!> @file lagrangian_particle_model_mod.f90
!------------------------------------------------------------------------------!
! This file is part of the PALM model system.
!
! PALM is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
! A PARTICULAR PURPOSE. See the GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along with
! PALM. If not, see .
!
! Copyright 1997-2019 Leibniz Universitaet Hannover
!------------------------------------------------------------------------------!
!
! Current revisions:
! ------------------
!
!
! Former revisions:
! -----------------
! $Id: lagrangian_particle_model_mod.f90 4276 2019-10-28 16:03:29Z schwenkel $
! Modularize lpm: Move conditions in time intergration to module
!
! 4275 2019-10-28 15:34:55Z schwenkel
! Change call of simple predictor corrector method, i.e. two divergence free
! velocitiy fields are now used.
!
! 4232 2019-09-20 09:34:22Z knoop
! Removed INCLUDE "mpif.h", as it is not needed because of USE pegrid
!
! 4195 2019-08-28 13:44:27Z schwenkel
! Bugfix for simple_corrector interpolation method in case of ocean runs and
! output particle advection interpolation method into header
!
! 4182 2019-08-22 15:20:23Z scharf
! Corrected "Former revisions" section
!
! 4168 2019-08-16 13:50:17Z suehring
! Replace function get_topography_top_index by topo_top_ind
!
! 4145 2019-08-06 09:55:22Z schwenkel
! Some reformatting
!
! 4144 2019-08-06 09:11:47Z raasch
! relational operators .EQ., .NE., etc. replaced by ==, /=, etc.
!
! 4143 2019-08-05 15:14:53Z schwenkel
! Rename variable and change select case to if statement
!
! 4122 2019-07-26 13:11:56Z schwenkel
! Implement reset method as bottom boundary condition
!
! 4121 2019-07-26 10:01:22Z schwenkel
! Implementation of an simple method for interpolating the velocities to
! particle position
!
! 4114 2019-07-23 14:09:27Z schwenkel
! Bugfix: Added working precision for if statement
!
! 4054 2019-06-27 07:42:18Z raasch
! bugfix for calculating the minimum particle time step
!
! 4044 2019-06-19 12:28:27Z schwenkel
! Bugfix in case of grid strecting: corrected calculation of k-Index
!
! 4043 2019-06-18 16:59:00Z schwenkel
! Remove min_nr_particle, Add lpm_droplet_interactions_ptq into module
!
! 4028 2019-06-13 12:21:37Z schwenkel
! Further modularization of particle code components
!
! 4020 2019-06-06 14:57:48Z schwenkel
! Removing submodules
!
! 4018 2019-06-06 13:41:50Z eckhard
! Bugfix for former revision
!
! 4017 2019-06-06 12:16:46Z schwenkel
! Modularization of all lagrangian particle model code components
!
! 3655 2019-01-07 16:51:22Z knoop
! bugfix to guarantee correct particle releases in case that the release
! interval is smaller than the model timestep
!
! Revision 1.1 1999/11/25 16:16:06 raasch
! Initial revision
!
!
! Description:
! ------------
!> The embedded LPM allows for studying transport and dispersion processes within
!> turbulent flows. This model including passive particles that do not show any
!> feedback on the turbulent flow. Further also particles with inertia and
!> cloud droplets ca be simulated explicitly.
!>
!> @todo test lcm
!> implement simple interpolation method for subgrid scale velocites
!> @note
!> @bug
!------------------------------------------------------------------------------!
MODULE lagrangian_particle_model_mod
USE, INTRINSIC :: ISO_C_BINDING
USE arrays_3d, &
ONLY: de_dx, de_dy, de_dz, dzw, zu, zw, ql_c, ql_v, ql_vp, hyp, &
pt, q, exner, ql, diss, e, u, v, w, km, ql_1, ql_2, pt_p, q_p, &
d_exner
USE averaging, &
ONLY: ql_c_av, pr_av, pc_av, ql_vp_av, ql_v_av
USE basic_constants_and_equations_mod, &
ONLY: molecular_weight_of_solute, molecular_weight_of_water, magnus, &
pi, rd_d_rv, rho_l, r_v, rho_s, vanthoff, l_v, kappa, g, lv_d_cp
USE control_parameters, &
ONLY: bc_dirichlet_l, bc_dirichlet_n, bc_dirichlet_r, bc_dirichlet_s, &
cloud_droplets, constant_flux_layer, current_timestep_number, &
dt_3d, dt_3d_reached, humidity, &
dt_3d_reached_l, dt_dopts, dz, initializing_actions, &
intermediate_timestep_count, intermediate_timestep_count_max, &
message_string, molecular_viscosity, ocean_mode, &
particle_maximum_age, iran, &
simulated_time, topography, dopts_time_count, &
time_since_reference_point, rho_surface, u_gtrans, v_gtrans, &
dz_stretch_level, dz_stretch_level_start
USE cpulog, &
ONLY: cpu_log, log_point, log_point_s
USE indices, &
ONLY: nx, nxl, nxlg, nxrg, nxr, ny, nyn, nys, nyng, nysg, nz, nzb, &
nzb_max, nzt,nbgp, ngp_2dh_outer, &
topo_top_ind, &
wall_flags_0
USE kinds
USE pegrid
USE particle_attributes
USE pmc_particle_interface, &
ONLY: pmcp_c_get_particle_from_parent, pmcp_p_fill_particle_win, &
pmcp_c_send_particle_to_parent, pmcp_p_empty_particle_win, &
pmcp_p_delete_particles_in_fine_grid_area, pmcp_g_init, &
pmcp_g_print_number_of_particles
USE pmc_interface, &
ONLY: nested_run
USE grid_variables, &
ONLY: ddx, dx, ddy, dy
USE netcdf_interface, &
ONLY: netcdf_data_format, netcdf_deflate, dopts_num, id_set_pts, &
id_var_dopts, id_var_time_pts, nc_stat, &
netcdf_handle_error
USE random_function_mod, &
ONLY: random_function
USE statistics, &
ONLY: hom
USE surface_mod, &
ONLY: bc_h, &
surf_def_h, &
surf_lsm_h, &
surf_usm_h
#if defined( __parallel ) && !defined( __mpifh )
USE MPI
#endif
#if defined( __netcdf )
USE NETCDF
#endif
IMPLICIT NONE
CHARACTER(LEN=15) :: aero_species = 'nacl' !< aerosol species
CHARACTER(LEN=15) :: aero_type = 'maritime' !< aerosol type
CHARACTER(LEN=15) :: bc_par_lr = 'cyclic' !< left/right boundary condition
CHARACTER(LEN=15) :: bc_par_ns = 'cyclic' !< north/south boundary condition
CHARACTER(LEN=15) :: bc_par_b = 'reflect' !< bottom boundary condition
CHARACTER(LEN=15) :: bc_par_t = 'absorb' !< top boundary condition
CHARACTER(LEN=15) :: collision_kernel = 'none' !< collision kernel
CHARACTER(LEN=5) :: splitting_function = 'gamma' !< function for calculation critical weighting factor
CHARACTER(LEN=5) :: splitting_mode = 'const' !< splitting mode
CHARACTER(LEN=25) :: particle_advection_interpolation = 'trilinear' !< interpolation method for calculatin the particle
INTEGER(iwp) :: deleted_particles = 0 !< number of deleted particles per time step
INTEGER(iwp) :: i_splitting_mode !< dummy for splitting mode
INTEGER(iwp) :: iran_part = -1234567 !< number for random generator
INTEGER(iwp) :: max_number_particles_per_gridbox = 100 !< namelist parameter (see documentation)
INTEGER(iwp) :: isf !< dummy for splitting function
INTEGER(iwp) :: number_particles_per_gridbox = -1 !< namelist parameter (see documentation)
INTEGER(iwp) :: number_of_sublayers = 20 !< number of sublayers for particle velocities betwenn surface and first grid level
INTEGER(iwp) :: offset_ocean_nzt = 0 !< in case of oceans runs, the vertical index calculations need an offset
INTEGER(iwp) :: offset_ocean_nzt_m1 = 0 !< in case of oceans runs, the vertical index calculations need an offset
INTEGER(iwp) :: particles_per_point = 1 !< namelist parameter (see documentation)
INTEGER(iwp) :: radius_classes = 20 !< namelist parameter (see documentation)
INTEGER(iwp) :: splitting_factor = 2 !< namelist parameter (see documentation)
INTEGER(iwp) :: splitting_factor_max = 5 !< namelist parameter (see documentation)
INTEGER(iwp) :: step_dealloc = 100 !< namelist parameter (see documentation)
INTEGER(iwp) :: total_number_of_particles !< total number of particles in the whole model domain
INTEGER(iwp) :: trlp_count_sum !< parameter for particle exchange of PEs
INTEGER(iwp) :: trlp_count_recv_sum !< parameter for particle exchange of PEs
INTEGER(iwp) :: trrp_count_sum !< parameter for particle exchange of PEs
INTEGER(iwp) :: trrp_count_recv_sum !< parameter for particle exchange of PEs
INTEGER(iwp) :: trsp_count_sum !< parameter for particle exchange of PEs
INTEGER(iwp) :: trsp_count_recv_sum !< parameter for particle exchange of PEs
INTEGER(iwp) :: trnp_count_sum !< parameter for particle exchange of PEs
INTEGER(iwp) :: trnp_count_recv_sum !< parameter for particle exchange of PEs
LOGICAL :: lagrangian_particle_model = .FALSE. !< namelist parameter (see documentation)
LOGICAL :: curvature_solution_effects = .FALSE. !< namelist parameter (see documentation)
LOGICAL :: deallocate_memory = .TRUE. !< namelist parameter (see documentation)
LOGICAL :: hall_kernel = .FALSE. !< flag for collision kernel
LOGICAL :: merging = .FALSE. !< namelist parameter (see documentation)
LOGICAL :: random_start_position = .FALSE. !< namelist parameter (see documentation)
LOGICAL :: read_particles_from_restartfile = .TRUE. !< namelist parameter (see documentation)
LOGICAL :: seed_follows_topography = .FALSE. !< namelist parameter (see documentation)
LOGICAL :: splitting = .FALSE. !< namelist parameter (see documentation)
LOGICAL :: use_kernel_tables = .FALSE. !< parameter, which turns on the use of precalculated collision kernels
LOGICAL :: write_particle_statistics = .FALSE. !< namelist parameter (see documentation)
LOGICAL :: interpolation_simple_predictor = .FALSE. !< flag for simple particle advection interpolation with predictor step
LOGICAL :: interpolation_simple_corrector = .FALSE. !< flag for simple particle advection interpolation with corrector step
LOGICAL :: interpolation_trilinear = .FALSE. !< flag for trilinear particle advection interpolation
LOGICAL, DIMENSION(max_number_of_particle_groups) :: vertical_particle_advection = .TRUE. !< Switch for vertical particle transport
REAL(wp) :: aero_weight = 1.0_wp !< namelist parameter (see documentation)
REAL(wp) :: dt_min_part = 0.0002_wp !< minimum particle time step when SGS velocities are used (s)
REAL(wp) :: dt_prel = 9999999.9_wp !< namelist parameter (see documentation)
REAL(wp) :: dt_write_particle_data = 9999999.9_wp !< namelist parameter (see documentation)
REAL(wp) :: end_time_prel = 9999999.9_wp !< namelist parameter (see documentation)
REAL(wp) :: initial_weighting_factor = 1.0_wp !< namelist parameter (see documentation)
REAL(wp) :: last_particle_release_time = 0.0_wp !< last time of particle release
REAL(wp) :: log_sigma(3) = 1.0_wp !< namelist parameter (see documentation)
REAL(wp) :: na(3) = 0.0_wp !< namelist parameter (see documentation)
REAL(wp) :: number_concentration = -1.0_wp !< namelist parameter (see documentation)
REAL(wp) :: radius_merge = 1.0E-7_wp !< namelist parameter (see documentation)
REAL(wp) :: radius_split = 40.0E-6_wp !< namelist parameter (see documentation)
REAL(wp) :: rm(3) = 1.0E-6_wp !< namelist parameter (see documentation)
REAL(wp) :: sgs_wf_part !< parameter for sgs
REAL(wp) :: time_write_particle_data = 0.0_wp !< write particle data at current time on file
REAL(wp) :: weight_factor_merge = -1.0_wp !< namelist parameter (see documentation)
REAL(wp) :: weight_factor_split = -1.0_wp !< namelist parameter (see documentation)
REAL(wp) :: z0_av_global !< horizontal mean value of z0
REAL(wp) :: rclass_lbound !<
REAL(wp) :: rclass_ubound !<
REAL(wp), PARAMETER :: c_0 = 3.0_wp !< parameter for lagrangian timescale
REAL(wp), DIMENSION(max_number_of_particle_groups) :: density_ratio = 9999999.9_wp !< namelist parameter (see documentation)
REAL(wp), DIMENSION(max_number_of_particle_groups) :: pdx = 9999999.9_wp !< namelist parameter (see documentation)
REAL(wp), DIMENSION(max_number_of_particle_groups) :: pdy = 9999999.9_wp !< namelist parameter (see documentation)
REAL(wp), DIMENSION(max_number_of_particle_groups) :: pdz = 9999999.9_wp !< namelist parameter (see documentation)
REAL(wp), DIMENSION(max_number_of_particle_groups) :: psb = 9999999.9_wp !< namelist parameter (see documentation)
REAL(wp), DIMENSION(max_number_of_particle_groups) :: psl = 9999999.9_wp !< namelist parameter (see documentation)
REAL(wp), DIMENSION(max_number_of_particle_groups) :: psn = 9999999.9_wp !< namelist parameter (see documentation)
REAL(wp), DIMENSION(max_number_of_particle_groups) :: psr = 9999999.9_wp !< namelist parameter (see documentation)
REAL(wp), DIMENSION(max_number_of_particle_groups) :: pss = 9999999.9_wp !< namelist parameter (see documentation)
REAL(wp), DIMENSION(max_number_of_particle_groups) :: pst = 9999999.9_wp !< namelist parameter (see documentation).
REAL(wp), DIMENSION(max_number_of_particle_groups) :: radius = 9999999.9_wp !< namelist parameter (see documentation)
REAL(wp), DIMENSION(:), ALLOCATABLE :: log_z_z0 !< Precalculate LOG(z/z0)
INTEGER(iwp), PARAMETER :: NR_2_direction_move = 10000 !<
INTEGER(iwp) :: nr_move_north !<
INTEGER(iwp) :: nr_move_south !<
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: move_also_north
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: move_also_south
REAL(wp) :: epsilon_collision !<
REAL(wp) :: urms !<
REAL(wp), DIMENSION(:), ALLOCATABLE :: epsclass !< dissipation rate class
REAL(wp), DIMENSION(:), ALLOCATABLE :: radclass !< radius class
REAL(wp), DIMENSION(:), ALLOCATABLE :: winf !<
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ec !<
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ecf !<
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: gck !<
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: hkernel !<
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: hwratio !<
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ckernel !<
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_t !< u value of old timelevel t
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_t !< v value of old timelevel t
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_t !< w value of old timelevel t
INTEGER(iwp), PARAMETER :: PHASE_INIT = 1 !<
INTEGER(iwp), PARAMETER, PUBLIC :: PHASE_RELEASE = 2 !<
SAVE
PRIVATE
PUBLIC lpm_parin, &
lpm_header, &
lpm_init_arrays,&
lpm_init, &
lpm_actions, &
lpm_data_output_ptseries, &
lpm_interaction_droplets_ptq, &
lpm_rrd_local_particles, &
lpm_wrd_local, &
lpm_rrd_global, &
lpm_wrd_global, &
lpm_rrd_local, &
lpm_check_parameters
PUBLIC lagrangian_particle_model
INTERFACE lpm_check_parameters
MODULE PROCEDURE lpm_check_parameters
END INTERFACE lpm_check_parameters
INTERFACE lpm_parin
MODULE PROCEDURE lpm_parin
END INTERFACE lpm_parin
INTERFACE lpm_header
MODULE PROCEDURE lpm_header
END INTERFACE lpm_header
INTERFACE lpm_init_arrays
MODULE PROCEDURE lpm_init_arrays
END INTERFACE lpm_init_arrays
INTERFACE lpm_init
MODULE PROCEDURE lpm_init
END INTERFACE lpm_init
INTERFACE lpm_actions
MODULE PROCEDURE lpm_actions
END INTERFACE lpm_actions
INTERFACE lpm_data_output_ptseries
MODULE PROCEDURE lpm_data_output_ptseries
END INTERFACE
INTERFACE lpm_rrd_local_particles
MODULE PROCEDURE lpm_rrd_local_particles
END INTERFACE lpm_rrd_local_particles
INTERFACE lpm_rrd_global
MODULE PROCEDURE lpm_rrd_global
END INTERFACE lpm_rrd_global
INTERFACE lpm_rrd_local
MODULE PROCEDURE lpm_rrd_local
END INTERFACE lpm_rrd_local
INTERFACE lpm_wrd_local
MODULE PROCEDURE lpm_wrd_local
END INTERFACE lpm_wrd_local
INTERFACE lpm_wrd_global
MODULE PROCEDURE lpm_wrd_global
END INTERFACE lpm_wrd_global
INTERFACE lpm_advec
MODULE PROCEDURE lpm_advec
END INTERFACE lpm_advec
INTERFACE lpm_calc_liquid_water_content
MODULE PROCEDURE lpm_calc_liquid_water_content
END INTERFACE
INTERFACE lpm_interaction_droplets_ptq
MODULE PROCEDURE lpm_interaction_droplets_ptq
MODULE PROCEDURE lpm_interaction_droplets_ptq_ij
END INTERFACE lpm_interaction_droplets_ptq
INTERFACE lpm_boundary_conds
MODULE PROCEDURE lpm_boundary_conds
END INTERFACE lpm_boundary_conds
INTERFACE lpm_droplet_condensation
MODULE PROCEDURE lpm_droplet_condensation
END INTERFACE
INTERFACE lpm_droplet_collision
MODULE PROCEDURE lpm_droplet_collision
END INTERFACE lpm_droplet_collision
INTERFACE lpm_init_kernels
MODULE PROCEDURE lpm_init_kernels
END INTERFACE lpm_init_kernels
INTERFACE lpm_splitting
MODULE PROCEDURE lpm_splitting
END INTERFACE lpm_splitting
INTERFACE lpm_merging
MODULE PROCEDURE lpm_merging
END INTERFACE lpm_merging
INTERFACE lpm_exchange_horiz
MODULE PROCEDURE lpm_exchange_horiz
END INTERFACE lpm_exchange_horiz
INTERFACE lpm_move_particle
MODULE PROCEDURE lpm_move_particle
END INTERFACE lpm_move_particle
INTERFACE realloc_particles_array
MODULE PROCEDURE realloc_particles_array
END INTERFACE realloc_particles_array
INTERFACE dealloc_particles_array
MODULE PROCEDURE dealloc_particles_array
END INTERFACE dealloc_particles_array
INTERFACE lpm_sort_and_delete
MODULE PROCEDURE lpm_sort_and_delete
END INTERFACE lpm_sort_and_delete
INTERFACE lpm_sort_timeloop_done
MODULE PROCEDURE lpm_sort_timeloop_done
END INTERFACE lpm_sort_timeloop_done
INTERFACE lpm_pack
MODULE PROCEDURE lpm_pack
END INTERFACE lpm_pack
CONTAINS
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Parin for &particle_parameters for the Lagrangian particle model
!------------------------------------------------------------------------------!
SUBROUTINE lpm_parin
CHARACTER (LEN=80) :: line !<
NAMELIST /particles_par/ &
aero_species, &
aero_type, &
aero_weight, &
alloc_factor, &
bc_par_b, &
bc_par_lr, &
bc_par_ns, &
bc_par_t, &
collision_kernel, &
curvature_solution_effects, &
deallocate_memory, &
density_ratio, &
dissipation_classes, &
dt_dopts, &
dt_min_part, &
dt_prel, &
dt_write_particle_data, &
end_time_prel, &
initial_weighting_factor, &
log_sigma, &
max_number_particles_per_gridbox, &
merging, &
na, &
number_concentration, &
number_of_particle_groups, &
number_particles_per_gridbox, &
particles_per_point, &
particle_advection_start, &
particle_advection_interpolation, &
particle_maximum_age, &
pdx, &
pdy, &
pdz, &
psb, &
psl, &
psn, &
psr, &
pss, &
pst, &
radius, &
radius_classes, &
radius_merge, &
radius_split, &
random_start_position, &
read_particles_from_restartfile, &
rm, &
seed_follows_topography, &
splitting, &
splitting_factor, &
splitting_factor_max, &
splitting_function, &
splitting_mode, &
step_dealloc, &
use_sgs_for_particles, &
vertical_particle_advection, &
weight_factor_merge, &
weight_factor_split, &
write_particle_statistics
NAMELIST /particle_parameters/ &
aero_species, &
aero_type, &
aero_weight, &
alloc_factor, &
bc_par_b, &
bc_par_lr, &
bc_par_ns, &
bc_par_t, &
collision_kernel, &
curvature_solution_effects, &
deallocate_memory, &
density_ratio, &
dissipation_classes, &
dt_dopts, &
dt_min_part, &
dt_prel, &
dt_write_particle_data, &
end_time_prel, &
initial_weighting_factor, &
log_sigma, &
max_number_particles_per_gridbox, &
merging, &
na, &
number_concentration, &
number_of_particle_groups, &
number_particles_per_gridbox, &
particles_per_point, &
particle_advection_start, &
particle_advection_interpolation, &
particle_maximum_age, &
pdx, &
pdy, &
pdz, &
psb, &
psl, &
psn, &
psr, &
pss, &
pst, &
radius, &
radius_classes, &
radius_merge, &
radius_split, &
random_start_position, &
read_particles_from_restartfile, &
rm, &
seed_follows_topography, &
splitting, &
splitting_factor, &
splitting_factor_max, &
splitting_function, &
splitting_mode, &
step_dealloc, &
use_sgs_for_particles, &
vertical_particle_advection, &
weight_factor_merge, &
weight_factor_split, &
write_particle_statistics
!
!-- Position the namelist-file at the beginning (it was already opened in
!-- parin), search for the namelist-group of the package and position the
!-- file at this line. Do the same for each optionally used package.
line = ' '
!
!-- Try to find particles package
REWIND ( 11 )
line = ' '
DO WHILE ( INDEX( line, '&particle_parameters' ) == 0 )
READ ( 11, '(A)', END=12 ) line
ENDDO
BACKSPACE ( 11 )
!
!-- Read user-defined namelist
READ ( 11, particle_parameters, ERR = 10 )
!
!-- Set flag that indicates that particles are switched on
particle_advection = .TRUE.
GOTO 14
10 BACKSPACE( 11 )
READ( 11 , '(A)') line
CALL parin_fail_message( 'particle_parameters', line )
!
!-- Try to find particles package (old namelist)
12 REWIND ( 11 )
line = ' '
DO WHILE ( INDEX( line, '&particles_par' ) == 0 )
READ ( 11, '(A)', END=14 ) line
ENDDO
BACKSPACE ( 11 )
!
!-- Read user-defined namelist
READ ( 11, particles_par, ERR = 13, END = 14 )
message_string = 'namelist particles_par is deprecated and will be ' // &
'removed in near future. Please use namelist ' // &
'particle_parameters instead'
CALL message( 'package_parin', 'PA0487', 0, 1, 0, 6, 0 )
!
!-- Set flag that indicates that particles are switched on
particle_advection = .TRUE.
GOTO 14
13 BACKSPACE( 11 )
READ( 11 , '(A)') line
CALL parin_fail_message( 'particles_par', line )
14 CONTINUE
END SUBROUTINE lpm_parin
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Writes used particle attributes in header file.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_header ( io )
CHARACTER (LEN=40) :: output_format !< netcdf format
INTEGER(iwp) :: i !<
INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file
IF ( humidity .AND. cloud_droplets ) THEN
WRITE ( io, 433 )
IF ( curvature_solution_effects ) WRITE ( io, 434 )
IF ( collision_kernel /= 'none' ) THEN
WRITE ( io, 435 ) TRIM( collision_kernel )
IF ( collision_kernel(6:9) == 'fast' ) THEN
WRITE ( io, 436 ) radius_classes, dissipation_classes
ENDIF
ELSE
WRITE ( io, 437 )
ENDIF
ENDIF
IF ( particle_advection ) THEN
!
!-- Particle attributes
WRITE ( io, 480 ) particle_advection_start, TRIM(particle_advection_interpolation), &
dt_prel, bc_par_lr, &
bc_par_ns, bc_par_b, bc_par_t, particle_maximum_age, &
end_time_prel
IF ( use_sgs_for_particles ) WRITE ( io, 488 ) dt_min_part
IF ( random_start_position ) WRITE ( io, 481 )
IF ( seed_follows_topography ) WRITE ( io, 496 )
IF ( particles_per_point > 1 ) WRITE ( io, 489 ) particles_per_point
WRITE ( io, 495 ) total_number_of_particles
IF ( dt_write_particle_data /= 9999999.9_wp ) THEN
WRITE ( io, 485 ) dt_write_particle_data
IF ( netcdf_data_format > 1 ) THEN
output_format = 'netcdf (64 bit offset) and binary'
ELSE
output_format = 'netcdf and binary'
ENDIF
IF ( netcdf_deflate == 0 ) THEN
WRITE ( io, 344 ) output_format
ELSE
WRITE ( io, 354 ) TRIM( output_format ), netcdf_deflate
ENDIF
ENDIF
IF ( dt_dopts /= 9999999.9_wp ) WRITE ( io, 494 ) dt_dopts
IF ( write_particle_statistics ) WRITE ( io, 486 )
WRITE ( io, 487 ) number_of_particle_groups
DO i = 1, number_of_particle_groups
IF ( i == 1 .AND. density_ratio(i) == 9999999.9_wp ) THEN
WRITE ( io, 490 ) i, 0.0_wp
WRITE ( io, 492 )
ELSE
WRITE ( io, 490 ) i, radius(i)
IF ( density_ratio(i) /= 0.0_wp ) THEN
WRITE ( io, 491 ) density_ratio(i)
ELSE
WRITE ( io, 492 )
ENDIF
ENDIF
WRITE ( io, 493 ) psl(i), psr(i), pss(i), psn(i), psb(i), pst(i), &
pdx(i), pdy(i), pdz(i)
IF ( .NOT. vertical_particle_advection(i) ) WRITE ( io, 482 )
ENDDO
ENDIF
344 FORMAT (' Output format: ',A/)
354 FORMAT (' Output format: ',A, ' compressed with level: ',I1/)
433 FORMAT (' Cloud droplets treated explicitly using the Lagrangian part', &
'icle model')
434 FORMAT (' Curvature and solution effecs are considered for growth of', &
' droplets < 1.0E-6 m')
435 FORMAT (' Droplet collision is handled by ',A,'-kernel')
436 FORMAT (' Fast kernel with fixed radius- and dissipation classes ', &
'are used'/ &
' number of radius classes: ',I3,' interval ', &
'[1.0E-6,2.0E-4] m'/ &
' number of dissipation classes: ',I2,' interval ', &
'[0,1000] cm**2/s**3')
437 FORMAT (' Droplet collision is switched off')
480 FORMAT (' Particles:'/ &
' ---------'// &
' Particle advection is active (switched on at t = ', F7.1, &
' s)'/ &
' Interpolation of particle velocities is done by using ', A, &
' method'/ &
' Start of new particle generations every ',F6.1,' s'/ &
' Boundary conditions: left/right: ', A, ' north/south: ', A/&
' bottom: ', A, ' top: ', A/&
' Maximum particle age: ',F9.1,' s'/ &
' Advection stopped at t = ',F9.1,' s'/)
481 FORMAT (' Particles have random start positions'/)
482 FORMAT (' Particles are advected only horizontally'/)
485 FORMAT (' Particle data are written on file every ', F9.1, ' s')
486 FORMAT (' Particle statistics are written on file'/)
487 FORMAT (' Number of particle groups: ',I2/)
488 FORMAT (' SGS velocity components are used for particle advection'/ &
' minimum timestep for advection:', F8.5/)
489 FORMAT (' Number of particles simultaneously released at each ', &
'point: ', I5/)
490 FORMAT (' Particle group ',I2,':'/ &
' Particle radius: ',E10.3, 'm')
491 FORMAT (' Particle inertia is activated'/ &
' density_ratio (rho_fluid/rho_particle) =',F6.3/)
492 FORMAT (' Particles are advected only passively (no inertia)'/)
493 FORMAT (' Boundaries of particle source: x:',F8.1,' - ',F8.1,' m'/&
' y:',F8.1,' - ',F8.1,' m'/&
' z:',F8.1,' - ',F8.1,' m'/&
' Particle distances: dx = ',F8.1,' m dy = ',F8.1, &
' m dz = ',F8.1,' m'/)
494 FORMAT (' Output of particle time series in NetCDF format every ', &
F8.2,' s'/)
495 FORMAT (' Number of particles in total domain: ',I10/)
496 FORMAT (' Initial vertical particle positions are interpreted ', &
'as relative to the given topography')
END SUBROUTINE lpm_header
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Writes used particle attributes in header file.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_check_parameters
!
!-- Collision kernels:
SELECT CASE ( TRIM( collision_kernel ) )
CASE ( 'hall', 'hall_fast' )
hall_kernel = .TRUE.
CASE ( 'wang', 'wang_fast' )
wang_kernel = .TRUE.
CASE ( 'none' )
CASE DEFAULT
message_string = 'unknown collision kernel: collision_kernel = "' // &
TRIM( collision_kernel ) // '"'
CALL message( 'lpm_check_parameters', 'PA0350', 1, 2, 0, 6, 0 )
END SELECT
IF ( collision_kernel(6:9) == 'fast' ) use_kernel_tables = .TRUE.
!
!-- Subgrid scale velocites with the simple interpolation method for resolved
!-- velocites is not implemented for passive particles. However, for cloud
!-- it can be combined as the sgs-velocites for active particles are
!-- calculated differently, i.e. no subboxes are needed.
IF ( .NOT. TRIM( particle_advection_interpolation ) == 'trilinear' .AND. &
use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN
message_string = 'subrgrid scale velocities in combination with ' // &
'simple interpolation method is not ' // &
'implemented'
CALL message( 'lpm_check_parameters', 'PA0659', 1, 2, 0, 6, 0 )
ENDIF
IF ( nested_run .AND. cloud_droplets ) THEN
message_string = 'nested runs in combination with cloud droplets ' // &
'is not implemented'
CALL message( 'lpm_check_parameters', 'PA0687', 1, 2, 0, 6, 0 )
ENDIF
END SUBROUTINE lpm_check_parameters
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Initialize arrays for lpm
!------------------------------------------------------------------------------!
SUBROUTINE lpm_init_arrays
IF ( cloud_droplets ) THEN
!
!-- Liquid water content, change in liquid water content
ALLOCATE ( ql_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), &
ql_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
!
!-- Real volume of particles (with weighting), volume of particles
ALLOCATE ( ql_v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), &
ql_vp(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
ALLOCATE( u_t(nzb:nzt+1,nysg:nyng,nxlg:nxrg), &
v_t(nzb:nzt+1,nysg:nyng,nxlg:nxrg), &
w_t(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
!
!-- Initialize values with current time step
u_t = u
v_t = v
w_t = w
!
!-- Initial assignment of the pointers
IF ( cloud_droplets ) THEN
ql => ql_1
ql_c => ql_2
ENDIF
END SUBROUTINE lpm_init_arrays
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Initialize Lagrangian particle model
!------------------------------------------------------------------------------!
SUBROUTINE lpm_init
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
REAL(wp) :: div !<
REAL(wp) :: height_int !<
REAL(wp) :: height_p !<
REAL(wp) :: z_p !<
REAL(wp) :: z0_av_local !<
!
!-- In case of oceans runs, the vertical index calculations need an offset,
!-- because otherwise the k indices will become negative
IF ( ocean_mode ) THEN
offset_ocean_nzt = nzt
offset_ocean_nzt_m1 = nzt - 1
ENDIF
!
!-- Define block offsets for dividing a gridcell in 8 sub cells
!-- See documentation for List of subgrid boxes
!-- See pack_and_sort in lpm_pack_arrays.f90 for assignment of the subgrid boxes
block_offset(0) = block_offset_def ( 0, 0, 0)
block_offset(1) = block_offset_def ( 0, 0,-1)
block_offset(2) = block_offset_def ( 0,-1, 0)
block_offset(3) = block_offset_def ( 0,-1,-1)
block_offset(4) = block_offset_def (-1, 0, 0)
block_offset(5) = block_offset_def (-1, 0,-1)
block_offset(6) = block_offset_def (-1,-1, 0)
block_offset(7) = block_offset_def (-1,-1,-1)
!
!-- Check the number of particle groups.
IF ( number_of_particle_groups > max_number_of_particle_groups ) THEN
WRITE( message_string, * ) 'max_number_of_particle_groups =', &
max_number_of_particle_groups , &
'&number_of_particle_groups reset to ', &
max_number_of_particle_groups
CALL message( 'lpm_init', 'PA0213', 0, 1, 0, 6, 0 )
number_of_particle_groups = max_number_of_particle_groups
ENDIF
!
!-- Check if downward-facing walls exist. This case, reflection boundary
!-- conditions (as well as subgrid-scale velocities) may do not work
!-- propably (not realized so far).
IF ( surf_def_h(1)%ns >= 1 ) THEN
WRITE( message_string, * ) 'Overhanging topography do not work '// &
'with particles'
CALL message( 'lpm_init', 'PA0212', 0, 1, 0, 6, 0 )
ENDIF
!
!-- Set default start positions, if necessary
IF ( psl(1) == 9999999.9_wp ) psl(1) = 0.0_wp
IF ( psr(1) == 9999999.9_wp ) psr(1) = ( nx +1 ) * dx
IF ( pss(1) == 9999999.9_wp ) pss(1) = 0.0_wp
IF ( psn(1) == 9999999.9_wp ) psn(1) = ( ny +1 ) * dy
IF ( psb(1) == 9999999.9_wp ) psb(1) = zu(nz/2)
IF ( pst(1) == 9999999.9_wp ) pst(1) = psb(1)
IF ( pdx(1) == 9999999.9_wp .OR. pdx(1) == 0.0_wp ) pdx(1) = dx
IF ( pdy(1) == 9999999.9_wp .OR. pdy(1) == 0.0_wp ) pdy(1) = dy
IF ( pdz(1) == 9999999.9_wp .OR. pdz(1) == 0.0_wp ) pdz(1) = zu(2) - zu(1)
!
!-- If number_particles_per_gridbox is set, the parametres pdx, pdy and pdz are
!-- calculated diagnostically. Therfore an isotropic distribution is prescribed.
IF ( number_particles_per_gridbox /= -1 .AND. &
number_particles_per_gridbox >= 1 ) THEN
pdx(1) = (( dx * dy * ( zu(2) - zu(1) ) ) / &
REAL(number_particles_per_gridbox))**0.3333333_wp
!
!-- Ensure a smooth value (two significant digits) of distance between
!-- particles (pdx, pdy, pdz).
div = 1000.0_wp
DO WHILE ( pdx(1) < div )
div = div / 10.0_wp
ENDDO
pdx(1) = NINT( pdx(1) * 100.0_wp / div ) * div / 100.0_wp
pdy(1) = pdx(1)
pdz(1) = pdx(1)
ENDIF
DO j = 2, number_of_particle_groups
IF ( psl(j) == 9999999.9_wp ) psl(j) = psl(j-1)
IF ( psr(j) == 9999999.9_wp ) psr(j) = psr(j-1)
IF ( pss(j) == 9999999.9_wp ) pss(j) = pss(j-1)
IF ( psn(j) == 9999999.9_wp ) psn(j) = psn(j-1)
IF ( psb(j) == 9999999.9_wp ) psb(j) = psb(j-1)
IF ( pst(j) == 9999999.9_wp ) pst(j) = pst(j-1)
IF ( pdx(j) == 9999999.9_wp .OR. pdx(j) == 0.0_wp ) pdx(j) = pdx(j-1)
IF ( pdy(j) == 9999999.9_wp .OR. pdy(j) == 0.0_wp ) pdy(j) = pdy(j-1)
IF ( pdz(j) == 9999999.9_wp .OR. pdz(j) == 0.0_wp ) pdz(j) = pdz(j-1)
ENDDO
!
!-- Allocate arrays required for calculating particle SGS velocities.
!-- Initialize prefactor required for stoachastic Weil equation.
IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN
ALLOCATE( de_dx(nzb:nzt+1,nysg:nyng,nxlg:nxrg), &
de_dy(nzb:nzt+1,nysg:nyng,nxlg:nxrg), &
de_dz(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
de_dx = 0.0_wp
de_dy = 0.0_wp
de_dz = 0.0_wp
sgs_wf_part = 1.0_wp / 3.0_wp
ENDIF
!
!-- Allocate array required for logarithmic vertical interpolation of
!-- horizontal particle velocities between the surface and the first vertical
!-- grid level. In order to avoid repeated CPU cost-intensive CALLS of
!-- intrinsic FORTRAN procedure LOG(z/z0), LOG(z/z0) is precalculated for
!-- several heights. Splitting into 20 sublayers turned out to be sufficient.
!-- To obtain exact height levels of particles, linear interpolation is applied
!-- (see lpm_advec.f90).
IF ( constant_flux_layer ) THEN
ALLOCATE ( log_z_z0(0:number_of_sublayers) )
z_p = zu(nzb+1) - zw(nzb)
!
!-- Calculate horizontal mean value of z0 used for logartihmic
!-- interpolation. Note: this is not exact for heterogeneous z0.
!-- However, sensitivity studies showed that the effect is
!-- negligible.
z0_av_local = SUM( surf_def_h(0)%z0 ) + SUM( surf_lsm_h%z0 ) + &
SUM( surf_usm_h%z0 )
z0_av_global = 0.0_wp
#if defined( __parallel )
CALL MPI_ALLREDUCE(z0_av_local, z0_av_global, 1, MPI_REAL, MPI_SUM, &
comm2d, ierr )
#else
z0_av_global = z0_av_local
#endif
z0_av_global = z0_av_global / ( ( ny + 1 ) * ( nx + 1 ) )
!
