!> @file init_rankine.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 1997-2020 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: init_rankine.f90 4648 2020-08-25 07:52:08Z knoop $ ! file re-formatted to follow the PALM coding standard ! ! 4457 2020-03-11 14:20:43Z raasch ! use statement for exchange horiz added ! ! 4360 2020-01-07 11:25:50Z suehring ! Corrected "Former revisions" section ! ! 3655 2019-01-07 16:51:22Z knoop ! Modularization of all bulk cloud physics code components ! ! Revision 1.1 1997/08/11 06:18:43 raasch ! Initial revision ! ! ! Description: ! ------------ !> Initialize a (nondivergent) Rankine eddy with a vertical axis in order to test the advection !> terms and the pressure solver. !--------------------------------------------------------------------------------------------------! SUBROUTINE init_rankine USE arrays_3d, & ONLY: pt, pt_init, u, u_init, v, v_init USE control_parameters, & ONLY: initializing_actions, n_sor, nsor, nsor_ini USE basic_constants_and_equations_mod, & ONLY: pi USE exchange_horiz_mod, & ONLY: exchange_horiz USE grid_variables, & ONLY: dx, dy USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt USE kinds IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: ic !< INTEGER(iwp) :: j !< INTEGER(iwp) :: jc !< INTEGER(iwp) :: k !< INTEGER(iwp) :: kc1 !< INTEGER(iwp) :: kc2 !< REAL(wp) :: alpha !< REAL(wp) :: betrag !< REAL(wp) :: radius !< REAL(wp) :: rc !< REAL(wp) :: uw !< REAL(wp) :: vw !< REAL(wp) :: x !< REAL(wp) :: y !< ! !-- Default: eddy radius rc, eddy strength z, !-- position of eddy centre: ic, jc, kc1, kc2 rc = 4.0_wp * dx ic = ( nx+1 ) / 2 jc = ic kc1 = nzb kc2 = nzt+1 ! !-- Reset initial profiles to constant profiles IF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) THEN DO i = nxlg, nxrg DO j = nysg, nyng pt(:,j,i) = pt_init u(:,j,i) = u_init v(:,j,i) = v_init ENDDO ENDDO ENDIF ! !-- Compute the u-component. DO i = nxl, nxr DO j = nys, nyn x = ( i - ic - 0.5_wp ) * dx y = ( j - jc ) * dy radius = SQRT( x**2 + y**2 ) IF ( radius <= 2.0_wp * rc ) THEN betrag = radius / ( 2.0_wp * rc ) * 0.08_wp ELSEIF ( radius > 2.0_wp * rc .AND. radius < 8.0_wp * rc ) THEN betrag = 0.08_wp * EXP( -( radius - 2.0_wp * rc ) / 2.0_wp ) ELSE betrag = 0.0_wp ENDIF IF ( x == 0.0_wp ) THEN IF ( y > 0.0_wp ) THEN alpha = pi / 2.0_wp ELSEIF ( y < 0.0_wp ) THEN alpha = 3.0_wp * pi / 2.0_wp ENDIF ELSE IF ( x < 0.0_wp ) THEN alpha = ATAN( y / x ) + pi ELSE IF ( y < 0.0_wp ) THEN alpha = ATAN( y / x ) + 2.0_wp * pi ELSE alpha = ATAN( y / x ) ENDIF ENDIF ENDIF uw = -SIN( alpha ) * betrag DO k = kc1, kc2 u(k,j,i) = u(k,j,i) + uw ENDDO ENDDO ENDDO ! !-- Compute the v-component. DO i = nxl, nxr DO j = nys, nyn x = ( i - ic ) * dx y = ( j - jc - 0.5_wp ) * dy radius = SQRT( x**2 + y**2 ) IF ( radius <= 2.0_wp * rc ) THEN betrag = radius / ( 2.0_wp * rc ) * 0.08_wp ELSEIF ( radius > 2.0_wp * rc .AND. radius < 8.0_wp * rc ) THEN betrag = 0.08_wp * EXP( -( radius - 2.0_wp * rc ) / 2.0_wp ) ELSE betrag = 0.0_wp ENDIF IF ( x == 0.0_wp ) THEN IF ( y > 0.0_wp ) THEN alpha = pi / 2.0_wp ELSEIF ( y < 0.0_wp ) THEN alpha = 3.0_wp * pi / 2.0_wp ENDIF ELSE IF ( x < 0.0_wp ) THEN alpha = ATAN( y / x ) + pi ELSE IF ( y < 0.0_wp ) THEN alpha = ATAN( y / x ) + 2.0_wp * pi ELSE alpha = ATAN( y / x ) ENDIF ENDIF ENDIF vw = COS( alpha ) * betrag DO k = kc1, kc2 v(k,j,i) = v(k,j,i) + vw ENDDO ENDDO ENDDO ! !-- Exchange of boundary values for the velocities. CALL exchange_horiz( u, nbgp) CALL exchange_horiz( v, nbgp ) ! !-- Make velocity field nondivergent. n_sor = nsor_ini CALL pres n_sor = nsor END SUBROUTINE init_rankine