853 | INTEGER(iwp) :: jp !< index variable along y |
---|
6854 | INTEGER(iwp) :: kp !< index variable along z |
---|
6855 | INTEGER(iwp) :: n !< particle index variable |
---|
6856 | INTEGER(iwp) :: par_size !< Particle size in bytes |
---|
6857 | INTEGER(iwp) :: trlp_count !< number of particles send to left PE |
---|
6858 | INTEGER(iwp) :: trlp_count_recv !< number of particles receive from right PE |
---|
6859 | INTEGER(iwp) :: trnp_count !< number of particles send to north PE |
---|
6860 | INTEGER(iwp) :: trnp_count_recv !< number of particles receive from south PE |
---|
6861 | INTEGER(iwp) :: trrp_count !< number of particles send to right PE |
---|
6862 | INTEGER(iwp) :: trrp_count_recv !< number of particles receive from left PE |
---|
6863 | INTEGER(iwp) :: trsp_count !< number of particles send to south PE |
---|
6864 | INTEGER(iwp) :: trsp_count_recv !< number of particles receive from north PE |
---|
6865 | |
---|
6866 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: rvlp !< particles received from right PE |
---|
6867 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: rvnp !< particles received from south PE |
---|
6868 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: rvrp !< particles received from left PE |
---|
6869 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: rvsp !< particles received from north PE |
---|
6870 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trlp !< particles send to left PE |
---|
6871 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trnp !< particles send to north PE |
---|
6872 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trrp !< particles send to right PE |
---|
6873 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trsp !< particles send to south PE |
---|
6874 | |
---|
6875 | CALL cpu_log( log_point_s(23), 'lpm_exchange_horiz', 'start' ) |
---|
6876 | |
---|
6877 | #if defined( __parallel ) |
---|
6878 | |
---|
6879 | ! |
---|
6880 | !-- Exchange between subdomains. |
---|
6881 | !-- As soon as one particle has moved beyond the boundary of the domain, it |
---|
6882 | !-- is included in the relevant transfer arrays and marked for subsequent |
---|
6883 | !-- deletion on this PE. |
---|
6884 | !-- First sweep for crossings in x direction. Find out first the number of |
---|
6885 | !-- particles to be transferred and allocate temporary arrays needed to store |
---|
6886 | !-- them. |
---|
6887 | !-- For a one-dimensional decomposition along y, no transfer is necessary, |
---|
6888 | !-- because the particle remains on the PE, but the particle coordinate has to |
---|
6889 | !-- be adjusted. |
---|
6890 | trlp_count = 0 |
---|
6891 | trrp_count = 0 |
---|
6892 | |
---|
6893 | trlp_count_recv = 0 |
---|
6894 | trrp_count_recv = 0 |
---|
6895 | |
---|
6896 | IF ( pdims(1) /= 1 ) THEN |
---|
6897 | ! |
---|
6898 | !-- First calculate the storage necessary for sending and receiving the data. |
---|
6899 | !-- Compute only first (nxl) and last (nxr) loop iterration. |
---|
6900 | DO ip = nxl, nxr, nxr - nxl |
---|
6901 | DO jp = nys, nyn |
---|
6902 | DO kp = nzb+1, nzt |
---|
6903 | |
---|
6904 | number_of_particles = prt_count(kp,jp,ip) |
---|
6905 | IF ( number_of_particles <= 0 ) CYCLE |
---|
6906 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
6907 | DO n = 1, number_of_particles |
---|
6908 | IF ( particles(n)%particle_mask ) THEN |
---|
6909 | i = particles(n)%x * ddx |
---|
6910 | ! |
---|
6911 | !-- Above calculation does not work for indices less than zero |
---|
6912 | IF ( particles(n)%x < 0.0_wp) i = -1 |
---|
6913 | |
---|
6914 | IF ( i < nxl ) THEN |
---|
6915 | trlp_count = trlp_count + 1 |
---|
6916 | ELSEIF ( i > nxr ) THEN |
---|
6917 | trrp_count = trrp_count + 1 |
---|
6918 | ENDIF |
---|
6919 | ENDIF |
---|
6920 | ENDDO |
---|
6921 | |
---|
6922 | ENDDO |
---|
6923 | ENDDO |
---|
6924 | ENDDO |
---|
6925 | |
---|
6926 | IF ( trlp_count == 0 ) trlp_count = 1 |
---|
6927 | IF ( trrp_count == 0 ) trrp_count = 1 |
---|
6928 | |
---|
6929 | ALLOCATE( trlp(trlp_count), trrp(trrp_count) ) |
---|
6930 | |
---|
6931 | trlp = zero_particle |
---|
6932 | trrp = zero_particle |
---|
6933 | |
---|
6934 | trlp_count = 0 |
---|
6935 | trrp_count = 0 |
---|
6936 | |
---|
6937 | ENDIF |
---|
6938 | ! |
---|
6939 | !-- Compute only first (nxl) and last (nxr) loop iterration |
---|
6940 | DO ip = nxl, nxr, nxr-nxl |
---|
6941 | DO jp = nys, nyn |
---|
6942 | DO kp = nzb+1, nzt |
---|
6943 | number_of_particles = prt_count(kp,jp,ip) |
---|
6944 | IF ( number_of_particles <= 0 ) CYCLE |
---|
6945 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
6946 | DO n = 1, number_of_particles |
---|
6947 | ! |
---|
6948 | !-- Only those particles that have not been marked as 'deleted' may |
---|
6949 | !-- be moved. |
---|
6950 | IF ( particles(n)%particle_mask ) THEN |
---|
6951 | |
---|
6952 | i = particles(n)%x * ddx |
---|
6953 | ! |
---|
6954 | !-- Above calculation does not work for indices less than zero |
---|
6955 | IF ( particles(n)%x < 0.0_wp ) i = -1 |
---|
6956 | |
---|
6957 | IF ( i < nxl ) THEN |
---|
6958 | IF ( i < 0 ) THEN |
---|
6959 | ! |
---|
6960 | !-- Apply boundary condition along x |
---|
6961 | IF ( ibc_par_lr == 0 ) THEN |
---|
6962 | ! |
---|
6963 | !-- Cyclic condition |
---|
6964 | IF ( pdims(1) == 1 ) THEN |
---|
6965 | particles(n)%x = ( nx + 1 ) * dx + particles(n)%x |
---|
6966 | particles(n)%origin_x = ( nx + 1 ) * dx + & |
---|
6967 | particles(n)%origin_x |
---|
6968 | ELSE |
---|
6969 | trlp_count = trlp_count + 1 |
---|
6970 | trlp(trlp_count) = particles(n) |
---|
6971 | trlp(trlp_count)%x = ( nx + 1 ) * dx + trlp(trlp_count)%x |
---|
6972 | trlp(trlp_count)%origin_x = trlp(trlp_count)%origin_x + & |
---|
6973 | ( nx + 1 ) * dx |
---|
6974 | particles(n)%particle_mask = .FALSE. |
---|
6975 | deleted_particles = deleted_particles + 1 |
---|
6976 | |
---|
6977 | IF ( trlp(trlp_count)%x >= (nx + 1)* dx - 1.0E-12_wp ) THEN |
---|
6978 | trlp(trlp_count)%x = trlp(trlp_count)%x - 1.0E-10_wp |
---|
6979 | !++ why is 1 subtracted in next statement??? |
---|
6980 | trlp(trlp_count)%origin_x = trlp(trlp_count)%origin_x - 1 |
---|
6981 | ENDIF |
---|
6982 | |
---|
6983 | ENDIF |
---|
6984 | |
---|
6985 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
6986 | ! |
---|
6987 | !-- Particle absorption |
---|
6988 | particles(n)%particle_mask = .FALSE. |
---|
6989 | deleted_particles = deleted_particles + 1 |
---|
6990 | |
---|
6991 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
6992 | ! |
---|
6993 | !-- Particle reflection |
---|
6994 | particles(n)%x = -particles(n)%x |
---|
6995 | particles(n)%speed_x = -particles(n)%speed_x |
---|
6996 | |
---|
6997 | ENDIF |
---|
6998 | ELSE |
---|
6999 | ! |
---|
7000 | !-- Store particle data in the transfer array, which will be |
---|
7001 | !-- send to the neighbouring PE |
---|
7002 | trlp_count = trlp_count + 1 |
---|
7003 | trlp(trlp_count) = particles(n) |
---|