!-- Horizontal wind speed is zero below and at z0
log_z_z0(0) = 0.0_wp
!
!-- Calculate vertical depth of the sublayers
height_int = ( z_p - z0_av_global ) / REAL( number_of_sublayers, KIND=wp )
!
!-- Precalculate LOG(z/z0)
height_p = z0_av_global
DO k = 1, number_of_sublayers
height_p = height_p + height_int
log_z_z0(k) = LOG( height_p / z0_av_global )
ENDDO
ENDIF
!
!-- Check which particle interpolation method should be used
IF ( TRIM( particle_advection_interpolation ) == 'trilinear' ) THEN
interpolation_simple_corrector = .FALSE.
interpolation_simple_predictor = .FALSE.
interpolation_trilinear = .TRUE.
ELSEIF ( TRIM( particle_advection_interpolation ) == 'simple_corrector' ) THEN
interpolation_simple_corrector = .TRUE.
interpolation_simple_predictor = .FALSE.
interpolation_trilinear = .FALSE.
ELSEIF ( TRIM( particle_advection_interpolation ) == 'simple_predictor' ) THEN
interpolation_simple_corrector = .FALSE.
interpolation_simple_predictor = .TRUE.
interpolation_trilinear = .FALSE.
ENDIF
!
!-- Check boundary condition and set internal variables
SELECT CASE ( bc_par_b )
CASE ( 'absorb' )
ibc_par_b = 1
CASE ( 'reflect' )
ibc_par_b = 2
CASE ( 'reset' )
ibc_par_b = 3
CASE DEFAULT
WRITE( message_string, * ) 'unknown boundary condition ', &
'bc_par_b = "', TRIM( bc_par_b ), '"'
CALL message( 'lpm_init', 'PA0217', 1, 2, 0, 6, 0 )
END SELECT
SELECT CASE ( bc_par_t )
CASE ( 'absorb' )
ibc_par_t = 1
CASE ( 'reflect' )
ibc_par_t = 2
CASE ( 'nested' )
ibc_par_t = 3
CASE DEFAULT
WRITE( message_string, * ) 'unknown boundary condition ', &
'bc_par_t = "', TRIM( bc_par_t ), '"'
CALL message( 'lpm_init', 'PA0218', 1, 2, 0, 6, 0 )
END SELECT
SELECT CASE ( bc_par_lr )
CASE ( 'cyclic' )
ibc_par_lr = 0
CASE ( 'absorb' )
ibc_par_lr = 1
CASE ( 'reflect' )
ibc_par_lr = 2
CASE ( 'nested' )
ibc_par_lr = 3
CASE DEFAULT
WRITE( message_string, * ) 'unknown boundary condition ', &
'bc_par_lr = "', TRIM( bc_par_lr ), '"'
CALL message( 'lpm_init', 'PA0219', 1, 2, 0, 6, 0 )
END SELECT
SELECT CASE ( bc_par_ns )
CASE ( 'cyclic' )
ibc_par_ns = 0
CASE ( 'absorb' )
ibc_par_ns = 1
CASE ( 'reflect' )
ibc_par_ns = 2
CASE ( 'nested' )
ibc_par_ns = 3
CASE DEFAULT
WRITE( message_string, * ) 'unknown boundary condition ', &
'bc_par_ns = "', TRIM( bc_par_ns ), '"'
CALL message( 'lpm_init', 'PA0220', 1, 2, 0, 6, 0 )
END SELECT
SELECT CASE ( splitting_mode )
CASE ( 'const' )
i_splitting_mode = 1
CASE ( 'cl_av' )
i_splitting_mode = 2
CASE ( 'gb_av' )
i_splitting_mode = 3
CASE DEFAULT
WRITE( message_string, * ) 'unknown splitting_mode = "', &
TRIM( splitting_mode ), '"'
CALL message( 'lpm_init', 'PA0146', 1, 2, 0, 6, 0 )
END SELECT
SELECT CASE ( splitting_function )
CASE ( 'gamma' )
isf = 1
CASE ( 'log' )
isf = 2
CASE ( 'exp' )
isf = 3
CASE DEFAULT
WRITE( message_string, * ) 'unknown splitting function = "', &
TRIM( splitting_function ), '"'
CALL message( 'lpm_init', 'PA0147', 1, 2, 0, 6, 0 )
END SELECT
!
!-- Initialize collision kernels
IF ( collision_kernel /= 'none' ) CALL lpm_init_kernels
!
!-- For the first model run of a possible job chain initialize the
!-- particles, otherwise read the particle data from restart file.
IF ( TRIM( initializing_actions ) == 'read_restart_data' &
.AND. read_particles_from_restartfile ) THEN
CALL lpm_rrd_local_particles
ELSE
!
!-- Allocate particle arrays and set attributes of the initial set of
!-- particles, which can be also periodically released at later times.
ALLOCATE( prt_count(nzb:nzt+1,nysg:nyng,nxlg:nxrg), &
grid_particles(nzb+1:nzt,nys:nyn,nxl:nxr) )
number_of_particles = 0
prt_count = 0
!
!-- initialize counter for particle IDs
grid_particles%id_counter = 1
!
!-- Initialize all particles with dummy values (otherwise errors may
!-- occur within restart runs). The reason for this is still not clear
!-- and may be presumably caused by errors in the respective user-interface.
zero_particle = particle_type( 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, &
0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, &
0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, &
0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, &
0, 0, 0_idp, .FALSE., -1 )
particle_groups = particle_groups_type( 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp )
!
!-- Set values for the density ratio and radius for all particle
!-- groups, if necessary
IF ( density_ratio(1) == 9999999.9_wp ) density_ratio(1) = 0.0_wp
IF ( radius(1) == 9999999.9_wp ) radius(1) = 0.0_wp
DO i = 2, number_of_particle_groups
IF ( density_ratio(i) == 9999999.9_wp ) THEN
density_ratio(i) = density_ratio(i-1)
ENDIF
IF ( radius(i) == 9999999.9_wp ) radius(i) = radius(i-1)
ENDDO
DO i = 1, number_of_particle_groups
IF ( density_ratio(i) /= 0.0_wp .AND. radius(i) == 0 ) THEN
WRITE( message_string, * ) 'particle group #', i, ' has a', &
'density ratio /= 0 but radius = 0'
CALL message( 'lpm_init', 'PA0215', 1, 2, 0, 6, 0 )
ENDIF
particle_groups(i)%density_ratio = density_ratio(i)
particle_groups(i)%radius = radius(i)
ENDDO
!
!-- Set a seed value for the random number generator to be exclusively
!-- used for the particle code. The generated random numbers should be
!-- different on the different PEs.
iran_part = iran_part + myid
!
!-- Create the particle set, and set the initial particles
CALL lpm_create_particle( phase_init )
last_particle_release_time = particle_advection_start
!
!-- User modification of initial particles
CALL user_lpm_init
!
!-- Open file for statistical informations about particle conditions
IF ( write_particle_statistics ) THEN
CALL check_open( 80 )
WRITE ( 80, 8000 ) current_timestep_number, simulated_time, &
number_of_particles
CALL close_file( 80 )
ENDIF
ENDIF
IF ( nested_run ) CALL pmcp_g_init
!
!-- To avoid programm abort, assign particles array to the local version of
!-- first grid cell
number_of_particles = prt_count(nzb+1,nys,nxl)
particles => grid_particles(nzb+1,nys,nxl)%particles(1:number_of_particles)
!
!-- Formats
8000 FORMAT (I6,1X,F7.2,4X,I10,71X,I10)
END SUBROUTINE lpm_init
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Create Lagrangian particles
!------------------------------------------------------------------------------!
SUBROUTINE lpm_create_particle (phase)
INTEGER(iwp) :: alloc_size !< relative increase of allocated memory for particles
INTEGER(iwp) :: i !< loop variable ( particle groups )
INTEGER(iwp) :: ip !< index variable along x
INTEGER(iwp) :: j !< loop variable ( particles per point )
INTEGER(iwp) :: jp !< index variable along y
INTEGER(iwp) :: k !< index variable along z
INTEGER(iwp) :: k_surf !< index of surface grid point
INTEGER(iwp) :: kp !< index variable along z
INTEGER(iwp) :: loop_stride !< loop variable for initialization
INTEGER(iwp) :: n !< loop variable ( number of particles )
INTEGER(iwp) :: new_size !< new size of allocated memory for particles
INTEGER(iwp), INTENT(IN) :: phase !< mode of inititialization
INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: local_count !< start address of new particle
INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: local_start !< start address of new particle
LOGICAL :: first_stride !< flag for initialization
REAL(wp) :: pos_x !< increment for particle position in x
REAL(wp) :: pos_y !< increment for particle position in y
REAL(wp) :: pos_z !< increment for particle position in z
REAL(wp) :: rand_contr !< dummy argument for random position
TYPE(particle_type),TARGET :: tmp_particle !< temporary particle used for initialization
!
!-- Calculate particle positions and store particle attributes, if
!-- particle is situated on this PE
DO loop_stride = 1, 2
first_stride = (loop_stride == 1)
IF ( first_stride ) THEN
local_count = 0 ! count number of particles
ELSE
local_count = prt_count ! Start address of new particles
ENDIF
!
!-- Calculate initial_weighting_factor diagnostically
IF ( number_concentration /= -1.0_wp .AND. number_concentration > 0.0_wp ) THEN
initial_weighting_factor = number_concentration * &
pdx(1) * pdy(1) * pdz(1)
END IF
n = 0
DO i = 1, number_of_particle_groups
pos_z = psb(i)
DO WHILE ( pos_z <= pst(i) )
IF ( pos_z >= zw(0) .AND. pos_z < zw(nzt) ) THEN
pos_y = pss(i)
DO WHILE ( pos_y <= psn(i) )
IF ( pos_y >= nys * dy .AND. &
pos_y < ( nyn + 1 ) * dy ) THEN
pos_x = psl(i)
xloop: DO WHILE ( pos_x <= psr(i) )
IF ( pos_x >= nxl * dx .AND. &
pos_x < ( nxr + 1) * dx ) THEN
DO j = 1, particles_per_point
n = n + 1
tmp_particle%x = pos_x
tmp_particle%y = pos_y
tmp_particle%z = pos_z
tmp_particle%age = 0.0_wp
tmp_particle%age_m = 0.0_wp
tmp_particle%dt_sum = 0.0_wp
tmp_particle%e_m = 0.0_wp
tmp_particle%rvar1 = 0.0_wp
tmp_particle%rvar2 = 0.0_wp
tmp_particle%rvar3 = 0.0_wp
tmp_particle%speed_x = 0.0_wp
tmp_particle%speed_y = 0.0_wp
tmp_particle%speed_z = 0.0_wp
tmp_particle%origin_x = pos_x
tmp_particle%origin_y = pos_y
tmp_particle%origin_z = pos_z
IF ( curvature_solution_effects ) THEN
tmp_particle%aux1 = 0.0_wp ! dry aerosol radius
tmp_particle%aux2 = dt_3d ! last Rosenbrock timestep
ELSE
tmp_particle%aux1 = 0.0_wp ! free to use
tmp_particle%aux2 = 0.0_wp ! free to use
ENDIF
tmp_particle%radius = particle_groups(i)%radius
tmp_particle%weight_factor = initial_weighting_factor
tmp_particle%class = 1
tmp_particle%group = i
tmp_particle%id = 0_idp
tmp_particle%particle_mask = .TRUE.
tmp_particle%block_nr = -1
!
!-- Determine the grid indices of the particle position
ip = INT( tmp_particle%x * ddx )
jp = INT( tmp_particle%y * ddy )
!
!-- In case of stretching the actual k index is found iteratively
IF ( dz_stretch_level /= -9999999.9_wp .OR. &
dz_stretch_level_start(1) /= -9999999.9_wp ) THEN
kp = MINLOC( ABS( tmp_particle%z - zu ), DIM = 1 ) - 1
ELSE
kp = INT( tmp_particle%z / dz(1) + 1 + offset_ocean_nzt )
ENDIF
!
!-- Determine surface level. Therefore, check for
!-- upward-facing wall on w-grid.
k_surf = topo_top_ind(jp,ip,3)
IF ( seed_follows_topography ) THEN
!
!-- Particle height is given relative to topography
kp = kp + k_surf
tmp_particle%z = tmp_particle%z + zw(k_surf)
!-- Skip particle release if particle position is
!-- above model top, or within topography in case
!-- of overhanging structures.
IF ( kp > nzt .OR. &
.NOT. BTEST( wall_flags_0(kp,jp,ip), 0 ) ) THEN
pos_x = pos_x + pdx(i)
CYCLE xloop
ENDIF
!
!-- Skip particle release if particle position is
!-- below surface, or within topography in case
!-- of overhanging structures.
ELSEIF ( .NOT. seed_follows_topography .AND. &
tmp_particle%z <= zw(k_surf) .OR. &
.NOT. BTEST( wall_flags_0(kp,jp,ip), 0 ) )&
THEN
pos_x = pos_x + pdx(i)
CYCLE xloop
ENDIF
local_count(kp,jp,ip) = local_count(kp,jp,ip) + 1
IF ( .NOT. first_stride ) THEN
IF ( ip < nxl .OR. jp < nys .OR. kp < nzb+1 ) THEN
write(6,*) 'xl ',ip,jp,kp,nxl,nys,nzb+1
ENDIF
IF ( ip > nxr .OR. jp > nyn .OR. kp > nzt ) THEN
write(6,*) 'xu ',ip,jp,kp,nxr,nyn,nzt
ENDIF
grid_particles(kp,jp,ip)%particles(local_count(kp,jp,ip)) = tmp_particle
ENDIF
ENDDO
ENDIF
pos_x = pos_x + pdx(i)
ENDDO xloop
ENDIF
pos_y = pos_y + pdy(i)
ENDDO
ENDIF
pos_z = pos_z + pdz(i)
ENDDO
ENDDO
IF ( first_stride ) THEN
DO ip = nxl, nxr
DO jp = nys, nyn
DO kp = nzb+1, nzt
IF ( phase == PHASE_INIT ) THEN
IF ( local_count(kp,jp,ip) > 0 ) THEN
alloc_size = MAX( INT( local_count(kp,jp,ip) * &
( 1.0_wp + alloc_factor / 100.0_wp ) ), &
1 )
ELSE
alloc_size = 1
ENDIF
ALLOCATE(grid_particles(kp,jp,ip)%particles(1:alloc_size))
DO n = 1, alloc_size
grid_particles(kp,jp,ip)%particles(n) = zero_particle
ENDDO
ELSEIF ( phase == PHASE_RELEASE ) THEN
IF ( local_count(kp,jp,ip) > 0 ) THEN
new_size = local_count(kp,jp,ip) + prt_count(kp,jp,ip)
alloc_size = MAX( INT( new_size * ( 1.0_wp + &
alloc_factor / 100.0_wp ) ), 1 )
IF( alloc_size > SIZE( grid_particles(kp,jp,ip)%particles) ) THEN
CALL realloc_particles_array( ip, jp, kp, alloc_size )
ENDIF
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDIF
ENDDO
local_start = prt_count+1
prt_count = local_count
!
!-- Calculate particle IDs
DO ip = nxl, nxr
DO jp = nys, nyn
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
DO n = local_start(kp,jp,ip), number_of_particles !only new particles
particles(n)%id = 10000_idp**3 * grid_particles(kp,jp,ip)%id_counter + &
10000_idp**2 * kp + 10000_idp * jp + ip
!
!-- Count the number of particles that have been released before
grid_particles(kp,jp,ip)%id_counter = &
grid_particles(kp,jp,ip)%id_counter + 1
ENDDO
ENDDO
ENDDO
ENDDO
!
!-- Initialize aerosol background spectrum
IF ( curvature_solution_effects ) THEN
CALL lpm_init_aerosols( local_start )
ENDIF
!
!-- Add random fluctuation to particle positions.
IF ( random_start_position ) THEN
DO ip = nxl, nxr
DO jp = nys, nyn
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
!
!-- Move only new particles. Moreover, limit random fluctuation
!-- in order to prevent that particles move more than one grid box,
!-- which would lead to problems concerning particle exchange
!-- between processors in case pdx/pdy are larger than dx/dy,
!-- respectively.
DO n = local_start(kp,jp,ip), number_of_particles
IF ( psl(particles(n)%group) /= psr(particles(n)%group) ) THEN
rand_contr = ( random_function( iran_part ) - 0.5_wp ) * &
pdx(particles(n)%group)
particles(n)%x = particles(n)%x + &
MERGE( rand_contr, SIGN( dx, rand_contr ), &
ABS( rand_contr ) < dx &
)
ENDIF
IF ( pss(particles(n)%group) /= psn(particles(n)%group) ) THEN
rand_contr = ( random_function( iran_part ) - 0.5_wp ) * &
pdy(particles(n)%group)
particles(n)%y = particles(n)%y + &
MERGE( rand_contr, SIGN( dy, rand_contr ), &
ABS( rand_contr ) < dy &
)
ENDIF
IF ( psb(particles(n)%group) /= pst(particles(n)%group) ) THEN
rand_contr = ( random_function( iran_part ) - 0.5_wp ) * &
pdz(particles(n)%group)
particles(n)%z = particles(n)%z + &
MERGE( rand_contr, SIGN( dzw(kp), rand_contr ), &
ABS( rand_contr ) < dzw(kp) &
)
ENDIF
ENDDO
!
!-- Identify particles located outside the model domain and reflect
!-- or absorb them if necessary.
CALL lpm_boundary_conds( 'bottom/top', i, j, k )
!
!-- Furthermore, remove particles located in topography. Note, as
!-- the particle speed is still zero at this point, wall
!-- reflection boundary conditions will not work in this case.
particles => &
grid_particles(kp,jp,ip)%particles(1:number_of_particles)
DO n = local_start(kp,jp,ip), number_of_particles
i = particles(n)%x * ddx
j = particles(n)%y * ddy
k = particles(n)%z / dz(1) + 1 + offset_ocean_nzt
DO WHILE( zw(k) < particles(n)%z )
k = k + 1
ENDDO
DO WHILE( zw(k-1) > particles(n)%z )
k = k - 1
ENDDO
!
!-- Check if particle is within topography
IF ( .NOT. BTEST( wall_flags_0(k,j,i), 0 ) ) THEN
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
!
!-- Exchange particles between grid cells and processors
CALL lpm_move_particle
CALL lpm_exchange_horiz
ENDIF
!
!-- In case of random_start_position, delete particles identified by
!-- lpm_exchange_horiz and lpm_boundary_conds. Then sort particles into blocks,
!-- which is needed for a fast interpolation of the LES fields on the particle
!-- position.
CALL lpm_sort_and_delete
!
!-- Determine the current number of particles
DO ip = nxl, nxr
DO jp = nys, nyn
DO kp = nzb+1, nzt
number_of_particles = number_of_particles &
+ prt_count(kp,jp,ip)
ENDDO
ENDDO
ENDDO
!
!-- Calculate the number of particles of the total domain
#if defined( __parallel )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( number_of_particles, total_number_of_particles, 1, &
MPI_INTEGER, MPI_SUM, comm2d, ierr )
#else
total_number_of_particles = number_of_particles
#endif
RETURN
END SUBROUTINE lpm_create_particle
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This routine initialize the particles as aerosols with physio-chemical
!> properties.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_init_aerosols(local_start)
REAL(wp) :: afactor !< curvature effects
REAL(wp) :: bfactor !< solute effects
REAL(wp) :: dlogr !< logarithmic width of radius bin
REAL(wp) :: e_a !< vapor pressure
REAL(wp) :: e_s !< saturation vapor pressure
REAL(wp) :: rmin = 0.005e-6_wp !< minimum aerosol radius
REAL(wp) :: rmax = 10.0e-6_wp !< maximum aerosol radius
REAL(wp) :: r_mid !< mean radius of bin
REAL(wp) :: r_l !< left radius of bin
REAL(wp) :: r_r !< right radius of bin
REAL(wp) :: sigma !< surface tension
REAL(wp) :: t_int !< temperature
INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(IN) :: local_start !<
INTEGER(iwp) :: n !<
INTEGER(iwp) :: ip !<
INTEGER(iwp) :: jp !<
INTEGER(iwp) :: kp !<
!
!-- Set constants for different aerosol species
IF ( TRIM( aero_species ) == 'nacl' ) THEN
molecular_weight_of_solute = 0.05844_wp
rho_s = 2165.0_wp
vanthoff = 2.0_wp
ELSEIF ( TRIM( aero_species ) == 'c3h4o4' ) THEN
molecular_weight_of_solute = 0.10406_wp
rho_s = 1600.0_wp
vanthoff = 1.37_wp
ELSEIF ( TRIM( aero_species ) == 'nh4o3' ) THEN
molecular_weight_of_solute = 0.08004_wp
rho_s = 1720.0_wp
vanthoff = 2.31_wp
ELSE
WRITE( message_string, * ) 'unknown aerosol species ', &
'aero_species = "', TRIM( aero_species ), '"'
CALL message( 'lpm_init', 'PA0470', 1, 2, 0, 6, 0 )
ENDIF
!
!-- The following typical aerosol spectra are taken from Jaenicke (1993):
!-- Tropospheric aerosols. Published in Aerosol-Cloud-Climate Interactions.
IF ( TRIM( aero_type ) == 'polar' ) THEN
na = (/ 2.17e1, 1.86e-1, 3.04e-4 /) * 1.0E6_wp
rm = (/ 0.0689, 0.375, 4.29 /) * 1.0E-6_wp
log_sigma = (/ 0.245, 0.300, 0.291 /)
ELSEIF ( TRIM( aero_type ) == 'background' ) THEN
na = (/ 1.29e2, 5.97e1, 6.35e1 /) * 1.0E6_wp
rm = (/ 0.0036, 0.127, 0.259 /) * 1.0E-6_wp
log_sigma = (/ 0.645, 0.253, 0.425 /)
ELSEIF ( TRIM( aero_type ) == 'maritime' ) THEN
na = (/ 1.33e2, 6.66e1, 3.06e0 /) * 1.0E6_wp
rm = (/ 0.0039, 0.133, 0.29 /) * 1.0E-6_wp
log_sigma = (/ 0.657, 0.210, 0.396 /)
ELSEIF ( TRIM( aero_type ) == 'continental' ) THEN
na = (/ 3.20e3, 2.90e3, 3.00e-1 /) * 1.0E6_wp
rm = (/ 0.01, 0.058, 0.9 /) * 1.0E-6_wp
log_sigma = (/ 0.161, 0.217, 0.380 /)
ELSEIF ( TRIM( aero_type ) == 'desert' ) THEN
na = (/ 7.26e2, 1.14e3, 1.78e-1 /) * 1.0E6_wp
rm = (/ 0.001, 0.0188, 10.8 /) * 1.0E-6_wp
log_sigma = (/ 0.247, 0.770, 0.438 /)
ELSEIF ( TRIM( aero_type ) == 'rural' ) THEN
na = (/ 6.65e3, 1.47e2, 1.99e3 /) * 1.0E6_wp
rm = (/ 0.00739, 0.0269, 0.0419 /) * 1.0E-6_wp
log_sigma = (/ 0.225, 0.557, 0.266 /)
ELSEIF ( TRIM( aero_type ) == 'urban' ) THEN
na = (/ 9.93e4, 1.11e3, 3.64e4 /) * 1.0E6_wp
rm = (/ 0.00651, 0.00714, 0.0248 /) * 1.0E-6_wp
log_sigma = (/ 0.245, 0.666, 0.337 /)
ELSEIF ( TRIM( aero_type ) == 'user' ) THEN
CONTINUE
ELSE
WRITE( message_string, * ) 'unknown aerosol type ', &
'aero_type = "', TRIM( aero_type ), '"'
CALL message( 'lpm_init', 'PA0459', 1, 2, 0, 6, 0 )
ENDIF
DO ip = nxl, nxr
DO jp = nys, nyn
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
dlogr = ( LOG10(rmax) - LOG10(rmin) ) / ( number_of_particles - local_start(kp,jp,ip) + 1 )
!
!-- Initialize the aerosols with a predefined spectral distribution
!-- of the dry radius (logarithmically increasing bins) and a varying
!-- weighting factor
DO n = local_start(kp,jp,ip), number_of_particles !only new particles
r_l = 10.0**( LOG10( rmin ) + (n-1) * dlogr )
r_r = 10.0**( LOG10( rmin ) + n * dlogr )
r_mid = SQRT( r_l * r_r )
particles(n)%aux1 = r_mid
particles(n)%weight_factor = &
( na(1) / ( SQRT( 2.0_wp * pi ) * log_sigma(1) ) * &
EXP( - LOG10( r_mid / rm(1) )**2 / ( 2.0_wp * log_sigma(1)**2 ) ) + &
na(2) / ( SQRT( 2.0_wp * pi ) * log_sigma(2) ) * &
EXP( - LOG10( r_mid / rm(2) )**2 / ( 2.0_wp * log_sigma(2)**2 ) ) + &
na(3) / ( SQRT( 2.0_wp * pi ) * log_sigma(3) ) * &
EXP( - LOG10( r_mid / rm(3) )**2 / ( 2.0_wp * log_sigma(3)**2 ) ) &
) * ( LOG10(r_r) - LOG10(r_l) ) * ( dx * dy * dzw(kp) )
!
!-- Multiply weight_factor with the namelist parameter aero_weight
!-- to increase or decrease the number of simulated aerosols
particles(n)%weight_factor = particles(n)%weight_factor * aero_weight
IF ( particles(n)%weight_factor - FLOOR(particles(n)%weight_factor,KIND=wp) &
> random_function( iran_part ) ) THEN
particles(n)%weight_factor = FLOOR(particles(n)%weight_factor,KIND=wp) + 1.0_wp
ELSE
particles(n)%weight_factor = FLOOR(particles(n)%weight_factor,KIND=wp)
ENDIF
!
!-- Unnecessary particles will be deleted
IF ( particles(n)%weight_factor <= 0.0_wp ) particles(n)%particle_mask = .FALSE.
ENDDO
!
!-- Set particle radius to equilibrium radius based on the environmental
!-- supersaturation (Khvorostyanov and Curry, 2007, JGR). This avoids
!-- the sometimes lengthy growth toward their equilibrium radius within
!-- the simulation.
t_int = pt(kp,jp,ip) * exner(kp)
e_s = magnus( t_int )
e_a = q(kp,jp,ip) * hyp(kp) / ( q(kp,jp,ip) + rd_d_rv )
sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp )
afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int )
bfactor = vanthoff * molecular_weight_of_water * &
rho_s / ( molecular_weight_of_solute * rho_l )
!
!-- The formula is only valid for subsaturated environments. For
!-- supersaturations higher than -5 %, the supersaturation is set to -5%.
IF ( e_a / e_s >= 0.95_wp ) e_a = 0.95_wp * e_s
DO n = local_start(kp,jp,ip), number_of_particles !only new particles
!
!-- For details on this equation, see Eq. (14) of Khvorostyanov and
!-- Curry (2007, JGR)
particles(n)%radius = bfactor**0.3333333_wp * &
particles(n)%aux1 / ( 1.0_wp - e_a / e_s )**0.3333333_wp / &
( 1.0_wp + ( afactor / ( 3.0_wp * bfactor**0.3333333_wp * &
particles(n)%aux1 ) ) / &
( 1.0_wp - e_a / e_s )**0.6666666_wp &
)
ENDDO
ENDDO
ENDDO
ENDDO
END SUBROUTINE lpm_init_aerosols
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculates quantities required for considering the SGS velocity fluctuations
!> in the particle transport by a stochastic approach. The respective
!> quantities are: SGS-TKE gradients and horizontally averaged profiles of the
!> SGS TKE and the resolved-scale velocity variances.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_init_sgs_tke
USE statistics, &
ONLY: flow_statistics_called, hom, sums, sums_l
INTEGER(iwp) :: i !< index variable along x
INTEGER(iwp) :: j !< index variable along y
INTEGER(iwp) :: k !< index variable along z
INTEGER(iwp) :: m !< running index for the surface elements
REAL(wp) :: flag1 !< flag to mask topography
!
!-- TKE gradient along x and y
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
IF ( .NOT. BTEST( wall_flags_0(k,j,i-1), 0 ) .AND. &
BTEST( wall_flags_0(k,j,i), 0 ) .AND. &
BTEST( wall_flags_0(k,j,i+1), 0 ) ) &
THEN
de_dx(k,j,i) = 2.0_wp * sgs_wf_part * &
( e(k,j,i+1) - e(k,j,i) ) * ddx
ELSEIF ( BTEST( wall_flags_0(k,j,i-1), 0 ) .AND. &
BTEST( wall_flags_0(k,j,i), 0 ) .AND. &
.NOT. BTEST( wall_flags_0(k,j,i+1), 0 ) ) &
THEN
de_dx(k,j,i) = 2.0_wp * sgs_wf_part * &
( e(k,j,i) - e(k,j,i-1) ) * ddx
ELSEIF ( .NOT. BTEST( wall_flags_0(k,j,i), 22 ) .AND. &
.NOT. BTEST( wall_flags_0(k,j,i+1), 22 ) ) &
THEN
de_dx(k,j,i) = 0.0_wp
ELSEIF ( .NOT. BTEST( wall_flags_0(k,j,i-1), 22 ) .AND. &
.NOT. BTEST( wall_flags_0(k,j,i), 22 ) ) &
THEN
de_dx(k,j,i) = 0.0_wp
ELSE
de_dx(k,j,i) = sgs_wf_part * ( e(k,j,i+1) - e(k,j,i-1) ) * ddx
ENDIF
IF ( .NOT. BTEST( wall_flags_0(k,j-1,i), 0 ) .AND. &
BTEST( wall_flags_0(k,j,i), 0 ) .AND. &
BTEST( wall_flags_0(k,j+1,i), 0 ) ) &
THEN
de_dy(k,j,i) = 2.0_wp * sgs_wf_part * &
( e(k,j+1,i) - e(k,j,i) ) * ddy
ELSEIF ( BTEST( wall_flags_0(k,j-1,i), 0 ) .AND. &
BTEST( wall_flags_0(k,j,i), 0 ) .AND. &
.NOT. BTEST( wall_flags_0(k,j+1,i), 0 ) ) &
THEN
de_dy(k,j,i) = 2.0_wp * sgs_wf_part * &
( e(k,j,i) - e(k,j-1,i) ) * ddy
ELSEIF ( .NOT. BTEST( wall_flags_0(k,j,i), 22 ) .AND. &
.NOT. BTEST( wall_flags_0(k,j+1,i), 22 ) ) &
THEN
de_dy(k,j,i) = 0.0_wp
ELSEIF ( .NOT. BTEST( wall_flags_0(k,j-1,i), 22 ) .AND. &
.NOT. BTEST( wall_flags_0(k,j,i), 22 ) ) &
THEN
de_dy(k,j,i) = 0.0_wp
ELSE
de_dy(k,j,i) = sgs_wf_part * ( e(k,j+1,i) - e(k,j-1,i) ) * ddy
ENDIF
ENDDO
ENDDO
ENDDO
!
!-- TKE gradient along z at topograhy and including bottom and top boundary conditions
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt-1
!
!-- Flag to mask topography
flag1 = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) )
de_dz(k,j,i) = 2.0_wp * sgs_wf_part * &
( e(k+1,j,i) - e(k-1,j,i) ) / ( zu(k+1) - zu(k-1) ) &
* flag1
ENDDO
!
!-- upward-facing surfaces
DO m = bc_h(0)%start_index(j,i), bc_h(0)%end_index(j,i)
k = bc_h(0)%k(m)
de_dz(k,j,i) = 2.0_wp * sgs_wf_part * &
( e(k+1,j,i) - e(k,j,i) ) / ( zu(k+1) - zu(k) )
ENDDO
!
!-- downward-facing surfaces
DO m = bc_h(1)%start_index(j,i), bc_h(1)%end_index(j,i)
k = bc_h(1)%k(m)
de_dz(k,j,i) = 2.0_wp * sgs_wf_part * &
( e(k,j,i) - e(k-1,j,i) ) / ( zu(k) - zu(k-1) )
ENDDO
de_dz(nzb,j,i) = 0.0_wp
de_dz(nzt,j,i) = 0.0_wp
de_dz(nzt+1,j,i) = 0.0_wp
ENDDO
ENDDO
!
!-- Ghost point exchange
CALL exchange_horiz( de_dx, nbgp )
CALL exchange_horiz( de_dy, nbgp )
CALL exchange_horiz( de_dz, nbgp )
CALL exchange_horiz( diss, nbgp )
!
!-- Set boundary conditions at non-periodic boundaries. Note, at non-period
!-- boundaries zero-gradient boundary conditions are set for the subgrid TKE.
!-- Thus, TKE gradients normal to the respective lateral boundaries are zero,
!-- while tangetial TKE gradients then must be the same as within the prognostic
!-- domain.
IF ( bc_dirichlet_l ) THEN
de_dx(:,:,-1) = 0.0_wp
de_dy(:,:,-1) = de_dy(:,:,0)
de_dz(:,:,-1) = de_dz(:,:,0)
ENDIF
IF ( bc_dirichlet_r ) THEN
de_dx(:,:,nxr+1) = 0.0_wp
de_dy(:,:,nxr+1) = de_dy(:,:,nxr)
de_dz(:,:,nxr+1) = de_dz(:,:,nxr)
ENDIF
IF ( bc_dirichlet_n ) THEN
de_dx(:,nyn+1,:) = de_dx(:,nyn,:)
de_dy(:,nyn+1,:) = 0.0_wp
de_dz(:,nyn+1,:) = de_dz(:,nyn,:)
ENDIF
IF ( bc_dirichlet_s ) THEN
de_dx(:,nys-1,:) = de_dx(:,nys,:)
de_dy(:,nys-1,:) = 0.0_wp
de_dz(:,nys-1,:) = de_dz(:,nys,:)
ENDIF
!
!-- Calculate the horizontally averaged profiles of SGS TKE and resolved
!-- velocity variances (they may have been already calculated in routine
!-- flow_statistics).
IF ( .NOT. flow_statistics_called ) THEN
!
!-- First calculate horizontally averaged profiles of the horizontal
!-- velocities.
sums_l(:,1,0) = 0.0_wp
sums_l(:,2,0) = 0.0_wp
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
!
!-- Flag indicating vicinity of wall
flag1 = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 24 ) )
sums_l(k,1,0) = sums_l(k,1,0) + u(k,j,i) * flag1
sums_l(k,2,0) = sums_l(k,2,0) + v(k,j,i) * flag1
ENDDO
ENDDO
ENDDO
#if defined( __parallel )
!
!-- Compute total sum from local sums
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
#else
sums(:,1) = sums_l(:,1,0)
sums(:,2) = sums_l(:,2,0)
#endif
!
!-- Final values are obtained by division by the total number of grid
!-- points used for the summation.
hom(:,1,1,0) = sums(:,1) / ngp_2dh_outer(:,0) ! u
hom(:,1,2,0) = sums(:,2) / ngp_2dh_outer(:,0) ! v
!
!-- Now calculate the profiles of SGS TKE and the resolved-scale
!-- velocity variances
sums_l(:,8,0) = 0.0_wp
sums_l(:,30,0) = 0.0_wp
sums_l(:,31,0) = 0.0_wp
sums_l(:,32,0) = 0.0_wp
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
!
!-- Flag indicating vicinity of wall
flag1 = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 24 ) )
sums_l(k,8,0) = sums_l(k,8,0) + e(k,j,i) * flag1
sums_l(k,30,0) = sums_l(k,30,0) + ( u(k,j,i) - hom(k,1,1,0) )**2 * flag1
sums_l(k,31,0) = sums_l(k,31,0) + ( v(k,j,i) - hom(k,1,2,0) )**2 * flag1
sums_l(k,32,0) = sums_l(k,32,0) + w(k,j,i)**2 * flag1
ENDDO
ENDDO
ENDDO
#if defined( __parallel )
!
!-- Compute total sum from local sums
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,8,0), sums(nzb,8), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,30,0), sums(nzb,30), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,31,0), sums(nzb,31), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( sums_l(nzb,32,0), sums(nzb,32), nzt+2-nzb, &
MPI_REAL, MPI_SUM, comm2d, ierr )
#else
sums(:,8) = sums_l(:,8,0)
sums(:,30) = sums_l(:,30,0)
sums(:,31) = sums_l(:,31,0)
sums(:,32) = sums_l(:,32,0)
#endif
!
!-- Final values are obtained by division by the total number of grid
!-- points used for the summation.
hom(:,1,8,0) = sums(:,8) / ngp_2dh_outer(:,0) ! e
hom(:,1,30,0) = sums(:,30) / ngp_2dh_outer(:,0) ! u*2
hom(:,1,31,0) = sums(:,31) / ngp_2dh_outer(:,0) ! v*2
hom(:,1,32,0) = sums(:,32) / ngp_2dh_outer(:,0) ! w*2
ENDIF
END SUBROUTINE lpm_init_sgs_tke
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Sobroutine control lpm actions, i.e. all actions during one time step.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_actions( location )
CHARACTER (LEN=*), INTENT(IN) :: location !< call location string
INTEGER(iwp) :: i !<
INTEGER(iwp) :: ie !<
INTEGER(iwp) :: is !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: je !<
INTEGER(iwp) :: js !<
INTEGER(iwp), SAVE :: lpm_count = 0 !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: ke !<
INTEGER(iwp) :: ks !<
INTEGER(iwp) :: m !<
INTEGER(iwp), SAVE :: steps = 0 !<
LOGICAL :: first_loop_stride !<
SELECT CASE ( location )
CASE ( 'after_pressure_solver' )
!
!-- The particle model is executed if particle advection start is reached and only at the end
!-- of the intermediate time step loop.
IF ( time_since_reference_point >= particle_advection_start &
.AND. intermediate_timestep_count == intermediate_timestep_count_max ) &
THEN
CALL cpu_log( log_point(25), 'lpm', 'start' )
!
