!> @file init_rankine.f90 !------------------------------------------------------------------------------! ! This file is part of PALM. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2017 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: init_rankine.f90 2101 2017-01-05 16:42:31Z witha $ ! ! 2000 2016-08-20 18:09:15Z knoop ! Forced header and separation lines into 80 columns ! ! 1682 2015-10-07 23:56:08Z knoop ! Code annotations made doxygen readable ! ! 1353 2014-04-08 15:21:23Z heinze ! REAL constants provided with KIND-attribute ! ! 1322 2014-03-20 16:38:49Z raasch ! REAL constants defined as wp_kind ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! revision history before 2012 removed, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! ! 1036 2012-10-22 13:43:42Z raasch ! code put under GPL (PALM 3.9) ! ! Revision 1.1 1997/08/11 06:18:43 raasch ! Initial revision ! ! ! Description: ! ------------ !> Initialize a (nondivergent) Rankine eddy with a vertical axis in order to test !> the advection terms and the pressure solver. !------------------------------------------------------------------------------! SUBROUTINE init_rankine USE arrays_3d, & ONLY: pt, pt_init, u, u_init, v, v_init USE control_parameters, & ONLY: initializing_actions, n_sor, nsor, nsor_ini USE constants, & ONLY: pi USE grid_variables, & ONLY: dx, dy USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt USE kinds IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: ic !< INTEGER(iwp) :: j !< INTEGER(iwp) :: jc !< INTEGER(iwp) :: k !< INTEGER(iwp) :: kc1 !< INTEGER(iwp) :: kc2 !< REAL(wp) :: alpha !< REAL(wp) :: betrag !< REAL(wp) :: radius !< REAL(wp) :: rc !< REAL(wp) :: uw !< REAL(wp) :: vw !< REAL(wp) :: x !< REAL(wp) :: y !< ! !-- Default: eddy radius rc, eddy strength z, !-- position of eddy centre: ic, jc, kc1, kc2 rc = 4.0_wp * dx ic = ( nx+1 ) / 2 jc = ic kc1 = nzb kc2 = nzt+1 ! !-- Reset initial profiles to constant profiles IF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) THEN DO i = nxlg, nxrg DO j = nysg, nyng pt(:,j,i) = pt_init u(:,j,i) = u_init v(:,j,i) = v_init ENDDO ENDDO ENDIF ! !-- Compute the u-component. DO i = nxl, nxr DO j = nys, nyn x = ( i - ic - 0.5_wp ) * dx y = ( j - jc ) * dy radius = SQRT( x**2 + y**2 ) IF ( radius <= 2.0_wp * rc ) THEN betrag = radius / ( 2.0_wp * rc ) * 0.08_wp ELSEIF ( radius > 2.0_wp * rc .AND. radius < 8.0_wp * rc ) THEN betrag = 0.08_wp * EXP( -( radius - 2.0_wp * rc ) / 2.0_wp ) ELSE betrag = 0.0_wp ENDIF IF ( x == 0.0_wp ) THEN IF ( y > 0.0_wp ) THEN alpha = pi / 2.0_wp ELSEIF ( y < 0.0_wp ) THEN alpha = 3.0_wp * pi / 2.0_wp ENDIF ELSE IF ( x < 0.0_wp ) THEN alpha = ATAN( y / x ) + pi ELSE IF ( y < 0.0_wp ) THEN alpha = ATAN( y / x ) + 2.0_wp * pi ELSE alpha = ATAN( y / x ) ENDIF ENDIF ENDIF uw = -SIN( alpha ) * betrag DO k = kc1, kc2 u(k,j,i) = u(k,j,i) + uw ENDDO ENDDO ENDDO ! !-- Compute the v-component. DO i = nxl, nxr DO j = nys, nyn x = ( i - ic ) * dx y = ( j - jc - 0.5_wp ) * dy radius = SQRT( x**2 + y**2 ) IF ( radius <= 2.0_wp * rc ) THEN betrag = radius / ( 2.0_wp * rc ) * 0.08_wp ELSEIF ( radius > 2.0_wp * rc .AND. radius < 8.0_wp * rc ) THEN betrag = 0.08_wp * EXP( -( radius - 2.0_wp * rc ) / 2.0_wp ) ELSE betrag = 0.0_wp ENDIF IF ( x == 0.0_wp ) THEN IF ( y > 0.0_wp ) THEN alpha = pi / 2.0_wp ELSEIF ( y < 0.0_wp ) THEN alpha = 3.0_wp * pi / 2.0_wp ENDIF ELSE IF ( x < 0.0_wp ) THEN alpha = ATAN( y / x ) + pi ELSE IF ( y < 0.0_wp ) THEN alpha = ATAN( y / x ) + 2.0_wp * pi ELSE alpha = ATAN( y / x ) ENDIF ENDIF ENDIF vw = COS( alpha ) * betrag DO k = kc1, kc2 v(k,j,i) = v(k,j,i) + vw ENDDO ENDDO ENDDO ! !-- Exchange of boundary values for the velocities. CALL exchange_horiz( u, nbgp) CALL exchange_horiz( v, nbgp ) ! !-- Make velocity field nondivergent. n_sor = nsor_ini CALL pres n_sor = nsor END SUBROUTINE init_rankine