7004 | particles(n)%particle_mask = .FALSE. |
---|
7005 | deleted_particles = deleted_particles + 1 |
---|
7006 | |
---|
7007 | ENDIF |
---|
7008 | |
---|
7009 | ELSEIF ( i > nxr ) THEN |
---|
7010 | IF ( i > nx ) THEN |
---|
7011 | ! |
---|
7012 | !-- Apply boundary condition along x |
---|
7013 | IF ( ibc_par_lr == 0 ) THEN |
---|
7014 | ! |
---|
7015 | !-- Cyclic condition |
---|
7016 | IF ( pdims(1) == 1 ) THEN |
---|
7017 | particles(n)%x = particles(n)%x - ( nx + 1 ) * dx |
---|
7018 | particles(n)%origin_x = particles(n)%origin_x - & |
---|
7019 | ( nx + 1 ) * dx |
---|
7020 | ELSE |
---|
7021 | trrp_count = trrp_count + 1 |
---|
7022 | trrp(trrp_count) = particles(n) |
---|
7023 | trrp(trrp_count)%x = trrp(trrp_count)%x - ( nx + 1 ) * dx |
---|
7024 | trrp(trrp_count)%origin_x = trrp(trrp_count)%origin_x - & |
---|
7025 | ( nx + 1 ) * dx |
---|
7026 | particles(n)%particle_mask = .FALSE. |
---|
7027 | deleted_particles = deleted_particles + 1 |
---|
7028 | |
---|
7029 | ENDIF |
---|
7030 | |
---|
7031 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
7032 | ! |
---|
7033 | !-- Particle absorption |
---|
7034 | particles(n)%particle_mask = .FALSE. |
---|
7035 | deleted_particles = deleted_particles + 1 |
---|
7036 | |
---|
7037 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
7038 | ! |
---|
7039 | !-- Particle reflection |
---|
7040 | particles(n)%x = 2 * ( nx * dx ) - particles(n)%x |
---|
7041 | particles(n)%speed_x = -particles(n)%speed_x |
---|
7042 | |
---|
7043 | ENDIF |
---|
7044 | ELSE |
---|
7045 | ! |
---|
7046 | !-- Store particle data in the transfer array, which will be send |
---|
7047 | !-- to the neighbouring PE |
---|
7048 | trrp_count = trrp_count + 1 |
---|
7049 | trrp(trrp_count) = particles(n) |
---|
7050 | particles(n)%particle_mask = .FALSE. |
---|
7051 | deleted_particles = deleted_particles + 1 |
---|
7052 | |
---|
7053 | ENDIF |
---|
7054 | |
---|
7055 | ENDIF |
---|
7056 | ENDIF |
---|
7057 | |
---|
7058 | ENDDO |
---|
7059 | ENDDO |
---|
7060 | ENDDO |
---|
7061 | ENDDO |
---|
7062 | |
---|
7063 | ! |
---|
7064 | !-- STORAGE_SIZE returns the storage size of argument A in bits. However , it |
---|
7065 | !-- is needed in bytes. The function C_SIZEOF which produces this value directly |
---|
7066 | !-- causes problems with gfortran. For this reason the use of C_SIZEOF is avoided |
---|
7067 | par_size = STORAGE_SIZE(trlp(1))/8 |
---|
7068 | |
---|
7069 | |
---|
7070 | ! |
---|
7071 | !-- Allocate arrays required for north-south exchange, as these |
---|
7072 | !-- are used directly after particles are exchange along x-direction. |
---|
7073 | ALLOCATE( move_also_north(1:NR_2_direction_move) ) |
---|
7074 | ALLOCATE( move_also_south(1:NR_2_direction_move) ) |
---|
7075 | |
---|
7076 | nr_move_north = 0 |
---|
7077 | nr_move_south = 0 |
---|
7078 | ! |
---|
7079 | !-- Send left boundary, receive right boundary (but first exchange how many |
---|
7080 | !-- and check, if particle storage must be extended) |
---|
7081 | IF ( pdims(1) /= 1 ) THEN |
---|
7082 | |
---|
7083 | CALL MPI_SENDRECV( trlp_count, 1, MPI_INTEGER, pleft, 0, & |
---|
7084 | trrp_count_recv, 1, MPI_INTEGER, pright, 0, & |
---|
7085 | comm2d, status, ierr ) |
---|
7086 | |
---|
7087 | ALLOCATE(rvrp(MAX(1,trrp_count_recv))) |
---|
7088 | |
---|
7089 | CALL MPI_SENDRECV( trlp, max(1,trlp_count)*par_size, MPI_BYTE,& |
---|
7090 | pleft, 1, rvrp, & |
---|
7091 | max(1,trrp_count_recv)*par_size, MPI_BYTE, pright, 1,& |
---|
7092 | comm2d, status, ierr ) |
---|
7093 | |
---|
7094 | IF ( trrp_count_recv > 0 ) CALL lpm_add_particles_to_gridcell(rvrp(1:trrp_count_recv)) |
---|
7095 | |
---|
7096 | DEALLOCATE(rvrp) |
---|
7097 | |
---|
7098 | ! |
---|
7099 | !-- Send right boundary, receive left boundary |
---|
7100 | CALL MPI_SENDRECV( trrp_count, 1, MPI_INTEGER, pright, 0, & |
---|
7101 | trlp_count_recv, 1, MPI_INTEGER, pleft, 0, & |
---|
7102 | comm2d, status, ierr ) |
---|
7103 | |
---|
7104 | ALLOCATE(rvlp(MAX(1,trlp_count_recv))) |
---|
7105 | ! |
---|
7106 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit |
---|
7107 | !-- variables in structure particle_type (due to the calculation of par_size) |
---|
7108 | CALL MPI_SENDRECV( trrp, max(1,trrp_count)*par_size, MPI_BYTE,& |
---|
7109 | pright, 1, rvlp, & |
---|
7110 | max(1,trlp_count_recv)*par_size, MPI_BYTE, pleft, 1, & |
---|
7111 | comm2d, status, ierr ) |
---|
7112 | |
---|
7113 | IF ( trlp_count_recv > 0 ) CALL lpm_add_particles_to_gridcell(rvlp(1:trlp_count_recv)) |
---|
7114 | |
---|
7115 | DEALLOCATE( rvlp ) |
---|
7116 | DEALLOCATE( trlp, trrp ) |
---|
7117 | |
---|
7118 | ENDIF |
---|
7119 | |
---|
7120 | ! |
---|
7121 | !-- Check whether particles have crossed the boundaries in y direction. Note |
---|
7122 | !-- that this case can also apply to particles that have just been received |
---|
7123 | !-- from the adjacent right or left PE. |
---|
7124 | !-- Find out first the number of particles to be transferred and allocate |
---|
7125 | !-- temporary arrays needed to store them. |
---|
7126 | !-- For a one-dimensional decomposition along y, no transfer is necessary, |
---|
7127 | !-- because the particle remains on the PE. |
---|
7128 | trsp_count = nr_move_south |
---|
7129 | trnp_count = nr_move_north |
---|
7130 | |
---|
7131 | trsp_count_recv = 0 |
---|
7132 | trnp_count_recv = 0 |
---|
7133 | |
---|
7134 | IF ( pdims(2) /= 1 ) THEN |
---|
7135 | ! |
---|
7136 | !-- First calculate the storage necessary for sending and receiving the |
---|
7137 | !-- data |
---|
7138 | DO ip = nxl, nxr |
---|
7139 | DO jp = nys, nyn, nyn-nys !compute only first (nys) and last (nyn) loop iterration |
---|
7140 | DO kp = nzb+1, nzt |
---|
7141 | number_of_particles = prt_count(kp,jp,ip) |
---|
7142 | IF ( number_of_particles <= 0 ) CYCLE |
---|
7143 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
7144 | DO n = 1, number_of_particles |
---|
7145 | IF ( particles(n)%particle_mask ) THEN |
---|
7146 | j = particles(n)%y * ddy |
---|
7147 | ! |
---|
7148 | !-- Above calculation does not work for indices less than zero |
---|
7149 | IF ( particles(n)%y < 0.0_wp) j = -1 |
---|
7150 | |
---|
7151 | IF ( j < nys ) THEN |
---|
7152 | trsp_count = trsp_count + 1 |
---|
7153 | ELSEIF ( j > nyn ) THEN |
---|
7154 | trnp_count = trnp_count + 1 |
---|
7155 | ENDIF |
---|
7156 | ENDIF |
---|
7157 | ENDDO |
---|
7158 | ENDDO |
---|
7159 | ENDDO |
---|
7160 | ENDDO |
---|
7161 | |
---|
7162 | IF ( trsp_count == 0 ) trsp_count = 1 |
---|
7163 | IF ( trnp_count == 0 ) trnp_count = 1 |
---|
7164 | |
---|
7165 | ALLOCATE( trsp(trsp_count), trnp(trnp_count) ) |
---|
7166 | |
---|
7167 | trsp = zero_particle |
---|
7168 | trnp = zero_particle |
---|
7169 | |
---|
7170 | trsp_count = nr_move_south |
---|
7171 | trnp_count = nr_move_north |
---|
7172 | |
---|
7173 | trsp(1:nr_move_south) = move_also_south(1:nr_move_south) |
---|
7174 | trnp(1:nr_move_north) = move_also_north(1:nr_move_north) |