!-- Write particle data at current time on file.
!-- This has to be done here, before particles are further processed,
!-- because they may be deleted within this timestep (in case that
!-- dt_write_particle_data = dt_prel = particle_maximum_age).
time_write_particle_data = time_write_particle_data + dt_3d
IF ( time_write_particle_data >= dt_write_particle_data ) THEN
CALL lpm_data_output_particles
!
!-- The MOD function allows for changes in the output interval with restart
!-- runs.
time_write_particle_data = MOD( time_write_particle_data, &
MAX( dt_write_particle_data, dt_3d ) )
ENDIF
!
!-- Initialize arrays for marking those particles to be deleted after the
!-- (sub-) timestep
deleted_particles = 0
!
!-- Initialize variables used for accumulating the number of particles
!-- xchanged between the subdomains during all sub-timesteps (if sgs
!-- velocities are included). These data are output further below on the
!-- particle statistics file.
trlp_count_sum = 0
trlp_count_recv_sum = 0
trrp_count_sum = 0
trrp_count_recv_sum = 0
trsp_count_sum = 0
trsp_count_recv_sum = 0
trnp_count_sum = 0
trnp_count_recv_sum = 0
!
!-- Calculate exponential term used in case of particle inertia for each
!-- of the particle groups
DO m = 1, number_of_particle_groups
IF ( particle_groups(m)%density_ratio /= 0.0_wp ) THEN
particle_groups(m)%exp_arg = &
4.5_wp * particle_groups(m)%density_ratio * &
molecular_viscosity / ( particle_groups(m)%radius )**2
particle_groups(m)%exp_term = EXP( -particle_groups(m)%exp_arg * &
dt_3d )
ENDIF
ENDDO
!
!-- If necessary, release new set of particles
IF ( ( simulated_time - last_particle_release_time ) >= dt_prel .AND. &
end_time_prel > simulated_time ) THEN
DO WHILE ( ( simulated_time - last_particle_release_time ) >= dt_prel )
CALL lpm_create_particle( PHASE_RELEASE )
last_particle_release_time = last_particle_release_time + dt_prel
ENDDO
ENDIF
!
!-- Reset summation arrays
IF ( cloud_droplets ) THEN
ql_c = 0.0_wp
ql_v = 0.0_wp
ql_vp = 0.0_wp
ENDIF
first_loop_stride = .TRUE.
grid_particles(:,:,:)%time_loop_done = .TRUE.
!
!-- Timestep loop for particle advection.
!-- This loop has to be repeated until the advection time of every particle
!-- (within the total domain!) has reached the LES timestep (dt_3d).
!-- In case of including the SGS velocities, the particle timestep may be
!-- smaller than the LES timestep (because of the Lagrangian timescale
!-- restriction) and particles may require to undergo several particle
!-- timesteps, before the LES timestep is reached. Because the number of these
!-- particle timesteps to be carried out is unknown at first, these steps are
!-- carried out in the following infinite loop with exit condition.
DO
CALL cpu_log( log_point_s(44), 'lpm_advec', 'start' )
CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' )
!
!-- If particle advection includes SGS velocity components, calculate the
!-- required SGS quantities (i.e. gradients of the TKE, as well as
!-- horizontally averaged profiles of the SGS TKE and the resolved-scale
!-- velocity variances)
IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN
CALL lpm_init_sgs_tke
ENDIF
!
!-- In case SGS-particle speed is considered, particles may carry out
!-- several particle timesteps. In order to prevent unnecessary
!-- treatment of particles that already reached the final time level,
!-- particles are sorted into contiguous blocks of finished and
!-- not-finished particles, in addition to their already sorting
!-- according to their sub-boxes.
IF ( .NOT. first_loop_stride .AND. use_sgs_for_particles ) &
CALL lpm_sort_timeloop_done
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
number_of_particles = prt_count(k,j,i)
!
!-- If grid cell gets empty, flag must be true
IF ( number_of_particles <= 0 ) THEN
grid_particles(k,j,i)%time_loop_done = .TRUE.
CYCLE
ENDIF
IF ( .NOT. first_loop_stride .AND. &
grid_particles(k,j,i)%time_loop_done ) CYCLE
particles => grid_particles(k,j,i)%particles(1:number_of_particles)
particles(1:number_of_particles)%particle_mask = .TRUE.
!
!-- Initialize the variable storing the total time that a particle
!-- has advanced within the timestep procedure
IF ( first_loop_stride ) THEN
particles(1:number_of_particles)%dt_sum = 0.0_wp
ENDIF
!
!-- Particle (droplet) growth by condensation/evaporation and
!-- collision
IF ( cloud_droplets .AND. first_loop_stride) THEN
!
!-- Droplet growth by condensation / evaporation
CALL lpm_droplet_condensation(i,j,k)
!
!-- Particle growth by collision
IF ( collision_kernel /= 'none' ) THEN
CALL lpm_droplet_collision(i,j,k)
ENDIF
ENDIF
!
!-- Initialize the switch used for the loop exit condition checked
!-- at the end of this loop. If at least one particle has failed to
!-- reach the LES timestep, this switch will be set false in
!-- lpm_advec.
dt_3d_reached_l = .TRUE.
!
!-- Particle advection
CALL lpm_advec( i, j, k )
!
!-- Particle reflection from walls. Only applied if the particles
!-- are in the vertical range of the topography. (Here, some
!-- optimization is still possible.)
IF ( topography /= 'flat' .AND. k < nzb_max + 2 ) THEN
CALL lpm_boundary_conds( 'walls', i, j, k )
ENDIF
!
!-- User-defined actions after the calculation of the new particle
!-- position
CALL user_lpm_advec( i, j, k )
!
!-- Apply boundary conditions to those particles that have crossed
!-- the top or bottom boundary and delete those particles, which are
!-- older than allowed
CALL lpm_boundary_conds( 'bottom/top', i, j, k )
!
!--- If not all particles of the actual grid cell have reached the
!-- LES timestep, this cell has to do another loop iteration. Due to
!-- the fact that particles can move into neighboring grid cells,
!-- these neighbor cells also have to perform another loop iteration.
!-- Please note, this realization does not work properly if
!-- particles move into another subdomain.
IF ( .NOT. dt_3d_reached_l ) THEN
ks = MAX(nzb+1,k-1)
ke = MIN(nzt,k+1)
js = MAX(nys,j-1)
je = MIN(nyn,j+1)
is = MAX(nxl,i-1)
ie = MIN(nxr,i+1)
grid_particles(ks:ke,js:je,is:ie)%time_loop_done = .FALSE.
ELSE
grid_particles(k,j,i)%time_loop_done = .TRUE.
ENDIF
ENDDO
ENDDO
ENDDO
steps = steps + 1
dt_3d_reached_l = ALL(grid_particles(:,:,:)%time_loop_done)
!
!-- Find out, if all particles on every PE have completed the LES timestep
!-- and set the switch corespondingly
#if defined( __parallel )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( dt_3d_reached_l, dt_3d_reached, 1, MPI_LOGICAL, &
MPI_LAND, comm2d, ierr )
#else
dt_3d_reached = dt_3d_reached_l
#endif
CALL cpu_log( log_point_s(44), 'lpm_advec', 'stop' )
!
!-- Apply splitting and merging algorithm
IF ( cloud_droplets ) THEN
IF ( splitting ) THEN
CALL lpm_splitting
ENDIF
IF ( merging ) THEN
CALL lpm_merging
ENDIF
ENDIF
!
!-- Move Particles local to PE to a different grid cell
CALL lpm_move_particle
!
!-- Horizontal boundary conditions including exchange between subdmains
CALL lpm_exchange_horiz
!
!-- IF .FALSE., lpm_sort_and_delete is done inside pcmp
IF ( .NOT. dt_3d_reached .OR. .NOT. nested_run ) THEN
!
!-- Pack particles (eliminate those marked for deletion),
!-- determine new number of particles
CALL lpm_sort_and_delete
!-- Initialize variables for the next (sub-) timestep, i.e., for marking
!-- those particles to be deleted after the timestep
deleted_particles = 0
ENDIF
IF ( dt_3d_reached ) EXIT
first_loop_stride = .FALSE.
ENDDO ! timestep loop
!
!-- in case of nested runs do the transfer of particles after every full model time step
IF ( nested_run ) THEN
CALL particles_from_parent_to_child
CALL particles_from_child_to_parent
CALL pmcp_p_delete_particles_in_fine_grid_area
CALL lpm_sort_and_delete
deleted_particles = 0
ENDIF
!
!-- Calculate the new liquid water content for each grid box
IF ( cloud_droplets ) CALL lpm_calc_liquid_water_content
!
!-- At the end all arrays are exchanged
IF ( cloud_droplets ) THEN
CALL exchange_horiz( ql, nbgp )
CALL exchange_horiz( ql_c, nbgp )
CALL exchange_horiz( ql_v, nbgp )
CALL exchange_horiz( ql_vp, nbgp )
ENDIF
!
!-- Deallocate unused memory
IF ( deallocate_memory .AND. lpm_count == step_dealloc ) THEN
CALL dealloc_particles_array
lpm_count = 0
ELSEIF ( deallocate_memory ) THEN
lpm_count = lpm_count + 1
ENDIF
!
!-- Write particle statistics (in particular the number of particles
!-- exchanged between the subdomains) on file
IF ( write_particle_statistics ) CALL lpm_write_exchange_statistics
!
!-- Execute Interactions of condnesation and evaporation to humidity and
!-- temperature field
IF ( cloud_droplets ) THEN
CALL lpm_interaction_droplets_ptq
CALL exchange_horiz( pt, nbgp )
CALL exchange_horiz( q, nbgp )
ENDIF
CALL cpu_log( log_point(25), 'lpm', 'stop' )
! !
! !-- Output of particle time series
! IF ( particle_advection ) THEN
! IF ( time_dopts >= dt_dopts .OR. &
! ( time_since_reference_point >= particle_advection_start .AND. &
! first_call_lpm ) ) THEN
! CALL lpm_data_output_ptseries
! time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
! ENDIF
! ENDIF
!
!-- Set this switch to .false. @todo: maybe find better solution.
first_call_lpm = .FALSE.
ENDIF! ENDIF statement of lpm_actions('after_pressure_solver')
CASE ( 'after_integration' )
!
!-- Call at the end of timestep routine to save particle velocities fields
!-- for the next timestep
CALL lpm_swap_timelevel_for_particle_advection
CASE DEFAULT
CONTINUE
END SELECT
END SUBROUTINE lpm_actions
!------------------------------------------------------------------------------!
! Description:
! ------------
!
!------------------------------------------------------------------------------!
SUBROUTINE particles_from_parent_to_child
IMPLICIT NONE
CALL pmcp_c_get_particle_from_parent ! Child actions
CALL pmcp_p_fill_particle_win ! Parent actions
RETURN
END SUBROUTINE particles_from_parent_to_child
!------------------------------------------------------------------------------!
! Description:
! ------------
!
!------------------------------------------------------------------------------!
SUBROUTINE particles_from_child_to_parent
IMPLICIT NONE
CALL pmcp_c_send_particle_to_parent ! Child actions
CALL pmcp_p_empty_particle_win ! Parent actions
RETURN
END SUBROUTINE particles_from_child_to_parent
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This routine write exchange statistics of the lpm in a ascii file.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_write_exchange_statistics
INTEGER(iwp) :: ip !<
INTEGER(iwp) :: jp !<
INTEGER(iwp) :: kp !<
INTEGER(iwp) :: tot_number_of_particles !<
!
!-- Determine the current number of particles
number_of_particles = 0
DO ip = nxl, nxr
DO jp = nys, nyn
DO kp = nzb+1, nzt
number_of_particles = number_of_particles &
+ prt_count(kp,jp,ip)
ENDDO
ENDDO
ENDDO
CALL check_open( 80 )
#if defined( __parallel )
WRITE ( 80, 8000 ) current_timestep_number+1, simulated_time+dt_3d, &
number_of_particles, pleft, trlp_count_sum, &
trlp_count_recv_sum, pright, trrp_count_sum, &
trrp_count_recv_sum, psouth, trsp_count_sum, &
trsp_count_recv_sum, pnorth, trnp_count_sum, &
trnp_count_recv_sum
#else
WRITE ( 80, 8000 ) current_timestep_number+1, simulated_time+dt_3d, &
number_of_particles
#endif
CALL close_file( 80 )
IF ( number_of_particles > 0 ) THEN
WRITE(9,*) 'number_of_particles ', number_of_particles, &
current_timestep_number + 1, simulated_time + dt_3d
ENDIF
#if defined( __parallel )
CALL MPI_ALLREDUCE( number_of_particles, tot_number_of_particles, 1, &
MPI_INTEGER, MPI_SUM, comm2d, ierr )
#else
tot_number_of_particles = number_of_particles
#endif
IF ( nested_run ) THEN
CALL pmcp_g_print_number_of_particles( simulated_time+dt_3d, &
tot_number_of_particles)
ENDIF
!
!-- Formats
8000 FORMAT (I6,1X,F7.2,4X,I10,5X,4(I3,1X,I4,'/',I4,2X),6X,I10)
END SUBROUTINE lpm_write_exchange_statistics
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Write particle data in FORTRAN binary and/or netCDF format
!------------------------------------------------------------------------------!
SUBROUTINE lpm_data_output_particles
INTEGER(iwp) :: ip !<
INTEGER(iwp) :: jp !<
INTEGER(iwp) :: kp !<
CALL cpu_log( log_point_s(40), 'lpm_data_output', 'start' )
!
!-- Attention: change version number for unit 85 (in routine check_open)
!-- whenever the output format for this unit is changed!
CALL check_open( 85 )
WRITE ( 85 ) simulated_time
WRITE ( 85 ) prt_count
DO ip = nxl, nxr
DO jp = nys, nyn
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
IF ( number_of_particles <= 0 ) CYCLE
WRITE ( 85 ) particles
ENDDO
ENDDO
ENDDO
CALL close_file( 85 )
#if defined( __netcdf )
! !
! !-- Output in netCDF format
! CALL check_open( 108 )
!
! !
! !-- Update the NetCDF time axis
! prt_time_count = prt_time_count + 1
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_time_prt, &
! (/ simulated_time /), &
! start = (/ prt_time_count /), count = (/ 1 /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 1 )
!
! !
! !-- Output the real number of particles used
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_rnop_prt, &
! (/ number_of_particles /), &
! start = (/ prt_time_count /), count = (/ 1 /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 2 )
!
! !
! !-- Output all particle attributes
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(1), particles%age, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 3 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(2), particles%user, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 4 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(3), particles%origin_x, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 5 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(4), particles%origin_y, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 6 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(5), particles%origin_z, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 7 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(6), particles%radius, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 8 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(7), particles%speed_x, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 9 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(8), particles%speed_y, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 10 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(9), particles%speed_z, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 11 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt,id_var_prt(10), &
! particles%weight_factor, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 12 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(11), particles%x, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 13 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(12), particles%y, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 14 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(13), particles%z, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 15 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(14), particles%class, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 16 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(15), particles%group, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 17 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(16), &
! particles%id2, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 18 )
!
! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(17), particles%id1, &
! start = (/ 1, prt_time_count /), &
! count = (/ maximum_number_of_particles /) )
! CALL netcdf_handle_error( 'lpm_data_output_particles', 19 )
!
#endif
CALL cpu_log( log_point_s(40), 'lpm_data_output', 'stop' )
END SUBROUTINE lpm_data_output_particles
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This routine calculates and provide particle timeseries output.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_data_output_ptseries
INTEGER(iwp) :: i !<
INTEGER(iwp) :: inum !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: jg !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: n !<
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pts_value !<
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pts_value_l !<
CALL cpu_log( log_point(36), 'data_output_ptseries', 'start' )
IF ( myid == 0 ) THEN
!
!-- Open file for time series output in NetCDF format
dopts_time_count = dopts_time_count + 1
CALL check_open( 109 )
#if defined( __netcdf )
!
!-- Update the particle time series time axis
nc_stat = NF90_PUT_VAR( id_set_pts, id_var_time_pts, &
(/ time_since_reference_point /), &
start = (/ dopts_time_count /), count = (/ 1 /) )
CALL netcdf_handle_error( 'data_output_ptseries', 391 )
#endif
ENDIF
ALLOCATE( pts_value(0:number_of_particle_groups,dopts_num), &
pts_value_l(0:number_of_particle_groups,dopts_num) )
pts_value_l = 0.0_wp
pts_value_l(:,16) = 9999999.9_wp ! for calculation of minimum radius
!
!-- Calculate or collect the particle time series quantities for all particles
!-- and seperately for each particle group (if there is more than one group)
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt
number_of_particles = prt_count(k,j,i)
IF (number_of_particles <= 0) CYCLE
particles => grid_particles(k,j,i)%particles(1:number_of_particles)
DO n = 1, number_of_particles
IF ( particles(n)%particle_mask ) THEN ! Restrict analysis to active particles
pts_value_l(0,1) = pts_value_l(0,1) + 1.0_wp ! total # of particles
pts_value_l(0,2) = pts_value_l(0,2) + &
( particles(n)%x - particles(n)%origin_x ) ! mean x
pts_value_l(0,3) = pts_value_l(0,3) + &
( particles(n)%y - particles(n)%origin_y ) ! mean y
pts_value_l(0,4) = pts_value_l(0,4) + &
( particles(n)%z - particles(n)%origin_z ) ! mean z
pts_value_l(0,5) = pts_value_l(0,5) + particles(n)%z ! mean z (absolute)
pts_value_l(0,6) = pts_value_l(0,6) + particles(n)%speed_x ! mean u
pts_value_l(0,7) = pts_value_l(0,7) + particles(n)%speed_y ! mean v
pts_value_l(0,8) = pts_value_l(0,8) + particles(n)%speed_z ! mean w
pts_value_l(0,9) = pts_value_l(0,9) + particles(n)%rvar1 ! mean sgsu
pts_value_l(0,10) = pts_value_l(0,10) + particles(n)%rvar2 ! mean sgsv
pts_value_l(0,11) = pts_value_l(0,11) + particles(n)%rvar3 ! mean sgsw
IF ( particles(n)%speed_z > 0.0_wp ) THEN
pts_value_l(0,12) = pts_value_l(0,12) + 1.0_wp ! # of upward moving prts
pts_value_l(0,13) = pts_value_l(0,13) + &
particles(n)%speed_z ! mean w upw.
ELSE
pts_value_l(0,14) = pts_value_l(0,14) + &
particles(n)%speed_z ! mean w down
ENDIF
pts_value_l(0,15) = pts_value_l(0,15) + particles(n)%radius ! mean rad
pts_value_l(0,16) = MIN( pts_value_l(0,16), particles(n)%radius ) ! minrad
pts_value_l(0,17) = MAX( pts_value_l(0,17), particles(n)%radius ) ! maxrad
pts_value_l(0,18) = pts_value_l(0,18) + 1.0_wp
pts_value_l(0,19) = pts_value_l(0,18) + 1.0_wp
!
!-- Repeat the same for the respective particle group
IF ( number_of_particle_groups > 1 ) THEN
jg = particles(n)%group
pts_value_l(jg,1) = pts_value_l(jg,1) + 1.0_wp
pts_value_l(jg,2) = pts_value_l(jg,2) + &
( particles(n)%x - particles(n)%origin_x )
pts_value_l(jg,3) = pts_value_l(jg,3) + &
( particles(n)%y - particles(n)%origin_y )
pts_value_l(jg,4) = pts_value_l(jg,4) + &
( particles(n)%z - particles(n)%origin_z )
pts_value_l(jg,5) = pts_value_l(jg,5) + particles(n)%z
pts_value_l(jg,6) = pts_value_l(jg,6) + particles(n)%speed_x
pts_value_l(jg,7) = pts_value_l(jg,7) + particles(n)%speed_y
pts_value_l(jg,8) = pts_value_l(jg,8) + particles(n)%speed_z
pts_value_l(jg,9) = pts_value_l(jg,9) + particles(n)%rvar1
pts_value_l(jg,10) = pts_value_l(jg,10) + particles(n)%rvar2
pts_value_l(jg,11) = pts_value_l(jg,11) + particles(n)%rvar3
IF ( particles(n)%speed_z > 0.0_wp ) THEN
pts_value_l(jg,12) = pts_value_l(jg,12) + 1.0_wp
pts_value_l(jg,13) = pts_value_l(jg,13) + particles(n)%speed_z
ELSE
pts_value_l(jg,14) = pts_value_l(jg,14) + particles(n)%speed_z
ENDIF
pts_value_l(jg,15) = pts_value_l(jg,15) + particles(n)%radius
pts_value_l(jg,16) = MIN( pts_value(jg,16), particles(n)%radius )
pts_value_l(jg,17) = MAX( pts_value(jg,17), particles(n)%radius )
pts_value_l(jg,18) = pts_value_l(jg,18) + 1.0_wp
pts_value_l(jg,19) = pts_value_l(jg,19) + 1.0_wp
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
#if defined( __parallel )
!
!-- Sum values of the subdomains
inum = number_of_particle_groups + 1
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( pts_value_l(0,1), pts_value(0,1), 15*inum, MPI_REAL, &
MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( pts_value_l(0,16), pts_value(0,16), inum, MPI_REAL, &
MPI_MIN, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( pts_value_l(0,17), pts_value(0,17), inum, MPI_REAL, &
MPI_MAX, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( pts_value_l(0,18), pts_value(0,18), inum, MPI_REAL, &
MPI_MAX, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( pts_value_l(0,19), pts_value(0,19), inum, MPI_REAL, &
MPI_MIN, comm2d, ierr )
#else
pts_value(:,1:19) = pts_value_l(:,1:19)
#endif
!
!-- Normalize the above calculated quantities (except min/max values) with the
!-- total number of particles
IF ( number_of_particle_groups > 1 ) THEN
inum = number_of_particle_groups
ELSE
inum = 0
ENDIF
DO j = 0, inum
IF ( pts_value(j,1) > 0.0_wp ) THEN
pts_value(j,2:15) = pts_value(j,2:15) / pts_value(j,1)
IF ( pts_value(j,12) > 0.0_wp .AND. pts_value(j,12) < 1.0_wp ) THEN
pts_value(j,13) = pts_value(j,13) / pts_value(j,12)
pts_value(j,14) = pts_value(j,14) / ( 1.0_wp - pts_value(j,12) )
ELSEIF ( pts_value(j,12) == 0.0_wp ) THEN
pts_value(j,13) = -1.0_wp
ELSE
pts_value(j,14) = -1.0_wp
ENDIF
ENDIF
ENDDO
!
!-- Calculate higher order moments of particle time series quantities,
!-- seperately for each particle group (if there is more than one group)
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt
number_of_particles = prt_count(k,j,i)
IF (number_of_particles <= 0) CYCLE
particles => grid_particles(k,j,i)%particles(1:number_of_particles)
DO n = 1, number_of_particles
pts_value_l(0,20) = pts_value_l(0,20) + ( particles(n)%x - &
particles(n)%origin_x - pts_value(0,2) )**2 ! x*2
pts_value_l(0,21) = pts_value_l(0,21) + ( particles(n)%y - &
particles(n)%origin_y - pts_value(0,3) )**2 ! y*2
pts_value_l(0,22) = pts_value_l(0,22) + ( particles(n)%z - &
particles(n)%origin_z - pts_value(0,4) )**2 ! z*2
pts_value_l(0,23) = pts_value_l(0,23) + ( particles(n)%speed_x - &
pts_value(0,6) )**2 ! u*2
pts_value_l(0,24) = pts_value_l(0,24) + ( particles(n)%speed_y - &
pts_value(0,7) )**2 ! v*2
pts_value_l(0,25) = pts_value_l(0,25) + ( particles(n)%speed_z - &
pts_value(0,8) )**2 ! w*2
pts_value_l(0,26) = pts_value_l(0,26) + ( particles(n)%rvar1 - &
pts_value(0,9) )**2 ! u"2
pts_value_l(0,27) = pts_value_l(0,27) + ( particles(n)%rvar2 - &
pts_value(0,10) )**2 ! v"2
pts_value_l(0,28) = pts_value_l(0,28) + ( particles(n)%rvar3 - &
pts_value(0,11) )**2 ! w"2
!
!-- Repeat the same for the respective particle group
IF ( number_of_particle_groups > 1 ) THEN
jg = particles(n)%group
pts_value_l(jg,20) = pts_value_l(jg,20) + ( particles(n)%x - &
particles(n)%origin_x - pts_value(jg,2) )**2
pts_value_l(jg,21) = pts_value_l(jg,21) + ( particles(n)%y - &
particles(n)%origin_y - pts_value(jg,3) )**2
pts_value_l(jg,22) = pts_value_l(jg,22) + ( particles(n)%z - &
particles(n)%origin_z - pts_value(jg,4) )**2
pts_value_l(jg,23) = pts_value_l(jg,23) + ( particles(n)%speed_x - &
pts_value(jg,6) )**2
pts_value_l(jg,24) = pts_value_l(jg,24) + ( particles(n)%speed_y - &
pts_value(jg,7) )**2
pts_value_l(jg,25) = pts_value_l(jg,25) + ( particles(n)%speed_z - &
pts_value(jg,8) )**2
pts_value_l(jg,26) = pts_value_l(jg,26) + ( particles(n)%rvar1 - &
pts_value(jg,9) )**2
pts_value_l(jg,27) = pts_value_l(jg,27) + ( particles(n)%rvar2 - &
pts_value(jg,10) )**2
pts_value_l(jg,28) = pts_value_l(jg,28) + ( particles(n)%rvar3 - &
pts_value(jg,11) )**2
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
pts_value_l(0,29) = ( number_of_particles - pts_value(0,1) / numprocs )**2
! variance of particle numbers
IF ( number_of_particle_groups > 1 ) THEN
DO j = 1, number_of_particle_groups
pts_value_l(j,29) = ( pts_value_l(j,1) - &
pts_value(j,1) / numprocs )**2
ENDDO
ENDIF
#if defined( __parallel )
!
!-- Sum values of the subdomains
inum = number_of_particle_groups + 1
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( pts_value_l(0,20), pts_value(0,20), inum*10, MPI_REAL, &
MPI_SUM, comm2d, ierr )
#else
pts_value(:,20:29) = pts_value_l(:,20:29)
#endif
!
!-- Normalize the above calculated quantities with the total number of
!-- particles
IF ( number_of_particle_groups > 1 ) THEN
inum = number_of_particle_groups
ELSE
inum = 0
ENDIF
DO j = 0, inum
IF ( pts_value(j,1) > 0.0_wp ) THEN
pts_value(j,20:28) = pts_value(j,20:28) / pts_value(j,1)
ENDIF
pts_value(j,29) = pts_value(j,29) / numprocs
ENDDO
#if defined( __netcdf )
!
!-- Output particle time series quantities in NetCDF format
IF ( myid == 0 ) THEN
DO j = 0, inum
DO i = 1, dopts_num
nc_stat = NF90_PUT_VAR( id_set_pts, id_var_dopts(i,j), &
(/ pts_value(j,i) /), &
start = (/ dopts_time_count /), &
count = (/ 1 /) )
CALL netcdf_handle_error( 'data_output_ptseries', 392 )
ENDDO
ENDDO
ENDIF
#endif
DEALLOCATE( pts_value, pts_value_l )
CALL cpu_log( log_point(36), 'data_output_ptseries', 'stop' )
END SUBROUTINE lpm_data_output_ptseries
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This routine reads the respective restart data for the lpm.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_rrd_local_particles
CHARACTER (LEN=10) :: particle_binary_version !<
CHARACTER (LEN=10) :: version_on_file !<
INTEGER(iwp) :: alloc_size !<
INTEGER(iwp) :: ip !<
INTEGER(iwp) :: jp !<
INTEGER(iwp) :: kp !<
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: tmp_particles !<
!
!-- Read particle data from previous model run.
!-- First open the input unit.
IF ( myid_char == '' ) THEN
OPEN ( 90, FILE='PARTICLE_RESTART_DATA_IN'//myid_char, &
FORM='UNFORMATTED' )
ELSE
OPEN ( 90, FILE='PARTICLE_RESTART_DATA_IN/'//myid_char, &
FORM='UNFORMATTED' )
ENDIF
!
!-- First compare the version numbers
READ ( 90 ) version_on_file
particle_binary_version = '4.0'
IF ( TRIM( version_on_file ) /= TRIM( particle_binary_version ) ) THEN
message_string = 'version mismatch concerning data from prior ' // &
'run &version on file = "' // &
TRIM( version_on_file ) // &
'&version in program = "' // &
TRIM( particle_binary_version ) // '"'
CALL message( 'lpm_read_restart_file', 'PA0214', 1, 2, 0, 6, 0 )
ENDIF
!
!-- If less particles are stored on the restart file than prescribed by
!-- 1, the remainder is initialized by zero_particle to avoid
!-- errors.
zero_particle = particle_type( 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, &
0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, &
0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, &
0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, &
0, 0, 0_idp, .FALSE., -1 )
!
!-- Read some particle parameters and the size of the particle arrays,
!-- allocate them and read their contents.
READ ( 90 ) bc_par_b, bc_par_lr, bc_par_ns, bc_par_t, &
last_particle_release_time, number_of_particle_groups, &
particle_groups, time_write_particle_data
ALLOCATE( prt_count(nzb:nzt+1,nysg:nyng,nxlg:nxrg), &
grid_particles(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
READ ( 90 ) prt_count
DO ip = nxl, nxr
DO jp = nys, nyn
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
IF ( number_of_particles > 0 ) THEN
alloc_size = MAX( INT( number_of_particles * &
( 1.0_wp + alloc_factor / 100.0_wp ) ), &
1 )
ELSE
alloc_size = 1
ENDIF
ALLOCATE( grid_particles(kp,jp,ip)%particles(1:alloc_size) )
IF ( number_of_particles > 0 ) THEN
ALLOCATE( tmp_particles(1:number_of_particles) )
READ ( 90 ) tmp_particles
grid_particles(kp,jp,ip)%particles(1:number_of_particles) = tmp_particles
DEALLOCATE( tmp_particles )
IF ( number_of_particles < alloc_size ) THEN
grid_particles(kp,jp,ip)%particles(number_of_particles+1:alloc_size) &
= zero_particle
ENDIF
ELSE
grid_particles(kp,jp,ip)%particles(1:alloc_size) = zero_particle
ENDIF
ENDDO
ENDDO
ENDDO
CLOSE ( 90 )
!
!-- Must be called to sort particles into blocks, which is needed for a fast
!-- interpolation of the LES fields on the particle position.
CALL lpm_sort_and_delete
END SUBROUTINE lpm_rrd_local_particles
SUBROUTINE lpm_rrd_local( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, &
nxr_on_file, nynf, nync, nyn_on_file, nysf, &
nysc, nys_on_file, tmp_3d, found )
USE control_parameters, &
ONLY: length, restart_string
INTEGER(iwp) :: k !<
INTEGER(iwp) :: nxlc !<
INTEGER(iwp) :: nxlf !<
INTEGER(iwp) :: nxl_on_file !<
INTEGER(iwp) :: nxrc !<
INTEGER(iwp) :: nxrf !<
INTEGER(iwp) :: nxr_on_file !<
INTEGER(iwp) :: nync !<
INTEGER(iwp) :: nynf !<
INTEGER(iwp) :: nyn_on_file !<
INTEGER(iwp) :: nysc !<
INTEGER(iwp) :: nysf !<
INTEGER(iwp) :: nys_on_file !<
LOGICAL, INTENT(OUT) :: found
REAL(wp), DIMENSION(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d !<
found = .TRUE.
SELECT CASE ( restart_string(1:length) )
CASE ( 'iran' ) ! matching random numbers is still unresolved issue
IF ( k == 1 ) READ ( 13 ) iran, iran_part
CASE ( 'pc_av' )
IF ( .NOT. ALLOCATED( pc_av ) ) THEN
ALLOCATE( pc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
pc_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'pr_av' )
IF ( .NOT. ALLOCATED( pr_av ) ) THEN
ALLOCATE( pr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
pr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'ql_c_av' )
IF ( .NOT. ALLOCATED( ql_c_av ) ) THEN
ALLOCATE( ql_c_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
ql_c_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'ql_v_av' )
IF ( .NOT. ALLOCATED( ql_v_av ) ) THEN
ALLOCATE( ql_v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
ql_v_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE ( 'ql_vp_av' )
IF ( .NOT. ALLOCATED( ql_vp_av ) ) THEN
ALLOCATE( ql_vp_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
ql_vp_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
CASE DEFAULT
found = .FALSE.
END SELECT
END SUBROUTINE lpm_rrd_local
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This routine writes the respective restart data for the lpm.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_wrd_local
CHARACTER (LEN=10) :: particle_binary_version !<
INTEGER(iwp) :: ip !<
INTEGER(iwp) :: jp !<
INTEGER(iwp) :: kp !<
!
!-- First open the output unit.
IF ( myid_char == '' ) THEN
OPEN ( 90, FILE='PARTICLE_RESTART_DATA_OUT'//myid_char, &
FORM='UNFORMATTED')
ELSE
IF ( myid == 0 ) CALL local_system( 'mkdir PARTICLE_RESTART_DATA_OUT' )
#if defined( __parallel )
!
!-- Set a barrier in order to allow that thereafter all other processors
!-- in the directory created by PE0 can open their file
CALL MPI_BARRIER( comm2d, ierr )
#endif
OPEN ( 90, FILE='PARTICLE_RESTART_DATA_OUT/'//myid_char, &
FORM='UNFORMATTED' )
ENDIF
!
!-- Write the version number of the binary format.
!-- Attention: After changes to the following output commands the version
!-- --------- number of the variable particle_binary_version must be
!-- changed! Also, the version number and the list of arrays
!-- to be read in lpm_read_restart_file must be adjusted
!-- accordingly.
particle_binary_version = '4.0'
WRITE ( 90 ) particle_binary_version
!
!-- Write some particle parameters, the size of the particle arrays
WRITE ( 90 ) bc_par_b, bc_par_lr, bc_par_ns, bc_par_t, &
last_particle_release_time, number_of_particle_groups, &
particle_groups, time_write_particle_data
WRITE ( 90 ) prt_count
DO ip = nxl, nxr
DO jp = nys, nyn
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
IF ( number_of_particles <= 0 ) CYCLE
WRITE ( 90 ) particles
ENDDO
ENDDO
ENDDO
CLOSE ( 90 )
#if defined( __parallel )
CALL MPI_BARRIER( comm2d, ierr )
#endif
CALL wrd_write_string( 'iran' )
WRITE ( 14 ) iran, iran_part
END SUBROUTINE lpm_wrd_local
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This routine writes the respective restart data for the lpm.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_wrd_global
CALL wrd_write_string( 'curvature_solution_effects' )
WRITE ( 14 ) curvature_solution_effects
CALL wrd_write_string( 'interpolation_simple_corrector' )
WRITE ( 14 ) interpolation_simple_corrector
CALL wrd_write_string( 'interpolation_simple_predictor' )
WRITE ( 14 ) interpolation_simple_predictor
CALL wrd_write_string( 'interpolation_trilinear' )
WRITE ( 14 ) interpolation_trilinear
END SUBROUTINE lpm_wrd_global
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This routine writes the respective restart data for the lpm.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_rrd_global( found )
USE control_parameters, &
ONLY: length, restart_string
LOGICAL, INTENT(OUT) :: found
found = .TRUE.
SELECT CASE ( restart_string(1:length) )
CASE ( 'curvature_solution_effects' )
READ ( 13 ) curvature_solution_effects
CASE ( 'interpolation_simple_corrector' )
READ ( 13 ) interpolation_simple_corrector
CASE ( 'interpolation_simple_predictor' )
READ ( 13 ) interpolation_simple_predictor
CASE ( 'interpolation_trilinear' )
READ ( 13 ) interpolation_trilinear
! CASE ( 'global_paramter' )
! READ ( 13 ) global_parameter
! CASE ( 'global_array' )
! IF ( .NOT. ALLOCATED( global_array ) ) ALLOCATE( global_array(1:10) )
! READ ( 13 ) global_array
CASE DEFAULT
found = .FALSE.
