SUBROUTINE init_rankine !------------------------------------------------------------------------------! ! Current revisions: ! ----------------- ! ! Former revisions: ! ----------------- ! $Id: init_rankine.f90 668 2010-12-23 13:22:58Z hoffmann $ ! ! 667 2010-12-23 12:06:00Z suehring/gryschka ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng. ! Calls of exchange_horiz are modified. ! ! 107 2007-08-17 13:54:45Z raasch ! Initial profiles are reset to constant profiles ! ! 75 2007-03-22 09:54:05Z raasch ! uxrp, vynp eliminated, 2nd+3rd argument removed from exchange horiz ! ! RCS Log replace by Id keyword, revision history cleaned up ! ! Revision 1.11 2005/03/26 20:38:49 raasch ! Arguments for non-cyclic boundary conditions added to argument list of ! routine exchange_horiz ! ! Revision 1.1 1997/08/11 06:18:43 raasch ! Initial revision ! ! ! Description: ! ------------ ! Initialize a (nondivergent) Rankine eddy with a vertical axis in order to test ! the advection terms and the pressure solver. !------------------------------------------------------------------------------! USE arrays_3d USE constants USE grid_variables USE indices USE control_parameters IMPLICIT NONE INTEGER :: i, ic, j, jc, k, kc1, kc2 REAL :: alpha, betrag, radius, rc, uw, vw, x, y ! !-- Default: eddy radius rc, eddy strength z, !-- position of eddy centre: ic, jc, kc1, kc2 rc = 4.0 * dx ic = ( nx+1 ) / 2 jc = ic kc1 = nzb kc2 = nzt+1 ! !-- Reset initial profiles to constant profiles IF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) THEN DO i = nxlg, nxrg DO j = nysg, nyng pt(:,j,i) = pt_init u(:,j,i) = u_init v(:,j,i) = v_init ENDDO ENDDO ENDIF ! !-- Compute the u-component. DO i = nxl, nxr DO j = nys, nyn x = ( i - ic - 0.5 ) * dx y = ( j - jc ) * dy radius = SQRT( x**2 + y**2 ) IF ( radius <= 2.0 * rc ) THEN betrag = radius / ( 2.0 * rc ) * 0.08 ELSEIF ( radius > 2.0 * rc .AND. radius < 8.0 * rc ) THEN betrag = 0.08 * EXP( -( radius - 2.0 * rc ) / 2.0 ) ELSE betrag = 0.0 ENDIF IF ( x == 0.0 ) THEN IF ( y > 0.0 ) THEN alpha = pi / 2.0 ELSEIF ( y < 0.0 ) THEN alpha = 3.0 * pi / 2.0 ENDIF ELSE IF ( x < 0.0 ) THEN alpha = ATAN( y / x ) + pi ELSE IF ( y < 0.0 ) THEN alpha = ATAN( y / x ) + 2.0 * pi ELSE alpha = ATAN( y / x ) ENDIF ENDIF ENDIF uw = -SIN( alpha ) * betrag DO k = kc1, kc2 u(k,j,i) = u(k,j,i) + uw ENDDO ENDDO ENDDO ! !-- Compute the v-component. DO i = nxl, nxr DO j = nys, nyn x = ( i - ic ) * dx y = ( j - jc - 0.5) * dy radius = SQRT( x**2 + y**2 ) IF ( radius <= 2.0 * rc ) THEN betrag = radius / ( 2.0 * rc ) * 0.08 ELSEIF ( radius > 2.0 * rc .AND. radius < 8.0 * rc ) THEN betrag = 0.08 * EXP( -( radius - 2.0 * rc ) / 2.0 ) ELSE betrag = 0.0 ENDIF IF ( x == 0.0 ) THEN IF ( y > 0.0 ) THEN alpha = pi / 2.0 ELSEIF ( y < 0.0 ) THEN alpha = 3.0 * pi / 2.0 ENDIF ELSE IF ( x < 0.0 ) THEN alpha = ATAN( y / x ) + pi ELSE IF ( y < 0.0 ) THEN alpha = ATAN( y / x ) + 2.0 * pi ELSE alpha = ATAN( y / x ) ENDIF ENDIF ENDIF vw = COS( alpha ) * betrag DO k = kc1, kc2 v(k,j,i) = v(k,j,i) + vw ENDDO ENDDO ENDDO ! !-- Exchange of boundary values for the velocities. CALL exchange_horiz( u, nbgp) CALL exchange_horiz( v, nbgp ) ! !-- Make velocity field nondivergent. n_sor = nsor_ini CALL pres n_sor = nsor END SUBROUTINE init_rankine