---|
7175 | |
---|
7176 | ENDIF |
---|
7177 | |
---|
7178 | DO ip = nxl, nxr |
---|
7179 | DO jp = nys, nyn, nyn-nys ! compute only first (nys) and last (nyn) loop iterration |
---|
7180 | DO kp = nzb+1, nzt |
---|
7181 | number_of_particles = prt_count(kp,jp,ip) |
---|
7182 | IF ( number_of_particles <= 0 ) CYCLE |
---|
7183 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
7184 | DO n = 1, number_of_particles |
---|
7185 | ! |
---|
7186 | !-- Only those particles that have not been marked as 'deleted' may |
---|
7187 | !-- be moved. |
---|
7188 | IF ( particles(n)%particle_mask ) THEN |
---|
7189 | |
---|
7190 | j = particles(n)%y * ddy |
---|
7191 | ! |
---|
7192 | !-- Above calculation does not work for indices less than zero |
---|
7193 | IF ( particles(n)%y < 0.0_wp ) j = -1 |
---|
7194 | |
---|
7195 | IF ( j < nys ) THEN |
---|
7196 | IF ( j < 0 ) THEN |
---|
7197 | ! |
---|
7198 | !-- Apply boundary condition along y |
---|
7199 | IF ( ibc_par_ns == 0 ) THEN |
---|
7200 | ! |
---|
7201 | !-- Cyclic condition |
---|
7202 | IF ( pdims(2) == 1 ) THEN |
---|
7203 | particles(n)%y = ( ny + 1 ) * dy + particles(n)%y |
---|
7204 | particles(n)%origin_y = ( ny + 1 ) * dy + & |
---|
7205 | particles(n)%origin_y |
---|
7206 | ELSE |
---|
7207 | trsp_count = trsp_count + 1 |
---|
7208 | trsp(trsp_count) = particles(n) |
---|
7209 | trsp(trsp_count)%y = ( ny + 1 ) * dy + & |
---|
7210 | trsp(trsp_count)%y |
---|
7211 | trsp(trsp_count)%origin_y = trsp(trsp_count)%origin_y & |
---|
7212 | + ( ny + 1 ) * dy |
---|
7213 | particles(n)%particle_mask = .FALSE. |
---|
7214 | deleted_particles = deleted_particles + 1 |
---|
7215 | |
---|
7216 | IF ( trsp(trsp_count)%y >= (ny+1)* dy - 1.0E-12_wp ) THEN |
---|
7217 | trsp(trsp_count)%y = trsp(trsp_count)%y - 1.0E-10_wp |
---|
7218 | !++ why is 1 subtracted in next statement??? |
---|
7219 | trsp(trsp_count)%origin_y = & |
---|
7220 | trsp(trsp_count)%origin_y - 1 |
---|
7221 | ENDIF |
---|
7222 | |
---|
7223 | ENDIF |
---|
7224 | |
---|
7225 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
7226 | ! |
---|
7227 | !-- Particle absorption |
---|
7228 | particles(n)%particle_mask = .FALSE. |
---|
7229 | deleted_particles = deleted_particles + 1 |
---|
7230 | |
---|
7231 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
7232 | ! |
---|
7233 | !-- Particle reflection |
---|
7234 | particles(n)%y = -particles(n)%y |
---|
7235 | particles(n)%speed_y = -particles(n)%speed_y |
---|
7236 | |
---|
7237 | ENDIF |
---|
7238 | ELSE |
---|
7239 | ! |
---|
7240 | !-- Store particle data in the transfer array, which will |
---|
7241 | !-- be send to the neighbouring PE |
---|
7242 | trsp_count = trsp_count + 1 |
---|
7243 | trsp(trsp_count) = particles(n) |
---|
7244 | particles(n)%particle_mask = .FALSE. |
---|
7245 | deleted_particles = deleted_particles + 1 |
---|
7246 | |
---|
7247 | ENDIF |
---|
7248 | |
---|
7249 | ELSEIF ( j > nyn ) THEN |
---|
7250 | IF ( j > ny ) THEN |
---|
7251 | ! |
---|
7252 | !-- Apply boundary condition along y |
---|
7253 | IF ( ibc_par_ns == 0 ) THEN |
---|
7254 | ! |
---|
7255 | !-- Cyclic condition |
---|
7256 | IF ( pdims(2) == 1 ) THEN |
---|
7257 | particles(n)%y = particles(n)%y - ( ny + 1 ) * dy |
---|
7258 | particles(n)%origin_y = & |
---|
7259 | particles(n)%origin_y - ( ny + 1 ) * dy |
---|
7260 | ELSE |
---|
7261 | trnp_count = trnp_count + 1 |
---|
7262 | trnp(trnp_count) = particles(n) |
---|
7263 | trnp(trnp_count)%y = & |
---|
7264 | trnp(trnp_count)%y - ( ny + 1 ) * dy |
---|
7265 | trnp(trnp_count)%origin_y = & |
---|
7266 | trnp(trnp_count)%origin_y - ( ny + 1 ) * dy |
---|
7267 | particles(n)%particle_mask = .FALSE. |
---|
7268 | deleted_particles = deleted_particles + 1 |
---|
7269 | ENDIF |
---|
7270 | |
---|
7271 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
7272 | ! |
---|
7273 | !-- Particle absorption |
---|
7274 | particles(n)%particle_mask = .FALSE. |
---|
7275 | deleted_particles = deleted_particles + 1 |
---|
7276 | |
---|
7277 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
7278 | ! |
---|
7279 | !-- Particle reflection |
---|
7280 | particles(n)%y = 2 * ( ny * dy ) - particles(n)%y |
---|
7281 | particles(n)%speed_y = -particles(n)%speed_y |
---|
7282 | |
---|
7283 | ENDIF |
---|
7284 | ELSE |
---|
7285 | ! |
---|
7286 | !-- Store particle data in the transfer array, which will |
---|
7287 | !-- be send to the neighbouring PE |
---|
7288 | trnp_count = trnp_count + 1 |
---|
7289 | trnp(trnp_count) = particles(n) |
---|
7290 | particles(n)%particle_mask = .FALSE. |
---|
7291 | deleted_particles = deleted_particles + 1 |
---|
7292 | |
---|
7293 | ENDIF |
---|
7294 | |
---|
7295 | ENDIF |
---|
7296 | ENDIF |
---|
7297 | ENDDO |
---|
7298 | ENDDO |
---|
7299 | ENDDO |
---|
7300 | ENDDO |
---|
7301 | |
---|
7302 | ! |
---|
7303 | !-- Send front boundary, receive back boundary (but first exchange how many |
---|
7304 | !-- and check, if particle storage must be extended) |
---|
7305 | IF ( pdims(2) /= 1 ) THEN |
---|
7306 | |
---|
7307 | CALL MPI_SENDRECV( trsp_count, 1, MPI_INTEGER, psouth, 0, & |
---|
7308 | trnp_count_recv, 1, MPI_INTEGER, pnorth, 0, & |
---|
7309 | comm2d, status, ierr ) |
---|
7310 | |
---|
7311 | ALLOCATE(rvnp(MAX(1,trnp_count_recv))) |
---|
7312 | ! |
---|
7313 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit |
---|
7314 | !-- variables in structure particle_type (due to the calculation of par_size) |
---|
7315 | CALL MPI_SENDRECV( trsp, trsp_count*par_size, MPI_BYTE, & |
---|
7316 | psouth, 1, rvnp, & |
---|
7317 | trnp_count_recv*par_size, MPI_BYTE, pnorth, 1, & |
---|
7318 | comm2d, status, ierr ) |
---|
7319 | |
---|
7320 | IF ( trnp_count_recv > 0 ) CALL lpm_add_particles_to_gridcell(rvnp(1:trnp_count_recv)) |
---|
7321 | |
---|
7322 | DEALLOCATE(rvnp) |
---|
7323 | |
---|
7324 | ! |
---|
7325 | !-- Send back boundary, receive front boundary |
---|
7326 | CALL MPI_SENDRECV( trnp_count, 1, MPI_INTEGER, pnorth, 0, & |
---|
7327 | trsp_count_recv, 1, MPI_INTEGER, psouth, 0, & |
---|
7328 | comm2d, status, ierr ) |
---|
7329 | |
---|
7330 | ALLOCATE(rvsp(MAX(1,trsp_count_recv))) |
---|
7331 | ! |
---|
7332 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit |
---|
7333 | !-- variables in structure particle_type (due to the calculation of par_size) |
---|
7334 | CALL MPI_SENDRECV( trnp, trnp_count*par_size, MPI_BYTE, & |
---|
7335 | pnorth, 1, rvsp, & |
---|
7336 | trsp_count_recv*par_size, MPI_BYTE, psouth, 1, & |
---|
7337 | comm2d, status, ierr ) |
---|
7338 | |
---|
7339 | IF ( trsp_count_recv > 0 ) CALL lpm_add_particles_to_gridcell(rvsp(1:trsp_count_recv)) |
---|
7340 | |
---|
7341 | DEALLOCATE(rvsp) |
---|
7342 | |
---|
7343 | number_of_particles = number_of_particles + trsp_count_recv |
---|
7344 | |
---|
7345 | DEALLOCATE( trsp, trnp ) |
---|
7346 | |
---|
7347 | ENDIF |
---|
7348 | |
---|
7349 | DEALLOCATE( move_also_north ) |
---|
7350 | DEALLOCATE( move_also_south ) |