END SELECT
END SUBROUTINE lpm_rrd_global
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This is a submodule of the lagrangian particle model. It contains all
!> dynamic processes of the lpm. This includes the advection (resolved and sub-
!> grid scale) as well as the boundary conditions of particles. As a next step
!> this submodule should be excluded as an own file.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_advec (ip,jp,kp)
LOGICAL :: subbox_at_wall !< flag to see if the current subgridbox is adjacent to a wall
INTEGER(iwp) :: i !< index variable along x
INTEGER(iwp) :: i_next !< index variable along x
INTEGER(iwp) :: ip !< index variable along x
INTEGER(iwp) :: iteration_steps = 1 !< amount of iterations steps for corrector step
INTEGER(iwp) :: j !< index variable along y
INTEGER(iwp) :: j_next !< index variable along y
INTEGER(iwp) :: jp !< index variable along y
INTEGER(iwp) :: k !< index variable along z
INTEGER(iwp) :: k_wall !< vertical index of topography top
INTEGER(iwp) :: kp !< index variable along z
INTEGER(iwp) :: k_next !< index variable along z
INTEGER(iwp) :: kw !< index variable along z
INTEGER(iwp) :: kkw !< index variable along z
INTEGER(iwp) :: n !< loop variable over all particles in a grid box
INTEGER(iwp) :: nb !< block number particles are sorted in
INTEGER(iwp) :: particle_end !< end index for partilce loop
INTEGER(iwp) :: particle_start !< start index for particle loop
INTEGER(iwp) :: surf_start !< Index on surface data-type for current grid box
INTEGER(iwp) :: subbox_end !< end index for loop over subboxes in particle advection
INTEGER(iwp) :: subbox_start !< start index for loop over subboxes in particle advection
INTEGER(iwp) :: nn !< loop variable over iterations steps
INTEGER(iwp), DIMENSION(0:7) :: start_index !< start particle index for current block
INTEGER(iwp), DIMENSION(0:7) :: end_index !< start particle index for current block
REAL(wp) :: aa !< dummy argument for horizontal particle interpolation
REAL(wp) :: alpha !< interpolation facor for x-direction
REAL(wp) :: bb !< dummy argument for horizontal particle interpolation
REAL(wp) :: beta !< interpolation facor for y-direction
REAL(wp) :: cc !< dummy argument for horizontal particle interpolation
REAL(wp) :: d_z_p_z0 !< inverse of interpolation length for logarithmic interpolation
REAL(wp) :: dd !< dummy argument for horizontal particle interpolation
REAL(wp) :: de_dx_int_l !< x/y-interpolated TKE gradient (x) at particle position at lower vertical level
REAL(wp) :: de_dx_int_u !< x/y-interpolated TKE gradient (x) at particle position at upper vertical level
REAL(wp) :: de_dy_int_l !< x/y-interpolated TKE gradient (y) at particle position at lower vertical level
REAL(wp) :: de_dy_int_u !< x/y-interpolated TKE gradient (y) at particle position at upper vertical level
REAL(wp) :: de_dt !< temporal derivative of TKE experienced by the particle
REAL(wp) :: de_dt_min !< lower level for temporal TKE derivative
REAL(wp) :: de_dz_int_l !< x/y-interpolated TKE gradient (z) at particle position at lower vertical level
REAL(wp) :: de_dz_int_u !< x/y-interpolated TKE gradient (z) at particle position at upper vertical level
REAL(wp) :: diameter !< diamter of droplet
REAL(wp) :: diss_int_l !< x/y-interpolated dissipation at particle position at lower vertical level
REAL(wp) :: diss_int_u !< x/y-interpolated dissipation at particle position at upper vertical level
REAL(wp) :: dt_particle_m !< previous particle time step
REAL(wp) :: dz_temp !< dummy for the vertical grid spacing
REAL(wp) :: e_int_l !< x/y-interpolated TKE at particle position at lower vertical level
REAL(wp) :: e_int_u !< x/y-interpolated TKE at particle position at upper vertical level
REAL(wp) :: e_mean_int !< horizontal mean TKE at particle height
REAL(wp) :: exp_arg !< argument in the exponent - particle radius
REAL(wp) :: exp_term !< exponent term
REAL(wp) :: gamma !< interpolation facor for z-direction
REAL(wp) :: gg !< dummy argument for horizontal particle interpolation
REAL(wp) :: height_p !< dummy argument for logarithmic interpolation
REAL(wp) :: log_z_z0_int !< logarithmus used for surface_layer interpolation
REAL(wp) :: random_gauss !< Gaussian-distributed random number used for SGS particle advection
REAL(wp) :: RL !< Lagrangian autocorrelation coefficient
REAL(wp) :: rg1 !< Gaussian distributed random number
REAL(wp) :: rg2 !< Gaussian distributed random number
REAL(wp) :: rg3 !< Gaussian distributed random number
REAL(wp) :: sigma !< velocity standard deviation
REAL(wp) :: u_int_l !< x/y-interpolated u-component at particle position at lower vertical level
REAL(wp) :: u_int_u !< x/y-interpolated u-component at particle position at upper vertical level
REAL(wp) :: unext !< calculated particle u-velocity of corrector step
REAL(wp) :: us_int !< friction velocity at particle grid box
REAL(wp) :: usws_int !< surface momentum flux (u component) at particle grid box
REAL(wp) :: v_int_l !< x/y-interpolated v-component at particle position at lower vertical level
REAL(wp) :: v_int_u !< x/y-interpolated v-component at particle position at upper vertical level
REAL(wp) :: vsws_int !< surface momentum flux (u component) at particle grid box
REAL(wp) :: vnext !< calculated particle v-velocity of corrector step
REAL(wp) :: vv_int !< dummy to compute interpolated mean SGS TKE, used to scale SGS advection
REAL(wp) :: w_int_l !< x/y-interpolated w-component at particle position at lower vertical level
REAL(wp) :: w_int_u !< x/y-interpolated w-component at particle position at upper vertical level
REAL(wp) :: wnext !< calculated particle w-velocity of corrector step
REAL(wp) :: w_s !< terminal velocity of droplets
REAL(wp) :: x !< dummy argument for horizontal particle interpolation
REAL(wp) :: xp !< calculated particle position in x of predictor step
REAL(wp) :: y !< dummy argument for horizontal particle interpolation
REAL(wp) :: yp !< calculated particle position in y of predictor step
REAL(wp) :: z_p !< surface layer height (0.5 dz)
REAL(wp) :: zp !< calculated particle position in z of predictor step
REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity
REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity
REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity
REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity
REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity
REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter
REAL(wp), DIMENSION(number_of_particles) :: term_1_2 !< flag to communicate whether a particle is near topography or not
REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< ratio between the density of the fluid and the density of the particles
REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< horizontal TKE gradient along x at particle position
REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< horizontal TKE gradient along y at particle position
REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< horizontal TKE gradient along z at particle position
REAL(wp), DIMENSION(number_of_particles) :: diss_int !< dissipation at particle position
REAL(wp), DIMENSION(number_of_particles) :: dt_gap !< remaining time until particle time integration reaches LES time
REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< particle time step
REAL(wp), DIMENSION(number_of_particles) :: e_int !< TKE at particle position
REAL(wp), DIMENSION(number_of_particles) :: fs_int !< weighting factor for subgrid-scale particle speed
REAL(wp), DIMENSION(number_of_particles) :: lagr_timescale !< Lagrangian timescale
REAL(wp), DIMENSION(number_of_particles) :: rvar1_temp !< SGS particle velocity - u-component
REAL(wp), DIMENSION(number_of_particles) :: rvar2_temp !< SGS particle velocity - v-component
REAL(wp), DIMENSION(number_of_particles) :: rvar3_temp !< SGS particle velocity - w-component
REAL(wp), DIMENSION(number_of_particles) :: u_int !< u-component of particle speed
REAL(wp), DIMENSION(number_of_particles) :: v_int !< v-component of particle speed
REAL(wp), DIMENSION(number_of_particles) :: w_int !< w-component of particle speed
REAL(wp), DIMENSION(number_of_particles) :: xv !< x-position
REAL(wp), DIMENSION(number_of_particles) :: yv !< y-position
REAL(wp), DIMENSION(number_of_particles) :: zv !< z-position
REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< vector of Gaussian distributed random numbers
CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' )
!
!-- Determine height of Prandtl layer and distance between Prandtl-layer
!-- height and horizontal mean roughness height, which are required for
!-- vertical logarithmic interpolation of horizontal particle speeds
!-- (for particles below first vertical grid level).
z_p = zu(nzb+1) - zw(nzb)
d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global )
xv = particles(1:number_of_particles)%x
yv = particles(1:number_of_particles)%y
zv = particles(1:number_of_particles)%z
dt_particle = dt_3d
!
!-- This case uses a simple interpolation method for the particle velocites,
!-- and applying a predictor-corrector method. @note the current time divergence
!-- free time step is denoted with u_t etc.; the velocities of the time level of
!-- t+1 wit u,v, and w, as the model is called after swap timelevel
!-- @attention: for the corrector step the velocities of t(n+1) are required.
!-- Therefore the particle code is executed at the end of the time intermediate
!-- timestep routine. This interpolation method is described in more detail
!-- in Grabowski et al., 2018 (GMD).
IF ( interpolation_simple_corrector ) THEN
!
!-- Predictor step
kkw = kp - 1
DO n = 1, number_of_particles
alpha = MAX( MIN( ( particles(n)%x - ip * dx ) * ddx, 1.0_wp ), 0.0_wp )
u_int(n) = u_t(kp,jp,ip) * ( 1.0_wp - alpha ) + u_t(kp,jp,ip+1) * alpha
beta = MAX( MIN( ( particles(n)%y - jp * dy ) * ddy, 1.0_wp ), 0.0_wp )
v_int(n) = v_t(kp,jp,ip) * ( 1.0_wp - beta ) + v_t(kp,jp+1,ip) * beta
gamma = MAX( MIN( ( particles(n)%z - zw(kkw) ) / &
( zw(kkw+1) - zw(kkw) ), 1.0_wp ), 0.0_wp )
w_int(n) = w_t(kkw,jp,ip) * ( 1.0_wp - gamma ) + w_t(kkw+1,jp,ip) * gamma
ENDDO
!
!-- Corrector step
DO n = 1, number_of_particles
IF ( .NOT. particles(n)%particle_mask ) CYCLE
DO nn = 1, iteration_steps
!
!-- Guess new position
xp = particles(n)%x + u_int(n) * dt_particle(n)
yp = particles(n)%y + v_int(n) * dt_particle(n)
zp = particles(n)%z + w_int(n) * dt_particle(n)
!
!-- x direction
i_next = FLOOR( xp * ddx , KIND=iwp)
alpha = MAX( MIN( ( xp - i_next * dx ) * ddx, 1.0_wp ), 0.0_wp )
!
!-- y direction
j_next = FLOOR( yp * ddy )
beta = MAX( MIN( ( yp - j_next * dy ) * ddy, 1.0_wp ), 0.0_wp )
!
!-- z_direction
k_next = MAX( MIN( FLOOR( zp / (zw(kkw+1)-zw(kkw)) + offset_ocean_nzt ), nzt ), 0)
gamma = MAX( MIN( ( zp - zw(k_next) ) / &
( zw(k_next+1) - zw(k_next) ), 1.0_wp ), 0.0_wp )
!
!-- Calculate part of the corrector step
unext = u(k_next+1, j_next, i_next) * ( 1.0_wp - alpha ) + &
u(k_next+1, j_next, i_next+1) * alpha
vnext = v(k_next+1, j_next, i_next) * ( 1.0_wp - beta ) + &
v(k_next+1, j_next+1, i_next ) * beta
wnext = w(k_next, j_next, i_next) * ( 1.0_wp - gamma ) + &
w(k_next+1, j_next, i_next ) * gamma
!
!-- Calculate interpolated particle velocity with predictor
!-- corrector step. u_int, v_int and w_int describes the part of
!-- the predictor step. unext, vnext and wnext is the part of the
!-- corrector step. The resulting new position is set below. The
!-- implementation is based on Grabowski et al., 2018 (GMD).
u_int(n) = 0.5_wp * ( u_int(n) + unext )
v_int(n) = 0.5_wp * ( v_int(n) + vnext )
w_int(n) = 0.5_wp * ( w_int(n) + wnext )
ENDDO
ENDDO
!
!-- This case uses a simple interpolation method for the particle velocites,
!-- and applying a predictor.
ELSEIF ( interpolation_simple_predictor ) THEN
!
!-- The particle position for the w velociy is based on the value of kp and kp-1
kkw = kp - 1
DO n = 1, number_of_particles
IF ( .NOT. particles(n)%particle_mask ) CYCLE
alpha = MAX( MIN( ( particles(n)%x - ip * dx ) * ddx, 1.0_wp ), 0.0_wp )
u_int(n) = u(kp,jp,ip) * ( 1.0_wp - alpha ) + u(kp,jp,ip+1) * alpha
beta = MAX( MIN( ( particles(n)%y - jp * dy ) * ddy, 1.0_wp ), 0.0_wp )
v_int(n) = v(kp,jp,ip) * ( 1.0_wp - beta ) + v(kp,jp+1,ip) * beta
gamma = MAX( MIN( ( particles(n)%z - zw(kkw) ) / &
( zw(kkw+1) - zw(kkw) ), 1.0_wp ), 0.0_wp )
w_int(n) = w(kkw,jp,ip) * ( 1.0_wp - gamma ) + w(kkw+1,jp,ip) * gamma
ENDDO
!
!-- The trilinear interpolation.
ELSEIF ( interpolation_trilinear ) THEN
start_index = grid_particles(kp,jp,ip)%start_index
end_index = grid_particles(kp,jp,ip)%end_index
DO nb = 0, 7
!
!-- Interpolate u velocity-component
i = ip
j = jp + block_offset(nb)%j_off
k = kp + block_offset(nb)%k_off
DO n = start_index(nb), end_index(nb)
!
!-- Interpolation of the u velocity component onto particle position.
!-- Particles are interpolation bi-linearly in the horizontal and a
!-- linearly in the vertical. An exception is made for particles below
!-- the first vertical grid level in case of a prandtl layer. In this
!-- case the horizontal particle velocity components are determined using
!-- Monin-Obukhov relations (if branch).
!-- First, check if particle is located below first vertical grid level
!-- above topography (Prandtl-layer height)
!-- Determine vertical index of topography top
k_wall = topo_top_ind(jp,ip,0)
IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN
!
!-- Resolved-scale horizontal particle velocity is zero below z0.
IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN
u_int(n) = 0.0_wp
ELSE
!
!-- Determine the sublayer. Further used as index.
height_p = ( zv(n) - zw(k_wall) - z0_av_global ) &
* REAL( number_of_sublayers, KIND=wp ) &
* d_z_p_z0
!
!-- Calculate LOG(z/z0) for exact particle height. Therefore,
!-- interpolate linearly between precalculated logarithm.
log_z_z0_int = log_z_z0(INT(height_p)) &
+ ( height_p - INT(height_p) ) &
* ( log_z_z0(INT(height_p)+1) &
- log_z_z0(INT(height_p)) &
)
!
!-- Get friction velocity and momentum flux from new surface data
!-- types.
IF ( surf_def_h(0)%start_index(jp,ip) <= &
surf_def_h(0)%end_index(jp,ip) ) THEN
surf_start = surf_def_h(0)%start_index(jp,ip)
!-- Limit friction velocity. In narrow canyons or holes the
!-- friction velocity can become very small, resulting in a too
!-- large particle speed.
us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp )
usws_int = surf_def_h(0)%usws(surf_start)
ELSEIF ( surf_lsm_h%start_index(jp,ip) <= &
surf_lsm_h%end_index(jp,ip) ) THEN
surf_start = surf_lsm_h%start_index(jp,ip)
us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp )
usws_int = surf_lsm_h%usws(surf_start)
ELSEIF ( surf_usm_h%start_index(jp,ip) <= &
surf_usm_h%end_index(jp,ip) ) THEN
surf_start = surf_usm_h%start_index(jp,ip)
us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp )
usws_int = surf_usm_h%usws(surf_start)
ENDIF
!
!-- Neutral solution is applied for all situations, e.g. also for
!-- unstable and stable situations. Even though this is not exact
!-- this saves a lot of CPU time since several calls of intrinsic
!-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified
!-- as sensitivity studies revealed no significant effect of
!-- using the neutral solution also for un/stable situations.
u_int(n) = -usws_int / ( us_int * kappa + 1E-10_wp ) &
* log_z_z0_int - u_gtrans
ENDIF
!
!-- Particle above the first grid level. Bi-linear interpolation in the
!-- horizontal and linear interpolation in the vertical direction.
ELSE
x = xv(n) - i * dx
y = yv(n) + ( 0.5_wp - j ) * dy
aa = x**2 + y**2
bb = ( dx - x )**2 + y**2
cc = x**2 + ( dy - y )**2
dd = ( dx - x )**2 + ( dy - y )**2
gg = aa + bb + cc + dd
u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) &
+ ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * &
u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans
IF ( k == nzt ) THEN
u_int(n) = u_int_l
ELSE
u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) &
+ ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * &
u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans
u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * &
( u_int_u - u_int_l )
ENDIF
ENDIF
ENDDO
!
!-- Same procedure for interpolation of the v velocity-component
i = ip + block_offset(nb)%i_off
j = jp
k = kp + block_offset(nb)%k_off
DO n = start_index(nb), end_index(nb)
!
!-- Determine vertical index of topography top
k_wall = topo_top_ind(jp,ip,0)
IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN
IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN
!
!-- Resolved-scale horizontal particle velocity is zero below z0.
v_int(n) = 0.0_wp
ELSE
!
!-- Determine the sublayer. Further used as index. Please note,
!-- logarithmus can not be reused from above, as in in case of
!-- topography particle on u-grid can be above surface-layer height,
!-- whereas it can be below on v-grid.
height_p = ( zv(n) - zw(k_wall) - z0_av_global ) &
* REAL( number_of_sublayers, KIND=wp ) &
* d_z_p_z0
!
!-- Calculate LOG(z/z0) for exact particle height. Therefore,
!-- interpolate linearly between precalculated logarithm.
log_z_z0_int = log_z_z0(INT(height_p)) &
+ ( height_p - INT(height_p) ) &
* ( log_z_z0(INT(height_p)+1) &
- log_z_z0(INT(height_p)) &
)
!
!-- Get friction velocity and momentum flux from new surface data
!-- types.
IF ( surf_def_h(0)%start_index(jp,ip) <= &
surf_def_h(0)%end_index(jp,ip) ) THEN
surf_start = surf_def_h(0)%start_index(jp,ip)
!-- Limit friction velocity. In narrow canyons or holes the
!-- friction velocity can become very small, resulting in a too
!-- large particle speed.
us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp )
vsws_int = surf_def_h(0)%vsws(surf_start)
ELSEIF ( surf_lsm_h%start_index(jp,ip) <= &
surf_lsm_h%end_index(jp,ip) ) THEN
surf_start = surf_lsm_h%start_index(jp,ip)
us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp )
vsws_int = surf_lsm_h%vsws(surf_start)
ELSEIF ( surf_usm_h%start_index(jp,ip) <= &
surf_usm_h%end_index(jp,ip) ) THEN
surf_start = surf_usm_h%start_index(jp,ip)
us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp )
vsws_int = surf_usm_h%vsws(surf_start)
ENDIF
!
!-- Neutral solution is applied for all situations, e.g. also for
!-- unstable and stable situations. Even though this is not exact
!-- this saves a lot of CPU time since several calls of intrinsic
!-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified
!-- as sensitivity studies revealed no significant effect of
!-- using the neutral solution also for un/stable situations.
v_int(n) = -vsws_int / ( us_int * kappa + 1E-10_wp ) &
* log_z_z0_int - v_gtrans
ENDIF
ELSE
x = xv(n) + ( 0.5_wp - i ) * dx
y = yv(n) - j * dy
aa = x**2 + y**2
bb = ( dx - x )**2 + y**2
cc = x**2 + ( dy - y )**2
dd = ( dx - x )**2 + ( dy - y )**2
gg = aa + bb + cc + dd
v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) &
+ ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) &
) / ( 3.0_wp * gg ) - v_gtrans
IF ( k == nzt ) THEN
v_int(n) = v_int_l
ELSE
v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) &
+ ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) &
) / ( 3.0_wp * gg ) - v_gtrans
v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * &
( v_int_u - v_int_l )
ENDIF
ENDIF
ENDDO
!
!-- Same procedure for interpolation of the w velocity-component
i = ip + block_offset(nb)%i_off
j = jp + block_offset(nb)%j_off
k = kp - 1
DO n = start_index(nb), end_index(nb)
IF ( vertical_particle_advection(particles(n)%group) ) THEN
x = xv(n) + ( 0.5_wp - i ) * dx
y = yv(n) + ( 0.5_wp - j ) * dy
aa = x**2 + y**2
bb = ( dx - x )**2 + y**2
cc = x**2 + ( dy - y )**2
dd = ( dx - x )**2 + ( dy - y )**2
gg = aa + bb + cc + dd
w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) &
+ ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) &
) / ( 3.0_wp * gg )
IF ( k == nzt ) THEN
w_int(n) = w_int_l
ELSE
w_int_u = ( ( gg-aa ) * w(k+1,j,i) + &
( gg-bb ) * w(k+1,j,i+1) + &
( gg-cc ) * w(k+1,j+1,i) + &
( gg-dd ) * w(k+1,j+1,i+1) &
) / ( 3.0_wp * gg )
w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dzw(k+1) * &
( w_int_u - w_int_l )
ENDIF
ELSE
w_int(n) = 0.0_wp
ENDIF
ENDDO
ENDDO
ENDIF
!-- Interpolate and calculate quantities needed for calculating the SGS
!-- velocities
IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN
DO nb = 0,7
subbox_at_wall = .FALSE.
!
!-- In case of topography check if subbox is adjacent to a wall
IF ( .NOT. topography == 'flat' ) THEN
i = ip + MERGE( -1_iwp , 1_iwp, BTEST( nb, 2 ) )
j = jp + MERGE( -1_iwp , 1_iwp, BTEST( nb, 1 ) )
k = kp + MERGE( -1_iwp , 1_iwp, BTEST( nb, 0 ) )
IF ( .NOT. BTEST(wall_flags_0(k, jp, ip), 0) .OR. &
.NOT. BTEST(wall_flags_0(kp, j, ip), 0) .OR. &
.NOT. BTEST(wall_flags_0(kp, jp, i ), 0) ) &
THEN
subbox_at_wall = .TRUE.
ENDIF
ENDIF
IF ( subbox_at_wall ) THEN
e_int(start_index(nb):end_index(nb)) = e(kp,jp,ip)
diss_int(start_index(nb):end_index(nb)) = diss(kp,jp,ip)
de_dx_int(start_index(nb):end_index(nb)) = de_dx(kp,jp,ip)
de_dy_int(start_index(nb):end_index(nb)) = de_dy(kp,jp,ip)
de_dz_int(start_index(nb):end_index(nb)) = de_dz(kp,jp,ip)
!
!-- Set flag for stochastic equation.
term_1_2(start_index(nb):end_index(nb)) = 0.0_wp
ELSE
i = ip + block_offset(nb)%i_off
j = jp + block_offset(nb)%j_off
k = kp + block_offset(nb)%k_off
DO n = start_index(nb), end_index(nb)
!
!-- Interpolate TKE
x = xv(n) + ( 0.5_wp - i ) * dx
y = yv(n) + ( 0.5_wp - j ) * dy
aa = x**2 + y**2
bb = ( dx - x )**2 + y**2
cc = x**2 + ( dy - y )**2
dd = ( dx - x )**2 + ( dy - y )**2
gg = aa + bb + cc + dd
e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) &
+ ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) &
) / ( 3.0_wp * gg )
IF ( k+1 == nzt+1 ) THEN
e_int(n) = e_int_l
ELSE
e_int_u = ( ( gg - aa ) * e(k+1,j,i) + &
( gg - bb ) * e(k+1,j,i+1) + &
( gg - cc ) * e(k+1,j+1,i) + &
( gg - dd ) * e(k+1,j+1,i+1) &
) / ( 3.0_wp * gg )
e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * &
( e_int_u - e_int_l )
ENDIF
!
!-- Needed to avoid NaN particle velocities (this might not be
!-- required any more)
IF ( e_int(n) <= 0.0_wp ) THEN
e_int(n) = 1.0E-20_wp
ENDIF
!
!-- Interpolate the TKE gradient along x (adopt incides i,j,k and
!-- all position variables from above (TKE))
de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + &
( gg - bb ) * de_dx(k,j,i+1) + &
( gg - cc ) * de_dx(k,j+1,i) + &
( gg - dd ) * de_dx(k,j+1,i+1) &
) / ( 3.0_wp * gg )
IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN
de_dx_int(n) = de_dx_int_l
ELSE
de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + &
( gg - bb ) * de_dx(k+1,j,i+1) + &
( gg - cc ) * de_dx(k+1,j+1,i) + &
( gg - dd ) * de_dx(k+1,j+1,i+1) &
) / ( 3.0_wp * gg )
de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * &
( de_dx_int_u - de_dx_int_l )
ENDIF
!
!-- Interpolate the TKE gradient along y
de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + &
( gg - bb ) * de_dy(k,j,i+1) + &
( gg - cc ) * de_dy(k,j+1,i) + &
( gg - dd ) * de_dy(k,j+1,i+1) &
) / ( 3.0_wp * gg )
IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN
de_dy_int(n) = de_dy_int_l
ELSE
de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + &
( gg - bb ) * de_dy(k+1,j,i+1) + &
( gg - cc ) * de_dy(k+1,j+1,i) + &
( gg - dd ) * de_dy(k+1,j+1,i+1) &
) / ( 3.0_wp * gg )
de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * &
( de_dy_int_u - de_dy_int_l )
ENDIF
!
!-- Interpolate the TKE gradient along z
IF ( zv(n) < 0.5_wp * dz(1) ) THEN
de_dz_int(n) = 0.0_wp
ELSE
de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + &
( gg - bb ) * de_dz(k,j,i+1) + &
( gg - cc ) * de_dz(k,j+1,i) + &
( gg - dd ) * de_dz(k,j+1,i+1) &
) / ( 3.0_wp * gg )
IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN
de_dz_int(n) = de_dz_int_l
ELSE
de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + &
( gg - bb ) * de_dz(k+1,j,i+1) + &
( gg - cc ) * de_dz(k+1,j+1,i) + &
( gg - dd ) * de_dz(k+1,j+1,i+1) &
) / ( 3.0_wp * gg )
de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * &
( de_dz_int_u - de_dz_int_l )
ENDIF
ENDIF
!
!-- Interpolate the dissipation of TKE
diss_int_l = ( ( gg - aa ) * diss(k,j,i) + &
( gg - bb ) * diss(k,j,i+1) + &
( gg - cc ) * diss(k,j+1,i) + &
( gg - dd ) * diss(k,j+1,i+1) &
) / ( 3.0_wp * gg )
IF ( k == nzt ) THEN
diss_int(n) = diss_int_l
ELSE
diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + &
( gg - bb ) * diss(k+1,j,i+1) + &
( gg - cc ) * diss(k+1,j+1,i) + &
( gg - dd ) * diss(k+1,j+1,i+1) &
) / ( 3.0_wp * gg )
diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * &
( diss_int_u - diss_int_l )
ENDIF
!
!-- Set flag for stochastic equation.
term_1_2(n) = 1.0_wp
ENDDO
ENDIF
ENDDO
DO nb = 0,7
i = ip + block_offset(nb)%i_off
j = jp + block_offset(nb)%j_off
k = kp + block_offset(nb)%k_off
DO n = start_index(nb), end_index(nb)
!
!-- Vertical interpolation of the horizontally averaged SGS TKE and
!-- resolved-scale velocity variances and use the interpolated values
!-- to calculate the coefficient fs, which is a measure of the ratio
!-- of the subgrid-scale turbulent kinetic energy to the total amount
!-- of turbulent kinetic energy.
IF ( k == 0 ) THEN
e_mean_int = hom(0,1,8,0)
ELSE
e_mean_int = hom(k,1,8,0) + &
( hom(k+1,1,8,0) - hom(k,1,8,0) ) / &
( zu(k+1) - zu(k) ) * &
( zv(n) - zu(k) )
ENDIF
kw = kp - 1
IF ( k == 0 ) THEN
aa = hom(k+1,1,30,0) * ( zv(n) / &
( 0.5_wp * ( zu(k+1) - zu(k) ) ) )
bb = hom(k+1,1,31,0) * ( zv(n) / &
( 0.5_wp * ( zu(k+1) - zu(k) ) ) )
cc = hom(kw+1,1,32,0) * ( zv(n) / &
( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) )
ELSE
aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * &
( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) )
bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * &
( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) )
cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * &
( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) )
ENDIF
vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc )
!
!-- Needed to avoid NaN particle velocities. The value of 1.0 is just
!-- an educated guess for the given case.
IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN
fs_int(n) = 1.0_wp
ELSE
fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / &
( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int )
ENDIF
ENDDO
ENDDO
DO nb = 0, 7
DO n = start_index(nb), end_index(nb)
rg(n,1) = random_gauss( iran_part, 5.0_wp )
rg(n,2) = random_gauss( iran_part, 5.0_wp )
rg(n,3) = random_gauss( iran_part, 5.0_wp )
ENDDO
ENDDO
DO nb = 0, 7
DO n = start_index(nb), end_index(nb)
!
!-- Calculate the Lagrangian timescale according to Weil et al. (2004).
lagr_timescale(n) = ( 4.0_wp * e_int(n) + 1E-20_wp ) / &
( 3.0_wp * fs_int(n) * c_0 * diss_int(n) + 1E-20_wp )
!
!-- Calculate the next particle timestep. dt_gap is the time needed to
!-- complete the current LES timestep.
dt_gap(n) = dt_3d - particles(n)%dt_sum
dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale(n), dt_gap(n) )
particles(n)%aux1 = lagr_timescale(n)
particles(n)%aux2 = dt_gap(n)
!
!-- The particle timestep should not be too small in order to prevent
!-- the number of particle timesteps of getting too large
IF ( dt_particle(n) < dt_min_part ) THEN
IF ( dt_min_part < dt_gap(n) ) THEN
dt_particle(n) = dt_min_part
ELSE
dt_particle(n) = dt_gap(n)
ENDIF
ENDIF
rvar1_temp(n) = particles(n)%rvar1
rvar2_temp(n) = particles(n)%rvar2
rvar3_temp(n) = particles(n)%rvar3
!
!-- Calculate the SGS velocity components
IF ( particles(n)%age == 0.0_wp ) THEN
!
!-- For new particles the SGS components are derived from the SGS
!-- TKE. Limit the Gaussian random number to the interval
!-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities
!-- from becoming unrealistically large.
rvar1_temp(n) = SQRT( 2.0_wp * sgs_wf_part * e_int(n) &
+ 1E-20_wp ) * ( rg(n,1) - 1.0_wp )
rvar2_temp(n) = SQRT( 2.0_wp * sgs_wf_part * e_int(n) &
+ 1E-20_wp ) * ( rg(n,2) - 1.0_wp )
rvar3_temp(n) = SQRT( 2.0_wp * sgs_wf_part * e_int(n) &
+ 1E-20_wp ) * ( rg(n,3) - 1.0_wp )
ELSE
!
!-- Restriction of the size of the new timestep: compared to the
!-- previous timestep the increase must not exceed 200%. First,
!-- check if age > age_m, in order to prevent that particles get zero
!-- timestep.
dt_particle_m = MERGE( dt_particle(n), &
particles(n)%age - particles(n)%age_m, &
particles(n)%age - particles(n)%age_m < &
1E-8_wp )
IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN
dt_particle(n) = 2.0_wp * dt_particle_m
ENDIF
!-- For old particles the SGS components are correlated with the
!-- values from the previous timestep. Random numbers have also to
!-- be limited (see above).
!-- As negative values for the subgrid TKE are not allowed, the
!-- change of the subgrid TKE with time cannot be smaller than
!-- -e_int(n)/dt_particle. This value is used as a lower boundary
!-- value for the change of TKE
de_dt_min = - e_int(n) / dt_particle(n)
de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m
IF ( de_dt < de_dt_min ) THEN
de_dt = de_dt_min
ENDIF
CALL weil_stochastic_eq( rvar1_temp(n), fs_int(n), e_int(n), &
de_dx_int(n), de_dt, diss_int(n), &
dt_particle(n), rg(n,1), term_1_2(n) )
CALL weil_stochastic_eq( rvar2_temp(n), fs_int(n), e_int(n), &
de_dy_int(n), de_dt, diss_int(n), &
dt_particle(n), rg(n,2), term_1_2(n) )
CALL weil_stochastic_eq( rvar3_temp(n), fs_int(n), e_int(n), &
de_dz_int(n), de_dt, diss_int(n), &
dt_particle(n), rg(n,3), term_1_2(n) )
ENDIF
ENDDO
ENDDO
!
!-- Check if the added SGS velocities result in a violation of the CFL-
!-- criterion. If yes choose a smaller timestep based on the new velocities
!-- and calculate SGS velocities again
dz_temp = zw(kp)-zw(kp-1)
DO nb = 0, 7
DO n = start_index(nb), end_index(nb)
IF ( .NOT. particles(n)%age == 0.0_wp .AND. &
(ABS( u_int(n) + rvar1_temp(n) ) > (dx/dt_particle(n)) .OR. &
ABS( v_int(n) + rvar2_temp(n) ) > (dy/dt_particle(n)) .OR. &
ABS( w_int(n) + rvar3_temp(n) ) > (dz_temp/dt_particle(n)))) THEN
dt_particle(n) = 0.9_wp * MIN( &
( dx / ABS( u_int(n) + rvar1_temp(n) ) ), &
( dy / ABS( v_int(n) + rvar2_temp(n) ) ), &
( dz_temp / ABS( w_int(n) + rvar3_temp(n) ) ) )
!
!-- Reset temporary SGS velocites to "current" ones
rvar1_temp(n) = particles(n)%rvar1
rvar2_temp(n) = particles(n)%rvar2
rvar3_temp(n) = particles(n)%rvar3
de_dt_min = - e_int(n) / dt_particle(n)
de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m
IF ( de_dt < de_dt_min ) THEN
de_dt = de_dt_min
ENDIF
CALL weil_stochastic_eq( rvar1_temp(n), fs_int(n), e_int(n), &
de_dx_int(n), de_dt, diss_int(n), &
dt_particle(n), rg(n,1), term_1_2(n) )
CALL weil_stochastic_eq( rvar2_temp(n), fs_int(n), e_int(n), &
de_dy_int(n), de_dt, diss_int(n), &
dt_particle(n), rg(n,2), term_1_2(n) )
CALL weil_stochastic_eq( rvar3_temp(n), fs_int(n), e_int(n), &
de_dz_int(n), de_dt, diss_int(n), &
dt_particle(n), rg(n,3), term_1_2(n) )
ENDIF
!
!-- Update particle velocites
particles(n)%rvar1 = rvar1_temp(n)
particles(n)%rvar2 = rvar2_temp(n)
particles(n)%rvar3 = rvar3_temp(n)
u_int(n) = u_int(n) + particles(n)%rvar1
v_int(n) = v_int(n) + particles(n)%rvar2
w_int(n) = w_int(n) + particles(n)%rvar3
!
!-- Store the SGS TKE of the current timelevel which is needed for
!-- for calculating the SGS particle velocities at the next timestep
particles(n)%e_m = e_int(n)
ENDDO
ENDDO
ELSE
!
!-- If no SGS velocities are used, only the particle timestep has to
!-- be set
dt_particle = dt_3d
ENDIF
dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio
IF ( ANY( dens_ratio == 0.0_wp ) ) THEN
!
!-- Decide whether the particle loop runs over the subboxes or only over 1,
!-- number_of_particles. This depends on the selected interpolation method.
!-- If particle interpolation method is not trilinear, then the sorting within
!-- subboxes is not required. However, therefore the index start_index(nb) and
!-- end_index(nb) are not defined and the loops are still over
!-- number_of_particles. @todo find a more generic way to write this loop or
!-- delete trilinear interpolation
IF ( interpolation_trilinear ) THEN
subbox_start = 0
subbox_end = 7
ELSE
subbox_start = 1
subbox_end = 1
ENDIF
!
!-- loop over subboxes. In case of simple interpolation scheme no subboxes
!-- are introduced, as they are not required. Accordingly, this loops goes
!-- from 1 to 1.
DO nb = subbox_start, subbox_end
IF ( interpolation_trilinear ) THEN
particle_start = start_index(nb)
particle_end = end_index(nb)
ELSE
particle_start = 1
particle_end = number_of_particles
ENDIF
!
!-- Loop from particle start to particle end
DO n = particle_start, particle_end
!
!-- Particle advection
IF ( dens_ratio(n) == 0.0_wp ) THEN
!
!-- Pure passive transport (without particle inertia)
particles(n)%x = xv(n) + u_int(n) * dt_particle(n)
particles(n)%y = yv(n) + v_int(n) * dt_particle(n)
particles(n)%z = zv(n) + w_int(n) * dt_particle(n)
particles(n)%speed_x = u_int(n)
particles(n)%speed_y = v_int(n)
particles(n)%speed_z = w_int(n)
ELSE
!
!-- Transport of particles with inertia
particles(n)%x = particles(n)%x + particles(n)%speed_x * &
dt_particle(n)
particles(n)%y = particles(n)%y + particles(n)%speed_y * &
dt_particle(n)
particles(n)%z = particles(n)%z + particles(n)%speed_z * &
dt_particle(n)
!
!-- Update of the particle velocity
IF ( cloud_droplets ) THEN
!
!-- Terminal velocity is computed for vertical direction (Rogers et
!-- al., 1993, J. Appl. Meteorol.)
diameter = particles(n)%radius * 2000.0_wp !diameter in mm
IF ( diameter <= d0_rog ) THEN
w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) )
ELSE
w_s = a_rog - b_rog * EXP( -c_rog * diameter )
ENDIF
!
!-- If selected, add random velocities following Soelch and Kaercher
!-- (2010, Q. J. R. Meteorol. Soc.)
IF ( use_sgs_for_particles ) THEN
lagr_timescale(n) = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp )
RL = EXP( -1.0_wp * dt_3d / MAX( lagr_timescale(n), &
1.0E-20_wp ) )
sigma = SQRT( e(kp,jp,ip) )
rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp
rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp
rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp
particles(n)%rvar1 = RL * particles(n)%rvar1 + &
SQRT( 1.0_wp - RL**2 ) * sigma * rg1
particles(n)%rvar2 = RL * particles(n)%rvar2 + &
SQRT( 1.0_wp - RL**2 ) * sigma * rg2
particles(n)%rvar3 = RL * particles(n)%rvar3 + &
SQRT( 1.0_wp - RL**2 ) * sigma * rg3
particles(n)%speed_x = u_int(n) + particles(n)%rvar1
particles(n)%speed_y = v_int(n) + particles(n)%rvar2
particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s
ELSE
particles(n)%speed_x = u_int(n)
particles(n)%speed_y = v_int(n)
particles(n)%speed_z = w_int(n) - w_s
ENDIF
ELSE
IF ( use_sgs_for_particles ) THEN
exp_arg = particle_groups(particles(n)%group)%exp_arg
exp_term = EXP( -exp_arg * dt_particle(n) )
ELSE
exp_arg = particle_groups(particles(n)%group)%exp_arg
exp_term = particle_groups(particles(n)%group)%exp_term
ENDIF
particles(n)%speed_x = particles(n)%speed_x * exp_term + &
u_int(n) * ( 1.0_wp - exp_term )
particles(n)%speed_y = particles(n)%speed_y * exp_term + &
v_int(n) * ( 1.0_wp - exp_term )
particles(n)%speed_z = particles(n)%speed_z * exp_term + &
( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * &
g / exp_arg ) * ( 1.0_wp - exp_term )
ENDIF
ENDIF
ENDDO
ENDDO
ELSE
!