---|
7351 | |
---|
7352 | #else |
---|
7353 | |
---|
7354 | DO ip = nxl, nxr, nxr-nxl |
---|
7355 | DO jp = nys, nyn |
---|
7356 | DO kp = nzb+1, nzt |
---|
7357 | number_of_particles = prt_count(kp,jp,ip) |
---|
7358 | IF ( number_of_particles <= 0 ) CYCLE |
---|
7359 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
7360 | DO n = 1, number_of_particles |
---|
7361 | ! |
---|
7362 | !-- Apply boundary conditions |
---|
7363 | |
---|
7364 | IF ( particles(n)%x < 0.0_wp ) THEN |
---|
7365 | |
---|
7366 | IF ( ibc_par_lr == 0 ) THEN |
---|
7367 | ! |
---|
7368 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
7369 | particles(n)%x = ( nx + 1 ) * dx + particles(n)%x |
---|
7370 | particles(n)%origin_x = ( nx + 1 ) * dx + & |
---|
7371 | particles(n)%origin_x |
---|
7372 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
7373 | ! |
---|
7374 | !-- Particle absorption |
---|
7375 | particles(n)%particle_mask = .FALSE. |
---|
7376 | deleted_particles = deleted_particles + 1 |
---|
7377 | |
---|
7378 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
7379 | ! |
---|
7380 | !-- Particle reflection |
---|
7381 | particles(n)%x = -dx - particles(n)%x |
---|
7382 | particles(n)%speed_x = -particles(n)%speed_x |
---|
7383 | ENDIF |
---|
7384 | |
---|
7385 | ELSEIF ( particles(n)%x >= ( nx + 1) * dx ) THEN |
---|
7386 | |
---|
7387 | IF ( ibc_par_lr == 0 ) THEN |
---|
7388 | ! |
---|
7389 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
7390 | particles(n)%x = particles(n)%x - ( nx + 1 ) * dx |
---|
7391 | particles(n)%origin_x = particles(n)%origin_x - & |
---|
7392 | ( nx + 1 ) * dx |
---|
7393 | |
---|
7394 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
7395 | ! |
---|
7396 | !-- Particle absorption |
---|
7397 | particles(n)%particle_mask = .FALSE. |
---|
7398 | deleted_particles = deleted_particles + 1 |
---|
7399 | |
---|
7400 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
7401 | ! |
---|
7402 | !-- Particle reflection |
---|
7403 | particles(n)%x = ( nx + 1 ) * dx - particles(n)%x |
---|
7404 | particles(n)%speed_x = -particles(n)%speed_x |
---|
7405 | ENDIF |
---|
7406 | |
---|
7407 | ENDIF |
---|
7408 | ENDDO |
---|
7409 | ENDDO |
---|
7410 | ENDDO |
---|
7411 | ENDDO |
---|
7412 | |
---|
7413 | DO ip = nxl, nxr |
---|
7414 | DO jp = nys, nyn, nyn-nys |
---|
7415 | DO kp = nzb+1, nzt |
---|
7416 | number_of_particles = prt_count(kp,jp,ip) |
---|
7417 | IF ( number_of_particles <= 0 ) CYCLE |
---|
7418 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
7419 | DO n = 1, number_of_particles |
---|
7420 | |
---|
7421 | IF ( particles(n)%y < 0.0_wp) THEN |
---|
7422 | |
---|
7423 | IF ( ibc_par_ns == 0 ) THEN |
---|
7424 | ! |
---|
7425 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
7426 | particles(n)%y = ( ny + 1 ) * dy + particles(n)%y |
---|
7427 | particles(n)%origin_y = ( ny + 1 ) * dy + & |
---|
7428 | particles(n)%origin_y |
---|
7429 | |
---|
7430 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
7431 | ! |
---|
7432 | !-- Particle absorption |
---|
7433 | particles(n)%particle_mask = .FALSE. |
---|
7434 | deleted_particles = deleted_particles + 1 |
---|
7435 | |
---|
7436 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
7437 | ! |
---|
7438 | !-- Particle reflection |
---|
7439 | particles(n)%y = -dy - particles(n)%y |
---|
7440 | particles(n)%speed_y = -particles(n)%speed_y |
---|
7441 | ENDIF |
---|
7442 | |
---|
7443 | ELSEIF ( particles(n)%y >= ( ny + 1) * dy ) THEN |
---|
7444 | |
---|
7445 | IF ( ibc_par_ns == 0 ) THEN |
---|
7446 | ! |
---|
7447 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
7448 | particles(n)%y = particles(n)%y - ( ny + 1 ) * dy |
---|
7449 | particles(n)%origin_y = particles(n)%origin_y - & |
---|
7450 | ( ny + 1 ) * dy |
---|
7451 | |
---|
7452 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
7453 | ! |
---|
7454 | !-- Particle absorption |
---|
7455 | particles(n)%particle_mask = .FALSE. |
---|
7456 | deleted_particles = deleted_particles + 1 |
---|
7457 | |
---|
7458 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
7459 | ! |
---|
7460 | !-- Particle reflection |
---|
7461 | particles(n)%y = ( ny + 1 ) * dy - particles(n)%y |
---|
7462 | particles(n)%speed_y = -particles(n)%speed_y |
---|
7463 | ENDIF |
---|
7464 | |
---|
7465 | ENDIF |
---|
7466 | |
---|
7467 | ENDDO |
---|
7468 | ENDDO |
---|
7469 | ENDDO |
---|
7470 | ENDDO |
---|
7471 | #endif |
---|
7472 | |
---|
7473 | ! |
---|
7474 | !-- Accumulate the number of particles transferred between the subdomains |
---|
7475 | #if defined( __parallel ) |
---|
7476 | trlp_count_sum = trlp_count_sum + trlp_count |
---|
7477 | trlp_count_recv_sum = trlp_count_recv_sum + trlp_count_recv |
---|
7478 | trrp_count_sum = trrp_count_sum + trrp_count |
---|
7479 | trrp_count_recv_sum = trrp_count_recv_sum + trrp_count_recv |
---|
7480 | trsp_count_sum = trsp_count_sum + trsp_count |
---|
7481 | trsp_count_recv_sum = trsp_count_recv_sum + trsp_count_recv |
---|
7482 | trnp_count_sum = trnp_count_sum + trnp_count |
---|
7483 | trnp_count_recv_sum = trnp_count_recv_sum + trnp_count_recv |
---|
7484 | #endif |
---|
7485 | |
---|
7486 | CALL cpu_log( log_point_s(23), 'lpm_exchange_horiz', 'stop' ) |
---|
7487 | |
---|
7488 | END SUBROUTINE lpm_exchange_horiz |
---|
7489 | |
---|
7490 | !------------------------------------------------------------------------------! |
---|
7491 | ! Description: |
---|
7492 | ! ------------ |
---|
7493 | !> If a particle moves from one processor to another, this subroutine moves |
---|
7494 | !> the corresponding elements from the particle arrays of the old grid cells |
---|
7495 | !> to the particle arrays of the new grid cells. |
---|
7496 | !------------------------------------------------------------------------------! |
---|
7497 | SUBROUTINE lpm_add_particles_to_gridcell (particle_array) |
---|
7498 | |
---|
7499 | IMPLICIT NONE |
---|
7500 | |
---|
7501 | INTEGER(iwp) :: ip !< grid index (x) of particle |
---|
7502 | INTEGER(iwp) :: jp !< grid index (x) of particle |
---|
7503 | INTEGER(iwp) :: kp !< grid index (x) of particle |
---|
7504 | INTEGER(iwp) :: n !< index variable of particle |
---|
7505 | INTEGER(iwp) :: pindex !< dummy argument for new number of particles per grid box |
---|
7506 | |
---|
7507 | LOGICAL :: pack_done !< |
---|
7508 | |
---|
7509 | TYPE(particle_type), DIMENSION(:), INTENT(IN) :: particle_array !< new particles in a grid box |
---|
7510 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: temp_ns !< temporary particle array for reallocation |
---|
7511 | |
---|
7512 | pack_done = .FALSE. |
---|
7513 | |
---|
7514 | DO n = 1, SIZE(particle_array) |
---|
7515 | |
---|
7516 | IF ( .NOT. particle_array(n)%particle_mask ) CYCLE |
---|
7517 | |
---|
7518 | ip = particle_array(n)%x * ddx |
---|
7519 | jp = particle_array(n)%y * ddy |
---|
7520 | ! |
---|
7521 | !-- In case of stretching the actual k index must be found |