!-- Decide whether the particle loop runs over the subboxes or only over 1,
!-- number_of_particles. This depends on the selected interpolation method.
IF ( interpolation_trilinear ) THEN
subbox_start = 0
subbox_end = 7
ELSE
subbox_start = 1
subbox_end = 1
ENDIF
!-- loop over subboxes. In case of simple interpolation scheme no subboxes
!-- are introduced, as they are not required. Accordingly, this loops goes
!-- from 1 to 1.
DO nb = subbox_start, subbox_end
IF ( interpolation_trilinear ) THEN
particle_start = start_index(nb)
particle_end = end_index(nb)
ELSE
particle_start = 1
particle_end = number_of_particles
ENDIF
!
!-- Loop from particle start to particle end
DO n = particle_start, particle_end
!
!-- Transport of particles with inertia
particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n)
particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n)
particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n)
!
!-- Update of the particle velocity
IF ( cloud_droplets ) THEN
!
!-- Terminal velocity is computed for vertical direction (Rogers et al.,
!-- 1993, J. Appl. Meteorol.)
diameter = particles(n)%radius * 2000.0_wp !diameter in mm
IF ( diameter <= d0_rog ) THEN
w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) )
ELSE
w_s = a_rog - b_rog * EXP( -c_rog * diameter )
ENDIF
!
!-- If selected, add random velocities following Soelch and Kaercher
!-- (2010, Q. J. R. Meteorol. Soc.)
IF ( use_sgs_for_particles ) THEN
lagr_timescale(n) = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp )
RL = EXP( -1.0_wp * dt_3d / MAX( lagr_timescale(n), &
1.0E-20_wp ) )
sigma = SQRT( e(kp,jp,ip) )
rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp
rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp
rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp
particles(n)%rvar1 = RL * particles(n)%rvar1 + &
SQRT( 1.0_wp - RL**2 ) * sigma * rg1
particles(n)%rvar2 = RL * particles(n)%rvar2 + &
SQRT( 1.0_wp - RL**2 ) * sigma * rg2
particles(n)%rvar3 = RL * particles(n)%rvar3 + &
SQRT( 1.0_wp - RL**2 ) * sigma * rg3
particles(n)%speed_x = u_int(n) + particles(n)%rvar1
particles(n)%speed_y = v_int(n) + particles(n)%rvar2
particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s
ELSE
particles(n)%speed_x = u_int(n)
particles(n)%speed_y = v_int(n)
particles(n)%speed_z = w_int(n) - w_s
ENDIF
ELSE
IF ( use_sgs_for_particles ) THEN
exp_arg = particle_groups(particles(n)%group)%exp_arg
exp_term = EXP( -exp_arg * dt_particle(n) )
ELSE
exp_arg = particle_groups(particles(n)%group)%exp_arg
exp_term = particle_groups(particles(n)%group)%exp_term
ENDIF
particles(n)%speed_x = particles(n)%speed_x * exp_term + &
u_int(n) * ( 1.0_wp - exp_term )
particles(n)%speed_y = particles(n)%speed_y * exp_term + &
v_int(n) * ( 1.0_wp - exp_term )
particles(n)%speed_z = particles(n)%speed_z * exp_term + &
( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / &
exp_arg ) * ( 1.0_wp - exp_term )
ENDIF
ENDDO
ENDDO
ENDIF
!
!-- Store the old age of the particle ( needed to prevent that a
!-- particle crosses several PEs during one timestep, and for the
!-- evaluation of the subgrid particle velocity fluctuations )
particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age
!
!-- loop over subboxes. In case of simple interpolation scheme no subboxes
!-- are introduced, as they are not required. Accordingly, this loops goes
!-- from 1 to 1.
!
!-- Decide whether the particle loop runs over the subboxes or only over 1,
!-- number_of_particles. This depends on the selected interpolation method.
IF ( interpolation_trilinear ) THEN
subbox_start = 0
subbox_end = 7
ELSE
subbox_start = 1
subbox_end = 1
ENDIF
DO nb = subbox_start, subbox_end
IF ( interpolation_trilinear ) THEN
particle_start = start_index(nb)
particle_end = end_index(nb)
ELSE
particle_start = 1
particle_end = number_of_particles
ENDIF
!
!-- Loop from particle start to particle end
DO n = particle_start, particle_end
!
!-- Increment the particle age and the total time that the particle
!-- has advanced within the particle timestep procedure
particles(n)%age = particles(n)%age + dt_particle(n)
particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n)
!
!-- Check whether there is still a particle that has not yet completed
!-- the total LES timestep
IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN
dt_3d_reached_l = .FALSE.
ENDIF
ENDDO
ENDDO
CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' )
END SUBROUTINE lpm_advec
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculation of subgrid-scale particle speed using the stochastic model
!> of Weil et al. (2004, JAS, 61, 2877-2887).
!------------------------------------------------------------------------------!
SUBROUTINE weil_stochastic_eq( v_sgs, fs_n, e_n, dedxi_n, dedt_n, diss_n, &
dt_n, rg_n, fac )
REAL(wp) :: a1 !< dummy argument
REAL(wp) :: dedt_n !< time derivative of TKE at particle position
REAL(wp) :: dedxi_n !< horizontal derivative of TKE at particle position
REAL(wp) :: diss_n !< dissipation at particle position
REAL(wp) :: dt_n !< particle timestep
REAL(wp) :: e_n !< TKE at particle position
REAL(wp) :: fac !< flag to identify adjacent topography
REAL(wp) :: fs_n !< weighting factor to prevent that subgrid-scale particle speed becomes too large
REAL(wp) :: rg_n !< random number
REAL(wp) :: term1 !< memory term
REAL(wp) :: term2 !< drift correction term
REAL(wp) :: term3 !< random term
REAL(wp) :: v_sgs !< subgrid-scale velocity component
!-- At first, limit TKE to a small non-zero number, in order to prevent
!-- the occurrence of extremely large SGS-velocities in case TKE is zero,
!-- (could occur at the simulation begin).
e_n = MAX( e_n, 1E-20_wp )
!
!-- Please note, terms 1 and 2 (drift and memory term, respectively) are
!-- multiplied by a flag to switch of both terms near topography.
!-- This is necessary, as both terms may cause a subgrid-scale velocity build up
!-- if particles are trapped in regions with very small TKE, e.g. in narrow street
!-- canyons resolved by only a few grid points. Hence, term 1 and term 2 are
!-- disabled if one of the adjacent grid points belongs to topography.
!-- Moreover, in this case, the previous subgrid-scale component is also set
!-- to zero.
a1 = fs_n * c_0 * diss_n
!
!-- Memory term
term1 = - a1 * v_sgs * dt_n / ( 4.0_wp * sgs_wf_part * e_n + 1E-20_wp ) &
* fac
!
!-- Drift correction term
term2 = ( ( dedt_n * v_sgs / e_n ) + dedxi_n ) * 0.5_wp * dt_n &
* fac
!
!-- Random term
term3 = SQRT( MAX( a1, 1E-20_wp ) ) * ( rg_n - 1.0_wp ) * SQRT( dt_n )
!
!-- In cese one of the adjacent grid-boxes belongs to topograhy, the previous
!-- subgrid-scale velocity component is set to zero, in order to prevent a
!-- velocity build-up.
!-- This case, set also previous subgrid-scale component to zero.
v_sgs = v_sgs * fac + term1 + term2 + term3
END SUBROUTINE weil_stochastic_eq
!------------------------------------------------------------------------------!
! Description:
! ------------
!> swap timelevel in case of particle advection interpolation 'simple-corrector'
!> This routine is called at the end of one timestep, the velocities are then
!> used for the next timestep
!------------------------------------------------------------------------------!
SUBROUTINE lpm_swap_timelevel_for_particle_advection
!
!-- save the divergence free velocites of t+1 to use them at the end of the
!-- next time step
u_t = u
v_t = v
w_t = w
END SUBROUTINE lpm_swap_timelevel_for_particle_advection
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Boundary conditions for the Lagrangian particles.
!> The routine consists of two different parts. One handles the bottom (flat)
!> and top boundary. In this part, also particles which exceeded their lifetime
!> are deleted.
!> The other part handles the reflection of particles from vertical walls.
!> This part was developed by Jin Zhang during 2006-2007.
!>
!> To do: Code structure for finding the t_index values and for checking the
!> ----- reflection conditions is basically the same for all four cases, so it
!> should be possible to further simplify/shorten it.
!>
!> THE WALLS PART OF THIS ROUTINE HAS NOT BEEN TESTED FOR OCEAN RUNS SO FAR!!!!
!> (see offset_ocean_*)
!------------------------------------------------------------------------------!
SUBROUTINE lpm_boundary_conds( location_bc , i, j, k )
CHARACTER (LEN=*), INTENT(IN) :: location_bc !< general mode: boundary conditions at bottom/top of the model domain
!< or at vertical surfaces (buildings, terrain steps)
INTEGER(iwp), INTENT(IN) :: i !< grid index of particle box along x
INTEGER(iwp), INTENT(IN) :: j !< grid index of particle box along y
INTEGER(iwp), INTENT(IN) :: k !< grid index of particle box along z
INTEGER(iwp) :: inc !< dummy for sorting algorithmus
INTEGER(iwp) :: ir !< dummy for sorting algorithmus
INTEGER(iwp) :: i1 !< grid index (x) of old particle position
INTEGER(iwp) :: i2 !< grid index (x) of current particle position
INTEGER(iwp) :: i3 !< grid index (x) of intermediate particle position
INTEGER(iwp) :: index_reset !< index reset height
INTEGER(iwp) :: jr !< dummy for sorting algorithmus
INTEGER(iwp) :: j1 !< grid index (y) of old particle position
INTEGER(iwp) :: j2 !< grid index (y) of current particle position
INTEGER(iwp) :: j3 !< grid index (y) of intermediate particle position
INTEGER(iwp) :: k1 !< grid index (z) of old particle position
INTEGER(iwp) :: k2 !< grid index (z) of current particle position
INTEGER(iwp) :: k3 !< grid index (z) of intermediate particle position
INTEGER(iwp) :: n !< particle number
INTEGER(iwp) :: particles_top !< maximum reset height
INTEGER(iwp) :: t_index !< running index for intermediate particle timesteps in reflection algorithmus
INTEGER(iwp) :: t_index_number !< number of intermediate particle timesteps in reflection algorithmus
INTEGER(iwp) :: tmp_x !< dummy for sorting algorithm
INTEGER(iwp) :: tmp_y !< dummy for sorting algorithm
INTEGER(iwp) :: tmp_z !< dummy for sorting algorithm
INTEGER(iwp), DIMENSION(0:10) :: x_ind(0:10) = 0 !< index array (x) of intermediate particle positions
INTEGER(iwp), DIMENSION(0:10) :: y_ind(0:10) = 0 !< index array (y) of intermediate particle positions
INTEGER(iwp), DIMENSION(0:10) :: z_ind(0:10) = 0 !< index array (z) of intermediate particle positions
LOGICAL :: cross_wall_x !< flag to check if particle reflection along x is necessary
LOGICAL :: cross_wall_y !< flag to check if particle reflection along y is necessary
LOGICAL :: cross_wall_z !< flag to check if particle reflection along z is necessary
LOGICAL :: reflect_x !< flag to check if particle is already reflected along x
LOGICAL :: reflect_y !< flag to check if particle is already reflected along y
LOGICAL :: reflect_z !< flag to check if particle is already reflected along z
LOGICAL :: tmp_reach_x !< dummy for sorting algorithmus
LOGICAL :: tmp_reach_y !< dummy for sorting algorithmus
LOGICAL :: tmp_reach_z !< dummy for sorting algorithmus
LOGICAL :: x_wall_reached !< flag to check if particle has already reached wall
LOGICAL :: y_wall_reached !< flag to check if particle has already reached wall
LOGICAL :: z_wall_reached !< flag to check if particle has already reached wall
LOGICAL, DIMENSION(0:10) :: reach_x !< flag to check if particle is at a yz-wall
LOGICAL, DIMENSION(0:10) :: reach_y !< flag to check if particle is at a xz-wall
LOGICAL, DIMENSION(0:10) :: reach_z !< flag to check if particle is at a xy-wall
REAL(wp) :: dt_particle !< particle timestep
REAL(wp) :: eps = 1E-10_wp !< security number to check if particle has reached a wall
REAL(wp) :: pos_x !< intermediate particle position (x)
REAL(wp) :: pos_x_old !< particle position (x) at previous particle timestep
REAL(wp) :: pos_y !< intermediate particle position (y)
REAL(wp) :: pos_y_old !< particle position (y) at previous particle timestep
REAL(wp) :: pos_z !< intermediate particle position (z)
REAL(wp) :: pos_z_old !< particle position (z) at previous particle timestep
REAL(wp) :: prt_x !< current particle position (x)
REAL(wp) :: prt_y !< current particle position (y)
REAL(wp) :: prt_z !< current particle position (z)
REAL(wp) :: ran_val !< location of wall in z
REAL(wp) :: reset_top !< location of wall in z
REAL(wp) :: t_old !< previous reflection time
REAL(wp) :: tmp_t !< dummy for sorting algorithmus
REAL(wp) :: xwall !< location of wall in x
REAL(wp) :: ywall !< location of wall in y
REAL(wp) :: zwall !< location of wall in z
REAL(wp), DIMENSION(0:10) :: t !< reflection time
SELECT CASE ( location_bc )
CASE ( 'bottom/top' )
!
!-- Apply boundary conditions to those particles that have crossed the top or
!-- bottom boundary and delete those particles, which are older than allowed
DO n = 1, number_of_particles
!
!-- Stop if particles have moved further than the length of one
!-- PE subdomain (newly released particles have age = age_m!)
IF ( particles(n)%age /= particles(n)%age_m ) THEN
IF ( ABS(particles(n)%speed_x) > &
((nxr-nxl+2)*dx)/(particles(n)%age-particles(n)%age_m) .OR. &
ABS(particles(n)%speed_y) > &
((nyn-nys+2)*dy)/(particles(n)%age-particles(n)%age_m) ) THEN
WRITE( message_string, * ) 'particle too fast. n = ', n
CALL message( 'lpm_boundary_conds', 'PA0148', 2, 2, -1, 6, 1 )
ENDIF
ENDIF
IF ( particles(n)%age > particle_maximum_age .AND. &
particles(n)%particle_mask ) &
THEN
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ENDIF
IF ( particles(n)%z >= zw(nz) .AND. particles(n)%particle_mask ) THEN
IF ( ibc_par_t == 1 ) THEN
!
!-- Particle absorption
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ELSEIF ( ibc_par_t == 2 ) THEN
!
!-- Particle reflection
particles(n)%z = 2.0_wp * zw(nz) - particles(n)%z
particles(n)%speed_z = -particles(n)%speed_z
IF ( use_sgs_for_particles .AND. &
particles(n)%rvar3 > 0.0_wp ) THEN
particles(n)%rvar3 = -particles(n)%rvar3
ENDIF
ENDIF
ENDIF
IF ( particles(n)%z < zw(0) .AND. particles(n)%particle_mask ) THEN
IF ( ibc_par_b == 1 ) THEN
!
!-- Particle absorption
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ELSEIF ( ibc_par_b == 2 ) THEN
!
!-- Particle reflection
particles(n)%z = 2.0_wp * zw(0) - particles(n)%z
particles(n)%speed_z = -particles(n)%speed_z
IF ( use_sgs_for_particles .AND. &
particles(n)%rvar3 < 0.0_wp ) THEN
particles(n)%rvar3 = -particles(n)%rvar3
ENDIF
ELSEIF ( ibc_par_b == 3 ) THEN
!
!-- Find reset height. @note this works only in non-strechted cases
particles_top = INT( pst(1) / dz(1) )
index_reset = MINLOC( prt_count(nzb+1:particles_top,j,i), DIM = 1 )
reset_top = zu(index_reset)
iran_part = iran_part + myid
ran_val = random_function( iran_part )
particles(n)%z = reset_top * ( 1.0 + ( ran_val / 10.0_wp) )
particles(n)%speed_z = 0.0_wp
IF ( curvature_solution_effects ) THEN
particles(n)%radius = particles(n)%aux1
ELSE
particles(n)%radius = 1.0E-8
ENDIF
ENDIF
ENDIF
ENDDO
CASE ( 'walls' )
CALL cpu_log( log_point_s(48), 'lpm_wall_reflect', 'start' )
DO n = 1, number_of_particles
!
!-- Recalculate particle timestep
dt_particle = particles(n)%age - particles(n)%age_m
!
!-- Obtain x/y indices for current particle position
i2 = particles(n)%x * ddx
j2 = particles(n)%y * ddy
IF ( zw(k) < particles(n)%z ) k2 = k + 1
IF ( zw(k) > particles(n)%z .AND. zw(k-1) < particles(n)%z ) k2 = k
IF ( zw(k-1) > particles(n)%z ) k2 = k - 1
!
!-- Save current particle positions
prt_x = particles(n)%x
prt_y = particles(n)%y
prt_z = particles(n)%z
!
!-- Recalculate old particle positions
pos_x_old = particles(n)%x - particles(n)%speed_x * dt_particle
pos_y_old = particles(n)%y - particles(n)%speed_y * dt_particle
pos_z_old = particles(n)%z - particles(n)%speed_z * dt_particle
!
!-- Obtain x/y indices for old particle positions
i1 = i
j1 = j
k1 = k
!
!-- Determine horizontal as well as vertical walls at which particle can
!-- be potentially reflected.
!-- Start with walls aligned in yz layer.
!-- Wall to the right
IF ( prt_x > pos_x_old ) THEN
xwall = ( i1 + 1 ) * dx
!
!-- Wall to the left
ELSE
xwall = i1 * dx
ENDIF
!
!-- Walls aligned in xz layer
!-- Wall to the north
IF ( prt_y > pos_y_old ) THEN
ywall = ( j1 + 1 ) * dy
!-- Wall to the south
ELSE
ywall = j1 * dy
ENDIF
IF ( prt_z > pos_z_old ) THEN
zwall = zw(k)
ELSE
zwall = zw(k-1)
ENDIF
!
!-- Initialize flags to check if particle reflection is necessary
cross_wall_x = .FALSE.
cross_wall_y = .FALSE.
cross_wall_z = .FALSE.
!
!-- Initialize flags to check if a wall is reached
reach_x = .FALSE.
reach_y = .FALSE.
reach_z = .FALSE.
!
!-- Initialize flags to check if a particle was already reflected
reflect_x = .FALSE.
reflect_y = .FALSE.
reflect_z = .FALSE.
!
!-- Initialize flags to check if a wall is already crossed.
!-- ( Required to obtain correct indices. )
x_wall_reached = .FALSE.
y_wall_reached = .FALSE.
z_wall_reached = .FALSE.
!
!-- Initialize time array
t = 0.0_wp
!
!-- Check if particle can reach any wall. This case, calculate the
!-- fractional time needed to reach this wall. Store this fractional
!-- timestep in array t. Moreover, store indices for these grid
!-- boxes where the respective wall belongs to.
!-- Start with x-direction.
t_index = 1
t(t_index) = ( xwall - pos_x_old ) &
/ MERGE( MAX( prt_x - pos_x_old, 1E-30_wp ), &
MIN( prt_x - pos_x_old, -1E-30_wp ), &
prt_x > pos_x_old )
x_ind(t_index) = i2
y_ind(t_index) = j1
z_ind(t_index) = k1
reach_x(t_index) = .TRUE.
reach_y(t_index) = .FALSE.
reach_z(t_index) = .FALSE.
!
!-- Store these values only if particle really reaches any wall. t must
!-- be in a interval between [0:1].
IF ( t(t_index) <= 1.0_wp .AND. t(t_index) >= 0.0_wp ) THEN
t_index = t_index + 1
cross_wall_x = .TRUE.
ENDIF
!
!-- y-direction
t(t_index) = ( ywall - pos_y_old ) &
/ MERGE( MAX( prt_y - pos_y_old, 1E-30_wp ), &
MIN( prt_y - pos_y_old, -1E-30_wp ), &
prt_y > pos_y_old )
x_ind(t_index) = i1
y_ind(t_index) = j2
z_ind(t_index) = k1
reach_x(t_index) = .FALSE.
reach_y(t_index) = .TRUE.
reach_z(t_index) = .FALSE.
IF ( t(t_index) <= 1.0_wp .AND. t(t_index) >= 0.0_wp ) THEN
t_index = t_index + 1
cross_wall_y = .TRUE.
ENDIF
!
!-- z-direction
t(t_index) = (zwall - pos_z_old ) &
/ MERGE( MAX( prt_z - pos_z_old, 1E-30_wp ), &
MIN( prt_z - pos_z_old, -1E-30_wp ), &
prt_z > pos_z_old )
x_ind(t_index) = i1
y_ind(t_index) = j1
z_ind(t_index) = k2
reach_x(t_index) = .FALSE.
reach_y(t_index) = .FALSE.
reach_z(t_index) = .TRUE.
IF( t(t_index) <= 1.0_wp .AND. t(t_index) >= 0.0_wp) THEN
t_index = t_index + 1
cross_wall_z = .TRUE.
ENDIF
t_index_number = t_index - 1
!
!-- Carry out reflection only if particle reaches any wall
IF ( cross_wall_x .OR. cross_wall_y .OR. cross_wall_z ) THEN
!
!-- Sort fractional timesteps in ascending order. Also sort the
!-- corresponding indices and flag according to the time interval a
!-- particle reaches the respective wall.
inc = 1
jr = 1
DO WHILE ( inc <= t_index_number )
inc = 3 * inc + 1
ENDDO
DO WHILE ( inc > 1 )
inc = inc / 3
DO ir = inc+1, t_index_number
tmp_t = t(ir)
tmp_x = x_ind(ir)
tmp_y = y_ind(ir)
tmp_z = z_ind(ir)
tmp_reach_x = reach_x(ir)
tmp_reach_y = reach_y(ir)
tmp_reach_z = reach_z(ir)
jr = ir
DO WHILE ( t(jr-inc) > tmp_t )
t(jr) = t(jr-inc)
x_ind(jr) = x_ind(jr-inc)
y_ind(jr) = y_ind(jr-inc)
z_ind(jr) = z_ind(jr-inc)
reach_x(jr) = reach_x(jr-inc)
reach_y(jr) = reach_y(jr-inc)
reach_z(jr) = reach_z(jr-inc)
jr = jr - inc
IF ( jr <= inc ) EXIT
ENDDO
t(jr) = tmp_t
x_ind(jr) = tmp_x
y_ind(jr) = tmp_y
z_ind(jr) = tmp_z
reach_x(jr) = tmp_reach_x
reach_y(jr) = tmp_reach_y
reach_z(jr) = tmp_reach_z
ENDDO
ENDDO
!
!-- Initialize temporary particle positions
pos_x = pos_x_old
pos_y = pos_y_old
pos_z = pos_z_old
!
!-- Loop over all times a particle possibly moves into a new grid box
t_old = 0.0_wp
DO t_index = 1, t_index_number
!
!-- Calculate intermediate particle position according to the
!-- timesteps a particle reaches any wall.
pos_x = pos_x + ( t(t_index) - t_old ) * dt_particle &
* particles(n)%speed_x
pos_y = pos_y + ( t(t_index) - t_old ) * dt_particle &
* particles(n)%speed_y
pos_z = pos_z + ( t(t_index) - t_old ) * dt_particle &
* particles(n)%speed_z
!
!-- Obtain x/y grid indices for intermediate particle position from
!-- sorted index array
i3 = x_ind(t_index)
j3 = y_ind(t_index)
k3 = z_ind(t_index)
!
!-- Check which wall is already reached
IF ( .NOT. x_wall_reached ) x_wall_reached = reach_x(t_index)
IF ( .NOT. y_wall_reached ) y_wall_reached = reach_y(t_index)
IF ( .NOT. z_wall_reached ) z_wall_reached = reach_z(t_index)
!
!-- Check if a particle needs to be reflected at any yz-wall. If
!-- necessary, carry out reflection. Please note, a security
!-- constant is required, as the particle position does not
!-- necessarily exactly match the wall location due to rounding
!-- errors.
IF ( reach_x(t_index) .AND. &
ABS( pos_x - xwall ) < eps .AND. &
.NOT. BTEST(wall_flags_0(k3,j3,i3),0) .AND. &
.NOT. reflect_x ) THEN
!
!
!-- Reflection in x-direction.
!-- Ensure correct reflection by MIN/MAX functions, depending on
!-- direction of particle transport.
!-- Due to rounding errors pos_x does not exactly match the wall
!-- location, leading to erroneous reflection.
pos_x = MERGE( MIN( 2.0_wp * xwall - pos_x, xwall ), &
MAX( 2.0_wp * xwall - pos_x, xwall ), &
particles(n)%x > xwall )
!
!-- Change sign of particle speed
particles(n)%speed_x = - particles(n)%speed_x
!
!-- Also change sign of subgrid-scale particle speed
particles(n)%rvar1 = - particles(n)%rvar1
!
!-- Set flag that reflection along x is already done
reflect_x = .TRUE.
!
!-- As the particle does not cross any further yz-wall during
!-- this timestep, set further x-indices to the current one.
x_ind(t_index:t_index_number) = i1
!
!-- If particle already reached the wall but was not reflected,
!-- set further x-indices to the new one.
ELSEIF ( x_wall_reached .AND. .NOT. reflect_x ) THEN
x_ind(t_index:t_index_number) = i2
ENDIF !particle reflection in x direction done
!
!-- Check if a particle needs to be reflected at any xz-wall. If
!-- necessary, carry out reflection. Please note, a security
!-- constant is required, as the particle position does not
!-- necessarily exactly match the wall location due to rounding
!-- errors.
IF ( reach_y(t_index) .AND. &
ABS( pos_y - ywall ) < eps .AND. &
.NOT. BTEST(wall_flags_0(k3,j3,i3),0) .AND. &
.NOT. reflect_y ) THEN
!
!
!-- Reflection in y-direction.
!-- Ensure correct reflection by MIN/MAX functions, depending on
!-- direction of particle transport.
!-- Due to rounding errors pos_y does not exactly match the wall
!-- location, leading to erroneous reflection.
pos_y = MERGE( MIN( 2.0_wp * ywall - pos_y, ywall ), &
MAX( 2.0_wp * ywall - pos_y, ywall ), &
particles(n)%y > ywall )
!
!-- Change sign of particle speed
particles(n)%speed_y = - particles(n)%speed_y
!
!-- Also change sign of subgrid-scale particle speed
particles(n)%rvar2 = - particles(n)%rvar2
!
!-- Set flag that reflection along y is already done
reflect_y = .TRUE.
!
!-- As the particle does not cross any further xz-wall during
!-- this timestep, set further y-indices to the current one.
y_ind(t_index:t_index_number) = j1
!
!-- If particle already reached the wall but was not reflected,
!-- set further y-indices to the new one.
ELSEIF ( y_wall_reached .AND. .NOT. reflect_y ) THEN
y_ind(t_index:t_index_number) = j2
ENDIF !particle reflection in y direction done
!
!-- Check if a particle needs to be reflected at any xy-wall. If
!-- necessary, carry out reflection. Please note, a security
!-- constant is required, as the particle position does not
!-- necessarily exactly match the wall location due to rounding
!-- errors.
IF ( reach_z(t_index) .AND. &
ABS( pos_z - zwall ) < eps .AND. &
.NOT. BTEST(wall_flags_0(k3,j3,i3),0) .AND. &
.NOT. reflect_z ) THEN
!
!
!-- Reflection in z-direction.
!-- Ensure correct reflection by MIN/MAX functions, depending on
!-- direction of particle transport.
!-- Due to rounding errors pos_z does not exactly match the wall
!-- location, leading to erroneous reflection.
pos_z = MERGE( MIN( 2.0_wp * zwall - pos_z, zwall ), &
MAX( 2.0_wp * zwall - pos_z, zwall ), &
particles(n)%z > zwall )
!
!-- Change sign of particle speed
particles(n)%speed_z = - particles(n)%speed_z
!
!-- Also change sign of subgrid-scale particle speed
particles(n)%rvar3 = - particles(n)%rvar3
!
!-- Set flag that reflection along z is already done
reflect_z = .TRUE.
!
!-- As the particle does not cross any further xy-wall during
!-- this timestep, set further z-indices to the current one.
z_ind(t_index:t_index_number) = k1
!
!-- If particle already reached the wall but was not reflected,
!-- set further z-indices to the new one.
ELSEIF ( z_wall_reached .AND. .NOT. reflect_z ) THEN
z_ind(t_index:t_index_number) = k2
ENDIF !particle reflection in z direction done
!
!-- Swap time
t_old = t(t_index)
ENDDO
!
!-- If a particle was reflected, calculate final position from last
!-- intermediate position.
IF ( reflect_x .OR. reflect_y .OR. reflect_z ) THEN
particles(n)%x = pos_x + ( 1.0_wp - t_old ) * dt_particle &
* particles(n)%speed_x
particles(n)%y = pos_y + ( 1.0_wp - t_old ) * dt_particle &
* particles(n)%speed_y
particles(n)%z = pos_z + ( 1.0_wp - t_old ) * dt_particle &
* particles(n)%speed_z
ENDIF
ENDIF
ENDDO
CALL cpu_log( log_point_s(48), 'lpm_wall_reflect', 'stop' )
CASE DEFAULT
CONTINUE
END SELECT
END SUBROUTINE lpm_boundary_conds
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculates change in droplet radius by condensation/evaporation, using
!> either an analytic formula or by numerically integrating the radius growth
!> equation including curvature and solution effects using Rosenbrocks method
!> (see Numerical recipes in FORTRAN, 2nd edition, p. 731).
!> The analytical formula and growth equation follow those given in
!> Rogers and Yau (A short course in cloud physics, 3rd edition, p. 102/103).
!------------------------------------------------------------------------------!
SUBROUTINE lpm_droplet_condensation (i,j,k)
INTEGER(iwp), INTENT(IN) :: i !<
INTEGER(iwp), INTENT(IN) :: j !<
INTEGER(iwp), INTENT(IN) :: k !<
INTEGER(iwp) :: n !<
REAL(wp) :: afactor !< curvature effects
REAL(wp) :: arg !<
REAL(wp) :: bfactor !< solute effects
REAL(wp) :: ddenom !<
REAL(wp) :: delta_r !<
REAL(wp) :: diameter !< diameter of cloud droplets
REAL(wp) :: diff_coeff !< diffusivity for water vapor
REAL(wp) :: drdt !<
REAL(wp) :: dt_ros !<
REAL(wp) :: dt_ros_sum !<
REAL(wp) :: d2rdtdr !<
REAL(wp) :: e_a !< current vapor pressure
REAL(wp) :: e_s !< current saturation vapor pressure
REAL(wp) :: error !< local truncation error in Rosenbrock
REAL(wp) :: k1 !<
REAL(wp) :: k2 !<
REAL(wp) :: r_err !< First order estimate of Rosenbrock radius
REAL(wp) :: r_ros !< Rosenbrock radius
REAL(wp) :: r_ros_ini !< initial Rosenbrock radius
REAL(wp) :: r0 !< gas-kinetic lengthscale
REAL(wp) :: sigma !< surface tension of water
REAL(wp) :: thermal_conductivity !< thermal conductivity for water
REAL(wp) :: t_int !< temperature
REAL(wp) :: w_s !< terminal velocity of droplets
REAL(wp) :: re_p !< particle Reynolds number
!
!-- Parameters for Rosenbrock method (see Verwer et al., 1999)
REAL(wp), PARAMETER :: prec = 1.0E-3_wp !< precision of Rosenbrock solution
REAL(wp), PARAMETER :: q_increase = 1.5_wp !< increase factor in timestep
REAL(wp), PARAMETER :: q_decrease = 0.9_wp !< decrease factor in timestep
REAL(wp), PARAMETER :: gamma = 0.292893218814_wp !< = 1.0 - 1.0 / SQRT(2.0)
!
!-- Parameters for terminal velocity
REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity
REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity
REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity
REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity
REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity
REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter
REAL(wp), DIMENSION(number_of_particles) :: ventilation_effect !<
REAL(wp), DIMENSION(number_of_particles) :: new_r !<
CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'start' )
!
!-- Absolute temperature
t_int = pt(k,j,i) * exner(k)
!
!-- Saturation vapor pressure (Eq. 10 in Bolton, 1980)
e_s = magnus( t_int )
!
!-- Current vapor pressure
e_a = q(k,j,i) * hyp(k) / ( q(k,j,i) + rd_d_rv )
!
!-- Thermal conductivity for water (from Rogers and Yau, Table 7.1)
thermal_conductivity = 7.94048E-05_wp * t_int + 0.00227011_wp
!
!-- Moldecular diffusivity of water vapor in air (Hall und Pruppacher, 1976)
diff_coeff = 0.211E-4_wp * ( t_int / 273.15_wp )**1.94_wp * &
( 101325.0_wp / hyp(k) )
!
!-- Lengthscale for gas-kinetic effects (from Mordy, 1959, p. 23):
r0 = diff_coeff / 0.036_wp * SQRT( 2.0_wp * pi / ( r_v * t_int ) )
!
!-- Calculate effects of heat conductivity and diffusion of water vapor on the
!-- diffusional growth process (usually known as 1.0 / (F_k + F_d) )
ddenom = 1.0_wp / ( rho_l * r_v * t_int / ( e_s * diff_coeff ) + &
( l_v / ( r_v * t_int ) - 1.0_wp ) * rho_l * &
l_v / ( thermal_conductivity * t_int ) &
)
new_r = 0.0_wp
!
!-- Determine ventilation effect on evaporation of large drops
DO n = 1, number_of_particles
IF ( particles(n)%radius >= 4.0E-5_wp .AND. e_a / e_s < 1.0_wp ) THEN
!
!-- Terminal velocity is computed for vertical direction (Rogers et al.,
!-- 1993, J. Appl. Meteorol.)
diameter = particles(n)%radius * 2000.0_wp !diameter in mm
IF ( diameter <= d0_rog ) THEN
w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) )
ELSE
w_s = a_rog - b_rog * EXP( -c_rog * diameter )
ENDIF
!
!-- Calculate droplet's Reynolds number
re_p = 2.0_wp * particles(n)%radius * w_s / molecular_viscosity
!
!-- Ventilation coefficient (Rogers and Yau, 1989):
IF ( re_p > 2.5_wp ) THEN
ventilation_effect(n) = 0.78_wp + 0.28_wp * SQRT( re_p )
ELSE
ventilation_effect(n) = 1.0_wp + 0.09_wp * re_p
ENDIF
ELSE
!
!-- For small droplets or in supersaturated environments, the ventilation
!-- effect does not play a role
ventilation_effect(n) = 1.0_wp
ENDIF
ENDDO
IF( .NOT. curvature_solution_effects ) THEN
!
!-- Use analytic model for diffusional growth including gas-kinetic
!-- effects (Mordy, 1959) but without the impact of aerosols.
DO n = 1, number_of_particles
arg = ( particles(n)%radius + r0 )**2 + 2.0_wp * dt_3d * ddenom * &
ventilation_effect(n) * &
( e_a / e_s - 1.0_wp )
arg = MAX( arg, ( 0.01E-6 + r0 )**2 )
new_r(n) = SQRT( arg ) - r0
ENDDO
ELSE
!
!-- Integrate the diffusional growth including gas-kinetic (Mordy, 1959),
!-- as well as curvature and solute effects (e.g., Köhler, 1936).
!
!-- Curvature effect (afactor) with surface tension (sigma) by Straka (2009)
sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp )
!
!-- Solute effect (afactor)
afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int )
DO n = 1, number_of_particles
!
!-- Solute effect (bfactor)
bfactor = vanthoff * rho_s * particles(n)%aux1**3 * &
molecular_weight_of_water / ( rho_l * molecular_weight_of_solute )
dt_ros = particles(n)%aux2 ! use previously stored Rosenbrock timestep
dt_ros_sum = 0.0_wp
r_ros = particles(n)%radius ! initialize Rosenbrock particle radius
r_ros_ini = r_ros
!
!-- Integrate growth equation using a 2nd-order Rosenbrock method
!-- (see Verwer et al., 1999, Eq. (3.2)). The Rosenbrock method adjusts
!-- its with internal timestep to minimize the local truncation error.
DO WHILE ( dt_ros_sum < dt_3d )
dt_ros = MIN( dt_ros, dt_3d - dt_ros_sum )
DO
drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0_wp - &
afactor / r_ros + &
bfactor / r_ros**3 &
) / ( r_ros + r0 )
d2rdtdr = -ddenom * ventilation_effect(n) * ( &
(e_a / e_s - 1.0_wp ) * r_ros**4 - &
afactor * r0 * r_ros**2 - &
2.0_wp * afactor * r_ros**3 + &
3.0_wp * bfactor * r0 + &
4.0_wp * bfactor * r_ros &
) &
/ ( r_ros**4 * ( r_ros + r0 )**2 )
k1 = drdt / ( 1.0_wp - gamma * dt_ros * d2rdtdr )
r_ros = MAX(r_ros_ini + k1 * dt_ros, particles(n)%aux1)
r_err = r_ros
drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0_wp - &
afactor / r_ros + &
bfactor / r_ros**3 &
) / ( r_ros + r0 )
k2 = ( drdt - dt_ros * 2.0 * gamma * d2rdtdr * k1 ) / &
( 1.0_wp - dt_ros * gamma * d2rdtdr )
r_ros = MAX(r_ros_ini + dt_ros * ( 1.5_wp * k1 + 0.5_wp * k2), particles(n)%aux1)
!
!-- Check error of the solution, and reduce dt_ros if necessary.
error = ABS(r_err - r_ros) / r_ros
IF ( error > prec ) THEN
dt_ros = SQRT( q_decrease * prec / error ) * dt_ros
r_ros = r_ros_ini
ELSE
dt_ros_sum = dt_ros_sum + dt_ros
dt_ros = q_increase * dt_ros
r_ros_ini = r_ros
EXIT
ENDIF
END DO
END DO !Rosenbrock loop
!
!-- Store new particle radius
new_r(n) = r_ros
!
!-- Store internal time step value for next PALM step
particles(n)%aux2 = dt_ros
ENDDO !Particle loop
ENDIF
DO n = 1, number_of_particles
!
!-- Sum up the change in liquid water for the respective grid
!-- box for the computation of the release/depletion of water vapor
!-- and heat.
ql_c(k,j,i) = ql_c(k,j,i) + particles(n)%weight_factor * &
rho_l * 1.33333333_wp * pi * &
( new_r(n)**3 - particles(n)%radius**3 ) / &
( rho_surface * dx * dy * dzw(k) )
!
!-- Check if the increase in liqid water is not too big. If this is the case,
!-- the model timestep might be too long.
IF ( ql_c(k,j,i) > 100.0_wp ) THEN
WRITE( message_string, * ) 'k=',k,' j=',j,' i=',i, &
' ql_c=',ql_c(k,j,i), '&part(',n,')%wf=', &
particles(n)%weight_factor,' delta_r=',delta_r
CALL message( 'lpm_droplet_condensation', 'PA0143', 2, 2, -1, 6, 1 )
ENDIF
!
!-- Check if the change in the droplet radius is not too big. If this is the
!-- case, the model timestep might be too long.
delta_r = new_r(n) - particles(n)%radius
IF ( delta_r < 0.0_wp .AND. new_r(n) < 0.0_wp ) THEN
WRITE( message_string, * ) '#1 k=',k,' j=',j,' i=',i, &
' e_s=',e_s, ' e_a=',e_a,' t_int=',t_int, &
'&delta_r=',delta_r, &
' particle_radius=',particles(n)%radius
CALL message( 'lpm_droplet_condensation', 'PA0144', 2, 2, -1, 6, 1 )
ENDIF
!
!-- Sum up the total volume of liquid water (needed below for
!-- re-calculating the weighting factors)
ql_v(k,j,i) = ql_v(k,j,i) + particles(n)%weight_factor * new_r(n)**3
!
!-- Determine radius class of the particle needed for collision
IF ( use_kernel_tables ) THEN
particles(n)%class = ( LOG( new_r(n) ) - rclass_lbound ) / &
( rclass_ubound - rclass_lbound ) * &
radius_classes
particles(n)%class = MIN( particles(n)%class, radius_classes )
particles(n)%class = MAX( particles(n)%class, 1 )
ENDIF
!
!-- Store new radius to particle features
particles(n)%radius = new_r(n)
ENDDO
CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'stop' )
END SUBROUTINE lpm_droplet_condensation
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Release of latent heat and change of mixing ratio due to condensation /
!> evaporation of droplets.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_interaction_droplets_ptq
INTEGER(iwp) :: i !< running index x direction
INTEGER(iwp) :: j !< running index y direction
INTEGER(iwp) :: k !< running index z direction
REAL(wp) :: flag !< flag to mask topography grid points
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
!
!-- Predetermine flag to mask topography
flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) )
q(k,j,i) = q_p(k,j,i) - ql_c(k,j,i) * flag
pt(k,j,i) = pt(k,j,i) + lv_d_cp * ql_c(k,j,i) * d_exner(k) &
* flag
ENDDO
ENDDO
ENDDO
END SUBROUTINE lpm_interaction_droplets_ptq
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Release of latent heat and change of mixing ratio due to condensation /
!> evaporation of droplets. Call for grid point i,j
!------------------------------------------------------------------------------!
SUBROUTINE lpm_interaction_droplets_ptq_ij( i, j )
INTEGER(iwp) :: i !< running index x direction
INTEGER(iwp) :: j !< running index y direction
INTEGER(iwp) :: k !< running index z direction
REAL(wp) :: flag !< flag to mask topography grid points
DO k = nzb+1, nzt
!
!-- Predetermine flag to mask topography
flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) )
q(k,j,i) = q(k,j,i) - ql_c(k,j,i) * flag
pt(k,j,i) = pt(k,j,i) + lv_d_cp * ql_c(k,j,i) * d_exner(k) * flag
ENDDO
END SUBROUTINE lpm_interaction_droplets_ptq_ij
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate the liquid water content for each grid box.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_calc_liquid_water_content
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: n !<
CALL cpu_log( log_point_s(45), 'lpm_calc_ql', 'start' )
!
!-- Set water content initially to zero
ql = 0.0_wp; ql_v = 0.0_wp; ql_vp = 0.0_wp
!
!-- Calculate for each grid box
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
number_of_particles = prt_count(k,j,i)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(k,j,i)%particles(1:number_of_particles)
!
!-- Calculate the total volume in the boxes (ql_v, weighting factor
!-- has to beincluded)
DO n = 1, prt_count(k,j,i)
ql_v(k,j,i) = ql_v(k,j,i) + particles(n)%weight_factor * &
particles(n)%radius**3
ENDDO
!
!-- Calculate the liquid water content
IF ( ql_v(k,j,i) /= 0.0_wp ) THEN
ql(k,j,i) = ql(k,j,i) + rho_l * 1.33333333_wp * pi * &
ql_v(k,j,i) / &
( rho_surface * dx * dy * dzw(k) )
IF ( ql(k,j,i) < 0.0_wp ) THEN
WRITE( message_string, * ) 'LWC out of range: ' , &
ql(k,j,i),i,j,k
CALL message( 'lpm_calc_liquid_water_content', '', 2, 2, &
-1, 6, 1 )
ENDIF
ELSE
ql(k,j,i) = 0.0_wp
ENDIF
ENDDO
ENDDO
ENDDO
CALL cpu_log( log_point_s(45), 'lpm_calc_ql', 'stop' )
END SUBROUTINE lpm_calc_liquid_water_content
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculates change in droplet radius by collision. Droplet collision is
!> calculated for each grid box seperately. Collision is parameterized by
!> using collision kernels. Two different kernels are available:
!> Hall kernel: Kernel from Hall (1980, J. Atmos. Sci., 2486-2507), which
!> considers collision due to pure gravitational effects.
!> Wang kernel: Beside gravitational effects (treated with the Hall-kernel) also
!> the effects of turbulence on the collision are considered using
!> parameterizations of Ayala et al. (2008, New J. Phys., 10,
!> 075015) and Wang and Grabowski (2009, Atmos. Sci. Lett., 10,
!> 1-8). This kernel includes three possible effects of turbulence:
!> the modification of the relative velocity between the droplets,
!> the effect of preferential concentration, and the enhancement of
!> collision efficiencies.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_droplet_collision (i,j,k)
INTEGER(iwp), INTENT(IN) :: i !<
INTEGER(iwp), INTENT(IN) :: j !<
INTEGER(iwp), INTENT(IN) :: k !<
INTEGER(iwp) :: eclass !<
INTEGER(iwp) :: n !<
INTEGER(iwp) :: m !<
INTEGER(iwp) :: rclass_l !<
INTEGER(iwp) :: rclass_s !<
REAL(wp) :: collection_probability !< probability for collection
REAL(wp) :: ddV !< inverse grid box volume
REAL(wp) :: epsilon_collision !< dissipation rate
REAL(wp) :: factor_volume_to_mass !< 4.0 / 3.0 * pi * rho_l
REAL(wp) :: xm !< droplet mass of super-droplet m
REAL(wp) :: xn !< droplet mass of super-droplet n
REAL(wp) :: xsm !< aerosol mass of super-droplet m
REAL(wp) :: xsn !< aerosol mass of super-droplet n
REAL(wp), DIMENSION(:), ALLOCATABLE :: weight !< weighting factor
REAL(wp), DIMENSION(:), ALLOCATABLE :: mass !< total mass of super droplet
REAL(wp), DIMENSION(:), ALLOCATABLE :: aero_mass !< total aerosol mass of super droplet
CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'start' )
number_of_particles = prt_count(k,j,i)
factor_volume_to_mass = 4.0_wp / 3.0_wp * pi * rho_l
ddV = 1.0_wp / ( dx * dy * dzw(k) )
!
!-- Collision requires at least one super droplet inside the box
IF ( number_of_particles > 0 ) THEN
IF ( use_kernel_tables ) THEN
!
!-- Fast method with pre-calculated collection kernels for
!-- discrete radius- and dissipation-classes.
IF ( wang_kernel ) THEN
eclass = INT( diss(k,j,i) * 1.0E4_wp / 600.0_wp * &
dissipation_classes ) + 1
epsilon_collision = diss(k,j,i)
ELSE
epsilon_collision = 0.0_wp
ENDIF
IF ( hall_kernel .OR. epsilon_collision * 1.0E4_wp < 0.001_wp ) THEN
eclass = 0 ! Hall kernel is used
ELSE
eclass = MIN( dissipation_classes, eclass )
ENDIF
ELSE
!
!-- Collection kernels are re-calculated for every new
!-- grid box. First, allocate memory for kernel table.
!-- Third dimension is 1, because table is re-calculated for
!-- every new dissipation value.
ALLOCATE( ckernel(1:number_of_particles,1:number_of_particles,1:1) )
!
!-- Now calculate collection kernel for this box. Note that
!-- the kernel is based on the previous time step
CALL recalculate_kernel( i, j, k )
ENDIF
!
!-- Temporary fields for total mass of super-droplet, aerosol mass, and
!-- weighting factor are allocated.
ALLOCATE(mass(1:number_of_particles), weight(1:number_of_particles))
IF ( curvature_solution_effects ) ALLOCATE(aero_mass(1:number_of_particles))
mass(1:number_of_particles) = particles(1:number_of_particles)%weight_factor * &
particles(1:number_of_particles)%radius**3 * &
factor_volume_to_mass
weight(1:number_of_particles) = particles(1:number_of_particles)%weight_factor
IF ( curvature_solution_effects ) THEN
aero_mass(1:number_of_particles) = particles(1:number_of_particles)%weight_factor * &
particles(1:number_of_particles)%aux1**3 * &
4.0_wp / 3.0_wp * pi * rho_s
ENDIF
!
!-- Calculate collision/coalescence
DO n = 1, number_of_particles
DO m = n, number_of_particles
!
!-- For collisions, the weighting factor of at least one super-droplet
!-- needs to be larger or equal to one.
IF ( MIN( weight(n), weight(m) ) < 1.0_wp ) CYCLE
!
!-- Get mass of individual droplets (aerosols)
xn = mass(n) / weight(n)
xm = mass(m) / weight(m)
IF ( curvature_solution_effects ) THEN
xsn = aero_mass(n) / weight(n)
xsm = aero_mass(m) / weight(m)
ENDIF
!
!-- Probability that the necessary collisions take place
IF ( use_kernel_tables ) THEN
rclass_l = particles(n)%class
rclass_s = particles(m)%class
collection_probability = MAX( weight(n), weight(m) ) * &
ckernel(rclass_l,rclass_s,eclass) * ddV * dt_3d
ELSE
collection_probability = MAX( weight(n), weight(m) ) * &
ckernel(n,m,1) * ddV * dt_3d
ENDIF
!
!-- Calculate the number of collections and consider multiple collections.
!-- (Accordingly, p_crit will be 0.0, 1.0, 2.0, ...)
IF ( collection_probability - FLOOR(collection_probability) &
> random_function( iran_part ) ) THEN
collection_probability = FLOOR(collection_probability) + 1.0_wp
ELSE
collection_probability = FLOOR(collection_probability)
ENDIF
IF ( collection_probability > 0.0_wp ) THEN
!
!-- Super-droplet n collects droplets of super-droplet m
IF ( weight(n) < weight(m) ) THEN
mass(n) = mass(n) + weight(n) * xm * collection_probability
weight(m) = weight(m) - weight(n) * collection_probability
mass(m) = mass(m) - weight(n) * xm * collection_probability
IF ( curvature_solution_effects ) THEN
aero_mass(n) = aero_mass(n) + weight(n) * xsm * collection_probability
aero_mass(m) = aero_mass(m) - weight(n) * xsm * collection_probability
ENDIF
ELSEIF ( weight(m) < weight(n) ) THEN
mass(m) = mass(m) + weight(m) * xn * collection_probability
weight(n) = weight(n) - weight(m) * collection_probability
mass(n) = mass(n) - weight(m) * xn * collection_probability
IF ( curvature_solution_effects ) THEN
aero_mass(m) = aero_mass(m) + weight(m) * xsn * collection_probability
aero_mass(n) = aero_mass(n) - weight(m) * xsn * collection_probability
ENDIF
ELSE
!
!-- Collisions of particles of the same weighting factor.
!-- Particle n collects 1/2 weight(n) droplets of particle m,
!-- particle m collects 1/2 weight(m) droplets of particle n.
!-- The total mass mass changes accordingly.
!-- If n = m, the first half of the droplets coalesces with the
!-- second half of the droplets; mass is unchanged because
!-- xm = xn for n = m.
!--
!-- Note: For m = n this equation is an approximation only
!-- valid for weight >> 1 (which is usually the case). The
!-- approximation is weight(n)-1 = weight(n).
mass(n) = mass(n) + 0.5_wp * weight(n) * ( xm - xn )
mass(m) = mass(m) + 0.5_wp * weight(m) * ( xn - xm )
IF ( curvature_solution_effects ) THEN
aero_mass(n) = aero_mass(n) + 0.5_wp * weight(n) * ( xsm - xsn )
aero_mass(m) = aero_mass(m) + 0.5_wp * weight(m) * ( xsn - xsm )
ENDIF
weight(n) = weight(n) - 0.5_wp * weight(m)
weight(m) = weight(n)
ENDIF
ENDIF
ENDDO
ql_vp(k,j,i) = ql_vp(k,j,i) + mass(n) / factor_volume_to_mass
ENDDO
IF ( ANY(weight < 0.0_wp) ) THEN
WRITE( message_string, * ) 'negative weighting factor'
CALL message( 'lpm_droplet_collision', 'PA0028', &
2, 2, -1, 6, 1 )
ENDIF
particles(1:number_of_particles)%radius = ( mass(1:number_of_particles) / &
( weight(1:number_of_particles) &
* factor_volume_to_mass &
) &
)**0.33333333333333_wp
IF ( curvature_solution_effects ) THEN
particles(1:number_of_particles)%aux1 = ( aero_mass(1:number_of_particles) / &
( weight(1:number_of_particles) &
* 4.0_wp / 3.0_wp * pi * rho_s &
) &
)**0.33333333333333_wp
ENDIF
particles(1:number_of_particles)%weight_factor = weight(1:number_of_particles)
DEALLOCATE( weight, mass )
IF ( curvature_solution_effects ) DEALLOCATE( aero_mass )
IF ( .NOT. use_kernel_tables ) DEALLOCATE( ckernel )
!
!-- Check if LWC is conserved during collision process
IF ( ql_v(k,j,i) /= 0.0_wp ) THEN
IF ( ql_vp(k,j,i) / ql_v(k,j,i) >= 1.0001_wp .OR. &
ql_vp(k,j,i) / ql_v(k,j,i) <= 0.9999_wp ) THEN
WRITE( message_string, * ) ' LWC is not conserved during', &
' collision! ', &
' LWC after condensation: ', ql_v(k,j,i), &
' LWC after collision: ', ql_vp(k,j,i)
CALL message( 'lpm_droplet_collision', 'PA0040', 2, 2, -1, 6, 1 )
ENDIF
ENDIF
ENDIF
CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'stop' )
END SUBROUTINE lpm_droplet_collision
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Initialization of the collision efficiency matrix with fixed radius and
!> dissipation classes, calculated at simulation start only.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_init_kernels
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
!
!-- Calculate collision efficiencies for fixed radius- and dissipation
!-- classes
IF ( collision_kernel(6:9) == 'fast' ) THEN
ALLOCATE( ckernel(1:radius_classes,1:radius_classes, &
0:dissipation_classes), epsclass(1:dissipation_classes), &
radclass(1:radius_classes) )
!
!-- Calculate the radius class bounds with logarithmic distances
!-- in the interval [1.0E-6, 1000.0E-6] m
rclass_lbound = LOG( 1.0E-6_wp )
rclass_ubound = LOG( 1000.0E-6_wp )
radclass(1) = EXP( rclass_lbound )
DO i = 2, radius_classes
radclass(i) = EXP( rclass_lbound + &
( rclass_ubound - rclass_lbound ) * &
( i - 1.0_wp ) / ( radius_classes - 1.0_wp ) )
ENDDO
!
!-- Set the class bounds for dissipation in interval [0.0, 600.0] cm**2/s**3
DO i = 1, dissipation_classes
epsclass(i) = 0.06_wp * REAL( i, KIND=wp ) / dissipation_classes
ENDDO
!
!-- Calculate collision efficiencies of the Wang/ayala kernel
ALLOCATE( ec(1:radius_classes,1:radius_classes), &
ecf(1:radius_classes,1:radius_classes), &
gck(1:radius_classes,1:radius_classes), &
winf(1:radius_classes) )
DO k = 1, dissipation_classes
epsilon_collision = epsclass(k)
urms = 2.02_wp * ( epsilon_collision / 0.04_wp )**( 1.0_wp / 3.0_wp )
CALL turbsd
CALL turb_enhance_eff
CALL effic
DO j = 1, radius_classes
DO i = 1, radius_classes
ckernel(i,j,k) = ec(i,j) * gck(i,j) * ecf(i,j)
ENDDO
ENDDO
ENDDO
!
!-- Calculate collision efficiencies of the Hall kernel
ALLOCATE( hkernel(1:radius_classes,1:radius_classes), &
hwratio(1:radius_classes,1:radius_classes) )
CALL fallg
CALL effic
DO j = 1, radius_classes
DO i = 1, radius_classes
hkernel(i,j) = pi * ( radclass(j) + radclass(i) )**2 &
* ec(i,j) * ABS( winf(j) - winf(i) )
ckernel(i,j,0) = hkernel(i,j) ! hall kernel stored on index 0
ENDDO
ENDDO
!
!-- Test output of efficiencies
IF ( j == -1 ) THEN
PRINT*, '*** Hall kernel'
WRITE ( *,'(5X,20(F4.0,1X))' ) ( radclass(i)*1.0E6_wp, &
i = 1,radius_classes )
DO j = 1, radius_classes
WRITE ( *,'(F4.0,1X,20(F8.4,1X))' ) radclass(j), &
( hkernel(i,j), i = 1,radius_classes )
ENDDO
DO k = 1, dissipation_classes
DO i = 1, radius_classes
DO j = 1, radius_classes
IF ( hkernel(i,j) == 0.0_wp ) THEN
hwratio(i,j) = 9999999.9_wp
ELSE
hwratio(i,j) = ckernel(i,j,k) / hkernel(i,j)
ENDIF
ENDDO
ENDDO
PRINT*, '*** epsilon = ', epsclass(k)
WRITE ( *,'(5X,20(F4.0,1X))' ) ( radclass(i) * 1.0E6_wp, &
i = 1,radius_classes )
DO j = 1, radius_classes
WRITE ( *,'(F4.0,1X,20(F8.4,1X))' ) radclass(j) * 1.0E6_wp, &
( hwratio(i,j), i = 1,radius_classes )
ENDDO
ENDDO
ENDIF
DEALLOCATE( ec, ecf, epsclass, gck, hkernel, winf )
ENDIF
END SUBROUTINE lpm_init_kernels
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculation of collision kernels during each timestep and for each grid box
!------------------------------------------------------------------------------!
SUBROUTINE recalculate_kernel( i1, j1, k1 )
INTEGER(iwp) :: i !<
INTEGER(iwp) :: i1 !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: j1 !<
INTEGER(iwp) :: k1 !<
number_of_particles = prt_count(k1,j1,i1)
radius_classes = number_of_particles ! necessary to use the same
! subroutines as for
! precalculated kernels
ALLOCATE( ec(1:number_of_particles,1:number_of_particles), &
radclass(1:number_of_particles), winf(1:number_of_particles) )
!
!-- Store particle radii on the radclass array
radclass(1:number_of_particles) = particles(1:number_of_particles)%radius
IF ( wang_kernel ) THEN
epsilon_collision = diss(k1,j1,i1) ! dissipation rate in m**2/s**3
ELSE
epsilon_collision = 0.0_wp
ENDIF
urms = 2.02_wp * ( epsilon_collision / 0.04_wp )**( 0.33333333333_wp )
IF ( wang_kernel .AND. epsilon_collision > 1.0E-7_wp ) THEN
!
!-- Call routines to calculate efficiencies for the Wang kernel
ALLOCATE( gck(1:number_of_particles,1:number_of_particles), &
ecf(1:number_of_particles,1:number_of_particles) )
CALL turbsd
CALL turb_enhance_eff
CALL effic
DO j = 1, number_of_particles
DO i = 1, number_of_particles
ckernel(1+i-1,1+j-1,1) = ec(i,j) * gck(i,j) * ecf(i,j)
ENDDO
ENDDO
DEALLOCATE( gck, ecf )
ELSE
!
!-- Call routines to calculate efficiencies for the Hall kernel
CALL fallg
CALL effic
DO j = 1, number_of_particles
DO i = 1, number_of_particles
ckernel(i,j,1) = pi * ( radclass(j) + radclass(i) )**2 &
* ec(i,j) * ABS( winf(j) - winf(i) )
ENDDO
ENDDO
ENDIF
DEALLOCATE( ec, radclass, winf )
END SUBROUTINE recalculate_kernel
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculation of effects of turbulence on the geometric collision kernel
!> (by including the droplets' average radial relative velocities and their
!> radial distribution function) following the analytic model by Aayala et al.
!> (2008, New J. Phys.). For details check the second part 2 of the publication,
!> page 37ff.
!>
!> Input parameters, which need to be replaced by PALM parameters:
!> water density, air density
!------------------------------------------------------------------------------!
SUBROUTINE turbsd
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
REAL(wp) :: ao !<
REAL(wp) :: ao_gr !<
REAL(wp) :: bbb !<
REAL(wp) :: be !<
REAL(wp) :: b1 !<
REAL(wp) :: b2 !<
REAL(wp) :: ccc !<
REAL(wp) :: c1 !<
REAL(wp) :: c1_gr !<
REAL(wp) :: c2 !<
REAL(wp) :: d1 !<
REAL(wp) :: d2 !<
REAL(wp) :: eta !<
REAL(wp) :: e1 !<
REAL(wp) :: e2 !<
REAL(wp) :: fao_gr !<
REAL(wp) :: fr !<
REAL(wp) :: grfin !<
REAL(wp) :: lambda !<
REAL(wp) :: lambda_re !<
REAL(wp) :: lf !<
REAL(wp) :: rc !<
REAL(wp) :: rrp !<
REAL(wp) :: sst !<
REAL(wp) :: tauk !<
REAL(wp) :: tl !<
REAL(wp) :: t2 !<
REAL(wp) :: tt !<
REAL(wp) :: t1 !<
REAL(wp) :: vk !<
REAL(wp) :: vrms1xy !<
REAL(wp) :: vrms2xy !<
REAL(wp) :: v1 !<
REAL(wp) :: v1v2xy !<
REAL(wp) :: v1xysq !<
REAL(wp) :: v2 !<
REAL(wp) :: v2xysq !<
REAL(wp) :: wrfin !<
REAL(wp) :: wrgrav2 !<
REAL(wp) :: wrtur2xy !<
REAL(wp) :: xx !<
REAL(wp) :: yy !<
REAL(wp) :: z !<
REAL(wp), DIMENSION(1:radius_classes) :: st !< Stokes number
REAL(wp), DIMENSION(1:radius_classes) :: tau !< inertial time scale
lambda = urms * SQRT( 15.0_wp * molecular_viscosity / epsilon_collision )
lambda_re = urms**2 * SQRT( 15.0_wp / epsilon_collision / molecular_viscosity )
tl = urms**2 / epsilon_collision
lf = 0.5_wp * urms**3 / epsilon_collision
tauk = SQRT( molecular_viscosity / epsilon_collision )
eta = ( molecular_viscosity**3 / epsilon_collision )**0.25_wp
vk = eta / tauk
ao = ( 11.0_wp + 7.0_wp * lambda_re ) / ( 205.0_wp + lambda_re )
tt = SQRT( 2.0_wp * lambda_re / ( SQRT( 15.0_wp ) * ao ) ) * tauk
!
!-- Get terminal velocity of droplets
CALL fallg
DO i = 1, radius_classes
tau(i) = winf(i) / g ! inertial time scale
st(i) = tau(i) / tauk ! Stokes number
ENDDO
!
!-- Calculate average radial relative velocity at contact (wrfin)
z = tt / tl
be = SQRT( 2.0_wp ) * lambda / lf
bbb = SQRT( 1.0_wp - 2.0_wp * be**2 )
d1 = ( 1.0_wp + bbb ) / ( 2.0_wp * bbb )
e1 = lf * ( 1.0_wp + bbb ) * 0.5_wp
d2 = ( 1.0_wp - bbb ) * 0.5_wp / bbb
e2 = lf * ( 1.0_wp - bbb ) * 0.5_wp
ccc = SQRT( 1.0_wp - 2.0_wp * z**2 )
b1 = ( 1.0_wp + ccc ) * 0.5_wp / ccc
c1 = tl * ( 1.0_wp + ccc ) * 0.5_wp
b2 = ( 1.0_wp - ccc ) * 0.5_wp / ccc
c2 = tl * ( 1.0_wp - ccc ) * 0.5_wp
DO i = 1, radius_classes
v1 = winf(i)
t1 = tau(i)
DO j = 1, i
rrp = radclass(i) + radclass(j)
v2 = winf(j)
t2 = tau(j)
v1xysq = b1 * d1 * phi_w(c1,e1,v1,t1) - b1 * d2 * phi_w(c1,e2,v1,t1) &
- b2 * d1 * phi_w(c2,e1,v1,t1) + b2 * d2 * phi_w(c2,e2,v1,t1)
v1xysq = v1xysq * urms**2 / t1
vrms1xy = SQRT( v1xysq )
v2xysq = b1 * d1 * phi_w(c1,e1,v2,t2) - b1 * d2 * phi_w(c1,e2,v2,t2) &
- b2 * d1 * phi_w(c2,e1,v2,t2) + b2 * d2 * phi_w(c2,e2,v2,t2)
v2xysq = v2xysq * urms**2 / t2
vrms2xy = SQRT( v2xysq )
IF ( winf(i) >= winf(j) ) THEN
v1 = winf(i)
t1 = tau(i)
v2 = winf(j)
t2 = tau(j)
ELSE
v1 = winf(j)
t1 = tau(j)
v2 = winf(i)
t2 = tau(i)
ENDIF
v1v2xy = b1 * d1 * zhi(c1,e1,v1,t1,v2,t2) - &
b1 * d2 * zhi(c1,e2,v1,t1,v2,t2) - &
b2 * d1 * zhi(c2,e1,v1,t1,v2,t2) + &
b2 * d2* zhi(c2,e2,v1,t1,v2,t2)
fr = d1 * EXP( -rrp / e1 ) - d2 * EXP( -rrp / e2 )
v1v2xy = v1v2xy * fr * urms**2 / tau(i) / tau(j)
wrtur2xy = vrms1xy**2 + vrms2xy**2 - 2.0_wp * v1v2xy
IF ( wrtur2xy < 0.0_wp ) wrtur2xy = 0.0_wp
wrgrav2 = pi / 8.0_wp * ( winf(j) - winf(i) )**2
wrfin = SQRT( ( 2.0_wp / pi ) * ( wrtur2xy + wrgrav2) )
!
!-- Calculate radial distribution function (grfin)
IF ( st(j) > st(i) ) THEN
sst = st(j)
ELSE
sst = st(i)
ENDIF
xx = -0.1988_wp * sst**4 + 1.5275_wp * sst**3 - 4.2942_wp * &
sst**2 + 5.3406_wp * sst
IF ( xx < 0.0_wp ) xx = 0.0_wp
yy = 0.1886_wp * EXP( 20.306_wp / lambda_re )
c1_gr = xx / ( g / vk * tauk )**yy
ao_gr = ao + ( pi / 8.0_wp) * ( g / vk * tauk )**2
fao_gr = 20.115_wp * SQRT( ao_gr / lambda_re )
rc = SQRT( fao_gr * ABS( st(j) - st(i) ) ) * eta
grfin = ( ( eta**2 + rc**2 ) / ( rrp**2 + rc**2) )**( c1_gr*0.5_wp )
IF ( grfin < 1.0_wp ) grfin = 1.0_wp
!
!-- Calculate general collection kernel (without the consideration of
!-- collection efficiencies)
gck(i,j) = 2.0_wp * pi * rrp**2 * wrfin * grfin
gck(j,i) = gck(i,j)
ENDDO
ENDDO
END SUBROUTINE turbsd
REAL(wp) FUNCTION phi_w( a, b, vsett, tau0 )
!
!-- Function used in the Ayala et al. (2008) analytical model for turbulent
!-- effects on the collision kernel
REAL(wp) :: a !<
REAL(wp) :: aa1 !<
REAL(wp) :: b !<
REAL(wp) :: tau0 !<
REAL(wp) :: vsett !<
aa1 = 1.0_wp / tau0 + 1.0_wp / a + vsett / b
phi_w = 1.0_wp / aa1 - 0.5_wp * vsett / b / aa1**2
END FUNCTION phi_w
REAL(wp) FUNCTION zhi( a, b, vsett1, tau1, vsett2, tau2 )
!
!-- Function used in the Ayala et al. (2008) analytical model for turbulent
!-- effects on the collision kernel
REAL(wp) :: a !<
REAL(wp) :: aa1 !<
REAL(wp) :: aa2 !<
REAL(wp) :: aa3 !<
REAL(wp) :: aa4 !<
REAL(wp) :: aa5 !<
REAL(wp) :: aa6 !<
REAL(wp) :: b !<
REAL(wp) :: tau1 !<
REAL(wp) :: tau2 !<
REAL(wp) :: vsett1 !<
REAL(wp) :: vsett2 !<
aa1 = vsett2 / b - 1.0_wp / tau2 - 1.0_wp / a
aa2 = vsett1 / b + 1.0_wp / tau1 + 1.0_wp / a
aa3 = ( vsett1 - vsett2 ) / b + 1.0_wp / tau1 + 1.0_wp / tau2
aa4 = ( vsett2 / b )**2 - ( 1.0_wp / tau2 + 1.0_wp / a )**2
aa5 = vsett2 / b + 1.0_wp / tau2 + 1.0_wp / a
aa6 = 1.0_wp / tau1 - 1.0_wp / a + ( 1.0_wp / tau2 + 1.0_wp / a) * &
vsett1 / vsett2
zhi = (1.0_wp / aa1 - 1.0_wp / aa2 ) * ( vsett1 - vsett2 ) * 0.5_wp / &
b / aa3**2 + ( 4.0_wp / aa4 - 1.0_wp / aa5**2 - 1.0_wp / aa1**2 ) &
* vsett2 * 0.5_wp / b /aa6 + ( 2.0_wp * ( b / aa2 - b / aa1 ) - &
vsett1 / aa2**2 + vsett2 / aa1**2 ) * 0.5_wp / b / aa3
END FUNCTION zhi
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Parameterization of terminal velocity following Rogers et al. (1993, J. Appl.
!> Meteorol.)
!------------------------------------------------------------------------------!
SUBROUTINE fallg
INTEGER(iwp) :: j !<
REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter
REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter
REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter
REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter
REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter
REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< seperation diameter
REAL(wp) :: diameter !< droplet diameter in mm
DO j = 1, radius_classes
diameter = radclass(j) * 2000.0_wp
IF ( diameter <= d0_rog ) THEN
winf(j) = k_cap_rog * diameter * ( 1.0_wp - &
EXP( -k_low_rog * diameter ) )
ELSE
winf(j) = a_rog - b_rog * EXP( -c_rog * diameter )
ENDIF
ENDDO
END SUBROUTINE fallg
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Interpolation of collision efficiencies (Hall, 1980, J. Atmos. Sci.)
!------------------------------------------------------------------------------!
SUBROUTINE effic
INTEGER(iwp) :: i !<
INTEGER(iwp) :: iq !<
INTEGER(iwp) :: ir !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ira !<
LOGICAL, SAVE :: first = .TRUE. !<
REAL(wp) :: ek !<
REAL(wp) :: particle_radius !<
REAL(wp) :: pp !<
REAL(wp) :: qq !<
REAL(wp) :: rq !<
REAL(wp), DIMENSION(1:21), SAVE :: rat !<
REAL(wp), DIMENSION(1:15), SAVE :: r0 !<
REAL(wp), DIMENSION(1:15,1:21), SAVE :: ecoll !<
!
!-- Initial assignment of constants
IF ( first ) THEN
first = .FALSE.
r0 = (/ 6.0_wp, 8.0_wp, 10.0_wp, 15.0_wp, 20.0_wp, 25.0_wp, &
30.0_wp, 40.0_wp, 50.0_wp, 60.0_wp, 70.0_wp, 100.0_wp, &
150.0_wp, 200.0_wp, 300.0_wp /)
rat = (/ 0.00_wp, 0.05_wp, 0.10_wp, 0.15_wp, 0.20_wp, 0.25_wp, &
0.30_wp, 0.35_wp, 0.40_wp, 0.45_wp, 0.50_wp, 0.55_wp, &
0.60_wp, 0.65_wp, 0.70_wp, 0.75_wp, 0.80_wp, 0.85_wp, &
0.90_wp, 0.95_wp, 1.00_wp /)
ecoll(:,1) = (/ 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, &
0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, &
0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp /)
ecoll(:,2) = (/ 0.003_wp, 0.003_wp, 0.003_wp, 0.004_wp, 0.005_wp, &
0.005_wp, 0.005_wp, 0.010_wp, 0.100_wp, 0.050_wp, &
0.200_wp, 0.500_wp, 0.770_wp, 0.870_wp, 0.970_wp /)
ecoll(:,3) = (/ 0.007_wp, 0.007_wp, 0.007_wp, 0.008_wp, 0.009_wp, &
0.010_wp, 0.010_wp, 0.070_wp, 0.400_wp, 0.430_wp, &
0.580_wp, 0.790_wp, 0.930_wp, 0.960_wp, 1.000_wp /)
ecoll(:,4) = (/ 0.009_wp, 0.009_wp, 0.009_wp, 0.012_wp, 0.015_wp, &
0.010_wp, 0.020_wp, 0.280_wp, 0.600_wp, 0.640_wp, &
0.750_wp, 0.910_wp, 0.970_wp, 0.980_wp, 1.000_wp /)
ecoll(:,5) = (/ 0.014_wp, 0.014_wp, 0.014_wp, 0.015_wp, 0.016_wp, &
0.030_wp, 0.060_wp, 0.500_wp, 0.700_wp, 0.770_wp, &
0.840_wp, 0.950_wp, 0.970_wp, 1.000_wp, 1.000_wp /)
ecoll(:,6) = (/ 0.017_wp, 0.017_wp, 0.017_wp, 0.020_wp, 0.022_wp, &
0.060_wp, 0.100_wp, 0.620_wp, 0.780_wp, 0.840_wp, &
0.880_wp, 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp /)
ecoll(:,7) = (/ 0.030_wp, 0.030_wp, 0.024_wp, 0.022_wp, 0.032_wp, &
0.062_wp, 0.200_wp, 0.680_wp, 0.830_wp, 0.870_wp, &
0.900_wp, 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp /)
ecoll(:,8) = (/ 0.025_wp, 0.025_wp, 0.025_wp, 0.036_wp, 0.043_wp, &
0.130_wp, 0.270_wp, 0.740_wp, 0.860_wp, 0.890_wp, &
0.920_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /)
ecoll(:,9) = (/ 0.027_wp, 0.027_wp, 0.027_wp, 0.040_wp, 0.052_wp, &
0.200_wp, 0.400_wp, 0.780_wp, 0.880_wp, 0.900_wp, &
0.940_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /)
ecoll(:,10) = (/ 0.030_wp, 0.030_wp, 0.030_wp, 0.047_wp, 0.064_wp, &
0.250_wp, 0.500_wp, 0.800_wp, 0.900_wp, 0.910_wp, &
0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /)
ecoll(:,11) = (/ 0.040_wp, 0.040_wp, 0.033_wp, 0.037_wp, 0.068_wp, &
0.240_wp, 0.550_wp, 0.800_wp, 0.900_wp, 0.910_wp, &
0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /)
ecoll(:,12) = (/ 0.035_wp, 0.035_wp, 0.035_wp, 0.055_wp, 0.079_wp, &
0.290_wp, 0.580_wp, 0.800_wp, 0.900_wp, 0.910_wp, &
0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /)
ecoll(:,13) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.062_wp, 0.082_wp, &
0.290_wp, 0.590_wp, 0.780_wp, 0.900_wp, 0.910_wp, &
0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /)
ecoll(:,14) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.060_wp, 0.080_wp, &
0.290_wp, 0.580_wp, 0.770_wp, 0.890_wp, 0.910_wp, &
0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /)
ecoll(:,15) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.041_wp, 0.075_wp, &
0.250_wp, 0.540_wp, 0.760_wp, 0.880_wp, 0.920_wp, &
0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /)
ecoll(:,16) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.052_wp, 0.067_wp, &
0.250_wp, 0.510_wp, 0.770_wp, 0.880_wp, 0.930_wp, &
0.970_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /)
ecoll(:,17) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.047_wp, 0.057_wp, &
0.250_wp, 0.490_wp, 0.770_wp, 0.890_wp, 0.950_wp, &
1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /)
ecoll(:,18) = (/ 0.036_wp, 0.036_wp, 0.036_wp, 0.042_wp, 0.048_wp, &
0.230_wp, 0.470_wp, 0.780_wp, 0.920_wp, 1.000_wp, &
1.020_wp, 1.020_wp, 1.020_wp, 1.020_wp, 1.020_wp /)
ecoll(:,19) = (/ 0.040_wp, 0.040_wp, 0.035_wp, 0.033_wp, 0.040_wp, &
0.112_wp, 0.450_wp, 0.790_wp, 1.010_wp, 1.030_wp, &
1.040_wp, 1.040_wp, 1.040_wp, 1.040_wp, 1.040_wp /)
ecoll(:,20) = (/ 0.033_wp, 0.033_wp, 0.033_wp, 0.033_wp, 0.033_wp, &
0.119_wp, 0.470_wp, 0.950_wp, 1.300_wp, 1.700_wp, &
2.300_wp, 2.300_wp, 2.300_wp, 2.300_wp, 2.300_wp /)
ecoll(:,21) = (/ 0.027_wp, 0.027_wp, 0.027_wp, 0.027_wp, 0.027_wp, &
0.125_wp, 0.520_wp, 1.400_wp, 2.300_wp, 3.000_wp, &
4.000_wp, 4.000_wp, 4.000_wp, 4.000_wp, 4.000_wp /)
ENDIF
!