---|
7522 | IF ( dz_stretch_level /= -9999999.9_wp .OR. & |
---|
7523 | dz_stretch_level_start(1) /= -9999999.9_wp ) THEN |
---|
7524 | kp = MINLOC( ABS( particle_array(n)%z - zu ), DIM = 1 ) - 1 |
---|
7525 | ELSE |
---|
7526 | kp = INT( particle_array(n)%z / dz(1) + 1 + offset_ocean_nzt ) |
---|
7527 | ENDIF |
---|
7528 | |
---|
7529 | IF ( ip >= nxl .AND. ip <= nxr .AND. jp >= nys .AND. jp <= nyn & |
---|
7530 | .AND. kp >= nzb+1 .AND. kp <= nzt) THEN ! particle stays on processor |
---|
7531 | number_of_particles = prt_count(kp,jp,ip) |
---|
7532 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
7533 | |
---|
7534 | pindex = prt_count(kp,jp,ip)+1 |
---|
7535 | IF( pindex > SIZE(grid_particles(kp,jp,ip)%particles) ) THEN |
---|
7536 | IF ( pack_done ) THEN |
---|
7537 | CALL realloc_particles_array ( ip, jp, kp ) |
---|
7538 | ELSE |
---|
7539 | CALL lpm_pack |
---|
7540 | prt_count(kp,jp,ip) = number_of_particles |
---|
7541 | pindex = prt_count(kp,jp,ip)+1 |
---|
7542 | IF ( pindex > SIZE(grid_particles(kp,jp,ip)%particles) ) THEN |
---|
7543 | CALL realloc_particles_array ( ip, jp, kp ) |
---|
7544 | ENDIF |
---|
7545 | pack_done = .TRUE. |
---|
7546 | ENDIF |
---|
7547 | ENDIF |
---|
7548 | grid_particles(kp,jp,ip)%particles(pindex) = particle_array(n) |
---|
7549 | prt_count(kp,jp,ip) = pindex |
---|
7550 | ELSE |
---|
7551 | IF ( jp <= nys - 1 ) THEN |
---|
7552 | nr_move_south = nr_move_south+1 |
---|
7553 | ! |
---|
7554 | !-- Before particle information is swapped to exchange-array, check |
---|
7555 | !-- if enough memory is allocated. If required, reallocate exchange |
---|
7556 | !-- array. |
---|
7557 | IF ( nr_move_south > SIZE(move_also_south) ) THEN |
---|
7558 | ! |
---|
7559 | !-- At first, allocate further temporary array to swap particle |
---|
7560 | !-- information. |
---|
7561 | ALLOCATE( temp_ns(SIZE(move_also_south)+NR_2_direction_move) ) |
---|
7562 | temp_ns(1:nr_move_south-1) = move_also_south(1:nr_move_south-1) |
---|
7563 | DEALLOCATE( move_also_south ) |
---|
7564 | ALLOCATE( move_also_south(SIZE(temp_ns)) ) |
---|
7565 | move_also_south(1:nr_move_south-1) = temp_ns(1:nr_move_south-1) |
---|
7566 | DEALLOCATE( temp_ns ) |
---|
7567 | |
---|
7568 | ENDIF |
---|
7569 | |
---|
7570 | move_also_south(nr_move_south) = particle_array(n) |
---|
7571 | |
---|
7572 | IF ( jp == -1 ) THEN |
---|
7573 | ! |
---|
7574 | !-- Apply boundary condition along y |
---|
7575 | IF ( ibc_par_ns == 0 ) THEN |
---|
7576 | move_also_south(nr_move_south)%y = & |
---|
7577 | move_also_south(nr_move_south)%y + ( ny + 1 ) * dy |
---|
7578 | move_also_south(nr_move_south)%origin_y = & |
---|
7579 | move_also_south(nr_move_south)%origin_y + ( ny + 1 ) * dy |
---|
7580 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
7581 | ! |
---|
7582 | !-- Particle absorption |
---|
7583 | move_also_south(nr_move_south)%particle_mask = .FALSE. |
---|
7584 | deleted_particles = deleted_particles + 1 |
---|
7585 | |
---|
7586 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
7587 | ! |
---|
7588 | !-- Particle reflection |
---|
7589 | move_also_south(nr_move_south)%y = & |
---|
7590 | -move_also_south(nr_move_south)%y |
---|
7591 | move_also_south(nr_move_south)%speed_y = & |
---|
7592 | -move_also_south(nr_move_south)%speed_y |
---|
7593 | |
---|
7594 | ENDIF |
---|
7595 | ENDIF |
---|
7596 | ELSEIF ( jp >= nyn+1 ) THEN |
---|
7597 | nr_move_north = nr_move_north+1 |
---|
7598 | ! |
---|
7599 | !-- Before particle information is swapped to exchange-array, check |
---|
7600 | !-- if enough memory is allocated. If required, reallocate exchange |
---|
7601 | !-- array. |
---|
7602 | IF ( nr_move_north > SIZE(move_also_north) ) THEN |
---|
7603 | ! |
---|
7604 | !-- At first, allocate further temporary array to swap particle |
---|
7605 | !-- information. |
---|
7606 | ALLOCATE( temp_ns(SIZE(move_also_north)+NR_2_direction_move) ) |
---|
7607 | temp_ns(1:nr_move_north-1) = move_also_south(1:nr_move_north-1) |
---|
7608 | DEALLOCATE( move_also_north ) |
---|
7609 | ALLOCATE( move_also_north(SIZE(temp_ns)) ) |
---|
7610 | move_also_north(1:nr_move_north-1) = temp_ns(1:nr_move_north-1) |
---|
7611 | DEALLOCATE( temp_ns ) |
---|
7612 | |
---|
7613 | ENDIF |
---|
7614 | |
---|
7615 | move_also_north(nr_move_north) = particle_array(n) |
---|
7616 | IF ( jp == ny+1 ) THEN |
---|
7617 | ! |
---|
7618 | !-- Apply boundary condition along y |
---|
7619 | IF ( ibc_par_ns == 0 ) THEN |
---|
7620 | |
---|
7621 | move_also_north(nr_move_north)%y = & |
---|
7622 | move_also_north(nr_move_north)%y - ( ny + 1 ) * dy |
---|
7623 | move_also_north(nr_move_north)%origin_y = & |
---|
7624 | move_also_north(nr_move_north)%origin_y - ( ny + 1 ) * dy |
---|
7625 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
7626 | ! |
---|
7627 | !-- Particle absorption |
---|
7628 | move_also_north(nr_move_north)%particle_mask = .FALSE. |
---|
7629 | deleted_particles = deleted_particles + 1 |
---|
7630 | |
---|
7631 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
7632 | ! |
---|
7633 | !-- Particle reflection |
---|
7634 | move_also_north(nr_move_north)%y = & |
---|
7635 | -move_also_north(nr_move_north)%y |
---|
7636 | move_also_north(nr_move_north)%speed_y = & |
---|
7637 | -move_also_north(nr_move_north)%speed_y |
---|
7638 | |
---|
7639 | ENDIF |
---|
7640 | ENDIF |
---|
7641 | ELSE |
---|
7642 | WRITE(0,'(a,8i7)') 'particle out of range ',myid,ip,jp,kp,nxl,nxr,nys,nyn |
---|
7643 | ENDIF |
---|
7644 | ENDIF |
---|
7645 | ENDDO |
---|
7646 | |
---|
7647 | RETURN |
---|
7648 | |
---|
7649 | END SUBROUTINE lpm_add_particles_to_gridcell |
---|
7650 | |
---|
7651 | |
---|
7652 | !------------------------------------------------------------------------------! |
---|
7653 | ! Description: |
---|
7654 | ! ------------ |
---|
7655 | !> If a particle moves from one grid cell to another (on the current |
---|
7656 | !> processor!), this subroutine moves the corresponding element from the |
---|
7657 | !> particle array of the old grid cell to the particle array of the new grid |
---|
7658 | !> cell. |
---|
7659 | !------------------------------------------------------------------------------! |
---|
7660 | SUBROUTINE lpm_move_particle |
---|
7661 | |
---|
7662 | INTEGER(iwp) :: i !< grid index (x) of particle position |
---|
7663 | INTEGER(iwp) :: ip !< index variable along x |
---|
7664 | INTEGER(iwp) :: j !< grid index (y) of particle position |
---|
7665 | INTEGER(iwp) :: jp !< index variable along y |
---|
7666 | INTEGER(iwp) :: k !< grid index (z) of particle position |
---|
7667 | INTEGER(iwp) :: kp !< index variable along z |
---|
7668 | INTEGER(iwp) :: n !< index variable for particle array |
---|
7669 | INTEGER(iwp) :: np_before_move !< number of particles per grid box before moving |
---|
7670 | INTEGER(iwp) :: pindex !< dummy argument for number of new particle per grid box |
---|
7671 | |
---|
7672 | TYPE(particle_type), DIMENSION(:), POINTER :: particles_before_move !< particles before moving |
---|
7673 | |
---|
7674 | CALL cpu_log( log_point_s(41), 'lpm_move_particle', 'start' ) |
---|
7675 | CALL lpm_check_cfl |
---|
7676 | DO ip = nxl, nxr |
---|
7677 | DO jp = nys, nyn |
---|
7678 | DO kp = nzb+1, nzt |
---|
7679 | |
---|
7680 | np_before_move = prt_count(kp,jp,ip) |
---|
7681 | IF ( np_before_move <= 0 ) CYCLE |
---|
7682 | particles_before_move => grid_particles(kp,jp,ip)%particles(1:np_before_move) |
---|
7683 | |
---|
7684 | DO n = 1, np_before_move |
---|
7685 | i = particles_before_move(n)%x * ddx |
---|
7686 | j = particles_before_move(n)%y * ddy |
---|
7687 | k = kp |
---|
7688 | ! |
---|
7689 | !-- Find correct vertical particle grid box (necessary in case of grid stretching) |
---|
7690 | !-- Due to the CFL limitations only the neighbouring grid boxes are considered. |
---|
7691 | IF( zw(k) < particles_before_move(n)%z ) k = k + 1 |
---|
7692 | IF( zw(k-1) > particles_before_move(n)%z ) k = k - 1 |
---|
7693 | |
---|
7694 | !-- For lpm_exchange_horiz to work properly particles need to be moved to the outermost gridboxes |
---|
7695 | !-- of the respective processor. If the particle index is inside the processor the following lines |
---|
7696 | !-- will not change the index |
---|
7697 | i = MIN ( i , nxr ) |
---|
7698 | i = MAX ( i , nxl ) |
---|
7699 | j = MIN ( j , nyn ) |
---|
7700 | j = MAX ( j , nys ) |
---|
7701 | |
---|
7702 | k = MIN ( k , nzt ) |
---|
7703 | k = MAX ( k , nzb+1 ) |
---|
7704 | |
---|
7705 | ! |
---|
7706 | !-- Check, if particle has moved to another grid cell. |
---|
7707 | IF ( i /= ip .OR. j /= jp .OR. k /= kp ) THEN |
---|
7708 | !! |
---|
7709 | !-- If the particle stays on the same processor, the particle |
---|
7710 | !-- will be added to the particle array of the new processor. |
---|
7711 | number_of_particles = prt_count(k,j,i) |
---|
7712 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
7713 | |
---|
7714 | pindex = prt_count(k,j,i)+1 |
---|
7715 | IF ( pindex > SIZE(grid_particles(k,j,i)%particles) ) & |
---|
7716 | THEN |
---|
7717 | CALL realloc_particles_array( i, j, k ) |
---|
7718 | ENDIF |
---|
7719 | |
---|
7720 | grid_particles(k,j,i)%particles(pindex) = particles_before_move(n) |
---|
7721 | prt_count(k,j,i) = pindex |
---|
7722 | |
---|
7723 | particles_before_move(n)%particle_mask = .FALSE. |
---|
7724 | ENDIF |
---|
7725 | ENDDO |
---|
7726 | |
---|
7727 | ENDDO |
---|
7728 | ENDDO |
---|
7729 | ENDDO |
---|
7730 | |
---|
7731 | CALL cpu_log( log_point_s(41), 'lpm_move_particle', 'stop' ) |
---|
7732 | |
---|
7733 | RETURN |
---|
7734 | |
---|
7735 | END SUBROUTINE lpm_move_particle |
---|
7736 | |
---|
7737 | |
---|
7738 | !------------------------------------------------------------------------------! |
---|
7739 | ! Description: |
---|
7740 | ! ------------ |
---|
7741 | !> Check CFL-criterion for each particle. If one particle violated the |
---|
7742 | !> criterion the particle will be deleted and a warning message is given. |
---|
7743 | !------------------------------------------------------------------------------! |
---|
7744 | SUBROUTINE lpm_check_cfl |
---|
7745 | |
---|
7746 | IMPLICIT NONE |
---|
7747 | |
---|
7748 | INTEGER(iwp) :: i !< running index, x-direction |
---|
7749 | INTEGER(iwp) :: j !< running index, y-direction |
---|
7750 | INTEGER(iwp) :: k !< running index, z-direction |
---|
7751 | INTEGER(iwp) :: n !< running index, number of particles |
---|
7752 | |
---|
7753 | DO i = nxl, nxr |
---|
7754 | DO j = nys, nyn |
---|
7755 | DO k = nzb+1, nzt |
---|
7756 | number_of_particles = prt_count(k,j,i) |
---|
7757 | IF ( number_of_particles <= 0 ) CYCLE |
---|
7758 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
7759 | DO n = 1, number_of_particles |
---|
7760 | ! |
---|
7761 | !-- Note, check for CFL does not work at first particle timestep |
---|
7762 | !-- when both, age and age_m are zero. |
---|
7763 | IF ( particles(n)%age - particles(n)%age_m > 0.0_wp ) THEN |
---|
7764 | IF(ABS(particles(n)%speed_x) > & |
---|
7765 | (dx/(particles(n)%age-particles(n)%age_m)) .OR. & |
---|
7766 | ABS(particles(n)%speed_y) > & |
---|
7767 | (dy/(particles(n)%age-particles(n)%age_m)) .OR. & |
---|
7768 | ABS(particles(n)%speed_z) > & |
---|
7769 | ((zw(k)-zw(k-1))/(particles(n)%age-particles(n)%age_m))) & |
---|
7770 | THEN |
---|
7771 | WRITE( message_string, * ) & |
---|
7772 | 'Particle violated CFL-criterion: &particle with id ', & |
---|
7773 | particles(n)%id, ' will be deleted!' |
---|
7774 | CALL message( 'lpm_check_cfl', 'PA0475', 0, 1, -1, 6, 0 ) |
---|
7775 | particles(n)%particle_mask= .FALSE. |
---|
7776 | ENDIF |
---|
7777 | ENDIF |
---|
7778 | ENDDO |
---|
7779 | ENDDO |
---|
7780 | ENDDO |
---|
7781 | ENDDO |
---|
7782 | |
---|
7783 | END SUBROUTINE lpm_check_cfl |
---|
7784 | |
---|
7785 | |
---|
7786 | !------------------------------------------------------------------------------! |
---|
7787 | ! Description: |
---|
7788 | ! ------------ |
---|
7789 | !> If the allocated memory for the particle array do not suffice to add arriving |
---|
7790 | !> particles from neighbour grid cells, this subrouting reallocates the |
---|
7791 | !> particle array to assure enough memory is available. |
---|
7792 | !------------------------------------------------------------------------------! |
---|
7793 | SUBROUTINE realloc_particles_array ( i, j, k, size_in ) |
---|
7794 | |
---|
7795 | INTEGER(iwp), INTENT(IN) :: i !< |
---|
7796 | INTEGER(iwp), INTENT(IN) :: j !< |
---|
7797 | INTEGER(iwp), INTENT(IN) :: k !< |
---|
7798 | INTEGER(iwp), INTENT(IN), OPTIONAL :: size_in !< |
---|
7799 | |
---|
7800 | INTEGER(iwp) :: old_size !< |
---|
7801 | INTEGER(iwp) :: new_size !< |
---|
7802 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: tmp_particles_d !< |
---|
7803 | TYPE(particle_type), DIMENSION(500) :: tmp_particles_s !< |
---|
7804 | |
---|
7805 | old_size = SIZE(grid_particles(k,j,i)%particles) |
---|
7806 | |
---|
7807 | IF ( PRESENT(size_in) ) THEN |
---|
7808 | new_size = size_in |
---|
7809 | ELSE |
---|
7810 | new_size = old_size * ( 1.0_wp + alloc_factor / 100.0_wp ) |
---|
7811 | ENDIF |
---|
7812 | |
---|
7813 | new_size = MAX( new_size, 1, old_size + 1 ) |
---|
7814 | |
---|
7815 | IF ( old_size <= 500 ) THEN |
---|
7816 | |
---|
7817 | tmp_particles_s(1:old_size) = grid_particles(k,j,i)%particles(1:old_size) |
---|
7818 | |
---|
7819 | DEALLOCATE(grid_particles(k,j,i)%particles) |
---|
7820 | ALLOCATE(grid_particles(k,j,i)%particles(new_size)) |
---|
7821 | |
---|
7822 | grid_particles(k,j,i)%particles(1:old_size) = tmp_particles_s(1:old_size) |
---|
7823 | grid_particles(k,j,i)%particles(old_size+1:new_size) = zero_particle |
---|
7824 | |
---|
7825 | ELSE |
---|
7826 | |
---|
7827 | ALLOCATE(tmp_particles_d(new_size)) |
---|
7828 | tmp_particles_d(1:old_size) = grid_particles(k,j,i)%particles |
---|
7829 | |
---|
7830 | DEALLOCATE(grid_particles(k,j,i)%particles) |