!-- Calculate the radius class index of particles with respect to array r
!-- Radius has to be in microns
ALLOCATE( ira(1:radius_classes) )
DO j = 1, radius_classes
particle_radius = radclass(j) * 1.0E6_wp
DO k = 1, 15
IF ( particle_radius < r0(k) ) THEN
ira(j) = k
EXIT
ENDIF
ENDDO
IF ( particle_radius >= r0(15) ) ira(j) = 16
ENDDO
!
!-- Two-dimensional linear interpolation of the collision efficiency.
!-- Radius has to be in microns
DO j = 1, radius_classes
DO i = 1, j
ir = MAX( ira(i), ira(j) )
rq = MIN( radclass(i) / radclass(j), radclass(j) / radclass(i) )
iq = INT( rq * 20 ) + 1
iq = MAX( iq , 2)
IF ( ir < 16 ) THEN
IF ( ir >= 2 ) THEN
pp = ( ( MAX( radclass(j), radclass(i) ) * 1.0E6_wp ) - &
r0(ir-1) ) / ( r0(ir) - r0(ir-1) )
qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) )
ec(j,i) = ( 1.0_wp - pp ) * ( 1.0_wp - qq ) &
* ecoll(ir-1,iq-1) &
+ pp * ( 1.0_wp - qq ) * ecoll(ir,iq-1) &
+ qq * ( 1.0_wp - pp ) * ecoll(ir-1,iq) &
+ pp * qq * ecoll(ir,iq)
ELSE
qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) )
ec(j,i) = ( 1.0_wp - qq ) * ecoll(1,iq-1) + qq * ecoll(1,iq)
ENDIF
ELSE
qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) )
ek = ( 1.0_wp - qq ) * ecoll(15,iq-1) + qq * ecoll(15,iq)
ec(j,i) = MIN( ek, 1.0_wp )
ENDIF
IF ( ec(j,i) < 1.0E-20_wp ) ec(j,i) = 0.0_wp
ec(i,j) = ec(j,i)
ENDDO
ENDDO
DEALLOCATE( ira )
END SUBROUTINE effic
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Interpolation of turbulent enhancement factor for collision efficencies
!> following Wang and Grabowski (2009, Atmos. Sci. Let.)
!------------------------------------------------------------------------------!
SUBROUTINE turb_enhance_eff
INTEGER(iwp) :: i !<
INTEGER(iwp) :: iq !<
INTEGER(iwp) :: ir !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: kk !<
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ira !<
LOGICAL, SAVE :: first = .TRUE. !<
REAL(wp) :: particle_radius !<
REAL(wp) :: pp !<
REAL(wp) :: qq !<
REAL(wp) :: rq !<
REAL(wp) :: y1 !<
REAL(wp) :: y2 !<
REAL(wp) :: y3 !<
REAL(wp), DIMENSION(1:11), SAVE :: rat !<
REAL(wp), DIMENSION(1:7), SAVE :: r0 !<
REAL(wp), DIMENSION(1:7,1:11), SAVE :: ecoll_100 !<
REAL(wp), DIMENSION(1:7,1:11), SAVE :: ecoll_400 !<
!
!-- Initial assignment of constants
IF ( first ) THEN
first = .FALSE.
r0 = (/ 10.0_wp, 20.0_wp, 30.0_wp, 40.0_wp, 50.0_wp, 60.0_wp, &
100.0_wp /)
rat = (/ 0.0_wp, 0.1_wp, 0.2_wp, 0.3_wp, 0.4_wp, 0.5_wp, 0.6_wp, &
0.7_wp, 0.8_wp, 0.9_wp, 1.0_wp /)
!
!-- Tabulated turbulent enhancement factor at 100 cm**2/s**3
ecoll_100(:,1) = (/ 1.74_wp, 1.74_wp, 1.773_wp, 1.49_wp, &
1.207_wp, 1.207_wp, 1.0_wp /)
ecoll_100(:,2) = (/ 1.46_wp, 1.46_wp, 1.421_wp, 1.245_wp, &
1.069_wp, 1.069_wp, 1.0_wp /)
ecoll_100(:,3) = (/ 1.32_wp, 1.32_wp, 1.245_wp, 1.123_wp, &
1.000_wp, 1.000_wp, 1.0_wp /)
ecoll_100(:,4) = (/ 1.250_wp, 1.250_wp, 1.148_wp, 1.087_wp, &
1.025_wp, 1.025_wp, 1.0_wp /)
ecoll_100(:,5) = (/ 1.186_wp, 1.186_wp, 1.066_wp, 1.060_wp, &
1.056_wp, 1.056_wp, 1.0_wp /)
ecoll_100(:,6) = (/ 1.045_wp, 1.045_wp, 1.000_wp, 1.014_wp, &
1.028_wp, 1.028_wp, 1.0_wp /)
ecoll_100(:,7) = (/ 1.070_wp, 1.070_wp, 1.030_wp, 1.038_wp, &
1.046_wp, 1.046_wp, 1.0_wp /)
ecoll_100(:,8) = (/ 1.000_wp, 1.000_wp, 1.054_wp, 1.042_wp, &
1.029_wp, 1.029_wp, 1.0_wp /)
ecoll_100(:,9) = (/ 1.223_wp, 1.223_wp, 1.117_wp, 1.069_wp, &
1.021_wp, 1.021_wp, 1.0_wp /)
ecoll_100(:,10) = (/ 1.570_wp, 1.570_wp, 1.244_wp, 1.166_wp, &
1.088_wp, 1.088_wp, 1.0_wp /)
ecoll_100(:,11) = (/ 20.3_wp, 20.3_wp, 14.6_wp, 8.61_wp, &
2.60_wp, 2.60_wp, 1.0_wp /)
!
!-- Tabulated turbulent enhancement factor at 400 cm**2/s**3
ecoll_400(:,1) = (/ 4.976_wp, 4.976_wp, 3.593_wp, 2.519_wp, &
1.445_wp, 1.445_wp, 1.0_wp /)
ecoll_400(:,2) = (/ 2.984_wp, 2.984_wp, 2.181_wp, 1.691_wp, &
1.201_wp, 1.201_wp, 1.0_wp /)
ecoll_400(:,3) = (/ 1.988_wp, 1.988_wp, 1.475_wp, 1.313_wp, &
1.150_wp, 1.150_wp, 1.0_wp /)
ecoll_400(:,4) = (/ 1.490_wp, 1.490_wp, 1.187_wp, 1.156_wp, &
1.126_wp, 1.126_wp, 1.0_wp /)
ecoll_400(:,5) = (/ 1.249_wp, 1.249_wp, 1.088_wp, 1.090_wp, &
1.092_wp, 1.092_wp, 1.0_wp /)
ecoll_400(:,6) = (/ 1.139_wp, 1.139_wp, 1.130_wp, 1.091_wp, &
1.051_wp, 1.051_wp, 1.0_wp /)
ecoll_400(:,7) = (/ 1.220_wp, 1.220_wp, 1.190_wp, 1.138_wp, &
1.086_wp, 1.086_wp, 1.0_wp /)
ecoll_400(:,8) = (/ 1.325_wp, 1.325_wp, 1.267_wp, 1.165_wp, &
1.063_wp, 1.063_wp, 1.0_wp /)
ecoll_400(:,9) = (/ 1.716_wp, 1.716_wp, 1.345_wp, 1.223_wp, &
1.100_wp, 1.100_wp, 1.0_wp /)
ecoll_400(:,10) = (/ 3.788_wp, 3.788_wp, 1.501_wp, 1.311_wp, &
1.120_wp, 1.120_wp, 1.0_wp /)
ecoll_400(:,11) = (/ 36.52_wp, 36.52_wp, 19.16_wp, 22.80_wp, &
26.0_wp, 26.0_wp, 1.0_wp /)
ENDIF
!
!-- Calculate the radius class index of particles with respect to array r0
!-- The droplet radius has to be given in microns.
ALLOCATE( ira(1:radius_classes) )
DO j = 1, radius_classes
particle_radius = radclass(j) * 1.0E6_wp
DO k = 1, 7
IF ( particle_radius < r0(k) ) THEN
ira(j) = k
EXIT
ENDIF
ENDDO
IF ( particle_radius >= r0(7) ) ira(j) = 8
ENDDO
!
!-- Two-dimensional linear interpolation of the turbulent enhancement factor.
!-- The droplet radius has to be given in microns.
DO j = 1, radius_classes
DO i = 1, j
ir = MAX( ira(i), ira(j) )
rq = MIN( radclass(i) / radclass(j), radclass(j) / radclass(i) )
DO kk = 2, 11
IF ( rq <= rat(kk) ) THEN
iq = kk
EXIT
ENDIF
ENDDO
y1 = 1.0_wp ! turbulent enhancement factor at 0 m**2/s**3
IF ( ir < 8 ) THEN
IF ( ir >= 2 ) THEN
pp = ( MAX( radclass(j), radclass(i) ) * 1.0E6_wp - &
r0(ir-1) ) / ( r0(ir) - r0(ir-1) )
qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) )
y2 = ( 1.0_wp - pp ) * ( 1.0_wp - qq ) * ecoll_100(ir-1,iq-1) + &
pp * ( 1.0_wp - qq ) * ecoll_100(ir,iq-1) + &
qq * ( 1.0_wp - pp ) * ecoll_100(ir-1,iq) + &
pp * qq * ecoll_100(ir,iq)
y3 = ( 1.0-pp ) * ( 1.0_wp - qq ) * ecoll_400(ir-1,iq-1) + &
pp * ( 1.0_wp - qq ) * ecoll_400(ir,iq-1) + &
qq * ( 1.0_wp - pp ) * ecoll_400(ir-1,iq) + &
pp * qq * ecoll_400(ir,iq)
ELSE
qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) )
y2 = ( 1.0_wp - qq ) * ecoll_100(1,iq-1) + qq * ecoll_100(1,iq)
y3 = ( 1.0_wp - qq ) * ecoll_400(1,iq-1) + qq * ecoll_400(1,iq)
ENDIF
ELSE
qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) )
y2 = ( 1.0_wp - qq ) * ecoll_100(7,iq-1) + qq * ecoll_100(7,iq)
y3 = ( 1.0_wp - qq ) * ecoll_400(7,iq-1) + qq * ecoll_400(7,iq)
ENDIF
!
!-- Linear interpolation of turbulent enhancement factor
IF ( epsilon_collision <= 0.01_wp ) THEN
ecf(j,i) = ( epsilon_collision - 0.01_wp ) / ( 0.0_wp - 0.01_wp ) * y1 &
+ ( epsilon_collision - 0.0_wp ) / ( 0.01_wp - 0.0_wp ) * y2
ELSEIF ( epsilon_collision <= 0.06_wp ) THEN
ecf(j,i) = ( epsilon_collision - 0.04_wp ) / ( 0.01_wp - 0.04_wp ) * y2 &
+ ( epsilon_collision - 0.01_wp ) / ( 0.04_wp - 0.01_wp ) * y3
ELSE
ecf(j,i) = ( 0.06_wp - 0.04_wp ) / ( 0.01_wp - 0.04_wp ) * y2 &
+ ( 0.06_wp - 0.01_wp ) / ( 0.04_wp - 0.01_wp ) * y3
ENDIF
IF ( ecf(j,i) < 1.0_wp ) ecf(j,i) = 1.0_wp
ecf(i,j) = ecf(j,i)
ENDDO
ENDDO
END SUBROUTINE turb_enhance_eff
!------------------------------------------------------------------------------!
! Description:
! ------------
! This routine is a part of the Lagrangian particle model. Super droplets which
! fulfill certain criterion's (e.g. a big weighting factor and a large radius)
! can be split into several super droplets with a reduced number of
! represented particles of every super droplet. This mechanism ensures an
! improved representation of the right tail of the drop size distribution with
! a feasible amount of computational costs. The limits of particle creation
! should be chosen carefully! The idea of this algorithm is based on
! Unterstrasser and Soelch, 2014.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_splitting
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: jpp !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: n !<
INTEGER(iwp) :: new_particles_gb !< counter of created particles within one grid box
INTEGER(iwp) :: new_size !< new particle array size
INTEGER(iwp) :: np !<
INTEGER(iwp) :: old_size !< old particle array size
INTEGER(iwp), PARAMETER :: n_max = 100 !< number of radii bin for splitting functions
LOGICAL :: first_loop_stride_sp = .TRUE. !< flag to calculate constants only once
REAL(wp) :: diameter !< diameter of droplet
REAL(wp) :: dlog !< factor for DSD calculation
REAL(wp) :: factor_volume_to_mass !< pre calculate factor volume to mass
REAL(wp) :: lambda !< slope parameter of gamma-distribution
REAL(wp) :: lwc !< liquid water content of grid box
REAL(wp) :: lwc_total !< average liquid water content of cloud
REAL(wp) :: m1 !< first moment of DSD
REAL(wp) :: m1_total !< average over all PEs of first moment of DSD
REAL(wp) :: m2 !< second moment of DSD
REAL(wp) :: m2_total !< average average over all PEs second moment of DSD
REAL(wp) :: m3 !< third moment of DSD
REAL(wp) :: m3_total !< average average over all PEs third moment of DSD
REAL(wp) :: mu !< spectral shape parameter of gamma distribution
REAL(wp) :: nrclgb !< number of cloudy grid boxes (ql >= 1.0E-5 kg/kg)
REAL(wp) :: nrclgb_total !< average over all PEs of number of cloudy grid boxes
REAL(wp) :: nr !< number concentration of cloud droplets
REAL(wp) :: nr_total !< average over all PEs of number of cloudy grid boxes
REAL(wp) :: nr0 !< intercept parameter of gamma distribution
REAL(wp) :: pirho_l !< pi * rho_l / 6.0
REAL(wp) :: ql_crit = 1.0E-5_wp !< threshold lwc for cloudy grid cells
!< (Siebesma et al 2003, JAS, 60)
REAL(wp) :: rm !< volume averaged mean radius
REAL(wp) :: rm_total !< average over all PEs of volume averaged mean radius
REAL(wp) :: r_min = 1.0E-6_wp !< minimum radius of approximated spectra
REAL(wp) :: r_max = 1.0E-3_wp !< maximum radius of approximated spectra
REAL(wp) :: sigma_log = 1.5_wp !< standard deviation of the LOG-distribution
REAL(wp) :: zeta !< Parameter for DSD calculation of Seifert
REAL(wp), DIMENSION(0:n_max-1) :: an_spl !< size dependent critical weight factor
REAL(wp), DIMENSION(0:n_max-1) :: r_bin_mid !< mass weighted mean radius of a bin
REAL(wp), DIMENSION(0:n_max) :: r_bin !< boundaries of a radius bin
TYPE(particle_type) :: tmp_particle !< temporary particle TYPE
CALL cpu_log( log_point_s(80), 'lpm_splitting', 'start' )
IF ( first_loop_stride_sp ) THEN
IF ( i_splitting_mode == 2 .OR. i_splitting_mode == 3 ) THEN
dlog = ( LOG10(r_max) - LOG10(r_min) ) / ( n_max - 1 )
DO i = 0, n_max-1
r_bin(i) = 10.0_wp**( LOG10(r_min) + i * dlog - 0.5_wp * dlog )
r_bin_mid(i) = 10.0_wp**( LOG10(r_min) + i * dlog )
ENDDO
r_bin(n_max) = 10.0_wp**( LOG10(r_min) + n_max * dlog - 0.5_wp * dlog )
ENDIF
factor_volume_to_mass = 4.0_wp / 3.0_wp * pi * rho_l
pirho_l = pi * rho_l / 6.0_wp
IF ( weight_factor_split == -1.0_wp ) THEN
weight_factor_split = 0.1_wp * initial_weighting_factor
ENDIF
ENDIF
IF ( i_splitting_mode == 1 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
new_particles_gb = 0
number_of_particles = prt_count(k,j,i)
IF ( number_of_particles <= 0 .OR. &
ql(k,j,i) < ql_crit ) CYCLE
particles => grid_particles(k,j,i)%particles(1:number_of_particles)
!
!-- Start splitting operations. Each particle is checked if it
!-- fulfilled the splitting criterion's. In splitting mode 'const'
!-- a critical radius (radius_split) a critical weighting factor
!-- (weight_factor_split) and a splitting factor (splitting_factor)
!-- must be prescribed (see particle_parameters). Super droplets
!-- which have a larger radius and larger weighting factor are split
!-- into 'splitting_factor' super droplets. Therefore, the weighting
!-- factor of the super droplet and all created clones is reduced
!-- by the factor of 'splitting_factor'.
DO n = 1, number_of_particles
IF ( particles(n)%particle_mask .AND. &
particles(n)%radius >= radius_split .AND. &
particles(n)%weight_factor >= weight_factor_split ) &
THEN
!
!-- Calculate the new number of particles.
new_size = prt_count(k,j,i) + splitting_factor - 1
!
!-- Cycle if maximum number of particles per grid box
!-- is greater than the allowed maximum number.
IF ( new_size >= max_number_particles_per_gridbox ) CYCLE
!
!-- Reallocate particle array if necessary.
IF ( new_size > SIZE(particles) ) THEN
CALL realloc_particles_array( i, j, k, new_size )
ENDIF
old_size = prt_count(k,j,i)
!
!-- Calculate new weighting factor.
particles(n)%weight_factor = &
particles(n)%weight_factor / splitting_factor
tmp_particle = particles(n)
!
!-- Create splitting_factor-1 new particles.
DO jpp = 1, splitting_factor-1
grid_particles(k,j,i)%particles(jpp+old_size) = &
tmp_particle
ENDDO
new_particles_gb = new_particles_gb + splitting_factor - 1
!
!-- Save the new number of super droplets for every grid box.
prt_count(k,j,i) = prt_count(k,j,i) + &
splitting_factor - 1
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
ELSEIF ( i_splitting_mode == 2 ) THEN
!
!-- Initialize summing variables.
lwc = 0.0_wp
lwc_total = 0.0_wp
m1 = 0.0_wp
m1_total = 0.0_wp
m2 = 0.0_wp
m2_total = 0.0_wp
m3 = 0.0_wp
m3_total = 0.0_wp
nr = 0.0_wp
nrclgb = 0.0_wp
nrclgb_total = 0.0_wp
nr_total = 0.0_wp
rm = 0.0_wp
rm_total = 0.0_wp
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
number_of_particles = prt_count(k,j,i)
IF ( number_of_particles <= 0 .OR. &
ql(k,j,i) < ql_crit ) CYCLE
particles => grid_particles(k,j,i)%particles(1:number_of_particles)
nrclgb = nrclgb + 1.0_wp
!
!-- Calculate moments of DSD.
DO n = 1, number_of_particles
IF ( particles(n)%particle_mask .AND. &
particles(n)%radius >= r_min ) &
THEN
nr = nr + particles(n)%weight_factor
rm = rm + factor_volume_to_mass * &
particles(n)%radius**3 * &
particles(n)%weight_factor
IF ( isf == 1 ) THEN
diameter = particles(n)%radius * 2.0_wp
lwc = lwc + factor_volume_to_mass * &
particles(n)%radius**3 * &
particles(n)%weight_factor
m1 = m1 + particles(n)%weight_factor * diameter
m2 = m2 + particles(n)%weight_factor * diameter**2
m3 = m3 + particles(n)%weight_factor * diameter**3
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
#if defined( __parallel )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( nr, nr_total, 1 , &
MPI_REAL, MPI_SUM, comm2d, ierr )
CALL MPI_ALLREDUCE( rm, rm_total, 1 , &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( nrclgb, nrclgb_total, 1 , &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( lwc, lwc_total, 1 , &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( m1, m1_total, 1 , &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( m2, m2_total, 1 , &
MPI_REAL, MPI_SUM, comm2d, ierr )
IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr )
CALL MPI_ALLREDUCE( m3, m3_total, 1 , &
MPI_REAL, MPI_SUM, comm2d, ierr )
#endif
!
!-- Calculate number concentration and mean volume averaged radius.
nr_total = MERGE( nr_total / nrclgb_total, &
0.0_wp, nrclgb_total > 0.0_wp &
)
rm_total = MERGE( ( rm_total / &
( nr_total * factor_volume_to_mass ) &
)**0.3333333_wp, 0.0_wp, nrclgb_total > 0.0_wp &
)
!
!-- Check which function should be used to approximate the DSD.
IF ( isf == 1 ) THEN
lwc_total = MERGE( lwc_total / nrclgb_total, &
0.0_wp, nrclgb_total > 0.0_wp &
)
m1_total = MERGE( m1_total / nrclgb_total, &
0.0_wp, nrclgb_total > 0.0_wp &
)
m2_total = MERGE( m2_total / nrclgb_total, &
0.0_wp, nrclgb_total > 0.0_wp &
)
m3_total = MERGE( m3_total / nrclgb_total, &
0.0_wp, nrclgb_total > 0.0_wp &
)
zeta = m1_total * m3_total / m2_total**2
mu = MAX( ( ( 1.0_wp - zeta ) * 2.0_wp + 1.0_wp ) / &
( zeta - 1.0_wp ), 0.0_wp &
)
lambda = ( pirho_l * nr_total / lwc_total * &
( mu + 3.0_wp ) * ( mu + 2.0_wp ) * ( mu + 1.0_wp ) &
)**0.3333333_wp
nr0 = nr_total / gamma( mu + 1.0_wp ) * lambda**( mu + 1.0_wp )
DO n = 0, n_max-1
diameter = r_bin_mid(n) * 2.0_wp
an_spl(n) = nr0 * diameter**mu * EXP( -lambda * diameter ) * &
( r_bin(n+1) - r_bin(n) ) * 2.0_wp
ENDDO
ELSEIF ( isf == 2 ) THEN
DO n = 0, n_max-1
an_spl(n) = nr_total / ( SQRT( 2.0_wp * pi ) * &
LOG(sigma_log) * r_bin_mid(n) &
) * &
EXP( -( LOG( r_bin_mid(n) / rm_total )**2 ) / &
( 2.0_wp * LOG(sigma_log)**2 ) &
) * &
( r_bin(n+1) - r_bin(n) )
ENDDO
ELSEIF( isf == 3 ) THEN
DO n = 0, n_max-1
an_spl(n) = 3.0_wp * nr_total * r_bin_mid(n)**2 / rm_total**3 * &
EXP( - ( r_bin_mid(n)**3 / rm_total**3 ) ) * &
( r_bin(n+1) - r_bin(n) )
ENDDO
ENDIF
!
!-- Criterion to avoid super droplets with a weighting factor < 1.0.
an_spl = MAX(an_spl, 1.0_wp)
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
number_of_particles = prt_count(k,j,i)
IF ( number_of_particles <= 0 .OR. &
ql(k,j,i) < ql_crit ) CYCLE
particles => grid_particles(k,j,i)%particles(1:number_of_particles)
new_particles_gb = 0
!
!-- Start splitting operations. Each particle is checked if it
!-- fulfilled the splitting criterion's. In splitting mode 'cl_av'
!-- a critical radius (radius_split) and a splitting function must
!-- be prescribed (see particles_par). The critical weighting factor
!-- is calculated while approximating a 'gamma', 'log' or 'exp'-
!-- drop size distribution. In this mode the DSD is calculated as
!-- an average over all cloudy grid boxes. Super droplets which
!-- have a larger radius and larger weighting factor are split into
!-- 'splitting_factor' super droplets. In this case the splitting
!-- factor is calculated of weighting factor of the super droplet
!-- and the approximated number concentration for droplet of such
!-- a size. Due to the splitting, the weighting factor of the
!-- super droplet and all created clones is reduced by the factor
!-- of 'splitting_facor'.
DO n = 1, number_of_particles
DO np = 0, n_max-1
IF ( r_bin(np) >= radius_split .AND. &
particles(n)%particle_mask .AND. &
particles(n)%radius >= r_bin(np) .AND. &
particles(n)%radius < r_bin(np+1) .AND. &
particles(n)%weight_factor >= an_spl(np) ) &
THEN
!
!-- Calculate splitting factor
splitting_factor = &
MIN( INT( particles(n)%weight_factor / &
an_spl(np) &
), splitting_factor_max &
)
IF ( splitting_factor < 2 ) CYCLE
!
!-- Calculate the new number of particles.
new_size = prt_count(k,j,i) + splitting_factor - 1
!
!-- Cycle if maximum number of particles per grid box
!-- is greater than the allowed maximum number.
IF ( new_size >= max_number_particles_per_gridbox ) &
CYCLE
!
!-- Reallocate particle array if necessary.
IF ( new_size > SIZE(particles) ) THEN
CALL realloc_particles_array( i, j, k, new_size )
ENDIF
old_size = prt_count(k,j,i)
new_particles_gb = new_particles_gb + &
splitting_factor - 1
!
!-- Calculate new weighting factor.
particles(n)%weight_factor = &
particles(n)%weight_factor / splitting_factor
tmp_particle = particles(n)
!
!-- Create splitting_factor-1 new particles.
DO jpp = 1, splitting_factor-1
grid_particles(k,j,i)%particles(jpp+old_size) = &
tmp_particle
ENDDO
!
!-- Save the new number of super droplets.
prt_count(k,j,i) = prt_count(k,j,i) + &
splitting_factor - 1
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
ELSEIF ( i_splitting_mode == 3 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
!
!-- Initialize summing variables.
lwc = 0.0_wp
m1 = 0.0_wp
m2 = 0.0_wp
m3 = 0.0_wp
nr = 0.0_wp
rm = 0.0_wp
new_particles_gb = 0
number_of_particles = prt_count(k,j,i)
IF ( number_of_particles <= 0 .OR. &
ql(k,j,i) < ql_crit ) CYCLE
particles => grid_particles(k,j,i)%particles
!
!-- Calculate moments of DSD.
DO n = 1, number_of_particles
IF ( particles(n)%particle_mask .AND. &
particles(n)%radius >= r_min ) &
THEN
nr = nr + particles(n)%weight_factor
rm = rm + factor_volume_to_mass * &
particles(n)%radius**3 * &
particles(n)%weight_factor
IF ( isf == 1 ) THEN
diameter = particles(n)%radius * 2.0_wp
lwc = lwc + factor_volume_to_mass * &
particles(n)%radius**3 * &
particles(n)%weight_factor
m1 = m1 + particles(n)%weight_factor * diameter
m2 = m2 + particles(n)%weight_factor * diameter**2
m3 = m3 + particles(n)%weight_factor * diameter**3
ENDIF
ENDIF
ENDDO
IF ( nr <= 0.0_wp .OR. rm <= 0.0_wp ) CYCLE
!
!-- Calculate mean volume averaged radius.
rm = ( rm / ( nr * factor_volume_to_mass ) )**0.3333333_wp
!
!-- Check which function should be used to approximate the DSD.
IF ( isf == 1 ) THEN
!
!-- Gamma size distribution to calculate
!-- critical weight_factor (e.g. Marshall + Palmer, 1948).
zeta = m1 * m3 / m2**2
mu = MAX( ( ( 1.0_wp - zeta ) * 2.0_wp + 1.0_wp ) / &
( zeta - 1.0_wp ), 0.0_wp &
)
lambda = ( pirho_l * nr / lwc * &
( mu + 3.0_wp ) * ( mu + 2.0_wp ) * &
( mu + 1.0_wp ) &
)**0.3333333_wp
nr0 = ( nr / (gamma( mu + 1.0_wp ) ) ) * &
lambda**( mu + 1.0_wp )
DO n = 0, n_max-1
diameter = r_bin_mid(n) * 2.0_wp
an_spl(n) = nr0 * diameter**mu * &
EXP( -lambda * diameter ) * &
( r_bin(n+1) - r_bin(n) ) * 2.0_wp
ENDDO
ELSEIF ( isf == 2 ) THEN
!
!-- Lognormal size distribution to calculate critical
!-- weight_factor (e.g. Levin, 1971, Bradley + Stow, 1974).
DO n = 0, n_max-1
an_spl(n) = nr / ( SQRT( 2.0_wp * pi ) * &
LOG(sigma_log) * r_bin_mid(n) &
) * &
EXP( -( LOG( r_bin_mid(n) / rm )**2 ) / &
( 2.0_wp * LOG(sigma_log)**2 ) &
) * &
( r_bin(n+1) - r_bin(n) )
ENDDO
ELSEIF ( isf == 3 ) THEN
!
!-- Exponential size distribution to calculate critical
!-- weight_factor (e.g. Berry + Reinhardt, 1974).
DO n = 0, n_max-1
an_spl(n) = 3.0_wp * nr * r_bin_mid(n)**2 / rm**3 * &
EXP( - ( r_bin_mid(n)**3 / rm**3 ) ) * &
( r_bin(n+1) - r_bin(n) )
ENDDO
ENDIF
!
!-- Criterion to avoid super droplets with a weighting factor < 1.0.
an_spl = MAX(an_spl, 1.0_wp)
!
!-- Start splitting operations. Each particle is checked if it
!-- fulfilled the splitting criterion's. In splitting mode 'gb_av'
!-- a critical radius (radius_split) and a splitting function must
!-- be prescribed (see particles_par). The critical weighting factor
!-- is calculated while appoximating a 'gamma', 'log' or 'exp'-
!-- drop size distribution. In this mode a DSD is calculated for
!-- every cloudy grid box. Super droplets which have a larger
!-- radius and larger weighting factor are split into
!-- 'splitting_factor' super droplets. In this case the splitting
!-- factor is calculated of weighting factor of the super droplet
!-- and theapproximated number concentration for droplet of such
!-- a size. Due to the splitting, the weighting factor of the
!-- super droplet and all created clones is reduced by the factor
!-- of 'splitting_facor'.
DO n = 1, number_of_particles
DO np = 0, n_max-1
IF ( r_bin(np) >= radius_split .AND. &
particles(n)%particle_mask .AND. &
particles(n)%radius >= r_bin(np) .AND. &
particles(n)%radius < r_bin(np+1) .AND. &
particles(n)%weight_factor >= an_spl(np) ) &
THEN
!
!-- Calculate splitting factor.
splitting_factor = &
MIN( INT( particles(n)%weight_factor / &
an_spl(np) &
), splitting_factor_max &
)
IF ( splitting_factor < 2 ) CYCLE
!
!-- Calculate the new number of particles.
new_size = prt_count(k,j,i) + splitting_factor - 1
!
!-- Cycle if maximum number of particles per grid box
!-- is greater than the allowed maximum number.
IF ( new_size >= max_number_particles_per_gridbox ) &
CYCLE
!
!-- Reallocate particle array if necessary.
IF ( new_size > SIZE(particles) ) THEN
CALL realloc_particles_array( i, j, k, new_size )
ENDIF
!
!-- Calculate new weighting factor.
particles(n)%weight_factor = &
particles(n)%weight_factor / splitting_factor
tmp_particle = particles(n)
old_size = prt_count(k,j,i)
!
!-- Create splitting_factor-1 new particles.
DO jpp = 1, splitting_factor-1
grid_particles(k,j,i)%particles( jpp + old_size ) = &
tmp_particle
ENDDO
!
!-- Save the new number of droplets for every grid box.
prt_count(k,j,i) = prt_count(k,j,i) + &
splitting_factor - 1
new_particles_gb = new_particles_gb + &
splitting_factor - 1
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
ENDIF
CALL cpu_log( log_point_s(80), 'lpm_splitting', 'stop' )
END SUBROUTINE lpm_splitting
!------------------------------------------------------------------------------!
! Description:
! ------------
! This routine is a part of the Lagrangian particle model. Two Super droplets
! which fulfill certain criterion's (e.g. a big weighting factor and a small
! radius) can be merged into one super droplet with a increased number of
! represented particles of the super droplet. This mechanism ensures an
! improved a feasible amount of computational costs. The limits of particle
! creation should be chosen carefully! The idea of this algorithm is based on
! Unterstrasser and Soelch, 2014.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_merging
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: n !<
INTEGER(iwp) :: merge_drp = 0 !< number of merged droplets
REAL(wp) :: ql_crit = 1.0E-5_wp !< threshold lwc for cloudy grid cells
!< (e.g. Siebesma et al 2003, JAS, 60)
CALL cpu_log( log_point_s(81), 'lpm_merging', 'start' )
merge_drp = 0
IF ( weight_factor_merge == -1.0_wp ) THEN
weight_factor_merge = 0.5_wp * initial_weighting_factor
ENDIF
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
number_of_particles = prt_count(k,j,i)
IF ( number_of_particles <= 0 .OR. &
ql(k,j,i) >= ql_crit ) CYCLE
particles => grid_particles(k,j,i)%particles(1:number_of_particles)
!
!-- Start merging operations: This routine delete super droplets with
!-- a small radius (radius <= radius_merge) and a low weighting
!-- factor (weight_factor <= weight_factor_merge). The number of
!-- represented particles will be added to the next particle of the
!-- particle array. Tests showed that this simplified method can be
!-- used because it will only take place outside of cloudy grid
!-- boxes where ql <= 1.0E-5 kg/kg. Therefore, especially former cloned
!-- and subsequent evaporated super droplets will be merged.
DO n = 1, number_of_particles-1
IF ( particles(n)%particle_mask .AND. &
particles(n+1)%particle_mask .AND. &
particles(n)%radius <= radius_merge .AND. &
particles(n)%weight_factor <= weight_factor_merge ) &
THEN
particles(n+1)%weight_factor = &
particles(n+1)%weight_factor + &
( particles(n)%radius**3 / &
particles(n+1)%radius**3 * &
particles(n)%weight_factor &
)
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
merge_drp = merge_drp + 1
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
CALL cpu_log( log_point_s(81), 'lpm_merging', 'stop' )
END SUBROUTINE lpm_merging
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Exchange between subdomains.
!> As soon as one particle has moved beyond the boundary of the domain, it
!> is included in the relevant transfer arrays and marked for subsequent
!> deletion on this PE.
!> First sweep for crossings in x direction. Find out first the number of
!> particles to be transferred and allocate temporary arrays needed to store
!> them.
!> For a one-dimensional decomposition along y, no transfer is necessary,
!> because the particle remains on the PE, but the particle coordinate has to
!> be adjusted.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_exchange_horiz
INTEGER(iwp) :: i !< grid index (x) of particle positition
INTEGER(iwp) :: ip !< index variable along x
INTEGER(iwp) :: j !< grid index (y) of particle positition
INTEGER(iwp) :: jp !< index variable along y
INTEGER(iwp) :: kp !< index variable along z
INTEGER(iwp) :: n !< particle index variable
INTEGER(iwp) :: par_size !< Particle size in bytes
INTEGER(iwp) :: trlp_count !< number of particles send to left PE
INTEGER(iwp) :: trlp_count_recv !< number of particles receive from right PE
INTEGER(iwp) :: trnp_count !< number of particles send to north PE
INTEGER(iwp) :: trnp_count_recv !< number of particles receive from south PE
INTEGER(iwp) :: trrp_count !< number of particles send to right PE
INTEGER(iwp) :: trrp_count_recv !< number of particles receive from left PE
INTEGER(iwp) :: trsp_count !< number of particles send to south PE
INTEGER(iwp) :: trsp_count_recv !< number of particles receive from north PE
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: rvlp !< particles received from right PE
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: rvnp !< particles received from south PE
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: rvrp !< particles received from left PE
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: rvsp !< particles received from north PE
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trlp !< particles send to left PE
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trnp !< particles send to north PE
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trrp !< particles send to right PE
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trsp !< particles send to south PE
CALL cpu_log( log_point_s(23), 'lpm_exchange_horiz', 'start' )
#if defined( __parallel )
!
!-- Exchange between subdomains.
!-- As soon as one particle has moved beyond the boundary of the domain, it
!-- is included in the relevant transfer arrays and marked for subsequent
!-- deletion on this PE.
!-- First sweep for crossings in x direction. Find out first the number of
!-- particles to be transferred and allocate temporary arrays needed to store
!-- them.
!-- For a one-dimensional decomposition along y, no transfer is necessary,
!-- because the particle remains on the PE, but the particle coordinate has to
!-- be adjusted.
trlp_count = 0
trrp_count = 0
trlp_count_recv = 0
trrp_count_recv = 0
IF ( pdims(1) /= 1 ) THEN
!
!-- First calculate the storage necessary for sending and receiving the data.
!-- Compute only first (nxl) and last (nxr) loop iterration.
DO ip = nxl, nxr, nxr - nxl
DO jp = nys, nyn
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
DO n = 1, number_of_particles
IF ( particles(n)%particle_mask ) THEN
i = particles(n)%x * ddx
!
!-- Above calculation does not work for indices less than zero
IF ( particles(n)%x < 0.0_wp) i = -1
IF ( i < nxl ) THEN
trlp_count = trlp_count + 1
ELSEIF ( i > nxr ) THEN
trrp_count = trrp_count + 1
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
IF ( trlp_count == 0 ) trlp_count = 1
IF ( trrp_count == 0 ) trrp_count = 1
ALLOCATE( trlp(trlp_count), trrp(trrp_count) )
trlp = zero_particle
trrp = zero_particle
trlp_count = 0
trrp_count = 0
ENDIF
!
!-- Compute only first (nxl) and last (nxr) loop iterration
DO ip = nxl, nxr, nxr-nxl
DO jp = nys, nyn
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
DO n = 1, number_of_particles
!
!-- Only those particles that have not been marked as 'deleted' may
!-- be moved.
IF ( particles(n)%particle_mask ) THEN
i = particles(n)%x * ddx
!