---|
7831 | ALLOCATE(grid_particles(k,j,i)%particles(new_size)) |
---|
7832 | |
---|
7833 | grid_particles(k,j,i)%particles(1:old_size) = tmp_particles_d(1:old_size) |
---|
7834 | grid_particles(k,j,i)%particles(old_size+1:new_size) = zero_particle |
---|
7835 | |
---|
7836 | DEALLOCATE(tmp_particles_d) |
---|
7837 | |
---|
7838 | ENDIF |
---|
7839 | particles => grid_particles(k,j,i)%particles(1:new_size) |
---|
7840 | |
---|
7841 | RETURN |
---|
7842 | |
---|
7843 | END SUBROUTINE realloc_particles_array |
---|
7844 | |
---|
7845 | |
---|
7846 | !------------------------------------------------------------------------------! |
---|
7847 | ! Description: |
---|
7848 | ! ------------ |
---|
7849 | !> Not needed but allocated space for particles is dealloced. |
---|
7850 | !------------------------------------------------------------------------------! |
---|
7851 | SUBROUTINE dealloc_particles_array |
---|
7852 | |
---|
7853 | |
---|
7854 | INTEGER(iwp) :: i !< |
---|
7855 | INTEGER(iwp) :: j !< |
---|
7856 | INTEGER(iwp) :: k !< |
---|
7857 | INTEGER(iwp) :: old_size !< |
---|
7858 | INTEGER(iwp) :: new_size !< |
---|
7859 | |
---|
7860 | LOGICAL :: dealloc |
---|
7861 | |
---|
7862 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: tmp_particles_d !< |
---|
7863 | TYPE(particle_type), DIMENSION(500) :: tmp_particles_s !< |
---|
7864 | |
---|
7865 | DO i = nxl, nxr |
---|
7866 | DO j = nys, nyn |
---|
7867 | DO k = nzb+1, nzt |
---|
7868 | ! |
---|
7869 | !-- Determine number of active particles |
---|
7870 | number_of_particles = prt_count(k,j,i) |
---|
7871 | ! |
---|
7872 | !-- Determine allocated memory size |
---|
7873 | old_size = SIZE( grid_particles(k,j,i)%particles ) |
---|
7874 | ! |
---|
7875 | !-- Check for large unused memory |
---|
7876 | dealloc = ( ( number_of_particles < 1 .AND. & |
---|
7877 | old_size > 1 ) .OR. & |
---|
7878 | ( number_of_particles > 1 .AND. & |
---|
7879 | old_size - number_of_particles * & |
---|
7880 | ( 1.0_wp + 0.01_wp * alloc_factor ) > 0.0_wp ) ) |
---|
7881 | |
---|
7882 | IF ( dealloc ) THEN |
---|
7883 | IF ( number_of_particles < 1 ) THEN |
---|
7884 | new_size = 1 |
---|
7885 | ELSE |
---|
7886 | new_size = INT( number_of_particles * ( 1.0_wp + 0.01_wp * alloc_factor ) ) |
---|
7887 | ENDIF |
---|
7888 | |
---|
7889 | IF ( number_of_particles <= 500 ) THEN |
---|
7890 | |
---|
7891 | tmp_particles_s(1:number_of_particles) = grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
7892 | |
---|
7893 | DEALLOCATE(grid_particles(k,j,i)%particles) |
---|
7894 | ALLOCATE(grid_particles(k,j,i)%particles(new_size)) |
---|
7895 | |
---|
7896 | grid_particles(k,j,i)%particles(1:number_of_particles) = tmp_particles_s(1:number_of_particles) |
---|
7897 | grid_particles(k,j,i)%particles(number_of_particles+1:new_size) = zero_particle |
---|
7898 | |
---|
7899 | ELSE |
---|
7900 | |
---|
7901 | ALLOCATE(tmp_particles_d(number_of_particles)) |
---|
7902 | tmp_particles_d(1:number_of_particles) = grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
7903 | |
---|
7904 | DEALLOCATE(grid_particles(k,j,i)%particles) |
---|
7905 | ALLOCATE(grid_particles(k,j,i)%particles(new_size)) |
---|
7906 | |
---|
7907 | grid_particles(k,j,i)%particles(1:number_of_particles) = tmp_particles_d(1:number_of_particles) |
---|
7908 | grid_particles(k,j,i)%particles(number_of_particles+1:new_size) = zero_particle |
---|
7909 | |
---|
7910 | DEALLOCATE(tmp_particles_d) |
---|
7911 | |
---|
7912 | ENDIF |
---|
7913 | |
---|
7914 | ENDIF |
---|
7915 | ENDDO |
---|
7916 | ENDDO |
---|
7917 | ENDDO |
---|
7918 | |
---|
7919 | END SUBROUTINE dealloc_particles_array |
---|
7920 | |
---|
7921 | |
---|
7922 | !------------------------------------------------------------------------------! |
---|
7923 | ! Description: |
---|
7924 | ! ----------- |
---|
7925 | !> Routine for the whole processor |
---|
7926 | !> Sort all particles into the 8 respective subgrid boxes (in case of trilinear |
---|
7927 | !> interpolation method) and free space of particles which has been marked for |
---|
7928 | !> deletion. |
---|
7929 | !------------------------------------------------------------------------------! |
---|
7930 | SUBROUTINE lpm_sort_and_delete |
---|
7931 | |
---|
7932 | INTEGER(iwp) :: i !< |
---|
7933 | INTEGER(iwp) :: ip !< |
---|
7934 | INTEGER(iwp) :: is !< |
---|
7935 | INTEGER(iwp) :: j !< |
---|
7936 | INTEGER(iwp) :: jp !< |
---|
7937 | INTEGER(iwp) :: kp !< |
---|
7938 | INTEGER(iwp) :: m !< |
---|
7939 | INTEGER(iwp) :: n !< |
---|
7940 | INTEGER(iwp) :: nn !< |
---|
7941 | INTEGER(iwp) :: sort_index !< |
---|
7942 | |
---|
7943 | INTEGER(iwp), DIMENSION(0:7) :: sort_count !< |
---|
7944 | |
---|
7945 | TYPE(particle_type), DIMENSION(:,:), ALLOCATABLE :: sort_particles !< |
---|
7946 | |
---|
7947 | CALL cpu_log( log_point_s(51), 'lpm_sort_and_delete', 'start' ) |
---|
7948 | IF ( interpolation_trilinear ) THEN |
---|
7949 | DO ip = nxl, nxr |
---|
7950 | DO jp = nys, nyn |
---|
7951 | DO kp = nzb+1, nzt |
---|
7952 | number_of_particles = prt_count(kp,jp,ip) |
---|
7953 | IF ( number_of_particles <= 0 ) CYCLE |
---|
7954 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
7955 | nn = 0 |
---|
7956 | sort_count = 0 |
---|
7957 | ALLOCATE( sort_particles(number_of_particles, 0:7) ) |
---|
7958 | |
---|
7959 | DO n = 1, number_of_particles |
---|
7960 | sort_index = 0 |
---|
7961 | |
---|
7962 | IF ( particles(n)%particle_mask ) THEN |
---|
7963 | nn = nn + 1 |
---|
7964 | ! |
---|
7965 | !-- Sorting particles with a binary scheme |
---|
7966 | !-- sort_index=111_2=7_10 -> particle at the left,south,bottom subgridbox |
---|
7967 | !-- sort_index=000_2=0_10 -> particle at the right,north,top subgridbox |
---|
7968 | !-- For this the center of the gridbox is calculated |
---|
7969 | i = (particles(n)%x + 0.5_wp * dx) * ddx |
---|
7970 | j = (particles(n)%y + 0.5_wp * dy) * ddy |
---|
7971 | |
---|
7972 | IF ( i == ip ) sort_index = sort_index + 4 |
---|
7973 | IF ( j == jp ) sort_index = sort_index + 2 |
---|
7974 | IF ( zu(kp) > particles(n)%z ) sort_index = sort_index + 1 |
---|
7975 | |
---|
7976 | sort_count(sort_index) = sort_count(sort_index) + 1 |
---|
7977 | m = sort_count(sort_index) |
---|
7978 | sort_particles(m,sort_index) = particles(n) |
---|
7979 | sort_particles(m,sort_index)%block_nr = sort_index |
---|
7980 | ENDIF |
---|
7981 | ENDDO |
---|
7982 | ! |
---|
7983 | !-- Delete and resort particles by overwritting and set |
---|
7984 | !-- the number_of_particles to the actual value. |
---|
7985 | nn = 0 |
---|
7986 | DO is = 0,7 |
---|
7987 | grid_particles(kp,jp,ip)%start_index(is) = nn + 1 |
---|
7988 | DO n = 1,sort_count(is) |
---|
7989 | nn = nn + 1 |
---|
7990 | particles(nn) = sort_particles(n,is) |
---|
7991 | ENDDO |
---|
7992 | grid_particles(kp,jp,ip)%end_index(is) = nn |
---|
7993 | ENDDO |
---|
7994 | |
---|
7995 | number_of_particles = nn |
---|