!-- Above calculation does not work for indices less than zero
IF ( particles(n)%x < 0.0_wp ) i = -1
IF ( i < nxl ) THEN
IF ( i < 0 ) THEN
!
!-- Apply boundary condition along x
IF ( ibc_par_lr == 0 ) THEN
!
!-- Cyclic condition
IF ( pdims(1) == 1 ) THEN
particles(n)%x = ( nx + 1 ) * dx + particles(n)%x
particles(n)%origin_x = ( nx + 1 ) * dx + &
particles(n)%origin_x
ELSE
trlp_count = trlp_count + 1
trlp(trlp_count) = particles(n)
trlp(trlp_count)%x = ( nx + 1 ) * dx + trlp(trlp_count)%x
trlp(trlp_count)%origin_x = trlp(trlp_count)%origin_x + &
( nx + 1 ) * dx
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
IF ( trlp(trlp_count)%x >= (nx + 1)* dx - 1.0E-12_wp ) THEN
trlp(trlp_count)%x = trlp(trlp_count)%x - 1.0E-10_wp
!++ why is 1 subtracted in next statement???
trlp(trlp_count)%origin_x = trlp(trlp_count)%origin_x - 1
ENDIF
ENDIF
ELSEIF ( ibc_par_lr == 1 ) THEN
!
!-- Particle absorption
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ELSEIF ( ibc_par_lr == 2 ) THEN
!
!-- Particle reflection
particles(n)%x = -particles(n)%x
particles(n)%speed_x = -particles(n)%speed_x
ENDIF
ELSE
!
!-- Store particle data in the transfer array, which will be
!-- send to the neighbouring PE
trlp_count = trlp_count + 1
trlp(trlp_count) = particles(n)
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ENDIF
ELSEIF ( i > nxr ) THEN
IF ( i > nx ) THEN
!
!-- Apply boundary condition along x
IF ( ibc_par_lr == 0 ) THEN
!
!-- Cyclic condition
IF ( pdims(1) == 1 ) THEN
particles(n)%x = particles(n)%x - ( nx + 1 ) * dx
particles(n)%origin_x = particles(n)%origin_x - &
( nx + 1 ) * dx
ELSE
trrp_count = trrp_count + 1
trrp(trrp_count) = particles(n)
trrp(trrp_count)%x = trrp(trrp_count)%x - ( nx + 1 ) * dx
trrp(trrp_count)%origin_x = trrp(trrp_count)%origin_x - &
( nx + 1 ) * dx
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ENDIF
ELSEIF ( ibc_par_lr == 1 ) THEN
!
!-- Particle absorption
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ELSEIF ( ibc_par_lr == 2 ) THEN
!
!-- Particle reflection
particles(n)%x = 2 * ( nx * dx ) - particles(n)%x
particles(n)%speed_x = -particles(n)%speed_x
ENDIF
ELSE
!
!-- Store particle data in the transfer array, which will be send
!-- to the neighbouring PE
trrp_count = trrp_count + 1
trrp(trrp_count) = particles(n)
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ENDIF
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
!
!-- STORAGE_SIZE returns the storage size of argument A in bits. However , it
!-- is needed in bytes. The function C_SIZEOF which produces this value directly
!-- causes problems with gfortran. For this reason the use of C_SIZEOF is avoided
par_size = STORAGE_SIZE(trlp(1))/8
!
!-- Allocate arrays required for north-south exchange, as these
!-- are used directly after particles are exchange along x-direction.
ALLOCATE( move_also_north(1:NR_2_direction_move) )
ALLOCATE( move_also_south(1:NR_2_direction_move) )
nr_move_north = 0
nr_move_south = 0
!
!-- Send left boundary, receive right boundary (but first exchange how many
!-- and check, if particle storage must be extended)
IF ( pdims(1) /= 1 ) THEN
CALL MPI_SENDRECV( trlp_count, 1, MPI_INTEGER, pleft, 0, &
trrp_count_recv, 1, MPI_INTEGER, pright, 0, &
comm2d, status, ierr )
ALLOCATE(rvrp(MAX(1,trrp_count_recv)))
CALL MPI_SENDRECV( trlp, max(1,trlp_count)*par_size, MPI_BYTE,&
pleft, 1, rvrp, &
max(1,trrp_count_recv)*par_size, MPI_BYTE, pright, 1,&
comm2d, status, ierr )
IF ( trrp_count_recv > 0 ) CALL lpm_add_particles_to_gridcell(rvrp(1:trrp_count_recv))
DEALLOCATE(rvrp)
!
!-- Send right boundary, receive left boundary
CALL MPI_SENDRECV( trrp_count, 1, MPI_INTEGER, pright, 0, &
trlp_count_recv, 1, MPI_INTEGER, pleft, 0, &
comm2d, status, ierr )
ALLOCATE(rvlp(MAX(1,trlp_count_recv)))
!
!-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit
!-- variables in structure particle_type (due to the calculation of par_size)
CALL MPI_SENDRECV( trrp, max(1,trrp_count)*par_size, MPI_BYTE,&
pright, 1, rvlp, &
max(1,trlp_count_recv)*par_size, MPI_BYTE, pleft, 1, &
comm2d, status, ierr )
IF ( trlp_count_recv > 0 ) CALL lpm_add_particles_to_gridcell(rvlp(1:trlp_count_recv))
DEALLOCATE( rvlp )
DEALLOCATE( trlp, trrp )
ENDIF
!
!-- Check whether particles have crossed the boundaries in y direction. Note
!-- that this case can also apply to particles that have just been received
!-- from the adjacent right or left PE.
!-- Find out first the number of particles to be transferred and allocate
!-- temporary arrays needed to store them.
!-- For a one-dimensional decomposition along y, no transfer is necessary,
!-- because the particle remains on the PE.
trsp_count = nr_move_south
trnp_count = nr_move_north
trsp_count_recv = 0
trnp_count_recv = 0
IF ( pdims(2) /= 1 ) THEN
!
!-- First calculate the storage necessary for sending and receiving the
!-- data
DO ip = nxl, nxr
DO jp = nys, nyn, nyn-nys !compute only first (nys) and last (nyn) loop iterration
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
DO n = 1, number_of_particles
IF ( particles(n)%particle_mask ) THEN
j = particles(n)%y * ddy
!
!-- Above calculation does not work for indices less than zero
IF ( particles(n)%y < 0.0_wp) j = -1
IF ( j < nys ) THEN
trsp_count = trsp_count + 1
ELSEIF ( j > nyn ) THEN
trnp_count = trnp_count + 1
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
IF ( trsp_count == 0 ) trsp_count = 1
IF ( trnp_count == 0 ) trnp_count = 1
ALLOCATE( trsp(trsp_count), trnp(trnp_count) )
trsp = zero_particle
trnp = zero_particle
trsp_count = nr_move_south
trnp_count = nr_move_north
trsp(1:nr_move_south) = move_also_south(1:nr_move_south)
trnp(1:nr_move_north) = move_also_north(1:nr_move_north)
ENDIF
DO ip = nxl, nxr
DO jp = nys, nyn, nyn-nys ! compute only first (nys) and last (nyn) loop iterration
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
DO n = 1, number_of_particles
!
!-- Only those particles that have not been marked as 'deleted' may
!-- be moved.
IF ( particles(n)%particle_mask ) THEN
j = particles(n)%y * ddy
!
!-- Above calculation does not work for indices less than zero
IF ( particles(n)%y < 0.0_wp ) j = -1
IF ( j < nys ) THEN
IF ( j < 0 ) THEN
!
!-- Apply boundary condition along y
IF ( ibc_par_ns == 0 ) THEN
!
!-- Cyclic condition
IF ( pdims(2) == 1 ) THEN
particles(n)%y = ( ny + 1 ) * dy + particles(n)%y
particles(n)%origin_y = ( ny + 1 ) * dy + &
particles(n)%origin_y
ELSE
trsp_count = trsp_count + 1
trsp(trsp_count) = particles(n)
trsp(trsp_count)%y = ( ny + 1 ) * dy + &
trsp(trsp_count)%y
trsp(trsp_count)%origin_y = trsp(trsp_count)%origin_y &
+ ( ny + 1 ) * dy
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
IF ( trsp(trsp_count)%y >= (ny+1)* dy - 1.0E-12_wp ) THEN
trsp(trsp_count)%y = trsp(trsp_count)%y - 1.0E-10_wp
!++ why is 1 subtracted in next statement???
trsp(trsp_count)%origin_y = &
trsp(trsp_count)%origin_y - 1
ENDIF
ENDIF
ELSEIF ( ibc_par_ns == 1 ) THEN
!
!-- Particle absorption
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ELSEIF ( ibc_par_ns == 2 ) THEN
!
!-- Particle reflection
particles(n)%y = -particles(n)%y
particles(n)%speed_y = -particles(n)%speed_y
ENDIF
ELSE
!
!-- Store particle data in the transfer array, which will
!-- be send to the neighbouring PE
trsp_count = trsp_count + 1
trsp(trsp_count) = particles(n)
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ENDIF
ELSEIF ( j > nyn ) THEN
IF ( j > ny ) THEN
!
!-- Apply boundary condition along y
IF ( ibc_par_ns == 0 ) THEN
!
!-- Cyclic condition
IF ( pdims(2) == 1 ) THEN
particles(n)%y = particles(n)%y - ( ny + 1 ) * dy
particles(n)%origin_y = &
particles(n)%origin_y - ( ny + 1 ) * dy
ELSE
trnp_count = trnp_count + 1
trnp(trnp_count) = particles(n)
trnp(trnp_count)%y = &
trnp(trnp_count)%y - ( ny + 1 ) * dy
trnp(trnp_count)%origin_y = &
trnp(trnp_count)%origin_y - ( ny + 1 ) * dy
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ENDIF
ELSEIF ( ibc_par_ns == 1 ) THEN
!
!-- Particle absorption
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ELSEIF ( ibc_par_ns == 2 ) THEN
!
!-- Particle reflection
particles(n)%y = 2 * ( ny * dy ) - particles(n)%y
particles(n)%speed_y = -particles(n)%speed_y
ENDIF
ELSE
!
!-- Store particle data in the transfer array, which will
!-- be send to the neighbouring PE
trnp_count = trnp_count + 1
trnp(trnp_count) = particles(n)
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ENDIF
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
!
!-- Send front boundary, receive back boundary (but first exchange how many
!-- and check, if particle storage must be extended)
IF ( pdims(2) /= 1 ) THEN
CALL MPI_SENDRECV( trsp_count, 1, MPI_INTEGER, psouth, 0, &
trnp_count_recv, 1, MPI_INTEGER, pnorth, 0, &
comm2d, status, ierr )
ALLOCATE(rvnp(MAX(1,trnp_count_recv)))
!
!-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit
!-- variables in structure particle_type (due to the calculation of par_size)
CALL MPI_SENDRECV( trsp, trsp_count*par_size, MPI_BYTE, &
psouth, 1, rvnp, &
trnp_count_recv*par_size, MPI_BYTE, pnorth, 1, &
comm2d, status, ierr )
IF ( trnp_count_recv > 0 ) CALL lpm_add_particles_to_gridcell(rvnp(1:trnp_count_recv))
DEALLOCATE(rvnp)
!
!-- Send back boundary, receive front boundary
CALL MPI_SENDRECV( trnp_count, 1, MPI_INTEGER, pnorth, 0, &
trsp_count_recv, 1, MPI_INTEGER, psouth, 0, &
comm2d, status, ierr )
ALLOCATE(rvsp(MAX(1,trsp_count_recv)))
!
!-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit
!-- variables in structure particle_type (due to the calculation of par_size)
CALL MPI_SENDRECV( trnp, trnp_count*par_size, MPI_BYTE, &
pnorth, 1, rvsp, &
trsp_count_recv*par_size, MPI_BYTE, psouth, 1, &
comm2d, status, ierr )
IF ( trsp_count_recv > 0 ) CALL lpm_add_particles_to_gridcell(rvsp(1:trsp_count_recv))
DEALLOCATE(rvsp)
number_of_particles = number_of_particles + trsp_count_recv
DEALLOCATE( trsp, trnp )
ENDIF
DEALLOCATE( move_also_north )
DEALLOCATE( move_also_south )
#else
DO ip = nxl, nxr, nxr-nxl
DO jp = nys, nyn
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
DO n = 1, number_of_particles
!
!-- Apply boundary conditions
IF ( particles(n)%x < 0.0_wp ) THEN
IF ( ibc_par_lr == 0 ) THEN
!
!-- Cyclic boundary. Relevant coordinate has to be changed.
particles(n)%x = ( nx + 1 ) * dx + particles(n)%x
particles(n)%origin_x = ( nx + 1 ) * dx + &
particles(n)%origin_x
ELSEIF ( ibc_par_lr == 1 ) THEN
!
!-- Particle absorption
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ELSEIF ( ibc_par_lr == 2 ) THEN
!
!-- Particle reflection
particles(n)%x = -dx - particles(n)%x
particles(n)%speed_x = -particles(n)%speed_x
ENDIF
ELSEIF ( particles(n)%x >= ( nx + 1) * dx ) THEN
IF ( ibc_par_lr == 0 ) THEN
!
!-- Cyclic boundary. Relevant coordinate has to be changed.
particles(n)%x = particles(n)%x - ( nx + 1 ) * dx
particles(n)%origin_x = particles(n)%origin_x - &
( nx + 1 ) * dx
ELSEIF ( ibc_par_lr == 1 ) THEN
!
!-- Particle absorption
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ELSEIF ( ibc_par_lr == 2 ) THEN
!
!-- Particle reflection
particles(n)%x = ( nx + 1 ) * dx - particles(n)%x
particles(n)%speed_x = -particles(n)%speed_x
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
DO ip = nxl, nxr
DO jp = nys, nyn, nyn-nys
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
DO n = 1, number_of_particles
IF ( particles(n)%y < 0.0_wp) THEN
IF ( ibc_par_ns == 0 ) THEN
!
!-- Cyclic boundary. Relevant coordinate has to be changed.
particles(n)%y = ( ny + 1 ) * dy + particles(n)%y
particles(n)%origin_y = ( ny + 1 ) * dy + &
particles(n)%origin_y
ELSEIF ( ibc_par_ns == 1 ) THEN
!
!-- Particle absorption
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ELSEIF ( ibc_par_ns == 2 ) THEN
!
!-- Particle reflection
particles(n)%y = -dy - particles(n)%y
particles(n)%speed_y = -particles(n)%speed_y
ENDIF
ELSEIF ( particles(n)%y >= ( ny + 1) * dy ) THEN
IF ( ibc_par_ns == 0 ) THEN
!
!-- Cyclic boundary. Relevant coordinate has to be changed.
particles(n)%y = particles(n)%y - ( ny + 1 ) * dy
particles(n)%origin_y = particles(n)%origin_y - &
( ny + 1 ) * dy
ELSEIF ( ibc_par_ns == 1 ) THEN
!
!-- Particle absorption
particles(n)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ELSEIF ( ibc_par_ns == 2 ) THEN
!
!-- Particle reflection
particles(n)%y = ( ny + 1 ) * dy - particles(n)%y
particles(n)%speed_y = -particles(n)%speed_y
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
#endif
!
!-- Accumulate the number of particles transferred between the subdomains
#if defined( __parallel )
trlp_count_sum = trlp_count_sum + trlp_count
trlp_count_recv_sum = trlp_count_recv_sum + trlp_count_recv
trrp_count_sum = trrp_count_sum + trrp_count
trrp_count_recv_sum = trrp_count_recv_sum + trrp_count_recv
trsp_count_sum = trsp_count_sum + trsp_count
trsp_count_recv_sum = trsp_count_recv_sum + trsp_count_recv
trnp_count_sum = trnp_count_sum + trnp_count
trnp_count_recv_sum = trnp_count_recv_sum + trnp_count_recv
#endif
CALL cpu_log( log_point_s(23), 'lpm_exchange_horiz', 'stop' )
END SUBROUTINE lpm_exchange_horiz
!------------------------------------------------------------------------------!
! Description:
! ------------
!> If a particle moves from one processor to another, this subroutine moves
!> the corresponding elements from the particle arrays of the old grid cells
!> to the particle arrays of the new grid cells.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_add_particles_to_gridcell (particle_array)
IMPLICIT NONE
INTEGER(iwp) :: ip !< grid index (x) of particle
INTEGER(iwp) :: jp !< grid index (x) of particle
INTEGER(iwp) :: kp !< grid index (x) of particle
INTEGER(iwp) :: n !< index variable of particle
INTEGER(iwp) :: pindex !< dummy argument for new number of particles per grid box
LOGICAL :: pack_done !<
TYPE(particle_type), DIMENSION(:), INTENT(IN) :: particle_array !< new particles in a grid box
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: temp_ns !< temporary particle array for reallocation
pack_done = .FALSE.
DO n = 1, SIZE(particle_array)
IF ( .NOT. particle_array(n)%particle_mask ) CYCLE
ip = particle_array(n)%x * ddx
jp = particle_array(n)%y * ddy
!
!-- In case of stretching the actual k index must be found
IF ( dz_stretch_level /= -9999999.9_wp .OR. &
dz_stretch_level_start(1) /= -9999999.9_wp ) THEN
kp = MINLOC( ABS( particle_array(n)%z - zu ), DIM = 1 ) - 1
ELSE
kp = INT( particle_array(n)%z / dz(1) + 1 + offset_ocean_nzt )
ENDIF
IF ( ip >= nxl .AND. ip <= nxr .AND. jp >= nys .AND. jp <= nyn &
.AND. kp >= nzb+1 .AND. kp <= nzt) THEN ! particle stays on processor
number_of_particles = prt_count(kp,jp,ip)
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
pindex = prt_count(kp,jp,ip)+1
IF( pindex > SIZE(grid_particles(kp,jp,ip)%particles) ) THEN
IF ( pack_done ) THEN
CALL realloc_particles_array ( ip, jp, kp )
ELSE
CALL lpm_pack
prt_count(kp,jp,ip) = number_of_particles
pindex = prt_count(kp,jp,ip)+1
IF ( pindex > SIZE(grid_particles(kp,jp,ip)%particles) ) THEN
CALL realloc_particles_array ( ip, jp, kp )
ENDIF
pack_done = .TRUE.
ENDIF
ENDIF
grid_particles(kp,jp,ip)%particles(pindex) = particle_array(n)
prt_count(kp,jp,ip) = pindex
ELSE
IF ( jp <= nys - 1 ) THEN
nr_move_south = nr_move_south+1
!
!-- Before particle information is swapped to exchange-array, check
!-- if enough memory is allocated. If required, reallocate exchange
!-- array.
IF ( nr_move_south > SIZE(move_also_south) ) THEN
!
!-- At first, allocate further temporary array to swap particle
!-- information.
ALLOCATE( temp_ns(SIZE(move_also_south)+NR_2_direction_move) )
temp_ns(1:nr_move_south-1) = move_also_south(1:nr_move_south-1)
DEALLOCATE( move_also_south )
ALLOCATE( move_also_south(SIZE(temp_ns)) )
move_also_south(1:nr_move_south-1) = temp_ns(1:nr_move_south-1)
DEALLOCATE( temp_ns )
ENDIF
move_also_south(nr_move_south) = particle_array(n)
IF ( jp == -1 ) THEN
!
!-- Apply boundary condition along y
IF ( ibc_par_ns == 0 ) THEN
move_also_south(nr_move_south)%y = &
move_also_south(nr_move_south)%y + ( ny + 1 ) * dy
move_also_south(nr_move_south)%origin_y = &
move_also_south(nr_move_south)%origin_y + ( ny + 1 ) * dy
ELSEIF ( ibc_par_ns == 1 ) THEN
!
!-- Particle absorption
move_also_south(nr_move_south)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ELSEIF ( ibc_par_ns == 2 ) THEN
!
!-- Particle reflection
move_also_south(nr_move_south)%y = &
-move_also_south(nr_move_south)%y
move_also_south(nr_move_south)%speed_y = &
-move_also_south(nr_move_south)%speed_y
ENDIF
ENDIF
ELSEIF ( jp >= nyn+1 ) THEN
nr_move_north = nr_move_north+1
!
!-- Before particle information is swapped to exchange-array, check
!-- if enough memory is allocated. If required, reallocate exchange
!-- array.
IF ( nr_move_north > SIZE(move_also_north) ) THEN
!
!-- At first, allocate further temporary array to swap particle
!-- information.
ALLOCATE( temp_ns(SIZE(move_also_north)+NR_2_direction_move) )
temp_ns(1:nr_move_north-1) = move_also_south(1:nr_move_north-1)
DEALLOCATE( move_also_north )
ALLOCATE( move_also_north(SIZE(temp_ns)) )
move_also_north(1:nr_move_north-1) = temp_ns(1:nr_move_north-1)
DEALLOCATE( temp_ns )
ENDIF
move_also_north(nr_move_north) = particle_array(n)
IF ( jp == ny+1 ) THEN
!
!-- Apply boundary condition along y
IF ( ibc_par_ns == 0 ) THEN
move_also_north(nr_move_north)%y = &
move_also_north(nr_move_north)%y - ( ny + 1 ) * dy
move_also_north(nr_move_north)%origin_y = &
move_also_north(nr_move_north)%origin_y - ( ny + 1 ) * dy
ELSEIF ( ibc_par_ns == 1 ) THEN
!
!-- Particle absorption
move_also_north(nr_move_north)%particle_mask = .FALSE.
deleted_particles = deleted_particles + 1
ELSEIF ( ibc_par_ns == 2 ) THEN
!
!-- Particle reflection
move_also_north(nr_move_north)%y = &
-move_also_north(nr_move_north)%y
move_also_north(nr_move_north)%speed_y = &
-move_also_north(nr_move_north)%speed_y
ENDIF
ENDIF
ELSE
WRITE(0,'(a,8i7)') 'particle out of range ',myid,ip,jp,kp,nxl,nxr,nys,nyn
ENDIF
ENDIF
ENDDO
RETURN
END SUBROUTINE lpm_add_particles_to_gridcell
!------------------------------------------------------------------------------!
! Description:
! ------------
!> If a particle moves from one grid cell to another (on the current
!> processor!), this subroutine moves the corresponding element from the
!> particle array of the old grid cell to the particle array of the new grid
!> cell.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_move_particle
INTEGER(iwp) :: i !< grid index (x) of particle position
INTEGER(iwp) :: ip !< index variable along x
INTEGER(iwp) :: j !< grid index (y) of particle position
INTEGER(iwp) :: jp !< index variable along y
INTEGER(iwp) :: k !< grid index (z) of particle position
INTEGER(iwp) :: kp !< index variable along z
INTEGER(iwp) :: n !< index variable for particle array
INTEGER(iwp) :: np_before_move !< number of particles per grid box before moving
INTEGER(iwp) :: pindex !< dummy argument for number of new particle per grid box
TYPE(particle_type), DIMENSION(:), POINTER :: particles_before_move !< particles before moving
CALL cpu_log( log_point_s(41), 'lpm_move_particle', 'start' )
CALL lpm_check_cfl
DO ip = nxl, nxr
DO jp = nys, nyn
DO kp = nzb+1, nzt
np_before_move = prt_count(kp,jp,ip)
IF ( np_before_move <= 0 ) CYCLE
particles_before_move => grid_particles(kp,jp,ip)%particles(1:np_before_move)
DO n = 1, np_before_move
i = particles_before_move(n)%x * ddx
j = particles_before_move(n)%y * ddy
k = kp
!
!-- Find correct vertical particle grid box (necessary in case of grid stretching)
!-- Due to the CFL limitations only the neighbouring grid boxes are considered.
IF( zw(k) < particles_before_move(n)%z ) k = k + 1
IF( zw(k-1) > particles_before_move(n)%z ) k = k - 1
!-- For lpm_exchange_horiz to work properly particles need to be moved to the outermost gridboxes
!-- of the respective processor. If the particle index is inside the processor the following lines
!-- will not change the index
i = MIN ( i , nxr )
i = MAX ( i , nxl )
j = MIN ( j , nyn )
j = MAX ( j , nys )
k = MIN ( k , nzt )
k = MAX ( k , nzb+1 )
!
!-- Check, if particle has moved to another grid cell.
IF ( i /= ip .OR. j /= jp .OR. k /= kp ) THEN
!!
!-- If the particle stays on the same processor, the particle
!-- will be added to the particle array of the new processor.
number_of_particles = prt_count(k,j,i)
particles => grid_particles(k,j,i)%particles(1:number_of_particles)
pindex = prt_count(k,j,i)+1
IF ( pindex > SIZE(grid_particles(k,j,i)%particles) ) &
THEN
CALL realloc_particles_array( i, j, k )
ENDIF
grid_particles(k,j,i)%particles(pindex) = particles_before_move(n)
prt_count(k,j,i) = pindex
particles_before_move(n)%particle_mask = .FALSE.
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
CALL cpu_log( log_point_s(41), 'lpm_move_particle', 'stop' )
RETURN
END SUBROUTINE lpm_move_particle
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Check CFL-criterion for each particle. If one particle violated the
!> criterion the particle will be deleted and a warning message is given.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_check_cfl
IMPLICIT NONE
INTEGER(iwp) :: i !< running index, x-direction
INTEGER(iwp) :: j !< running index, y-direction
INTEGER(iwp) :: k !< running index, z-direction
INTEGER(iwp) :: n !< running index, number of particles
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
number_of_particles = prt_count(k,j,i)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(k,j,i)%particles(1:number_of_particles)
DO n = 1, number_of_particles
!
!-- Note, check for CFL does not work at first particle timestep
!-- when both, age and age_m are zero.
IF ( particles(n)%age - particles(n)%age_m > 0.0_wp ) THEN
IF(ABS(particles(n)%speed_x) > &
(dx/(particles(n)%age-particles(n)%age_m)) .OR. &
ABS(particles(n)%speed_y) > &
(dy/(particles(n)%age-particles(n)%age_m)) .OR. &
ABS(particles(n)%speed_z) > &
((zw(k)-zw(k-1))/(particles(n)%age-particles(n)%age_m))) &
THEN
WRITE( message_string, * ) &
'Particle violated CFL-criterion: &particle with id ', &
particles(n)%id, ' will be deleted!'
CALL message( 'lpm_check_cfl', 'PA0475', 0, 1, -1, 6, 0 )
particles(n)%particle_mask= .FALSE.
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
ENDDO
END SUBROUTINE lpm_check_cfl
!------------------------------------------------------------------------------!
! Description:
! ------------
!> If the allocated memory for the particle array do not suffice to add arriving
!> particles from neighbour grid cells, this subrouting reallocates the
!> particle array to assure enough memory is available.
!------------------------------------------------------------------------------!
SUBROUTINE realloc_particles_array ( i, j, k, size_in )
INTEGER(iwp), INTENT(IN) :: i !<
INTEGER(iwp), INTENT(IN) :: j !<
INTEGER(iwp), INTENT(IN) :: k !<
INTEGER(iwp), INTENT(IN), OPTIONAL :: size_in !<
INTEGER(iwp) :: old_size !<
INTEGER(iwp) :: new_size !<
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: tmp_particles_d !<
TYPE(particle_type), DIMENSION(500) :: tmp_particles_s !<
old_size = SIZE(grid_particles(k,j,i)%particles)
IF ( PRESENT(size_in) ) THEN
new_size = size_in
ELSE
new_size = old_size * ( 1.0_wp + alloc_factor / 100.0_wp )
ENDIF
new_size = MAX( new_size, 1, old_size + 1 )
IF ( old_size <= 500 ) THEN
tmp_particles_s(1:old_size) = grid_particles(k,j,i)%particles(1:old_size)
DEALLOCATE(grid_particles(k,j,i)%particles)
ALLOCATE(grid_particles(k,j,i)%particles(new_size))
grid_particles(k,j,i)%particles(1:old_size) = tmp_particles_s(1:old_size)
grid_particles(k,j,i)%particles(old_size+1:new_size) = zero_particle
ELSE
ALLOCATE(tmp_particles_d(new_size))
tmp_particles_d(1:old_size) = grid_particles(k,j,i)%particles
DEALLOCATE(grid_particles(k,j,i)%particles)
ALLOCATE(grid_particles(k,j,i)%particles(new_size))
grid_particles(k,j,i)%particles(1:old_size) = tmp_particles_d(1:old_size)
grid_particles(k,j,i)%particles(old_size+1:new_size) = zero_particle
DEALLOCATE(tmp_particles_d)
ENDIF
particles => grid_particles(k,j,i)%particles(1:new_size)
RETURN
END SUBROUTINE realloc_particles_array
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Not needed but allocated space for particles is dealloced.
!------------------------------------------------------------------------------!
SUBROUTINE dealloc_particles_array
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: k !<
INTEGER(iwp) :: old_size !<
INTEGER(iwp) :: new_size !<
LOGICAL :: dealloc
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: tmp_particles_d !<
TYPE(particle_type), DIMENSION(500) :: tmp_particles_s !<
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
!
!-- Determine number of active particles
number_of_particles = prt_count(k,j,i)
!
!-- Determine allocated memory size
old_size = SIZE( grid_particles(k,j,i)%particles )
!
!-- Check for large unused memory
dealloc = ( ( number_of_particles < 1 .AND. &
old_size > 1 ) .OR. &
( number_of_particles > 1 .AND. &
old_size - number_of_particles * &
( 1.0_wp + 0.01_wp * alloc_factor ) > 0.0_wp ) )
IF ( dealloc ) THEN
IF ( number_of_particles < 1 ) THEN
new_size = 1
ELSE
new_size = INT( number_of_particles * ( 1.0_wp + 0.01_wp * alloc_factor ) )
ENDIF
IF ( number_of_particles <= 500 ) THEN
tmp_particles_s(1:number_of_particles) = grid_particles(k,j,i)%particles(1:number_of_particles)
DEALLOCATE(grid_particles(k,j,i)%particles)
ALLOCATE(grid_particles(k,j,i)%particles(new_size))
grid_particles(k,j,i)%particles(1:number_of_particles) = tmp_particles_s(1:number_of_particles)
grid_particles(k,j,i)%particles(number_of_particles+1:new_size) = zero_particle
ELSE
ALLOCATE(tmp_particles_d(number_of_particles))
tmp_particles_d(1:number_of_particles) = grid_particles(k,j,i)%particles(1:number_of_particles)
DEALLOCATE(grid_particles(k,j,i)%particles)
ALLOCATE(grid_particles(k,j,i)%particles(new_size))
grid_particles(k,j,i)%particles(1:number_of_particles) = tmp_particles_d(1:number_of_particles)
grid_particles(k,j,i)%particles(number_of_particles+1:new_size) = zero_particle
DEALLOCATE(tmp_particles_d)
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO
END SUBROUTINE dealloc_particles_array
!------------------------------------------------------------------------------!
! Description:
! -----------
!> Routine for the whole processor
!> Sort all particles into the 8 respective subgrid boxes (in case of trilinear
!> interpolation method) and free space of particles which has been marked for
!> deletion.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_sort_and_delete
INTEGER(iwp) :: i !<
INTEGER(iwp) :: ip !<
INTEGER(iwp) :: is !<
INTEGER(iwp) :: j !<
INTEGER(iwp) :: jp !<
INTEGER(iwp) :: kp !<
INTEGER(iwp) :: m !<
INTEGER(iwp) :: n !<
INTEGER(iwp) :: nn !<
INTEGER(iwp) :: sort_index !<
INTEGER(iwp), DIMENSION(0:7) :: sort_count !<
TYPE(particle_type), DIMENSION(:,:), ALLOCATABLE :: sort_particles !<
CALL cpu_log( log_point_s(51), 'lpm_sort_and_delete', 'start' )
IF ( interpolation_trilinear ) THEN
DO ip = nxl, nxr
DO jp = nys, nyn
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
nn = 0
sort_count = 0
ALLOCATE( sort_particles(number_of_particles, 0:7) )
DO n = 1, number_of_particles
sort_index = 0
IF ( particles(n)%particle_mask ) THEN
nn = nn + 1
!
!-- Sorting particles with a binary scheme
!-- sort_index=111_2=7_10 -> particle at the left,south,bottom subgridbox
!-- sort_index=000_2=0_10 -> particle at the right,north,top subgridbox
!-- For this the center of the gridbox is calculated
i = (particles(n)%x + 0.5_wp * dx) * ddx
j = (particles(n)%y + 0.5_wp * dy) * ddy
IF ( i == ip ) sort_index = sort_index + 4
IF ( j == jp ) sort_index = sort_index + 2
IF ( zu(kp) > particles(n)%z ) sort_index = sort_index + 1
sort_count(sort_index) = sort_count(sort_index) + 1
m = sort_count(sort_index)
sort_particles(m,sort_index) = particles(n)
sort_particles(m,sort_index)%block_nr = sort_index
ENDIF
ENDDO
!
!-- Delete and resort particles by overwritting and set
!-- the number_of_particles to the actual value.
nn = 0
DO is = 0,7
grid_particles(kp,jp,ip)%start_index(is) = nn + 1
DO n = 1,sort_count(is)
nn = nn + 1
particles(nn) = sort_particles(n,is)
ENDDO
grid_particles(kp,jp,ip)%end_index(is) = nn
ENDDO
number_of_particles = nn
prt_count(kp,jp,ip) = number_of_particles
DEALLOCATE(sort_particles)
ENDDO
ENDDO
ENDDO
!-- In case of the simple interpolation method the particles must not
!-- be sorted in subboxes. Particles marked for deletion however, must be
!-- deleted and number of particles must be recalculated as it is also
!-- done for the trilinear particle advection interpolation method.
ELSE
DO ip = nxl, nxr
DO jp = nys, nyn
DO kp = nzb+1, nzt
number_of_particles = prt_count(kp,jp,ip)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles)
!
!-- Repack particles array, i.e. delete particles and recalculate
!-- number of particles
CALL lpm_pack
prt_count(kp,jp,ip) = number_of_particles
ENDDO
ENDDO
ENDDO
ENDIF
CALL cpu_log( log_point_s(51), 'lpm_sort_and_delete', 'stop' )
END SUBROUTINE lpm_sort_and_delete
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Move all particles not marked for deletion to lowest indices (packing)
!------------------------------------------------------------------------------!
SUBROUTINE lpm_pack
INTEGER(iwp) :: n !<
INTEGER(iwp) :: nn !<
!
!-- Find out elements marked for deletion and move data from highest index
!-- values to these free indices
nn = number_of_particles
DO WHILE ( .NOT. particles(nn)%particle_mask )
nn = nn-1
IF ( nn == 0 ) EXIT
ENDDO
IF ( nn > 0 ) THEN
DO n = 1, number_of_particles
IF ( .NOT. particles(n)%particle_mask ) THEN
particles(n) = particles(nn)
nn = nn - 1
DO WHILE ( .NOT. particles(nn)%particle_mask )
nn = nn-1
IF ( n == nn ) EXIT
ENDDO
ENDIF
IF ( n == nn ) EXIT
ENDDO
ENDIF
!
!-- The number of deleted particles has been determined in routines
!-- lpm_boundary_conds, lpm_droplet_collision, and lpm_exchange_horiz
number_of_particles = nn
END SUBROUTINE lpm_pack
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Sort particles in each sub-grid box into two groups: particles that already
!> completed the LES timestep, and particles that need further timestepping to
!> complete the LES timestep.
!------------------------------------------------------------------------------!
SUBROUTINE lpm_sort_timeloop_done
INTEGER(iwp) :: end_index !< particle end index for each sub-box
INTEGER(iwp) :: i !< index of particle grid box in x-direction
INTEGER(iwp) :: j !< index of particle grid box in y-direction
INTEGER(iwp) :: k !< index of particle grid box in z-direction
INTEGER(iwp) :: n !< running index for number of particles
INTEGER(iwp) :: nb !< index of subgrid boux
INTEGER(iwp) :: nf !< indices for particles in each sub-box that already finalized their substeps
INTEGER(iwp) :: nnf !< indices for particles in each sub-box that need further treatment
INTEGER(iwp) :: num_finalized !< number of particles in each sub-box that already finalized their substeps
INTEGER(iwp) :: start_index !< particle start index for each sub-box
TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: sort_particles !< temporary particle array
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
number_of_particles = prt_count(k,j,i)
IF ( number_of_particles <= 0 ) CYCLE
particles => grid_particles(k,j,i)%particles(1:number_of_particles)
DO nb = 0, 7
!
!-- Obtain start and end index for each subgrid box
start_index = grid_particles(k,j,i)%start_index(nb)
end_index = grid_particles(k,j,i)%end_index(nb)
!
!-- Allocate temporary array used for sorting.
ALLOCATE( sort_particles(start_index:end_index) )
!
!-- Determine number of particles already completed the LES
!-- timestep, and write them into a temporary array.
nf = start_index
num_finalized = 0
DO n = start_index, end_index
IF ( dt_3d - particles(n)%dt_sum < 1E-8_wp ) THEN
sort_particles(nf) = particles(n)
nf = nf + 1
num_finalized = num_finalized + 1
ENDIF
ENDDO
!
!-- Determine number of particles that not completed the LES
!-- timestep, and write them into a temporary array.
nnf = nf
DO n = start_index, end_index
IF ( dt_3d - particles(n)%dt_sum > 1E-8_wp ) THEN
sort_particles(nnf) = particles(n)
nnf = nnf + 1
ENDIF
ENDDO
!
!-- Write back sorted particles
particles(start_index:end_index) = &
sort_particles(start_index:end_index)
!
!-- Determine updated start_index, used to masked already
!-- completed particles.
grid_particles(k,j,i)%start_index(nb) = &
grid_particles(k,j,i)%start_index(nb) &
+ num_finalized
!
!-- Deallocate dummy array
DEALLOCATE ( sort_particles )
!
!-- Finally, if number of non-completed particles is non zero
!-- in any of the sub-boxes, set control flag appropriately.
IF ( nnf > nf ) &
grid_particles(k,j,i)%time_loop_done = .FALSE.
ENDDO
ENDDO
ENDDO
ENDDO
END SUBROUTINE lpm_sort_timeloop_done
END MODULE lagrangian_particle_model_mod