7996 | prt_count(kp,jp,ip) = number_of_particles |
---|
7997 | DEALLOCATE(sort_particles) |
---|
7998 | ENDDO |
---|
7999 | ENDDO |
---|
8000 | ENDDO |
---|
8001 | |
---|
8002 | !-- In case of the simple interpolation method the particles must not |
---|
8003 | !-- be sorted in subboxes. Particles marked for deletion however, must be |
---|
8004 | !-- deleted and number of particles must be recalculated as it is also |
---|
8005 | !-- done for the trilinear particle advection interpolation method. |
---|
8006 | ELSE |
---|
8007 | |
---|
8008 | DO ip = nxl, nxr |
---|
8009 | DO jp = nys, nyn |
---|
8010 | DO kp = nzb+1, nzt |
---|
8011 | |
---|
8012 | number_of_particles = prt_count(kp,jp,ip) |
---|
8013 | IF ( number_of_particles <= 0 ) CYCLE |
---|
8014 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
8015 | ! |
---|
8016 | !-- Repack particles array, i.e. delete particles and recalculate |
---|
8017 | !-- number of particles |
---|
8018 | CALL lpm_pack |
---|
8019 | prt_count(kp,jp,ip) = number_of_particles |
---|
8020 | ENDDO |
---|
8021 | ENDDO |
---|
8022 | ENDDO |
---|
8023 | ENDIF |
---|
8024 | CALL cpu_log( log_point_s(51), 'lpm_sort_and_delete', 'stop' ) |
---|
8025 | |
---|
8026 | END SUBROUTINE lpm_sort_and_delete |
---|
8027 | |
---|
8028 | |
---|
8029 | !------------------------------------------------------------------------------! |
---|
8030 | ! Description: |
---|
8031 | ! ------------ |
---|
8032 | !> Move all particles not marked for deletion to lowest indices (packing) |
---|
8033 | !------------------------------------------------------------------------------! |
---|
8034 | SUBROUTINE lpm_pack |
---|
8035 | |
---|
8036 | INTEGER(iwp) :: n !< |
---|
8037 | INTEGER(iwp) :: nn !< |
---|
8038 | ! |
---|
8039 | !-- Find out elements marked for deletion and move data from highest index |
---|
8040 | !-- values to these free indices |
---|
8041 | nn = number_of_particles |
---|
8042 | |
---|
8043 | DO WHILE ( .NOT. particles(nn)%particle_mask ) |
---|
8044 | nn = nn-1 |
---|
8045 | IF ( nn == 0 ) EXIT |
---|
8046 | ENDDO |
---|
8047 | |
---|
8048 | IF ( nn > 0 ) THEN |
---|
8049 | DO n = 1, number_of_particles |
---|
8050 | IF ( .NOT. particles(n)%particle_mask ) THEN |
---|
8051 | particles(n) = particles(nn) |
---|
8052 | nn = nn - 1 |
---|
8053 | DO WHILE ( .NOT. particles(nn)%particle_mask ) |
---|
8054 | nn = nn-1 |
---|
8055 | IF ( n == nn ) EXIT |
---|
8056 | ENDDO |
---|
8057 | ENDIF |
---|
8058 | IF ( n == nn ) EXIT |
---|
8059 | ENDDO |
---|
8060 | ENDIF |
---|
8061 | |
---|
8062 | ! |
---|
8063 | !-- The number of deleted particles has been determined in routines |
---|
8064 | !-- lpm_boundary_conds, lpm_droplet_collision, and lpm_exchange_horiz |
---|
8065 | number_of_particles = nn |
---|
8066 | |
---|
8067 | END SUBROUTINE lpm_pack |
---|
8068 | |
---|
8069 | |
---|
8070 | !------------------------------------------------------------------------------! |
---|
8071 | ! Description: |
---|
8072 | ! ------------ |
---|
8073 | !> Sort particles in each sub-grid box into two groups: particles that already |
---|
8074 | !> completed the LES timestep, and particles that need further timestepping to |
---|
8075 | !> complete the LES timestep. |
---|
8076 | !------------------------------------------------------------------------------! |
---|
8077 | SUBROUTINE lpm_sort_timeloop_done |
---|
8078 | |
---|
8079 | INTEGER(iwp) :: end_index !< particle end index for each sub-box |
---|
8080 | INTEGER(iwp) :: i !< index of particle grid box in x-direction |
---|
8081 | INTEGER(iwp) :: j !< index of particle grid box in y-direction |
---|
8082 | INTEGER(iwp) :: k !< index of particle grid box in z-direction |
---|
8083 | INTEGER(iwp) :: n !< running index for number of particles |
---|
8084 | INTEGER(iwp) :: nb !< index of subgrid boux |
---|
8085 | INTEGER(iwp) :: nf !< indices for particles in each sub-box that already finalized their substeps |
---|
8086 | INTEGER(iwp) :: nnf !< indices for particles in each sub-box that need further treatment |
---|
8087 | INTEGER(iwp) :: num_finalized !< number of particles in each sub-box that already finalized their substeps |
---|
8088 | INTEGER(iwp) :: start_index !< particle start index for each sub-box |
---|
8089 | |
---|
8090 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: sort_particles !< temporary particle array |
---|
8091 | |
---|
8092 | DO i = nxl, nxr |
---|
8093 | DO j = nys, nyn |
---|
8094 | DO k = nzb+1, nzt |
---|
8095 | |
---|
8096 | number_of_particles = prt_count(k,j,i) |
---|
8097 | IF ( number_of_particles <= 0 ) CYCLE |
---|
8098 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
8099 | |
---|
8100 | DO nb = 0, 7 |
---|
8101 | ! |
---|
8102 | !-- Obtain start and end index for each subgrid box |
---|
8103 | start_index = grid_particles(k,j,i)%start_index(nb) |
---|
8104 | end_index = grid_particles(k,j,i)%end_index(nb) |
---|
8105 | ! |
---|
8106 | !-- Allocate temporary array used for sorting. |
---|
8107 | ALLOCATE( sort_particles(start_index:end_index) ) |
---|
8108 | ! |
---|
8109 | !-- Determine number of particles already completed the LES |
---|
8110 | !-- timestep, and write them into a temporary array. |
---|
8111 | nf = start_index |
---|
8112 | num_finalized = 0 |
---|
8113 | DO n = start_index, end_index |
---|
8114 | IF ( dt_3d - particles(n)%dt_sum < 1E-8_wp ) THEN |
---|
8115 | sort_particles(nf) = particles(n) |
---|
8116 | nf = nf + 1 |
---|
8117 | num_finalized = num_finalized + 1 |
---|
8118 | ENDIF |
---|
8119 | ENDDO |
---|
8120 | ! |
---|
8121 | !-- Determine number of particles that not completed the LES |
---|
8122 | !-- timestep, and write them into a temporary array. |
---|
8123 | nnf = nf |
---|
8124 | DO n = start_index, end_index |
---|
8125 | IF ( dt_3d - particles(n)%dt_sum > 1E-8_wp ) THEN |
---|
8126 | sort_particles(nnf) = particles(n) |
---|
8127 | nnf = nnf + 1 |
---|
8128 | ENDIF |
---|
8129 | ENDDO |
---|
8130 | ! |
---|
8131 | !-- Write back sorted particles |
---|
8132 | particles(start_index:end_index) = & |
---|
8133 | sort_particles(start_index:end_index) |
---|
8134 | ! |
---|
8135 | !-- Determine updated start_index, used to masked already |
---|
8136 | !-- completed particles. |
---|
8137 | grid_particles(k,j,i)%start_index(nb) = & |
---|
8138 | grid_particles(k,j,i)%start_index(nb) & |
---|
8139 | + num_finalized |
---|
8140 | ! |
---|
8141 | !-- Deallocate dummy array |
---|
8142 | DEALLOCATE ( sort_particles ) |
---|
8143 | ! |
---|
8144 | !-- Finally, if number of non-completed particles is non zero |
---|
8145 | !-- in any of the sub-boxes, set control flag appropriately. |
---|
8146 | IF ( nnf > nf ) & |
---|
8147 | grid_particles(k,j,i)%time_loop_done = .FALSE. |
---|
8148 | |
---|
8149 | ENDDO |
---|
8150 | ENDDO |
---|
8151 | ENDDO |
---|
8152 | ENDDO |
---|
8153 | |
---|
8154 | END SUBROUTINE lpm_sort_timeloop_done |
---|
8155 | |
---|
8156 | END MODULE lagrangian_particle_model_mod |
---|